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The spontaneous breaking of the SUð3Þ5 quark/lepton flavor symmetry by means of three multiplets of

scalar ‘‘Yukawa fields’’ admits vacua with one Oð1Þ and two vanishing vacuum expectation values for

each multiplet. If the number of generations is equal to three, and only in this case, the vanishing vacuum

expectation values are lifted to exponentially suppressed entries by the inclusion of symmetry invariant

logarithmic terms. A strong hierarchy for the Yukawa couplings and a quark mixing matrix that

approaches a diagonal form are obtained in a natural way from Oð1Þ parameters. This scenario provides

a concrete realization of the minimal flavor violation hypothesis.
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I. INTRODUCTION

The standard model (SM) provides an accurate descrip-
tion of particle physics phenomena. Particle interactions
are derived from local symmetries and are explained at a
fundamental level by the gauge principle. Myriads of
experimental tests have confirmed the correctness of this
picture. However, the SM cannot explain the values of the
particle masses and mixing angles. Even if the seed of
fermion masses is eventually identified, as it might happen
soon at the LHC, a new theory is required for explaining
the puzzling features of the observed pattern of Yukawa
couplings: (1) For each value of the electric charge Q ¼
�1, � 1

3 , þ 2
3 , there is a threefold replica of fermions that

are characterized by the same set of (known) quantum
numbers, and as a result, the Yukawa couplings are ar-
ranged into generic 3� 3 matrices. We have no clue about
the origin of fermion family replication. (2) Unless new
quantum charges are postulated, fermions belonging to
different generations but with the same quantum numbers
under the SM gauge group are indistinguishable at the
fundamental level. It is then puzzling that their masses
are instead arranged in a strong hierarchical structure.
(3) The Yukawa matrices for the up and down quarks
constitute two sets of mutually independent parameters.
It is then surprising that in the basis in which the down-
quark Yukawa matrix is diagonal and with a given ordering
of its entries e.g. from small to large, the Yukawamatrix for
the up quarks, when ordered in the same way, is also
approximately diagonal. (4) Additionally, the theoretical
prejudice that there is new physics not too far above the
electroweak scale brings in one more puzzle: why new
physics effects are not seen in flavor violating processes.
We believe that the scenario we are going to discuss can
shed some light on all these issues.

II. SYMMETRYAND RENORMALIZABLE
INVARIANTS

Looking at the SM gauge sector one can readily recog-
nize that fermions are arranged into triplets of states with
the same gauge quantum numbers. It is then natural to
postulate some symmetry group that commutes with the
SM gauge group and has three-dimensional representa-
tions. The symmetry, however, is not realized in the spec-
trum, and generally this signals a noninvariant ground state
yielding spontaneous symmetry breaking (SSB). To pursue
further these simple considerations, we need to identify the
symmetry group, and make an ansatz about the way it is
broken. A brief review of known properties of the SM can
guide us in carrying out this task.
The group of symmetry transformations of the SM

quarks’ and leptons’ gauge invariant kinetic terms is [1]

G ¼ GðqÞ � GðlÞ with GðqÞ ¼ Uð3ÞQ �Uð3Þu �Uð3Þd and
GðlÞ ¼ Uð3Þ‘ �Uð3Þe, whereQ and ‘ denote the quark and
lepton SUð2Þ doublets, and u, d, and e the quark and lepton
SUð2Þ singlets. In the SM G is broken explicitly by the
fermion Yukawa couplings; however, some Uð1Þ factors
are left unbroken. In the quark sector Uð1ÞY �Uð1ÞB of
hypercharge and baryon number remain good symmetries,
and in the lepton sector Uð1ÞY remains unbroken as well.
The SM lepton sector is, however, incomplete since it
cannot accommodate massive neutrinos, and it is likely,
although experimentally not yet confirmed, that unlike
baryon number, Uð1ÞL of lepton number is broken.
Whether this is true (Majorana neutrinos) or not (Dirac
neutrinos) is not relevant for our discussion; thus in the
following we assume that the broken subgroup of G is

GB ¼ GðqÞ
B �GðlÞ

B with

G ðqÞ
B ¼ SUð3ÞQ � SUð3Þu � SUð3Þd �Uð1Þd; (1)

G ðlÞ
B ¼ SUð3Þ‘ � SUð3Þe �Uð1Þe: (2)*enrico.nardi@lnf.infn.it
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The Abelian factorsUð1Þd;e correspond to phase rotation of
the SUð2Þ singlet d quarks and e leptons. For the quarks,
we could have equally well chosen the Abelian factor to be
Uð1Þu; however, assuming that the Yukawa couplings of
the d quarks (and of the leptons [2,3]) break an additional
symmetry with respect to the Yukawa couplings of the u
quarks can provide a simple justification for the suppres-
sion for the bottom (and tau) mass with respect to the mass
of the top. We will exploit this symmetry argument in what
follows.

