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Using data from pp collisions at /s = 1.96 TeV recorded by the CDF II detector at the Fermilab
Tevatron, we present improved measurements of the masses and first measurements of natural widths of

the four bottom baryon resonance states ., 7"

and 3,7, 377 These states are fully reconstructed in

their decay modes to AY7= where A) — Af 7~ with AJ — pK~ 7", The analysis is based on a data
sample corresponding to an integrated luminosity of 6.0 fb~! collected by an online event selection based

on tracks displaced from the pp interaction point.

DOI: 10.1103/PhysRevD.85.092011

I. INTRODUCTION

Baryons with a heavy quark Q as the “nucleus” and a
light diquark g, ¢, as the two orbiting “‘electrons’ can be
viewed as the “helium atoms” of quantum chromodynam-
ics (QCD). The heavy quark in the baryon may be used as a
probe of confinement that allows the study of nonperturba-
tive QCD in a different regime from that of the light
baryons.

Remarkable achievements in the theory of heavy quark
hadrons were made when it was realized that a single heavy
quark Q with mass mgy > Aqcp in the heavy hadron H,
can be considered as a static color source in the hadron’s
rest frame [1]. Based on this conjecture, the light diquark
properties of the charm baryon A (Z,) and its bottom
partner AY(X,) can be related by an approximate SU(2)
symmetry with ¢ < b quark exchange. Another symmetry
emerges because the spin of the heavy quark S, decouples
from the gluon field. Models exploiting these heavy quark
symmetries are collectively identified as heavy quark ef-
fective theories (HQET) [2,3].

As the spin S, of a light diquark (plus a gluon field) and
the spin S, of a heavy quark are decoupled in HQET,
heavy baryons can be described by the quantum numbers
Sg, mo, Sqq, Myq- The total spins of the S-wave (no orbital
excitation) baryon multiplets can be expressed as the sum
J= §Q + §qq. Then the singlet A‘,; baryon, with quark
content b[ud] according to HQET, has spin of the heavy
quark S = 1*_Tts flavor antisymmetric [ud] diquark has
spin S{; aq= 07 [4]. Under these conditions the b quark and
the [ud] diquark make the lowest-lying singlet ground state
JP = 1% The partner of the AY) baryon in the strange quark
sector is the A° baryon. The other two states %, and X
with quark content and spin of the flavor symmetric {gq}
diquark S, = 1", constitute two isospin I = 1 triplets
with total spin J© = 1* and J” = 3* [4]. These states are
the lowest-lying S-wave states that can decay to the singlet
Ag via strong processes involving soft pion emission—
provided sufficient phase space is available. The %, and 2
particles are classified as bottom baryon resonant states.
The partners of the EZ*) states [5] in the strange quark
sector are 3*) baryon resonances, though the J* =1+ ¥
states are light enough to decay only weakly or radiatively,
and only the J¥ = 37 states 3(1385) decay strongly via the
A% mode [6].

PACS numbers: 14.20.Mr, 13.30.Eg, 14.65.Fy

Some recent HQET calculations for bottom baryons are
available in Ref. [7]. The mass spectra of single heavy
quark baryons calculated with HQET in combined expan-
sions in 1/my and 1/N., with N, defined as a number
of colors, are presented in Ref. [8]. In the potential
quark model, the mass differences m(Z,) — m(Ap) and
m(%p) — m(X) are largely due to hyperfine splittings,
hence the mass differences scale as 1/ mgp. Some recent
predictions based on potential quark models are found in
Refs. [9,10]. There are striking patterns in the masses and
mass differences of known hadrons. Some of these regu-
larities can be understood from known general properties
of the interactions of quarks, without specifying the explicit
form of the Hamiltonian. Following this approach, the
authors of Ref. [11] use semi-empirical mass formulas to
predict the spectra of ¢ and b baryons. The nonperturbative
formalism of QCD sum rules has been applied within
HQET to calculate the mass spectra of the heavy baryons
AQ and EQ [12]. Lattice nonrelativistic QCD calculations
for bottom baryons [13] have been quite successful, though
the uncertainties are typically large and exceed the uncer-
tainties of the experimental measurements.

The mass splittings between members of the / = 1 iso-
spin triplets E(b*) arise from a combination of the intrinsic
quark mass difference m(d) > m(u) and the electromag-
netic interactions between quarks [10,14]. Because of
electromagnetic effects and the d quark being heavier
than the u quark, the Ef)_ states (with composition
bl{dd} i.e. all quarks with negative electric charge) are
expected to be heavier than the ES‘H states whose compo-
sition is b{uu} [15]. No previous experimental measure-
ments of isospin mass splitting of bottom baryons are
available.

