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Summary 

Cellular oxidative stress results from the increased generation of reactive oxygen 

species (ROS) and/or the dysfunction of the antioxidant systems. Most intracellular 

ROS derive from superoxide radical although the majority of the biological effects of 

ROS are mediated by hydrogen peroxide. In this contribution we overview the major 

cellular sites of ROS production, with special emphasis in the mitochondrial pathways. 

ROS regulate signaling pathways involved in promoting survival and cell death, 

proliferation, metabolic regulation, the activation of the antioxidant response, the 

control of iron metabolism and Ca2+ signaling. The reversible oxidation of cysteines in 

ROS transducers is the primary mechanism of regulation of the activity of these 

proteins. Next, we present the mitochondrial H+-ATP synthase as a core hub in energy 

and cell death regulation, defining both the rate of energy metabolism and the ROS-

mediated cell death in response to chemotherapy. Two main mechanisms that affect the 

expression and activity of the H+-ATP synthase down-regulate oxidative 

phosphorylation in prevalent human carcinomas. In this context, we emphasize the 

prominent role played by the ATPase Inhibitory Factor 1 (IF1) in human carcinogenesis 

as an inhibitor of the H+-ATP synthase activity and a mediator of cell survival. IF1 

promotes metabolic rewiring to an enhanced aerobic glycolysis and the subsequent 

production of mitochondrial ROS. The generated ROS are able to reprogramme the 

nucleus to support tumor development by arresting cell death.  Overall, we discuss the 

cross-talk between ROS signaling and mitochondrial function that is crucial in 

determining the cellular fate. 
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List of abbreviations: AIF, apoptosis inducing factor; Akt, v-Akt murine thymoma 

viral oncogene; AP-1, activator protein 1; ARE, antioxidant responsive element; ASK1, 

apoptosis signal-regulated kinase 1; ATM, ataxia teleangiectasia mutated; Duox, Dual 

oxidase enzymes; DUSP3, dual-specific phosphatase 3; ETC, electron transport chain; 

GPXs, glutathione peroxidases; GSH, glutathione; GST, glutathione S-transferase; 

HIF1α, Hipoxia Inducible Factor 1; HO1, heme oxygenase-1; IER3, immediate early 

response gene; InsP3R, InsP3 receptor; IF1, ATPase Inhibitory Factor 1; IRE, iron-

responsible elements; IRP, iron regulatory protein; JNK1, c-Jun N-terminal kinase 1, 

monoamine oxidase (MAO); mROS, mitochondrial reactive oxygen species; NFkB, 

nuclear factor kappa-light-chain-enhacer; NOX, NADPH oxidase; Nrf2, NFE2-like 2; 

O2
-, superoxide radical, .OH, hydroxyl radical; OONO, peroxynitrite; OXPHOS, 

oxidative phosphorylation, p66Shc, 66 kDa proto-oncogene; SERCA, sarco/endo-

plasmic reticulum Ca2+ -ATPase; Src homologous-collagen homologue (Shc) adaptor, 

PI3K, phosphoinositide-3-kinase; PIP2, phosphatidylinositol 4,5-bisphosphate; PIP3, 

phosphatidylinositol (3,4,5)-trisphosphate; PP2A, protein phosphatase 2A ; PRXs, 

peroxiredoxins; PTEN, phosphatase and tensin homolog; PTP, permeability transition 

pore; PTP1b, phosphotyrosine protein phosphatase; Ref-1, redox factor-1; RNS, 

reactive nitrogen species; ROS, reactive oxygen species; RyR, ryanodine receptor; 

SODs, superoxide dismutases; UTR, untranslated region; VHL, von Hippel-Lindau; 

Δψm, mitochondrial membrane potential. 
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1. Introduction 

Oxidative stress is a phenotypic trait of many tumors. Main causes of this 

phenotype are the increased generation of reactive oxygen species (ROS) and the 

dysfunction of the antioxidant systems in cancer cells. ROS generation and scavenging 

are tightly connected to the metabolic state of the cell and especially to the activity of 

mitochondria. Nowadays, it is accepted that the roles played by cellular ROS are highly 

dependent on the level at which they are being produced. In this regard, it has been 

reported that high levels of ROS lead to increased cell death inhibiting tumorigenesis 

and metastasis [1], whereas low levels of ROS have an effect in promoting 

tumorigenesis by activating the signaling pathways that regulate proliferation, 

angiogenesis and metastasis [2, 3], stressing the relevance of ROS as important 

signaling molecules that regulate cell fate. In this review we will briefly summarize: (i) 

the sites of production, mechanism of action and signaling pathways that are activated 

by ROS and (ii) the role of the mitochondrial H+-ATP synthase in ROS-signaling cell 

death or cell survival paying, in the latter case, especial attention to the new 

physiological function unveiled for the ATPase Inhibitory Factor 1 (IF1) as a main 

regulator of the oncogenic phenotype in some prevalent carcinomas.  

2. ROS dynamics and signaling. 

2.1. Major cellular sites of ROS production.  

Most intracellular ROS are derived from the superoxide radical (O2
-), which is 

the product of the one electron reduction of O2 (Fig. 1). Superoxide is then converted to 

hydrogen peroxide (H2O2) by superoxide dismutases (SOD1, SOD2 and SOD3) (Fig. 

1). The enzymes peroxiredoxins (PRXs), glutathione peroxidases (GPXs) and catalase 

are responsible for removing cellular H2O2 (Fig. 1), a process that is tightly regulated 

[4]. H2O2 can also react with iron to generate hydroxyl radicals (.OH) that are main 

drivers of the modifications in proteins, lipids and DNA that result in oxidative stress 

(Fig. 1).  

Several enzymes produce superoxide radical in the cell. Among them, NADPH 

oxidase is the best described enzymatic source of superoxide that uses NADPH as an 

electron donor (Fig. 1) [5, 6]. NADPH oxidases include the Nox family members 

(Nox1-5) and the Dual oxidase enzymes (Duox1-2) that are expressed in numerous 
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tissues [6-8]. These enzymes play important roles in cell signaling, regulation of gene 

expression, cell death, differentiation and growth [9]. Nox enzymes have developed 

different regulatory mechanisms depending of their function [6, 8, 10-12]. ROS 

produced by Nox proteins can act both intra- and extra-cellularly. These enzymes 

generate superoxide at the plasma membrane, in endosomes and in the endoplasmic 

reticulum [13, 14]. ROS produced by Nox2 have a main physiological role in the 

respiratory burst that occurs in phagocytes. Nox1 in the colon and Duox1 and 2 in the 

lung also play important roles in host defense [15]. However, ROS derived from Nox 

also participate in signaling as they can specifically and reversibly alter the activity, 

localization and half-life of proteins in response to various stimuli [9]. The 

phosphoinositide-3-kinase (PI3K) [16] and nuclear factor kappa-light-chain-enhancer of 

activated cells (NFkB) [13] pathways are two important signaling routes in which 

NADPH oxidases are involved. Fibroblasts over-expressing Nox1 displayed increased 

levels of superoxide and exhibited a transformed phenotype [17]. Moreover, it has been 

described that Nox1 signals angiogenic and tumorigenic effects through hydrogen 

peroxide [18]. Excess ROS produced by Nox5 have also been related to cancer [19, 20]. 