Guided by the previous considerations, we assume a

fundamental symmetry that contains GB ¼ GðqÞ
B � GðlÞ

B as

a subgroup that gets spontaneously broken, and that under
the quark Eq. (1) and lepton Eq. (2) factors, the SM
fermions transform, respectively, as

Q¼ð3;1;1Þ0; u¼ð1;3;1Þ0; d¼ð1;1;3Þ1; (3)

‘ ¼ ð3; 1Þ0; e ¼ ð1; 3Þ1: (4)

As regards the wayGB is dynamically broken, the simplest
choice is to interpret the SM explicit breaking as the result
of SSB. That is, we assume that the Yukawa couplings of
the SM quarks and leptons correspond to vacuum expec-
tation values (vev) of scalar fields Yu, Yd, Nd and Ye, Ne

that are coupled to the fermions in a symmetry invariant
way via nonrenormalizable operators:

�LY ¼ 1

�
�QYuuHþ 1

�2
Nd

�QYdd ~Hþ 1

�2
Ne

�‘Yee ~H; (5)

where H is the Higgs field (with ~H ¼ i�2H
�) and � is a

large scale where the effective operators in Eq. (5) arise.

Invariance of LY under GðqÞ
B and GðlÞ

B fixes the following

assignments:

Yu¼ð3; �3;1Þ0; Yd¼ð3;1; �3Þ0; Nd¼ð1;1;1Þ�1; (6)

Ye ¼ ð3; �3Þ0; Ne ¼ ð1; 1Þ�1: (7)

A more economical choice than the three multiplets of
scalars in Eq. (6) and the two in Eq. (7) is also possible.
In fact, by assigning Uð1Þd;e charges to Yd;e we would not

need to introduce the complex scalars Nd;e. It is, however,

more convenient to keep a clear distinction between the
hierarchy between the top and bottom/tau masses from the
Yukawa hierarchy between quarks and leptons of the same
type. For simplicity, we will describe the first one by means
of two ‘‘Abelian spurions’’ �Nd;e

� hNd;ei=�, and we take

�Nd;e
� mb;�=mt as given numbers. We will briefly com-

ment on the SSB ofUð1Þd;e only at the end of the paper. The
hierarchy between generations is instead explained via SSB
of the SUð3Þ5 quark/lepton flavor symmetry, that is, by the
dynamical selection of vevs with the required structure.

We note, in passing, that the introduction of the Abelian
spurion �Nd

implies that Uð1Þd invariant operators like
�QYdY

y
dQ are not suppressed with respect to �QYuY

y
uQ.

This is different from what is commonly assumed in mini-
mal flavor violation (MFV) extensions of the SM [4], in
which effective operators involving Yd are always sup-
pressed, and it resembles more MFV extensions of two
Higgs doublets models like supersymmetry [4] in which
tan� plays basically the role of �Nd;e

. The formal differ-

ence is that, in the present case, the absence of suppression

factors for YdY
y
d follows from a symmetry argument.

The assignments in Eqs. (3) and (4) imply that all the
fermions with the same quantum numbers under the SM
gauge group are characterized by the same quantum num-
bers also under GB, and therefore the different generations
contain exact replica of the same set of states. As we will
see, the fact that for each triplet of identical fermions two
Yukawa couplings in first approximation vanish, while the
third one isOð1Þ, corresponds precisely to a nonsymmetric
ground state that yields a symmetry breaking pattern in
qualitative agreement with observations. Note that this
picture is fundamentally different from assuming new sym-
metries under which fermions with the same SM quantum
numbers transform differently; that is, for example,
the basic ingredient of the popular Froggatt-Nielsen mecha-
nism [5]. In that case the hierarchy of the Yukawa couplings
follows from a dimensional hierarchy in the corresponding
effective Yukawa operators, which is obtained by assigning
to the lighter generations larger values of new Abelian
charges. The fact that fermion families appear to replicate
would then be just an illusory feature due to our incomplete
knowledge of the fundamental symmetries, and not a fun-
damental property of the SM fermions.
Of course, the idea of promoting the Yukawa couplings

to vevs of scalar fields is not new. A scenario proposed
recently that is based on this idea is, for example, Koide’s
‘‘yukawaon’’ model (see e.g. [6,7]). In that case a unique
flavor symmetry group Oð3Þ is assumed, with symmetric
matrices of Yukawa fields (the yukawaons) transforming
in the reducible ð3� 3Þsymm ¼ 1þ 5 of the group. The

