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Factor analysis of Internet traffic destinations from similar

source networks
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Abstract

Purpose – This study aims to assess whether similar user populations in the Internet

produce similar geographical traffic destination patterns on a per-country basis.

Design/methodology/approach – We have collected a country-wide NetFlow trace,

which encompasses the whole Spanish academic network, which comprises more than 350

institutions and one million users, during four months. Such trace comprises several similar

campus networks in terms of population size and structure. To compare their behaviors,

we propose a mixture model, which is primarily based on the Zipf-Mandelbrot power law to

capture the heavy-tailed nature of the per-country traffic distribution. Then, factor analysis

is performed to understand the relation between the response variable, number of bytes or

packets per day, with dependent variables such as the source IP network, traffic direction, and

country.

Findings – Surprisingly, the results show that the geographical distribution is strongly

dependent on the source IP network. Furthermore, even though there are thousands of users in

a typical campus network, it turns out that the aggregation level which is required to observe a

stable geographical pattern is even larger. Consequently, our results show a slow convergence

rate to the domain of attraction of the model, specifically, we have found that at least 35 days

worth of data are necessary to reach stability of the model’s estimated parameters.

Practical implications – Based on these findings, conclusions drawn for one network

cannot be directly extrapolated to different ones. Therefore, ISPs’ traffic measurement cam-

paigns should include an extensive set of networks to cope with the space diversity, and also

encompass a significant period of time due to the large transient time.

Originality/value – Current state of the art includes some analysis of geographical pat-

terns, but not comparisons between networks with similar populations. Such comparison can

be useful for the design of Content Distribution Networks and the cost-optimization of peering

agreements.

Keywords Factor analysis, Geographical characterization, Heavy-hitters, Internet remote

host location, Internet research, Zipf-Mandelbrot

Paper type Research paper

1 Introduction

The geographical characteristics of Internet traffic have a major impact on a wide range of appli-
cations, such as traffic engineering (Wasem et al., 1995), distributed network monitoring (Hofstede
and Fioreze, 2009; Puzis et al., 2008; Bass, 2000), peering agreements with other ISPs (Lippert and
Spagnolo, 2008; Laffont et al., 2001), or the design of Content Distribution Networks (CDN) (Er-
man et al., 2009; Qureshi et al., 2009). Consequently, knowledge of geographical traffic patterns has
proven to be useful to perform routing and capacity planning in the Internet, even though routing
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is mostly driven by economic and political decisions (Weis, 2010; Schwartz, 2010). However, once a
routing and capacity planning decision is made, to which extent can such decisions be extrapolated
to other scenarios? Moreover, regardless of the reasons that motivated a certain routing scheme
in a network, is it possible to assure that adding new users, when the aggregation level is already
very large, will not alter significantly the traffic destination distribution? In addition, an ISP may
wish to know more about the geographical traffic pattern of its customers. To do so, a trace driven
analysis must be performed. How long, in days worth of traffic, should it last?

It is also worth noting that two of the top questions in the CAIDA’s Day in the Life of the
Internet project (CAIDA, 2009) were precisely: “What are the traffic patterns and connectivity in
different geographic regions?” And “for ISPs appearing in different geographic regions around the
world, do peering relationships change depending on the location?”

In this paper, we address the above questions by studying whether similar user populations
produce the same geographical traffic pattern on a per-country basis. To do so, we have per-
formed a spatial and temporal diversity analysis of the geographical traffic pattern of destinations
from different source IP networks, which share similar characteristics (population size, access link
capacity, etc.). With respect to previous works, we provide a different approach by compar-
ing the geographical traffic pattern of similar user populations. More specifically, we perform a
country-wide measurement campaign that comprises the whole Spanish academic network. Then,
we analyze the geographical traffic pattern per IP campus network and focus on whether similar
campus networks provide the same per-country geographical traffic pattern or not.

Our findings can be used in any capacity planning or routing problem for which knowledge of
the destination pattern is important. For example, let us assume that an ISP starts business with a
population base which is similar to an existing population. Then, is the traffic destination pattern
different, even though the customer population looks similar? Note that if the destination pattern
differs so does the routing strategy (Subramanian et al., 2002) and possible peering agreements
from the ISP (Norton, 2001a,b).

Furthermore, our study has direct application to the efficient design of content distribution
mechanisms. The authors in (Erman et al., 2009) point out that a fundamental consideration for
the performance of such mechanisms is the distance the data travels to reach the end user. From
the user’s point of view, increased travel distances affect the load time of any resource, such as
web pages and file downloads, reducing throughput. In addition, it exerts a strong impact on
the Quality of Experience (QoE) of multimedia applications, such as real-time video streaming
and on-line gaming. From ISPs’ viewpoint, the network miles data travel reflect the direct cost
of transmitting data over their backbones. In this light, shorter distances entail lower costs, and
conversely, larger distances imply an increase in the expenses. Consequently, knowledge of the
geographical destinations is a key metric to dimension CDN or proxies. An ISP can decide what
content to cache or where to deploy a content server taking into account, on the one hand, the
popularity of the destinations, and on the other hand, the cost of delivering in “air miles”, as defined
in (Erman et al., 2009). We note that not only the geographical characterization is important when
performing this task, but also the comparison between similar user populations. Such comparison
is useful to assess to what extent the results can be extrapolated to other scenarios. Namely, our
results serve to evaluate whether the same content distribution policy can be applied to similar
populations, both in size and structure.

The rest of the paper is organized as follows: next sections presents a summary of our research
objectives and a review of the related work. Then, Section 4 details the measurement set. Section 5
describes the methodology applied in Section 6, which is devoted to the results, and Section 7
comprises the discussion. Finally, Section 8 concludes the paper with a summary of the main
findings and the future research directions.
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2 Research Objectives and Research Design

The main research objective of this study is to perform an analysis of the space and time diver-
sity (Garćıa-Dorado et al., 2008) of the geographical traffic patterns. To this end, we have modeled
the geographical distribution of Internet traffic on a per-country basis, with connections both orig-
inated in or destined to a university in Spain. Specifically, we obtained that such distribution can
be effectively modeled by means of a power law model, namely the Zipf-Mandelbrot (ZM) distri-
bution. For each of the universities, we estimate the parameters of the model, and evaluate its
accuracy through χ2 goodness-of-fit tests. In addition to validating the model, we have estimated
the amount of measurement time which is required to reach stability in the model parameters. This
stability provides hints about the trace length which is required to obtain meaningful measurement
results, i.e., avoiding the characterization of a particular behavior of the network in an arbitrary
time frame. Our results show that at least 35 days worth of data are necessary to reach stabil-
ity of the estimated parameters. Consequently, shorter measurements campaigns may result in
misleading conclusions. Finally, we have analyzed the space diversity issue, i.e., whether similar
source IP networks produce similar geographical traffic patterns. Namely, we would like to know to
which extent there are invariants (Floyd and Paxson, 2001) in geographical traffic patterns, when
the aggregation level is large. Hence, we could predict a routing behavior in a new population
and update a network accordingly when new users are added. We performed a factor analysis
to further explore this question. Specifically, we have adopted ANOVA (ANalysis Of VAriance)
methodology to explain how the direction (incoming or outgoing), country and source IP network
affect the geographical distribution of traffic. The results showed that the traffic distribution per
country heavily depends on the source IP network, despite of the large number of users.

