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Resumen 

 

 

Diversos estudios sugieren que la respuesta a los desafíos metabólicos es 

diferente entre machos y hembras. Como consecuencia de un aumento en el 

consumo de calorías, se producen diferencias en la ganancia de peso, así como 

en el aumento y distribución de tejido adiposo, pero, además, la respuesta al 

sobrepeso y obesidad es diferente entre los sexos. Sin embargo, aunque se sabe 

que las alteraciones nutricionales tempranas pueden tener efectos a largo plazo 

en el metabolismo, las diferentes respuestas entre los sexos son 

insuficientemente conocidas hasta la fecha. Junto a ello, estudios recientes 

indican que los astrocitos hipotalámicos están implicados en el control 

neuroendocrino del metabolismo, así como en el desarrollo de las 

complicaciones secundarias asociadas a la obesidad. No obstante, se desconoce 

en gran medida si los astrocitos hipotalámicos de machos y hembras responden 

de manera diferente a los desafíos metabólicos. 

El objetivo de esta Tesis fue determinar si la sobrenutrición neonatal como 

resultado de una reducción en el número de crías por madre durante el período 

de lactancia, produce efectos similares en el crecimiento y metabolismo de ratas 

macho y hembra a lo largo del desarrollo. Es bien sabido que los esteroides 

sexuales desempeñan una función crítica en las diferencias post-puberales entre 

machos y hembras en su metabolismo y distribución y función del tejido adiposo. 

No obstante, los efectos metabólicos de las variaciones en los esteroides sexuales 

durante la etapa neonatal deben ser estudiados en mayor profundidad. Por esta 

razón, empleamos también un modelo de androgenización neonatal en hembras 

para determinar sus efectos a corto y largo plazo en el metabolismo. Igualmente, 

la respuesta hipotalámica y, concretamente de los astrocitos hipotalámicos a la 

sobrenutrición neonatal, fue estudiada en ambos sexos. 

Por tanto, en el estudio de sobrenutrición neonatal en machos y hembras, 

se analizó el perfil metabólico, las respuestas inflamatorias y distribución y 

función del tejido adiposo, así como posibles alteraciones en los astrocitos 
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hipotalámicos. Para ahondar en el estudio de las posibles diferencias entre los 

sexos específicamente en los astrocitos hipotalámicos, se estudió la respuesta in 

vitro de estas células gliales a determinados ácidos grasos, así como el posible 

efecto protector de los estrógenos a la inflamación producida por los ácidos 

grasos. 

Los resultados de estos estudios indican la diferente respuesta entre los 

sexos a alteraciones nutricionales en el periodo neonatal, siendo esta respuesta 

diferente también, en función de la edad o etapa del desarrollo en la que se 

encuentran. Asimismo, las modificaciones en los esteroides sexuales en el 

neonato, podrían contribuir a las diferencias metabólicas observadas a largo 

plazo a consecuencia de la sobrenutrición neonatal, así como en los diferentes 

efectos vistos en machos y hembras. Aún más, los astrocitos hipotalámicos 

procedentes de ratas macho y hembra, responden de manera diferente a la 

sobrenutrición neonatal, así como a los tratamientos in vitro con ácidos grasos y 

estrógenos. 

Por consiguiente, los astrocitos hipotalámicos no solamente estarían 

implicados en la fisiología y fisiopatología del control neuroendocrino del 

metabolismo, sino que también podrían estar participando en las respuestas a los 

cambios nutricionales tempranos y en las respuestas sexualmente dimórficas del 

sistema metabólico. 

PALABRAS CLAVE: dimorfismo sexual, sobrenutrición neonatal, desarrollo, 
hipotálamo, astrocitos. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

SUMMARY 

 

 

 



 



Summary 

 

 
The responses to metabolic challenges are suggested to be different in 

males and females. Not only is there a difference in weight gain and adipose tissue 

accumulation and distribution in response to increased energy intake, but the 

secondary complications in response to being overweight or obese also differ 

between the sexes. However, less is known about the differential sex response to 

early nutritional changes that can affect long-term metabolism. In addition, recent 

studies have indicated that hypothalamic astrocytes are involved in the 

neuroendocrine control of metabolism, as well as the development of secondary 

complications in response to obesity. However, whether hypothalamic astrocytes 

from male and female rats respond differently to metabolic challenges remains to 

be thoroughly analyzed. 

The aim of this thesis was to determine if neonatal overnutrition as a 

consequence of the reduction in the number of pups per dam during nursing 

produces similar effects on growth and metabolism in male and female rats 

throughout development. Moreover, although sex steroids are clearly involved in 

the post-pubertal differences between males and females in metabolism and 

adipose tissue distribution and function, less is known regarding the effect of 

changes in the neonatal sex steroid environment on metabolism. Hence, we 

employed a model of neonatal androgenization of females to determine how this 

affected both short-term and long-term metabolism.   

Metabolic profile, inflammatory responses and adipose tissue distribution 

and function, as well as possible alterations in hypothalamic astrocytes were 

analyzed in these studies. To further explore the sex differences in hypothalamic 

astrocytes, the response of these glial cells to fatty acids and the possible 

protective effect of estrogens against fatty acid-induced inflammation were 

analyzed  in vitro employing primary hypothalamic astrocyte cultures.   

The results of these studies indicate that the response to nutritional 

disturbances during the neonatal period differ between the sexes and are age 
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dependent. In addition to changes in insulin and leptin levels, differences in the sex 

steroid environment during the neonatal stage could participate in the distinct 

long-term metabolic responses to neonatal overnutrition and the differential 

effects in males and females. We also demonstrate that hypothalamic astrocytes of 

male and female rats respond differently to neonatal overnutrition, as well as to 

fatty acid and hormonal treatments in vitro.  

Thus, hypothalamic astrocytes are not only involved in the physiological and 

physiopathological neuroendocrine control of metabolism, but they may also 

participate in developmental responses to early nutritional changes and sexually 

dimorphic metabolic responses. 

 

KEY WORDS: sexual dimorphism, neonatal overnutrition, development, 

hypothalamus, astrocytes. 
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ACS: acetyl-coA synthase 

AgRP: Agouti related protein. 

Akt: Protein kinase B. 

AMPK: AMP-protein kinase 

ANOVA: Analysis of variance. 

ApoE: Apolipoprotein E. 

ARC: Arcuate nucleus of the hypothalamus. 

ABC: Avidin-biotin complex. 

BDNF: Brain derived neurotrophic factor. 

Β-EP: Beta-endorphin. 

BMI: Body mass index. 

BSA: Bovine serum albumin. 

BL: Body length. 

BW: Body weight. 

CART: Cocaine and amphetamine-related 
transcript. 

CCK: Cholescystokinin 

cDNA: Complementary DNA. 

cm: centimeters. 

CNS: Central nervous system. 

CPT-1: Carnitine palmitoyl transferase 1. 

CREB: cAMP response element-binding 
protein. 

CVDE: Cristal violet dye elution. 

DMEM/F12: Dulbecco’s modified Eagle’s 
medium: Nutrient mixture F-12. 

DMH: Dorsomedial nucleus of the 
hypothalamus. 

ELISA: Enzyme-linked immunosorbent 
assay. 

ER: Endoplasmic reticulum stress. 

ER: Estrogen receptors. 

ER-α: Estrogen receptor alpha. 

ER-β: Estrogen receptor beta. 

ERK: Extracellular signaling-regulated 
kinase. 

FA: Fatty acid. 

FBS: Fetal bovine serum. 

FFAs: Free fatty acids. 

FI: Food intake. 

FOXO: forkhead-O transcription factor. 

g: Grams. 

h: Hours. 

GA: glutaraldehyde 

GABA: Gamma-aminobutyric acid. 

Galc: Galactocerebroside. 

GFAP: Glial fibrillary acidic protein. 

GLUT: Glucose transporter. 

GLP-1: Glucagon-like peptide 1. 

HFD: High fat diet. 

Iba1: Ionized calcium-binding adapter 
molecule 1. 

ICV: Intra-cerebral ventricular. 

IKBKB: Inhibitor of kappa light polypeptide 
gene enhancer in B-cells, kinase beta. 

JNK: c-Jun N-terminal kinase. 

IL-1β: Interleukin 1 beta. 

IL-10: Interleukin 10. 

IL-6: Interleukin 6. 

IP: Intraperitoneal. 

IR: Insulin receptor. 

JNKs: c-Jun N-terminal kinases 
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kDa: Kilodalton. 

KO: Knock-out. 

LCFAs: Long chain fatty acids. 

LCFA-CoA: Long chain fatty acyl-CoA. 

LHA: Lateral hypothalamic area. 

MAPK: Mitogen-activated protein kinase. 

MC3-R: Melanocortin receptor 3. 

MC4-R: Melanocortin receptor 4. 

mM: Mili molar. 

mRNA: Messenger ribonucleic acid. 

MSH: Melanocyte-stimulating hormone. 

NaNO2: Sodium nitrate.  

NEDD: Ethylenediamine dihydrochloride. 

NF-κB: Nuclear factor of kappa-light-chain-
enhancer of activated B cells. 

NFKBIA: Nuclear factor of kappa light 
polypeptide gene enhancer in B-cells 
inhibitor, alpha. 

NIH: National Institute of Health. 

NO2: Nitrites. 

NO3: Nitrates. 

NON: Neonatal overnutrition. 

NPY: Neuropeptide Y. 

NS: Not significant. 

OA: Oleic acid. 

Ob-R: Leptin receptor. 

O/N: Overnight. 

OGTT: Oral glucose tolerance test. 

OVN: Over-nutrition 

P38: P38 mitogen activated protein kinase. 

P70s6k: P70 S6 kinase. 

PA: Palmitic acid 

PB: Phosphate buffer.  

PBS: Phosphate buffered saline.  

PFA: Paraformaldehyde. 

PI3/Akt: Phosphoinositide-3 kinase 

pathway  

PND: Postnatal day. 

POMC: Proopiomelanocortin. 

PPAR-α: Proliferator activated receptor α. 

PPAR-γ: Proliferator activated receptor γ. 

PVN: Paraventricular nucleus of the 
hypothalamus. 

RPM: Revolutions per minute. 

RNA: Ribonucleic acid 

RT: Room temperature. 

RT-PCR: Real time-polymerase chain 
reaction. 

S100A4: S100 calcium binding protein A4. 

SCAT: Subcutaneous adipose tissue. 

SCG: Superior cervical ganglion. 

Ser727: Serine-727. 

STAT3: Signal transducer and activator of 
transcription 3. 

STAT5: Signal transducer and activator of 
transcription 5. 

T2D: Type 2 diabetes. 

TG: Triglycerides. 

TNF-α: Tumor necrosis factor alpha. 

Tyr705: Tyrosine-705 

µg: Micrograms. 

µl: Microliters. 

µm: Micra 
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VAT: Visceral adipose tissue. 

VCl3: Vanadium (III) chloride.  

WAT: White adipose tissue. 

WB: Western blotting. 

WHO: World Health Organization. 

WT: Wild type 
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AF: Androgenized females. 

Ct: Control group. 

Ct 0 h: Control group after 0 hours. 

Ct 24 h: Control group after 24 hours. 

F: Females. 

FL12: Females from control litters. 

FL4: Females from small litters. 

L12: Litters of 12 pups per dam (control 

litter). 

L4: Litters of 4 pups per dam (small litter). 

M: Males. 

ML12: Males from control litters. 

ML4: Males from small litters. 

OA: Oleic acid treatment. 

PA: Palmitic acid treatment. 
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1. Obesity and energy balance  

Obesity and overweight are major public health concerns throughout the 

industrialized world as both conditions are risk factors for the development of 

additional diseases such as type 2 diabetes (T2D), cardiovascular diseases or cancer 

(Lustig and Weiss, 2008; Daniels, 2009; Anteneh et al., 2015). Obesity can be defined as 

an abnormal/excessive fat accumulation (Garrow, 1988; Ofei, 2005) that usually leads 

to an increase in total body weight. Body mass index (BMI) is used as a simple 

indirect measurement of obesity. A person’s BMI is calculated as their weight (in 

kilograms) divided by the square of his or her height (in meters). When the BMI is 

30 or higher, a person is considered to be obese (WHO, 1995).  

It is well accepted that the accumulation of excessive adiposity is due to an 

imbalance between energy intake and energy expenditure over time (Garrow, 1988), 

although the specific causes of the dramatic rise in this epidemic are still under 

debate. The genetic make-up of each individual, as well as the hormonal and 

nutritional environment and psychosocial factors are all involved in the etiology of 

this metabolic imbalance (Dong et al., 2003; Mendieta-Zeron et al., 2008; Argente, 2011; 

Stein et al., 2011). Therefore, development of obesity in an individual depends on 

their genetic predisposition, environmental factors such as lack of exercise and/or 

poor dietary habits, and the interaction between these factors (Figure 1). 

 

 

 

 

 

 

Figure 1. Overweight and obesity occur due to an imbalance between calorie intake and energy 

expenditure over time, with the genetic make-up of each individual, hormonal and nutritional 

environment, psychosocial factors, stress and circadian rhythms influencing this imbalance. 
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The prevalence of obesity began to increase at an alarming rate at the end 

of the 20th century and continues to rise, with no signs of abating. Indeed, obesity is 

considered to be the most important epidemic of the 21st century, with at least 2.8 

million people dying each year as a result of being overweight or obese, according 

to the World Health Organization (WHO) (WHO, 2015). Obesity affects all ages, 

including children and adolescents, particularly in developing countries (Ogden et al., 

2007; Prevention, 2013). Obesity during infancy is currently one of the most serious 

public health concerns and its rates have doubled over the past 20 years, while in 

adolescents the rate has tripled (Ford et al., 2014). Obese children will likely continue 

to be obese as adults and thus, will have an increased probability of developing 

obesity-associated comorbidities in the future including T2D, cardiovascular 

diseases, insulin resistance syndrome, arthritis, dyslipidemias, infertility or 

psychological disorders among others (Horvath, 2005; Despres, 2007; Gundogan et al., 

2009; Martos-Moreno and Argente, 2011; Gungor, 2014). The dramatic rise in the 

incidence of obesity, in concert with the huge economic impact attributed to its 

associated disorders, makes obesity a primary health concern and emphasizes the 

need for a deeper understanding of its etiology and the identification of new 

targets to fight against this disease. 