Yukawa fields for the different fermion species are then
distinguished by introducing additionalUð1Þ factors, under
which the fermions and yukawaons transform with suitable
charges. Clearly, since the flavor symmetry is very differ-
ent with respect to the one we are considering, Eqs. (1) and
(2), the scalar potential for the yukawaons also has little
resemblance to the one studied in this paper. A framework
which is more similar to ours is discussed in Ref. [8]. This
paper contains a careful analysis of the broken and unbro-
ken Abelian symmetries, and also introduces a nice set of
correspondences between physical observables (fermion
masses and mixing angles) and invariants of the scalar
potential. Given the large number of observables, this set
includes several nonrenormalizable terms. In contrast, we
only consider the renormalizable potential, which contains
enough information to explore qualitatively the fermion
Yukawa hierarchies but, as we will see, not enough to also
pin down the quark mixing angles. Another difference is
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that Ref. [8] avoids the introduction of Abelian spurions by
assigning Abelian charges to the Yukawa fields, with the
result that some terms that are allowed for us are forbidden
in their case by the Uð1Þ symmetries. A study of the scalar
potential for the Yukawa fields, including higher order
operators, has also been presented in [9], which also puts
forth the possibility that the Yukawa couplings are gener-
ated from pairs of vevs of scalar fields that transform,
respectively, only under SUð3ÞQ and SUð3Þu;d. This sce-

nario can be simply realized by replacing, for example, Yu

in Eq. (5) by a pair of fields �L
u � �R

u=�. Altogether, while
the issue of constructing a symmetry invariant scalar po-
tential for the Yukawa fields, including higher dimension
invariant terms, has already been addressed, for example,
in the quoted Refs. [8,9], to our knowledge the possible
effects of quantum corrections to the effective potential,
that in our approach play a crucial role, have not been
considered before.

Symmetry invariants and the T, A, D parametrization

To carry out a basis independent analysis of the SSB of
the SUð3Þ5 flavor symmetry, it is convenient to write the
multiplets of scalar ‘‘Yukawa fields’’ Yu;d;e in their singular

value decomposition:

Yu ¼ V y
u�uUu; Yd ¼ V y

d�dUd;

Ye ¼ V y
e �eUe; (8)

where the matrices V and U are unitary while the matri-
ces � are diagonal with nonnegative real entries:

�u ¼ diagðu1;u2; u3Þ; �d ¼ diagðd1; d2; d3Þ;
�e ¼ diagðe1; e2; e3Þ:

Note that while the matrices of singular values � are
unique (modulo reordering of their entries) V and U are
not, and can be redefined according to V ! �V , U !
�U, where � is a diagonal matrix of phases. This can be
used to remove three phases, for example, in V .

We now require invariance of the scalar potential for the
Yukawa fields under the special bi-unitary transformations

Yu;d ! VQYu;dU
y
u;d and Ye ! V‘YeU

y
e with detVQ;‘ ¼

detUu;d;e ¼ þ1. Assuming three generations, for the

u-quark sector we can write the following invariants:

Tu ¼ TrðYuY
y
u Þ ¼

X
i

u2i ; (9)

Au ¼ Tr½adjðYuY
y
u Þ� ¼ 1

2

X
i�j

u2i u
2
j ; (10)

D u ¼ detðYuÞ ¼ ei�u

Y
i

ui � ei�uD; (11)

where �u ¼ arg½detðV y
uUuÞ�, and a similar relation holds

for D�
u ¼ detðYy

u Þ with �u ! ��u. The invariance of the

trace Tu and of the determinant Du under a SUð3ÞQ �
SUð3Þu transformation Yu ! VQYuU

y
u is obvious. The sec-

ond invariant in Eq. (10) is the trace of the adjugate, that is,
the trace of the transpose of the matrix of cofactors. Its
invariance can be proved as follows: Laplace’s formula
applied to the product of two n� nmatrices A and B reads
ðABÞ � adjðABÞ ¼ detðABÞ ¼ detðAÞ � detðBÞ from which
the product rule adjðABÞ ¼ adjðBÞ � adjðAÞ is easily deri-
ved. Moreover, for a special unitary matrix adjðVÞ ¼ Vy.
Invariance of Au under YuY

y
u ! VQYuY

y
u V

y
Q then follows

straightforwardly. For general n� n matrices, Tuu ¼
TrðYuY

y
u YuY

y
u Þ ¼ P

iu
4
i is also a renormalizable invariant.

However, in the case of 3� 3 matrices it is not an inde-
pendent one: Tuu ¼ T2

u � Au. Two other sets of T, A, D
invariants completely similar to Eqs. (9)–(11) can be
written also for Yd and Ye, and thus all the results that
we will derive for Yu apply equally well to them, too.
Therefore, in the following we will drop wherever possible
the subscript u, and we will refer to the parametrization of
the T, A, D invariants in Eqs. (9)–(11) as the TAD
parametrization.

III. SYMMETRY BREAKING

In this section we study the general potential for
the Yukawa fields Yu;d;e invariant under GB, and we clas-

sify the different minima that yield SSB. The renormaliz-
able potential constructed from the T, A, D invariants,
Eqs. (9)–(11), reads1

V̂ ¼ �4V ¼ �4ðVT þ VA þ VDÞ; (12)

VT ¼ �

�
T �m2

2�

�
2
; (13)

VA ¼ ~�0A; (14)

VD ¼ ~�Dþ ~��D� ¼ 2� cosð	þ �ÞD: (15)