Our study is limited by the fact that we are considering academic users, who are different from
residential users. However, we do not only pursue the characterization of the geographical traffic
pattern, but to which extent it is homogeneous if the user populations are alike. The methodologies
presented in this paper can also be applied to the case of residential networks, and provide valuable
insight for a residential network operator.

3 Related Work

Despite of the importance of factor analysis of traffic destinations, as shown in the previous sections,
it turns out that the state of the art does not feature any similar study. We believe that such lack of
research effort is due to the difficulties in capturing contemporary traffic from many geographically
disperse source IP networks. For instance, more than ten years ago, the authors in (Arlitt and
Williamson, 1997) presented a detailed workload characterization study of Internet web servers,
on attempts to find invariants (Floyd and Paxson, 2001) in the Internet behavior. One of the
analyzed characteristics was the geographical distribution of document requests to several web
servers. However, they only considered two possible options, whether the requests were local or
remote to the web-server network, finding that most part of the requests were remote. In our case,
we discriminate the per-country traffic distribution, and do not restrict the analysis to the web
service only.

Similarly in (Feng et al., 2005), the authors analyzed the traffic received by a certain online-game
server. Among other characteristics, the players’ location is included in the study. Their results
indicate a clear geographical dispersion with only 30% of the clients placed close to the online-game
server. Again, the authors focus on the online-game service exclusively, i.e., the remaining of the
traffic is not considered, and there is no comparison on a per-source IP network basis.

The authors in (Zink et al., 2009) compared the global popularity of YouTube videos obtained
from the YouTube web portal and the video popularity of a campus network. Essentially, the
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Figure 1: Measurement system architecture (left) and RedIRIS network topology (right)

authors analyzed if results from the entire Internet could be useful to make YouTube video caching
decisions in a single campus. Given that they did not find significant correlation between both
measurements, the answer was negative. Note that the users’ profiles deeply varies according to
life habits, different attitude towards technology, and other intangible cultural phenomena making
very difficult to find any homogeneity by comparing Internet users. In this light, this paper goes
one step further and aims to compare not a university and the Internet but an extensive set of
similar IP subnetworks. In addition, we are not limited to any application and we have gathered
traffic measurements for several months.

4 Measurement Set Description

The measurements available for this study have been kindly donated by RedIRIS (the Spanish
National Research and Education Network, NREN) (RedIRIS, 2011) for research purposes1. The
Spanish NREN comprises more than 350 institutions, mainly universities and research centers.
It is connected to the rest of the Internet through commercial Internet exchange points (Telia,
Level3, Cogent, etc.) and with the European Research and Education Network, GEANT. RedIRIS
comprises 18 Points of Presence (PoP) across the country. Figure 1 shows the measurement system
architecture and the RedIRIS network topology.

Since April 2007 to the present, RedIRIS is providing us with Netflow (Pras et al., 2009) records
from each PoP. Essentially, Netflow provides summary records of IP flows traversing a PoP, which
typically include the values of IP addresses and port numbers (source and destination), bytes
transferred, flow start and finish times, and protocol. RedIRIS’ Netflow records are being stored
and processed in a central repository, located at Universidad Autónoma de Madrid premises. In the
processing subsystem, these records are upgraded with geolocation information, i.e., the country to
which each IP address belongs. The geolocation methodology will be described in the next section.

To make this information more manageable, we have computed daily aggregates of the num-

1The data is stored in isolated servers and never treated at the individual flow level, in full compliance with the
Spanish regulation concerning privacy of electronic communications
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Table 1: Measurement set summary
Field Description

Source University network/Country
Destination Country/University network
Direction Outgoing/Incoming

Total number of bytes
Bytes transferred from the source

to the destination that day
Total number of packets

Packets transferred from the source
to the destination that day

Percentage Percentage of the bytes
of transferred from the source

bytes to the destination that day
Percentage Percentage of packets

of transferred from the source
packets to the destination that day

ber of bytes and packets (and their corresponding percentages over the total of the day), in
{university,country,direction} triples. Namely, for each day, we obtain the number of bytes and
packets, and their corresponding percentages, per source IP network to each country, i.e., for the
outgoing direction (from campus to the rest of the Internet). We also obtain the same information
for traffic sourced in each country and destined to each campus network, i.e., for the incoming
direction (from the rest of the Internet to campus). In what follows, we use the term “measured
items” to refer generically to bytes or packets. The measurement set entries are presented in
Table 1.

Following the methodology presented in (Garćıa-Dorado et al., 2008), we have carefully selected
12 universities out of the total set, for which the intrinsic network features, such as population
size, bandwidth capacity, ratio students-staff, filtering policies (basically P2P applications), NAT
capabilities and local cache/CDN mechanisms are very much alike. Table 2 provides some useful
information about the selected universities, which are renamed to U1, U2, . . ., U12 due to privacy
concerns. This set of 12 universities is the largest set such that all universities share the mentioned
features, specifically we remark that the use of local cache/CDN mechanisms is negligible and P2P
applications are not banned.

In addition, it is worth noting that neither Network Address Translation (NAT) capabilities
nor proxies have an influence on our measurements. NAT groups the traffic of several different
hosts in a single public IP address. Nonetheless, this has no influence in the geographical location
of hosts, neither remote nor local. Clearly, local proxies inside the campus network do not have
any influence in the results. They are accounted for as local hosts, that concentrate traffic, in the
incoming traffic measurements. However, remote proxies will be accounted for as end-hosts instead
of the real end-hosts. Nevertheless, from an ISP standpoint, the traffic destination is the remote
proxy not the real end-host.

