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Abstract. Although the energy required to perform a logic operation has 

continuously dropped at least by ten orders of magnitude since early vacuum- 

tube electronics [1], the increasing clock frequency and gate density of the 

current integrated circuits has appended power consumption to traditional design 

trade-offs. This paper explore the usefullness of some low-power design 

methods based on architectural and implementation modifications, for FPGA- 

based electronic systems. The contribution of spurious transitions to the overal 

consumption is evidenced and main strategies for its reduction are analized. The 

efectiveness of pipelining and partitioning inprovements as low-power design 

methodologies are quantified by case-studies based on array multipliers. 

Moreover, a methodology suitable for FPGAs power analysis is presented. 

 

 
1 Introduction 

 
The general advantages of power consumption reduction are well-known: it allows 

expensive packaging to be avoided, the chip life operation to be increased, cooling to be 

simplifyed and the autonomy of battery powered systems to be extended (or their weight 

to be reduced). Even in fast prototyping, excessive consumption can be inconvenient: 

CMOS delays increase 0,3 % per ºC [2], as well as synchronous circuits can exhibit 

current peaks so they affect apparently independent variables like PCB features. 

Analogous to throughput or area occupation, the reduction of consumption can be 

achieved at any level of hierarchy; however, in this paper attention will be focused on 

architectural-implementation transformations, availables  to FPGA  end-users. 

Additionally, these approaches are not aggressive and can be applied in conjunction with 

any other strategy. 
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The main consumption in CMOS technology correspond to dynamic power: the energy 

per clock cycle involved in the charge/discharge of all circuit node capacitances. This 

power component can be modelled by: 
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where fn is the effective frequency of each circuit node (usually different from the system 

clock), Cn   is the output capacitance of each node, and VDD is the power supply voltage 

(Eq.(1) assumes that all capacitances reach VDD after the loading period). Thus, setting 

aside VDD   manipulations, the power consumption can be modified by varying: the 

topology (that influences all the variables); the data (that vary fn); and finally, the 

interconnection network, which affect Cn, but also fn. However, the estimation or control 

of the effective frequency fn of each node is difficult due to the appearance of glitches. 

Although the glitches do not produce errors in a well-designed synchronous systems, they 

can significantly increase the circuit activity. 
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Fig.1: The effect of net unbalance on node activity. 

 

The effect of glitches is illustrated on Fig.1: in the above graph the delay nets are 

equalized and the spurious activity level is zero; however if an unbalance between the 

paths exists (Fig.1b), glitches appear and power consumption increases. Depending on 

the circuit topology, these spurious transitions can progress across the following stages, 

producing an avalanche effect on power consumption. For example, combinational array 

multipliers with automatic placement-routing utilized in this work gave rise to arround 

25 to 40 intermediate values before reaching the correct result, meanwhile a manually 



 
 
 
 
 

 
path-equalized version of the same circuit just exhibed 5 to 8 intermediate values. 

 
FPGA user has three ways to diminish glitches: pipelining, partitioning improvements and 

path delay equalization. Pipelining, a popular way to speed up circuits also allows power 

consumption to be reduced [3]-[4]. Its usefulness is based on a marginal effect of the 

intermediate pipeline registers: the obstruction of the propagation of spurious 

(asynchronous) transitions. Pipelining also affects power consumption by the 

modification of datapath wiring loads: global lines (which usually broadcast the input 

data into the array) are split into a subset of lightly loaded lines, reducing the overall 

capacity. The second way to disminish spurious activity is to pack critical parts into look- 

up tables (LUTs) by using a manual partitioning process: thus glitches, wiring and nodes 

can be reduced. Finally, path delay equalization also reduces spurious, as well as can 

conduce to wave pipelines or maximum-rate circuits [5]; the application of this technique 

on FPGAs is analyzed in [6]. 

