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Abstract

This paper describes a new algorithm for segmenting 2D images by taking

into account 3D shape information. The proposed approach consists of two

stages. In the first stage, the 3D surface normals of the objects present in

the scene are estimated through robust photometric stereo. Then, the im-

age is segmented by grouping its pixels according to their estimated normals

through graph-based clustering. One of the advantages of the proposed ap-

proach is that, although the segmentation is based on the 3D shape of the

objects, the photometric stereo stage used to estimate the 3D normals only

requires a set of 2D images. This paper provides an extensive validation

of the proposed approach by comparing it with several image segmentation

algorithms. Particularly, it is compared with both appearance-based image

segmentation algorithms and shape-based ones. Experimental results con-

firm that the latter are more suitable when the objective is to segment the

objects or surfaces present in the scene. Moreover, results show that the

proposed approach yields the best image segmentation in most of the cases.
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segmentation

1. Introduction

Image segmentation is an important stage in computer vision as a pre-

liminary step towards higher level analysis and recognition stages. It aims

at partitioning a given image into a set of non-overlapping homogeneous re-

gions that likely correspond to different objects or geometric structures that

may be perceived in the scene. In most image segmentation algorithms, the

homogeneity criterion that determines the final partition is related to visual

cues such as intensity, texture or color (e.g., [1], [2], [3], [4]). This implies

that the obtained regions are determined by the visual appearance of the

objects present in the scene rather than by their actual 3D shapes. Although

an appearance-based segmentation is useful in many applications, it usually

leads to oversegmentation when working with textured objects. This over-

segmetation can complicate the interpretation of the scene when the goal is

to segment the objects contained in it.

Other image segmentation algorithms are based on the 3D information of

the image points. This information can be encoded in a range image, whose

pixels express the distance between a known reference frame and a visible

point in the scene. Range images are also referred to as depth images, depth

maps, xyz maps, surface profiles and 2.5D images. They are frequently

obtained with laser range finders or structured light scanners. The main

drawback of these sensors is their high cost, weight and size. In addition, the

range image acquisition process is usually highly time consuming.

Another possibility to obtain 3D information is through a stereo camera.
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Unfortunately, the obtained 3D data are very noisy in general. Furthermore,

the 3D information cannot be computed for all the pixels in the 2D image.

On the one hand, there are regions with poor texture in which it is difficult to

find correspondences between both cameras. On the other hand, some points

are only visible from one of the cameras. Hence, the obtained 3D data contain

holes that correspond to points whose 3D coordinates cannot be estimated.

These points constitute missing regions that cannot be segmented.

Although several approaches have been proposed, image segmentation is

not a solved problem yet. One of the main difficulties is the definition of a

good measure of the obtained error. This measure should depend on the final

application. For instance, it could be desirable to obtain either the highest

possible percentage of correctly segmented pixels with under-segmentation

or any amount of correctly segmented pixels with oversegmentation. Exper-

imental comparisons of several range image segmentation algorithms were

presented in [5] and [6]. In a more recent paper, Wirjadi [7] presents a sur-

vey of 3D image segmentation methods. This survey concludes that it is not

possible to have a standard segmentation method that can be expected to

work equally well for all tasks. Wirjadi points out that, given a new image

processing problem, the method that best solves the given task should be

specifically chosen.

This paper presents an extension of the shape-based image segmentation

algorithm previously introduced in [8], which consists of two stages. In a first

stage, both the 3D surface normal and reflectance corresponding to every

image pixel are estimated through a robust photometric stereo technique [9].

Photometric stereo [10] aims at estimating the normals and reflectance of a
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3D surface from several intensity images, each obtained with different lighting

conditions. The light source position for each image is also recovered. The

general assumptions are that the projection is orthographic, the camera and

objects are stationary and the light source is away from the objects. Thus, it

can be assumed that the light illuminates every point of the scene from the

same angle and with the same intensity. The computed surface normals can

be used to reconstruct the surface of an object present in the scene.

Then, in the second stage of the proposed approach, the image pixels are

clustered according to the orientation of their 3D surface normals through

a graph-based segmentation algorithm proposed in [11]. In this particular

case of image segmentation, the vertices of the graph are constituted by the

pixels of any of the 2D input images, whereas the weight of every edge is

some measure of dissimilarity between the two pixels linked by that edge. In

particular, weights are defined by using the 3D surface normals estimated at

the first stage. The goal is to group neighbouring pixels that are likely to

belong to the same geometric structure.

The proposed approach is not a new 3D image segmentation scheme, but

a new application of photometric stereo to image segmentation based on

surface normals. One of the advantages of the proposed approach is that

it only requires a conventional monocular camera and a set of inexpensive

strobe lights, thus avoiding costly range finders [5] or calibrated stereo rigs.

