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Abstract—The research community has proved the existence
and studied the root causes of Path Inflation on the Internet—
end-to-end paths significantly longer than necessary. However,
it has been typically ignored that the popularity of traffic
destinations and, consequently, of network paths, is clearly
heterogeneous—some destinations are popular while others are
barely accessed. In this paper, we propose a trace-driven method-
ology to measure the Path Inflation accounting for the popularity
of Internet destinations from a given network, thus evaluating the
implications that Path Inflation exerts on real networks under
production. This information is important for network operators
because it allows them to objectively stand out those destinations
whose connection analysis must be prioritized. The results of
applying this methodology to the Spanish academic network show
that the most critical regions to focus on are Spain’s closest
countries, which either are very popular or have large Path
Inflation as a consequence of the use of transatlantic links as
intermediate nodes, or both.
Index Terms—Path Inflation; Traffic Patterns; Network Mea-

surement; Routing Policy; Topology; Traceroute

I. INTRODUCTION
The existence of Path Inflation (PI)—end-to-end routes

that are significantly larger than necessary—on the Internet
network is a well-known fact since almost 15 years ago [1],
[2]. The Internet community has largely studied the existence
of this phenomenon and its root causes [3], [4], motivated
by the impact that this circuitousness exerts on the network
performance. Specifically, the one way delay is the parameter
that is principally affected by inflation of paths, which could
be considerably smaller in case less inflated paths between
end-hosts are used. As a result, the optimal throughput in
TCP connections is reached later as a consequence of the
slow start congestion control strategy [5]. Moreover, the error
rate increases because the more time a packet spends on the
network, the higher the chances are that any problem may
affect it. However, not only the existence and causes of PI
have been analyzed, but also some procedures for reducing it
have been devised [3]. Among these solutions, it outstands
the proposal of including effective mechanisms to achieve
optimal paths directly to BGP, such as appending geographic
coordinates to route advertisements. With this information, a
trade-off between hop-count metrics and geographic distance
could be used in order to improve the latency in the network.
As a consequence, network operators and service providers
pay special attention to the PI in their networks, and take
actions to reduce such inflation as much as possible.

However, the above mentioned studies rely on a narrow
snapshot of the network: they base their analysis on a small
set of predefined network hosts—up to several thousands of
hosts. This limitation directly applies to the representativeness
of the results they provide, given that it is assumed that
each analyzed connection pairs are equally likely. Previous
work [6] shows that this is far to be the case, essentially it
is pointed out that there is a small set of destinations with
large popularity, and a large set of destinations which is barely
accessed. So why ISPs should pay attention to the inflation of
such unpopular routes? As it turns out, these results call for
including network traffic analysis into PI metrics, in order to
obtain representative information regarding what to measure
and how to appropriately weight the obtained measurements.
Our work fill in this gap, leveraging on a network trace
analysis to infer what connections are in fact conducted in
the network under study, and which is their popularity among
the population of customers of the network. Thus, the priority
of an ISP should be those destinations that combine popularity
and high PI.
This information (inflation of paths and their popularity)

is of paramount importance for network operators and service
providers. On one hand, knowledge of the inflated paths allows
the operators and providers to identify the locations that are
poorly connected, whereas knowledge of the popularity of
the traffic destinations serves to focus on the most demanded
destinations by their customers, and both tasks eventually
result in similar traffic engineering tasks: improving current
traffic inter-exchange relationships or establishing new ones.
Consequently, merging PI information and remote locations
popularity knowledge allows for setting priorities to these traf-
fic engineering tasks that the operators and providers should
eventually take action on in a short time span.
In this paper, we provide the methodology for merging

both metrics into a new one that is able to determine which
connections should receive attendance first, and apply this
analysis to the Spanish academic network (RedIRIS) as study
case. The measurement of PI entails the identification of the
intermediate nodes in a network path and the geographical
mapping of IP addresses to measure PI in terms of distance.
The selection of representative nodes is based on a trace
analysis, which should be at least 35 days long in order
to obtain stable destination patterns according to the results
in [6]. Our findings after applying the proposed metric show
that the most critical regions to pay attention to are the closest978-1-4577-1379-8/12/$26.00 c© 2012 IEEE