 
In the next section, a methodology suitable for the analysis of power consumption on 

FPGAs is presented. In section 3, the effect of spurious transitions on datapath power 

and the efectiveness of pipelining and partitioning improvements is quantified by a set 

of case-studies; additionally, the magnitude of off-chip and clocking consumption is 

evaluated. 

 

 
2 Power Budget on FPGAs 

 
Dynamic consumption on FPGAs can be separated into three parts: datapath, 

synchronization, and off-chip power. The first component corresponds to the 

combinational blocks and associated interconnection power; the second part is the 

consumption by registers, clock lines, and buffers; and finally, off-chip power, is the 

fraction dissipated in the circuit output pads (where the capacitances are several times 

larger than those for conventional microelectronics). Knowledge of the relationship 

between these components for a given FPGA technology is fundamental: it allows the 

effectiveness of any particular power reduction method to be determined a priori. For 

example: partitioning improvements and "cold scheduling" [7] would be superfluous if 

datapath power is relatively small; Gray Code counters for addressing external circuits 

would be useful only if heavily loaded buses exist; self-timed synchronization, wave 

pipelining, DET registering [8], or stoppable clocks strategies would be effective 

provided synchronization power is dominant. 

 
Datapath power measurements require the definition of a test vector set. Random 

sequences allow average consumption to be determined (and thus battery life operation 

to be predicted). Meanwhile special vector sequences that try to maximize the toggle of 

the circuit nodes allows the peak of dissipation to be deduced (and thereby stablishing the 

power supply requierements or testing off-chip power characteristics). In this work, 



 
 
 
 
 

 

circuits have been tested using a 216 pseudo-random data as well as a reduced set of 16 

data, which toggle near the 93 % of the outputs in each cycle, rather than the 56% toggled 

by the random sequence. Because current pipelined circuits can run faster than affordable 

pattern generators, both test sequences were produced by another FPGA, a XC3120-3, 

allowing a low-cost high-speed pattern generator to be obtained. 

 
In several circuits synchronization power consumption can be determined by clocking the 

circuit while maintaining the input data constant. Thus, there is no activity neither in the 

datapath nor in the I/O pads; then, the measured power can be assigned to registers, clock 

lines and buffers. Finally, although off-chip power is strongly application-dependent, for 

a given FPGA-based system it can be easily determined simply by measuring chip power 

twice: first in normal operation, and then activating the 3-state output pad option. The 

difference between the values, allows the designer to diagnose if off-chip power reduction 

is necessary. 

 
The average value of the power components can be indirectly determinated by measuring 

average FPGA input current; or subtracting average system power values measured with 

and without clocking the FPGA chip under test (all the circuits should include registered 

I/O). Both methods require the voltage on the FPGA chip to be held constant. 
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Fig.2: 8-bit Guild Multiplier. Equitemporal lines. 



 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 
 
 
 
 

 

3 Experimental Results 
 

The relationship between pipelining, partitioning and power consumption has been 

quantified by a set of 8-bit Guild pipelined array multipliers [9] implemented using a 

XC3090PC84-100 and a XC4005PC84-6 Xilinx FPGAs. Each array family includes 

versions pipelined with five different granularities 

of elementary processors (EP) between successive register banks [10]: =1 (all EP I/O 

registered),=2 (data registered in even lines of Fig.2),=4 (data registered in lines 0, 4, 

8, ...),=8 (data just are registered in lines 0, 8 and 15), and finally =15, a combinational 

array with registered I/O. In order to assess the effect of efficient LUT utilization, two 

versions for each circuit has been constructed for the XC3090: a non-optimized (default 

APR) implementation; and another corresponding to a manual partitioning optimization. 

Additionally, some full manual high-optimized prototypes has been also developed. 
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Fig.3: 8-bit Guild Array. Average power consumption vs granularity. 