The description of strong decays of baryon resonances is
a difficult theoretical task [16]. Only a few calculations
[4,17,18] of the 25,*) natural widths are available. The
widths are predicted in the range 4.5-13.5 MeV/c? for
I'(3},4"), and the range 8.5-18.0 MeV/c? for I'(3}, 37).

Until recently, direct observation of b baryons has been
limited to the Ag reconstructed in its weak decays to
J/wA® and A} 7~ [6]. The substantially enlarged experi-
mental data sets delivered by the Tevatron allow significant
advances in the spectroscopy of heavy quark baryon states.
The resonance E(b*) states were discovered by CDF [19].
The charged bottom strange =, baryon was observed and
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measured [20-22] by both the CDF and DO Collaborations.
Later, DO reported the first observation of the bottom
doubly-strange particle ), [23]. Subsequently, the CDF
Collaboration confirmed the signal and measured the mass
of the ), baryon [22]. Lastly, the neutral partner of =,
the bottom strange baryon 52, was reported for the first
time by CDF [24]. Precise measurements of the masses and
natural widths of baryon resonances in the charm sector,
specifically the S0 S and ALY, were recently
reported by the CDF Collaboration [25].

This study follows the first observation of the Ef) states
using 1.1 fb~! [19]. We confirm the observation of those
states using a larger data sample, improve the measurement
technique, and add new measurements of properties of the

EE,*) resonances. In the present analysis, the masses of the

25:” and Ef) ~ states are determined independently, with
no input from theory assumptions, differing from the pre-
vious CDF analysis [19]. Using an enlarged data sample of
6 fb~!, we extract the direct mass measurements with
smaller statistical and systematic uncertainties than previ-
ously. First, measurements of the natural widths of the
JP'=3* and J¥ =1 states are presented. Based on the
new mass measurements, we determine the isospin mass
splitting for the 3, and 3} isospin / = 1 triplets.

Section II provides a brief description of the CDF II
detector, the online event selection (trigger) important for
this analysis, and the detector simulation. In Sec. III the
data selection, analysis requirements, and reconstruction of
the signal candidates are described. Section IV discusses
the fit model of the final spectra and summarizes the fit
results. In Sec. V we estimate the significance of signals
extracted from the fits. The systematic uncertainties are
discussed in Sec. VI. We present a summary of the mea-
surements and conclusions in Sec. VIL

II. THE CDF II DETECTOR AND SIMULATION

The component of the CDF II detector [26] most rele-
vant to this analysis is the charged particle tracking system.
The tracking system operates in a uniform axial magnetic
field of 1.4 T generated by a superconducting solenoidal
magnet.

The CDF 11 detector uses a cylindrical coordinate system
with z axis along the nominal proton beam line, radius r
measured from the beam line and ¢ defined as an azimu-
thal angle. The transverse plane (r, ¢) is perpendicular to
the z axis. The polar angle 6 is measured from the z axis.
The impact parameter of a charged particle track d, is
defined as the distance of closest approach of the particle
track to the primary vertex in the transverse plane.
Transverse momentum p is the component of the parti-
cle’s momentum projected onto the transverse plane.
Pseudorapidity is defined as 7 = — In(tan(6/2)).

The inner tracking system comprises three silicon de-
tectors: layer 00 (L00), the silicon vertex detector (SVX II)

PHYSICAL REVIEW D 85, 092011 (2012)

and the intermediate silicon layers (ISL) [27-30]. The
innermost part, the LOO detector, is a layer of single-sided
radiation tolerant silicon sensors mounted directly on the
beam pipe at a radius of 1.35—-1.6 cm from the proton beam
line. It provides only an r — ¢ measurement and enhances
the impact parameter resolution. Outside this, the five
double-sided layers of SVX II provide up to 10 track
position measurements. Each of the layers provides an r —
¢ measurement, while three return a measurement along z,
and the other two return a measurement along a direction
oriented at =1.2° to the z axis. The SVX II spans the radii
between 2.5 and 10.6 cm and covers the pseudorapidity
range |n| <2.0. The SVX II detector provides a vertex
resolution of approximately 15 pm in the transverse plane
and 70 um along the z axis. A fine track impact parameter
resolution o, =35 um is achieved, where the o, in-
cludes an approximate 28 wm contribution from the actual
transverse size of the beam spot. The outermost silicon
subdetector, ISL, consists of double-sided layers at radii 20
to 28 cm, providing two or four hits per track depending on
the track pseudorapidity within the range || < 2.0 instru-
mented by the ISL.