ones to Spain, which either are very popular or have large PI as
a consequence of the use of transatlantic links as intermediate
nodes, or both. Our results show that a byte from our network
travels more than 8000 extra kilometers on average in the
Internet to reach its destination.
After reviewing the related work in Section II, the rest of

the paper is organized as follows. Section III describes the
network analyzed in this study, while Section IV is devoted to
describe the methodology. Then, Section V presents the results
and a discussion of the main findings. Finally, Section VI
summarizes the achievements and concludes the paper.

II. RELATED WORK

In this work we study the inflation of paths from the Spanish
academic network, estimating the routing distance as the sum
of the geographical distances between each router of a given
path, as reported by means of the tcptraceroute [7] tool.
Consequently, let us divide this section into these two areas,
first Path Inflation and then geolocation.

A. Path Inflation
The Path Inflation phenomenon has received much attention

by the Internet community, since that, almost 15 years ago,
the authors in [1], [2] found that the routes in the Internet are
clearly longer than necessary. Since then, the Internet commu-
nity has tried to characterize the PI, explain the causes of such
phenomenon, and study its correlation with the performance
experienced by users.
The authors in [8] explain that there are both technical

and economic reasons to expect suboptimal Internet routes.
Specifically, in that paper it is found that between 30-80%
of the paths are not optimal. On one hand, wide-area routing
protocols do not incorporate performance measurements into
their decisions. On the other hand, the administrator of a given
AS may refuse to carry traffic of another ISP because of
competitive reasons or simply because the lack of contractual
agreements.
The authors in [9], [10] focus on the signification of such

economic reasons. These papers show that about 20% of
Internet paths are inflated by more than 50% in terms of
number of hops from the source to the destination with regards
to the optimal route path. However, the authors point out that
they are assuming that all the routes between each pair of
studied hosts are equally likely, and this is not true [6].
Similarly, the authors in [3] wonder why Internet paths are

sometimes absurdly long. They analyzed this fact from the
intra- and inter-domain ISP points of view as well from the ISP
peering relationship. They found that the intra-domain routing
is the most significant factor in the Path Inflation phenomenon,
because routers typically use minimum AS-hop count ignoring
other metrics. They concluded that almost 50% of the paths
were longer that the shortest available path because of intra-
domain routing. In addition, they remark that according to
their measurements geography is a good indicator of latency
for most of the studied ISPs. However, the authors notice that
their study is assuming, not in a totally realistic way, that all

nodes are equally important regardless of traffic volumes, and
point out that it would be more interesting to study the fraction
of packets that suffer Path Inflation rather than studying the
fraction of paths.
Padmanabhan and Subramanian in [11] worked further to

extend the characterization of the PI phenomenon. In that
study, the authors measure the PI as the ratio between the
linearized distances, i.e., the sum of distances in kilometers
between each of the nodes of a path, and the linear geographic
distance between the end-hosts. They evaluated the PI from 20
institutions (placed in the U.S., Sweden, Italy, and Hungary)
and two home cable modem networks to an extensive set of
pre-defined destination hosts. Such a set included essentially
web servers, some of them located on U.S. campuses, and
public libraries which were easily geographically placed. They
again found that PI is a common phenomenon in the Internet,
and that it strongly depends on the geographic location of the
end-hosts. This was explained by the fact that the connectivity
of the different parts of the world is far from being homoge-
neous. That is, the paper takes an arbitrary set of end-hosts and
no distinctions on their popularity were performed, however, as
the authors showed, there are significant differences between
the PI from some geographic areas to others—specifically,
they pointed out that PI in the San Francisco bay area was
significant smaller than in other places.
Bearing all these previous works in mind, we note that the

real impact of the PI is not currently well known, that is, it
is proven that PI would be large in an Internet in which all
the destinations were equally popular and all the places were
equally connected. As this is not the case, in this paper we
take a step further and try to fill such a gap, i.e., appropriately
account for PI leveraging on end-host location popularity.

