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ABSTRACT  

 

G protein-coupled receptor kinases (GRKs) are emerging as important 

integrative nodes in cell migration processes. Recent evidence links GRKs (particularly 

the GRK2 isoform) to the complex modulation of diverse aspects of cell motility. In 

addition to its well-established role in the desensitization of G protein-coupled receptors 

involved in chemotaxis, GRK2 can play a effector role in the organization of actin and 

microtubule networks and in adhesion dynamics, by means of novel substrates and 

transient interacting partners, such as the GIT-1 scaffold or the cytoplasmic α-tubulin 

deacetylase histone deacetylase 6 (HDAC6). The overall effect of altering GRK levels 

or activity on chemotaxis would depend on how such different roles are integrated in a 

given cell type and physiological context, and may have relevant implications in 

inflammatory diseases or cancer progression. 

 

 

 

  

 



Introduction 

Cell migration plays a central role in physiological processes as embryogenesis, 

wound healing or immunity, whereas aberrant cell motility underlies pathological 

conditions such as inflammation or cancer progression  [1,2]. Chemotaxis integrates 

complex steps coordinated by transiently activated signalling networks, leading to cell 

polarization, membrane protrusion and generation of dynamic adhesion and traction 

forces [3, 4, 5]. 

Many G protein-coupled receptors (GPCR), such as those for chemokines, are 

involved in gradient sensing and cell migration [5,6]. Upon stimulation, GPCR initiate 

G protein-dependent signalling pathways and also become phosphorylated by 

serine/threonine kinases termed G protein-coupled receptor kinases (GRKs), of which 

GRK2 is the most ubiquitous and well-characterized [7,8]. This event promotes the 

association of arrestins, leading to GPCR desensitization and internalization. GRKs are 

emerging as complex regulators of cell migration processes, since their involvement in 

cell motility not only relies in their canonical role as “negative” modulators of GPCR 

signalling, but also involves novel substrates and interacting partners [8-11].  

We discuss herein recent evidence linking GRKs (particularly GRK2) to the 

different functional facets of cell migration, how such diverse roles might be 

orchestrated in response to stimuli, and the implications of these findings in physio-

pathological contexts.  

 

The conundrum of GRK2 in migration: how does GRK2 actually modulate 

the chemotactic response? 

Numerous reports have ascribed the effects of GRK2 on chemotaxis to its ability 

to trigger desensitization of particular chemokine receptors, thus controlling the 

intensity and duration of agonist stimulation [6,7,12]. Down-modulation of GRK2 

levels increases chemotactic responses to different agonists in immune cell types, 

whereas its enhanced expression attenuates chemotaxis, consistent with its canonical 

negative role in GPCR signalling (Table 1).  

However, the overall impact of GRK2 levels on cell migration is not 

straightforward and varies dependent on the stimuli and/or cell type considered [Table 

1, refs. 8-11]. GRK2 down-modulation can lead to decreased migration of immune cell 

types towards certain stimuli [13], and this kinase plays a positive role in epithelial cell 

migration [14].  



 These heterogeneous results raise questions about the functional role of GPCR 

desensitization during directed migration, and suggests that the global effect of GRK2 

on chemotaxis would depend on the integrated modulation of different steps of the 

chemotactic process (receptor sensing, cell polarization, membrane protrusion, 

adhesion/de-adhesion cycles) in given cell types and in response to specific stimuli.  

 

GRK2 in gradient sensing: a role for receptor phosphorylation? 

Directional sensing involves the conversion of graded receptor activation by 

chemoattractants into a sharp asymmetry of key downstream signalling components. 

PI3K and PTEN (besides other redundant pathways), are redistributed towards and 

away the gradient, respectively, allowing for local accumulation of PI(3,4,5)P3,, what 

serves to specify pseudopodia formation and to guide cell movement [15,16]. 