In the first equation we have factored out a large scale �
that, for simplicity, can be identified with the effective
scale in Eq. (5), so that all the parameters and fields in V ¼
VT þ VA þ VD have no dimensions; for definiteness, we
also assume that all the Lagrangian parameters are renor-
malized at this same scale. VT in Eq. (13) contains the two
invariants constructed from the trace VT ¼ �T2 �m2T
plus an irrelevant constant. We require � > 0 and m2 > 0
in order to have a potential bounded from below and to
trigger SSB. The last equality in Eq. (15) is obtained by
defining ~� ¼ �ei	, that is, � � j ~�j ¼ j ~��j. The parame-

ter ~�0 that multiplies A can be either positive or negative,

1According to our simplification of trading the scalars Nd;e for
the two spurions �Nd;e

, we initially omit writing NNyT terms. A
coupling with the Higgs HHyT can also be omitted as long as
hHHyi=�2 � m2.
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and we need to consider both possibilities. In the following
we will refer to its absolute value by simply dropping the

tilde, �0 � j~�0j.
By exploiting the TAD parametrization introduced in

Eqs. (9)–(11) the hierarchy of the SM Yukawa couplings
can be conveniently described in terms of vevs of invari-
ants, and corresponds to minima that satisfy the condition

hDi1=3 � hAi1=4 � hTi1=2: (16)

Of course, in our dimensionless approach the exponents can
be equally well dropped. There is a simple correspondence
between the TAD vevs and the vevs of the field components
huii. For example, assuming that a vev h�i with a large
hierarchy for its components has been found, by labeling its
entries according to hu1i � hu2i � hu3i we have

hAi
hTi2 � hu22i

hu23i
;

hDi2
hTihAi �

hu21i
hu23i

: (17)

Since the value of the top Yukawa coupling fixes hTui �
hu23i � 1 and naturalness suggests hTd;ei � Oð1Þ as well, it
follows that vacua characterized in the first approximation
by hDi ¼ hAi ¼ 0 and hTi � 1 are well suited for generat-
ing the Yukawa hierarchies.

From Eq. (13) we immediately see that VT is minimized

for values on the spherical surface in huii space hTi ¼ m2

2� .

Note that while we must require m2

2� � 1, a perturbative

� < 1 implies m2 < 1, and thus in the first approximation
contributions of nonrenormalizable operators to V can be
neglected. As regards A and D, they are both maximized
for symmetric vacua h�i ¼ ðus; us; usÞ and minimized
when they vanish. To ensure hDi¼0 either h�i¼	


2�	

or at least one entry in � must vanish, while for hAi ¼ 0
two entries must vanish. Which particular minimum on the
surface hTi ¼ const is selected then depends on the signs

and values of ~�0 and of � � cosð	þ �Þ. Below we classify
the different types of minima yielding SSB, and we show
that vacua with the required property hDi ¼ hAi ¼ 0 in-
deed occur.

Case 1.—~�0 ¼ ��0 < 0. VA is negative and its absolute
value is maximized for symmetric vacua h�i ¼ ðus; us; usÞ.
A negative value of VD further lowers the minimum, which
fixes h�i ¼ 
�	, while D is also maximized for sym-
metric vacua. The potential is bounded if �0 < 3�, in which
case we obtain

us ¼ �

4ð3�� �0Þ

2
41þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8ð3�� �0Þm

2

�2

s 3
5: (18)

This case yields a phenomenologically uninteresting non-
hierarchical pattern hTi � hDi � hAi � 1.

Case 2.—~�0 ¼ �0 > 0. In this case VA ¼ �A is positive
and is minimized when A ¼ 0, which favors vacua with
two vanishing entries h�i ¼ ð0; 0; utÞ. The value of VD is
extremized in either of the following cases.

Case 2a.—VD¼�2�D, which occurs for h�i¼
�	.
In this case h�i acquires a symmetric structure ðus; us; usÞ
that maximizes D.
Case 2b.—h�i has at least one vanishing entry yielding

VD ¼ 0. In this case h�i is left undetermined. h�i ¼
ð0; 0; utÞ is in fact favored over a single vanishing entry
because it also ensures VA ¼ 0. The two vevs are

us ¼ �

4ð3�þ �0Þ

2
41þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8ð3�þ �0Þm

2

�2

s 3
5; (19)

ut ¼ mffiffiffiffiffiffi
2�

p : (20)

Since VðutÞ ¼ 0, vacua with two vanishing entries are
selected if VðusÞ is positive, which occurs for

�2

m2
< 2�

��
4þ �0

�

�
3=2 �

�
8þ 3

�0

�

��
: (21)

In this case hTi � 1 while hDi ¼ hAi ¼ 0, which repre-
sents an interesting first approximation to Eq. (16).
A natural question to ask is what the effect could be

on the hierarchies of vevs of adding to the tree level
potential nonrenormalizable terms like, for example, Tn

m ¼
ðT½ðYYyÞm�Þn, An

m ¼ ðA½ðYYyÞm�Þn, Dn
m ¼ D½YnYym�.