We note that the sampling rate for Netflow records is the same throughout the measured routers,
namely 1/100. We believe that the sampling error affects all measured campuses the same way
and has no influence in our obtained percentages. Anyway, such sampling effect can be considered
negligible for our analysis as shown in (Mai et al., 2006). On the other hand, the measured
routers are configured differently with regard to the definition of flow. Namely, the maximum flow
duration and inter-packet time are set to different values. Consequently, the per-flow analysis may
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Table 2: User-base population size and networks’ bandwidth capacity

University Population
Ratio Capacity

students/staff access

U1 38,000 8 1 Gb/s
U1 50,000 11.2 1 Gb/s
U3 38,000 11.1 1 Gb/s
U4 46,000 8.8 1 Gb/s
U5 31,500 10.3 1 Gb/s
U6 40,000 9.6 1 Gb/s
U7 33,500 11.0 1 Gb/s
U8 38,500 8.6 1 Gb/s
U9 31,000 10.8 1 Gb/s
U10 31,000 8.9 1 Gb/s
U11 36,000 12.2 1 Gb/s
U12 30,000 11.7 1 Gb/s

be confusing and it is not included in this work.
Finally, we have eliminated weekends and holidays from the traffic sample. The behavior

of academic networks during weekends is significantly different from weekdays. Weekends have
a nearly flat underutilized daily traffic pattern, having minor impact for routing and capacity
planning. However, it is worth remarking that we obtained equivalent conclusions when including
weekends and holidays in the sample. This is consequence of the negligible volume of traffic during
the weekends compared to the weekdays.

5 Methodologies

This section provides a brief description of the geolocation and statistical methodologies used in
this study.

5.1 IP Geolocation Methodology

There are several ways to find the physical location of an IP address. The most straightforward
approach is to use a name resolver and make a DNS reverse query, whereby the address location
is obtained by parsing the retrieved name. A more accurate option is the database approach.
In this study, we have used the free version of the GeoIP Country database of MaxMind, i.e.,
GeoLite Country, which has an accuracy of 99.5% as reported by the company (MaxMind, 2011)
and outperforms other approaches (Poese et al., 2011). Such database has entries for the country
code, country name and continent data. The shortcomings of this approach have been studied
and reported (Gueye et al., 2007; Siwpersad et al., 2008), but anyway they seem adequate for our
purposes, i.e., to perform grouping of destinations per country. Recently, there have been attempts
to increase such accuracy (cf. (Padmanabhan and Subramanian, 2001; Gueye et al., 2006)). We
have discarded these methods because the database approach is simpler and we do not need higher
accuracy than country level. For a better understanding of geolocation procedures, the reader is
referred to (Crovella and Krishnamurthy, 2006, Section 5.3.6) and references therein.
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5.2 Statistical Methodologies

In this section, we introduce the statistical techniques applied in the paper. First, we present
goodness-of-fit techniques that allow us to verify the traffic destinations geographical distribution.
Second, we give a brief introduction to the ANOVA methodology, which allows us to measure the
impact that factors such as the source IP network, country and direction have on the response
variable, in this case, the measured number of bytes and packets.

5.2.1 Goodness-of-fit Techniques

To find a suitable model for the traffic destinations, we perform visual inspection first (Section 6.1).
This visualization can only give us some insight on the shape of the distribution, and this is
not sufficient for hypothesis testing. To this end, we adopt a goodness-of-fit technique over a
hypothesized distribution. In our case, the hypothesized distribution is a mixture with Zipf-
Mandelbrot distribution (Kvam and Vidakovic, 2007; Rayner and Best, 1989) and the goodness-
of-fit test is the popular χ2 test (D’Agostino and Stephens, 1986).

5.2.2 Factor Analysis

Factor analysis is a widely used statistical methodology whereby the observed variance of a given
response or dependent variable is described in terms of explanatory factors. Such methodology
has been typically applied in the social science area, but recently it has gained interest among the
Internet community (Mart́ınez-Torres et al., 2011). Specifically, in this work we use ANOVA. It
provides a way to determine if such factors have any importance in explaining the variability of a
response variable, and to which extent. ANOVA performs a contrast using the ratio between the
adjusted sum of squares of samples that belong to each factor level, intra-level samples, and the
total, inter-level samples. Such ratio is shown to follow a Snedecor’s F distribution under the null
hypothesis, provided that the samples are independent, fairly Gaussian, and exhibit homoscedas-
ticity (i.e., share the same intra-level variance). However, the results of ANOVA are generally
accepted provided that the number of elements in each group are similar (balanced ANOVA), and
there is a non-excessive deviation from the homoscedasticity assumption (Glass et al., 1972).

The null hypothesis supports the homogeneity of means within factors. Basically, it contrasts,
according to a given pre-defined significance level α (typically α = 0.05), whether or not the
intra-level variance values can be explained due to the randomness of measurements (generally,
experimental errors) and not to differences in the population when grouped by categories (or levels).
If the null hypothesis cannot be rejected, then the factor used to build the groups is statistically
non-significant. Otherwise, the factor explains enough variance and it is considered as significant.

According to this, the simplest ANOVA univariate model for a response variable y with only
one significant factor α is given by:

yiu = μ+ αi + εiu, (1)

where yiu represents the uth observation on the ith level (i = 1, 2, . . . , I levels), and μ represents
the overall mean response (or intercept). On the other hand, αi refers to the effect due to the ith

level of factor α and εiu is the deviation, random or experimental error, in the uth sample on the
ith level. We also note that

∑I
i=1

αi = 0.
The resulting model in case of two significant factors is:

yiju = μ+ αi + βj + (αβ)ij + εiju, (2)

and so forth in case of more than two factors. In this latter case, αi and βj represent the effect due
to the ith and jth levels of factors α and β respectively. Similarly, (αβ)ij represents the interactions
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between ith level of factor α and jth level of factor β. Finally, εiju represents the deviation in uth

sample to the overall mean of the samples within ith level of factor α and jth level of factor β.
Again, note that

∑I
i=1

αi = 0 and
∑J

j=1
βj = 0 being J the total number of levels of factor β. The

reader is referred to (Dunn and Clark, 1974) for further details on the ANOVA methodology.

6 Results

Once the measurement set and methodologies have been shown, we study how to characterize the
end-hosts locations. We will leverage on this characterization to compare the traffic destinations
from similar campus networks.

