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Technical aspects of the evaluation of the overlap of Hartree-Fock-Bogoliubov wave functions
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Several technical aspects concerning the evaluation of the overlap between two mean-field wave functions
of the Hartree-Fock-Bogoliubov type are discussed. The limit when several orbitals become fully occupied is
derived as well as the formula to reduce the dimensionality of the problem when exactly empty orbitals are
present. The formalism is also extended to deal with different bases for each of the wave functions. Several
practical results concerning the evaluation of pfaffians, as well as the canonical decomposition of norm overlaps,
are also discussed in the Appendices.

DOI: 10.1103/PhysRevC.84.014307 PACS number(s): 21.60.Jz

I. INTRODUCTION

To compute the modulus and phase of the overlap of two
mean field wave functions of the Hartree-Fock-Bogoliubov
(HFB) type, a new formulation, based on the pfaffian of
a skew-symmetric matrix, was recently proposed [1]. It
improves on previous treatments of the problem as described
in Refs. [2,3]. The new formulation is based on the powerful
concept of fermion coherent states [4–8] and involves the
evaluation of a quantity called the pfaffian of a skew-symmetric
matrix—see, for instance [9] for a definition of the pfaffian in
a physical context—that is similar in spirit (linear combination
of products of matrix elements) to the determinant of a general
matrix. In the derivation [1] of the formula for the overlap it
is assumed that the two mean-field wave functions of the HFB
type (see [10] for definition and properties) can be related to
a common reference one (usually chosen as the true particle
vacuum) by means of their Thouless parametrization. It is
very likely to find cases where the Thouless parametrization
is ill defined because, for that particular case, it involves the
inverse of a (near) singular matrix. This situation corresponds
to the presence of particles (or quasiparticles in the general
case of an arbitrary HFB vacuum) that have an occupancy of
one, rendering the wave function orthogonal to the common
(or reference) wave function. To handle those singular cases
it was suggested in [1] to just change the common reference
mean field wave function in order to modify the occupancies
with the hope that none of them will be close to one. However,
it is desirable to have an alternative for those cases where the
change of reference wave function is either not possible or
too cumbersome to carry out. Therefore, the formal limit of
occupancies going to one is considered and a formula which
is well defined in that limit is derived. Using the same kind
of ideas, the case where some particles (or quasiparticles)
have zero occupancy is also handled. Those excitations do
not contribute to the overlap and therefore the formula for
the overlap involves matrices smaller than the original ones.
The new formula should be regarded as a thrifty alternative
to the original formula for those situations where the wave
functions are expanded in huge bases. Similar manipulations
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to reduce the size of matrices and/or deal with full occupancies,
were considered in Refs. [11–14]. In addition to the mentioned
limits, the case where each of the mean field wave functions
are expressed in different single-particle basis is considered.
The two bases are related to each other by a general (not
necessarily unitary) transformation. The result obtained is
useful, for instance, to compute the overlap of the operators for
spatial transformations (as translations or rotations) between
arbitrary mean field HFB wave functions. The result is general
enough as to allow for transformations that do not map
the single particle basis into itself (noncomplete basis under
the transformation). This was already considered in [11] in
a general framework. However, in [11] the arbitrariness in
the phase of the overlap was not considered at all. In [14]
the implications of considering two different bases was also
addressed, but there it was implicitly assumed that both
bases shared the same block structure defining the conjugate
states. This is a rather stringent assumption that does not
hold in general as, for instance, in the case of time reversal
breaking cranking wave functions. Finally, some useful results
concerning the formal evaluation of pfaffians are discussed in
the appendices. These results can be of interest elsewhere as the
use of pfaffians is becoming increasingly popular [15–17]. To
cover also more practical aspects, the reader is referred to [18]
for a thorough description of useful algorithms to compute
numerically and symbolically the pfaffian of arbitrary skew
symmetric matrices.

The relevance of the present formulation is a direct
consequence of the increasing popularity of the so-called
“beyond mean-field methods” in nuclear physics [12,19–23]
that demand the evaluation of both the modulus and phase
of the overlaps between arbitrary HFB wave functions. A
reliable determination of the sign of the norm can also be
useful in to order to pin down the location of the zeros of
the HFB overlaps [24]. The location of the zeros (nodal lines)
can be a useful piece of information in assessing the impact
of the so-called “pole problem” that plagues present beyond
mean-field calculations [25–27] and could help to envisage
strategies to avoid it.

In Sec. II the formulas pertaining the two limits considered
are derived and their implications discussed. The procedure
to change to a different common reference HFB vacuum
that could be an easy alternative, in some cases, is also
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discussed. In Sec. III the case where the two HFB wave
functions are expressed in different bases is discussed. Finally,
in Appendices A, B, and C some relevant results required in
the derivations are discussed.