One can easily convince himself that no qualitative differ-
ences would arise. This is because after imposing the SSB
condition hTi ¼ const � 0 all these terms are maximized
for symmetric vacua h�i ¼ ðus; us; usÞ and minimized
when one or two entries vanish, which still gives the
same types of vacua found with the renormalizable poten-
tial. In particular, there is no way to lift the vanishing vevs
by introducing higher order operators, and no hierarchical
patterns can be generated starting from Oð1Þ parameters
(that is, without resorting to fine-tuning).

A. Lifting the vanishing vevs

In case 2b the vacua are characterized by hDi ¼
hAi ¼ 0, which is a good starting condition to generate
minima satisfying Eq. (16). Of course, to have an accept-
able phenomenology we must lift these two vevs to appro-
priately small, but nonvanishing values. In order to achieve
this let us add to V an invariant term proportional to the
logarithm of the three-point interaction:

VD!VDþVð1Þ
D ¼2�cosð	þ�ÞDð1þcD logDÞ; (22)

where cD is a small numerical factor. Here, at the cost of

some arbitrariness, we justify the introduction of Vð1Þ
D only

on the basis of symmetry properties and of naive dimen-
sional analysis; however, we can expect that terms of this
type will be generated by quantum corrections to the
effective potential, in which case the loop coefficient cD
would be computable. The effect of Vð1Þ

D is that of generat-

ing a large negative log that shifts the termDð1þ cD logDÞ
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towards a nonvanishing negative value. The minimum is
then obtained for h�i ¼ �	 and for a nonvanishing, but
exponentially suppressed value of D:

hDi ¼ e�ðð1=cDÞþ1Þ � �D: (23)

This gives an elegant realization of an old remark by
Nambu [10]. Given that in the unperturbed solution h�i ¼
ð0; 0; utÞ we have ut � 1, Eq. (23) implies hu1i � hu2i �
uu � uc � �D. Note that logD is unable to differentiate
between uu and uc, and that terms involving higher powers
of logD are also ineffective for distinguishing these two
entries. However, adding a logA term makes the magic that
an exponential hierarchy is induced also between the two
suppressed entries uu and uc.

VA ! VA þ Vð1Þ
A ¼ ~�0Að1þ cA logAÞ (24)

in fact yields

hAi ¼ e�ðð1=cAÞþ1Þ � �A: (25)

Then, if we assume cD < cA the hierarchical pattern in
Eq. (16) is realized. In terms of vevs of component fields,
setting, for simplicity, ut ¼ 1, Eqs. (23) and (25) give a
system of two equations,

uu � uc ¼ �D; u2u þ u2c ¼ �A � �2D; (26)

that has real solutions for �D 
 �A=2. At first order in
�D=�A the solutions are

u2u ¼ �2D
�A

; u2c ¼ �A; (27)

where the particular labeling u and c is of course arbitrary.
Equivalently, inserting (23) and (25) into Eq. (17) we
obtain

u2c
u2t

� e�ðð1=cAÞþ1Þ;
u2u
u2c

� e�2ðð1=cDÞ�ð1=cAÞÞ: (28)

Without introducing any unnaturally small parameters, we
thus obtain a pattern of Yukawa couplings that is charac-
terized by an exponentially strong hierarchy. For the up-
quark sector, for example, we need cA ��ðloghAuiÞ�1 �
0:10 and cD ��ðloghDuiÞ�1 � 0:06.2 Finally, we should
also add to the �T2 interaction a logT correction. This,
however, has no particular consequences since, in any case,
the minimization of VT fixes hTi � 1.

B. Coupling the up- and down-quark sectors

As long as the up- and down-quark sectors are treated
separately, the relative hierarchical ordering of the vevs
of the component fields huii and hdii is irrelevant, and
we have a set of 3!� 3! equivalent vacua. This large
degeneracy is partially reduced when the renormalizable

invariants that couple the two sectors are included. There
are two possible terms:

Tu � Td ¼ TrðYuY
y
u Þ � TrðYdY

y
d Þ ¼

X
ij

u2i d
2
j ; (29)

Tud ¼ TrðYuY
y
u YdY

y
d Þ ¼ TrðVy�2

uV�
2
dÞ; (30)

where V is a unitary matrix of fields that, in terms of the bi-

unitary parametrization Eq. (8), is given by V ¼ V uV
y
d .

It is now convenient to replace Tud by the invariant
combination

Aud � Tu � Td � Tud: (31)

Note that Aud is not related to adjugate matrices, and its
invariance follows solely from its definition. The contribu-
tion to the scalar potential from coupling the u and d
sectors is

Vud ¼ 2~�udTu � Td þ ~�0
udAud þ . . . ; (32)

where the dots stand for logarithmic terms, that we expect
could be relevant (see below) but whose effects in this case
are difficult to analyze analytically, and thus, as a first
approximation, we leave them out. We now show that the
first term in Vud yields the same vacuum conditions im-
plied by Eq. (13), that is, that the minimum of the potential
is localized on the surface of two three-spheres of
constant hTui and hTdi. We start by shifting the couplings
of the terms linear and quadratic in Tu;d [see Eq. (13)]

according to

m2
u;d ! m2

u;d þ ~m2
ud; (33)