Additionally, it should be highlighted that, as shown later, only six images

are necessary to recover the surface normals. Although better results could

be obtained with a higher number of images, this paper aims at designing

a system as portable as possible, which can be mounted on a mobile robot
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together with a camera. The proposed technique is especially suited for

poorly illuminated scenarios, such as those typical in search and rescue.

Photometric approaches (e.g., [12], [13], [14]) usually handle 2D intensity

images containing a single object, without considering background pixels,

which can contain noisy data and whose geometry and material can be very

different from the ones of the object. On the contrary, the image segmenta-

tion approach proposed in this paper can cope with several objects and does

consider background pixels.

Following a different approach, Koppal and Narasimhan ([15], [16]) pro-

posed a technique for 2D image segmentation that also clusters the scene

points according to their surface normals. The key point of their proposal is

to use the continuity of a smoothly moving, distant light source to extract in-

formation about the scene geometry. In particular, they use the fact that the

brightness measurements at each pixel form a continuous appearance profile

and show how the derivatives of this profile are related to the geometry of the

scene. One of the main drawbacks of this approach is that they need a large

number of images in order to obtain a smooth, distant light source behaviour.

Furthermore, an additional step is necessary to compute the normals. More

recently, Shi et al. [14] proposed an approach that solves the generalized bas-

relief (GBR) ambiguity [17] by using intensity profiles to cluster pixels with

the same albedo, but different surface normals. Unfortunately, this method

cannot deal with grey-level images.

A previous image segmentation approach also based on [11] was presented

in [18]. However, the main difference with the proposed strategy is that the

graph in [18] is created from the 3D points acquired by a binocular stereo
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camera, as well as from the normals inferred from those 3D points through

the tensor voting framework [19]. Unfortunately, that technique tends to

oversegment the images due to the high levels of spatial noise typically present

in the 3D points obtained from stereo vision.

Although the results provided in [8] showed the viability of the proposed

approach, comparisons and experimental validations were not carried out in

that work. In turn, the current paper performs an extensive evaluation in

which the proposed approach is compared with several image segmentation

algorithms based on either visual appearance or shape. One of the advantages

of shape-based image segmentation with respect to appearance-based one is

that the obtained regions are more related to the surfaces of the physical

objects present in the scene, with independence of their visual appearance.

Thus, a planar wall covered with pictures, for instance, would be segmented

into a collection of patches by an appearance-based segmenter, whereas it

would be segmented into a single region by a shape-based segmenter as the

one proposed in this work.

The rest of the paper is organized as follows. Section 2 presents in de-

tail the two stages of the image segmentation algorithm previously intro-

duced in [8]. Firstly, the formulation of the photometric stereo problem is

reviewed. In addition, the robust photometric stereo approach applied in the

first stage of the proposed strategy is briefly outlined. Then, the graph-based

segmentation algorithm applied in the second stage of the proposed scheme

is described. An experimental evaluation of the proposed image segmenta-

tion approach is presented in Section 3. In particular, the proposed approach

is compared with several image segmentation algorithms, both appearance-
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based and shape-based. Finally, concluding remarks are summarized in Sec-

tion 4.

2. Shape-Based Image Segmentation Algorithm

The key point of the proposed algorithm is that it is exclusively based

on information acquired from several 2D images in order to perform image

segmentation based on 3D shapes. The proposed approach consists of two

stages described below.

2.1. Estimation of 3D surface normals through photometric stereo

At this first stage, both the 3D surface normal and reflectance at every

pixel is estimated through a robust photometric stereo technique [9]. The

position of the light source for each image is also recovered. The formulation

of the photometric stereo problem [10] is introduced below.

2.1.1. Photometric stereo

Photometric stereo aims at estimating the surface normals and reflectance

of an object by processing several intensity images obtained under different

lighting conditions. The general assumptions are that the projection is or-

thographic, the camera and objects are stationary and the light sources are

far away from the objects.

The image intensity at pixel (u, v) depends on the optical properties of

the surface material, the surface shape and the spatial distribution of the

incident illumination. The reflectance characteristics of a given surface can

be represented by a reflectance function ϕ of three unit vectors: surface nor-

mal n = (nx, ny, nz)
t, light source direction m = (mx,my,mz)

t, and viewer
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Figure 1: Viewer-oriented coordinate system.

direction v = (vx, vy, vz)
t. Using the reflectance function ϕ, the following

equation describes the image-generation process:

i = t · ϕ(n,m,v) , (1)

where t represents the light source intensity associated with each image.

Assuming that the image projection is orthographic and that there is only

a distant point light source, the viewer direction and the light source direction

can be considered to be constant over the image plane. The coordinate

system is considered to be associated with the camera in this paper. That is,

the z axis is collinear with the imaging axis of the camera, while the x and

y axes are defined by the image plane coordinates, as shown in Fig. 1.