This response is extremely sensitive and localized PI(3,4,5)P3 production 

depends only on the gradient steepness [15, 16]. In steep gradients, cells generate a 

single, well-defined pseudopodium and move straight towards the signal source.  

Conversely, in shallow gradients, chemotaxis is mediated by biased choices between 

randomly projected pseudopodia, resulting in a tortuous and time-consuming tracking 

[3,5,16]. In steep gradients, high local fraction of receptor occupancy versus lower 

global occupancy would favour the generation of internal asymmetry [15]. In this 

context, it is tempting to suggest that GRK2-triggered receptor 

desensitization/internalization might influence how receptors sense the strength and 

steepness of chemotactic gradients (less GRK2, steeper, more GRK2, weaker gradients, 

see detailed model in Figure 1).  

 Consistently, GRK2 levels are important for defining the stop signal of 

neutrophil migration [17]. These cells adopt a random walk and cease directed 

locomotion when exposed to saturating concentrations of fMLP, which triggers receptor 

desensitization/internalization in a GRK2-dependent manner. Therefore, upon GRK2 

silencing cessation of migration is not achieved properly, resulting in sustained motility.  

Interestingly, dependence on steeper chemotactic gradients diminishes in 

polarized cells. Therefore, GRK2-mediated receptor phosphorylation/desensitization 

may become more relevant in immune cells, in contrast to intrinsically polarized 

epithelial cells and fibroblasts, leading to striking differences in how GRK2 impacts 

migration [9, 11, 14]. Receptor desensitization also might be more critical when cells 

migrate between opposed chemoattractant gradients. Notably, GRK2-mediated 



desensitization of S1P1 receptors allows T cells to “ignore” high vascular S1P 

concentrations in order to follow lymph node guiding cues [13, 18].  

 

GRK2 in cell polarization and membrane protrusion: shaping cells for 

motion 

 Cell polarization and the formation of a leading edge is a key step in chemotaxis. 

GRKs can also regulate these processes by modulating novel substrates and effectors 

(Figure 2), what would underpin the positive contribution of GRKs to chemotaxis in a 

stimuli- and cellular context-dependent manner. 

GRK-mediated GPCR phosphorylation promotes the recruitment of arrestins, which, in 

addition to their uncoupling/desensitizing function, have very important roles in cell 

migration by scaffolding key actin assembly proteins and protein kinase cascades in 

discrete cellular locations [5]. The precise sets of receptor residues phosphorylated by 

one or another GRK or by the same GRK in response to different stimuli [19-21] can 

engage distinct β-arrestin-conformation-dependent signalosomes with different 

functional competences. Therefore, the relative cellular GRK dosage or activation could 

modulate chemotaxis at this level. 

 More importantly, agonist-dependent recruitment of GRKs to the plasma 

membrane would also promote their direct modulation of specific effectors. The 

association of GRK2 to PI3Kγ in response to β2AR activation aided to recruit the lipid 

kinase to the receptor complex [22]. A similar interaction with PI3Ks upon chemokine 

or integrin receptor activation has not been reported, but this mechanism could reinforce 

gradient sensing.  

 GRK2 also interacts with and phosphorylates the ERM proteins ezrin and 

radixin in response to serum or muscarinic receptor activation [23,24]. By bridging the 

plasma membrane and actin filaments at the leading edge in a phosphorylation-

dependent manner, ERMs contribute to local F-actin polymerization-dependent 

membrane protrusion. Consistently, GRK2 stimulated cortical actin reorganization and 

migration in an ERM-mediated manner [23,24]. Interestingly, EGF induces ERM 

phosphorylation/translocation to lamellipodia via S1P receptor activation [25]. Since 

GRK2 positively modulates the chemotactic responses to EGF and S1P and plays 

effector roles in S1P signalling [14, 26], it is feasible that the GRK2/ERM module could 

also be triggered by additional chemotactic cues.  