6.1 Visual Inspection

Following the common practice in data analysis, we first provide a visual inspection of the main
descriptive statistics. We order the destination countries by descending value of the measured
item. Then, replacing the name of the country by its rank in the ordered list, and plotting the
corresponding percentage of the measured item, we observed a power law model (for example, see
Figure 2(a) for campus U1). This observation is confirmed by the log-log plots of the same data
(shown in Figure 2(b)) where the values approximate to a straight line. However, the first value in
the rank seems to deviate from such a straight line. This first ranked country is Spain for almost
all campus networks under study, as expected. If we remove Spain from the former figures, the
data shows a better fit to a power law distribution (Figures 2(c) and 2(d)). Thus, we provide
a mixture model for the whole dataset, we use a Dirac’s δ function to represent the first ranked
country and a power law model to fit the rest of the data (more details will be given in the next
section).

Concerning population aggregates, Figure 3 shows the base 10 logarithm of the total number
of bytes destined to/sourced from the top 15 contributing countries. This number of bytes is
computed for the aggregate of U1+ . . .+U12 in both directions, for a 3-month measurement period
(between December of 2008 and March of 2009), from which weekends and holidays have been
removed.

Regarding percentages, the majority of the bytes, around 40%, are sent and received within
Spain. The United States (USA) comes in second place with 20% of the sent and received bytes,
which is also expected because many of the most popular global brands are located in this coun-
try (Gill et al., 2008). In the third place, we find some of the most influential countries of the
European Union such as United Kingdom, Germany, France, to name a few. They account for a
range between 2.5 and 6% of the total number of bytes per country. In fourth place, we find Latin
American countries such as Mexico, Argentina, Chile, etc., accounting for a range between 0.5 and
1.5% of the total share. These are Spanish-speaking countries and redirections to web pages in
Latin America are usual. Also, there are many researchers from such countries visiting Spanish
universities. Finally, we find that there is incoming and outgoing traffic from nearly all countries
in the world, although their percentages of the total may be negligible.

In order to further inspect the data set and present such countries, we mapped each country
with gray intensities according to the value of base 10 logarithm of the total number of bytes
(Figure 4). To draw the maps, we used the Google’s Visualization API that can be used directly
as a gadget from Google docs.
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Figure 2: Visualization of the top 50 ranked countries for a day worth of measurements in the
outgoing direction of U1: (a) Percentage of bytes vs. rank. (b) log10 of the percentage of bytes vs.
log

10
of the rank. (c) Percentage of bytes vs. rank without the first ranked country. (d) log

10
of

the percentage of bytes vs. log10 of the rank without the first ranked country

6.2 Statistical Model

We propose a mixture model using a Dirac’s δ function to model the top ranked country and a
power law distribution to model the remaining countries. The most popular power law distribution
with discrete support is Zipf’s law, whereby the probability mass function of the element whose
rank is k, zk, is proportional to an inverse power a of k, i.e.,

zk =
q

ka
, (3)

where a > 1 and q is a normalization positive constant (Johnson et al., 2005). Although this
distribution has been widely used in Internet studies (Adamic and Huberman , 2002; Feldmann
et al., 2001), we have chosen the Zipf-Maldelbrot (ZM) distribution, which is a generalization
of the Zipf’s law. The ZM distribution has three parameters instead of two, and shows better
performance in terms of goodness-of-fit. The ZM probability mass function pk is given by

pk =
c

(k + b)a
, (4)

where a > 0, b > −1 and c is a normalization positive constant which is not necessarily equal to q.
Consequently, our proposed mixture model has the probability mass function P (Rank = k) given
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by:

P (Rank = k) =

{
p0 if Rank = 1,

c · (k − 1 + b)−a if Rank �= 1.
(5)

The estimate for p0 is the percentage of traffic that is sent to the first ranked country, and c is
set to make

∑N
k=2

c · (k− 1+ b)−a to add up to 1− p0, where N is the total number of countries in
the model (we remove countries in the tail if their share is negligible). The Maximum Likelihood
Estimation (MLE) procedure for the ZM distribution finds the parameters a and b that maximize
the likelihood function for a random sample X of size n and it is given by

l(X ; a, b) =
n!

n1!n2! . . . nN

N∏
k=1

( c

(k + b)a

)nk

, (6)

where nk is the number of instances of the element in the kth order. We note that in this procedure
we have already removed the top ranked country, so the element k = 1 refers to the country ranked
in second place. The numerical optimization of this function is a very challenging task, and several
procedures have been studied to compute the multinomial coefficients involved in the likelihood
function l(X ; a, b) in a precise and fast way. One option to circumvent the computation of the
multinomial coefficients is presented in (Izsak, 2006), whereby coefficients are obtained through
the probability mass function of a Binomial distribution:

l(X ; a, b) =

N−1∏
i=1

B
pa,b,j/p

j

a,b

nj (nj), (7)

being

Bt
s(r) =

(
s

r

)
tr(1− t)s−r . (8)

In (Izsak, 2006) the calculation procedure for pa,b,j and p
j
a,b is described, and this method

can be easily implemented in a mathematical software package like Matlab, where the coefficients
of (8) are optimally computed. However, this approach implies the rounding of the values of X ,
because the binomial coefficients have integer support. In addition, due to the limitations of the
optimization functions in Matlab, n should be less than 3000 (Izsak, 2006). This is easy to achieve
just by scaling the values of X (i.e., measuring X in tenths of megabytes instead of measuring
them in bytes).

After obtaining the MLE parameters, we applied the χ2 test to measure to which extent our
model fits the data. As the ZM distribution is a discrete distribution, the buckets in the χ2 test
are defined by such discrete support. Even though it is recommended to have all buckets filled up
with the same number of observations, this is unfeasible with our dataset, due to its power-law
nature. However, we merged buckets with small number of samples in the tail of the distribution
on attempts to have all the buckets with at least 5 samples on them. Finally, we would like to
remark that the δ part of the model does not need to be accounted in the χ2 goodness-of-fit test,
because the expected value by the model and the observed one are the same.