A substantial portion of cellular ROS is generated in mitochondria. There are 

eight sites in mitochondria that have the ability to produce ROS [21]. The mitochondrial 

electron transport chain (ETC) is the major site of non-enzymatic formation of 

superoxide radical (Fig. 2). The ETC is composed of four multiprotein complexes (I-IV) 

located in the inner mitochondrial membrane. Complexes I, II and III have the ability to 

produce superoxide as a result of the flux of electrons through the ETC. Complexes I, II 

and III produce ROS within the mitochondrial matrix whereas complex III also 

generates ROS and releases it into the intermembrane space (Fig. 2) [22]. Importantly, 

ROS generated in the intermembrane space are supposed to access the cytosol in a faster 

way what may confer them signaling advantages [3, 23]. ROS are released to the 

cytosol through voltage-dependent channels that are constituents of the permeability 

transition pore (PTP) and by the inner membrane anion channel (IMAC) [24, 25]. The 

transition of ROS from mitochondria to the cytosol is crucial in the regulation of 

programmed cell death geared by mitochondria [25, 26]. 

Other important sources of mitochondrial ROS (mROS) are p66Shc and 

monoamine oxidase (MAO) (Fig. 2). The protein p66Shc plays key roles in the 

oxidative stress response by inducing apoptosis under stressful conditions (Fig. 2) [27]. 
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p66Shc acts as a redox protein due to its capability to interact and oxidize cytochrome c 

(Fig. 2) [28]. MAO is a flavoenzyme bound to the outer mitochondrial membrane that 

catalyzes the oxidative deamination of neurotransmitters and monoamines. MAO 

represents a significant source of ROS production in brain mitochondria where it has 

been shown to generate ROS in a much higher amount than the respiratory chain [29]. 

In fact, MAO is involved in multiple neuropathologies and myocardial diseases and its 

inhibition is likely to provide a promising target for the relief of the oxidative stress that 

is associated with these pathologies [30]. 

The overproduction of ROS in response to metabolic stress triggered by hypoxia 

or chemotherapy promotes an oxidative stress that has been invariably linked to 

multiple pathologies including neurodegenerative diseases, diabetes, cancer and 

premature aging [3]. Nowadays, it is indubitable that mROS are important signaling 

intermediates in the communication of the organelle with other compartments and 

cellular processes for maintenance of homeostasis under different conditions and for 

adaptation to stress [3]. In fact, mROS can balance between survival and cell death in a 

process that is highly dependent on the levels at which they are being produced [31]. 

For instance, the mitochondrial release of H2O2 in hypoxia activates the transcription 

factor hypoxia inducible factor 1 (HIF1α), which is required for metabolic adaptation 

under low oxygen tension [32, 33]. In addition, the mitochondrial release of H2O2 has 

been reported to activate key signaling proteins such as c-Jun N-terminal kinase 1 

(JNK1), p53 and NFkB [34-36]. Numerous reports highlighting the importance of 

mROS-dependent signaling in a variety of systems and processes have emerged in the 

literature of the last decade [3, 31, 37-39]. 

It is well established that mROS production is highly dependent on the proton motive 

force as has been shown by titration of the mitochondrial membrane potential (Δψm) 

with uncouplers [40-42]. Perhaps, the best characterized site of ROS production in 

mitochondria is at complex III of the ETC (Fig. 2) [43]. The production of superoxide 

during forward electron transfer at complex III is low but significantly increases by 

reverse electron flow under conditions of hypoxia [44] or cellular toxicity [40, 42] from 

substrates that feed electrons to complex II. The fact that mitochondria produce more 

ROS under low oxygen levels is intriguing because it seems to contradict the 

dependence of mROS formation on the availability of oxygen that was observed in 

isolated mitochondria [43, 45]. It is likely that mROS generated in cells in response to 
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hypoxia depend on additional factors of the hypoxic cellular environment by 

mechanisms that remain to be elucidated (see [43] for details). In general, cellular 

conditions that slow-down the rate of electron transfer to molecular oxygen in the 

respiratory chain (Fig. 2) at high values of Δψm favor the generation of superoxide 

radical in mitochondria. One such situation is provided by inhibition of the back-flow of 

H+ through the H+-ATP synthase (Fig. 2) that is mediated by the over-expression of IF1 

in human carcinomas [38, 46-48] (see following section). In this situation, Δψm 

provides a link between energy metabolism, ROS production and cell fate [47]. 

2.2. Cysteine oxidations regulate the activity of ROS transducers.  

The regulation of signaling pathways by ROS is exerted by their ability to 

promote reversible posttranslational modifications of proteins [42, 49, 50]. Hydrogen 

peroxide is more stable than superoxide radical and is also capable of crossing 

biological membranes so the protein modifications mediated by ROS are predominantly 

H2O2-dependent. However, superoxide itself has been shown to be involved in aging 

related processes [51]. H2O2 can reversibly oxidize thiol groups (-SH) of redox-reactive 

cysteine (Cys) residues on proteins to form disulfide bonds (-S-S-) or sulfenic acid 

(−SOH), the latter can be further oxidize to sulfinic (−SO2H) and sulfonic (−SO3H) acid 

(Fig. 3) [31, 52]. Sulphenic acid (-SOH) can react with glutathione (GSH) to become 

glutathionylated (-SSG) (Fig. 3). These oxidative modifications result in changes in the 

structure of the targeted proteins thereby affecting its activity in the signaling pathways 

in which they are involved. In addition, the generation of intermolecular disulfide bonds 

can promote the homo- and/or heterodimerization of proteins that lead to the activation 

or repression of the signal transducers. Thiol groups can also react with reactive 

nitrogen species (RNS) forming S-nitrosothiol groups (-SNO) (Fig. 3). With the 

exception of sulfonic and sulfinic acid that are essentially irreversible reactions the 

modification of cysteines is reversible by the action of the reducing systems of the cell 

such as glutathione, thioredoxin and peroxiredoxin (Fig. 3) that are critical elements in 

redox sensing and signaling (Fig. 3) [53-55]. Phosphatases such as phosphotyrosine 

protein phosphatase (PTP1b), phosphatase and tensin homolog deleted on chromosome 

ten (PTEN) and MAPK phophatase are known examples of proteins involved in 

signaling pathways inactivated by H2O2 oxidation of cysteines [56, 57]. Superoxide also 

reacts with nitric oxide (NO), forming highly reactive and potentially damaging 

peroxynitrite (OONO−) [58]. The formation of peroxynitrite from O2
- can lead to 
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reversible glutathionylation of proteins on reactive cysteines, as has been reported for 

the Na+-K+ ATPase [59]. The inactivation of aconitase by reaction of superoxide with 

(FeS)4 clusters provides an example of the inhibition of the activity of a metabolic 

enzyme mediated by the interaction of O2
- and iron [60, 61].  