2.  Early life nutritional influences on metabolism 

Poor nutrition, the lack of physical activity and the interaction of these two 

factors with an individual’s genetic background, predispose a person to weight 

gain, due to excessive fat accumulation, that finally leads to them being overweight 

and/or obesity. In addition, animal models and human studies have demonstrated 

that early environmental influences, including nutritional factors, can have effects 

on adult metabolic homeostasis (Roseboom et al., 2006; Barker, 2007; Levin, 2008; 

Fuente-Martin et al., 2012b; Spencer, 2012; Liu et al., 2013; Collden et al., 2015; Long et al., 

2015). Thus, not only does a person’s current lifestyle and genetic background make 

them susceptible to becoming obese, but an increased propensity to develop 

obesity can begin in utero or during the early postnatal stages, such as during 

lactation. Indeed, an excessive nutrient supply and rapid weight gain in early life 
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can have long-term effects, even when the individual or animal is exposed to a 

normal diet during postnatal life (Barker, 2007; Levin, 2008; Fuente-Martin et al., 2012b; 

Spencer, 2012; Liu et al., 2013; Collden et al., 2015; Long et al., 2015).  

Maternal health and nutrition during gestation, as well as fetal exposure to 

stress, abnormal levels of hormones and environmental toxins, have all been 

shown to disrupt metabolic homeostasis in later life (Roseboom et al., 2006; Barker, 

2007; Shin et al., 2012; Regnier et al., 2015). For example, maternal obesity and 

diabetes frequently complicate pregnancy (Anna et al., 2008), altering maternal 

metabolism and thus potentially disrupting metabolic homeostasis in the offspring 

(Yu et al., 2013). In rodents, the initial postnatal weeks are critical for the formation 

of hypothalamic neurocircuits, with approximately postnatal day (PND) 20 being 

the end of this critical period for hypothalamic differentiation and development 

(Bouret et al., 2004a; Grayson et al., 2006). In contrast, this sensitive period in humans 

predominantly occurs in utero during the third trimester of gestation (Clancy et al., 

2007).  

Although the majority of studies analyzing the long-term effects of early 

environmental influences on metabolism have been performed in males, here is 

evidence that the metabolic responses to these early disturbances may be different 

in females (Garcia-Caceres et al., 2010; Fuente-Martin et al., 2012c; Mela et al., 2012; 

Reynolds et al., 2015b). In addition, these responses may also be age dependent, for 

example appearing in some occasions only in later adulthood (Habbout et al., 2013; 

Granado et al., 2014).  

Animal studies have illustrated that modification of the litter size in which 

animals are reared can have long term-effects on their metabolic homeostasis. 

Diverse studies show that when the number of pups per dam is reduced, weight 

gain is promoted, while the opposite occurs when the number of pups per dam is 

greatly enlarged during nursing (Frolkis et al., 1993; Plagemann et al., 1999c; Cunha et al., 

2009; Fuente-Martin et al., 2012b; Fuente-Martin et al., 2012c; Kayser et al., 2015). Some 

studies have attributed this weight gain to overfeeding as a result of increased food 
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availability during suckling that engenders increased energy intake (Fiorotto et al., 

1991; Fink et al., 2001; Cunha et al., 2009). The consequences of this increased food 

intake and weight gain are involved in the observed long-term metabolic effects. 

Other factors, such as maternal nurturing, can also participate in the long-term 

effects due to litter size modification (Connor et al., 2012; Reynolds et al., 2014; Segovia 

et al., 2014). In rodents, these early nutritional modifications during nursing are 

taking place precisely when neuronal circuits are developing and the central 

nervous system (CNS) is still maturating. Hence, the perinatal nutritional 

environment could have a decisive influence on the development of neuronal 

circuits involved in energy balance and metabolic homeostasis.  

Under normal physiological conditions, at the same time that hypothalamic 

neurocircuits are maturing, there is a surge in circulating leptin levels in neonatal 

rodents. Leptin levels increase progressively by PND 5, and peak between PND 9 

and PND 10 remaining elevated until approximately day 13 (Ahima et al., 1998; 

Delahaye et al., 2008). This increase in leptin is crucial for the outgrowth of key 

neuronal projections in the hypothalamus. Indeed, either a deficiency or an excess 

in leptin levels during the perinatal period can cause important changes in 

hypothalamic circuits involved in metabolic homeostasis, appetite and food intake 

behavior, possibly predisposing an individual to obesity and metabolic disorders 

later in life (Bouret and Simerly, 2007). Importantly, not only are neurons affected 

during this critical period but also, astrocytes proliferate and expand within the 

brain, with leptin suggested to promote astrogenesis during this early age (Ahima et 

al., 1999; Rottkamp et al., 2015). 

It should be taken into consideration that unlike rodents, the increase in 

leptin in humans takes place in utero, with leptin concentrations increasing 

dramatically in fetal arterial cord blood by the end of gestation, with newborns 

with intrauterine growth retardation reported to have lower leptin levels than 

those with normal growth (Jaquet et al., 1998). Although experiments have shown 

that leptin appears to be secreted preferentially to the maternal side of the 

placenta, there is also secretion to the fetal side (Linnemann et al., 2000; Hoggard et 
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al., 2001). The rat placenta is reported to be permeable to leptin (Smith and Waddell, 

2003). Both human (Masuzaki et al., 1997) and murine (Hoggard et al., 1997) placenta 

express leptin and the leptin receptor (Hoggard et al., 1997; Masuzaki et al., 1997; 

Linnemann et al., 2000), suggesting that this hormone has an important role during 

gestation. In addition, during lactation, leptin can pass from the mother to the 

offspring through the maternal milk (Teixeira et al., 2002).  

Although insulin does not cross the placenta or in very low amounts, glucose 

from the mother does, and this glucose acts on the fetal pancreas to stimulate 

insulin secretion (Buse et al., 1962; Freinkel et al., 1979). Studies have demonstrated 

that obesity in the mother, produced by gestational diabetes or an inadequate diet, 

is associated with hyperinsulinemia, hyperleptinemia, hyperphagia and increased 

adiposity in the offspring (Catalano et al., 2003; Harvey et al., 2007; Samuelsson et al., 

2008; Nivoit et al., 2009). Thus, the long-term effects on the offspring’s metabolism 

may occur not only through modifications in leptin, but also insulin levels, as this 

hormone also influences hypothalamic development (Vogt et al., 2014).  

A well-known and important example of the dramatic influence of early 

nutritional factors on human offspring is what occurred during the Second World 

War, when pregnant women suffered from famine. The offspring were affected in 

different ways depending on which trimester of gestation the mother suffered 

starvation. Several studies have illustrated that the offspring from mothers affected 

during the first trimester of pregnancy, had a higher risk for the development of a 

wider spectrum of metabolic diseases than babies born from mothers affected 

either in the second or third trimester of pregnancy. However, the offspring from 

mothers experiencing starvation during the second or third trimester had a higher 

risk to develop metabolic diseases than a baby born from a healthy mother (Kyle 

and Pichard, 2006; Lumey et al., 2011; Roseboom et al., 2011). 

Therefore, nutritional modifications produced during both the intrauterine 

and the perinatal period should be considered as potential risk factors for 

metabolic alterations in the adult. Part of these alterations is most likely due to 
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modifications in hormonal signals at critical moments in the development of 

hypothalamic metabolic circuits. 

3.  Differences between the sexes in obesity and metabolism 

The importance of taking into consideration the differences between males 

and females has been recently highlighted by the National Institutes of Health (NIH) 

in the United States, as the inclusion of both sexes in clinical trials and basic 

research has become mandatory (Clayton and Collins, 2014; Health, 2014). Indeed, 

understanding how physiological processes and the responses to metabolic 

challenges differ between males and females will allow more accurate treatments 

according to sex.  

3.1 Sex differences in the propensity to become obese, adipose tissue 

physiology and the development of secondary complications 

The relation between obesity and associated complications and mortality is 

well established (Gundogan et al., 2009; Martos-Moreno and Argente, 2011). However, 

the link between obesity and its secondary complications has been more 

thoroughly studied in men than in women. Studies indicate that the propensity to 

become obese is different between the sexes and that this is largely owing to the 

direct influence of sex steroids. Indeed, estrogens protect from body weight gain, 

fat mass accumulation and obesity complications (Stubbins et al., 2012; Dakin et al., 

2015). They also have inhibitory effects on appetite and increase energy 

expenditure by increasing the activity of anorexigenic signals and exert the 

opposite effect on orexigenic signals (Tarttelin and Gorski, 1971; Clegg et al., 2006; Clegg 

et al., 2007; Shen et al., 2010; Zhu et al., 2013). Declining androgens levels have also 

been associated with obesity and metabolic disorders such as T2D (Dhindsa et al., 

2010; Grossmann, 2011). Differences between men and women in the propensity to 

become obese also reside in their dissimilarities regarding adipose tissue 

distribution. 

Adipose tissue is an active endocrine organ in constant communication with 

the CNS by releasing numerous adipokines and responding to hormones and 
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neuropeptides from the CNS (Galic et al., 2010; Rosen and Spiegelman, 2014). Expansion 

of fat mass can occur by hypertrophy of the existing adipocytes or by hyperplasia 

due to recruitment of new preadipocytes (Jo et al., 2009). Some studies relate 

hyperplasia with subcutaneous adipose tissue (SCAT) and hypertrophy with visceral 

adipose tissue (VAT) (Wang et al., 2013). An increase in the size of adipocytes is 

associated with higher metabolic risk (Lundgren et al., 2007). Estrogens are suggested 

to favor hyperplasia, increasing adipocyte progenitor cells and facilitating vascular 

supply to adipose tissue (Gealekman et al., 2011; Kim et al., 2014b). 

Males and females differ not only as to the amount and distribution of 

adipose tissue (Kotani et al., 1994), but also with regard to adipose tissue metabolism 

and function (Havel et al., 1996; Tran et al., 2008; Macotela et al., 2009). It is clear that 

differences in circulating sex steroids play a critical role in some of the observed 

sexual dimorphisms, but not all metabolic dissimilarities can be explained by 

differences in gonadal hormone levels. Indeed, some sex differences in metabolism 

are present even before puberty (Taylor et al., 2010), although they become more 

evident in adulthood. In addition, as reported by Chen et al, the number of X 

chromosomes also influences adiposity in mice (Chen et al., 2012). 

Unlike males, which reach their maximum levels of fat accumulation at 

puberty, females have a continuous increase in fat mass throughout development, 

with women having higher levels of adiposity compared to men throughout 

lifespan (Gallagher et al., 1996). Females tend to accumulate more SCAT in the gluteal 

and femoral zones, acquiring what is often referred to as the typical pear shape 

(Figure 2). In contrast, males accumulate more visceral (abdominal) adipose tissue 

with the characteristic apple shape distribution (White and Tchoukalova, 2014). It is 

well known that the accumulation of fat mass in the upper zone of the body 

(abdominal fat) is more related to obesity-associated comorbidities such as 

cardiovascular diseases or diabetes; on the contrary, fat mass accumulation in the 

gluteal-femoral region is not and could even be protective (Wajchenberg, 2000; Tran 

et al., 2008; Manolopoulos et al., 2010).  
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Figure 2. Apple-shaped (male) and pear-shaped (female) distribution of adipose tissue. Men tend to 

accumulate fat above the waist, whereas women do so below the waist. 

Different fat mass localization implies different adipose tissue function, 

including variations in regards to adipokine production, insulin sensitivity, 

mitochondrial function, fatty acid release and lipolysis, as well as the inflammatory 

profile (Power and Schulkin, 2008; Macotela et al., 2009). For example, serum levels of 

leptin exhibit a sexual dimorphic pattern in both humans and rodents. Women 

have higher circulating leptin levels than men (Hickey et al., 1996; Argente et al., 1997). 

Inversely, male rodents have higher serum leptin levels compared to female 

rodents (Landt et al., 1998). These differences are not only due to the variations in 

the amount and distribution of adipose tissue, but also to its capacity to produce 

this adipokine. 

The signals that adipose tissue receives from the CNS are also sexually 

dimorphic. Neurons projecting to visceral fat are more numerous in males than in 

females, whereas in females the neurons projecting to subcutaneous fat are more 

abundant than in males (Adler et al., 2012). In addition, female brains appear to be 

more sensitive to the effects of leptin on the regulation of food intake and energy 

expenditure, which is suggested to indicate a tight relationship between leptin and 

estrogens (Clegg et al., 2006). 

MEN 

Apple shape 

More visceral fat 

Higher risk of obesity 
related comorbidities 

WOMEN 

Pear shape 

Less visceral fat 

Lower risk of obesity 
related comorbidities 
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3.2 Sexual dimorphic responses to perinatal changes 

The long-term effects of early nutritional modifications can be sex specific 

(Cheverud et al., 2011; Fuente-Martin et al., 2012b; Sanchez-Garrido et al., 2013). However, 

the majority of the experimental studies analyzing these effects have not been 

performed simultaneously in both sexes. Males and females have metabolically 

different responses not only to early nutritional changes (Sardinha et al., 2006; 

Erhuma et al., 2007; Fuente-Martin et al., 2012b), but also to stressful conditions during 

early life (Bowman et al., 2004; Garcia-Caceres et al., 2010; Mela et al., 2012; Tibu et al., 

2014). Moreover, the sexually dimorphic responses to these early interventions 

often vary according to age (Fuente-Martin et al., 2012b; Mela et al., 2012). Although 

gonadal steroids are clearly responsible for some of the post-pubertal differences 

between males and females (Kanaley et al., 2001; Stubbins et al., 2012; Dakin et al., 

2015), they cannot explain all of these differences, let alone sex differences 

observed in early neonatal life. Males experience a surge in testosterone during 

neonatal life (Miyachi et al., 1973). As alterations in gonadal steroid levels during 

development have been implicated in metabolic disturbances in adulthood (Nohara 

et al., 2013c; Ongaro et al., 2015), it is possible that this event is involved in the 

development of some of the sexually dimorphic characteristics of metabolism.  

Administration of testosterone to neonatal females has been classically used 

as an experimental model to study the mechanisms underlying sexual dimorphism 

in the brain (Raisman and Field, 1973). This experimental model of androgenization 

has also been employed to study the long-term effects of increased neonatal 

androgen levels on the female reproductive axis and the development of polycystic 

ovary syndrome (Dunlap et al., 1972; Gellert et al., 1977; Goomer et al., 1977; Ongaro et 

al., 2015). More recently, this experimental model of neonatal androgenization has 

been used to study metabolic abnormalities in females (Nohara et al., 2013b; Mauvais-

Jarvis, 2014; Ongaro et al., 2015). 
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4. Hypothalamic regulation of energy homeostasis 

Food intake, energy balance and body weight are regulated by the CNS, 

which senses the overall metabolic status through the reception of hormonal and 

nutritional signals. A wide range of circulating peptides from the gut (stomach, 

small intestine and pancreas) and adipose tissue act on the hypothalamus, brain 

stem and afferent autonomic nerves through the vagus nerve and the superior 

cervical ganglion (SCG) to modulate energy metabolism (Halford and Blundell, 2000; 

Ring and Zeltser, 2010). The CNS then integrates these inputs and executes the 

appropriate hunger or satiety signal by releasing orexigenic or anorexigenic 

neuropeptides, respectively.  