We pursue a twofold objective in our analysis. On the one hand, we would like to assess the
validity of the mixture distribution to model the data. Furthermore, we wish to find the smallest
period of time such that the parameters of the model remain stable. It is worth noting that this
stability check also provides hints about the trace length which is required to obtain meaningful
measurement results.
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Table 3: Results of the goodness of fit tests

University Direction Accuracy(%)
Mean
p-value

U1

Outgoing 100 0.9849
Incoming 55 –

U2

Outgoing 100 0.9794
Incoming 45 –

U3

Outgoing 0 –
Incoming 100 0.8085

U4

Outgoing 100 0.9888
Incoming 78 –

U5

Outgoing 77 –
Incoming 99 –

U6

Outgoing 100 0.6307
Incoming 26 –

U7

Outgoing 100 0.9120
Incoming 100 0.8504

U8

Outgoing 100 0.8569
Incoming 12 –

U9

Outgoing 100 0.8411
Incoming 24 –

U10

Outgoing 45 –
Incoming 100 0.5213

U11

Outgoing 100 0.9698
Incoming 78 –

U12

Outgoing 100 0.9976
Incoming 100 0.2844

6.3 Goodness-of-fit Results

Table 3 shows the results of the χ2 test for the number of bytes of the twelve campus networks
for a period of 90 consecutive days between December of 2008 and March of 2009, from which
weekends and holidays have been removed. Similar results were obtained with the other measured
item and are not presented here for the sake of brevity.

The first column shows the (anonymized) university name as described in Section 4. The second
column shows the direction of the traffic relative to the campus network. The accuracy in the third
column is defined as the percentage of days in the sample for which the χ2 test null hypothesis
of goodness-of-fit cannot be rejected at the significance level α = 0.05. Finally, the last column
shows the average p-value from all the performed χ2 tests. We show this average only for those
pairs university-direction where the accuracy was 100%. It gives an estimate on how good the
goodness-of-fit was in these cases, the larger the better. As can be seen in the table, except for a
small number of university-direction pairs, the null hypothesis of goodness of fit cannot be rejected
for 75% of the days of the measurement period. We think it is a reasonable value to support our
assumptions and to validate a common model for the set of networks under study. Actually, it is not
surprising to find model fitting discrepancies in some cases because goodness-of-fit tests are usually
excessively demanding with real traffic measurements (van de Meent et al., 2006). Note that such
discrepancies may arise from events such as network misuse, power cuts, temporal malfunctioning,
etc., which differ from the typical network behavior, hence making the tests fail.
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Remarkably, in most cases the ZM distribution fits the measurements better in the outgoing
direction than in the incoming direction. In the incoming direction, the top ranked country is not
as predominant as in the outgoing direction. This can be checked with the estimates of p0 (see
Table 4), and it implies that the distribution is more flat, and more days are needed to show a
good fit. We hypothesize that this can be motivated by the asymmetry of the Internet applications
and services, as well as by the higher activity of anomalous traffic in the incoming direction, as
pointed out by (Jhon and Tafvelin, 2007). Note that traffic classification at the application layer
is not possible relying on Netflow data (Moore and Papagiannaki, 2005). Further analysis of this
issue is performed using factor analysis in Section 6.4.

To assess the stability of the estimated parameters, we form a time series of aggregated days
and measure the relative error in the parameters for all the universities. The relative error res(t)
for a time series s(t), t = 1, . . . , N is defined as follows:

res(t) =
s(t+ 1)− s(t)

s(t)
, t = 1, . . . , N − 1. (9)

In our case, t stands for the number of days used in the estimation and s(t) is the estimated
parameter a, b, c, p0 in equation (5), for all the university-direction pairs showed in Table 3 using (9).
Figure 5 shows the evolution of the relative error in time of a, b and p0 parameters (note that c is
function of a, b and p0), for U1 and U8 networks.

As can be seen in Figure 5, parameter p0 is the more stable, since its relative error is nearly
0 for all the estimation procedure. Regarding a and b, it can be seen an oscillation period in the
beginning of the estimation procedure, when there are still few days aggregated. We measured
the length of this transient period (i.e., number of measurement days aggregated until reaching
stability) for each of the university-direction pairs where the χ2 accuracy was above 75%. We
removed those university-direction pairs with lack of fit because it makes no sense to consider
the length of the transient period before stability when there is no goodness-of-fit. We used the
convention that stability of the parameters is reached when there is a period of five consecutive
days where the relative error is smaller than 5% (Garćıa-Dorado et al., 2008). Figure 6 shows a
histogram of such aggregated number of days to reach stability. Note that there are 3 parameters
for each university and direction (i.e., the total number of parameters is 72 = 3·12·2), but the figure
does not include those parameters related with the university-direction pairs ruled out according
to the aforementioned criterion. However, we remark that this does not necessarily imply lack of
stability for those university-direction pairs for which the χ2 accuracy is below 75%. An example
of university-direction pairs with χ2 accuracy below 75% but remarkable parameter stability can
be observed in Figure 5(b) and Figure 5(d).

The accumulation of values in the first bins of the histogram is due to the high stability of the
estimation of parameter p0, whereas the larger values are mainly due to the parameter b. In the
worst case of the networks under study, at least 35 days worth of aggregated data are necessary
to make the parameter estimation stable (e.g., Figure 5(c)). This result is valid for networks of
similar size and user activity as the ones analyzed in this study, and other conclusions may apply at
other aggregation levels. The stabilization of the parameters implies that the parameter estimation
nearly does not change if we add one more day worth of data. According to it, Table 4 shows the
stable parameter values for all the universities under study. It turns out that the parameter values
differ from one university to another, even though, they are very much alike. Consequently, we
find differences between campus networks, which, in principle, are similar in terms of population,
access bandwidth, etc. This is the motivation for the factor analysis presented in the next section,
which takes into account source IP network, direction and destination country.