 Besides, GRK2 can engage in pathways linked to polarity persistence by 

scaffolding GIT1 complexes [14]. GIT1 plays a central role in cell motility by acting as 

an adaptor protein that promotes Rac/PAK activation both at focal adhesions and at the 

cell leading edge [9,14]. The challenge of epithelial cells or fibroblasts by fibronectin or 

S1P causes G-dependent GRK2 translocation to the plasma membrane and GRK2-

mediated recruitment of GIT1. The transient GRK2/GIT1 interaction at the leading 

edge, controlled by the sequential phosphorylation of GRK2 by c-Src and MAPK, 

enhances Rac1 activation and results in F-actin cortical remodelling and increased 

migration [14]. 

 GRK2 also plays an important regulatory role in microtubule (MT) dynamics in 

these cell types [10,11,26].  MTs exert an overriding influence on the actin cytoskeleton 

and on the balance of the activity of Rho-family GTPases.  During cell migration, the 

MT cytoskeleton is polarized, and the protruding and retracting cell regions display 

different MT dynamics, associated proteins and posttranslational modifications. MTs 

become acetylated in the stable subset arranged in the lamella region, while highly 

dynamic, “pioneer” MTs facing the lamellipodium are de-acetylated [26,27]. GRK2 

directly interacts with and phosphorylates HDAC6 [26], a cytoplasmic histone 

deacetylase responsible for the de-acetylation of tubulin and other substrates involved in 

motility such as cortactin [28]. This phosphorylation event enhances HDAC6-mediated 

α-tubulin (but not cortactin) de-acetylation, and it is required for the positive effect of 

HDAC6 in the migration of epithelial cells and fibroblasts challenged by fibronectin or 

EGF [10,11, 26].  

 The role of MT in cell polarity and motility varies with cell type [27], and might 

be engaged preferentially in the anterior or the posterior cell region. In migrating 

neutrophils and T cells, the MTOC is positioned behind the nucleus and MTs are 

grouped in the uropod, exerting a negative reciprocal feedback loop with RhoA that is 

mandatory for migratory persistence [29].  Both excessive or defective dynamics of 

MTs due to altered levels of GRK2 could compromise uropod specification and 

motility. Conversely, in most other cells the MTOC face the leading edge and more 

dynamic MTs increase protrusive activity. These differences might help to explain the 

prevalence of positive effects of GRK2 in the chemotaxis of epithelial and fibroblastoid 

cells compared to its overall impact in immune cell migration. 

 

GRK2 in cell adhesion and tension: targeting focal adhesions 



 Highly spread epithelial cells and fibroblasts display large adhesions in the 

central lamella during migration, which mature in response to increased actomyosin 

contractility. Simultaneously, nascent and very dynamic focal complexes are formed at 

the lamellipodium by ligand-induced integrin clustering and actin-polymerization in 

order to stabilize membrane protrusion. As traction forces move the cell forward, focal 

adhesions (FA) at the rear must be disassembled. Conversely, round cells seem to 

migrate (either in amoeboid or blebby modes) using weak adhesions around the cell [4]. 

Therefore, cells adopting a mesenchymal mode of migration are more dependent on 

activities that enhance adhesion turnover.  

 GRK2 could stimulate chemotactic migration (and random motility as well) by 

modulating the formation/disassembly of integrin-based cell-extracellular matrix 

contacts (Figure 2). GRK2 expression might favour the nucleation of nascent contacts 

by either facilitating FN- and S1P-directed activation of Rac1 and actin reorganization 

[14] or the transition of integrins to high-affinity conformations important for clustering 

(our unpublished observations). On the other hand, GRK2 weakens FA of epithelial 

cells by increasing the extent and duration of the GIT/PAK/MEK/ERK1/2 signalling 

module upon engagement of integrin receptors, what  promotes FA turnover [14]. 

Interestingly, GRK2 can serve as a RhoA-activated scaffold protein for MAPK 

activation in response to EGF stimulation [30]. In a motile cell, GRK2/RhoA interaction 

would be expected to occur predominantly at the rear edge, wherein RhoA activation 

peaks, and localized MAPK could increase FA turnover.  