�u;d ! �u;d þ ~�ud; (34)

where ~m2
ud in the first line is an arbitrary constant of the

same sign as ~�ud that wewill fix below.With a little algebra,
and omitting irrelevant constants, we can rewrite this as

VTðuþdÞ � VTu
þ VTd

þ 2~�udTu � Td

¼ �u

�
Tu � m2

u

2�u

�
2 þ �d

�
Td � m2

d

2�d

�
2

þ ~�ud

�
Tu þ Td � m2

ud

2�ud

�
2
: (35)

Note that the ratio ~m2
ud=

~�ud that would appear in the last set

of square brackets is always positive by construction, which
justifies omitting the tilde on both parameters. We can now
fix m2

ud to satisfy

m2
ud

�ud

¼ m2
u

�u

þm2
d

�d

; (36)

where �u;d and m
2
u;d are the redefined parameters appearing

in the right-hand side of Eqs. (33) and (34). If ~�ud >

� �u��d

�uþ�d
SSB occurs, with the minimum of the potential

2Because the number of field components in Y is large, N ¼
18, a typical loop factor N

64
2 � 0:03 is of about the correct size.
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located on the two surfaces hTui ¼ m2
u

2�u
and hTdi ¼ m2

d

2�d
. Note

that the mixed Tu;d � Te terms can also be ‘‘reabsorbed’’ in a

similar way. Genuinely new effects, and, in particular, the
relative ordering of the Yukawa hierarchies of the u and d
sectors, come from the second term in Eq. (32) that can be
written more explicitly as3

~� 0
udAud ¼ ~�0

ud

X
ij

ð1� jVijj2Þu2i d2j : (37)

Since V is unitary, jVijj2 
 1, and Aud then is the sum of

positive semidefinite terms that cannot all vanish, which

ensures Aud > 0. For ~�0
ud ¼ �0

ud > 0 the contribution to

the potential is then minimized when Aud is at its minimum,
and, as wewill now show, this occurs when hViji approaches
a diagonal form. Let us consider the vacuum configurations
obtained in case 2b and label the two largest component
vevs as ut � db �Oð1Þ. All the other vevs are exponen-
tially suppressed and generically ofOð�Þ. We can then write

Aud ¼ ð1� jVtbj2Þ �Oð1Þ þ X
ðijÞ�ðtbÞ

ð1� jVijj2Þ �Oð�Þ:

(38)

Small values Aud �Oð�Þ can result only when the modulus
of the field Vtb that couples to the entries in �u and �d that
have the largest vevs is exponentially close to 1, and thus
the minimum must occur around this configuration.
Unitarity then implies that the off-diagonal vevs hjVtjj2i
(j � b) and hjVjbj2i (j � t) are accordingly suppressed. In

this way a ‘‘third generation structure’’ emerges, in the
sense that t and b get almost decoupled from the other
quarks. For the two lighter generations it is more difficult to
carry out this argument: we would need to confront various
different contributions to Aud that are all of Oð�Þ, and thus

we are not allowed to neglect either Vð1Þ
D;A that are also of

Oð�Þ, or a logTud term that can be expected to induce
corrections of a similar size. However, it is also clear that
at this level we do not have enough information to deter-
mine univocally the structure of hVi. For example, the fact
that Vij enters Eq. (38) only through its modulus square

implies that there is no information on complex phases.
To summarize, we have seen that once the component

vevs in h�ui and h�di are conventionally ordered in the
same way, e.g. with increasing size, minimizing the cou-
pling term Aud pushes hVi to approach a diagonal form, a
dynamical behavior that can provide an explanation for the
most puzzling feature of the Cabibbo Kobayashi Maskawa
matrix. Although only qualitative, this result is certainly
nontrivial; in fact a priori nothing could have guaranteed
that the largest mixings will not occur between the Oð1Þ

and theOð�Þ components in h�u;di, and actually something

like this would occur for ~�0 ¼ ��0 < 0.

IV. WHY THREE GENERATIONS?

Our approach to explain the fermion mass hierarchy
does not provide an explanation for why there are three
families; however, it does imply an interesting connection
between the number of generations ng and the qualitative

features of the Yukawa couplings’ hierarchy. Since this
section contains mainly simple arguments based on dimen-
sional analysis, we simplify the discussion by considering
only the case of a real determinant D ¼ D.
For ng > 4, A and D have dimðA;DÞ> 4 and thus

cannot appear in the renormalizable potential. However,
Tuu ¼ Tr�4

u is now independent of Tu and Au and provides
a new renormalizable invariant term. The potential can be

conveniently written as V ¼ �ðT � �2Þ2 þ ~�0P
i�ju

2
i u

2
j ,

where the first term yields hTi ¼ �2 while (for ~�0 ¼
�0 > 0) minimization of the second term implies that
ng � 1 components have vanishing vevs. We see that the

absence of additional renormalizable interactions does not
allow either lifting the vanishing determinant or generating
a hierarchical pattern for the ng � 1 vanishing couplings.