This paper assumes a Lambertian reflectance model, which states that

materials absorb and reflect light uniformly in all directions. The following

equation expresses the intensity at every pixel when this model is considered:

i(u, v) = t · ϕ(u, v) = t · r(u, v)n(u, v)tm , (2)
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where r(u, v) is the albedo at pixel (u, v), n(u, v) is its surface normal and

m represents the light direction associated with each image. The albedo

describes the fraction of light reflected at each point on the object.

This linear property suggests the use of factorization techniques to model

the image formation process and to recover each of the factors that contribute

to it. Thus, let I be a measurement matrix of p rows and f columns. Every

column contains the gray-levels of the p pixels corresponding to a single

image frame. Each of the f frames has been acquired with a different light

source position. Assuming a Lambertian reflectance model, this matrix can

be factorized as:

I = RNMT , (3)

where

Rp×p =


r1 0

. . .

0 rp

 (4)

is the surface reflectance matrix that contains the surface reflectance at each

of the p pixels,

Np×3 =
[
n1 . . .np

]t
=


n1x n1y n1z

...
...

...

npx npy npz

 (5)

is the surface normal matrix (n represents the surface normal at each of the

p pixels),

M3×f =
[
m1 . . .mf

]
=


mx1 . . . mxf

my1 . . . myf

mz1 . . . mzf

 (6)
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is the light source direction matrix (m represents the light source direction

at each of the f frames), and

Tf×f =


t1 0

. . .

0 tf

 (7)

is the light source intensity matrix that contains the light source intensity at

each of the f frames. Using these definitions, the surface matrix S and the

light source matrix L are defined as follows:

Sp×3 = RN, L3×f = MT (8)

Hence, the measurement matrix can be decomposed as:

I = SL (9)

This decomposition can be obtained by using factorization techniques. In

particular, the adaptation of the Alternation technique proposed in [9] for

the photometric problem is applied in order to obtain the above decomposi-

tion (9).

2.1.2. Photometric stereo with adapted Alternation

A common assumption in most photometric stereo approaches is that

images do not contain shadows nor saturated regions, which correspond to

points with very low and high intensity values respectively. This is due

to the fact that these points do not follow a Lambertian model. The robust

photometric approach introduced in [9] assumes that these points are missing

entries in I. This reduces their influence in the results. That work presents
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an adaptation of the Alternation technique, which has been widely studied

in computer vision (e.g., [20, 21, 22]), to decompose matrix I. The algorithm

is summarized below:

1. Set a lower and an upper threshold to define the shadows and saturated

regions respectively, namely: σl and σu. That is, I(i, j) corresponds to

a shadow if I(i, j) ≤ σl and to a saturated pixel if I(i, j) ≥ σu.

2. Define the following set:

Ω = {(i, j), 1 ≤ i ≤ p, 1 ≤ j ≤ f |σl < I(i, j) < σu} (10)

This set contains the pixels in I that do not correspond to shadows or

saturated regions. Hence, only those pixels that follow a Lambertian

model are used during matrix factorization. Therefore, shadows and

saturated regions, which correspond to pairs (i, j) /∈ Ω, are considered

as missing data in I.

3. Apply the Alternation technique to I. The algorithm starts with an

initial random p×3 matrix S0 (analogously with a 3×f random matrix

L0) and repeats the next two steps until the product SkLk converges

to I:

• Compute L: Lk = (St
k−1Sk−1)

−1(St
k−1I)

• Compute S: Sk = ILt
k(LkL

t
k)

−1

These products are computed by only considering those pixels

I(i, j) such that (i, j) ∈ Ω.

After convergence, every row of S consists of the 3D surface normal as-

sociated with each image pixel, every column of L consists of the 3D light
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direction and intensity for each frame, and the product SL is the best rank 3

approximation of I. However, the obtained decomposition is not unique,

since any invertible matrix Q with size 3×3 gives the following valid decom-

position:

I = SL = ŜQQ−1L̂ (11)

Therefore, at the end of the algorithm, one of the two constraints proposed

in [12] is used to determinate matrix Q:

1. If the relative value of the surface reflectance is constant or known in at

least six pixels, matrix Q can be computed with the following system

of p equations:

ŝkQQtŝtk = c1, k = 1, · · · , p (12)

where ŝk is the kth-vector of Ŝ and c1 the value of the surface re-

flectance.

2. If the relative value of the light source intensity is constant or known

in at least six frames, matrix P = Q−1 can be obtained by solving the

following system:

l̂tkP
tP l̂k = c2, k = 1, · · · , f (13)

where l̂k is the kth-vector of L̂ and c2 the value of the light source

intensity.

Notice that, at least, six pixels with constant or known reflectance or six

images with constant or known light intensity are necessary in order to solve

the linear systems (12) and (13), respectively. This is due to the fact that a

symmetric 3× 3 matrix is computed for each case (A = QQt and B = P tP ).