B. Geolocation
There are several ways to find the physical location of IP

addresses, which can be classified as active or passive [12].
The former class includes mechanism based on the delays
between a set of reference nodes—landmarks—and the target
node. Examples of this are [11], [13], [14]. This approach
is based on the linear correlation between the delay in the
networks and the geographical distance between the objective
and the set of landmark nodes. Basically, it is expected that
hosts placed in a similar geographical distance present similar
delays measured typically by means of the ping tool. Such
correlation has been found in some regions of the Internet,
essentially North America and west Europe [13], but the
precision is limited in the rest of the world. As the target of
our work is to span all the possible destinations in the world,
this precision depending on the area represents a significant
caveat.
On the other hand, the passive mechanism to locate hosts is

typically based on i) the identification of some pattern in the
routers’ DNS name—essentially, names and codes of cities or
airports—that allows to infer their location or, at least, their
AS and ii) the use of databases, typically commercial appli-
cations, which directly relate IP addresses and geographical



locations. An example of the use of DNS name patterns is
GeoTrack [11]. GeoTrack estimates the geographical location
of the objective node as that of the last identifiable router in
a given path. Its precision tends to be notable but the number
of routers whose name follow some recognizable policy on
its naming is limited, albeit according to the authors these are
more than 70%; in addition GeoTrack is designed to locate
routers but unlikely it could locate final hosts.
According to the literature a more accurate option is the

database approach, whose implementation is poorly known
because they are typically commercial applications. The per-
formance of this approach has been studied and reported ([15],
[16]), resulting in median error around 60 kilometers. In this
study, we have used this latter approach, specifically the free
version of the GeoIP Country database of MaxMind, i.e.,
GeoLite Country, which has an accuracy of 99.5% accord-
ing to the company [17] and outperforms other equivalent
approaches [16]. Such database has entries for the country
code, country name, and continent data.
Finally, for a better understanding of geolocation proce-

dures, the reader is referred to [18, Section 5.3.6] and ref-
erences therein.

III. DESCRIPTION OF THE NETWORK
This work aims to characterize the PI from the Spanish

academic network RedIRIS, paying special attention to the
connections that are commonly established from it. RedIRIS
network comprises more than 350 institutions, mainly uni-
versities and research centers, and kindly provides us with
flow traffic measurements for research purposes1. Figure 1
graphically describes the network. Our premises are located
under the Point of Presence of Madrid, which is at one hop
distance from the RedIRIS external gateway that connects to
the rest of the Internet through commercial links (TeliaSonera,
Global Crossing, Espanix, etc.) and with the European research
network, GÉANT.

IV. METHODOLOGY
A. Selection of Representative Destinations
Based on the results from [6], at least 35 days of traffic

measurements from a subnetwork should be aggregated to
make stable the traffic distribution of the geographic des-
tinations. Consequently, we have gathered 35 days of flow
measurements from the Point of Presence in Madrid, which
allow us to calculate the number of bytes that are destined to
each foreign country, and the IP addresses that are requested.
The traffic traces used in this analysis partially comprise April-
May 2010. From this dataset, we have ruled out those countries
that received less than 0.005% of the total sent traffic. Overall,
there are more than 31 million different IP addresses receiving
almost 1 PB of traffic after the filtering process.
This is a vast dataset compared to others analyzed in

previous works that were in the order of thousands IP ad-
dresses [4]. The distribution of traffic among the different
1Data are stored and analyzed in full compliance with Spanish regulation

concerning privacy of electronic communications
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Fig. 1. Map of Spain and RedIRIS Points of Presence, showing the logical
connections with the RedIRIS external gateway and UAM premises.