If ng ¼ 4, then dimðDÞ ¼ 4 and we can arrange for an

exponentially suppressed hDi � 0. However, dimðAÞ ¼ 6,
and then besides T2

u, Tuu, and D, there are no other renor-
malizable interactions. Therefore, also in this case it is not
possible to remove all the degeneracies between the sup-
pressed vevs and obtain a fully hierarchical pattern.
The case ng ¼ 2 is a bit more involved and requires a

more detailed discussion. For 2� 2 matrices Au ¼ Tu and
Tuu ¼ T2

u � 2D2
u, so we just have the two basic invariants

T and D. We can write the renormalizable potential as

V̂ ¼ �4V ¼ �4ðVT þ VDÞ; (39)

VT ¼ �

�
T �m2

2�

�
2
; VD ¼ ~�0

�
Dþ ~�2

2 ~�0

�
2
: (40)

SSB occurs for � > 0 and m2 > 0 and, if ~�0 ¼ �0 > 0 and
~�2 ¼ �2 > 0, the determinant vanishes at the minimum,
implying a vanishing vev for one component field. We can
try to lift hDi ¼ 0 by adding to the �0D2 interaction a
logarithm:

VD ! VD þ Vð1Þ
D ¼ �2Dþ �0D2ð1þ cD logDÞ: (41)

Varying with respect to D and equating to zero gives the
condition

loghDi ¼ �
�
1

cD
þ 1

2

�
� �2

2�0cD
1

hDi � ��� �

hDi : (42)

We have a minimum if � 
 hDi � 1, where the second

inequality, which implies 1
cD

� 2�0
�2 �Oð1Þ, follows from

3Using unitarity
P

jjVijj2 ¼ P
jjVjij2 ¼ 1, we can also

write Aud �
P

i�ju
2
i d

2
j ¼

P
iju

2
i ðd2i � d2j ÞjVijj2 ¼

P
ijd

2
i ðu2i �

u2j ÞjVjij2 which puts in evidence that if hdii ¼ hdji or huji ¼huii the corresponding hViji remains undetermined.
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requiring a large hierarchy. Let us seek a solution of the
form

hDi ¼ e�ð��WÞ (43)

with W a suitable function. Substituting this formal solu-
tion into Eq. (42) yields

WeW ¼ ��e�: (44)

The function W defined implicitly through WðxÞeWðxÞ ¼ x
is known in mathematics as the Lambert W function [11].
On the negative real axisW is real and two-valued over the
interval �1=e 
 x 
 0, with Wð�1=eÞ ¼ �1, and the
two branches W0 and W�1 are identified according to
W0ðxÞ � �1 and W�1ðxÞ 
 �1. To suppress hDi ade-
quately we need to make ��W sufficiently large.
Given that 1

cD
� Oð1Þ, � ¼ 1

cD
þ 1

2 is never large. A large

and negative W is, in principle, possible given that
W�1ðxÞ!x!0 �1. However, for small negative values
of its argument, jW�1j grows only logarithmically,
W1ð�xÞ � logx� logð� logxÞ, and therefore an exponen-
tial suppression of hDi would require an exponentially
small �. Therefore, for two generations and natural values
of the parameters, no strong hierarchy can result. We can
then conclude that in our scenario a scalar potential invari-
ant under a SUðngÞ5 (flavor) symmetry can naturally yield

a fully hierarchical pattern of Yukawa couplings only when
ng ¼ 3.

V. SPONTANEOUS BREAKING OF
THE ABELIAN SYMMETRIES

What we have done until now can be easily generalized
to include the fieldsNd;e responsible for the breaking of the

Abelian subgroups Uð1Þd;e. Let us define for i ¼ d, e the

Uð1Þi invariant bilinears TNi
¼ NiN

y
i . These two invariants

can couple in a renormalizable way only among them-
selves or to the traces Tu;d;e. Omitting A, D, and logarith-

mic terms, by generalizing the derivation of Eq. (35) we
can write the scalar potential for the quadratic invariants
T ¼ ðTu; Td; Te; TNd

; TNe
Þ as

VT ¼ X
IJ

�IJ½ðT I � �2
I Þ þ ðT J � �2

JÞ�2; (45)

where �IJ ¼ �JI. If all the eigenvalues of the Hessian
@I@JVT are positive, the potential is bounded and SSB
occurs, resulting in the vevs hT Ii ¼ �2

I . There is no need
to give the explicit relations between �IJ, �2

I and the
parameters �, m2 that appear in the potential when written
in a more familiar form; the important qualitative point is
that one expects all �2

I �Oð1Þ. While, on the one hand,
this means that the inclusion of SSB of Uð1Þd;e leaves the
results of the previous sections unaffected, on the other
hand the ratios between the bottom/tau masses and the

mass of the top suggest instead �N � 10�2. It would be
rather unpleasant, after reaching so far, abandoning at this
point our dogma about naturalness and assuming ad hoc
values for the fundamental parameters in order to repro-
duce these two small numbers. However, there are other
possible ways out. For example, we can assign to the SUð2Þ
singlets d and e Abelian charges larger than 1, which
would imply a stronger dimensional suppression of their
effective Yukawa operators. Taking, for example,
�N � 0:3, that we can still regard as a natural value, then
a charge of 4 would yield the required small factor
�4
N � 10�2. Alternatively, we could simply assume that

the heavy messengers carrying Uð1Þd;e charges needed to

generate the effective Yukawa operators for d and e [see
Eq. (5)] have a mass scale �0 about 2 orders of magnitude
larger than the scale � of the neutral messengers. In this
way �N � ð�=�0Þ�T � 10�2 is easily obtained.