Although various brain regions such as the solitary nucleus, the amygdala 

and prefrontal cortex are implicated in metabolic control, the hypothalamus is 

considered the main integration site for the regulation of feeding behavior 

(Schwartz et al., 2000; Horvath, 2005; Abizaid and Horvath, 2008). Hypothalamic 

involvement in the control of food intake was first observed when alterations in 

food intake were produced in animals with hypothalamic lesions (Hetherington and 

Ranson, 1940; Hetherington and Ranson, 1942) and later, in animals with hypothalamic 

tumors (Brobeck, 1946). 

 The hypothalamus is the brain region where peripheral signals, including 

hormones and metabolites such as glucose and fatty acids, converge and are 

integrated to achieve appropriate appetite regulation, with the arcuate nucleus 

being key in this process. This nucleus is located adjacent to the floor of the third 

ventricle and the median eminence, making it more accessible to incoming 

peripheral signals. Lesions of the arcuate nucleus in rats have been shown to 

produce a profound deregulation of appetite that leads to hyperphagia, with some 

of the first demonstrations of this phenomenon occurring over 4 decades ago 

(Olney, 1969; Young et al., 1994).  

The arcuate nucleus contains two of the main populations of neurons 

implicated in the regulation of energy balance (Cone, 2005). From the arcuate 
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nucleus, these neurons send their projections to other hypothalamic nuclei 

involved in food intake regulation, including 

the paraventricular nucleus (PVN), the 

dorsomedial hypothalamus (DMH) and the 

lateral hypothalamic area (LHA) (Elias et al., 

1998b; Elmquist et al., 1998b) (Figure 3).  

These neuronal populations located 

in the arcuate nucleus are known as 

primary order neurons and express 

neuropeptides that exert opposite actions (Figure 4). One neuronal population co-

expresses neuropeptide Y (NPY) and agouti-related protein (AgRP) (Tatemoto et al., 

1982; Hahn et al., 1998), as well as the inhibitory neurotransmitter gamma-

aminobutyric acid (GABA) (Horvath et al., 1997). Both neuropeptides exert a potent 

orexigenic action, which means that their actions will stimulate appetite (Horvath et 

al., 1997). These neurons are activated in deficient energy states, such as during 

fasting or when leptin and insulin levels are below normal, to promote food intake 

and inhibit energy expenditure. On the contrary, high levels of leptin and insulin 

inhibit this neuronal population (Schwartz et al., 2000). 

The other important neuronal population is anorexigenic, inhibiting appetite 

and stimulating energy expenditure, and co-expresses proopiomelanocortin 

(POMC) and cocaine and amphetamine-related transcript (CART). The precursor 

POMC protein is processed to produce α and β melanocyte-stimulating hormone 

(MSH), amongst other peptides (Cone et al., 1996). These melanocortin peptides 

have anorexigenic effects by acting through the melanocortin receptors 3 (MC3-R) 

and 4 (MC4-R). A positive energy balance activates these neurons, in part due to 

the resulting high concentrations of leptin, stimulating melanocortin release and 

subsequently inhibiting food intake and stimulating energy expenditure (Elias et al., 

1998a). These anorexigenic neurons receive innervation from NPY/AgRP neurons, 

with AgRP having antagonistic effects on MC3-R and MC4-R (Fan et al., 1997; Ollmann 

et al., 1997). Thus, AgRP is a potent orexigenic signal not only by directly stimulating 

Figure 3. Hypothalamic nuclei 
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food intake, but it also acts indirectly through inhibition of anorexigenic signals at 

melanocortin receptors. Another POMC-derived peptide is β-endorphin (β-EP), 

which has orexigenic effects and also antagonizes the effects of MSH on food 

intake and body weight (Grossman et al., 2003; Dutia et al., 2012; Koch et al., 2015).     

 

Figure 4. NPY and POMC/AgRP neurons in the ARC nucleus of the hypothalamus are first order neurons 

that respond to circulating signals from adipose tissue (e.g., leptin), stomach (e.g., ghrelin) and pancreas 

(e.g., insulin). These neurons release orexigenic (NPY and AgRP) or anorexigenic (CART and the POMC-

derived peptide α-MSH) peptides, which impact on second order neurons in other areas of the 

hypothalamus to regulate food intake and energy homeostasis by stimulating or inhibiting hunger and 

satiety (B). 

 

5. The control of food intake: communication between the periphery 

and central nervous system  

Communication between peripheral signals and the CNS includes a complex 

gut-brain-adipose network in which the interaction and actions of hormones and 

neuropeptides is crucial in the control of metabolic homeostasis and energy 

balance. Peripheral signals coming from diverse organs or tissues and nutrients are 
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integrated by the hypothalamus, where, according to the information received, the 

appropriate signals will be elaborated in order that energy requirements are 

adequately fulfilled. These hormones come from at least three different sites: 

adipocytes, the gastrointestinal (GI) tract and the pancreas. 

5.1 Signals from adipose tissue  

Adipose tissue, once relegated to the category of a passive organ storing 

triglycerides (TG), is now considered to be an active endocrine organ per se (Antuna-

Puente et al., 2008; Coelho et al., 2013). There is a constant dialogue between adipose 

tissue and the CNS (Figure 5), mediated by a variety of adipokines secreted by the 

adipose tissue, which inform the brain about energy stores. Regarding their actions 

in the brain, leptin is the most well studied adipokine (Halaas et al., 1995; Maffei et al., 

1995a). Although CNS actions of other adipokines such as adiponectin, resistin and 

apelin have also been reported (Rajala et al., 2004; Kadowaki et al., 2006; Pope et al., 

2012). Moreover, the brain produces “adipotropins” that act on adipocytes through 

the activation of specific receptors (Schaffler et al., 2006). 

 

 

Figure 5. Adipose tissue and brain communication, showing an active role of adipose tissue in the 

regulation of food intake. 
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5.1.1 Leptin  

In 1994, the cloning and characterization of the Ob gene by Jeffrey Friedman 

and colleagues (Zhang et al., 1994b) resulted in the identification of its protein 

product, leptin (leptos from latin: thin). This discovery was a milestone in the 

understanding of appetite control since leptin is one of the most important signals 

secreted by adipose tissue participating in the regulation of energy homeostasis 

and the pathogenesis of obesity. Leptin is anorexigenic and is secreted almost 

exclusively by adipose tissue, although to a minor extent by the liver, stomach, 

hypothalamus, placenta and ovaries (Hoggard et al., 1997; Bado et al., 1998; Mantzoros, 

1999). Defects in leptin expression in ob/ob mice (Drel et al., 2006), as well as rare 

mutations of the leptin gene in humans leading to leptin deficiency, result in 

profound obesity with affected individuals showing hyperphagia and decreased 

energy expenditure (Farooqi et al., 1999). Leptin replacement in humans has been 

shown to normalize these symptoms (Farooqi et al., 2002). 

Plasma leptin concentrations positively correlate with fat stores and also 

increase with overfeeding and decrease in starvation states (Considine et al., 1996; 

Friedman and Halaas, 1998). However, in addition to food intake and BMI, leptin 

concentrations also vary according to sex, age and circadian rhythms (Argente et al., 

1997; Blum et al., 1997; Mantzoros, 1999). Leptin circulates either free or bound to a 

soluble form of its receptor, Ob-R (Ob-Re). Leptin passes through the blood-brain-

barrier (BBB) by using a saturable transporter system and reaches one of its main 

sites of action, the hypothalamus, where it acts to decrease food intake and 

increase energy expenditure (Frederich et al., 1995a; Houseknecht et al., 1998). 

Specifically, leptin exerts its anorexigenic effects in the arcuate nucleus by 

inhibiting NPY/AgRP neurons and stimulating POMC neurons. (Schwartz et al., 2000; 

Horvath, 2005; Simpson et al., 2009). In 1997, Halaas and colleges showed that intra-

cerebral ventricular (ICV) injection of leptin provoked these effects without 

modifying circulating leptin levels, indicating a central action of leptin (Halaas et al., 

1997). Under normal conditions, there is a tight relationship between circulating 
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leptin levels and its transport into the brain. Thus, fasting states decrease the 

transport of leptin into the brain due to its low levels in blood, while food 

consumption produces both an increase in circulating levels and in the transport of 

leptin across the BBB (Kastin and Pan, 2000).  

5.1.1.1 Leptin’s structure 

Leptin, a 167 amino acid peptide hormone with a molecular weight of 16 

kilodalton (kDa) is encoded by the Ob gene. The human Ob gene is located on 

chromosome 7q31-3 and is composed of three exons separated by two introns (Isse 

et al., 1995). The three-dimensional structure of leptin is organized into four 

antiparallel α-helices connected by two long crossover links and one short loop. 

There is an interchain disulphide bond that is key for the stability and biological 

activity of this hormone (Zhang et al., 1997; Fruhbeck, 2006). Human leptin shares high 

homology with that of other mammals, sharing up to 84% of homology with mouse 

leptin and 83% with rat leptin.  

5.1.1.2 Leptin receptors and signaling 

The leptin receptor, Ob-R, was discovered in 1995 by Tartaglia and 

coworkers and resembles a class 1 cytokine receptor (Tartaglia et al., 1995). While 

the CNS accounts for the majority of leptin’s target sites (Elmquist et al., 1998a; Cohen 

et al., 2001; McMinn et al., 2005; Pan et al., 2008), Ob-R is also expressed in other 

tissues, including pancreatic beta cells, adipose tissue and the testis (Kielar et al., 

1998; Tena-Sempere et al., 2001; Covey et al., 2006). This receptor is encoded by the 

diabetes (db) gene and has at least six-splice variants, denoted Ob-Ra to Ob-Rf. 

These isoforms can be classified into three classes: short, long and secretory 

(Tartaglia et al., 1995).  

Ob-Ra, Ob-Rc, Ob-Rd and Ob-Rf, the short isoforms of the leptin receptor 

lacking the intracellular domain, are involved in the internalization and breakdown 

of leptin (Tartaglia et al., 1995; Uotani et al., 1999). Ob-Ra is the most ubiquitous 

isoform in most tissues and cells (Tartaglia et al., 1995). Ob-Re is the soluble and 
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smallest isoform and is involved in transporting circulating leptin to its membrane 

receptors. 

Ob-Rb, the longest leptin receptor isoform with the longest intracellular C-

terminal domain, has intracellular signal-transducing capabilities. Ob-Rb is highly 

expressed in the hypothalamus (Tartaglia, 1997; Scott et al., 2009) and is 

predominantly responsible for mediating leptin’s metabolic actions in the CNS.  

(Schwartz et al., 2000). Both POMC/CART and NPY/AgRP neurons express Ob-Rb 

(Cheung et al., 1997; Baskin et al., 1999), as do neurons distributed throughout the 

VMH, DMH and LHA that participate in the regulation of feeding (Elmquist et al., 

1998a; Dhillon et al., 2006; Hommel et al., 2006). In addition to neurons, astrocytes also 

express Ob-Rb (Pan et al., 2008; Kim et al., 2014a), suggesting that these cells also 

participate in mediating leptin’s effects on metabolism.  

The amino acid sequences of human and murine leptin receptors also share 

high homology, including 78% identity in the extracellular and 71% in the 

intracellular domains (Chen et al., 1996). While the majority of transcripts encoding 

the short intracellular domain isoforms are found in almost all tissues, the long 

intracellular domain form is less abundant except for in the hypothalamus, where it 

is expressed at high levels (Ghilardi et al., 1996). Similar to leptin deficient humans 

and mice, leptin receptor deficient humans and mutant mice (db/db) display 

hyperphagia and decreased energy expenditure, presenting early onset obesity 

(Chua et al., 1996). 

5.1.1.3 Mechanism of action of leptin 

Leptin binds to Ob-Rb to activate intracellular signaling transduction through 

the Janus Activated Kinases (JAK)/Signal Transducer and Activators of Transcription 

(STAT) pathway. Although this is not the only pathway activated by leptin, it is the 

most studied with regards to food intake control. Leptin binds Ob-Rb causing a 

conformational change and inducing auto-phosphorylation and activation of JAK 

family proteins, in particular JAK-2 tyrosine kinase, which in turn produces 

phosphorylation of STAT family proteins (Figure 6) (Vaisse et al., 1996; Banks et al., 
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2000), which have two important phosphorylation sites. First, STAT-3 is 

phosphorylated on tyrosine-705 (Tyr705), which causes dimerization, translocation 

to the nucleus and DNA binding (Guschin et al., 1995). Then, a second 

phosphorylation takes place at serine-727 (Ser727). Whereas Tyr705 

phosphorylation is mediated by Janus kinases, Ser727 activation may be mediated 

by several kinases and has a role in transcriptional activation (Zhang et al., 1998; 

Decker and Kovarik, 2000). This signaling cascade results in the activation of the key 

genes involved in mediating leptin’s actions (Ghilardi et al., 1996; Harvey and Ashford, 

2003; Allison and Myers, 2014). The phosphorylation of the STAT family proteins also 

induces the expression of genes such as suppressor of cytokine signaling 3 (SOCS3), 

which mediates feedback inhibition of the leptin pathway (Bjorbaek et al., 1998). Of 

note, leptin suppresses AMP-protein kinase (AMPK) stimulating food intake 

(Minokoshi et al., 2004). 