A large open cell cylindrical drift chamber, the central
outer tracker (COT) [31], completes the CDF detector
tracking system. The COT consists of 96 sense wire layers
arranged in 8 superlayers of 12 wires each. Four of these
superlayers provide axial measurements, and four provide
stereo views at =2°. The active volume of the COT spans
the radial region from 43.4 to 132.3 cm. The pseudorapid-
ity range || < 1.0 is covered for tracks passing through all
layers of the COT, while for the range out to 1.0 < |n| <
2.0, tracks pass through less than the full 96 layers. The
trajectory of COT tracks is extrapolated into the SVX II
detector, and the tracks are refitted with additional silicon
hits consistent with the track extrapolation. The two addi-
tional layers of the ISL help to link tracks in the COT to
hits in the SVX II. The combined track transverse momen-
tum resolution is o(pr)/pr = 0.07%p1 [GeV/c] ™.

The analysis presented here is based on events recorded
with a three-tiered trigger system configured to collect
large data samples of heavy hadrons decaying through
multibody hadronic channels. We refer to this as the dis-
placed two-track trigger. We use two configurations of this
trigger, the “low-pt 7 and the “medium-pr ” selections.
At level 1, the trigger uses information from the hardware
extremely fast tracker [32]. The “low-pr ” configuration
of the displaced two-track trigger requires two tracks in the
COT with pp > 2.0 GeV/c for each track, and with an
opening angle of |A¢| <90° between the tracks in the
transverse plane. Additionally the track pair scalar sum
must satisfy pp, + pr, > 4.0 GeV/c. The corresponding
criteria imposed in the ‘“medium-py ” configuration are
pr > 2.0 GeV/c for each track, opening angle |A¢| <
135°, and pr, + pr, > 5.5 GeV/c. The level 2 silicon
vertex trigger (SVT) [33,34] associates the track pair
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from the extremely fast tracker with hits in the SVX II
detector and recognizes both tracks using a large look-up
table of hit patterns. The SVT repeats the level 1 pr criteria
and limits the opening angle to 2° < |A¢| < 90°. Only in
the case of the medium- py configuration are the charges of
the tracks required to be of opposite sign. Crucially, the
SVT imposes a requirement on the transverse impact
parameter of each track to be 0.12 <d, <1 mm, given
the excellent resolution provided by SVX II. Finally, the
distance in the transverse plane between the beam axis and
the intersection point of the two tracks projected onto their
total transverse momentum is required to be L, > 200 pm.
The level 3 software trigger uses a full reconstruction of the
event with all detector information and confirms the criteria
applied at level 2. The trigger criteria applied to the d, of
each track in the pair and to L, preferentially select decays
of long-lived heavy hadrons over prompt background, en-
suring that the data sample is enriched with b hadrons.

The mass resolution on the Ef) resonances is predicted
with a Monte Carlo simulation that generates b quarks
according to a next-to-leading order calculation [35]
and produces events containing final state hadrons by
simulating b quark fragmentation [36]. Mass values of
5807.8 MeV/c? for 3, and 5829.0 MeV/c? for X [19]
are used in the Monte Carlo generator. Final state decay
processes are simulated with the EVTGEN [37] program,
and all simulated b hadrons are produced without polar-
ization. The generated events are input to the detector and
trigger simulation based on GEANT3 [38] and processed
through the same reconstruction and analysis algorithms as
are used on the data.

III. DATA SAMPLE AND EVENT SELECTION

This analysis is based on data equivalent to 6.0 fb~! of
pp collisions collected with the displaced two-track trigger

between March 2002 and February 2010. We study Ef)

resonances in the exclusive strong decay mode Ef)i —
Agﬂ'si, where the low momentum pion 7r; is produced
near kinematic threshold [39]. The AY decays to A,
with a prompt pion 77, produced in the weak decay. This is
followed by the weak decay A} — pK~ =7+,

To reconstruct the parent baryons, the tracks of charged
particles are combined in a kinematic fit to form candi-
dates. No particle identification is used in this analysis. The
following two complementary quantities defined in the
plane transverse to the beam line and relating the decay
path of baryons to their points of origin are used: the proper
decay time of the baryon candidate 4 expressed in length
units c#(h), and the impact parameter dy(h). Specifically,
the decay length is defined as

B M(h)c
ct(h) = L,,(h) )’ (1)

where L, (1) is expressed in length units and defined as the
projection onto pr(h) of the vector connecting the primary
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vertex to the heavy baryon decay vertex in the transverse
plane. The transverse impact parameter d,(4) of the can-
didate is defined analogous to the one of a charged particle
track. An event-specific primary interaction vertex is used
in the calculation of the ct(h) and dy(h) quantities. The
measurement uncertainties o, and o, originate from
the track parameter uncertainties and the uncertainty on
the primary vertex.