Fig. 2. Received traffic by country in logarithmic scale.

countries that comprise the dataset is depicted in Fig. 2 in
logarithmic scale. A logarithmic scaling is necessary in order
to enhance visibility provided the power-law shape of the
traffic distribution [6]. To draw the maps, we used Google’s
Visualization API2 that can be used directly as a gadget from
Google docs.

B. Intermediate Nodes Identification

To identify the intermediate nodes between our premises
and the target IP addresses in our dataset, we leverage on
traceroute and tcptraceroute tools. Such tools pro-
vide an equivalent approach to identify the intermediate nodes
in a path within two IP addresses, but based on different
network protocols. traceroute sends out either UDP or
ICMP echo request packets, whereas tcptraceroute uses
TCP SYN packets to circumvent the widespread use of fire-
walls. These tools allow us to identify the IP addresses of
the intermediate nodes, which we map to their geographic
coordinates by means of the geolocation method described in
Section II-B.

2http://code.google.com/intl/es-ES/apis/visualization/documentation/
gallery/intensitymap.html



Because our study is trace-driven, our results are limited to
the lack of visibility of some Internet hosts that do not reply
to traceroute or tcptraceroute messages. We have
found that tcptraceroute outperforms traceroute
given the widespread deployment of firewalls. Consequently,
we selected tcptraceroute as the path-analysis tool for
this study, and limit our initial set of target IP addresses to
the subset that answer to tcptraceroute queries. This
set is still very large compared to previous ones used in
the literature, containing more than 5 million different IP
addresses. In order to reduce the impact of path fluctuations
in our analysis, we coordinate the path-analysis tools with
the trace collection, in a way that what we observe from
the tcptraceroute tool are the paths that were used by
the connections in the trace during their lifetime. Further
work will be needed to determine the extent to which our
results generalize to other periods of time and other set of
destinations. In addition, we have ruled out some instances
of our dataset that lead to incongruent data, such as network
paths traversed at higher speed than the speed of light.

C. Path Inflation Metric versus Weighted Path Inflation Metric
Other studies existing in the literature have faced the Path

Inflation analysis leveraging on different metrics, such as
distance, time, or number of hops. In this paper, we focus on a
distance metric, such as the one used in [4]. The authors of [4]
define the PI metric as the ratio between the routing and the
geographical distances, where the routing distance is estimated
as the sum of the geographical distances between each pair
of consecutive intermediate nodes. Defining the unidirectional
path {Xj}

Na,b

j=0
between the IP addresses a (IPa) and b (IPb) as

IPa = X0 → X1 → X2 → · · · → XNa,b
= IPb, where Na,b

equals the number of intermediate nodes plus one, we obtain:

PI(IPa, IPb) =
dr(IPa, IPb)
dg(IPa, IPb)

=

∑Na,b−1

j=0
dg(Xj , Xj+1)

dg(IPa, IPb)
,

(1)
where dg(X,Y ) is the geographical distance between the
locations of IP addresses X and Y , and we have used dr(·, ·)
to denote the routing distance.
Consequently, the larger the circuitousness of the path, the

larger the PI metric, which is interpreted as the number of
times the path is larger than what would be necessary if a
straight route would be possible.
The limitation of this metric is that it does not take into ac-

count the amount of traffic that is destined to each destination
host. To take into account the amount of traffic, we group the
PI metrics by destination country, taking the mean value as a
representative, namely PI . Such mean PI metric by country
is then weighted with the logarithm to base 10 of traffic that
is destined to such country, in order to provide larger weights
to the popular destinations, which we define as WPI:

WPI(countryc) = PI(countryc) log10(Bc), (2)

where Bc is the amount of bytes destined to countryc. This
metric measures the PI taking into account the connection

Fig. 3. Mean PI metric by country, in logarithmic scale

patterns in the network under study. Popular countries PI

is penalized, whereas the impact of PI in those countries
which barely receive traffic is reduced. We have chosen the
logarithmic scale to weight the country average Path Inflation
based on our experience with power law data [6]. The selection
of the number of bytes as the measurement item for the
weighting function, instead of the number of packets or flows,
is because we have found the number of bytes to be more
representative than the other measurable items, such as the
number of packets or flows, since the number of bytes in fact
accounts for the real network usage of the connections.