Besides, GRK2 might influence the disassembly of FAs by means of the control 

of tubulin deacetylation. Targeting of FAs by dynamic MTs exerts a negative influence 

on focal adhesion maintenance [27]. Upon GRK2 downregulation, hyper-acetylated 

MTs would be less efficient in disassembling FAs, enhancing cell spreading and 

impairing motility [11,24].  

 

Role of GRKs other than GRK2 in cell migration 

 Other GRKs have been reported to modulate cell migration, although 

information about the molecular mechanisms involved is scarce. Comparison of GRKs 

knockout mice in an acute inflammatory arthritis model indicated a role for GRK2, 

GRK3 and GRK6, but not GRK5, in granulocyte migration in such conditions [31, 32]. 

Interestingly, lymphocytes from beta-arrestin-2 and GRK6-deficient animals displayed 



defective chemotaxis towards CXCL12, suggesting a positive role in cell motility in 

such context [33]. 

 GRK5 attenuates atherosclerosis by desensitizing CCR2 in monocytes and 

inhibiting their migration [34]. In epithelial cells, a functional screening identified 

GRK6 as a critical mediator in integrin-mediated cell adhesion and migration of tumor 

cells [35], and GRK6 deficiency reportedly promotes CXCR2 receptor-mediated tumor 

progression and metastasis in a lung carcinoma model [36]. It would be interesting to 

investigate whether the modulation of cell migration by these GRKs is mostly related to 

their canonical role as specific or more active regulators of given GPCRs in different 

cell types or novel substrates and interactors as those identified for GRK2 are also 

targeted.  

 

Physiological and pathological implications 

 Altered activity/expression of GRKs might critically contribute to deregulate cell 

motility in development or wound healing or in pathological situations related to 

inflammation or tumor progression [7, 8, 11,12].  Several GRK2-interacting signalling 

modules play well-known roles in invasive motility, including integrins, GPCRs (such 

as S1P, chemokine or PAR receptors), the EGFR family, RhoA, Rac1, or ERMs [37-

39]. Increased GRK2 levels could strengthen features of tumor cell motility by 

increasing integrin and S1P-mediated signaling, which are amplified in breast cancer 

patients and are critical for invasive migration in 3D-collagen matrices [39-40]. In 

addition, GRK2 could also collaborate with HDAC6 in promoting cytoskeletal and 

adhesion dynamics required for tumoural migration and invasion, as well as in HDAC6-

promoted invadopodial matrix degradation and 3D invasion [11, 26, 41, 42] 

Interestingly, altered GRK2 levels have been found in human granulosa cell tumors, 

thyroid and prostate cancer or some breast tumors (reviewed in [8, 11]), and are up-

regulated in different malignant mammary cell lines displaying aberrant migration [43]. 

Concurrent HDAC6 and GRK2 up-regulation in human tumor malignancies may favor 

migration and invasion, and point these proteins as new potential therapeutic targets for 

suppressing metastasis. 

 On the other hand, GRKs are highly expressed in different cellular types of the 

immune system and are important regulators of inflammation. Decreased GRK2 

activity/levels were found in peripheral blood mononuclear cells of patients and in 

animal models of rheumatoid arthritis and multiple sclerosis [reviewed in 12]. 



Activation of the Toll-like receptor (TLR)-4 pathway promotes GRK2 and GRK5 

transcriptional down-regulation, leading to decreased chemokine receptor 

desensitization and increased migration of polymorphonuclear leukocytes [44]. 

Interestingly, several reports have related the inability of neutrophils from severe sepsis 

patients to migrate towards CXCL2 or CXCL8 chemoattractants, and thus to promote 

bacterial clearance, to increased levels of GRK2 and GRK5 [31]. Notably, sepsis 

attenuation by Interleukin-33 may involve down-modulation of GRK2 expression in 

neutrophils, leading to enhanced CXCR2 signaling and neutrophil chemotaxis [45]. 