 

 

 

 

 

 

 

 

 

 

Figure 6. Simplification of the leptin signaling pathway. Leptin is secreted by adipose tissue to the 

bloodsteam postpandrially. Leptin binds to Ob-Rb to activate JAK2 and then STAT3, which translocates 

to the nucleus to activate the expression of the key genes involved in leptin’s satiety effects. STAT3 also 

induces the expression of SOCS3 that has an inhibitory effect on JAK2, suppressing leptin’s actions. The 

leptin pathway converges with the insulin intracellular signaling pathway at the level of PI3K activation.  
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5.1.1.4 Leptin’s functions 

As stated above, leptin is an anorectic hormone secreted to the bloodstream 

accordingly to the amount of stored adipose tissue an individual has (Frederich et al., 

1995a; Argente et al., 1997). Although leptin has been used as an efficient treatment 

in obese leptin deficient patients to reduce the amount of adipose tissue (Farooqi et 

al., 2002; Mantzoros et al., 2011), high leptin levels are usually found in obese 

individuals. This implies that there is a resistance to leptin’s effects on weight loss 

(Frederich et al., 1995b; Maffei et al., 1995b). In addition, obese individuals are reported 

to have reduced leptin transport across the BBB, which would contribute to the 

leptin resistance observed in obese subjects (El-Haschimi et al., 2000). Indeed, diverse 

studies exposing mice to high fat diet (HFD) showed an increase in food intake 

probably due to the development of leptin resistance (Lin et al., 2000; Enriori et al., 

2007; Knight et al., 2010).  

Leptin also influences brain development and participates in the maturation 

of neuronal circuits implicated in appetite control and food intake behavior (Bouret 

et al., 2004b). As previously stated, either a deficiency or an excess of leptin during 

this perinatal period can have long-term effects on the metabolic control (Steppan 

and Swick, 1999; Bouret, 2010a; Granado et al., 2014; Mela et al., 2015) and this is at least 

in part due to modifications in the development of metabolic circuits.  In rodents, 

the projections from the arcuate nucleus to other important hypothalamic nuclei 

implicated in feeding behavior are immature at birth, becoming fully mature 

around PND20 (Bouret et al., 2004a). Mice genetically lacking leptin (ob/ob mice) 

have modifications in the number of projections and synaptic inputs to NPY and 

POMC neurons. This synaptic connectivity can be rapidly restored to that seen in 

wild type (WT) mice by administration of leptin (Pinto et al., 2004). Bouret and 

colleges demonstrated that ob/ob mice have permanent alterations in the 

neuronal projections from the arcuate nucleus. Leptin treatment during the 

neonatal period rescues the development of these projections, while no effect is 

found in adult animals, indicating that there is a critical window when leptin is 
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capable of influencing the development of hypothalamic feeding circuits (Bouret et 

al., 2004b). 

 Leptin modulates lipid and glucose metabolism, stimulating lipolysis and 

inhibiting lipogenesis in liver and adipose tissue (Hynes and Jones, 2001). It also has 

antagonic effects on insulin, decreasing glucose-stimulated insulin secretion (Hynes 

and Jones, 2001; Muzumdar et al., 2003).  Leptin is also implicated in numerous other 

physiological functions such as reproduction, immunity and adipogenesis (Friedman 

and Halaas, 1998).  

5.1.1.5 Leptin and astrocytes 

Astrocytes express receptors for leptin (Pan et al., 2008; Hsuchou et al., 2009; 

Kim et al., 2014a) and leptin also plays an important role in astrocyte development 

(Pan et al., 2012; Rottkamp et al., 2015). Calcium waves are induced in astrocytes in 

response to leptin, indicating that the leptin receptors in these glial cells are 

functional (Hsuchou et al., 2009). Increased expression of leptin receptors in 

astrocytes has been reported in obese animals (Pan et al., 2008; Hsuchou et al., 2009). 

Moreover, we have previously shown that leptin induces morphological changes in 

astrocytes, both in vivo and in vitro (Garcia-Caceres et al., 2011; Kim et al., 2014a), and 

these morphological changes are involved in leptin-induced modifications in 

synaptic inputs to NPY and POMC neurons (Kim et al. 2014). Leptin also modifies the 

ability of hypothalamic astrocytes to transport both glutamate and glucose, with 

the time of leptin exposure producing different responses (Fuente-Martin et al., 

2012a).  

5.1.2 Adiponectin 

Adiponectin is a 30kDa protein composed of 247 amino acids. It is 

exclusively and abundantly secreted by adipose tissue and is thought to play 

important roles in glucose and lipid metabolism (Hu et al., 1996; Brochu-Gaudreau et 

al., 2010). Adiponectin is released into the bloodstream in three different isoforms 

that differ in molecular weight, with the activity of adiponectin in tissues 
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depending on the amount of each isoform (Waki et al., 2003). 

 

At least in the adult, adiponectin is associated with beneficial effects and it is 

reported to be an anti-diabetic hormone. This is due to its activation of AMPK 

(Yamauchi et al., 2002) and the peroxisome proliferator activated receptor α (PPARα) 

(Kersten et al., 2000) in liver and skeletal muscle. The adiponectin receptor AdipoR1, 

is abundantly expressed in skeletal muscle, while AdipoR2 is more highly expressed 

in liver. Although the neuroendocrine function of adiponectin has been less 

studied, receptors for this adipokine are also expressed in the arcuate nucleus of 

the hypothalamus (Koch et al., 2014). Binding of adiponectin to these receptors 

stimulates the activation of AMPK and PPARα, respectively (Yamauchi et al., 2003). 

Oxidative stress in adipose tissue is associated with decreased plasma adiponectin 

levels (Kadowaki and Yamauchi, 2005; Yamauchi et al., 2007). Adiponectin has been 

associated with anti-inflammatory effects, with increased plasma adiponectin 

levels reducing adipose tissue inflammation in obesity through PPARα activation 

(Tsuchida et al., 2005). Adiponectin can also up-regulate interleukin 10 (IL-10) 

expression in macrophages and leukocytes, resulting in a potent anti-inflammatory 

activity (Wolf et al., 2004). 

The effect of adiponectin on hypothalamic metabolic circuit development 

remains unknown; however, levels of this adipokine in cord blood are positively 

correlated with leptin levels and adiposity and it is suggested to play a role in early 

growth (Tsai et al., 2004; Ballesteros et al., 2011). Although adiponectin is reported to 

increase insulin sensitivity in adults (Yamauchi et al., 2001), in neonates adiponectin 

levels do not correlate with insulin sensitivity (Meral et al., 2011).  

Adiponectin expression by white adipose tissue (WAT) is reported to be 

sexually dimorphic, with females having higher adiponectin production (Amengual-

Cladera et al., 2012; Capllonch-Amer et al., 2014). Secretion of this adipokine is 

influenced by testosterone, as castrated rodents and hypogonadal men have higher 

serum total and high molecular weight adiponectin concentrations, while 

testosterone treatments decreases its levels (Nishizawa et al., 2002; Xu et al., 2005). 
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5.2 Signals from the pancreas 

5.2.1 Insulin  

Insulin was isolated for the first time by Banting and Best in 1922 (Banting, 

1924; Raju, 2006). It is almost exclusively secreted by the pancreas and, once in the 

circulation, it crosses the BBB by a saturable transport system (Baura et al., 1993). In 

the CNS, insulin also communicates the metabolic status to the hypothalamus, thus 

being another key molecule for the control of energy homeostasis (Vogt and Bruning, 

2013). Pancreatic beta cells secrete this protein in response to elevated blood 

glucose levels, after consumption of a meal for example, with insulin thus being the 

major regulator of glycemia. It stimulates the uptake of glucose by liver, muscle and 

adipose tissue and suppresses hepatic glucose production (Kahn, 1994). Importantly, 

and like leptin, circulating insulin levels are correlated to body adiposity (Polonsky et 

al., 1988).  

Insulin exerts its actions in both the periphery and the CNS after binding to 

its receptor (IR), a tyrosine kinase receptor (Kahn, 1994). Insulin receptors are 

present throughout the brain, including the hypothalamus (Wozniak et al., 1993) 

where they are highly expressed in the arcuate nucleus (van Houten et al., 1979). 

Insulin activation of the phosphoinositide-3 kinase pathway (PI3/Akt), where AKT 

triggers forkhead-O transcription factor (FOXO) phosphorylation which is 

translocated to the nucleus and degraded, is essential for maintenance of energy 

homeostasis by the CNS (Plum et al., 2006), and the mitogen-activated protein kinase 

(MAPK) signaling pathway (White, 2003), which negatively regulates FOXO activity 

(Biggs et al., 1999). There is crosstalk between insulin and leptin signaling pathways 

in the hypothalamus and specifically, insulin signaling converges with leptin 

signaling at the level of PI3K activation to increase the firing of POMC neurons 

(Niswender et al., 2003; Belgardt et al., 2009). Blockade of PI3K inhibits the anorexic 

effects on food intake of both leptin and insulin (Niswender and Schwartz, 2003). 

5.2.1.1 Peripheral and central effects of insulin 
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Glucose-stimulated insulin secretion regulates appetite through direct 

activation of POMC and inhibition of AgRP expression (van Houten et al., 1979; Bruning 

et al., 2000), causing inhibition of food intake and increased energy expenditure 

(Woods et al., 1979; Qiu et al., 2014). Correct IR signaling is indeed important for body 

weight control, as IR deficiency in mice leads to increased fat mass and leptin levels 

(Bruning et al., 2000).  It is important to note that insulin exerts independent actions 

in the periphery and centrally, with this hormone having important functions on 

metabolism, neural plasticity and cognition (Banks et al., 2012). In the brain, IR 

expression is reported to be higher in neurons than glial cells (Unger et al., 1989). 

Moreover, aging is associated to decreased IR density in the brain (Frolich et al., 

1998; Bosco et al., 2011), which is related with decreased cognitive function and could 

also have a role in the increased propensity to gain weight with age. 

Hyperinsulinemia as a consequence of obesity can lead to insulin resistance 

and eventually type 2 diabetes (Moller and Flier, 1991). Hyperinsulinemia and 

decreased insulin sensitivity have been proposed to be perpetuated by the 

inflammatory state that occurs in obesity, due to an abnormal accumulation of 

lipids in adipose tissue and the production of proinflammatory cytokines (De Souza 

et al., 2005; Shoelson et al., 2006), with serine kinases such as c-Jun N-terminal kinases 

(JNKs) mediating the proinflammatory signals and impairing insulin signaling 

(Hirosumi et al., 2002; Hotamisligil, 2003). Indeed, TNFα and IL6 production by adipose 

tissue of obese individuals can induce peripheral insulin resistance (Hotamisligil et al., 

1993; Rotter et al., 2003). 

5.2.1.2 Insulin and brain development 

Insulin is essential for adequate CNS development and function, including 

neuronal differentiation, maturation and survival (Recio-Pinto et al., 1986; Valenciano 

et al., 2006), synaptic plasticity, learning and memory (Dou et al., 2005) and neuronal 

circuitry formation (Chiu et al., 2008; Chong et al., 2015). Equilibrated insulin levels 

during prenatal and neonatal life are fundamental, as insulin actively participates in 

the normal development of metabolic neuronal circuits (Dorner and Plagemann, 1994; 
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Plagemann et al., 1999c; Konner et al., 2009). Indeed, the formation of POMC 

projections from the arcuate nucleus is disrupted as a consequence of 

hyperinsulinemia in the offspring due to maternal HFD intake during lactation (Vogt 

et al., 2014).   

5.3 Gastrointestinal (GI) hormones 

There are numerous other hormones and factors that have been implicated 

in metabolic control [for a review see (Maric et al., 2014)] by targeting specific 

neurons in the brain and/or by modulating vagal nerve function (Cummings and 

Overduin, 2007). Some of the most studied hormones participating in food intake 

control and secreted mainly in the gastrointestinal tract are ghrelin, cholecystokinin 

(CCK), peptide YY (PYY), glucagon and amylin. 

Ghrelin is mainly secreted in the oxyntic cells of the stomach (Kojima et al., 

1999; Nakazato et al., 2001) and exerts its actions through the ghrelin receptor (GHS-

R1a). Ghrelin is the only GI hormone that stimulates food intake. It also stimulates 

adipose tissue accumulation and modulates energy expenditure and glucose 

homeostasis (Tschop et al., 2000; Wren et al., 2001; Muller et al., 2015). Its secretion is 

induced in fasting conditions to stimulate NPY/AgRP neurons and to inhibit POMC 

neurons in the hypothalamic arcuate nucleus, which express GHS-R1a (Kamegai et 

al., 2001; Riediger et al., 2003; Wang et al., 2014b). The stimulatory effect of ghrelin on 

food intake is also mediated by GABA release from AgRP neurons, impeding 

melanocortin signaling by inhibiting POMC neurons (Cowley et al., 2001; Wu et al., 

2008). Contrary to leptin, ghrelin stimulates AMPK activity in the hypothalamus, 

consequently increasing food intake (Andersson et al., 2004). 

CCK is synthesized in the intestine and acts as potent satiety signal, 

decreasing meal size by acting in vagal afferents and the hindbrain (Moran and 

Kinzig, 2004). Disorders in food intake and obesity have been found in rats lacking 

CCK receptors (Miyasaka et al., 1994; Moran et al., 1998). Leptin interacts with CCK, 

increasing its actions (Peters et al., 2006; Grill, 2010). 
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PYY is secreted in the lower intestine and regulates appetite, mediating its 

effects through the NPY receptors. Serum PYY levels rise postpandrially, in 

response to calorie intake, resulting in the inhibition of food intake (Batterham et al., 

2002; Batterham and Bloom, 2003).  

The peptide hormone glucagon is secreted in the alpha cells of the pancreas. 

It is released to the bloodstream when glucose levels are low in order to restore 

glycemia levels by converting glycogen stored in the liver into glucose (Woods et al., 

2006). It is also secreted postpandrially, providing a satiety signal (Geary, 1990). 

Amylin is synthesized by pancreatic β-cells to decrease food intake. Amylin 

can interact with leptin to regulate metabolism (Lutz, 2010). 

5.4 Sex steroids in metabolism 

5.4.1 Estrogens 

Estrogens are an important group of hormones produced mainly by the 

ovaries in females and the testes in males, although they are also produced to a 

lesser extent by other tissues including adipose tissue (Simpson, 2003). In addition to 

their role in the reproductive system (Christensen et al., 2012), estrogens also 

modulate the neuroendocrine, skeletal, adipogenic, and cardiovascular systems 

(Hughes et al., 2009; Xiao et al., 2010). Estrogens mediate their actions through 

estrogen receptors (ERs), including estrogen receptor alpha (ER-α) and estrogen 

receptor beta (ER-β) which are located throughout the CNS, including the arcuate 

nucleus of the hypothalamus (Simerly et al., 1990; Shughrue et al., 1997; Osterlund et al., 

1998; Mitra et al., 2003) and are encoded by distinct genes and located in different 

chromosomes (Kong et al., 2003). Of note, ERβ expression in the hypothalamus is 

lower than ERα and, importantly, ERα is the isoform that is most implicated in 

energy homeostasis (Heine et al., 2000).  