A. Reconstruction of the Ag candidates

The analysis begins with reconstruction of the A} —
pK~ 7" decay by fitting three tracks to a common vertex.
The invariant mass of the A candidate is required to be
within =18 MeV/c? of the world-average A mass [6].
The momentum vector of the A} candidate is then
extrapolated to intersect with a fourth pion track, the 7,
candidate, to form the A) — A, candidate vertex. The
AY vertex is subjected to a three-dimensional kinematic fit
with the A} candidate mass constrained to its world-
average value [6]. The probability of the constrained AY
vertex fit must exceed 0.01%. Standard quality require-
ments are applied to each track, and only tracks with pt >
400 MeV/c are used. All tracks are refitted using pion,
kaon and proton mass hypotheses to properly correct for
the differences in multiple scattering and ionization energy
loss. At least two tracks among the p, K=, 7", and 7,
candidates are required to fulfill the level 2 (SVT) trigger
requirements.

To suppress prompt backgrounds from the primary in-
teraction, the decay vertex of the A(b) is required to be
distinct from the primary vertex. To achieve this, cuts on
ct(AY) and its significance c#(AY)/o,, are applied. We
require the A} vertex to be close to the AY vertex by
applying cuts on c#(A[) where the corresponding quantity
L.,(A}) is calculated with respect to the A) vertex. The
requirement c#(A}) > —150 um reduces contributions
from A} baryons directly produced in pp interaction and
from random combination of tracks faking A candidates
which may have negative ct(A[) values. The other restric-
tion, ct(A}) <250 wm, aims at reducing contributions
from B° — D* 7~ decays, followed by D™ — K~ 7t 7™
decays. The requirements take into account ct resolution
effects and exploit the much shorter A lifetime compared
to the D™ [19,40]. To reduce combinatorial background
and contributions from partially reconstructed decays, we
ask Ag candidates to point to the primary vertex by requir-
ing the impact parameter dy(AY) not to exceed 80 wm. The
choice of analysis requirements to identify A — A} 7,
candidates is made using an optimization based on the
experimental data only. The figure of merit S/+/S + B is
used during the optimization, where S is the Ag signal and
B is the background under the signal, respectively. At every
step of the optimization procedure, both quantities are
obtained from fits of the A} 7, invariant mass spectrum
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TABLE 1.  Analysis requirements for A — A} 7} reconstruc-
tion. The quantity c#(A < AY) is defined analogously to
Eq. (1) as the AJ proper time where L, (A[) is calculated
with respect to the AY vertex.

Quantity Requirement
ct(AY) >200 wm
ct(A)/ o, >12.0
dy(AY) <80 wm
ct(Af —AY) > — 150 um
ct(Af —AY) <250 um
pr(;) >1.5 GeV/c
pr(AY) >4.0 GeV/c
Prob(x3,,) of AY vertex fit >0.01%

and are determined from the corresponding numbers of
candidates fit within =30 of the AY signal peak. Table I
summarizes the resulting A(b’ analysis requirements.
Figure 1 shows a prominent A signal in the A} 7}
invariant mass distribution, reconstructed using the opti-
mized criteria. A binned maximum-likelihood fit finds a
signal of approximately 16300 candidates at the expected
Ag mass, with a signal to background ratio around 1.8. The
fit model describing the invariant mass distribution
comprises the Gaussian A — A} 7, signal on top of a
background shaped by several contributions. Random four-
track combinations dominating the right sideband are mod-
eled with an exponentially decreasing function. Coherent
sources populate the left sideband and leak under the
signal. These include reconstructed B mesons that pass
the A(,Z — A[m, selection criteria, partially reconstructed
AY decays, and fully reconstructed A decays other than
Al (e.g. A) — AJ K™). Shapes representing the physi-
cal background sources are derived from Monte Carlo
simulations. Their normalizations are constrained to
branching ratios that are either measured (for B meson
decays, reconstructed within the same A7, sample) or
theoretically predicted (for A(b) decays) [19,40].
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FIG. 1 (color online). Invariant mass distribution of Ag —
Al 7, candidates with the projection of a mass fit overlaid.
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TABLE IL Eg*)i candidate selection requirements.
Quantity Requirement
m(Af ;) € (5.561,5.677) GeV/c?
do(7y) <0.1 cm
pr(ms) >200 MeV/c
do(m5)/ 04, <3.0
PT(7Tsi)+ <pr(my)
pr(Ey)%) >4.0 GeV/c

B. Reconstruction of 2;,*):' candidates

To reconstruct the E(b*)t — Ag ay candidates, each
A}, candidate with invariant mass within the AY signal
region, 5.561-5.677 GeV/c?, is combined with one of the
tracks remaining in the event with transverse momentum
down to 200 MeV/c. The AY mass range covers =3
standard deviations as determined by a fit to the signal
peak of Fig. 1. To increase the efficiency for reconstructing
EE,*)i decays near the kinematic threshold, the quality
criteria applied to soft pion tracks are loosened in com-
parison with tracks used for the A) candidates. The basic
COT and SVX II hit requirements are imposed on 7y
tracks, and only tracks with a valid track fit and error
matrix are accepted.