12



If the values of c1 or c2 are not known a priori, they are assumed to be one.

Therefore, the above constraints impose a constant reflectance at every pixel

and a constant light source intensity at every image respectively. In these

situations, the reflectance and light source intensity can only be recovered up

to a constant. In the experiments described in the current paper, the second

constraint (13) is imposed, since there is no need for selecting six pixels with

equal or known reflectance.

Even after computing matrix Q, the solution is obtained up to a rotation.

Notwithstanding, the recovered normals can be used for image segmentation

without estimating that rotation.

2.2. Graph-based image segmentation

At the second stage, the image pixels are clustered according to the ori-

entation of their 3D normals through a graph-based segmentation algorithm

presented in [11]. The goal is to group neighbouring pixels that are likely to

belong to the same geometric structure. For that purpose, the image pixels

with similar 3D normals are clustered together. This second stage consists

of two steps: graph creation and graph segmentation.

2.2.1. Graph Creation

In this particular problem of image segmentation, the vertices of the graph

are constituted by the 2D pixels of any of the input images. In turn, an

edge is defined between every pair of neighbouring pixels, pi and pj, with a

weight wij, the latter being some measure of dissimilarity between pi and pj.

The goal is that similar neighbouring pixels be grouped in a same cluster. In

the proposed approach, the weight wij is defined according to the similarity
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between the 3D surface normals computed at the previous stage, ni and nj,

respectively:

wij = 1− e−φ2
ij/2σ

2

(14)

where φij = arccos(nt
inj) and σ is the standard deviation of the Gaussian

function e−φ2
ij/2σ

2

. Therefore, wij is zero when the angle φij between ni and

nj is zero, and close to one when φij is larger than 3σ.

2.2.2. Graph-based segmentation

The proposed segmentation technique is based on a region-growing ap-

proach. A measure of distance MInt between every pair of neighbouring

regions in the graph, Ci and Cj, is defined. Let us first introduce the in-

ternal difference of a component C ∈ V , which is the largest weight of the

minimum spanning tree of the component, MST (C,E):

Int(C) = max
e∈MST (C,E)

w(e), (15)

For small components, Int(C) is not a good estimate of the local charac-

teristics of the data. In the extreme case, when |C| = 1, Int = 0. Therefore,

Fenzelswalb et al. [11] propose the use of a threshold function based on the

size of the component:

τ(C) = k/|C|, (16)

where |C| denotes the size of C and k is some constant parameter. That

is, for small components, a stronger evidence for a boundary is required.

In practice, k defines a scale of observation, in which a larger k leads to

larger components being generated. Any non-negative function for a single

component can be used for τ .
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Therefore, MInt is defined as follows:

MInt(Ci, Cj) = min(Int(Ci) + τ(Ci), Int(Cj) + τ(Cj)), (17)

The graph-based segmentation algorithm is summarized in five different

steps as defined in [11]:

The input is a graph G = (V,E), with n vertices and m edges. The

output is a segmentation of V into components S = (C1, ..., Cr).

1. Sort the edges of the graph, E, in ascending order of weight;

2. Start with a segmentation S0, where each vertex vi is in its own com-

ponent;

3. Repeat step 4 for q = 1, ...,m;

4. Construct Sq given Sq−1 as follows. Let vi and vj denote the vertices

connected by the q-th edge in the ordering, denoted as eq. Let C
q−1
i be

the component of Sq−1 containing vi and Cq−1
j the component contain-

ing vj.

• If Cq−1
i ̸= Cq−1

j and w(eq) ≤ MInt(Cq−1
i , Cq−1

j ) then Sq is obtained

from Sq−1 by merging Cq−1
i and Cq−1

j .

• Otherwise, Sq = Sq−1;

5. Return S = Sm

3. Experimental evaluation

The aim of this section is to validate the image segmentation approach

detailed in Section 2 by comparing it with several image segmentation algo-

rithms. In particular, the proposed approach is compared to both appearance-
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based and shape-based image segmentation algorithms. The evaluation study

is divided into three parts described next.

First of all, Section 3.1 presents experiments with noisy real data to show

the viability of the proposed method. In order to show that other image

segmentation algorithms can be used in the second stage of the proposed

approach, results obtained with the K −Means method are also reported.

Unfortunately, this method requires the definition of the number of desired

clusters beforehand. Additionally, results obtained with the method pro-

posed in [16] are also shown.

Next, in Section 3.2, two appearance-based segmentation algorithms are

applied to some of the images acquired in the previous experiment. Con-

cretely, the following appearance-based segmentation algorithms have been

considered:

1. The Mean Shift [1] algorithm, whose code is publicly available at:

http://www.caip.rutgers.edu/riul/research/code.html. The Mean Shift

image segmentation is a straightforward extension of the discontinuity

preserving smoothing algorithm also proposed in [1]. Each pixel is as-

sociated with a significant mode of the joint domain density located in

its neighborhood, after nearby modes are pruned.