Finally, Figure 7 shows the base 10 logarithm of the amount of traffic sent or received as
a function of the base 10 logarithm of the rank, together with the fitted curve based on the
estimations of the model for U1 and U8, showing remarkable goodness-of-fit.
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Figure 5: Relative error for a, b and p0 parameters

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

Number of days

N
um

be
r o

f p
ar

am
et

er
s

Figure 6: Histogram of the number of days aggregated to reach stability of all the parameter
estimations
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Table 4: Results of the maximum likelihood parameter estimation

University Direction
Parameter estimate

a b c p0

U1

Outgoing 2.37 8.36 0.62 0.60
Incoming 1.56 0.49 0.42 0.34

U2

Outgoing 2.09 5.28 3.53 0.55
Incoming 1.44 0.22 0.33 0.30

U3

Outgoing 53.48 0.03 2.31 0.54
Incoming 1.86 0.72 0.61 0.45

U4

Outgoing 2.46 6.74 13.82 0.49
Incoming 2.15 1.88 2.27 0.30

U5

Outgoing 1.43 0.74 0.26 0.55
Incoming 2.13 1.14 1.28 0.38

U6

Outgoing 1.25 0.00 0.17 0.47
Incoming 3.05 2.67 15.80 0.29

U7

Outgoing 1.43 2.39 0.50 0.49
Incoming 1.18 −0.21 0.16 0.38

U8

Outgoing 1.74 3.12 0.64 0.70
Incoming 1.70 0.00 0.30 0.42

U9

Outgoing 1.89 4.28 1.42 0.64
Incoming 1.57 0.00 0.28 0.37

U10

Outgoing 1.68 1.62 0.60 0.51
Incoming 1.84 0.70 0.72 0.31

U11

Outgoing 1.48 1.66 0.39 0.54
Incoming 2.58 2.62 5.76 0.41

U12

Outgoing 2.23 6.08 5.06 0.61
Incoming 1.47 0.18 0.33 0.29
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Figure 7: Examples of the goodness-of-fit of the model to the observations
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6.4 Analysis of Variance

In this section, we apply ANOVA to our measurement set. The aim of such analysis is to assess
the impact that the traffic direction (both incoming and outgoing), the source IP network under
study (i.e., one of the selected university campuses) and the country in which the remote host is
located, have in the response variable. In this study, the response variable refers to any of the
measured items introduced in Section 4, specifically their percentages from the total. Note that
we could also perform ANOVA analysis using the absolute value of the measured items instead of
percentages. However, this analysis provides misleading results because small differences between
the campus networks have a large influence in the response variable. For instance, the traffic load
regardless the destinations, in absolute terms, within the set of universities is not identical. To
avoid this overshadowing effect, we choose traffic percentages.

ANOVA allows to assess the impact of a specific country (i.e., knowing exactly which country
it is) instead of using only its rank position as in the previous analysis. This enables to contrast
(i) whether or not the set of countries under analysis accounts for similar popularity, (ii) whether
or not the set of source IP networks under study connects to the same locations. Additionally, we
also contrast (iii) whether or not the ratio incoming/outgoing traffic is similar between countries,
and finally we check (iv) whether or not the networks connect to the same countries with similar
ratio incoming/outgoing traffic.

Consequently, we define three fixed factors and their corresponding interactions (full factorial
ANOVA): Network, that is the IP network under study, Country that represents the country in
which the remote host is placed and Direction, either incoming or outgoing traffic. For instance,
Figure 2 shows the percentages of traffic in bytes (response variable) that U1 (factor Network) ex-
changes with top 50 contributing countries (factor Country) in outgoing direction (factor Direction)
for a day worth of data. Thus, according to (2) we have the following complete model:

yijku = μ+Networki + Countryj +Directionk

+ (Network&Country)ij

+ (Network&Direction)ik

+ (Country&Direction)jk

+ (Network&Country&Direction)ijk

+ εijku, (10)

where y represents any of the measured items and i, j, and k index the network, the country, and
the traffic direction, respectively.

In the previous section, it was shown that at least 35 weekdays worth of data are necessary
to obtain stability in the measurements under study. In this light, the ANOVA sample spans the
month of January and some days of February 2009.

Regarding the number of countries, it makes sense to compare especially the head of the dis-
tribution, i.e., the most popular countries, given that the distribution follows a power law. Conse-
quently, we have limited our study to the set of countries that account for 95% of the total traffic
in terms of number of bytes. Such set is composed of 30 countries. As a result, we have a database
for both directions, involving twelve networks, thirty countries and thirty-five days, that is, 25,200
samples for each measured item.

6.4.1 Assumptions

Regarding the ANOVA assumptions introduced in Section 5.2.2, Figure 8 shows the autocorrelation
function (dots) along with its confidence intervals (dashed lines) applied to the averaged number
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of bytes in both directions with U1 and Spain as factors. It becomes apparent that the samples
are not correlated. It is worth noticing that all levels showed similar results. Figure 9 shows the
normal Q-Q plot for the same set of samples. If the data follows the Gaussian distribution, then it
nearly fits to a straight line. In general, we have not found evidences of significant deviation from
the gaussianity in the measurement set. Conversely, the homoscedasticity hypothesis was rejected
by means of the Levene test. However, a non-significant deviation from the homoscedasticity
assumption (Glass et al., 1972) can be accepted in case of balanced ANOVA with large number of
samples, which is the case of our experimental design.

6.4.2 Effect of Network, Country and Direction in the Traffic

Table 5 shows the results of the ANOVA test with the percentage of bytes per day as the re-
sponse variable. According to the results, the null hypothesis that supports the homogeneity of
means cannot be rejected for the factors Network, Direction and Network&Direction, but it is
rejected for Country, Network&Country, Country&Direction and Network&Country&Direction
at the significance level α = 0.05. Thus, we obtain the simplified model:

yijku = μ+ Countryj

+ (Network&Country)ij

+ (Country&Direction)jk

+ (Network&Country&Direction)ijk

+ εijku, (11)

with i = 1, 2, 3, . . . , I = 12 (number of networks), j = 1, 2, 3, . . . , J = 30 (number of countries),
k = 1, 2 (traffic directions) and u = 1, 2, 3, . . . , U = 35 (number of analyzed days).

Several conclusions can be drawn from these results. The homogeneity of means when taking
into account factorNetwork implies that the traffic generated by the networks, ignoring destination
and direction, has no influence in the measured items. This is a consequence of using traffic
percentages. Similarly, the fact that factors Direction and Network&Direction are not significant
indicates that the traffic percentages are distributed similarly in both directions, regardless of the
network. Intuitively, this means that the shape of the distributions of the percentages of traffic
per country are similar between the source IP networks under analysis. However, the countries are
not the same in each network. This is confirmed by the fact that the Network&Country is clearly
significant. This means that the popularity of the countries depends on the source IP network that
is being measured. More specifically, in the first section, we posed the following question regarding
the deployment of content distribution networks: if CDN nodes are to be placed on two different
campuses, with similar population size and structure, can we adopt the same content distribution
strategy for both of them? ANOVA provides a negative answer. Essentially, ANOVA says that
single-network measurements do not suffice for a meaningful characterization of the distribution
of the remote hosts location, which supports the results presented in Table 4.