II. EVALUATION OF THE OVERLAP IN VARIOUS LIMITS

To begin with, it is convenient to remind the reader about
the notation used and the results obtained in [1]. The goal is
to evaluate both the modulus and phase of the overlap 〈φ0|φ1〉
between two HFB wave functions |φ0〉 and |φ1〉 which are
given in terms of the Thouless parametrization of a general
HFB wave function

|φi〉 = exp

(
1

2

∑
kk′

M
(i)
kk′a

+
k a+

k′

)
|0〉. (1)

The skew-symmetric matrices M (i) = (V (i)U (i)−1)∗, of dimen-
sion N × N (N is assumed to be an even number N = 2q

as required for fermions), are built from to the coefficients
U (i) and V (i) of the Bogoliubov transformation defining the
quasiparticle annihilation operators

α
(i)
k =

∑
l

U
(i)∗
lk al + V

(i)∗
lk a+

l (2)

associated to |φi〉. The above wave functions are normalized to
have 〈0|φi〉 = 1 instead of the more traditional normalization.
As shown in [1] the overlap can be written as

〈φ0|φ1〉 = SNpfM (3)

in terms of the phase SN = (−1)N(N+1)/2 and the 2N × 2N

skew-symmetric matrix

M =
(

M (1) −I

I −M (0)∗

)
. (4)

To obtain the results of the present section the Bloch-Messiah
decomposition of the Bogoliubov amplitudes [10], namely
U (i) = D(i)Ū (i)C(i) and V (i) = D(i)∗V̄ (i)C(i), is used. In the
previous expressions, D(i) and C(i) are given unitary matrices
and Ū (i) and V̄ (i) are real matrices with special diagonal forms.
By using this decomposition we can write

M (i) = D(i)M
(i)
C D(i) T , (5)

where the skew-symmetric matrix M
(i)
C is in “skew-symmetric

diagonal” (or canonical) form

M
(i)
C =

(
0 M̄ (i)

−M̄ (i) 0

)
. (6)

The connection between the diagonal matrix M̄ (i)and the Ū (i)

and V̄ (i) ones is evident in its matrix elements

M̄
(i)
jk = v

(i)
j

u
(i)
j

δjk. (7)

The extreme values of the ratios v
(i)
j /u

(i)
j are infinity for fully

occupied levels (v(i) = 1) or zero for empty levels (v(i) = 0).

For further developments it is convenient to single out those
values and write

M̄ (i) =
(

N̄ (i) 0

0 Ō(i)

)
, (8)

where the diagonal matrix Ō (i) contains the K (i) diagonal
elements belonging to the extreme values, infinity or zero,
mentioned above. The dimension of this matrix is K (i) × K (i)

and depends on the kind of extreme value considered. Each
of the two limiting cases require different considerations and
hence we will from now on considered them separately.

A. Limit of fully occupied levels

In this case, there are K (i) fully occupied levels in each of
the HFB wave functions |φi〉 and the corresponding diagonal

elements of the matrices M
(i)

[the ones corresponding to Ō (i)

in Eq. (8)] tend to infinity. This is a serious challenge, as
the overlap of Eq. (3) and the norm of the |φi〉 diverge.
The divergence has to be regularized and singled out of the
overlap in order to cancel it out with the diverging factors
coming from the norms of the HFB wave functions. To this
end we write M

(i)
C = R(i)M

(i)
CRR(i)T where we have introduced

the “canonical regularized” (CR) matrix

M
(i)
CR =

⎛
⎜⎜⎜⎝

N̄ (i) 0

0 IK (i)

−N̄ (i) 0

0 −IK (i)

⎞
⎟⎟⎟⎠ (9)

as well as

R(i) =

⎛
⎜⎜⎜⎝
IN−K (i) 0 0 0

0 IK (i) 0 0

0 0 IN−K (i) 0

0 0 0 Ō(i)

⎞
⎟⎟⎟⎠ . (10)

In all the cases IK (i) represents the unit matrix of dimension
K (i). With the above definitions the matrix M of Eq. (4),
which enters the expression of Eq. (3) for the overlap, can be
factorized as

M =
(

R̃(1) 0

0 R̃(0)∗

) (
M

(1)
CR −S

ST −M
(0)∗
CR

)(
R̃(1)T 0

0 R̃(0)+

)
,

(11)

where

R̃(i) = D(i)R(i) (12)

and

S = R̃(1) −1(R̃(0)+)−1. (13)

Using now the property pf(BT AB) = det(B)pf(A) we obtain

pf(M) = det(R̃(1))det(R̃(0)∗)pf(M̃) (14)

with

M̃ =
(

M
(1)
CR −S

ST −M
(0)∗
CR

)
. (15)
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In the case of fully occupied levels, the diagonal matrices Ō(i)

introduced in Eq. (10) tend to infinity and therefore both the
determinants det(R̃(i)) and some of the matrix elements of R̃(i)

diverge. The later is not a problem because only the inverse of
this matrix is required in Eq. (13) and the inverse

R̃(i) −1 = R(i)−1D(i) −1 (16)

is given in terms of R(i) −1 which is a well defined quantity in
this limit

R(i) −1 =

⎛
⎜⎝
IN 0 0

0 IN−K (i) 0

0 0 0K (i)

⎞
⎟⎠ . (17)

As a consequence of this structure, the matrix S of Eq. (13)
is a matrix where the last K (1) rows and last K (0) columns
are zero. This property, together with the special structure
of the matrices M

(i)
CR , can be used to reduce the size of

the matrices required in the evaluation of the overlap. This
simplification is addressed in the next subsection in a slightly
different context. The only truly divergent quantities, namely
the determinants det(R̃(i)), cancel out in the normalized over-
lap 〈φ0|φ1〉/

√|〈φ0|φ0〉||〈φ1|φ1〉| because the norm’s modulus
|〈φi |φi〉| is proportional to |det(R̃(i))|2.