2.3. Overview of signaling pathways regulated by ROS.  

Low or transient ROS levels can activate kinases and/or inhibit phosphatases 

involved in a wide variety of cell signaling processes by oxidizing critical cysteine 

residues of the proteins (Fig. 4) [62, 63]. Proteinases and matrix metalloproteins have 

also been described as ROS targets [64]. Thioredoxin that catalyzes the reversible 

reduction of disulfides to a dithiol in ROS targeted proteins (Fig. 3) interacts in its 

reduced state with apoptosis signal-regulated kinase 1 (ASK1) that is activated under 

oxidative stress (Fig. 4) [65]. Thioredoxin-ASK1 interaction blocks oligomerization of 

ASK1 and its subsequent activation [66, 67].  When thioredoxin is oxidized by ROS, it 

disassociates from ASK1 allowing protein oligomerization and subsequent activation 

through auto-phosphorylation [68]. This kinase mediates apoptosis by regulating the 

JNK and p38 MAPK pathways [69]. The regulation of differentiation [70] and immune 

signaling [71] mediated by ASK1 through the p38 MAPK pathway are other important 

biological effects triggered by ROS. Importantly, thioredoxin is also involved in the 

regulation of AMPK activity by preventing the oxidation of cysteine residues in the α 

subunit of the metabolic stress kinase [72].  This elegant study links oxidative stress and 

metabolism demonstrating that a reducing enzyme is a critical cofactor controlling the 

activation of AMPK, a key regulator of metabolism and cell survival in situations of 

energy stress [72] (Fig. 4).   

The best-characterized example of ROS-mediated inactivation of phosphatases 

by the oxidation of the active site cysteine residue of the enzyme is that of protein 

tyrosine phosphatase 1b (PTP1b). The inactivation of this enzyme results in the 

promotion of MAPK and growth factor signaling pathways initiated from different 

stimulus (Fig. 4) [62, 73-76]. Additionally, ROS can inactivate the dual-specific 

phosphatase 3 (DUSP3) that is another protein tyrosine phosphatase involved in the 

dephosphorylation of ERK1/2 causing the sustained activation of the ERK1/2 signaling 

pathway [77] that play an essential role in cell proliferation, differentiation, invasion, 

and apoptosis [78-80].  
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The PI3K pathway which is important for cellular growth, survival and 

proliferation (Fig. 4) [81] can be affected by the redox state of the cell through different 

mechanisms [82]. For example, Akt that is a main protein kinase downstream in the 

pathway has been shown to be activated by H2O2 [83]. The target of ROS in the PI3K 

pathway is the tumor suppressor PTEN, a phospholipid phosphatase that converts PIP3 

back to PIP2 thus acting as a negative regulator of the pathway [82, 84]. PTEN is 

inhibited by hydrogen peroxide through disulfide bond formation between the active 

site cysteine (Cys124) and a vicinal cysteine residue [85-87]. Through PTEN, the PI3K 

pathway is subject to reversible redox regulation by ROS generated by growth factor 

stimulation [88]. PTEN oxidation is reversed by cytoplasmic peroxiredoxin II that 

eliminates the H2O2 generated in response to growth factors [85]. Mitochondrial-

generated ROS can also inhibit PTEN affecting the angiogenesis process [89]. Protein 

phosphatase 2A (PP2A) which is involved in the dephosphorylation of Akt [90] and the 

inactivation of the PI3K/Akt pathway [91] is another redox sensitive phosphatase.  By 

inhibiting these important phosphatases the AKT signaling pathway is deregulated 

promoting uncontrolled cellular proliferation and enhanced survival and growth. Ataxia-

teleangiectasia mutated (ATM) protein (Fig. 4) is a  PI3K-like serine/threonine protein 

kinase that is activated under stressful conditions and phosphorylates various proteins 

involved in cellular proliferation, death, survival and DNA repair [92, 93]. ATM is 

preferentially activated by DNA double strand breaks and also acts as a sensor of 

oxidative stress [94]. ATM protein is also regulated by a redox sensitive mechanism via 

the formation of active ATM dimers through intermolecular disulfide bond formation 

(Fig. 3) [95].  

The hypoxia inducible transcription factor HIF1α is also a target of ROS (Fig. 4) 

[23]. HIF1α is responsible for the coordination of the cellular responses to decreased 

oxygen availability [96, 97]. During normoxia prolyl hydroxylation of HIF1α promotes 

its association with the von Hippel-Lindau (VHL) tumor suppressor that targets the 

protein for ubiquitination and degradation. However, during hypoxia the hydroxylation 

of proline in HIF1α is inhibited due to the inactivation of prolyl hydroxylases.  mROS 

are involved in the stabilization of HIF1α to promote the transcriptional activity of the 

protein [32, 98-101]. The stabilization of HIF1α under low oxygen conditions requires 

the generation of ROS in complex III of the ETC [102]. In other words, the 

mitochondrial respiratory chain acts as an O2 sensor that activates a signaling cascade to 
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stabilize HIF1α through the production of ROS. First evidences illustrating that mROS 

are involved in the regulation of HIF1α aroused from studies in cells depleted of 

mitochondrial DNA (ρo cells) that failed to stabilize HIF1α under hypoxia [32]. HIF1α 

stabilization is blunted by treating the cells with mitochondrial antioxidants 

emphasizing that mitochondria are the source of ROS under hypoxic conditions [32, 

33]. Moreover, inhibitors of the mitochondrial electron transport chain that block HIF1α 

activation in hypoxia have also been described [103]. The mROS mediated regulation of 

HIF1α is implicated in regulating tumorigenesis by controlling genes involved in 

metabolism, angiogenesis, and metastasis [97, 104].  