The results of the factor Country, which show a strong significance, state that the distribution
of the popularity of the countries is clearly heterogeneous. That is, there are some countries that
sent/received more traffic than others significantly. This ties in with what we expected taking into
account the results of the previous sections and other works (for instance, (Giovannetti et al., 2005;
Gill et al., 2008)).

In addition, the results of the factor Country&Direction shows strong significance, which im-
plies that the relation incoming/outgoing traffic depends on the destination country under analysis.
This is directly related to the peering agreement decision-making problem. Actually, one of the
most typical peering agreements is the ratio-based paid peering (Norton, 2001b), in which peering
is free of charge until traffic asymmetry reaches a certain ratio, commonly 4:1. With the ANOVA
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Figure 8: Autocorrelation function (dots) and 95%-confidence intervals (dashed lines) applied to
the averaged number of bytes in both directions, first outgoing and then incoming, with U1 and
Spain as factors Network and Country
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Figure 9: Q-Q plot diagram of the averaged number of bytes in both directions, outgoing and
incoming, with U1 and Spain as factors Network and Country

results we have shown that such ratio depends heavily on the destination country. In other words,
this means that some countries in the trace behave as “consumers” for Spanish universities, whereas
others show a balanced ratio, and finally others are “providers” of bytes. The explanation is likely
to be found in the application layer. It is well known that the ratio incoming/outgoing traffic is
a good discriminant to differentiate traffic applications (Liu et al., 2007). For instance, the ratio
of HTTP protocol is usually high, i.e., more downloaded traffic that uploaded, whereas P2P ap-
plications has lower ratios. Bearing this in mind, ANOVA is detecting that typically the users of
Spanish universities, for example, connect mostly to other Spanish-speaking countries using P2P
applications, but they mostly access to Germany for Rapidshare (a popular one-click hosting ser-
vice (Antoniades et al., 2009)). These applications present extremely different incoming/outgoing
ratios.

However, the interaction factor of level 3 Network&Country&Direction reveals that the traf-
fic ratio not only depends on the destination country, but also on the source IP network that
generated such traffic. Surprisingly, this implies that it is not possible to label each country as
a byte consumer/balanced/provider for the all set of Spanish universities under study, but each
network behaves in a different fashion with respect to each country. Once more, this is closely
related to ratio-based paid peering, because the ratio of incoming/outgoing traffic depends both
on the country and on the network. Therefore, neither a single-network measurements nor the
ratio incoming/outgoing traffic suffice for a meaningful characterization of the destination country
popularity.
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Table 5: ANOVA table with Network, Country, Direction and their interactions as fixed factors
and average number of bytes as response variable

Dependent variable: Averaged number of bytes
Source Sum of Squares df Mean Square F p-value

Network 25.399 11 2.309 0.532 0.883
Country 1741856.851 29 60064.029 13838.716 0.000
Direction 6.589 1 7.689 1.772 0.183
Network & Country 57404.851 319 179.953 41.461 0.000
Network & Direction 11.974 11 1.089 0.251 0.994
Country & Direction 299321.535 29 10321.432 2378.052 0.000
Network & Country & Direction 17330.482 319 54.328 12.517 0.000
Error 106250.279 24480 4.340
Corrected Total 2226583.313 25199
Ajusted R̄2=0.961

Table 6: ANOVA table with Network, Country, Direction and their interactions as fixed factors
and average number of packets as response variable

Dependent variable: Averaged number of packets
Source Sum of Squares df Mean Square F p-value

Network 24.932 11 2.267 1.000 0.443
Country 1643499.135 29 56672.384 25002.452 0.000
Direction 0.021 1 0.021 0.009 0.922
Network & Country 104760.259 319 328.402 144.883 0.000
Network & Direction 1.355 11 0.123 0.054 1.000
Country & Direction 14029.105 29 483.762 213.424 0.000
Network & Country & Direction 1583.149 319 4.963 2.189 0.000
Error 55488.156 24480 2.267
Corrected Total 1819386.111 25199

Ajusted R̄2=0.969

The same conclusions were obtained with packets as response variable, as shown in Table 6,
and therefore the same simplified ANOVA model is reached.

Finally, Tables 5, and 6 also show the (adjusted) coefficient of determination R̄2. It represents
a measure of the percentage of variation in the response variable that can be explained by the
factors. As R̄2 is close to 1, we can conclude that the factors and their interactions model the
measured items distribution accurately.

7 Discussion

We hypothesize that the heterogeneity in the geographical traffic pattern may be primarily due to
the heavy-hitters, the P2P communities, and the malicious/unwanted traffic:

• Homogeneity in the geographical traffic pattern is expected whenever the networks population
sizes are large enough. In this study, the smallest university under study has more than
30,000 students, which supports this hypothesis. Nonetheless, the Internet community has
pointed out that most of the Internet traffic is generated by a small fraction of network
users (Brownlee and Claffy, 2002; Papagiannaki et al., 2002), often referred to as heavy-
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hitters (Feldmann et al., 2001). A heavy-hitter is typically defined as a user whose use of
network resources exerts a significant impact on the aggregated traffic of the whole network.
Thus, particular traffic patterns of a heavy-hitter user may have impact on the results of the
whole campus network, explaining the different behavior that the analyzed universities have
shown. We have found a number of examples of heavy-hitters in our datasets. For instance,
we detected that a IP address of one of the RedIRIS’ universities sent 122 GBytes to a certain
external IP address located in Germany in only one day. Obviously, this heavy-hitter user’s
behavior had an important impact on the network measurements. Additionally, we note
that this also explains the slow convergence rate to the domain of attraction of our model
distribution with the number of days added to the sample. We had to add more and more
days to diminish the impact of such heavy-hitter users.

• Traffic volumes related to P2P applications account for a sizable fraction of the total traf-
fic (Sandvine, 2009). In addition, the closed P2P communities have emerged in popularity in
recent years (Torres et al., 2009). In some of these communities, popular P2P applications
have been modified to take advantage of peer locality as well as network topology. This
implies that the location of the peers is not longer random, but it depends on the selection
algorithm of the P2P application, which breaks with the assumption of homogeneity in the
dataset. Note that the same applies to on-line games and other location-aware applications.