B. Limit of fully empty levels

It is often encounter in numerical applications that many
orbitals have zero occupancies v2 = 0 and therefore they do
not contribute to the overlap. To disentangle those contribu-
tions and reduce, in this way, the computational cost of the
evaluation of the norm it is convenient to consider the limit of
fully empty levels. This limit was considered by other authors
[11–14] in the past but in the more traditional formulation of
the overlap not including the phase. In the limit of fully empty
levels the evaluation of the overlap can be recast in terms of
matrices with dimensionality equal to the number of orbitals
with nonzero occupancy. This is advantageous as the number
of nonzero occupancy levels is usually much smaller than
the total dimensionality of the basis used. The same notation
as before is used, but now the Ō (i) are diagonal matrices
of dimensions K (i) with vanishing diagonal matrix elements.
Therefore, the number of empty levels in each HFB wave
function |φi〉 is 2K (i). In this case it is convenient to reorder
the single particle basis by using the unitary similarity trans-
formations P23 (see Appendix A) permuting blocks 2 and 3,

to write M
(i)
C = P

(i)
23 M

(i)
CRP

(i)T

23 with

M
(i)
CR =

⎛
⎜⎜⎜⎝

0 N̄ (i)

−N̄ (i) 0

0 Ō(i)

−Ō(i) 0

⎞
⎟⎟⎟⎠ =

(
N (i) 0

0 O(i)

)
,

(18)

where the matrices N (i) and O(i) have dimensionality 2(N −
K (i)) × 2(N − K (i)) and 2K (i) × 2K (i), respectively. The ma-
trices P

(i)
23 carrying out the permutations depend on the HFB

wave functions |φi〉 as the size of each block N̄ (i) is not

necessarily the same. The impact of this dependence will show
up in the evaluation of the pfaffian where the determinant of
P

(i)
23 is required. Now, the new unitary matrix D

(i)
R = D(i)P

(i)
23

is introduced to write

M (i) = D
(i)
R M

(i)
CRD

(i) T
R . (19)

Before proceeding further a technical detail has to be settled
down. It is related to the fact that the bipartite structure of
M

(0)
CR differs from the one of M

(1)
CR as a consequence of the

different number of empty levels in each wave function |φi〉.
The simplest case is when both bipartite structures are the
same, that is when K (0) = K (1). This motivates the strategy
used in the following that consists of assuming the same
bipartite structure for each wave function |φi〉 with a common
dimension KS which is the smallest of K (0) and K (1). This
strategy implies that some empty levels in one of the wave
functions will be treated as if they had a nonzero occupancy.
With this in mind, we endow the matrices M

(i)
CR with the new

bipartite structure

M
(i)
CR =

(
N

(i)
C 0

0 O(i)

)
, (20)

where N
(i)
C are 2(N − KS) × 2(N − KS) matrices and the O(i)

have the same dimension 2KS × 2KS . In the same way, the
same bipartite structure is assumed for the matrix D

(i)
R

D
(i)
R =

(
D

(i)
11 D

(i)
12

D
(i)
21 D

(i)
22

)
, (21)

where D
(i)
11 is a square matrix of dimension 2(N − KS) ×

2(N − KS), D(i)
12 is of dimension 2(N − KS) × 2KS , D(i)

21 is of
dimension 2KS × 2(N − KS) and finally D

(i)
22 is of dimension

2KS × 2KS . Using now Eqs. (20) and (21) to reconstruct the
matrix M (i) of Eq. (19) it is realized that in the O(i) → 0 limit
the submatrices D

(i)
12 and D

(i)
22 do not enter the final expression

of M (i). This freedom is used to choose those “arbitrary”
matrices as to simplify some of the results to be obtained below.
A possible choice is D

(i)
12 = 0 and D

(i)
22 = I2KS

that leads to the

matrix denoted D
(i)
R and given by

D
(i)
R =

(
D

(i)
11 0

D
(i)
21 I2KS

)
. (22)

It has the nice property of having a simple inverse

D
(i) −1
R =

(
D

(i) −1
11 0

−D
(i)
21D

(i) −1
11 I2KS

)
(23)

involving only the inverses of the matrices D
(i)
11 which have

a moderate dimensionality. This is the property guiding the
choice made, as we are implicitly assuming that N − KS �
KS and the cost of most of the matrix operations grows as the
cubic power of its dimensionality.
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With all these definitions, the matrixM entering the formula
for the overlap is written as

M =
(

D
(1)
R 0

0 D
(0)∗
R

)(
M

(1)
CR −U

UT −M
(0)∗
CR

) (
D

(1) T

R 0

0 D
(0) +
R

)
,

(24)

where

U = D
(1) −1
R

(
D

(0) +
R

)−1
(25)

(please note that the unitary character of the D
(i)
R matrices is

lost with the introduction of the D
(i)
R ones). Using now the

properties of the pfaffian we obtain

pf(M) = det
(
D

(1)
R

)
det

(
D

(0)∗
R

)
pf(M̃) (26)

= det
(
D

(1)
11

)
det

(
D

(0) ∗
11

)
pf(M̃) (27)

with

M̃ =
(

M
(1)
CR −U

UT −M
(0)∗
CR

)
. (28)

Let us now analyze the structure of the block matrix U entering
the definition of M̃. Using Eq. (25) together with Eq. (22)
allows to write

U =
(

U11 U12

U21 U22

)
(29)

with

U11 = (
D

(0) +
R 11 D

(1)
R 11

)−1
, (30)

U12 = −U11D
(0) +
R 21 , (31)

U21 = −D
(1)
R 21U11, (32)

U22 = I + D
(1)
R 21U11D

(0) +
R 21 . (33)

With this definition, the matrix M̃ of Eq. (51) acquires, in the
O(i) → 0 limit, the block structure