Random combinations of A(,; signal candidates with 775
tracks constitute the dominant background to the E(b*)i -
A7y signal. The remaining backgrounds are random
combinations of soft tracks with B mesons reconstructed
as Ag baryons, and combinatorial background events [19].
To reduce the background level, a kinematic fit is applied
to the resulting combinations of Ag candidates and soft
pion tracks 77y to constrain them to originate from a
common point. Furthermore, since the bottom baryon
resonance originates and decays at the primary vertex,
the soft pion track is required to point back to the primary
vertex by requiring an impact parameter significance,
dy(75)/ o g,, smaller than 3. The transverse momentum
of the soft pion is required to be smaller than the 7,
transverse momentum. As we already require pr(7,) >
1.5 GeV/c (Table I) the condition imposed on the soft pion
pr is fully efficient. The Ef)i candidate selection require-
ments are summarized in Table II.

IV. DETERMINATION OF RESONANCE
PROPERTIES

The analysis of the E,(]*)t mass distributions is performed
using the Q value

Q = m(A)ms) — m(AD) — m, 2

where m , is the known charged pion mass [6] and m(AY) is
the reconstructed A 77, mass. The mass resolution of the
AY signal and most of the systematic uncertainties cancel
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in the mass difference spectrum. The X; and 3,* signals
are reconstructed as two narrow structures in the Q-value
spectrum. The properties, yields, and significance of the
resonance candidates are obtained by performing unbinned
maximum-likelihood fits on the Q-value spectra.

The shapes of the 22*& resonances are each modeled
with a nonrelativistic Breit-Wigner function. Since the soft

pion in Ef)i strong decay modes is emitted in a P wave,
the width of the Breit-Wigner function is modified as
follows [41]:

I'(Q; Q. I'p) = r0<p—:775)3y (3)

T

where Q is the Q value at the resonance pole, p7. and p’;(:

are the momenta of the soft pion in the Ef)t rest frame, off
and on the resonance pole, respectively, and I'y is the
corrected width. The soft pion momenta are calculated
based on two-body decay kinematics [6]. Both Q, and I’y
are floating fit parameters.

The Breit-Wigner function is convoluted with the detec-
tor resolution, which is described by a narrow core
Gaussian plus a broad Gaussian. Their widths o, and o,
and relative weights g, and (1 — g,,) are calculated from
the CDF full Monte Carlo simulation. Numerical convolu-
tion is necessary because the modified width depends on
the mass. The effects of imperfect modeling in the simu-
lation are discussed with the systematic uncertainties in
Sec. VL.

We use a kinematically motivated model for the back-
ground, described by a second order polynomial modulated
with a threshold square rootlike term,

B G(Q: my, C, by, by) = (Q + m,)> — m}
X PXQ;C, by, by), (4

where C, by, and b, are the second order > polynomial
coefficients and my is a threshold fixed to 0.140 GeV/c?,
the mass of the pion.

The full model for the Q-value spectra of all isospin
partner states EE*H and E,(]*)_ describes two narrow struc-
tures on top of a smooth background with a threshold. The
negative logarithm of the extended likelihood function
(NLL) is minimized over the unbinned set of Q values
observed for N candidates in data:

N
—In(L)= = In(N,S; + NS, + N, BG)

k=1

Independent likelihood functions are used for EE,*H and
Ef)_ candidates. The Q-value spectrum is fit over the
range 0.003-0.210 GeV/c?. The effect of this choice is
discussed in Sec. VI. The probability density functions
(PDF) in Eq. (5) are defined as follows:
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() S;=38(0; 00T, o, gi, o) is the normalized
convolution of a Breit-Wigner and a double
Gaussian responsible for the %/ (2;) (i=1) or
S5+ (257) (i = 2) signals. Here Q) is the floating
pole mass and I} is the floating natural width. The
detector’s Gaussian resolution parameters o, o,
and g, are set from the Monte Carlo data. A domi-
nant with g, ~ 70% relative weight narrow core o,
of about 1.2 MeV/c? is set for the 3;(3;) and
about 1.4 MeV/c? for 2;*(277). A broad compo-
nent o, of about 2.9 MeV/c? is set for the 3 (X))
and about 3.8 MeV/c? for 23%(2;7).

(ii) N; is the floating yield of the X;(X,) (i =1) or

TET) (G =2).

(iii) BG = BG(Q;my, C, by, by) is the PDF corre-
sponding to the background form in Eq. (4).

(iv) N, is the floating yield of the background contri-
bution. The sum of fitted yields, N; + N, + N, is
the Poisson mean value of the total number of
candidates N for the particular species 3., 3"
or %,, 27~ corresponding to isospin triplets X,
and 2.

The total number of floating parameters in the fit per each
pair of isospin partners is nine.

Extensive tests on several thousand statistical trials show
that the likelihood fit yields unbiased estimates with proper
uncertainties.