As discussed previously mROS produced in p66Shc play relevant roles in the 

activation of the apoptotic pathway and in the regulation of life span [27]. The 

production of mROS by this protein leads to mitochondrial damage and apoptosis under 

oxidative or genotoxic stress conditions [105]. The mechanisms that mediate 

mitochondrial translocation of p66Shc and its proapoptotic activity seem to be 

controlled by protein phosphorylation [106], although it has also been suggested that 

ROS production and the initiation of apoptosis by p66Shc is also redox sensitive by 

formation of two disulfide bonds in the protein (Fig. 4) [107]. The interaction observed 

between p66Shc with the TOM-TIM protein import complexes [105, 108] and with 

cytochrome c [28] are also mechanisms involved in the proapoptotic function of the 

protein (Fig. 2).  

An important point in the cellular response to increased levels of ROS is the 

redox regulation of transcription factors that activate the antioxidant defense system 

(Fig. 4). The transcription factor redox factor-1 (Ref-1) is a multifunctional protein that 

translocates to the nucleus upon exposure to genotoxic agents and H2O2 and initiates a 

protective response of the cell from DNA and oxidative damage [109, 110]. Ref-1 

regulates the transcriptional activity of several key transcription factors involved in 

cellular defense such as activator protein 1 (AP-1), p53, NFkB and HIF1α by its redox 

sensitive cysteine residues [111-113].  The antioxidant genes glutathione S-transferase 

(GST) [114], NADPH quinone oxidoreductase-1 (NQO1) [115] and heme oxygenase-1 

(HO1) [116, 117] are regulated by an enhancer termed the antioxidant responsive 

element (ARE) [118]. H2O2 activates transcription of these genes via the ARE element 

and involves a complex set of redox regulated proteins [119]. The primary transcription 

factor involved in ARE activation is the redox-sensitive transcription factor NFE2-like 2 
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(Nrf2) [120] (Fig. 4) that is translocated into the nucleus under oxidative stress [121]. In 

the nucleus Nrf2 dimerizes with the small Maf proteins and binds the ARE to activate 

ARE-dependent transcription of target genes in ROS homeostasis [118, 122]. 

Interestingly, the transcriptional activity of Nrf2 is also regulated by Ref-1 [123] 

indicating the collaboration of these proteins in the detoxification of the cell under 

oxidative stress. 

Extensive literature has related ROS and Ca2+ signaling and their effects on 

apoptosis, aging and cardiovascular diseases [124] (Fig. 4). ROS can modify the 

properties and activities of some of Ca2+ channels and transporters [125, 126]. In fact, 

some of the proteins involved in Ca2+ signaling such as the InsP3 receptor (InsP3R) 

[127], the ryanodine receptor (RyR) channels  [128] and the sarco/endo-plasmic 

reticulum Ca2+-ATPase (SERCA) [129] have been shown to be sensitive to ROS.  

In addition, ROS signaling is also important for the maintenance of iron 

homeostasis (Fig. 4). Iron is an essential element that plays crucial roles in cell 

proliferation and metabolism as it represents a functional constituent of various 

enzymes. Excessive levels of free iron can generate ROS via the Fenton reaction [130, 

131] promoting deleterious oxidative stress to the cells (Fig. 1). Iron regulatory protein-

1 and -2 (IRP1 and IRP2) regulate the expression of many genes involved in iron 

transport and storage at the posttranscriptional level by interacting with iron-responsive 

elements (IRE) in the 5′- or 3′-untranslated region (UTR) of the mRNAs. IRP1 and 

IRP2 have redox sensitive target sites that are subjected to redox regulation by H2O2 

and nitric oxide [132-135]. Taken together, the IRE–IRP regulatory system is also 

regulated by ROS to elicit a defense mechanism against iron-catalyzed oxidative stress. 

 

3. Old and new functions of the H+-ATP synthase. 

3.1. The H+-ATP synthase, a core hub in energy and cell death regulation.  

The oxidation of glucose in the cytoplasm and the subsequent oxidation of 

pyruvate in mitochondria provide the energy, reducing power and carbon skeletons 

required for the maintenance of cellular homeostasis and proliferation [47, 136]. 

Normoxic cells oxidize most of the pyruvate to CO2 in mitochondria and the electrons 

collected onto NADH and FADH2 are transferred to the complexes of the respiratory 

chain to generate the proton electrochemical gradient that is used for the synthesis of 
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ATP in oxidative phosphorylation (OXPHOS) (Fig. 2). ATP is synthesized by the 

mitochondrial H+-ATP synthase, a reversible engine of the inner mitochondrial 

membrane that provides most of the ATP that is required to maintain cellular activities 

in normal aerobic differentiated cells [47]. The mammalian H+-ATP synthase consists 

of two main domains: a membrane-bound hydrophobic FO portion, which contains the 

proton channel, and the soluble catalytic F1 portion that encloses the adenine nucleotide 

binding sites at the α/β subunit interface [137, 138]. Both regions are linked together by 

a central and a peripheral stalk. In normal aerobic cells under phosphorylating 

conditions, the re-entrance of protons into the mitochondrial matrix (Fig. 2) triggers the 

rotation of the c-ring in FO and of the attached central stalk to induce the 

conformational changes in the β-F1-ATPase subunit that drive the synthesis of ATP 

(Fig. 2).  

 The cellular availability of ATP, NADH and some metabolic intermediates 

coordinate at short-term the flux of glucose consumption by regulating the activity of 

key enzymes of the glycolytic pathway and mitochondrial dehydrogenases, to limit the 

production of biological energy as it is being demanded [47]. In other words, the 

efficient production of biological energy by OXPHOS determines the rate of glucose 

consumption, which is nowadays formulation of the Pasteur Effect [139]. When the 

cells have a limited supply of oxygen or have a genetic or epigenetic impairment that 

restrains OXPHOS, glycolysis is enhanced [47, 140]. When short-term regulation of 

enzyme activities of energy metabolism is not enough to cope with the energetic 

demand cells onset the gene expression programs required for adaptation. Examples that 

are relevant in this regard are the induction of glycolysis during adaptation to hypoxia 

[141], the rewiring of metabolism in cancer [142] and in dedifferentiation of somatic 

cells [143], the onset of the bioenergetic function of mitochondria during adaptation of 

mammals to the aerobic extrauterine environment [144, 145] and the metabolic 

reprogramming that accompanies stem cell differentiation [146, 147]. 

3.2. The H+-ATP synthase in signaling cell death.  

Down-regulation of oxidative phosphorylation (OXPHOS) and the concurrent 

activation of aerobic glycolysis is a hallmark of proliferating cancer cells [140, 148]. 