M̃ =

⎛
⎜⎜⎜⎝

N
(1)
C 0 −U11 −U12

0 0 −U21 −U22

UT
11 UT

21 −N
(0) ∗
C 0

UT
12 UT

22 0 0

⎞
⎟⎟⎟⎠ . (34)

This block structure is still not beneficial for the simplification
of the corresponding pfaffian and we need to use the exchange
matrices defined in Appendix A to exchange blocks 2 and 3

M̃R = P23M̃P T
23 =

⎛
⎜⎜⎜⎝

N
(1)
C −U11 0 −U12

UT
11 −N

(0) ∗
C UT

21 0

0 −U21 0 −U22

UT
12 0 UT

22 0

⎞
⎟⎟⎟⎠ . (35)

Using the formulas of Appendix B for the pfaffian of a bipartite
matrix we obtain

pf
(
M̃R

) = pf

(
0 −U22

UT
22 0

)

× pf

[(
N

(1)
C −X12

XT
12 −N

(0) ∗
C

)]
, (36)

where

X12 = U11 − U12U
−1
22 U21. (37)

The first pfaffian in the right hand side of the above expression
is simply given by (−1)KS det U22 whereas the second pfaffian
can be computed using again the expression for the pfaffian of
a bipartite matrix. Collecting all the terms together we finally
obtain

pf
(
M̃R

) = (−1)KS det(U22)Pf
(
N

(1)
C

)
× pf

( − N
(0) ∗
C + XT

12N
(1) −1
C X12

)
. (38)

Taking into account that det(P23) = 1 we finally obtain

pf(M) = (−1)KS det
(
D

(1)
11

)
det

(
D

(0) ∗
11

)
det(U22)pf

(
N

(1)
C

)
× pf

( − N
(0) ∗
C + XT

12N
(1) −1
C X12

)
. (39)

The advantage of this ugly result over the direct evaluation
of the pfaffian is the low dimensionality of the N

(1)
C , N

(0)
C ,

D
(i)
11 and U11 matrices, namely 2(N − KS), which is much

smaller than the one of the original problem (2N ). The only
large matrix in Eq. (37) is the inverse of U22 with dimension
2KS , however, this does not pose a challenge as its special
structure Eq. (33) is very well adapted to the use of the
Sherman-Morrison formulas for the determinant and inverse
of this kind of special matrices [28].

The result obtained relies on the existence of the inverses
of the matrices D

(1)
11 and D

(0)
11 [i.e., their determinant has to

be different from zero, see Eq. (39)]. If this is not the case, a
possible strategy is to reduce the number of empty levels (i.e.,
KS) increasing in this way the dimensionality of both D

(1)
11

and D
(0)
11 and making more unlikely a linear dependence of the

matrix columns. The justification is that in the limit KS = 0
the D

(i)
11 matrices become unitary and therefore invertible.

C. Using a different reference vacuum

From the above discussion, it is clear that the structure
and properties of the M (i) matrices is intimately related to the
reference vacuum used to express the HFB wave functions
|φi〉. This suggests to change the reference vacuum from the
true vacuum, implicitly assumed in the previous discussions,

to something else with the hope that the new matrices M
(i)

will acquire a more advantageous structure with little or no
fully occupied quasiparticles and a huge number of empty
ones comparable to the size of the basis. Matrices with these
properties will not require the use of the “fully occupied limit”
formulas and will benefit from the reduction in computational
burden of the “fully empty limit.” As an example, let us
consider the case where the |φi〉 correspond to two HFB
wave functions with the same particle number averages and
different axial quadrupole deformation parameters q

(i)
2 . It

seems reasonable to expect that a more appropriate reference
vacuum would be the “average” HFB wave function |φ̄〉 with
the same number of particles mean values and a deformation

014307-4



TECHNICAL ASPECTS OF THE EVALUATION OF THE . . . PHYSICAL REVIEW C 84, 014307 (2011)

parameter q̄2 close to both q
(i)
2 [a reasonable choice could

be the mean value 1
2 (q(0)

2 + q
(1)
2 )]. It is reasonable to expect

that, with respect to this reference vacuum |φ̄〉, the new U
(i)

amplitudes will be very close to the identity matrix whereas

the new V
(i)

amplitudes will be small. In other words, the
HFB wave functions |φi〉 will be represented by a linear
combination of quasiparticle excitations of the reference state
|φ̄〉 weighted with amplitudes that will quickly decrease with
the number of quasiparticle excitations involved (i.e., the
amplitudes for four quasiparticle excitations will be much
smaller than the amplitudes of the two quasiparticle ones,

etc.). As a consequence the new U
(i)

and V
(i)

amplitudes
will correspond to the “fully empty” limit case discussed in
the previous subsection (the calculation will benefit from the
computational savings of this limit) and will be away from the
problematic “fully occupied” limit of Sec. II A. Considering
an alternative reference vacuum can also be beneficial in the
extension of these ideas to HFB wave functions with odd
number parity.