ERs belong to the steroid hormone superfamily of nuclear receptors (NRs), which 

act as transcription factors after binding to estrogen (Osz et al., 2012). ERα and ERβ 

are expressed in adipose tissue of both males and females and influence adiposity 
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(Mizutani et al., 1994; Shimizu et al., 1997; Davis et al., 2013). Estrogens are suggested to 

increase the sympathetic tone to adipose tissue depots, in a different manner in 

men and women, favoring lipid deposition in the subcutaneous depot in women 

and visceral in men, as shown by increased abdominal adiposity in females as a 

consequence of ERα deletion in certain neurons (Xu et al., 2011). In the brain, 

estrogens play an important role in neuronal development and circuit formation in 

the fetus and neonate (Arai et al., 1986; McCarthy, 2008) and also modulate dendritic 

morphology, synaptic inputs, neurotransmitter and neuropeptide secretion and 

nuclear volume in the post-pubertal animal (DeVoogd and Nottebohm, 1981; Garcia-

Segura et al., 1986; Carrer et al., 2005). They also regulate the expression of BDNF in 

the hypothalamus that can be related with the browning of fat (Cao et al., 2011; 

Nookaew et al., 2013).   

Not only neurons, but also astrocytes are involved in the neuroprotective 

actions of estradiol (Acaz-Fonseca et al., 2014; Arevalo et al., 2015). Indeed, ERs are also 

expressed in astroglial cells (Jung-Testas et al., 1991; Langub and Watson, 1992), with 

glial cells participating in the metabolism of gonadal hormones and the synthesis of 

endogenous steroids (Kabbadj et al., 1993; Melcangi et al., 1993; Garcia-Segura et al., 

1996a).  

5.4.1.1 Estrogens in food intake regulation 

Estrogens have protective effects against weight gain, increased adiposity 

and obesity associated disorders (Stubbins et al., 2012; Dakin et al., 2015), with 17β-

estradiol being the most potent endogenous estrogen in appetite regulation (Geary, 

2000), functioning at least in part by decreasing food intake and increasing leptin 

sensitivity (Palmer and Gray, 1986). Activation of ERα in the CNS has been shown to 

regulate food intake, glucose homeostasis and energy expenditure (Musatov et al., 

2007; Xu et al., 2011). Estrogens have been shown to exert their “protection” on 

metabolism due to their inhibitory effects on appetite by increasing the activity of 

anorexigenic signals such as leptin, cholecystokinin, BDNF or apolipoprotein A-IV 

and decreasing orexigenic signals like ghrelin or melanin-concentrating hormone 
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(Tarttelin and Gorski, 1971; Clegg et al., 2006; Clegg et al., 2007; Shen et al., 2010; Zhu et al., 

2013).  

The menstrual cycle in women is reported to induce fluctuations in calorie 

intake, with a decrease during the periovulatory phase when estradiol reaches its 

peak (Barr et al., 1995; Buffenstein et al., 1995; Davidsen et al., 2007). This is also seen in 

female rodents, which consume less during diestrous (right after the preovulatory 

rise in estradiol secretion) and increase food intake during estrus when estradiol 

levels are lower, reinforcing the association between estradiol levels and food 

intake (Tarttelin and Gorski, 1971; Asarian and Geary, 2013). In addition, female rats are 

reported to gain less weight compared to males when exposed to a HFD, but this 

sex difference is no longer observed after ovariectomy (Stubbins et al., 2012). 

Estrogens also increase energy expenditure (Gambacciani et al., 1997). Indeed, 

activation of ERs in the VMN of the hypothalamus in rodent models increases 

energy expenditure (Musatov et al., 2007; Xu et al., 2011). Post-menupausal women 

generally tend to increase body weight due to decreased estradiol levels and they 

are also reported to have a lower rate of energy expenditure during exercise and 

sleep (Lovejoy et al., 2008). Therefore, estrogens protect against weight gain through 

both inhibition of food intake and stimulation of energy expenditure. Estrogens are 

also important for men as blockade of androgen conversion to estrogen leads to 

impaired insulin sensitivity and metabolism (Finkelstein et al., 2013).  

 

5.5 Nutrient derived signals: Glucose and fatty acids 

Control of energy homeostasis by the hypothalamus is modulated not only 

by peripheral hormones, but also by nutrients such as glucose or fatty acids. 

5.5.1 Hypothalamic glucose sensing 

Claude Bernard observed that hypothalamic lesions produced 

hyperglycemia in dogs, with this being the first observation that the brain is 
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implicated in the control of blood glucose levels (Bernard, 1855). Later, specific cells 

in the hypothalamus that monitor glucose concentrations and translate the 

variations in glucose levels into chemical signals to control feeding were identified 

(Mayer, 1953). Subsequently, numerous studies have illustrated that glucose acts on 

hypothalamic sites that are involved in the control of energy homeostasis (Jordan et 

al., 2010; Levin et al., 2011). Due to its location close to the median eminence, the 

arcuate nucleus is one of the first central sites to be exposed to circulating glucose 

levels.  

Neurons with the ability to sense blood glucose levels alter their action 

potential frequency in response to changes in interstitial glucose levels (Ashford et 

al., 1990). Of special interest are glucose-sensing neurons found in the 

ventromedial, lateral, paraventricular and arcuate nuclei (Oomura et al., 1964; Kow 

and Pfaff, 1989; Song et al., 2001; Wang et al., 2004). In the arcuate nucleus, in addition 

to glucose-sensing neurons (Wang et al., 2004; Fioramonti et al., 2007), astrocytes 

(Morgello et al., 1995; Kacem et al., 1998; Fuente-Martin et al., 2012a) and other glial cells 

like tanycytes (García et al., 2003; Salgado et al., 2014) surrounding the third ventricle 

are also involved in sensing glucose levels.  

 

Glucose transport and sensing in the brain is carried-out through glucose 

transporters (GLUT) 1, 2, 3 and 4, expressed in the vasculature, glial cells and 

neurons. GLUT1 is highly expressed in the astrocyte endfeet that envelop capillaries 

and is the principal glucose transporter in the BBB (Morgello et al., 1995; Kacem et al., 

1998). GLUT2 is expressed in hypothalamic astrocytes, ependymal-glial cells, 

tanycytes and glucose-sensitive neurons (García et al., 2003; Guillod-Maximin et al., 

2004; Kang et al., 2004) and is especially important for the glucose-sensing process, 

actively participating in the homeostatic control of circulating glucose levels (Bady 

et al., 2006; Stolarczyk et al., 2010). GLUT3 is mainly expressed in neurons (Gerhart et 

al., 1995). AMPK is a fuel sensor (Kemp et al., 1999) and is suggested to be a mediator 

of hypothalamic glucose-sensing, as it is activated when energy stores are low (low 

generation of ATP) and stimulates food intake (Claret et al., 2007; Jordan et al., 2010).  
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Direct icv administration of glucose inhibits feeding through modulation of 

glucose-sensing neurons (Kurata et al., 1986; Chang et al., 2005). However, this central 

hypophagic effect of glucose is abolished when an individual is exposed to chronic 

high fat diet during 8 weeks, with glucose-excited (POMC) and glucose-inhibited 

(NPY) neurons being less responsive to glucose fluctuations (Levin et al., 1998; de 

Andrade et al., 2015), suggesting defective neuronal activation by glucose caused by 

high fat diet. 

5.5.2 Hypothalamic fatty acid sensing 

Although glucose is the primary source of energy for neurons and acts as a 

signaling molecule, some hypothalamic neurons also sense long-chain fatty acids 

(LCFAs) (Oomura et al., 1975). Moreover, enzymes responsible for fatty acid synthesis 

are also present in neurons of the arcuate nucleus (Kim et al., 2002). Like insulin and 

leptin, levels of fatty acids and glycerol are proportional to adiposity and thus are 

also signals of nutrient abundance that modulate hypothalamic function to 

maintain homeostasis (Kennedy, 1953; Friedman, 2000). 

The intake of fat rich diets has increased alarmingly and, although certain 

levels of fatty acids are necessary, elevated levels of free fatty acids (FFAs) can be 

harmful. Serum FFAs are increased in obesity (Reaven et al., 1988; Boden, 2008) and 

their elevation is associated with adipocyte dysfunction and the development of 

insulin resistance (Boden et al., 2001; Guilherme et al., 2008). Moreover, elevated levels 

of FFAs in perinatal life may also affect hypothalamic neurocircuit development 

(Sullivan et al., 2011). In addition, FFAs, especially saturated fatty acids, can activate 

an inflammatory response in different cell types (Boden and Shulman, 2002; Iyer et al., 

2010), as well as induce endoplasmic reticulum (ER) stress (Gregor and Hotamisligil, 

2007). Excess FFAs derived from the diet accumulate in the adipocyte and form TGs 

that are stored as energy (one TG is composed of three fatty acids and one 

molecule of glycerol) in fat droplets in the adipocyte (Gregor and Hotamisligil, 2007). 

The main features of the most abundant fatty acids in diet are summarized in Figure 

7. 
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Figure 7. Main characteristics of the most abundant unsaturated (oleic acid) and saturated (palmitic 

acid) fatty acids in the diet. 

 

Circulating fatty acids access the brain through passive diffusion (Hamilton 

and Brunaldi, 2007) or by active transport (Mitchell et al., 2011) and are reported to  

access the CNS in proportion to their concentrations in plasma (Miller et al., 1987; 

Rapoport, 1996), although Goto and Spitzer quantified around 6% in the cerebro 

spinal fluid of their plasma concentration in fasting dogs (Goto and Spitzer, 1971). 

Once LCFAs enter into the brain and then into hypothalamic glial cells and neurons, 

they are esterified by acetyl-coA synthase (ACS) to long chain fatty acyl-CoA (LCFA-

CoA), whose accumulation will induce inhibitory effects on food intake and glucose 

production by the liver. Thus, LCFA-CoA accumulation is essential for lipid sensing 

in the hypothalamus and consequent inhibition of glucose production in the liver 

(Woods et al., 1984; Chu et al., 2002; Yue and Lam, 2012). LCFA-CoA enters the 

mitochondria for beta oxidation by carnitine palmitoyl transferase 1 (CPT-1) (Caspi 
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et al., 2007). This oxidation is regulated by malonyl-CoA that inhibits CPT-1 activity 

(McGarry et al., 1983). Hence, circulating lipids also act as signals to the 

hypothalamus regarding the nutritional status and modulate neuronal activity to 

control energy homeostasis (Woods et al., 1984; Matzinger et al., 2000). 

LCFAs are able to excite or inhibit neurons in the arcuate nucleus (Morgan et 

al., 2004; Migrenne et al., 2006; Le Foll et al., 2014). Centrally infused oleic acid inhibits 

food intake and glucose production by the liver, at least in part through inhibiting 

the expression of the orexigenic neuropeptides NPY and AgRP (Obici, 2002; Morgan et 

al., 2004). In addition, oleic acid has been reported to stimulate neurogenesis of 

metabolic neurons (Nascimento et al., 2015) and to improve insulin resistance in 

obese mice (Oliveira et al., 2015). In contrast, exposure to saturated LCFAs, like 

palmitic acid, leads to resistance to leptin’s anorexigenic actions (Milanski et al., 

2009) and appears to exacerbate the inflammatory responses observed in obesity 

and to cause lipotoxicity (Listenberger et al., 2001; Beeharry et al., 2003). Palmitic acid is 

reported to cause inflammatory responses in both astrocytes and microglia (Gupta 

et al., 2012; Valdearcos et al., 2014), which most likely participates in the disruption of 

appropriate metabolic sensing in neurons. 

 

6. Inflammation in obesity 

Inflammation is a host response to protect against an insult and is necessary 

to repair the tissue and restore homeostasis (Calder et al., 2009). Obesity is 

characterized by a chronic, low-grade inflammatory state (Gregor and Hotamisligil, 

2011). However, the inflammation associated with obesity is different from the 

classical inflammation in which pain, redness, swelling and heat are typical and a 

rapid immune response eliminates the insult and resolves the inflammation in the 

site of injury (Medzhitov, 2008). The first report of systemic inflammation related to 

obesity was published by Hotamisligil and co-workers, where they reported an 

elevation in TNFα levels in obese compared to lean mice (Hotamisligil et al., 1993; 

Hotamisligil et al., 1995). In addition to TNFα, the expression of other inflammatory 
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cytokines, such as IL1β and IL6, has also been shown to be elevated in obesity (Berg 

and Scherer, 2005; Shoelson et al., 2006).  

In obesity, adipose tissue is the main site of increased systemic cytokine 

production, including IL6, TNFα and IL1β amongst others, with excess nutrient 

intake suggested to activate this inflammatory response (Fried et al., 1998). The 

increased secretion of inflammatory cytokines such as TNFα can impair insulin 

signaling and thus contribute to the development of insulin resistance (Stephens et 

al., 1997). The inflammatory response in adipose tissue is associated with adipocyte 

hypertrophy, but not adipocyte proliferation (Weisberg et al., 2003). Indeed, 

adipocyte hypertrophy is associated with immune cell, macrophage and T cell 

infiltration in addition to the local proinflammatory environment (Minihane et al., 

2015). The distribution of adipose tissue in overweight and obese subjects seems to 

be important in determining the inflammatory milieu, with VAT appearing to 

contribute to a greater extent than SCAT to the inflammatory process and cytokine 

production (Weiss, 2007a). 

Importantly, the cytokines released by adipose tissue are also metabolic 

signals that can cross the BBB and reach the metabolic control units, including both 

neurons and astrocytes within the hypothalamus (Banks et al., 1995; Benveniste, 

1998). Moreover, these cytokines can also be locally produced in the brain 

(Benveniste, 1998). Indeed, in addition to adipose tissue, other tissues involved in 

metabolism such as the brain (De Souza et al., 2005), liver (Cai et al., 2005), pancreas 

(Nicol et al., 2013) and muscle (Saghizadeh et al., 1996) may also participate in the 

inflammatory state in obesity. 

There is evidence that inflammatory responses can be directly evoked by 

nutrients (Aljada et al., 2004; Cani et al., 2007; Erridge et al., 2007). Nutrients and/or 

inflammatory signals can activate JNK, a major intracellular contributor to the 

induction of inflammation in metabolic tissues, inhibitor of nuclear factor kappa-B 

kinase (IKK) and/or other kinases, which can interfere with the insulin-signaling 
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cascade by targeting IRS-1 for inhibitory phosphorylation (Boura-Halfon and Zick, 

2009; Tanti and Jager, 2009). 