Higher up-regulation of GRK2 in diabetic mice exacerbated CXCR2 downregulation 

and reduction of neutrophil migration in sepsis [46]. High GRK2 expression in 

neutrophils from malaria patients suggests a possible mechanism for an enhanced 

susceptibility to secondary bacterial infection during malaria [47].  

 Overall, these data encourage future studies to investigate the role of changes in 

the expression/functionality of GRKs in the triggering or development of physio-

pathological processes related to cell motility. 

 

  Perspectives and conclusions 

 GRKs appear as physiologically relevant integrative nodes in cell migration,.  

Given the distinct signalling and cytoskeleton modules related to chemotaxis potentially 

modulated by GRKs, one key issue is to understand how are orchestrated in response to 

specific stimuli in distinct cell types.  Moreover, an adequate combination of in vitro 

and in vivo experimental approaches is needed to fully decipher the functional role of 

GRKs in motility. 

 GRK2 phosphorylation by other kinases is emerging as a key “signaling switch” 

governing substrate specificity and interaction with cellular partners during cell 

migration (Figure 3). Tyrosine-phosphorylation of GRK2 in response to chemotactic 

signals enhances interaction with GIT1, whereas S670 phosphorylation by MAPK 

displays an opposite effect [14]. In turn, dynamic S670 GRK2 phosphorylation 

specifically allows GRK2 to phosphorylate HDAC6 and thus trigger transient local 

tubulin de-acetylation [26]. Notably, S670 GRK2 phosphorylation by ERK or p38 

Mapk inhibits its interaction with G and prevents GPCR desensitization. [7,8,48]. 

Alternatively, phosphorylation of the FPR1 receptor by p38MAPK has been reported to 

prevent GRK2 recruitment and so facilitate neutrophil migration [17]. Therefore, the 

subcellular localization and phosphorylation status of GRK2 would be a key factor 



underlying the dynamic and stimuli-specific switching of partners relevant to cell 

migration, allowing the sequential and coordinated participation of GRKs in several 

steps of the cell motility process [10,11].  

Lessons and potential bias from experimental models should also be considered. Most 

studies about GRKs in migration are based in in vitro systems (2D-random motility, 

wound healing and transwell assays), and may therefore need further analysis. 

Transwell assays mainly assess cell polarization and persistence, overlooking the 

influence of the structural architecture/biophysical properties of the extracellular matrix. 

2D-substrates favour the mesenchymal migration mode, what may override other 

molecular repertoires that could determine an intrinsically different mode of migration 

(for instance amoeboid-blebby) in physiological/3D environments [49, 50]. 

Furthermore, transwell assays neither reproduce the in vivo complexity of 

superimposing soluble gradients, nor of gradients of matrix-bound factors, which 

intertwinement might alter the mechanisms engaged in the guiding response. We have 

reported that in transwell assays, GRK2 downregulation enhanced migration of 

endothelial cells to both VEGF and FN. However, migration of GRK2-deficient 

endothelial cells in vivo was impaired during the postnatal development of the retinal 

vasculature, as denoted by the reduced advance of endothelial tip cells and impaired 

filopodia formation and/or stabilization [51].  For proper migration in vivo, VEGF is 

anchored to fibrillar fibronectin depots assembled on the cellular projections of retinal 

astrocytes, which provide a guiding scaffold [52,53], in contrast to the presentation of 

these chemotactic cues in vitro. GRK2 might play in vivo additional roles in the 

integration of fibronectin and VEGF signals, positively influencing guiding persistence 

and migration, as previously described for the intertwinement of integrins and S1P 

receptors in epithelial cells [14]. Combined experiments in classical, 3D and in vivo 

experimental models will help to better assess the role of GRKs in cell migration and to 

define the underlying molecular mechanisms. 
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Figure legends 