Let us consider the new reference vacuum |φ̄〉 with
the associated creation ᾱ+and annihilation ᾱ quasiparticle
operators which are defined in terms of a single-particle basis
of creation and annihilation operators by means of linear
combinations involving the Ū and V̄ amplitudes

(
ᾱ

ᾱ+

)
=

(
Ū+ V̄ +

V̄ T Ū T

)(
a

a+

)
= W̄+

(
a

a+

)
. (40)

The same relation holds true for the quasiparticle operators
α(i) and α(i) + with amplitudes W (i). Using the unitarity of the
matrices W (i) and W̄ we can express the set of quasiparticle
operators α(i) and α(i) + in terms of the ᾱ and ᾱ+ ones as

(
α(i)

α(i) +

)
= W (i) +W̄

(
ᾱ

ᾱ+

)
= W̄ (i) +

(
ᾱ

ᾱ+

)
. (41)

The “average” HFB wave function |φ̄〉 is characterized by the
condition that both W̄ (0) and W̄ (1) are close to the identity
matrix. Using the Thouless theorem we can also express
the |φ̄i〉 wave functions (satisfying 〈φ̄|φ̄i〉 = 1 and therefore
differing from the previous |φi〉 by a normalization factor) in
terms of the |φ̄〉 reference vacuum

|φ̄i〉 = exp

(
1

2

∑
kk′

M̄
(i)
kk′ ᾱ

+
k ᾱ+

k′

)
|φ̄〉 (42)

with M̄ (i) = (V̄ (i)Ū (i) −1)∗ [not to be confused with the di-
agonal matrix of Eq. (6)]. These two matrices can be easily
computed once the W̄ coefficients are given and it is even
possible to give an analytical expression [29] in terms of M̄

and M (i)

M̄ (i) = Q(M̄T + M (i))(I + M̄+M (i))−1(Q+)−1 (43)

with Q = (I + M̄M̄+)−1/2. All the formulas given above (and
below) are equally valid for the wave functions given in the
form of Eq. (42) with the amplitudes of Eq. (43).

III. DIFFERENT SINGLE-PARTICLE BASES

It is common to deal with HFB wave functions |φi〉 which
are defined in terms of different single-particle basis. The
corresponding creation and annihilation operators a+

k (i) and
ak(i) carry indexes (i) to indicate the HFB wave function
they belong to. Those bases are usually not complete and
therefore they span different subspaces of the full Hilbert
space. As a consequence, the formulas obtained above cannot
be used because they rely implicitly on a common basis for
the two HFB wave functions [11]. The strategy to overcome
this problem is to use a bigger subspace encompassing the
two subspaces in order to find an orthogonal basis that can
be used to characterize the two HFB wave functions |φi〉 at
the same time. In an early consideration of this problem [11]
the whole Hilbert space was used for the bigger subspace.
Another possibility, explored in this paper, is to consider the
subspace obtained by the union of the two subspaces. In this
case, special care has to be taken with the resulting basis, union
of the two original bases, as it can be redundant (i.e., it can
contain linearly dependent vectors).

The two bases characterizing the HFB wave func-
tions |φi〉, namely {a+

k (0), k = 1, . . . , N(0)} and {a+
k (1), k =

1, . . . , N(1)}, are defined in terms of single particle creation
operators (typically those of the harmonic oscillator basis) and
have N(0) and N(1) elements, respectively. It is convenient to
introduce of the set of creation operators

A+
μ =

{
a+

k (0) μ = k k = 1, . . . , N(0)

a+
l (1) μ = l + N(0) l = 1, . . . , N(1)

(44)

embracing the two sets of creation operators of the bases.
They satisfy the commutation relations {Aμ, A+

ν } = Nμν and
{Aμ, Aν} = {A+

μ, A+
ν } = 0 where the overlap matrix N of

dimension (N(0) + N(1)) × (N(0) + N(1)) is given in terms of the
rectangular matrix Tk k′ = {ak(0), a+

k′ (1)} = 〈−|ak(0)a+
k′ (1)|−〉

by the expression

N =
(
I(0) T

T + I(1)

)
. (45)

The overlap matrix is hermitian, semipositive definite and
therefore can be diagonalized by a unitary transformation D,
i.e.,

N = DnD+, (46)

where the diagonal matrix n of the eigenvalues is of dimension
(N(0) + N(1)) × (N(0) + N(1)). In order to deal with the zero
(or smaller than a given threshold) eigenvalues case (which
signals the appearance of linearly dependent basis states) it is
convenient to introduce the notation

n =
(

n̄ 0

0 ε

)
, (47)

where n̄ is the diagonal matrix containing the eigenvalues
different from zero (above a given numerical threshold) and
ε is the diagonal matrix of dimension Nε containing those
eigenvalues with value zero (or smaller than a numerical
threshold). It is convenient in the ensuing developments to
consider the matrix ε as different from zero and therefore
invertible. At the end of the calculations ε will be made to tend
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to zero to obtain the final result. Taking this regularization
scheme into account, we can define the square root of the
overlap matrix N 1/2 = Dn1/2D+ and its inverse N−1/2 =
Dn−1/2D+ that are required to define the operators

Bμ =
∑

ν

N−1/2
μν Aν (48)

as well as the inverse relation Aμ = ∑
ν N

1/2
μν Bν . The cre-

ation and annihilation operators B+
μ and Bν satisfy canoni-

cal commutation relations {Bμ,B+
ν } = (N−1/2NN−1/2)μν =

δμν . They are introduced to express the HFB wave functions
of Eq. (42) in the standard way as

|φi〉 = exp

⎧⎨
⎩

∑
μμ′

1

2
Ñ

(i)
μμ′B

+
μ B+

μ′

⎫⎬
⎭ |0〉 (49)

with the matrices of dimension (N(0) + N(1)) × (N(0) + N(1))

Ñ (i) = N 1/2 +M̃
(i)
E N 1/2 ∗ (50)

given in terms of the extended matrices [also of dimension
(N(0) + N(1)) × (N(0) + N(1))]