The experimental 22*)7 and EE,*H Q-value distributions,
each fitted with the unbinned likelihoods described above,
are shown in Fig. 2. The projection of the corresponding
likelihood fit is superimposed on each graph. The Q-value
distributions show clear signals of 3, 3%~ and 3, 277,
respectively. The pull distributions are shown in the bottom
plots of both figures and are calculated as the residuals of
the histogram with respect to the corresponding likelihood
fit projection normalized by the data uncertainty. Both pull
distributions are evenly distributed around zero with fluc-
tuations of =20, approximately. The fit results are given in
Table III.

V. SIGNAL SIGNIFICANCE

The significance of the signals is determined using a
log-likelihood ratio statistic [42,43], —21In(L,/L,). We
define hypothesis JH; corresponding to the presence of
3,257 or X, 35" signals on top of the background. The
H | hypothesis is described by the likelihood L;; see
Eq. (5). The various null hypotheses, each identified with
JH , and nested to FH | correspond to a few different less
complex scenarios described by the likelihood L. The
likelihood ratio is used as a y? variable to derive p values
for observing a deviation as large as is in our data or larger,
assuming JH  is true. The number of degrees of freedom of
the x? equals the difference AN in the number degrees
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FIG. 2 (color online). The left (right) plot shows the Q-value spectrum for 22*)7 (Ef“) candidates with the projection of the
corresponding unbinned likelihood fit superimposed. The Q value is defined in Eq. (2). The pull distribution of each fit is shown in the

bottom of the corresponding plot.

of freedom between the H | and FH , hypotheses in each
case. We consider the following types of F, to estimate
the significance of the two-peak signal structure and of
individual peaks of the observed 3\~ and {7 states:

(i) A single enhancement is observed anywhere in the
fit range. The corresponding likelihood L, includes
only a single peak PDF on top of the background
form in Eq. (4), the same as for the £,. The dif-
ference in the number of degrees of freedom is
ANyt = 3. The width T'; floats in the fit over the
wide range 1-70 MeV/c?. The position of the en-
hancement Q,, is allowed to be anywhere within the
default fit range. We test the case in which the
observed two narrow structures could be an artifact
of a wide bump where a few bins fluctuated down to
the background level.

(i) The signal X is observed but the %, is interpreted
as background. We impose a loose requirement on
the existence of the second peak, % fixing only the
width of 3 to the expected theoretical value of

TABLE II. Summary of the results of the fits to the Q =
M(AY7*) — M(A)) — m,, spectra. The statistical uncertainties
are returned by the unbinned maximum-likelihood fits.

State Q value, Natural width, Yield
MeV/c? Iy, MeV/c?

3, 56.275¢ 4.9%31 340459
. 75.8 + 0.6 7.5132 540*99
N 521759 9.7+3% 470%5°

St 72.8 0.7 11.5%37 8007140

12 MeV/c? [17]. We let the fitter find the 3. posi-
tion within the default fit range. The number of free
parameters is changed by 4.
(iii) The signal %, is observed but the 3 is interpreted
as background. This null hypothesis is similar to
the previous one. The width of the %, is fixed to
7 MeV/c? [17].
Neither the X, nor the 3} is observed, and the H
hypothesis is the default background model used in
L,. We consider the case in which the smooth
background fluctuates to two narrow structures cor-
responding to the | hypothesis. The difference in
the number of degrees of freedom is 6.

(iv)

In addition to all the cases considered above, we introduce
an additional case in which the #H | hypothesis corresponds
to any single wide enhancement considered in (i) while the
H , hypothesis is the default background considered in (iv).
This special test determines the significance of the single
enhancement with respect to pure background.

Table IV summarizes the results of these tests. The null
hypothesis most likely to resemble our signal is a broad
single enhancement fluctuating to the two narrow struc-
tures. The results of this study establish conclusively the

37 and 3" signals with significance of 60 or higher.

VI. SYSTEMATIC UNCERTAINTIES

The systematic uncertainties considered in our analysis
are the following:
(i) The uncertainty due to the CDF tracker momentum
scale.
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TABLE IV. Statistical significances of the observed signals against various null hypotheses.
N, is the calculated number of Gaussian standard deviations based on Prob(y?).

H, States N, H,

Any single wide enhancement 30 6.7 Two narrow structures
2?‘“ 6.1

No structures 30 10.7 Any single wide enhancement
S0+ 132

No 3, with 3, 2?*)7 7.6 Two narrow structures

Ty = 12 MeV/c? S0+ 79

No 37, with X, E?)_ 10.0 Two narrow structures

Ty =7 MeV/c? s 12.5

No structures 2&)7 12.4 Two narrow structures
s+ 143

b

(ii) The uncertainty due to the resolution model (see
Sec. 1V) described by the sum of two Gaussians.
This source is expected to dominate the systematic
uncertainties on width measurements.