2. The algorithm presented in [2], in which the texture features are mod-

elled using a mixture of Gaussian distributions. It is a lossy compression

clustering algorithm for segmenting degenerate Gaussian distributions.

The code is publicly available at http://www.eecs.berkeley.edu/∼yang/

software/lossy segmentation/.

The aim of applying these algorithms is to show that they are not suit-
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able when the objective is to segment the surfaces of the different objects

contained in the scene, since textured surfaces are oversegmented in general.

Finally, Section 3.3 presents results obtained with three range image seg-

mentation algorithms. Real range images from the OSU data set (available

at http://sampl.ece.ohio-state.edu/data/3DDB/RID/index.htm) have been

utilized in these experiments. In particular, the following algorithms have

been studied:

1. The range image segmentation algorithm developed by the Computer

Vision and Image Analysis Research Laboratory at the University of

South Florida (http://marathon.csee.usf.edu/). This algorithm is de-

scribed in [5] and its code is publicly available at: http://marathon.csee.

usf.edu/seg-comp/SegComp.html. For simplicity, this algorithm will be

denoted as USF. USF works by computing a planar fit for each pixel

and then growing regions whose pixels have similar plane equations.

2. The method proposed in [23], which segments a triangular approxima-

tion of a given range image.

3. The method proposed in [18], which uses the graph-based segmentation

algorithm proposed in [11], by taking the 3D normals estimated through

tensor voting instead of the ones estimated with photometric stereo. In

these experiments, the 3D data are not obtained with a binocular stereo

camera as in [18], but with a range sensor, thus avoiding the 3D noise

typical from stereo processing.

The results obtained with these three algorithms are compared with the

ones obtained with the proposed approach. However, in order to apply the

photometric approach [9], at least six images taken under different lighting
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conditions are needed. The problem is the availability of a public data set

providing range images together with at least six images obtained under

different lighting conditions. Hence, a triangulation algorithm [23] is used

to generate triangulated surfaces from the tested range images. Afterwards,

an OpenGL process is used to render those surfaces under different lighting

positions and obtain the corresponding 2D images. Additionally, results

obtained with the appearance-based image segmentation algorithms studied

in Section 3.2 are also included in the comparison.

3.1. Photometric stereo segmentation

This section presents the experimental results corresponding to three sets

of real noisy images: two of them correspond to indoor scenes taken in our

laboratory, while the third set corresponds to an outdoor scene publicly avail-

able at: http://www1.cs.columbia.edu/CAVE/software/wild/index.php.

3.1.1. Indoor scenes

In order to capture six images of the same scene under different illumina-

tion conditions, a set of six strobelights placed at different positions has been

utilized. Fig. 2 and Fig. 6 show two sets of images acquired by changing the

active strobelight at a time. It can be noticed that the acquired images are

very noisy. Since the strobelight positions are very close to each other, the

variation of grey-level intensity at each pixel is very low. Moreover, shadows

and saturated pixels can appear in the images. Nevertheless, even under

these conditions, the obtained results are satisfactory as shown below.

Fig. 3 (a) and (b) show the reflectance and 3D surface normals estimated

for every pixel when the photometric technique is applied to the images shown
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Figure 2: First set of six images obtained by alternatively switching on each of the stro-

belights.

in Fig. 2. In particular, Fig. 3 (b) shows the angle between each normal and

the camera axis, which is perpendicular to the image plane. Dark pixels

correspond to small angles, whereas bright pixels correspond to big angles.

The surface normals corresponding to background pixels (and, in particular,

the ones corresponding to the floor) are very noisy.

(a) (b)

Figure 3: (a) Recovered reflectance; (b) angle between the recovered normals and the

camera axis, which is perpendicular to the image plane.
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Once the normals have been computed, a graph is created as described

in Section 2.2, and the method presented in [11] is applied. Fig. 4 shows the

image segmentation obtained when different values for parameter k, which

defines the scale of the obtained components (see eq. (16)), are considered.

In particular, the results correspond to k = 1, 4 and 7, respectively. It can

be seen that the best segmentation is obtained when k = 4 (Fig. 4 (b)) and

that the scene is, in general, correctly segmented based on the shape of the

objects contained in it. Only a small region of background pixels is wrongly

segmented and joined together with a face of the object. Recall that only six

images are used. With such a low number of images, the method cannot deal

with shadows or saturated regions, which can be present in the background,

probably leading to some inaccurate results. Those points could be consid-

ered as missing data if more images were available, as in [9]. However, this

problem is out of scope of this paper. As mentioned in Section 1, the main

goal of the proposed approach is to use a low number of images in order to

obtain a simple technique that can be applied on a mobile robot.