XC3090 default PPR (curve A) and optimized partitioning (curve B), and 

XC4005 default PPR (curve C) 

 
 

3.1 Pipelining as a Low-Power Strategy: Fig.3 shows the average power consumption 

of three pipelined array sets versus pipeline granularity (measured at 5 MHz, a frequency 

at wich all prototypes can be compared). The off-chip power quota has been maintained 

as low as possible in order to avoid masking datapath power effects; thus, each pad 

supports just the 10 pF (max.) logic analyzer probe load. Despite the hardware overhead, 

fine grain pipelines not only ran faster than combinational versions (=15), but also 

exhibed lower consumption if operated at the same frequency. In all cases the minimum 

power dissipated corresponded to logic depth from two to four LUTs between registers. 

Thus, pipelining allows the designer to trade power consumption for additional logic 

blocks and latency. For example, for default implementation conditions, the consumption 



 
 

 
 
 
 
 

 
of a 5 MHz =15 multiplier can be reduced by 33 % (XC3090) or by 58 % (XC4005) if 

it is =4 pipelined. In both cases the number of registers required would increase from 

32 to 104, and the latency from one to four clock cycles. 

 
3.2 Power Reduction via Partitioning Improvements: This strategy not only 

diminishes CLB occupation and speed up circuits but also reduces power consumption. 

It can be evaluated comparing curve A and B on Fig.3. Note that, for each , both 

versions have the  same  synchronization and  off-chip power;  thus, the  difference 

corresponds exclusively to datapath power consumption. Note that the benefits of 

partitioning improvements increase with the logic depth. 
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Fig.4: Synchronization power vs frequency and number of registers. 

 
3.3 Synchronization Power: This component can be modeled by measuring multipliers 

with different numbers of registers. In Fig.4 the value of the power consumption has been 

plotted, versus frequency and number of register. Thus, the following model has been 

derived for 3090PC84-100 synchronization power (tied option) as a function of the 

number of registers (NR) and frequency: 

 

Synch. Power ( mW ) ( 2,7   0,019 NR ) frequency (MHz) 31 mW 
 
 

Note that the term of 31 mW includes overall chip consumption at low frequency. This 

model has been successfully utilized to predict the results of other tied arrays with 



 
 

 
 

 
 

 
 

 
 

 
 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 
 
 
 
 

 

different topologies and numbers of registers1. Error for different partitioning and 

placement have been estimated near 7% (circuits that make use of both CLB registers 

exhibed less sinchronization power). Instead of the number of register, a similar model 

can be developed using the number of .k pins connected to the clock line. 

 
Although for high frequency operation, the synchronization power fraction is not 

excessive, it can not be reduced by using the CLB clock enable facility. Thus, the 

application of techniques like stopable clocks to FPGA-based systems, must block the 

clock signal at chip input pin in order to be effective. Finally, in Fig.5 an example is 

shown of the three components of total power for a full manual PPR, 8-bits-240CLBs- 

70MHz,=1, pipelined Guild array multiplier on a 3090PC84-100. 
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Fig.5: Power components. High-optimized 

8-bit =1 pipelined array multiplier 

 

Fig.6: Data-dependence of power 

consumption. Non-optimized part. 

 
 

3.4 Data-dependence of Power Consumption: In Fig.6 the power consumption is 

shown for the same family of circuits when they process different input data. Note that 

the sequence of sixteen vectors for maximum output toggle produces a significant 

increase in power consumption, even for the small off-chip capacitance values. However, 

this effect can be utilized in a reverse mode: for a particular application, a subset of data 

 
 
 

1  
All the experiments presented in this paper have been repeated using a Hatamian array [11], 

providing similar results. 



 
 

 
 

 
 

 
 

 
 

 
 
 

 

 
 
 
 
 

 
that minimizes toggle output would be effective to disminish datapth power consumption. 

In another application, a similar idea is utilized in [7], where the internal activity is 

reduced by minimizing it at the circuit inputs. 