M̃
(0)
E =

(
M (0) 0

0 0

)
, M̃

(1)
E =

(
0 0

0 M (1)

)
(51)

defined in the union subspace (the matrices M (i) are N(i) ×
N(i)). As the operators B+

μ and Bν satisfy canonical com-
mutation relations, it is now possible to apply the standard
formalism already developed in Ref. [1] [see Eq. (3)] to write

〈φ0|φ1〉 = SN(0)+N(1) pf(M̃), (52)

where the matrix M̃ entering the argument of the pfaffian is
a 2(N(0) + N(1)) × 2(N(0) + N(1)) matrix given in terms of the
matrices defined in Eq. (50) as

M̃ =
(

Ñ (1) −I

I −Ñ (0) ∗

)
. (53)

Using the results of Appendix C (to simplify the notation in
the following we consider the size of the two basis to be equal
N(0) = N(1) = N ) the norm matrix N is written as

N = D

(
n+ 0

0 n−

)
D+, (54)

where both the diagonal matrices n± = I ± �̄ and the unitary
transformation D are given in terms of the singular value
decomposition (SVD) of the overlap matrix T = E+�̄F .
Using this definition in Eq. (50) we have

Ñ (i) = D

(
n

1/2
+ 0

0 n
1/2
−

)
D+M̃

(i)
E D∗

(
n

1/2
+ 0

0 n
1/2
−

)
DT

= DÑ
(i)
D DT (55)

which defines the matrices Ñ
(i)
D as

Ñ
(i)
D =

(
n

1/2
+ 0

0 n
1/2
−

)
D+M̃

(i)
E D∗

(
n

1/2
+ 0

0 n
1/2
−

)
. (56)

Please note that these matrices are well defined when some of
the eigenvalues (of the n− kind) of the norm overlap matrix
N go to zero (this happens when some values of the positive
diagonal matrix �̄ equal one). Using the explicit form of the
matrix D given in Appendix C in terms of the matrices E and
F entering the SVD of the matrix T and defining the auxiliary
matrices E± = n

1/2
± E and F± = n

1/2
± F we get

Ñ
(0)
D = 1

2

(
E+ 0

0 E−

) (
M (0) −M (0)

−M (0) M (0)

) (
ET

+ 0

0 ET
−

)
(57)

and

Ñ
(1)
D = 1

2

(
F+ 0

0 F−

) (
M (1) M (1)

M (1) M (1)

)(
FT

+ 0

0 FT
−

)
.

(58)

Finally, using known properties of the pfaffian we arrive to the
final expression of the overlap in terms of the Ñ

(i)
D

〈φ0|φ1〉 = (−1)Npf

(
Ñ

(1)
D −I

I −Ñ
(0) ∗
D

)
. (59)

It is convenient to consider the limit where the two bases
are connected by means of an unitary transformation (see
Appendix C). In this case, the SVD of T is trivial and we
have n

1/2
+ = √

2I, n
1/2
− = 0, E = I and F = T . Using these

values we have

Ñ
(1)
D =

(
T M (1)T T 0

0 0

)
(60)

and

Ñ
(0)
D =

(
M (0) 0

0 0

)
. (61)

As a consequence of the zero eigenvalues of the overlap matrix,
the matrices Ñ

(i)
D acquire a bipartite structure where only the

upper diagonal block is different from zero. In this case, the
matrix in the pfaffian of Eq. (59) becomes a block matrix⎛

⎜⎜⎜⎝
T M (1)T T 0 −I 0

0 0 0 −I

I 0 −M (0) ∗ 0

0 I 0 0

⎞
⎟⎟⎟⎠ . (62)

The pfaffian of this matrix can be evaluated by using the results
of Appendix A. Exchanging blocks 2 and 3 of the matrix brings
it to block diagonal form. Once in block diagonal form, the
pfaffian can be reduced to the product of the pfaffian of each of
the diagonal blocks by using a simplified version of the results
of Appendix B for the pfaffian of a bipartite matrix. The final
results is

〈φ0|φ1〉 = (−1)N(N+1)/2pf

(
T M (1)T T −I

I −M (0) ∗

)
(63)

as expected (see Ref. [1]).
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IV. CONCLUSIONS

The formula for the evaluation of the norm overlap of
two different HFB wave functions is analyzed in two limits.
The first limit corresponds to the situation when some of
the occupancies of the quasiparticle levels become one and
the standard approach leads to indeterminacies that have to
be singled out in order to obtain a meaningful answer. The
second limit considers the situation where there are fully
empty quasiparticle levels. In this case, the overlap formula
is well behaved but considering explicitly the limit leads to a
(significant) reduction of the computational burden when the
number of empty levels is large enough. The common case
where each of the two HFB wave functions are expressed
in different single particle basis is also addressed and the
formalism to compute the overlap in this situation is developed.
A common basis, union of the other two is considered, and
special attention is paid to redundancies in the enlarged
subspace. The formulas given in this paper are a practical
complement of the general one given in [1] and should be
useful for a practical implementation of the calculation of the
overlaps of two different HFB wave functions in the most
general case.
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APPENDIX A: REORDERING OF MATRICES AND ITS
IMPACT IN THE PFAFFIAN

Very often in this paper the peculiarities of the block
structure of the skew-symmetric matrices considered has to
be exploited in order to simplify the final expression of the
pfaffian. In this respect, it is convenient to know how to reorder
rows and columns of a matrix as well as the impact of such
reordering in the pfaffian. A useful set of matrices is the one
of the matrices E(i, j ) that exchanges columns i and j of a
matrix when multiplied to the right hand side of that matrix,
i.e., (

. . . ai−1 ai ai+1 . . . aj−1 aj aj+1 . . .