(a) (b) (c)

Figure 4: Image segmentation obtained with the proposed approach for different values

of k (see eq. (16)): (a) k = 1; (b) k = 4; (c) k = 7.

Fig. 5 shows the image segmentation obtained whenK−Means is used in
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the second stage of the algorithm. In particular, these results correspond to

the cases in which K = 4, 6 and 8, respectively. Notice that the graph-based

method yields a better image segmentation.

(a) (b) (c)

Figure 5: Image segmentation obtained with K−Means for different values of K: (a) K =

4; (b) K = 6; (c) K = 8.

Fig. 6 shows a second set of images obtained by considering a scene with

several objects (including non-planar objects) and a variable background.

Fig. 7 (b) shows that the 3D normals corresponding to background pixels are

even noisier than in the previous experiment.

Some constraints should be imposed when dealing with such noisy nor-

mals. Otherwise, an oversegmentation of the scene is likely to be produced.

This paper proposes a measure to decide when the normals have been prop-

erly estimated. The idea is to penalize pixels that present a low grey level

intensity variation along the images. The mean deviation (MD)1 is used to

study the variation of the grey level intensity at every pixel over different im-

ages. The surface normals, n, corresponding to pixels with a MD value below

a given threshold (τMD) will be set to n = (0, 0, 0) before the segmentation

1MD(X) = 1
N

∑N
j=1 |xj − x̄|, being X = (x1, ..., xN ) and x̄ = 1

N

∑N
i=1 xi
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Figure 6: Second set of images obtained by alternatively switching on each of the stro-

belights.

(a) (b)

Figure 7: (a) Recovered reflectance; (b) angle between the recovered normals and the

camera axis, which is perpendicular to the image plane.

stage.

Fig. 8 (a) shows the MD value of every pixel for the images shown in

Fig. 6. Darker pixels correspond to those with lower MD values or, which is

the same, to pixels with a low grey-level intensity variation over the images

of the sequence. Threshold τMD is experimentally set to 4 in this particu-
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lar example. Those pixels whose MD is below τMD are marked in blue in

Fig. 8 (b).

(a) (b)

Figure 8: (a) MD value of every pixel; (b) pixels with a MD value below τMD = 4 are

marked in blue.

Fig. 9 shows the final segmented image when the graph-based image seg-

mentation algorithm is used in the second stage of the proposed approach,

by taking different values of parameter k. Again, the best segmentation is

obtained when k = 4 (Fig. 9 (b)). Notice that pixels corresponding to a same

face are segmented as a single region in general.

(a) (b) (c)

Figure 9: Image segmentation obtained with the proposed approach, for different values

of k (see eq. (16)): (a) k = 1; (b) k = 4; (c) k = 7.

The image segmentation obtained when K − Means is applied in the
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second stage of the proposed approach is shown in Fig. 10. The results cor-

respond to some of the tested K values: K = 4, K = 6 and K = 8, respec-

tively. The results obtained with the graph-based segmentation algorithm

are always better than the ones obtained with the K −Means method.

(a) (b) (c)

Figure 10: Image segmentation obtained withK−Means for different values ofK: (a)K =

4; (b) K = 6; (c) K = 8.

3.1.2. Outdoor scene

Fig. 11 shows 6 of the 24 images used in this experiment. They were

extracted from the WILD Dataset and correspond to the particular set ”Jan-

uary, number 25”. This is a very difficult sequence: on the one hand, notice

that there is a high amount of both shadows and saturated points in the

images. On the other hand, some of the images are very dark. The recovered

reflectance and 3D surface normals estimated at every pixel are shown in

Fig. 12 (a) and (b) respectively.

Fig. 13 shows the image segmentation obtained with the proposed ap-

proach when different values of k are considered. The results obtained when

K−Means is used in the second stage of the proposed approach are shown in

Fig. 14. Finally, the approach proposed in [16], whose code is publicly avail-

able at: http://sites.google.com/site/koppaldev/code, is also applied, with
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Figure 11: Images from the WILD Dataset.

(a) (b)

Figure 12: (a) Recovered reflectance; (b) angle between the recovered normals and the

camera axis, which is perpendicular to the image plane.

the obtained segmentation being shown in Fig. 15. Different values of pa-

rameter K are considered in both methods. Notice that the results obtained

with K −Means and with the method proposed in [16] slightly differ from

the ones shown in [16]. This can be due to the fact that a different set of

images may have been utilized. Koppal et al. [16] do not provide an accurate

information about the particular images they consider, nor the value of K

used in K −Means.

25



(a) (b) (c)

Figure 13: Image segmentation obtained with the proposed approach for different values

of k (see eq. (16)): (a) k = 1; (b) k = 4; (c) k = 7.