Sex differences in inflammatory markers have been investigated in a few 

studies, but the reported studies are contradictory. Some studies report no 

differences between male and female humans and mice (Forsey et al., 2003; 

Medrikova et al., 2012), while others indicate a sex difference in humans and 

chimpanzees (Bouman et al., 2004; Obanda et al., 2014). Hence, further investigation is 

required where both sexes are compared in order to achieve clear conclusions in 

this field. 

 

7. Glial cells in metabolic control  

7.1 Astrocytes in metabolic control  

The contribution of astrocytes, the most abundant glial cells in the CNS, to 

the physiological and pathophysiological control of metabolism is increasingly 

evident (Garcia-Caceres et al., 2012; Argente-Arizón et al., 2015), although further 

investigation is needed to completely understand their role in both physiological 

and pathophysiological metabolic control.  

7.1.1 Astrocyte functions 

Astrocytes are essential for the communication between the periphery and 

the CNS (Tsacopoulos and Magistretti, 1996). These glial cells are strategically 

positioned to sense the nutritional status, being part of the BBB and in intimate 

contact with vascular and synaptic elements (Abbott et al., 2010; Wang et al., 2014c). 

They are therefore capable of providing blood-borne nutrients to neurons, 

promoting neuronal survival and contributing to CNS homeostasis.  

Astrocytes regulate neuronal differentiation, proliferation, and 

synaptogenesis during development (Nedergaard et al., 2003; Clarke and Barres, 2013). 

These glial cells highly express the glutamate transporters GLT-1 and GLAST and 
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modulate synaptic transmission by up-taking glutamate from the synaptic cleft 

(Pines et al., 1992; Schmitt et al., 1997). This not only terminates excitatory 

transmission, but also protects against excitotoxicity (Araque et al., 1999; Ransom et 

al., 2003). One single astrocyte contacts various neurons and thousands of synapses 

(Bushong et al., 2002; Theodosis et al., 2008), highlighting the importance of how 

changes in astrocytes can extensively influence neuronal activity. 

In response to CNS injuries, infections or foreign substances, astrocytes 

become activated and respond by producing cytokines, thus participating in central 

immune responses (Aschner, 1998a; b). Depending on the type of stimulus and its 

intensity or time of exposure, the cytokines produced from astrocytes can have 

protective or beneficial effects or, in contrast, detrimental inflammatory effects 

often associated with scar tissue formation (Choi et al., 2014). Astrocytes also 

participate in diverse processes that could affect metabolism, such as glucose and 

lipid sensing, and they express receptors for various hormones that participate in 

the control of food intake, including leptin, insulin, ghrelin and glucocorticoid 

receptors (Vielkind et al., 1990; Zhu et al., 1990; Hsuchou et al., 2009; Baquedano et al., 

2013).  

7.1.2 Astrocytes in glucose and fatty acids sensing 

The astrocyte endfeet surrounding blood vessels express glucose 

transporters GLUT1 and GLUT2 to transport glucose from the circulation into the 

brain (Morgello et al., 1995; Vannucci et al., 1997; Marty et al., 2005; Stolarczyk et al., 

2010). Glucose can be stored inside astrocytes as glycogen or be metabolized to 

lactate, which can be released to serve as an energy substrate for neurons (Levin et 

al., 2011). Notably, astrocytes also secrete endozepines, which in addition to 

exerting anorexigenic effects (do Rego et al., 2007), participate in glucose-sensing, 

possible through the melanocortin pathway (Lanfray et al., 2013). 

Astrocytes are the sole cells in the CNS able to β-oxidize FAs to produce 

ketone bodies; thus, these cells are the main source of FA oxidation in the brain. 

Ketone bodies produced by astrocytes serve as a fuel to neurons, especially in 
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situations of intense neuronal activity or fasting (Auestad et al., 1991; Guzman and 

Blazquez, 2001). However, ketone bodies are also produced during chronic HFD 

intake, with this possibly disrupting FA signaling mechanisms involved in metabolic 

control (Le Foll et al., 2014). 

Astrocytes express PPARγ, an important sensor of lipids and regulator of 

metabolism (Cristiano et al., 2005), and apolipoprotein E (ApoE), the major lipid 

transporter in the CNS (Boyles et al., 1985; Krul and Tang, 1992). ApoE can also act as a 

satiety factor, possibly by mediating some of the inhibitory effects of leptin (Shen et 

al., 2008; Shen et al., 2009a), and may play a protective role against apoptosis of 

astrocytes (Zhou et al., 2013). 

7.1.3 Influence of metabolic hormones on astrocytes 

Astrocytes express receptors for leptin (Hsuchou et al., 2009; Kim et al., 2014a), 

as well as receptors for insulin, ghrelin and glucocorticoids (Vielkind et al., 1990; Zhu 

et al., 1990; Baquedano et al., 2013). Different isoforms of Ob-R are expressed in 

hypothalamic astrocytes (Pan et al., 2008; Hsuchou et al., 2009), with an increase in 

their expression in obese rodents (Pan et al., 2008). Leptin modifies astrocyte 

morphology by changing primary projections length and/or number (Garcia-Caceres 

et al., 2011; Kim et al., 2014a), affecting synaptic inputs onto POMC and NPY neurons 

and thus their function (Kim et al., 2014a). These changes in morphology, for 

example as a consequence of HFD, may be an adaptation to the new metabolic 

condition; however, if this situation is maintained, these responses could become 

pathophysiological. Indeed, the glial response to leptin is time dependent, and 

prolonged exposure to this hormone stimulates astroglial production of cytokines 

(Garcia-Caceres et al., 2011). Leptin also modifies the ability of hypothalamic 

astrocytes to transport both glutamate and glucose, with the time of leptin 

exposure producing different responses (Fuente-Martin et al., 2012a). Leptin’s effect 

on glucose uptake by astrocytes could possibly change the local transport of 

glucose and its metabolites to neurons, which could in turn modify glucose sensing 

mechanisms and neuronal control of energy homeostasis. 
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As demonstrated by Kim and colleges (Kim et al., 2014a), loss of Ob-R 

specifically in GFAP positive cells, affects the synaptic organization of the 

melanocortin system, modifying the satiety response to leptin and increasing the 

ghrelin response to fasting. The number and length of astrocyte projections in the 

arcuate nucleus is reduced in the absence of Ob-R. This is associated with 

decreased astrocytic coverage of POMC neurons and an increase in the number of 

synaptic inputs to these neurons in addition to modification in the electrical activity 

of both POMC and AgRP neurons. 

Astrocytes also express receptors for estrogens, androgens and 

progesterone (Pfaff and Keiner, 1973; Garcia-Segura et al., 1996b; Melcangi et al., 2001; 

Garcia-Ovejero et al., 2005) with gonadal steroid modulation of these glial cells 

possibly participating in the reported sexual dimorphism in the inflammatory 

response to HFD (Louwe et al., 2012; Morselli et al., 2014). Indeed, females are 

suggested to be more resistant than males to obesity associated comorbidities, at 

least in part, due to the expression of ERα in astrocytes (Morselli et al., 2014).  

Although how leptin and estrogens affect astrocytes has begun to be 

elucidated, little is known regarding how other metabolic hormones or nutrients 

modulate astrocyte function and participation in metabolic control. For instance, 

glucocorticoids modulate astrocytes in the suprachiasmatic nucleus (Maurel et al., 

2000), but whether this affects circadian rhythms of food intake remains to be 

elucidated. The orexigenic hormone ghrelin has also been reported to have direct 

effects on hypothalamic astrocytes (Garcia-Caceres et al., 2014), although how this 

affects overall metabolism is still unknown. Although most studies on the role of 

astrocytes in obesity have been performed in models of HFD-induced obesity, 

fructose is also able to induce astrogliosis (Li et al., 2014). However, a high sucrose 

diet, which causes increased adiposity, does not produce the classical hypothalamic 

astrogliosis reported in HFD-induced obesity (Fuente-Martin et al., 2013b). Hence, 

although astrocytes appear to be involved in mediating central metabolic signals, 

there is still much to be learned regarding the mechanisms involved. Illustration of 
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hypothalamic astrocytes in a physiological and a pathophysiological state is shown 

in Figure 8. 

 

Figure 8. Hypothalamic astrocytes in a normal physiological and in a pathological state in response to 

HFD or obesity. 

A. Astrocytes are sensors of the general metabolic status due to its privileged location between the 

periphery and the central nervous system. They are the main energy source in brain by providing energy 

to neurons from circulation supplying them with glucose, lactate or ketone bodies. Only astrocytes can 

βoxidize fatty acids to produce ketone bodies. The major lipid carrier protein in the CNS, ApoE is 

produced by astrocytes.  Astrogial cells express receptors for important metabolic hormones, such as 

leptin and insulin, and thus may participate  in their signaling effects. They also release endozepines, 

which exert anorexigenic effects and act as gliotransmitters by modulation of neuronal activity through 

GABA. 

Together these functions make astrocytes key elements for neuronal support and survival, regulation of 

synaptic transmission, maintenance of the BBB and players in the central immune response. 

B. High fat diet consumption and in consequence, obesity, leads to disruption of metabolic status and to 

an increase in important metabolic hormones as leptin. Astrocytes can be activated, changing their 

morphology, affecting their contact with blood vessels and neuronal coverage, as well as the number of 
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synaptic inputs to metabolic neurons. Astrocytes also increase the number of receptors for leptin, 

possibly causing changes in leptin transport. 

If the elevated exposition to leptin is prolonged and, in consequence astrocyte activation, production of 

cytokines and neurotoxic substances by astrocytes can occur, leading eventually, to detrimental effects. 

Ketone bodies produced by astrocytes from fatty acids are a source of energy for neurons  in cases of 

high neuronal activity or fasting. However, in chronic HFD, they are also synthesized, impairing FA 

signaling. 

Figure legend: EZ:Endozepines; FA: Fatty acids; KB: Ketone bodies; BBB: blood brain barrier; IL-6: 

Interleukin 6; IL1β: Interleukin 1 β; TNFα: Tumor necrosis factor α; MCT-1: Monocarboxylate transporter 

1; MCT-4: Monocarboxylate transporter 4; GLAST: Glutamate aspartate transporter; GLUT-1: Glucose 

transporter 1; GLUT-2: Glucose transporter 2; ApoE: Apolipoprotein E; PPARγ: Peroxisome proliferator 

activated receptor γ; NO: Nitric oxide. 

 

7.2 Microglia in metabolic control  

Microglia are the immune cells of the CNS (Rivest, 2009). In physiological 

conditions, these cells are continuously maintaining the cellular environment by 

cleaning debris (Aloisi, 2001; Nimmerjahn et al., 2005), modulating synapses (Batchelor 

et al., 1999; Zhong et al., 2010), as well as through the production of diverse 

substances that include cytokines when necessary (Shoelson et al., 2006). It has been 

proposed that microglia and astrocytes cooperate to support and modulate neural 

communication (Schafer et al., 2013). 

Microglia can become reactive as a consequence of HFD or obesity, resulting 

in morphological changes and the release of diverse substances. Saturated fatty 

acids can directly active these glial cells (Milanski et al., 2009), and this activation 

occurs specifically in the hypothalamus after HFD intake (Thaler et al., 2012). This 

microglial response can involve the production of cytokines, reactive oxygen 

species (ROS) and nitric oxide (NO) that, upon becoming chronic, can exacerbate 

microglia activation and may cause neuronal impairment and toxicity, with POMC 

neurons being particularly vulnerable (Block and Hong, 2007). In turn, NPY and α-MSH 

can modulate the release of cytokines and NO by microglia (Delgado et al., 1998; 
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Ferreira et al., 2011; Gonçalves et al., 2012), suggesting that there is direct 

communication between metabolic neurons and microglia and that this cross-talk 

may participate in the inflammatory process. 

Leptin can directly active microglia (Tang et al., 2007; Lafrance et al., 2010; Gao et 

al., 2014), suggesting that this hormone participates in the activation of these cells 

in obese subjects. Ob/Ob mice that lack leptin have lower levels of hypothalamic 

microglia activation than control mice (Gao et al., 2014). Despite the fact that HFD 

intake by these mice increases microglia activation in the hypothalamus, it does not 

reach control levels. Moreover, leptin administration increases microglia number 

and ramification even though these animals lose weight (Gao et al., 2014). Thus, 

independently of body weight, metabolic hormones and nutrients control 

hypothalamic microglial activity. 

Pro-inflammatory cytokines released by activated microglia may also 

participate in the development of insulin resistance that can accompany central 

inflammation (De Souza et al., 2005; Shoelson et al., 2006). Of note, exercise 

counteracts microglia activation produced by HFD, as well as improves glucose 

tolerance (Yi et al., 2012). Thus, exercise not only has beneficial effects by increasing 

energy expenditure, but it also ameliorates central inflammation. 

The early nutritional environment influences the maturation of these immune 

cells, causing long lasting effects in the response to neuroimmune challenges (Bilbo 

et al., 2010; Clarke et al., 2012). Indeed, HFD intake during gestation and the release of 

proinflammatory cytokines by microglia has been shown to affect the development 

of the melanocortin circuit in nonhuman primates (Grayson et al., 2006). In rodent 

models, the offspring of mothers fed with a HFD during gestation had increased 

hippocampal microglial activation at birth, as well as increased microglial density in 

adulthood (Bilbo and Tsang, 2010). Moreover, neonatal overnutrition in rats results in 

microglial activation in hypothalamic areas and other brain areas, which is 

accompanied by an increase in the expression of inflammatory genes in the adult 

hypothalamus (Tapia-González et al., 2011; Tu et al., 2011; Ziko et al., 2014). 
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The number of microglia and their morphology is reported to differ between 

the sexes in some brain areas (Schwarz et al., 2012). However, there is little 

information in the literature as to whether males and females differ in their 

microglial response to metabolic challenges.  

 

8. The question in context 

As stated above, it is clear that the early nutritional status has long-term 

effects on energy homeostasis, with specific metabolic outcomes possibly being 

affected differently depending on age. Moreover, although males and females are 

known to respond differently to metabolic challenges, the mechanisms underlying 

this dimorphism are not fully elucidated. Differences in gonadal steroid production 

are obviously involved in postpubertal sex differences, but they cannot explain 

what occurs in early development. As the neonatal hormonal/nutritional 

environment modulates the development of hypothalamic neuronal circuits 

involved in the control of energy homeostasis, it is possible that differences 

between males and females exist even during this early developmental stage and 

this impacts on the development of these circuits. Moreover, the response to 

metabolic challenges during perinatal life could also affect males and females 

differently.  

Studies analyzing the effect of early nutritional/hormonal changes on the 

development of hypothalamic metabolic circuits have focused on neurons. 