V. RESULTS
A. Path Inflation Results
In this section, we present the results of measuring the

PI in the set of destinations that are fully characterized by
tcptraceroute. As the PI metric has been deeply analyzed
and characterized in previous works, we present such results
here just as a benchmark for comparison with the results
obtained when the traffic weights are introduced in the metric,
as presented in the next section.
In Fig. 3 we present the mean value of the PI metric when

grouped by country. As can be observed in the figure, the
largest values of PI are found in the countries surrounding
Spain. Although this may be counterintuitive at first glance—
if the distance between two locations is not large, there
should be less alternatives to choose a path within them, and
consequently the circuitousness should be smaller—, this phe-
nomenon is explained by the common usage of transatlantic
routes (via the U.S.), even for connecting pairs of locations
within Europe. As a consequence of the popularity of the
transatlantic routes, American countries suffer low values of
PI when measured from our premises. In addition, we observe
that Far East and Australian countries also have low values of
PI , which is a consequence of the common usage of a direct
link connecting Europe and China.
On the other hand, we present this information summarized

in a Cumulative Distribution Function (CDF) plot in Fig. 4(a),
where we can observe that approximately 80% of the analyzed
countries have paths larger than twice the distance measured
in a straight line. This situation has consequences for instance
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Fig. 4. Empirical Cumulative Distribution Function of the (a): PI and (b):
WPI by country as observed from the central node of RedIRIS.

in the minimum one way delay, which is a key performance
indicator usually related with quality of service/experience in
multimedia services, such as voice conversations.

B. Weighted Path Inflation Results
In this section, we present the results of weighting the

average PI metric by country with the base 10 logarithm of the
number of bytes that are destined to such country, and compare
them with the ones previously presented as benchmark in the
preceding section. Analogously as in Section V-A, we present
a world map with the WPI results in Fig. 5 and the data
summarized in a CDF in Fig. 4(b).
In the world map figure (Fig. 5) we observe many dif-

ferences with regards to Fig. 3. On one hand, we find that
American countries now have negligible values of WPI, which
is a consequence of the low average PI of the U.S. (≈1.5) and
that most of the connections to America go through the U.S.
Consequently and despite the popularity within the users of
our network—consider that most popular web services and
contents are located in the U.S., and our customers share
the same language with most of the population in South
America—, America can be regarded as well connected to
RedIRIS. Similarly, we observe low values of WPI in South
Africa, the Far East and Australia. However, the reasons are
quite different. On one hand, the popularity of South African
countries is scarce within RedIRIS users, whereas it is the
average PI to the Far East and Australian countries what is low
on the other hand. Anyhow, the connections to such countries
should not require attention from RedIRIS network managers.
On the other hand, we observe that there are countries

that have barely experienced variation in the PI and WPI
maps. Those countries are mainly located in Europe and

Fig. 5. WPI metric by country, in logarithmic scale after an axis rescaling
to enhance visibility.

North Africa. Again, this is due to different reasons. On one
hand, Spanish surrounding countries have the largest values
of average PI due to the use of transatlantic links. In this
group we include North African countries as well as Andorra
and Portugal, which do not have great popularity, but the
connections to them are very poor. On the other hand, we
found the remaining European countries, which have a mix of
great popularity and middle-poor connections given the usage
in some cases of the transatlantic links. In both situations,
RedIRIS network managers should pay special attention to the
connections to such countries, and improve them given that,
taken into account the traffic destinations popularity, there is
not a good connection between them and RedIRIS.
Finally, in Fig. 4(b) we observe the CDF of the WPI.