Whereas the increase of glycolysis in the majority of carcinomas is nowadays out of 

question, the role of OXPHOS modifications in tumor development and progression is 
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still debated [47]. Nevertheless, it has been shown that a dysfunctional OXPHOS 

promotes cellular proliferation and invasion [47, 149] whereas an increase in oxidative 

metabolism halts cellular proliferation and tumor progression [47, 140, 150, 151]. In 

this regard, the activity of OXPHOS has been demonstrated to be specifically required 

for the execution of cell death [47, 152-154]. In particular, molecular components that 

participate in OXPHOS, such as cyt c, AIF and subunits of the H+-ATP synthase are 

needed for the execution of cell death [40, 155-158]. Hence, bioenergetics and cell 

death are two master tasks of mitochondria that are molecularly and functionally 

integrated [47].  

The impairment of mitochondrial energy production by metabolic stress and/or 

in response to chemotherapy leads to increased ROS generation through respiratory 

chain electron leakage. ROS can signal mitochondrial geared cell-death pathways or 

activate transcription programs aimed at cell survival, two opposite cellular fates that 

largely depend on the intensity of the ROS signal [1, 31]. The induction of cell death by 

different stressful conditions promotes Δψm collapse that is preceded by transient 

mitochondrial hyperpolarization [40, 156, 159] and the subsequent production of mROS 

which is highly dependent on Δψm [40, 42, 160]. It has been suggested that mROS 

produced in response to cell death stimulation occurs by reverse electron flow from 

complex II-linked respiratory substrates into complex I of the ETC (Fig. 2) because its 

production can be inhibited with rotenone [40, 42, 161]. Consistent with a role for 

mROS in the execution of cell death [1, 162], extensive protein carbonylation of cellular 

proteins as well as covalent modifications in mitochondrial proteins have been reported 

in response to staurosporine treatment [40]. The generation of mROS preceded the 

release of cyt c, the activation of caspase 3 and cell death [40]. Upon inhibition of 

mitochondrial respiration with staurosporine [163] it is suggested that the hydrolysis of 

glycolytic ATP by reverse functioning of the H+-ATP synthase maintains Δψm [40, 

164-166]. In this situation, the inhibition of the activity of the H+-ATP synthase with 

oligomycin blunted mitochondrial hyperpolarization and ROS production, prevented the 

oxidation and modification of mitochondrial proteins, delayed the release of cyt c and 

the execution of cell death [40, 164].  

In contrast to these findings, the 1,4-benzodiazepine-derivative Bz-423 signals 

apoptosis by the induction of ROS production from the mitochondrial respiratory chain 

as a result of the inhibition of the H+-ATP synthase [167]. The antagonistic effects on 
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apoptosis of oligomycin and Bz-423 seem to be dependent on the different mechanism 

by which these compounds inhibit the enzyme [167]. Similarly, the drug 3,3`-

diindolylmethane also promotes ROS-mediated cell death by inhibiting the H+-ATP 

synthase [168]. In any case, these findings support a role for the activity of the H+-ATP 

synthase in controlling the extent of oxidative damage to mitochondrial constituents that 

will effectively swamp the cells into death [40]. Consistently, the cell death response to 

different chemotherapeutic agents varies largely depending upon the relative activity of 

the pathways that sustain energy metabolism (Fig. 5) [40, 169]. In fact, highly 

glycolytic cells with negligible contribution of OXPHOS for ATP provision have a cell-

death resistant phenotype because mROS signaling after chemotherapeutic targeting is 

blunted (Fig. 5) [40, 169]. Overall, the down-regulation of the H+-ATP synthase, and 

thus of OXPHOS, is part of the molecular strategy adapted by cancer cells to avoid 

reactive oxygen species-mediated cell death.  

Interestingly, it has been shown that the activity of the H+-ATP synthase per se 

is inhibited by ROS [170, 171]. The impact of ROS on the activity of the complex is 

also observed in chloroplasts where the γ subunit seems to be a main target for ROS 

oxidation [172]. These findings further emphasize the tightly regulated connections that 

exist between the H+-ATP synthase, energy production, ROS generation and cell death.  

The point of no return in cell death is the permeabilization of the inner 

mitochondrial membrane to low molecular weight solutes, the so-called PTP opening 

[173-175]. Although the molecular composition of the PTP remains unknown recent 

findings support that a critical component of the high-conductance channel is subunit c 

of the H+-ATP synthase [176]. Moreover, it has been shown that dimers of the H+-ATP 

synthase form a channel with electrophysiological properties identical to those of the 

PTP [177]. Non-specific ROS-mediated modifications of mitochondrial constituents 

could represent a critical point of regulation of the mitochondria-geared cell death 

pathway. Protein oxidation could define the threshold value of irreversible damage of 

the mitochondria and the set-point for the release of the mitochondrial arsenal that 

controls cell death (Fig. 5) [40]. Indeed, oxidative stress promotes cell death by 

increasing the susceptibility of the opening of the PTP [178]. PTP opening is linked to 

oxidative stress since it has been shown to be dependent on the NADPH redox state 

[179, 180] and promoted by thiol oxidation [181, 182]. Consistently, it has been 

reported that PTP opening can be stimulated by the addition of exogenous sources of 
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ROS and prevented by antioxidants in pro-apoptotic conditions [180]. Interestingly, 

PTP opening also increases mitochondrial ROS production illustrating a retro-

amplification cascade when the decision to execute cell-death has been taken [183].  

Consistent with the tumor suppressor function of mitochondrial activity there is 

a large body of data supporting that OXPHOS, both under basal conditions or in 

response to chemotherapeutic agents abolishes tumorigenicity (see [47] for updated 

review). A likely mechanism that explains the preferential death of cancer cells when 

forced to oxidize mitochondrial substrates is the overproduction of superoxide radical as 

a result of the stimulation of mitochondrial metabolism [40, 47, 184]. Both genetic 

[185] and pharmacological [186] studies have shown that the PGC1α-mediated 

improvement of mitochondrial activity and metabolism restrains cancer progression by 

increasing ROS-mediated apoptosis in cancer cells [185].  