However, glial cells are involved not only in the development, but also the correct 

functioning of these circuits in adulthood. Indeed, the involvement of astrocytes 

and microglia in the physiological and pathophysiological neuroendocrine control 

of metabolism has become an area of increasing interest in the investigation of 

obesity, but little is known regarding the effect of perinatal nutritional changes on 

glial cell development or their involvement in later metabolic abnormalities. 

Moreover, how astrocytes differ between males and females remains to be fully 

explore.   
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Obesity courses with a chronic mild inflammatory state that includes the 

hypothalamus, a process in which astrocytes and microglia participate. These glial 

cells also respond to specific hormonal and nutritional signals, becoming activated 

and producing cytokines and other factors, with hypothalmic gliosis and 

inflammation being implicated in the development of secondary complications of 

obesity. Thus, if hypothalamic astrocytes differ between males and females, they 

could participate not only in the physiological differences between the sexes in 

metabolic control, but also the pathophysiologial consequeces of a poor diet and 

obesity.  

Together, these observations have lead us to the following hypothesis and 

objectives.  
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Males and females respond differently to nutritional 

challenges and this could be in part due to sex differences 

in hypothalamic astrocytes. 

 



 



 

  

 

 

 

 

 

 

 

 

 

 

III. OBJECTIVES 
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Objective 1. To evaluate the changes in peripheral hormones, body 

weight and adipose tissue in response to overnutrition due to a 

reduction in litter size of male and female rats at different stages of 

postnatal development. 

 

Objective 2. To correlate the peripheral changes as a consequence of 

the reduction in litter size, with central changes in the hypothalamus 

and specifically in astrocytes, throughout development of male and 

female rats. 

 

Objective 3. To analyze whether males and females respond 

differently to neonatal over-nutrition. 

 

Objective 4. To investigate whether hypothalamic astrocytes from 

male and female rats respond differently to free fatty acids. 

 

Objective 5. To determine if estrogens affect the response of 

hypothalamic astrocytes to free fatty acids. 

 

 

 



 



 

 

 

 

 

 

 

 

 

 

 

 

IV. MATERIALS AND METHODS 
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1. Experimental Models 

All experiments were designed according to the European Communities 

Council Directive (86/609/EEC; 2010/63/UE) and NIH guidelines for animal care. 

Experiments in these studies complied with the Royal Decree 53/2013 pertaining to 

the protection of experimental animals. The studies were approved by the 

Commission of Investigation of the Hospital Infantil Universitario Niño Jesús and the 

corresponding university ethics committee where the experiments were performed, 

including the Ethical Committee of Animal Experimentation of the Universidad 

Complutense de Madrid, Ethical Committee of Animal Experimentation of the 

Universidad Autónoma de Madrid, Ethical Committee of Animal Experimentation of 

the Universidad de Córdoba or the Institutional Animal Care and Use Committee of 

Yale University. The animals were always treated respectfully and the least possible 

number of animals was used in all experiments. 

 

1.1 IN VIVO STUDIES 

1.1.1 Neonatal overnutrition throughout development  

Male and female adult Wistar rats were purchased from Harlan Interfauna 

Ibérica S.A., (Barcelona, Spain) and allowed to acclimate for two weeks before 

mating. One male was placed in a cage with three virgin females (all weighing 

approximately 150 g) females. Each dam was then housed individually and fed ad 

libitum. Rats were maintained at a constant temperature (22-24ºC) and humidity 

(50-55%) in a 12 hour light-dark cycle, with lights on at 07:30. Animals were given 

free access to chow (commercial diet for rodents A04-10/15022, Panlab, Barcelona, 

Spain) and tap water.  

a) Experimental design 

Only mothers that gave birth to between 8 and 12 pups were employed for 

the study (mean litter size 10.3 ± 0.2 pups born/litter). All litters were arranged on 

the day of birth, postnatal day (PND) 0. At this time, pups were weighed, measured 
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and organized into two different litter sizes: litters of 12 pups per dam (L12: 6 males 

and 6 females), as control (CT) litters or litters of 4 pups per dam (L4: 2 males and 2 

females) as neonatal overnutrition (NON) litters. A total of 12 litters of 12 pups per 

dam and 36 litters of 4 pups per dam were employed in these studies. Cross-

fostering was used and every litter contained a balanced number of males (M) and 

females (F). Litters were arranged such that the mean initial weights did not differ 

between groups (ML4: 5.8 ± 0.1 g, ML12: 6 ± 0.1 g; FL4: 5.7 ± 0.1 g, FL12: 5.7 ± 0.1 g). 

Rats were raised in these litters from birth to weaning, which took place at PND21.  

This procedure is a relatively physiological way of inducing overnutrition by 

increasing milk availability due to the reduction in the number of pups/dam (Fiorotto 

et al., 1991; Fink et al., 2001). This procedure may also affect maternal nurturing 

(Fiorotto et al., 1991; Koskela et al., 2009), which can also have long-term effects on 

metabolism.  

After weaning, the rats were housed 2 per cage, according to sex and 

experimental litter size. From this point on, the animals were given free access to 

normal rat chow and tap water. Body weight, length and food intake were monitored 

once a week until sacrifice. Daily food intake was measured once a week by placing a 

known amount of food in the cage and weighing the remaining amount of food at 

the same time the following day. To account for spillage, food was retrieved from the 

bedding before weighing. The number of cages was used as the n for statistical 

analysis. The amount of chow ingested per animal was calculated by dividing the 

total amount of food eaten by the number of rats per cage. Body length was 

monitored by placing the animal on a ruler and measuring the longitude from the 

snout to the base of the tail. Rats older than 90 days were lightly anesthetized with 

isoflurane in order to immobilize the animal and obtain a more accurate 

measurement. This anesthesia was not applied on the day of sacrifice.  
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Rats were sacrificed at different time points throughout development. These 

time-points were chosen as they represent key developmental periods (Figure 9. For 

a review on how a rat’s age relates to that in humans see (Sengupta, 2013).  

Figure 9: “The laboratory rat: relating rat’s age to that in humans”. Taken from Sengupta, 2013. 

In the present study, rats were sacrificed on the following days: 

- Postnatal day 10: Day 10 is a crucial stage in rat development due to the leptin 

surge that takes place around this period of time. Serum leptin levels start to 

increase around PND 5 and peak at PND 9-10 (Ahima et al., 1998; Delahaye et al., 

2008).  

- Postnatal day 21: Rats were weaned at PND 21, thus concluding the period of 

exposure to different nutritional environments due to litter size. From this point 

on, all rats were allowed to eat and drink ad libitum.  

- Posnatal day 30: Rats are still pre-pubertal on day 30 after birth, but 

approaching pubertal onset. In our facilities, males reach sexual maturation 

around PND 42-44 and females around PND 32-35 (Castellano et al., 2011). 

- Postnatal day 50: At this age rats are post-pubertal, but still in the 

periadolescent period, approaching adulthood. 

- Postnatal day 85: At PND85 rats are adult, with numerous published studies 

using rats between PND60-PND90 for metabolic analysis. 

- Postnatal day 150: This stage allows the study of older adult rat where some 

effects of aging on metabolism may begin to appear. 
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The experimental design of neonatal overnutrition protocol is shown in Figure 

10. 

 

Figure 10. Diagram of the experimental design for neonatal overnutrition (NON) throughout development 

in male and female Wistar rats. N= 12 for each experimental group; BW: body weight, BL: body length, FI: 

food intake, PND= Postnatal day. HPT = Hypothamamus, SCAT = Subcutaneous adipose tissue, VAT = 

Visceral adipose tissue. 

b) Sacrifice and sample collection 

Animals were placed under fasting conditions 12 hours before sacrifice, 

except for the rats sacrificed on PNDs 10 and 21, which were allowed to nurse until 

sacrificed in order to not induce additional stress on being removed from their 

mothers. On the day of sacrifice, body weight and length were measured. Blood 

glucose levels were determined in a drop of blood from the tip of the tail by using a 

glucometer (Optimum Xceed, Abbot). A quick vaginal swap was performed in the 

female rats to determine the estrous cycle stage at the moment of sacrifice.  

A total of twelve animals per group were sacrificed between 09:00 and 11:00. 

Six rats were processed to obtain fresh tissue and the other six were perfused as 

described below. Of note, PND10 and PND21 rats were not transcardially perfused, 

but their brains and fat pads were directly fixed by placing the brains and fat pads in 

4% paraformaldehyde and left overnight (O/N). To obtain fresh tissue, rats were 

killed by rapid decapitation. Blood was collected from the trunk, allowed to clot and 

preserved on ice before being centrifuged at 3000 RPM during 20 minutes at 4°C to 

obtain serum. Serum samples were kept at -80°C until processed. 
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After decapitation, the brain was rapidly removed and the hypothalamus, 

defined rostrally by the optic chiasm and caudally by the anterior margin of the 

mammillary bodies, was dissected out with a depth of approximately 2 mm. 

Subcutaneous (inguinal) and visceral (perigonadal) adipose depots were removed, 

weighed, frozen on dry ice and stored at -80°C until processed. Six animals per group 

were perfused transcardially and the tissue then collected as described below. 

Serum samples were processed for the analysis of leptin, insulin, interleukin 

(IL) 1β, 6, tumor necrosis factor alpha (TNFα) and adiponectin, as described below. 

Testosterone and 17β-estradiol were measured in males and females, respectively. 

Rats that were killed at PND150 were subjected to an oral glucose tolerance 

test (OGTT) one week before sacrifice. Rats were fasted over-night (from 20:00 to 

8:00 h) and at 8:00 h basal glycemia was measured with a glucometer (Optium Plus, 

Abbot Diabetes Care, Witney Oxon, UK). A bolus of 3 mg/g-bw of glucose was then 

orally administered to the rats by means of a lavage tube. Glycemia was measured at 

30, 60 and 120 min after glucose administration by venous tail puncture. The total 

area under the curve (AUC) for the glucose response was calculated by using the 

following formula: AUC = 0.25 × (fasting value) + 0.5 × (30-min value) + 0.75 × (1-h 

value) + 0.5 × (2-h value).  

Proteins involved in gliosis and intracellular signaling pathways were analyzed 

in the hypothalamus by Western blotting. Relative levels of mRNA of various 

cytokines and adipokines were quantified in the hypothalamus and adipose tissue by 

real time PCR. 

Perfused brains from PND150 rats were processed for GFAP and Iba1 

immunohistochemistry to determine the number and morphology of GFAP and 

number of Iba1 positive cells in the hypothalamus. Double immunohistochemistry 

was also performed to analyze the expression of the leptin receptor (ObR) in GFAP 

positive cells.  
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Table 1 and 2 outline the experimental groups and ages of sacrifice, as well as 

the description of the samples collected at each age and the analysis performed in 

each of them. 

 

EXPERIMENTAL GROUPS 

Males from litters of 12 pups  ML12 

Males from litters of 4 pups  ML4 

Females from litters of 12 pups  FL12 

Females from litters of 4 pups  FL4 
 

 

 

Table 1 & 2. Description of the experimental groups, the ages at which they were sacrificed as well as the 
samples collected and the analysis performed. PND: postnatal day, AT: adipose tissue, IHC: 
Immuohistochemistry. 

 

1.1.2 Neonatal androgenization  

Wistar rats raised in the animal facility of the Medical School of University of 

Córdoba, Spain, were used for this study. The rats were kept under conditions of 

constant temperature (22-24ºC) and humidity (50-55%) and 12 hour light-dark 

 
AGE OF SACRIFICE 

  PND 10 PND 21 PND 30  PND 50 PND 85 PND 150 

Samples 
     

  

BLOOD X X X X X X 

HYPOTHALAMUS  X X X X X X 

SCAT X X     X X 

VAT   X     X X 

Perfused brain           X 

Analysis              

Serum hormones and cytokines X X X X X X 

Serum lipids           X 

Cytokine expression in AT X X     X X 

Proteins involved in gliosis X X X X X X 

IHC             X 
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cycles. They were allowed ad libitum access to chow diet (A04-10/15022 Panlab, 

Barcelona, Spain) and tap water.  

c) Experimental design 

In order to better understand the effect of neonatal sex steroids on 

metabolism, three groups of animals were generated. On PND1, female rats received 

a subcutaneous injection of 1.25 mg of testosterone propionate (SIGMA T-1875) 

dissolved in 100 µL of olive oil [approximately 208 mg/kg; androgenized females 

(AF)] or 100 µL of olive oil, as vehicle (control females, F). Males (M) also received 

vehicle (100 µL of olive oil). Rats were sacrifice on PND10 or PND90. Vehicle treated 

adult females sacrificed at PND90 were monitored to control the estrus cycle by 

performing vaginal swabs two weeks before sacrifice being all of them sacrificed on 

the morning of diestrus. Androgenized females did not show external signs of 

puberty or regular cycles. The experimental design is shown in Figure 11. 

 

 

Figure 11. Schematic representation of the neonatal androgenization protocol in male (M), female (F) and 

androgenized female (AF) Wistar rats. T: testosterone; V: vehicle; PND: postnatal day.  

 

d) Sacrifice and sample collection 

Half of each group was killed on PND10 and half on PND90. PND 90 animals 

were fasted for 12 hours before sacrifice. At PND 90, 3-4 rats of each group were 

perfused transcardially as described below. The number of animals in each group is 
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shown in Table 3. Body weight, length and glycemia were determined on the day of 

sacrifice. 

 

  PND 10 PND 90 

  Fresh Perfused Fresh 

Males M (n=10) X M (n=6) 

Females F (n=10) X F (n=8) 

Androgenized females AF (n=10) X AF (n=8) 

 

Table 3. Description of the experimental groups in the neonatal androgenization study and the total 

number of animals in each group. 

 

The hypothalamus was removed as described above. Fat pads (subcutaneous 

and visceral) were collected and weighed.  

Serum levels of testosterone, 17β-estradiol, leptin, insulin, IL6, IL1β, TNFα 

and adiponectin were measured by ELISA or multiplex arrays in all samples.  

Vimentin and GFAP levels were analyzed by Western blotting in the 

hypothalamus of PND10 and 90 rats.  

IL6, TNFα, IL1β, leptin and adiponectin, mRNA levels were determined in 

subcutaneous (PND 10 and PND 90) and visceral (PND 90) adipose tissues by RT-PCR.  

Perfused visceral fat was processed for analysis of adipocyte morphology 

after  hematoxilin-eosin staining at PND 90.  