(iii)) The choice of background model.

(iv) An uncertainty due to the choice of Q-value fit

range.

To calibrate the tracker momentum scale, the energy loss
in the material of CDF tracking detectors and the strength
of the magnetic field must be determined. Both effects are
calibrated and analyzed in detail using high statistics
samples of J/ ¢, (2S), Y(1S), Z° reconstructed in their
uu~ decay modes as well as D° — K~ 7, (2S5) —
J/(— pu* " )mta [44,45]. The corresponding correc-
tions are taken into account by tracking algorithms. Any
systematic uncertainties on these corrections are largely

negligible in the Egj) Q-value measurements. The uncer-
tainties on the measured mass differences due to the
momentum scale are estimated from the deviations be-
tween Q values observed in similar decays reconstructed
in CDF data and the known Q, values [6]. The reference
modes are X T — Af#l, 30— Afm;, A -
Af7la;, and D*" — D7, The linear extrapolation
of the measured offsets as a function of Q, towards the
E,()*) kinematic regime is taken as the mass-scale uncer-
tainty. The determined systematic uncertainty on the
momentum scale covers also any residual charge-
dependence of the scale. For the mass difference Q, the
systematic uncertainty due to a possible imperfect align-
ment of the detector is negligible [44].

Following the method used in Ref. [46], the D*" —
D°(— K~ 7*)ar} signal peak in the mass difference dis-
tribution m(D**) — m(D®) has been reconstructed in sev-
eral bins of soft pion transverse momentum pr(7r,) starting
with 200 MeV/c as in the data. Each signal distribution is
subjected to an unbinned maximum-likelihood fit with the
sum of a Breit-Wigner function convoluted with a double
Gaussian function to describe the detector resolution. The
background under the D** signals is described by an
empirical function [47,48]. For each of the pr(,) bins,

the fit determines the D*t width, which never exceeds
0.2 MeV/c?. Because the D*' natural width is much
smaller than the tracking resolution, the value of
0.2 MeV/c? is assigned as a systematic uncertainty on

the measured Ef) natural width due to the momentum
scale of the CDF tracker.

Unless otherwise specified, the systematic uncertainties
discussed below are evaluated for the measurable quantities
Qp and I’ by generation of statistical trials. In each trial, the
sample is generated according to the PDF (see Table III) with
the nuisance parameters modified by the uncertainty with
respect to the default set of parameters. Then the sample is
subjected to the unbinned maximum-likelihood fit twice,
with the default PDF and with the PDF of the modified
nuisance parameter set. The fit results are compared on a
trial-by-trial basis, and their difference is computed. The
systematic uncertainty is found from the mean of a
Gaussian fit of the distribution of the computed differences.

The statistical uncertainties on the resolution model
parameters due to the finite size of the Monte Carlo data-
sets introduce a systematic uncertainty. Variations of the
double Gaussian widths o, and o, and the weight g,
within their statistical uncertainties returned from the fits
of Monte Carlo spectra are propagated into the measurable
quantities using the statistical trials.

The CDF tracking simulation does not reproduce with
perfect accuracy the tracking resolutions, especially for

soft tracks at the kinematic threshold of Egj) decays. To
estimate this contribution, we use the D** meson decay as
the reference mode reconstructed down to pr(7y) =
200 MeV/c in the observed and simulated samples. We
compare the mass resolution of the reference signal found
in data with the one predicted by Monte Carlo simulation.
The comparison is made independently for D** — D97
and D*~ — D%z, states, as a function of soft pion pr
using early data (Period 1) and late data (Period 2).
Figure 3 shows the comparisons of the narrow core reso-
lution between the data and Monte Carlo both for D** (left
plot) and D*~ (right plot). The resolution is stable as a
function of data-taking time.
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The left (right) plot shows the ratio of the widths of the narrow component of the D** (D*~) mass resolution

for data and simulation (circles) and for different subsamples of data (triangles) as a function of the transverse momentum of the soft
pion. The last bin on every plot corresponds to a statistics integrated above 1.0 GeV/c.

The CDF Monte Carlo simulation typically underesti-
mates the D** resolutions in the experimental data:
o,(data) < 1.250, (Monte Carlo). Similar relations are
found for the broad component of the resolution:
o,,(data) < 1.400,, (Monte Carlo). These factors are
used as the sources of the systematic uncertainties. The
resolution extracted for the D*~ is systematically smaller
than for the D** by at most 20% for o, and by at most 40%
for o,,. The Monte Carlo predictions for o, and o, are
decreased by these latter factors to estimate the other
bounds of the systematic uncertainties. In both cases the
conservative approach is taken.

To find the systematic uncertainty associated with the
choice of background shape, we change our background
PDF to the one used for the D** mass difference spectra
[47,48] and compare with the default background PDF.