Compared to the CDF of the PI , we observe that both
distributions are much alike. The major differences cannot be
appreciated in the summarizing statistics, because they are in
the form of a reordering of the countries. There were some
countries with large average PI in Fig. 4(a) that now have small
value of WPI, and the same in the opposite way—large WPI
value despite a low average PI given the great popularity of the
country. In any case, we observe a high clustering of countries
in small values of WPI, and a flattening of the distribution for
values of WPI larger than 20, which roughly coincides with
the 90% percentile. We believe this could be treated as a knee
point, and the RedIRIS network manager should inspect the
countries which have WPI values larger than such knee point.

C. Discussion

So far we have motivated that network operators and service
providers not only should pay attention to the PI in their
networks, but weight its relevance with the popularity of their
destinations. Let us now show the impact that this exerts in the
destination priority order of an ISP such as RedIRIS. Table I
shows the comparison of the critical countries when only the
average PI is taken into account, and the critical countries
when this average PI is weighted with the amount of traffic
that is destined to such country.
As can be observed in the table, when only the average

PI is taken into account there appear countries that, although



TABLE I
COMPARISON OF THE CRITICAL COUNTRIES WITH THE AVERAGE PI AND

WPI METRICS.

Rank Average PI WPI

1 Andorra Andorra
2 Portugal Portugal
3 Morocco Morocco
4 Algeria Italy
5 San Marino France
6 Luxembourg Algeria
7 Italy Belgium
8 Liechtenstein United Kingdom
9 France Germany
10 Libyan Arab Jamahiriya Luxembourg
11 Belgium Netherlands
12 Montenegro Denmark
13 United Kingdom Russian Federation
14 Germany Czech Republic
15 Tunisia Poland
16 Malta Switzerland

have large values of PI, are not of interest from the network
operator point of view, such as San Marino, Liechtenstein,
Libyan Arab Jamahiriya or Montenegro, since they do not
reach a 1% of the traffic share. However, when the popularity
of the countries in terms of received bytes is considered, we
can observe that such countries are filtered out. Consequently,
leveraging on destinies popularity is of paramount interest for
network operators before deciding which actions regarding
improving the network connections take first.
Finally, we have observed that the most critical regions

according to the WPI metric are the nearest countries to Spain.
The reasons are mainly the countries’ large popularity and/or
the use of transatlantic links. We believe that similar results
would be obtained if the study is carried in other European
countries, for the same reasons. On the contrary, we believe
that the situation would be fairer if the analysis is performed
from America, since the use of transatlantic links would not be
so representative in the PI metric, accordingly with previous
results [11].

VI. SUMMARY AND CONCLUSIONS
This paper puts on perspective the importance of the PI

in the current Internet. Whereas the previous studies detected
the existence of such phenomenon in the Internet, we have
determined to what extent such inflation is critical, taken into
account the amount of the traffic that is destined to each
location. We have proposed a new methodology to study
the PI, essentially a trade-off between the popularity of the
destination and the PI that suffer the traffic volumes sent
to a given destination. Such methodology permits network
operators and service providers to really identify those paths
that deserve to be improved because they suffer PI and, at the
same time, much traffic is carried through them.
We present the case study of the Spanish academic network,

which has shown that a set of geographically close countries
is not as well connected as desired, yet being very popular.
On the other hand, the PI metric weighted by destination
popularity, WPI, has proven to be useful to filter out unpopular

destinations, which according solely to the PI would have re-
quired special attention to the detriment of popular destinations
which affect a large number of users. These results encourage
the Spanish academic network managers to pay attention to
the international relationships with ISPs located at these areas.
These actions will reduce the amount of extra distance that a
byte travels in average, which is larger than 8000 kilometers
according to our results.
As future work we plan to extend the work to commercial

networks, and also focus on network performance metrics
besides the popularity of the destinations. Furthermore, we
will explore the variance of the avergage PI and the causes of
such variability.
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