(a) (b) (c)

Figure 14: Image segmentation obtained withK−Means for different values ofK: (a)K =

4; (b) K = 6; (c) K = 8.

(a) (b) (c)

Figure 15: Image segmentation obtained with the method proposed in [16] for different

values of K: (a) K = 4; (b) K = 6; (c) K = 8.

3.2. Appearance-based segmentation

This section presents the results obtained when the image segmentation

is based on the visual appearance of the depicted objects. Two different
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algorithms are tested: the Mean Shift [1] and the lossy compression-based

clustering algorithm proposed in [2].

3.2.1. Mean Shift

Fig. 16 (b) and (c) show the image segmentation obtained when Mean

Shift is applied to the image shown in Fig. 16 (a), by using different parameter

values. In particular, the image segmentation obtained with (hs, hr,M) =

(4, 1, 400) is shown in Fig. 16 (b), while the image segmentation obtained

with (hs, hr,M) = (3, 2, 100) is shown in Fig. 16 (b). Recall that hs and

hr determine the spatial and range domain resolution, whereas M is the

minimum number of pixels contained in each region. The image shown in

Fig. 16 (a) corresponds to one of the 2D images used in the previous exper-

iment, Fig. 2 (bottom-center). It can be seen that an oversegmentation is

obtained in both cases due to the textured nature of the box and to shadows

and highlights in the image, which can cause the oversegmentation of the

same surface.

(a) (b) (c)

Figure 16: (a) Input image; (b) image segmentation with Mean Shift [1], (hs, hr,M) =

(4, 1, 400); (c) (hs, hr,M) = (3, 2, 100).

Fig. 17 (b) and (c) show the segmentation obtained when Mean Shift [1]

is applied to the image shown in Fig. 17 (a), which corresponds to the image
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in Fig. 6 (top-left). Similarly to the previous experiment, the image segmen-

tation obtained with (hs, hr,M) = (4, 1, 400) is shown in Fig. 17 (b), while

the image segmentation obtained with (hs, hr,M) = (3, 2, 100) is shown in

Fig. 17 (b). Again, an oversegmentation is obtained for both tested param-

eter values. The problem is that the obtained regions do not correspond to

the faces of the depicted objects, which is the main goal of the current work.

(a) (b) (c)

Figure 17: (a) Input image; (b) image segmentation with Mean Shift [1], (hs, hr,M) =

(4, 1, 400); (c) (hs, hr,M) = (3, 2, 100).

3.2.2. Lossy compression-based clustering algorithm

Fig. 18 and Fig. 19 show the results obtained when the algorithm pro-

posed in [2] is applied to the images shown in Fig. 18 (a) and Fig. 19 (a)

respectively. Different segmentations are obtained depending on the value of

parameter ε. It can be seen that the obtained regions do not correspond to

faces of the objects in general. Actually, the segmented regions contain back-

ground points together with faces of the objects, which is not useful when

the goal is to segment the objects or surfaces present in the scene. From the

results obtained in this section, it can be concluded that appearance-based

segmentation is not suitable when the goal is to segment the surfaces of the

objects contained in the scene.
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(a) (b) (c) (d)

Figure 18: (a) Input image; (b-d) segmentation with the lossy compression-based clustering

algorithm [2] under different ε’s (ε = 0.1, ε = 0.2, ε = 0.3, respectively).

(a) (b) (c) (d)

Figure 19: (a) Input image; (b-d) segmentation with the lossy compression-based clustering

algorithm [2] under different ε’s (ε = 0.1, ε = 0.2, ε = 0.3, respectively).

3.3. Range image segmentation

Range image segmentation is the alternative to appearance-based image

segmentation. In this case, the segmentation is based on the shape of the de-

picted objects. Real range images from the OSU data set (http://sampl.ece.

ohio-state.edu/data/3DDB/RID/index.htm) are used in this section. In par-

ticular, the range images shown in Fig. 20 (a) and Fig. 24 (a) are studied.

This section summarizes the results obtained with all the image segmentation

algorithms studied in the current paper.

Fig. 20 shows the segmentation obtained when the three studied range

image segmentation algorithms are applied to the range image data depicted

in Fig. 20 (a). USF does not yield good results for non-planar regions, as can
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be seen in Fig. 20 (b). Furthermore, there are some regions (marked in white)

where the algorithm cannot be applied (namely missed classification). This

algorithm tends to oversegment the image. The image segmentation obtained

with the Garcia and Basañez’s [23] algorithm is shown in Fig. 20 (c). The

problem with this algorithm is that it segments the triangular approximation

of the range image instead of that image. Therefore, the segmentation is less

realistic. Finally, the segmentation obtained when the method proposed

in [18] is applied is shown in Fig. 20 (d).

(a) (b)

(c) (d)

Figure 20: (a) Input range image; (b) segmentation with USF [5]; (c) segmentation with

Garcia et al. [23]; (d) segmentation with [18].