...
...

...
...

...
...

...
...

...

)
E(i, j )

=
(

. . . ai−1 aj ai+1 . . . aj−1 ai aj+1 . . .

...
...

...
...

...
...

...
...

...

)
. (A1)

The matrices E(ij ) are characterized by the matrix elements

E(i, j )kl = δkl − δkiδli − δkj δlj + δkj δli + δkiδlj (A2)

and are unit matrices where the elements i and j of the diagonal
are set to zero and the elements i, j and j, i are set to one.

Another useful set of matrices is the one of the S(i, j )
matrices such that, when multiplied to the right-hand side of
a matrix, move the column j of the matrix to the position of

column i (i < j ) and then shifts column i to position i + 1,

column i + 1 to position i + 2, and so on, up to column j − 1
that is shifted to column j , i.e.,(

. . . ai−1 ai ai+1 ai+2 . . . aj−1 aj aj+1 . . .

...
...

...
...

...
...

...
...

...
...

)
S(i, j )

=
(

. . . ai−1 aj ai ai+1 ai+2 . . . aj−1 aj+1 . . .

...
...

...
...

...
...

...
...

...
...

)
.

(A3)

In terms of matrix elements they are given by

S(i, j )kl = δkl −
j∑

s=i

δksδls +
j−1∑
s=i

δksδls+1 + δkj δli . (A4)

These matrices are unit matrices where the 1 in position i, i

is shifted to position i, i + 1, the 1 in position i + 1, i + 1 is
shifted to position i + 1, i + 2 and so on up the 1 in position
j, j that is shifted to position j, i. The determinants of the two
kind of matrices are easy to determine and they are given by

det[E(i, j )] = −1 (A5)

and

det[S(i, j )] = (−1)j−i . (A6)

The successive application of the matrices E(i + k, j + k) for
k = 0 up to k = N defines a matrix

PN (i, j ) =
N−1∏
k=0

E(i + k, j + k) (A7)

that exchanges a set of N columns at once(
. . . ai . . . ai+N−1 . . . aj . . . aj+N−1 . . .

...
...

...
...

...
...

...
...

...

)
PN (i, j )

=
(

. . . aj . . . aj+N−1 . . . ai . . . ai+N−1 . . .

...
...

...
...

...
...

...
...

...

)
. (A8)

Applying the matrix P T
N to the left of the matrix the corre-

sponding exchange of rows is produced. As a consequence

P T
N (i, j )

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

· · · AN (i, i) · · · AN (i, j ) · · ·
...

...
. . .

...
...

· · · AN (j, i) · · · AN (j, j ) · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

PN (i, j )

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

· · · AN (j, j ) · · · AN (j, i) · · ·
...

...
. . .

...
...

· · · AN (i, j ) · · · AN (i, i) · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A9)
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where AN (i, j ) are submatrices of dimension N × N whose
first element is located in the row i and column j of the matrix
where the AN are embedded. The result obtained, together
with that of the pfaffian of a bipartite matrix, will be useful
to reduce some of the pfaffians encountered in the main body
of the paper. Obviously det PN = (−1)N . Unfortunately, this
trick cannot be applied when the number of columns to be
“exchanged” is not the same. In such case, we have to consider
the more general shift operation S(i, j ). To see how it works let
us consider a matrix A were there are three groups of columns
denoted by L, C, and R such that the first group goes from
column i to columns i + NL − 1 (i.e., NL columns), the group
C goes from column i + NL up to columns i + NL + NC −
1 (i.e., NC columns) and finally the group R from column
i + NL + NC up to column i + NL + NC + NR − 1 (i.e., NR

columns). Schematically, the columns of the matrix A could
be represented as

A = (. . . |L|C|R| . . .) . (A10)

Now we want to exchange the group L with the group R; to do
so the group R of columns is moved to the position occupied

by L using the product of matrices

P
(1)
LR =

NR−1∏
k=0

S(i + k, i + k + NL + NC) (A11)

giving

(. . . |L|C|R| . . .) P
(1)
LR = (. . . |R|L|C| . . .) . (A12)

Now, the group of columns C is moved to the position of the
group L by means of the following product of “shift” matrices

PLC =
NC−1∏
k=0

S(i + k + NR, i + k + NR + NL). (A13)

Using this matrix we obtain

(. . . |L|C|R| . . .)P (1)
LRPLC = (. . . |R|L|C| . . .)PLC

= (. . . |R|C|L| . . .). (A14)

The matrix exchanging the set of columns L with the set R

will be denoted PLR = P
(1)
LRPLC. By applying P T

LR to the left
of the matrix the set of rows L and R are exchanged. As a
consequence

P T
LR(i, j )

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

· · · ANL×NL
(i, i) · · · ANL×NR

(i, j ) · · ·
...

...
. . .

...
...

· · · ANR×NL
(j, i) · · · ANR×NR

(j, j ) · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

PLR(i, j ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

· · · ANR×NR
(j, j ) · · · ANR×NL

(j, i) · · ·
...

...
. . .

...
...