The uncertainty associated with the fit range is estimated
by varying the default low edge down to 0.0015 GeV/c?

and up to 0.006 GeV/c?. The fit results are slightly sensi-
tive to the choice of the low edge and any observed biases
are assigned as another systematic uncertainty.

The final systematic uncertainties are listed in Table V.

VII. RESULTS AND CONCLUSIONS

The analysis results are arranged in Table VI. From the

measured EZ*)i QO values, we extract the absolute masses
using the known value of the 7= mass [6] and the CDF
AY mass measurement, m(AY9) = 5619.7 = 1.2(stat) =
1.2(syst) MeV/c?, as obtained in an independent sample
[44]. The Ag statistical and systematic uncertainties contribute
to the systematic uncertainty on the EEJ*)i absolute masses.
Using the measured Q values, we extract the isospin mass
splittings for the isotriplets of the J* = 1" and J¥ = 3*
states. The statistical uncertainties on the Q measurements
of the corresponding charge states are added in quadrature.

TABLE V. Summary of the systematic uncertainties listed in the following order: mass scale, resolution, choice of background
model, and fit range. The total systematic uncertainty is obtained by adding all the associated uncertainties in quadrature. The last
column shows the percentage of the total systematic uncertainty relative to its central value.

Measurable quantity Scale Resolution Background Fit range Total Percentage
0(%;) [MeV/c?] +0.06 +0.04 +0.02 +0.07 +0.1
—0.38 —0.07 —0.04 —0.03 —0.39 —-0.7
['(X;) [MeV/c?] +0.20 +0.85 +0.50 +0.50 +1.13 +23
—0.20 —0.87 —0.50 —0.51 —1.14 —23
0(2;7) [MeV/c?] +0.06 +0.06 +0.02 +0.09 +0.1
—0.56 —0.08 —0.06 —0.09 —0.58 —0.8
[(2;7) [MeV/c?] +0.20 +0.65 +0.30 +0.50 +0.89 +12
—0.20 —0.96 —0.30 —0.90 —1.36 —18
0(2)) [MeV/c?] +0.07 +0.05 +0.02 +0.09 +0.2
—0.35 —0.12 —0.05 —0.03 —0.38 -0.7
(X)) [MeV/c?] +0.20 +0.94 +0.40 +0.50 +1.16 +12
—0.20 —0.90 —0.40 —0.51 —1.12 —12
O(23%) [MeV/c?] +0.06 +0.10 +0.02 +0.12 +0.2
—0.52 —0.13 —0.10 —0.09 —0.55 —-0.8
[(2;") [MeV/c?] +0.20 +0.64 +0.50 +0.50 +0.97 +8.5
—0.20 —1.01 —0.50 —0.90 —1.46 —13
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TABLE VI. Summary of the final results. The first uncertainty is statistical and the second is
systematic.
State Q value, Absolute mass Natural width
MeV/c? m, MeV/c? I, MeV/c?
3, 56.270840) 5815.512¢ + 1.7 49131 + 1.1
3 75.8 = 0.691 5835.1 £ 0.6%}7 7.543310%
S 521703704 5811.3709 = 1.7 9.743817
St 72.8 = 0.7401 5832.1 +0.711] 11.5%37%19

m(Z)) — m(Z})
m(Z;7) — m(2;7)

Isospin mass splitting, MeV/c?

—4.2%10 0.1
-3.0505 = 0.1

We assume that the correlated systematic uncertainties due to
mass scale, fit bias due to choice of fit range, and imperfect
Monte Carlo description of the resolution are completely
canceled in the isospin mass splittings. The uncertainties
due to background choice are added in quadrature.

In conclusion, we have measured the masses and widths

of the E?t baryons using a sample of approximately
16300 AY candidates reconstructed in their A) — Af 7~
mode corresponding to 6 fb~! of CDF data.

The first observation [19] of the 22*) * bottom baryons
has been confirmed with every individual signal recon-
structed with a significance well in excess of six
Gaussian standard deviations.

The statistical precision on the direct mass differences is
improved by a factor of 2 over the previous measurement
[19]. The measurements are in good agreement with the
previous results and supersede them.

The isospin mass splittings within the 7 = 1 triplets of
the 3, and 2} states have been extracted for the first time.

The 3\ states have higher masses than their 3\
partners, following a pattern common to most of the known
isospin multiplets [15]. This measurement favors the phe-
nomenological explanation of this ordering as due to the
higher masses of the d quark with respect to the u quark
and the larger electromagnetic contribution due to electro-

static Coulomb forces between quarks in Ef)_ states than

in Ef” ones. The difference in the measured isospin mass
splittings between the % and 3, isotriplets supports the
theoretical estimate of Ref. [10]. The natural widths of the
37 and ;™ states have been measured for the first time.
The measurements are in agreement with theoretical
expectations.
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