A diverse set of genetic, epigenetic and environmental mediated mechanisms 

interfere with mitochondrial bioenergetics of the cancer cell [47, 187]. One such 

mechanism, which is observed in many prevalent human carcinomas, is the down-

regulation of the expression of the catalytic subunit of the mitochondrial H+-ATP 

synthase (β-F1-ATPase) relative to the enzyme of glycolysis glyceraldehyde-3-

phosphate dehydrogenase [140, 188]. This finding has been confirmed and extended to 

other carcinomas (see [140] for other studies), providing a “bioenergetic signature” of 

cancer [140, 188] of clinical applicability. Indeed, as assessed in large cohorts of colon 

[188-190], lung [191, 192], breast [193] and ovarian carcinomas [194] and in cells of 

acute myeloid leukemia patients [195] the altered bioenergetic signature of the tumors 

predicts a worst overall and/or disease-free survival for the patients. Down-regulation of 

the bioenergetic signature is also functionally linked to the resistance to chemotherapy 

in many different cancer cells [47, 196, 197], in colon cancer patients [190] and chronic 

[198] and acute [195] leukemia patients. In general, the bioenergetic signature 

represents a functional index of metabolic activity of the cells because it correlates, both 

in vitro [199] and in vivo [192], with the rate of glucose utilization. Overall, these 

findings emphasize that a diminished bioenergetic activity of mitochondria in the cancer 

cell predisposes to cancer onset and progression, highlighting the emerging role that the 

H+-ATP synthase plays as a master regulator of cell death [40, 156, 177, 200, 201]. 

Consistently, cancer progression requires the silencing of the bioenergetic activity of 

mitochondria [199] not only by down-regulating the content of the H+-ATP synthase as 
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above discussed but also by over-expressing the natural physiological inhibitor of the 

enzyme, the so-called ATPase Inhibitory Factor 1 (IF1) [38, 46, 47].   

3.3. The ATPase Inhibitory Factor 1 (IF1).  

In mitochondria, ATP hydrolysis by the H+-ATP synthase is inhibited by the 

ATPase Inhibitory Factor 1 (IF1) that reversibly binds to the enzyme (Fig. 6) [202, 

203]. The natural inhibitor of the H+-ATP synthase is a low molecular weight (~10kDa) 

mitochondrial protein which inhibited the soluble ATPase, but did not interfere with its 

coupling activity [204]. IF1 is encoded in the nuclear ATPIF1 gene located on 

chromosomes 1 and 4 in human and mouse, respectively. IF1 has been described in 

mammals, birds, amphibious, nematodes, yeast and plants and shows considerable 

sequence identity among various eukaryotes [205]. It is absent in bacteria and 

chloroplasts. Three different isoforms of the human protein are produced by alternative 

splicing.  Isoform 1 is the longest one, it codifies for a protein of 106 amino acids (12,2 

kDa; pI=10) which is, by far, the protein more abundantly expressed in most human 

tissues [46, 47]. Isoform 2 and 3 codify for proteins of 71 (7,9 kDa; pI=8.5) and 60 (6,6 

kDa; pI=9.3) amino acids, respectively. The inhibitor protein has an N-terminal 

presequence of 25 residues for targeting the protein into the mitochondrial matrix which 

is cleaved off after import [206, 207]. 

The interaction between IF1 and the H+-ATP synthase depends on the pH of the 

mitochondrial matrix and is affected by changes in the Δψm [202, 207]. IF1 binds β, α 

and γ subunits of the H+-ATP synthase due to its activation under low pH conditions 

blocking ATP hydrolysis and preventing a useless waste of energy [207]. The 

substitution of histidine 49 in the IF1 sequence by a lysine renders a mutant form of IF1 

(H49K) that is as active as IF1 in the inhibition of the ATP hydrolase activity but less 

sensitive to the regulation by pH [138, 202, 203, 208, 209]. The participation of E26 in 

the pH regulated inhibitory activity of bovine IF1 has also been suggested [210]. Bovine 

IF1 has been shown to have oligomeric states, tetramer and dimer, favored by pH values 

above and below 6.7, respectively [202]. Dimerization and activation of IF1 occurs by 

formation of an antiparallel α-helical coiled-coil in its C-terminal region which places 

the N-terminus (inhibitory regions) of the monomers at opposite ends of the dimer, 

allowing the dimeric IF1 to bind two domains of F1-ATPase simultaneously [202]. The 

structure of the inhibited F1-ATPase complex with bound IF1 in the presence of ATP 
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has been solved and confirms that the N-terminal region of the dimeric inhibitor is 

bound to F1-ATPase [138]. The inhibitory 42L-58K segment of IF1 has been shown to 

interact with α/β pair of subunits of the F1-ATPase domain. It is suggested that this 

interaction inhibits the conformational inter-conversions of the catalytic sites involved 

in ATP hydrolysis and hence rotatory catalysis [138]. Hence, the mechanism of 

inhibition of the ATPase by IF1 arises from the disruption of the catalytic site.  

The physiological function ascribed to IF1 in normal hypoxic cells is to inhibit 

the hydrolase activity of the H+-ATP synthase [202, 203, 211, 212]. Until recently, the 

role of IF1 in preserving cellular ATP in myocardial ischemia [209, 211] and in 

ischemic preconditioning [209] have been the most extensively studied functions of IF1. 

However, the transformation of mitochondria from ATP producers into ATP consumers 

under depolarizing conditions has been recently questioned [213]. Upon mitochondrial 

depolarization IF1 has been identified as an essential gene to promote PARK2 

recruitment onto mitochondria to establish the selective autophagic program of 

mitophagy [214]. More recent findings support a relevant role for IF1 in controlling the 

ferrochelatase activity of mitochondria, and hence heme biosynthesis, in erythroid cells 

[215].  Surprisingly, a recently ill-defined knockout IF1 mouse model has revealed no 

alterations in phenotype [216]. The absence of IF1 is known to occur in Luft’s disease, a 

mitochondrial myopathy of the striated muscle [209, 217, 218]. The disorder is 

characterized by a hypermetabolic state, mitochondria with densely packed cristae and a 

loosely coupled OXPHOS [209, 217, 219], suggesting additional functional roles for 

IF1 in the regulation of the H+-ATP synthase of muscle mitochondria. It has been 

shown that long rows of dimers of the H+-ATP synthase promote the high local 

curvature of the inner membrane at cristae ridges [220-223]. Interestingly, ageing seems 

to melt-down the inner-membrane cristae of mitochondria by age-dependent 

dissociation of ATP synthase dimers [224]. It has been suggested that IF1 regulates the 

oligomeric state of the H+-ATP synthase increasing the density of cristae and the 

formation of dimeric ATP synthase complexes [212, 225-227]. However, this 

suggestion has been questioned [228-230].  