· · · ANL×NR
(i, j ) · · · ANL×NL

(i, i) · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A15)

where ANL×NL
(i, i) is a submatrix with NL rows and NL

columns starting at row i and column i, ANL×NR
(i, j ) is a

submatrix with NL rows and NR columns starting at row
i and column j = i + NL + NC , and so on. This result
generalizes the one of Eq. (A9) for submatrices of different
sizes. The impact of such exchange of rows and columns
in the pfaffian is the product of the determinants of the S

matrices involved, i.e., det(PLR) = det(P (1)
LR) det(PLC). With

det(P (1)
LR) = (−1)(NL+NC )NR and det(PLC) = (−1)NLNC the total

phase is det(PLR) = (−1)NLNR+NCNR+NLNC that reduces to
(−1)N when NL = NR = N , a result that is independent of
NC .

APPENDIX B: THE PFAFFIAN OF A BIPARTITE MATRIX

To derive some of the results obtained in this paper, it is
often required to compute the pfaffian of a bipartite skew-
symmetric matrix with the general structure

S =
(

M Q

−QT N

)
, (B1)

where M and N are skew-symmetric matrices and Q is
a general rectangular matrix. Using Aitken’s formula it is
possible to diagonalize the bipartite matrix using a congruence
transformation [18]

(
I 0

QT M−1 I

) (
M Q

−QT N

) (
I −M−1Q

0 I

)

=
(

M 0

0 N + QT M−1Q

)
. (B2)

An equivalent expression is given by

(
I −QN−1

0 I

) (
M Q

−QT N

)(
I 0

N−1QT I

)

=
(

M + QN−1QT 0

0 N

)
(B3)

that is useful if the matrix M−1 does not exist. This block
diagonalization formula involves congruence transformations
that allow to use the property pf(P T RP ) = det(P )pf(R) of the
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pfaffian to obtain the next two identities

pf(S) = pf(M)pf(N + QT M−1Q) (B4)

= pf(M + QN−1QT )pf(N ). (B5)

APPENDIX C: THE OVERLAP MATRIX

The overlap matrix N has the bipartite structure

N =
(
I(0) T

T + I(1)

)
, (C1)

where the rectangular matrix T , with matrix elements Tk k′ =
{ak(0), a+

k′ (1)} = 〈0|ak(0)a+
k′ (1)|0〉, is the matrix of the over-

laps between the elements of the two basis considered. As in
the body of the paper, N(0) and N(1) denote the dimensions of
the each of the basis and it is assumed for definiteness that
N(0) � N(1). The matrices I(0) and I(1) stand for the identity
matrices of dimensions N(0) and N(1), respectively. For the
developments considered in this paper, the analysis of the
spectral decomposition of the overlap matrix is required in
order to handle properly the occurrence of very small or zero
eigenvalues of the overlap. The analysis is based on the singular
value decomposition (SVD) [30] of the matrix T

T = E+�F, (C2)

where E and F are square unitary matrices of dimensions
N(0) × N(0) and N(1) × N(1), respectively. The matrix � is a
rectangular matrix of dimension N(0) × N(1) with the “diagonal
structure”

� =
(

�̄

0

)
, (C3)

where �̄ is a real and positive square diagonal matrix
with dimension N(1) × N(1). It is convenient to introduce a
rectangular “identity matrix” I(01) of dimension N(0) × N(1)

with a structure similar to the one of the matrix �, namely,

I(01) =
(
I(1)

0

)
. (C4)

Useful properties of this matrix are � = I(01)�̄ and I+
(01)I(01) =

I(1).
Using the SVD of T defined in Eq. (C2) we can finally

write

N = D̄

(
I(0) �

�+ I(1)

)
D̄+, (C5)

where

D̄ =
(

E+ 0

0 F+

)
. (C6)

The matrix in the middle of the right-hand side of Eq. (C5)
can be easily brought to diagonal form

D̄(0) +
(
I(0) �

�+ I(1)

)
D̄(0)

=
(

2I(0) + I(01)(�̄ − I(1))I
+
(01) 0

0 I(1) − �̄

)
(C7)

by means of the D̄(0) transformation

D̄(0) = 1√
2

(
I(0) −I(01)

I+
(01) I(1)

)
. (C8)

Finally, introducing the matrix D = D̄D̄(0) we obtain the
complete diagonalization of the overlap matrix

N = D

(
2I(0) + I(01)(�̄ − I(1))I

+
(01) 0

0 I(1) − �̄

)
D+.

(C9)

The semipositive character of the matrix N implies that all its
eigenvalues are positive or zero and therefore (lower block)
the elements of the diagonal matrix �̄ cannot exceed one. In
the case of bases with equal dimensions N(0) = N(1) the above
result becomes

N = D

(
I + �̄ 0

0 I − �̄

)
D+ = D

(
n+ 0

0 n−

)
D+,

(C10)

where the diagonal matrices n± = I ± �̄ are introduced. As
the matrix �̄ is also positive semidefinite it is clear that the zero
norm eigenvalues of N are associated to the matrix elements
of �̄ equal to one.

It is helpful to consider the special case where T is an
unitary matrix. It corresponds to the common situation where
the two bases are connected through a unitary transformation
as, for instance, the ones associated to symmetry operations
like rotations in real space, etc., acting on closed basis. For
unitary T , the SVD factors can be chosen as E+ = T , � = I
and F = I in the formulas above so that

D = 1√
2

(
T −T

I I

)
(C11)

and

N = D

(
2I 0

0 0

)
D+ (C12)

with N -fold degenerate eigenvalues n+ = 2 and n− = 0.
To finish this appendix, we just mention that a similar (but

less general) treatment of the norm overlap was considered in
Ref. [31] but without resorting to the powerful concept of the
SVD.
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