VI. CONCLUSIONS

Let us recap what we have done and what we have
achieved. In the SM, the fermions’ gauge invariant kinetic
terms are characterized by a SUð5Þ5 quark/lepton flavor
symmetry that is broken explicitly by the Yukawa cou-
plings. It is a big puzzle why the values of these symmetry
breaking parameters span 6 orders of magnitude, with
no apparent regularity besides the fact that their strong
hierarchy is qualitatively similar for all three types of
fermions. Following the same approach proposed in recent
works [8,9], we have promoted this symmetry to an exact
one that is broken spontaneously by the ground state of a
symmetry invariant scalar potential. We have chosen the
multiplets of scalar fields in such a way that their vevs
correspond precisely to the Yukawa couplings so that,
among other things, by construction the SM Yukawa cou-
plings are the only source of flavor violation. This pro-
motes the spurion technique (widely used in connection
with the MFV hypothesis) to a concrete piece of funda-
mental physics.
We have introduced a slight variant with respect to the

most popular MFV scenarios by factorizing out the break-
ing of the two Abelian factors Uð1Þd;e from the breaking of

the non-Abelian SUð5Þ5 flavor group. This allowed us to
treat the lepton, and up- and down-quark sectors in a
similar way. We have first considered the three sectors
uncoupled, and we have parametrized the respective
potentials in terms of the three TAD invariants, which
renders the classification of the structures of the symmetry
breaking vacua intuitively simple. We have found that for a
large part of the parameter space the ground state is char-
acterized by one component for each multiplet of Yukawa
fields with an Oð1Þ vev, while the vevs of the other com-
ponents vanish. This can be considered as a first interesting
result of our analysis.
To each three-point and four-point scalar interaction

we have then added a symmetry invariant logarithmic
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correction, and we have shown that this has the effect of
lifting the vanishing vevs to exponentially suppressed val-
ues. In this way a Yukawa hierarchy that is qualitatively
similar for all three types of fermions arises quite naturally.
Highlighting how the fermion mass hierarchies could be
generated in a natural way by quantum corrections to the
effective scalar potential of the Yukawa fields is probably
the most interesting observation that stems from our
analysis.

As a further step we have included renormalizable terms
that couple the up- and down-quark sectors, and we have
found that the corresponding contributions to the scalar
potential are minimized when the heaviest (top and
bottom) quarks are almost decoupled from the lighter
ones. It is precisely the suppression of light-heavy mixings
that gives rise to the family structure of the quarks, and this
suppression naturally occurs in our approach.

We have also considered briefly what would happen for
a generic number of generations, and we have concluded
that for any number different from 3 a fully hierarchical
pattern cannot result. This can be restated in a stronger way
by saying that, within our scenario, the observed hierarchy
of the Yukawa couplings implies precisely three genera-
tions. Finally, we have argued that accounting for the SSB
of the two Uð1Þd;e Abelian factors does not modify the

previous results.
Clearly, several issues related to this work deserve fur-

ther study, and some are listed below.
Nambu-Goldstone bosons (NGB).—SSB implies the

presence of NGB, for which strong constraints exist from
unseen hadron decays, astrophysics, and from flavor vio-
lating processes. A standard solution is gauging the sym-
metry [12,13]. A very large scale suppressing the NGB

couplings to ordinary particles could also provide a
way out.
Leptons.—We have only considered the SM lepton sec-

tor, which is known to be incomplete. It would be interest-
ing to extend this scenario to the most popular models for
massive neutrinos, and see if something could be said
about neutrino masses and mixings.
Cabibbo Kobayashi Maskawa matrix.—We have shown

how the two heaviest quarks naturally decouple from the
lighter ones, hinting at the emergence of a family structure
for the quarks. However, we have also concluded that the
full structure of hVi remains undetermined because there is
not enough information in the renormalizable scalar po-
tential. Clearly this point deserves further study.
Effective potential.—What we consider by far the most

important issue is verifying if the logarithmic terms that
play such a crucial role in our construction are effectively
generated by quantum corrections, and with reasonable
values of the coefficients. We anticipate that, because of
the several different types of interactions and of the large
number of component fields, this appears to be a nontrivial
task. However, once this program is carried out, if the
required logarithms appear then we believe that a quite
interesting candidate for a theory of the SM Yukawa sector
will be found.
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