3.4. IF1 is a master regulator of energy metabolism in cancer and in stem cells.  

A differential expression level of IF1 has been reported between different mouse 

[231] and human tissues [46, 48]. Moreover, cardiomyocytes of low heart rate species 
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(human) have a higher expression level of IF1 than cardiomyocites of fast heart rate 

species (rat, mouse) [209, 211], what might explain the differential preservation of 

cellular ATP upon sublethal ischemic episodes. Interestingly, normal colon, lung and 

breast tissue have negligible expression of IF1 [38, 46, 48]. In contrast, mitochondria of 

almost all lung, colon, breast and ovarian carcinomas analyzed in large cohorts of 

cancer patients show an overwhelming increase in the expression of IF1 [48]. We have 

demonstrated that the over-expression of IF1 results in the inhibition of the ATP 

synthetic activity of the H+-ATP synthase and the switch of the cells to an enhanced 

aerobic glycolysis [38, 46]. On the contrary, silencing of IF1 enhances the H+-ATP 

synthase activity and reduces aerobic glycolysis, strongly supporting a crucial role for 

IF1 in mediating the metabolic switch experienced by cancer cells [38, 46]. Likewise, 

IF1 is present in human mesenchymal stem cells (hMSCs) as well as in stem cells of the 

prostate and in the Lieberkühn crypts of the colon [147]. Consistent with a master role 

for IF1 in the regulation of energy metabolism we have shown that the regulated 

degradation of IF1 triggers metabolic rewiring from aerobic glycolysis to a predominant 

OXPHOS in the differentiation process of hMSCs into osteocytes [147], once again 

stressing the biological relevance of this protein in regulating energy metabolism of 

proliferating cells. 

3.5. The role of IF1 in ROS signaling cell survival.  

The IF1-mediated inhibition of the H+-ATP synthase results in mitochondrial 

hyperpolarization and the subsequent production of superoxide radical in colon [38] and 

other cancer [48] cells (Fig. 6). Therefore, besides the role of IF1 in rewiring energy 

metabolism [46, 232], the over-expression of IF1 also triggers a retrograde ROS signal 

to the nucleus to establish the appropriate adaptive cellular program needed to support 

tumor development [38, 48]. IF1 mimics the inhibitory effect of oligomycin in 

reprogramming energy metabolism and in inhibiting apoptosis [40, 156]. Remarkably, it 

has been demonstrated that the ROS-mediated response in colon cancer cells in 

response to the over-expression of IF1 signals to the nucleus an NF-κB-dependent 

adaptation that includes enhanced proliferation, invasion and cell survival [38]. An IF1 

ROS-mediated resistance to cell death has also been demonstrated in other cancer cells 

[48]. The ROS-signaling pathways (Fig. 4) activated in response to IF1 over-expression 

that arrest cell death in many prevalent human cancer cells still remain to be 

investigated [48]. An alternative, not mutually exclusive mechanism of action of IF1 to 
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prevent cell death is that it might contribute to stabilize the oligomerisation state of the 

H+-ATP synthase to preserve mitochondrial cristae impeding in this way the release of 

cyt c [233]. In this regard, IF1 has been suggested to increase the density of 

mitochondrial cristae by the formation of dimeric ATP synthase complexes [212]. In 

this situation, IF1 would represent a negative regulator of PTP opening [177] 

contributing to the evasion of cell death. Consistently, recent findings in a conditional 

transgenic mouse expressing H49K (a gain-of-function mutant of human IF1) in 

neurons that also inhibits the H+-ATP synthase supports both a ROS-mediated 

metabolic and structural pathways to prevent neuronal cell death in vivo after an 

excitotoxic insult [234]. Overall, these findings strongly support that IF1 plays a master 

role in the regulation of energy metabolism and in retrograde communication to the 

nucleus other features of the oncogenic phenotype such as cell survival [47, 187].  

3.6. Regulation of IF1 activity and expression and other IF1 paradoxes.  

In silico analysis of the promoter region of the human ATPIF1 gene reveal the 

existence of potential cis-acting responsive elements for transcription factors involved 

in cancer. Data from high-throughput ChiP-sequencing confirmed the binding of several 

transcription factors involved in the regulation of cell cycle (NF-YB, NF-YA, Ini1), 

proliferation (c-FOS, Sp1, c-MYC) inflammation and cell death (NFκB, TAF1) in the 

proximal promoter region of the ATPIF1 gene. However, the regulation of IF1 

expression in human carcinomas is exerted at post-transcriptional levels [48]. In fact, 

IF1 has a very short half-life (~2h) in colon cancer cells [48] being degraded by a 

mitochondrial protease [147]. However, the mitochondrial protease involved in IF1 

degradation has not been identified despite our recent attempts using a large siRNA 

screen [147]. It has been suggested that the hypoxia regulated transcription factor HIF1α 

participates in controlling IF1 expression (Fig. 4) [235]. Moreover, it has been shown 

that the immediate early response gene (IER3) binds the C-terminus of IF1 to render the 

protein prone to proteolytic digestion in HeLa cells [236]. However, recent findings in 

different cancer cell lines seem to exclude the participation of HIF1α [48] and of IER3 

[48] in controlling IF1 expression in colon, lung and breast carcinomas.  

Paradoxically, tissues with very high activity of OXPHOS (liver, muscle, 

neurons) show a very high content of IF1 [38, 46, 48, 234], what would imply the 

partial IF1-mediated inhibition of the H+-ATP synthase in these tissues, which is 
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obviously not the case. As recently pointed out [48], these findings suggest that besides 

to the well characterized pH controlled binding of IF1 to β-F1-ATPase [202], an 

additional mechanism should regulate the biological activity of IF1 specially in tissues 

that naturally over-express the protein. It has been described that IF1, in addition to 

binding subunits of the H+-ATP synthase, also binds other membrane proteins of 

mitochondria in a pH and Δψm independent manner [237]. Specifically, it has been 

shown that the binding to one of these membrane proteins (~ 5-6 kDa) hampers the 

activity of IF1 as an inhibitor of the ATPase [237]. Hence, it is conceivable that tissues 

that normally over-express IF1 could also express a putative receptor that might act as a 

negative regulator of IF1 in order to counterbalance its inhibitory activity, contributing 

in this way to the fine-tuning of OXPHOS. Alternatively, tissue-specific post-

translational modifications of IF1 [238] could explain its activity on the H+-ATP 

synthase. The biological relevance of these modifications and the proteins and signals 

involved are unknown but they are likely to be relevant to understand IF1 expression 

and activity. 

Interestingly, the study of IF1 expression in tumors of large cohorts of breast and 

colon cancer patients support that it represents a marker of clinical outcome [48]. 