Fig. 21 shows six 2D images obtained with the aforementioned OpenGL

process, which renders the surface shown in Fig. 20 (a) under different light-

ing conditions. It can be seen that only six images (the minimum necessary)
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are generated considering light source positions very close to each other. Re-

call that the knowledge of these light source positions is not used by the

proposed algorithm. Hence, the variation of grey-level intensity at each pixel

is very low. Nevertheless, the results obtained with the proposed approach

are satisfactory, as shown in Fig. 22 (a). This segmentation corresponds to

the case in which k = 4 (see eq. (16)). Black points in the segmented images

correspond to points whose depth is not known (the same points are marked

in white in the corresponding range image). Recall that the obtained seg-

mentation is similar to the one obtained with [18] (see Fig. 20 (d)). However,

it should be highlighted that the 3D data are necessary in [18], whereas only

2D images are required in the proposed approach. Additionally, the results

obtained when K−Means is applied in the second stage of the proposed ap-

proach are shown in Fig. 22 (b). Only the best obtained image segmentation

is shown (K = 4).

Figure 21: Input 2D images for the photometric stereo approach.

Fig. 23 shows the results obtained when the two appearance-based algo-

rithms studied in the previous section are applied to the 2D image shown

31



(a) (b)

Figure 22: Image segmentation obtained: (a) with the proposed approach, k = 4; (b) with

K-means, K = 4.

in Fig. 23 (a). Mean Shift yields a quite good image segmentation, as can

be seen in Fig. 23 (b). Recall that the object has a single texture over all

its surface. The segmentation obtained with the algorithm proposed in [2]

is shown in Fig. 23 (c). This algorithm yields regions that contain pixels of

the object’s surface along with pixels belonging to the background (the best

segmentation result is obtained with ε = 0.4).

(a) (b) (c)

Figure 23: (a) Input 2D image; (b) segmentation with Mean Shift [1]; (c) segmentation

with [2].

The second studied image is depicted in Fig. 24 (a). Fig. 24 (b) shows

the segmentation obtained with the USF algorithm, while the segmentation

obtained with the Garcia and Basañez’s [23] algorithm is shown in Fig. 24 (c).

The approach proposed in [18] yields the segmentation shown in Fig. 24 (d).
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It can be seen that an oversegmentation is obtained with the three studied

algorithms.

(a) (b)

(c) (d)

Figure 24: (a) Input range image; (b) segmentation with USF [5]; (c) segmentation with

Garcia et al. [23]; (d) segmentation with [18].

As in the experiment with the first range image, an OpenGL process

is used to render the surface shown in Fig. 24 (a) under different lighting

conditions in order to obtain the six 2D images depicted in Fig. 25. The

segmentation obtained with the proposed approach (k = 4) is shown in

Fig. 26 (a). Fig. 26 (b) shows the segmentation obtained when K −Means

is applied in the second stage of the proposed approach. In this case, the

best result is obtained when K = 6.

Finally, Fig. 27 shows the results obtained when the two appearance-

based algorithms studied in the previous section are applied to the 2D image
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Figure 25: Input 2D images for the photometric stereo approach.

(a) (b)

Figure 26: Image segmentation obtained: (a) with the proposed approach, k = 4; (b) with

K-means, K = 6.

shown in Fig. 27 (a). Particularly, the segmentation obtained with the Mean

Shift algorithm is shown in Fig. 27 (b), while the segmentation obtained

with the algorithm proposed in [2] can be seen in Fig. 27 (c). Again, the

best segmentation is obtained with ε = 0.4. Notice that the proposed ap-

proach yields the best image segmentation in these experiments, as can be

appreciated in Fig. 22 and Fig. 26.
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(a) (b) (c)

Figure 27: (a) Input 2D image; (b) segmentation with Mean Shift [1]; (c) segmentation

with [2].

4. Conclusion

This paper presents a detailed description and extensive experimental

validation of a shape-based image segmentation algorithm previously intro-

duced by the authors. The proposed algorithm consists of computing the

surface normals of the objects present in the scene by applying a robust pho-

tometric stereo approach. Afterwards, the image pixels with similar normals

are clustered together by using a graph-based image segmentation algorithm.

The proposed image segmentation approach is compared with several

existing image segmentation algorithms, both appearance-based and shape-

based ones. Experimental results show that the shape-based image segmen-

tation algorithms are more suitable than the appearance-based ones when

the objective is to segment the objects or surfaces present in the scene. In

particular, the proposed algorithm yields the best image segmentation results

in most cases.

Future lines of research include the study of other weight definitions in the

graph generation step. In addition, other image segmentation algorithms and
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strategies can be tested. Finally, once the image segmentation is obtained,

the surfaces of the objects present in the scene can be reconstructed by using

the estimated surface normals.
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