Figure1.- Proposed model for the role of GRK2 in the modulation of chemotactic 

gradient sensing. Local fraction of receptor occupancy by chemoattractants would 

trigger stimulatory signals for the generation of internal signalling asymmetry, whereas 

global levels of occupied receptors would inhibit this parameter [16]. In the presence of 

lower GRK2 levels/activity, stimulated GPCR would remain longer/more functional in 

the membrane, thus eliciting robust directional sensing responses and the specification 

of stable pseudopodia as if the gradient was steeper. Conversely, excessive GRK2 

activity would diminish the global level of occupied receptors, resulting in the inability 

to differentiate the cell front from the back, as occurs in the absence of gradients, 

resulting in cessation of movement. 

Figure 2.- Different GRK2 substrates and interactors in the modulation of cell 

polarization membrane protrusion and adhesion. By dynamically interacting with 

diverse substrates and effectors in different cellular locations, GRK2 may modulate 

several facets of the cell migration machinery in a stimuli- and cellular context-

dependent manner. FA, focal adhesions; FC, focal contacts. 

Figure 3.- GRK2 phosphorylation by other kinases as a “signalling switch” 

governing substrate specificity and interaction with cellular partners during cell 

migration. Migratory stimuli would trigger GRK2 recruitment to activated GPCR in 

the lamellipodium membrane. At such specific locations, chemokine receptor 

stimulation would promote the transient Src-mediated tyrosine phosphorylation of 

GRK2, enhancing its interaction with GIT1 and facilitating localized activation of the 

Rac/Pak/Mek/Erk pathway. Subsequent phosphorylation of GRK2 at S670 by MAPK 

disrupts interactions with GIT-1 and GPCR, simultaneously switching on the ability of 

GRK2 to phosphorylate HDAC6 co-localized at the lamellipodium. Both phospho-

S670-GRK2 and HDAC6 are specifically co-recruited to pseudopodia in response to 

pro-migratory stimuli, resulting into dynamic, local HDAC6-mediated de-acetylation of 

MTs. The concerted action of hipo-acetylated MTs and GIT1 signalosomes at the 

leading edge would contribute to cortical polarity and membrane protrusion and thus 

lead to enhanced cell motility. 
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Table1. The overall effect of altering GRK2 levels/activity on chemotactic 

migration depends on stimuli, cell type and migration assays 

 

*our unpublished data 

Cellular type 
GRK2 

expression/functionality 
Migration outcome to 

chemoattractants 
Experimental 

migration assay 

Epithelial cells 
and fibroblasts 

Decreased 
 

Over-expressed 
 

Reduced to FN14,26, 
serum26,24, S1P14 

 

Increased to FN14,26, 
serum26, S1P14 

Transwell14,26 
Wound-healing 
in vivo14 and in 

vitro26,24 

 
Endothelial cells 

 
Decreased 

Increased to VEGF51, FN51 
 

Reduced to VEGF51 

Transwell51 
 

In vivo retina51 

Vascular smooth 
muscle cells 

Over-expressed 

Decreased to PDGF 54,  
and AngII 55 

 
Unchanged to EGF54 

Transwell54,55 

 
Basophilic cells 

 
Decreased Reduced to fMLP* 

 
   Transwell* 
 

Lymphocytes 

 
 

Decreased 
 

 

 
Increased to S1P13, 

 CCL356, CCL456 

 
Reduced to CCL2113 

 

 
Transwell13, 56 

 
In vivo lymph 
node entry13 

 

Neutrophils 

Increased 
 
 

Decreased 

 
Decreased to fMLP17, 

LTB431, IL831 

 

Increased to CXCL2 44  

Transwell31, 44 
2-D tracking17 

Monocytes Decreased 

Unchanged to CCL248 
Reduced to MCP-1 plus 

LPS48 

 

Increased to CCL557 

Transwell48 
 

intraperitoneal 
mobilization57 

 
Granulocytes 

 
Decreased 

Increased to LTB458 
Unchanged to IL858, C5a58 

Transendothelial 
migration58 
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