Surprisingly, colon and breast cancer patients with high tumor expression of IF1 have a 

better prognosis in terms of time of disease relapse [48] what suggests that cancer cells 

with a low expression of IF1 should be more likely to metastasize [48]. The molecular 

bases of this paradox are presently unknown.  

4. Final Remarks 

We have outlined the main pathways that lead to superoxide production in 

mitochondria, the primary mechanism by which ROS modulate the activity of proteins 

involved in signaling pathways and their biological consequences in the cell response. 

The mitochondrial H+-ATP synthase is presented as a key transducer in controlling 

energy metabolism, ROS-mediated cell death or the retrograde ROS response that 

allows the acquisition of an enhanced proliferation and the resistance to cell death, key 

features of the phenotype observed in carcinomas. ROS signaling by mitochondria is 

important in cancer onset and progression and it might represent the remnant 

mechanism that allowed the successful symbiosis of the two organisms that gave rise to 

the aerobic eukaryotic cell. A master regulator of mitochondrial ROS production with 
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clear effects in promoting the malignant phenotype of cancer cells is the ATPase 

Inhibitory Factor 1. Characterizing the regulation of its expression and/or activity are 

critical issues to understand the regulation of OXPHOS in different mammalian tissues 

and of many of the hallmarks of the cancer phenotype. The development of tissue 

specific mouse models with regulated expression of IF1 will contribute to portray its 

functional role in cellular physiology and pathophysiology. Overall, we can conclude 

that bioenergetics, ROS production and cell death are master tasks of mitochondria that 

are molecularly and functionally integrated. Unveiling the mechanisms that mediate 

these signaling networks will bring up new opportunities for cancer therapies. 
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Figure Legends.  
Fig. 1. The metabolism of oxygen. Superoxide is mainly produced by NADPH 

oxidases and by the mitochondrial respiratory chain.  Superoxide is converted to 

hydrogen peroxide (H2O2) by superoxide dismutases (SODs). H2O2 is converted to 

water (H2O) by glutathione peroxidases (GPX), peroxiredoxins (PRX) or catalase. H2O2 

is the main player in ROS cellular signaling because it can promote posttranslational 

modifications in proteins by thiol oxidation. The reaction of H2O2 with iron (Fe2+) 

generate hydroxyl radicals (.OH) that are responsible for lipid, protein and DNA 

damage, promoting oxidative stress. 

Fig. 2. Overview of mitochondrial ROS production. The scheme shows the relevant 

sites of ROS production by mitochondria. The transfer of electrons obtained by the 

oxidation of NADH and FADH2 to molecular oxygen by respiratory complexes in the 

inner mitochondrial membrane is depicted by continuous red lines. The formation of the 

proton gradient generated by respiration and its utilization for the synthesis of ATP by 

the H+-ATP synthase in oxidative phosphorylation is indicated.  Complexes I, II and III 

produce superoxide (discontinuous red lines, ROS) and release it in the matrix. 

Complex III also releases ROS into the intermembrane space.  The activity of the H+-

ATP synthase also modulates the levels of ROS produced by mitochondria. ROS are 

also generated by the redox protein p66Shc which interacts with TOM-TIM protein 

import complexes and with cytochrome c (cyt c). MAO, which is located in the outer 

mitochondrial membrane, represents an additional source of ROS in mitochondria. 

Fig. 3. Regulation of protein activity by ROS. Proteins are regulated by ROS through 

the oxidation of thiol groups (-SH) of redox-reactive cysteine residues. Oxidation of 

these residues by ROS can form reactive sulfenic acid (-SOH) that can undergo further 

oxidation to sulfonic (-SO3H) acid or form disulfide bonds with nearby cysteines (-SS-). 

These modifications lead to the inactivation of the proteins. Disulfide bonds can be 

reduced by thioredoxin (TRX) reductase that recovers the activity of the protein. 

Sulphenic acid (-SOH) can also react with glutathione (GSH) becoming 

glutathionylated (-SSG). Protein activity can be recovered by the action of glutaredoxin 

(GRX) that recognizes glutathionylated substrates and utilizes glutathione (GSH) for the 

reduction of the –SSG groups. Thiol groups can also react with reactive nitrogen species 

(RNS) to form S-nitrosothiol groups (-SNO) that also trigger protein inactivation.   
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Fig. 4. Signaling pathways regulated by ROS. ROS regulate several signaling 

pathways with key roles in cellular processes by affecting the activity of critical 

molecules. ROS can mediate survival, proliferation, metabolism and cell death by 

regulating the activity of proteins involved in MAPK pathways such as, ASK1, PTP1b, 

and DUSP3. Proteins participating in the PI3K pathway such as AKT, PTEN, PP2A and 

ATM are also direct targets of ROS. HIF1α, p66Shc and AMPK are also regulated by 

ROS. ROS modulate the antioxidant response through the action of REF1 and NRF2. 

The iron regulatory proteins IRP1 and IRP2 that are involved in iron homeostasis and 

InsP3R, RyR and SERCA that participate in the regulation of Ca2+ signaling are also 

targeted by ROS. 

Fig. 5. Energy metabolism determines the cell-death pathway of cancer cells. 

Susceptibility of cancer cells to death stimulus is highly dependent on their metabolic 

phenotype. The rapid dismantling and fragmentation of the mitochondrial tubular 

network into small mitochondria (green) occurs as a first response to a death stimulus to 

chemotherapeutic agents. Tumor cells with a significant activity of oxidative 

phosphorylation (OXPHOS) will produce high levels of ROS contributing to the 

oxidation of mitochondrial proteins (red dots) and the release of the mitochondrial 

arsenal involved in the execution of cell death (fragmented nucleus in yellow). Cells 

with a diminished activity of OXPHOS and thus an increased activity of the glycolytic 

pathway will not generate ROS under conventional chemotherapy what results in a 

resistant cell death phenotype.  

Fig. 6. IF1 mediates the oncogenic phenotype by ROS signaling. The illustration 

shows a schematic organization of the mitochondrial H+-ATP synthase. Several 

subunits are color-coded and labeled. In tumor cells, the ATPase Inhibitory Factor 1 

(IF1) (in red) is highly over-expressed and binds the catalytic α /β interface. This 

interaction prevents synthesis of ATP triggering metabolic reprogramming towards an 

enhanced glycolytic phenotype. Inhibition of the H+-ATP synthase also promotes an 

increase in the mitochondrial membrane potencial (Δψm) and the subsequent increase in 

superoxide radical production (ROS).  ROS signaling will activate proliferation and 

survival pathways in the nucleus of the cell. All these events represent hallmarks of 

cancer as they promote tumorigenesis and metastasis.  
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