• There are a number of examples of how malicious traffic can exert considerable influence on
the characterization of the remote host location. For instance, the authors in (Xie et al., 2008)
identified 7721 botnet-based spam campaigns comprising 340,050 distinct IP addresses wide-
spread across the Internet. Similarly, the authors in (Jhon and Tafvelin, 2007; Jin et al., 2007)
showed the importance of the unwanted traffic, basically, worms, port scanning, and denial of
service attacks. Specifically, in (Jhon and Tafvelin, 2007) it is shown that the 16 bit address
ranges of the two universities they analyzed were scanned in their entirety (2×65,534) in a
27-hour trace (20 minutes traces, four times a day, 20 days). This traffic would be computed
as incoming traffic in our results. Additionally, they detected a large fraction of P2P non-
malicious outbound connection attempts to non-existing hosts that resulted unsuccessful.
This is often observed for P2P traffic, where unreliable file-sharing peers are common (Ruffo
and Schifanella, 2007). It becomes apparent that the portion of malicious traffic over the total,
often via collaborating (Puzis et al., 2009) or compromised hosts, can vary from one network
to another according to each institution’s network configuration and ability to protect from
this traffic. This breaks again with the homogeneity of the measure set.

On the other hand, we believe that the careful process of selecting similar Spanish universities
out of the total set of institutions and the sizable number of users of each institution is enough
to assume that other factors like cultural issues or particular “brand loyalties” do not exert a
significant impact on the results.

Finally, we note that abnormal results (non-typical or small countries) on the distribution of the
most popular countries can be leveraged to detect malicious traffic. In this case, network managers
should only take into account stationary results (as we have shown, more than one month worth
of data).

8 Summary, Conclusions and Future Work

In this paper, we have modeled and performed a factor analysis of the Internet end-hosts location,
from connections originated in an extensive set of campus networks for a long period of time. The
analysis has been carried out using NetFlow records from the Spanish academic network.
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First of all, we have visualized the results of the geolocation process. This visual inspection ev-
idences that the country location of remote hosts follows a power law distribution. To confirm this
hypothesis, we aggregated traffic from several universities for a month and repeated the visualiza-
tion process. With the aggregated data, we confirmed the power law shape of the measurements,
but the behavior was not the same per source campus network, even though the aggregation level
was very high. Such observations motivated us to perform two different analysis of the data: a
mixture model fitting of the measurements and a factor analysis to explain the impact of network,
country, and traffic direction in our measured items.

In the modeling of the measurements, we have characterized the traffic volume according to its
destination country, concluding that a small set of countries accounts for the most part of the traffic
(that is properly captured by the Zipf-Mandelbrot distribution). This result was clearly expected as
the location of the servers of the most popular global brands are also skewed distributed around the
world (Gill et al., 2008; Sandvine, 2009). Such findings show how the content distribution networks
and cache mechanisms inside a particular network can take advantage of the evident skewness of
the traffic location. That is, only a small set of destinations must be taken into consideration in
terms of traffic volume. As the distance should be considered of importance for the performance
of such mechanisms (Erman et al., 2009), an ISP can deploy them in such a way that cuts the
distance between the most remote and popular countries.

In addition, we have shown that model parameters a, b and p0 need at least 35 days to be
considered stationary, meaning that measurement campaigns should be long enough to be mean-
ingful. Moreover, the characterization process evidenced that, while sharing the same model, all
the networks have different values for the distribution parameters. In this light, it becomes nec-
essary to collect the data all across the network and not just from selected measurement points.
However, the Zipf-Mandelbrot characterization pays no attention to the countries themselves, but
it only takes into account their position in the rank. This calls for the subsequent factor analysis.

As factor analysis, we have applied the ANOVA univariate methodology to assess the amount
of variance of connection destinations that can be explained in terms of three factors, namely the
traffic direction, the studied IP network and the destination country. The results show that the
factor Country is strongly significant, as well as its interactions with Network and Direction ones.
The former interaction shows that the amount of traffic volume that each network exchanges with
each country is different. That is, the ranking of the most popular countries in terms of traffic
volume differs within the set of networks. Surprisingly, the latter result suggests that the sort of
traffic, probably at application level, that the networks exchange depends both on the country in
which the remote host is located and the network. That is, the ratio incoming/outgoing is not only
different between countries, as the intuition may say, but also given a country the ratio is different
within the set of networks. Thus, the relation network country, i.e., consumer/balanced/producer
varies across the campus networks.

We note that we carefully selected 12 universities out of the total set of RedIRIS’ institutions,
which were objectively similar and with significant population size. However, it has been shown
that there is no homogeneity in the parameters of the model for traffic destinations. Therefore, the
routing policies, CDN designs, and peering agreements that may be good for an ISP may not apply
to another ISP that serves a similar user population. As an example, let us compare university
networks U9, U10, and U12 during the months of January and February 2009. From Table 2 we
note that they are very much alike. However, the destination patterns are far from being similar.
Just to mention some examples, more than 5% (in bytes) of the U9 outgoing traffic is destined
to Mexico, whereas this country represents less than 0.6% in the two other university networks.
Similarly, 12% (in bytes) of the U10 incoming traffic comes from Germany, this amount is four times
smaller in the other universities. Furthermore, about 20% of the bytes that U9 and U10 networks
sent were destined to USA. However USA accounts for nearly 40% of the U12 outgoing traffic.
There are a number of similar examples. Thus, our findings show that serving new populations,
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which in principle look similar, leads to dramatic changes in the connection destinations, and may
call for totally different routing arrangements.

We have attributed this behavior to the heavy-hitter phenomena, i.e., a small set of users that
accounts for the most of the traffic, closed community based P2P systems, and malicious traffic.

From a methodology point of view, we have also shown that the length of the measurement
campaign needed to obtain a significant characterization of the end-host locations can involve a
long period of time. Similarly, from the ANOVA results, we have learned that the granularity of
such characterization should be very narrow, because each network connects to different countries
in a different way, and the conclusions drawn for one network cannot be extrapolated to the other
ones. Therefore, the ISPs’ measurement campaigns should include an extensive set of networks
to cope with the space diversity, and also encompass a significant period of time due to the large
transient time.

Finally, as future work, we plan to perform a analogous study focusing on the remote ISP that
the traffic is destined to. We believe that a study at the ISP-level will be attractive for operators
and network managers, and could also pinpoint research directions to enhance traffic engineering
and peering agreement establishments. We envisage that the remote ISP traffic distribution will
also follow a power-law, but with heavier tail given that the number of ISPs in the world is several
orders of magnitude larger than the number of countries. In addition, we plan to perform an
in-deep analysis to the same data but paying special attention to the country ranking throughout
the campus networks analyzed.
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