 
3.5 Correlation between Occupation, Bandwidth and Power Consumption: In spite 

of architectural trade-offs, from an implementational point of view, occupation, 

bandwidth and power consumption can be improved simultaneously. In Fig.7 is plotted 

power consumption @ 5 MHz versus minimun clock period of a set =15 multipliers 

implemented on a XC3090PC84-100 using the "aprloop" facility. Although there are 

some exceptions, the faster circuit runs, the smaller is the power consumption for a given 

frequency. 
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Fig.7: Aprloop results from a power consumption perspective. 

 

 

5  Conclusions 
 

The effect of pipelining as a low-power design technique on FPGAs has been quantified; 

a model for synchronization power has been proposed; and a general methodology to 

characterize others applications or FPGAs has been presented. The results show that 

pipelining can produce a reduction of power consumption by about 25% - 40 %, and 

nearly 15% - 45 % can be achieved simply by improving partitioning. It can be stated as 

a rule of thumb, that circuits than run faster, use less CLBs and dissipate less power. The 

common origin of these improvements is the reduction of the interconnection network 

influence. 

 
From a research or educational point of view, it has been demonstrated that RAM-based 

FPGAs exhibit important advantages over other technologies in terms of power analysis; 

their layout editors combined with the changeable structure of logic blocks allow circuit 

modifications like: inserting/deleting registers without altering the routing; modifying the 



 
 
 
 
 

 
routing without affecting the logic or placement; isolating any block from the system 

clock; confining critical parts to LUTs; using positive or negative edge registers; 

disconnecting the outputs pads, etc. Additionally, the fast design cycle and 

reprogramability of this technology allows prototypes to be builded and measured without 

significant cost. However, the FPGA net information based on delays rather than node 

capacitances make modelling of the consumption difficult. 

 

 
Acknowledges 

 
This work has been supported by the CICYT of Spain under contract TIC92-0083. The 

authors wish to thank Seamus McQuaid for his constructive comments. 

 

 
References 

 
1. R. Keyes, "Miniaturization of electronics and its limits", IBM J. of Res. Develop. Vol.32, nº1. January 

1988. 

2. Xilinx, Inc., Technical Conference and Seminar Series, 1995. 

3. Z. Lemnios y K. Gabriel, "Low-Power Electronic", IEEE Design & Test of Computers, pp. 8-13, 

winter 1994. 

4. A. Chandrakasan, S. Sheng y R. Brodersen, "Low-Power CMOS Digital Design", IEEE Journal of 

Solid-State Circuits, Vol.27, Nº4, pp.473-484. April 1992 

5 D. Wong, "Techniques for Designing High-Performance Digital Circuits Using Wave Pipelining", 

Technical report No. CLS-TR-92-508. Stanford University, february 1992. 

6. E. Boemo, S. López, G. González and J. Meneses, "On the usefulness of pipelining and wave 

pipelining as low-power design technique", Proc. 1995 PATMOS Conf. (in press). 

7. C. Su, C. Tsui y A. Despain, "Low Power Architecture Design and Compilation Techniques for 

High-Performance Processors", Proc. Sprint COMPCON 94, pp.489-498. IEEE Press, 1994. 

8. R. Hossain, L. Wronski y A. Albicki, "Low Power Desing Using Double Edge Triggered Flip- 

Flops", IEEE Trans. on VLSI Systems, Vol.2, Nº2, pp.261-265. June 1994. 

9. H.H. Guild, "Fully Iterative Fast Array for Binary Multiplication and Addition", Electronic Letters, 

pp.263, Vol.5, Nº12, June 1969. 

10. C. Hauck, C. Bamji and J. Allen, "The Systematic Exploration of Pipelined Array Multiplier 

Performance", Proceeding ICASSP 85, pp.1461-1464. New York: IEEE Press, 1985. 

11. M. Hatamian and G.Cash. "A 70-MHz 8-bit x 8 bit Parallel Pipelined Multiplier in 2.5-um CMOS". 

IEEE Journal of Solid-State Circuits, August 1986. 

 
 
 
 
 

This work was published in Lecture Notes in Computer Science, No.975, pp.149-157. 

Berlin: Springer-Verlag 1995. 