 

1.2 IN VITRO STUDIES 

All plastic materials used to perform primary astrocyte cultures were acquired 

from Falcon (Becton Dickinson, Franklin Lakes, NJ, United States). The culture media 

was from Gibco (Invitrogen Co., Auckland, New Zeeland). 
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1.2.1 Primary cultures of hypothalamic astrocytes 

Primary cultures of hypothalamic astrocytes were prepared from PND2 

Wistar rat pups. Both sexes were used and male and female cells were cultured 

separately. Ano-genital distance was used to determine the sex of the animal. Pups 

were sacrificed by decapitation and the brain quickly removed and immediately 

placed on ice in Dulbecco’s modified Eagle’s medium: Nutrient mixture F-12 

(DMEM/F12) supplemented with 1% penicillin/streptomycin and anti-mycotic 

(Ab/Am; Gibco). Hypothalami were carefully dissected and the meninges carefully 

removed. Hypothalami were then triturated in the same media. The tissue was 

dissociated by first using a P1000 pipette and then pulled Pasteur pipettes several 

times until the suspension was clear. The suspension was then centrifuged at 1000 

rpm for 7 minutes. The resulting pellet was resuspended in DMEM/F12 enriched 

with 10% fetal bovine serum (FBS) plus 1% Ab/Am solution. Cells (1 mL) were then 

seeded in 75 cm2 culture flasks (BD Falcon), containing 9 mL of DMEM/F12 plus 10% 

FBS and 1% Ab/Am. The cells were incubated at 37 °C and 5% CO2. After three days, 

the flasks were washed twice with tempered phosphate buffered saline (PBS) and 

fresh media was added. Media was changed three times a week and after a total of 

9-10 days of incubation, when the cells reached approximately 90% confluence, 

flasks were placed in a 37 °C shaking incubator (SI-300, Jeoi Tech; Medline Scientific) 

at 280 rpm for 6 hours.  

After shaking, flasks were washed twice with PBS to remove non-attached 

cells. Then, 1 mL of trypsin (0.05% trypsin/EDTA solution; Biochrom AG) was added 

and the flasks hit together 10 times (in order to detach and harvest the astrocytes). 

DMEM/F12 plus 10% FBS and 1% Ab/Am was added to the flasks to stop the action 

of the trypsin and resuspend the cells. The suspension was centrifuged for 5 minutes 

at 1150 rpm. After centrifugation, the supernatant was discarded and the pellet 

resuspended in DMEM/F12 plus 10% FBS and 1% Ab/Am. Astrocytes were seeded in 

60 mm or 100 mm culture plates, that had been previously treated with poly-L-lysine 

hydrobromide (10 μg/ml; Sigma-Aldrich), at a density of 4.35X105 or 1X106 

cells/plate, respectively. Cells were then grown for 24 hours. After 24 hours, the 
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media was changed to DMEM F-12 plus 1% Ab/Am (without FBS). Thus, the cells 

were serum starved for 24 h before the experimental treatments were added. The 

treatments were prepared with the same media (DMEM F-12 plus 1% Ab/Am, 

without FBS). In each experiment, treatments were done in triplicate; each 

experiment was repeated 3 to 4 times (n = 3 to 4). Figure 12 resumes the procedure 

followed to obtain cultures of primary hypothalamic astrocytes and Figure 13 the 

protocol followed after purification. 

Figure 12. Schematic representation of the main steps carried out to obtain primary astrocyte 

cultures. 

 

This protocol results in astrocyte enriched cultures. The purity was assessed 

by immunocytochemistry for glial fibrilary acidic protein (GFAP), a marker of 

astrocytes, and ionized calcium-binding adapter molecule 1 (Iba1), a marker of 

microglia. No staining with the Iba-1 antibody was found, as shown in figure 14. In 

addition, the expression of Iba1, galactocerebroside (GalC) a marker for 

oligodendrocytes and S100 calcium binding protein A4 (S100A4) as a marker of 

fibroblast were analyzed by RT-PCR. The expression of these markers decreased 

inversely with the time of shaking before plating the cells.  
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Figure 13. Protocol followed after purification to obtain astrocyte enriched primary cultures. FBS: fetal 

bovine serum. 

 

 

 

 

 

 

 

Figure 14. Double immunocytochemistry for GFAP (green) and Iba1 (red) to verify astrocyte primary 

cultures purity. No immunolabeling of Iba1 can be observed. 

 

1.2.1.1 Treatments  

Astrocytes from males and females received the following treatments: 

a) Fatty acids  

All reagents were purchased from Sigma-Aldrich, Inc. (Saint Louis, MO, USA). 

Fatty acid supplemented medium was prepared according to previously published 

protocols (Huynh et al., 2014).  

Palmitic acid (PA) and oleic acid (OA) were used to treat astrocytes. Fatty 

acid-free bovine serum albumin (BSA) was added to ensure lipid solubility in the 

aqueous solution. A dose-response curve of increasing concentrations (0.05mM, 

0.1mM, 0.25mM and 0.5mM) was performed for PA. When used in combination, PA 

and OA were used at a concentration of 0.5mM each [0.5mM oleate:palmitate (1:1)]. 

Control plates received an equivalent amount of vehicle solution.  

GFAP 

Merge 

GFAP Iba1 Merge 
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Stock solutions of sodium oleate (Sigma, O-3880), palmitic acid (Sigma, P-

5585), BSA (Sigma, A-9205) and L- carnitine (Sigma, C-0283) were prepared and 

sterilized by filtration with 0.45 µm filters and stored at -20°C until used. 

A stock solution of 100 mM sodium oleate was prepared in H2O. To facilitate 

solubilization of the fatty acid, 25 µL of 1N NaOH were added. The solution was 

incubated at 37°C in a water bath during approximately 30 minutes and vortexed 

occasionally until the solution was clear. The PA stock solution was prepared at 200 

mM in ethanol and vortexed until the solution was clear. The BSA stock solution was 

prepared at 30% and L-carnitine at 200 mM; both of them were dissolved in H2O.  

Fatty acids were then conjugated with fatty acid-free BSA to act as a carrier 

and ensure lipid solubility in the aqueous solution. Fatty acid-albumin solutions were 

diluted in DMEM F-12 plus 1% Ab/Am (without FBS) medium to achieve the desired 

final fatty acid concentration. The L-carnitine (1 mM) was added to the final fatty 

acid concentration solution before being added to cultures, as this appears to be an 

essential component of the lipid-induced insulin resistance with certain fatty acids. 

 

b) β-estradiol  

17β-estradiol (Sigma, E-8875) was purchased from Sigma-Aldrich. A stock 

solution of 1 mg/mL was prepared in ethanol. Then, 10-9 M working solution was 

made in DMEM F-12 plus 1% Ab/Am (without FBS) medium to treat cultured 

astrocytes. 

When 17β-estradiol was used in combination with PA, astrocytes were “pre-

treated” with 10-9 M β-estradiol for 3 hours previous to PA addition.  

 

c) Ultrapure lipopolysaccharide from Rhodobacter sphaeroides (LPS-RS) - TLR4 

antagonist  

LPS-RS Ultrapure was purchased from InvivoGen (San Diego, CA, USA) as a 

purified preparation of the TLR4 antagonist LPS-RS. A stock solution of 1mg/mL was 
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prepared in water. Serial dilutions were prepared to obtain a working concentration 

of 300ng/mL according to the commercial source recommendations and literature 

(Lu et al., 2013). Primary astrocytes were pretreated with LPS-RS for 2 hours followed 

by treatment with PA 0.1mM. 

 

2. Techniques and  Protocols 

Reagents were acquired from Merck KGaA (Darmstadt, Germany) or Sigma-

Aldrich, Inc. (Saint Louis, MO, USA), unless stated otherwise. 

2.1 Determination of glycemia and serum hormone, cytokine and lipid 

concentrations 

2.1.1. Blood glucose levels 

Glycemia was determined by using a glucose meter and test strips (Optium 

Plus, Abbot Diabetes Care, Witney Oxon, UK) in blood obtained from a lateral tail 

vein puncture. 

2.1.2 Determination of serum levels of leptin, adiponectin, estradiol and 

testosterone by enzyme-linked immunosorbent assay (ELISA) 

Serum leptin and adiponectin levels were quantified by using ELISAs 

purchased from Millipore (Millipore, Billerica, MA, USA) and performed according to 

the manufacturer’s instructions.  

Briefly, assay buffer and samples were added to the corresponding wells and 

incubated for 2 hours at room temperature while shaking at 400-500 rpm. All 

subsequent incubations were done under the same conditions of temperature and 

shaking. As instructed, for the adiponectin assay serum samples were diluted (1:500) 

with assay buffer. Molecules of adiponectin in the samples were captured by the 

microtiter plate coated with a monoclonal adiponectin antibody. After the 2 hour 

incubation, the wells were washed to remove unbound antibody. In contrast, the 

leptin assay requires that the antiserum solution be added to the sample and then 
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the resulting complexes are added and bound to the wells that were previously 

coated with another anti-leptin antibody (sandwich). The following steps were 

similar for both assays. A purified biotinylated antibody (anti-rat adiponectin or anti-

rat leptin) was added to detect the immobilized adiponectin or leptin molecules and 

incubated for 1 hour. After the corresponding washes were carried out in a 

HydroFlex (Tecan) microplate washer, streptavidin-horseradish peroxidase conjugate 

was added for during 30 minutes to bind to the immobilized biotinylated antibody 

and washed afterwards to remove the excess of free enzyme conjugates. Lastly, 

peroxidase substrate was added and horseradish peroxidase (HRP) activity 

monitored until the stop solution was added. Quantification was measured in a 

spectrophotometer (Tecan Infinite M200, Grödig, Austria) at a wavelength of 450 nm 

and corrected at 590 nm. The increase in absorbency is directly proportional to the 

amount of captured rat leptin or adiponectin in the unknown samples. The 

concentrations were calculated from the standard curve supplied with the kits. 

Sensitivities of the method for leptin and adiponectin were 0.08 and 0.4 ng/ml, 

respectively. All samples were run in duplicate. The intra-assay coefficient of 

variation (CV) was 2.2 % for leptin and 1.3% for adiponectin and the inter-assay CV 

was 3.4 % for leptina and 6.9 % for adiponectin.  

 

Serum estradiol and testosterone levels were determined by using an ELISA 

kit from Cusabio Biotech CO., LTD (Wuhan, P.R. China) according to the 

manufacturer’s protocol. Microtiter plates pre-coated with a goat-anti-rabbit 

antibody towards the substance to be analyzed were used. Standards or samples 

were added in duplicate to the appropriate wells followed by addition of HRP-

conjugated testosterone or estradiol. Then, a specific antibody was added to each 

well. The plates were incubated for 1 hour for the testosterone assay and 2 hours for 

estradiol. After incubation and the appropriate washes, substrate solutions were 

added to each well and incubated for 15 minutes at 37ºC. Stop solution was then 

added to terminate the enzyme-substrate reaction. Finally, the color change was 

measured at a wavelength of 450 nm (Tecan Infinite M200). Estradiol and 
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testosterone concentrations in the samples were calculated comparing the O.D. of 

the samples to the standard curve. The estradiol assay has a sensitivity of 25 pg/ml 

and the testosterone assay 0.06 ng/mL. Inter- and intra-assay coefficients of 

variation are <15% for both assays. All samples were run in duplicate. 

 

2.1.3 Determination of serum levels of insulin, interleukin 6, interleukin 

1β and tumor necrosis factor α with a multiplex bead immunoassay 

Circulating levels of insulin, IL6, IL1β and TNFα were determined in duplicate 

by using a multiplexed bead immunoassay kit according to manufacturer’s 

specifications (Millipore). Briefly, beads conjugated to the appropriate antibodies 

and serum samples (25 µl each) were incubated overnight at 4°C and under 

moderate shaking. The next morning, plate wells were washed three times with the 

provided wash buffer. Then, the biotinylated detection antibody (50 µl) was added 

and incubated for 2 hours at RT while shaking at 500 rpm. Finally, 50 µl of the 

reporter dye, streptavidin-conjugated phycoerythrin, was added and incubated for 

30 minutes. After washing, the beads were analyzed in a Bio-Plex suspension array 

system 200 (Bio-Rad Laboratories, Hercules, CA, USA) and mean fluorescence 

intensity was analyzed using Bio-Plex Manager Software 4.1. 

 Insulin IL-6 IL1-β TNF-α 

Sensitivity (pg/mL) 52.5 8.8 1.2 3.2 

Intra-assay CV (%) 1.7-4.2 1.7-4.2 1.7-4.2 1.7-4.2 

Inter-assay CV (%) 2.8-13.6 2.8-13.6 2.8-13.6 2.8-13.6 

Table 4. Assay sensitivities (minimum detectable concentrations, pg/mL), intra- and inter-assay coefficient 

of variation for multiplex bead immunoassay. CV=coefficient of variation 

2.1.4 Determination of triglycerides in serum samples 

Total triglycerides were measured in serum samples of PND150 rats by using 

a commercial kit purchased from Randox Laboratories Limited (United Kingdom). 

Serum samples were diluted 1:2 in saline. Triglycerides in the samples are quantified 

after enzymatic hydrolysis with lipases. The colorimetric indicator is quinoneimine 
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formed from hydrogen-peroxide, 4-aminophenazone and 4-chlorophenol under the 

catalytic influence of peroxidase. The reaction mix was incubated for 10 minutes at 

room temperature and the absorbance measured at a wavelength of 500 nm (Tecan 

Infinite M200). Triglyceride concentrations (mg/dl) in the samples were calculated 

comparing the O.D. of the samples to the standard curve. 

2.1.5 Determination of non-esterified free fatty acids in serum samples 

The kits for the quantitative determination of non-esterified free fatty acids 

(NEFA) were purchased from Wako (Neuss, Germany) and followed the ACS-ACOD 

(Acyl-CoA synthethase – Acyl-CoA oxidase) method. The concentrations of NEFA 

were determined by a reaction of the serum sample with reactive A (0.3 kU/l acyl-

CoA-synthetase, 3 kU/l ascorbate oxydase; 06 g/l coenzyma A, 5 mmol/l ATP, 1.5 

mmol/l 4-aminophenazone, 50 mmol/l phosphate buffer, pH = 6.9; 3 mmol/l 

magnesium chloride ). After an incubation of 10 minutes at 37 ºC reactive B (6.6 kU/l 

acylCoA oxidase; 7,5 kU/l peroxidase; 1.2 mmol/l methyl-N-ethyl-N-hydroxyethyl 

aniline) was added. The mixture was incubated again for 10 minutes at at 37 ºC, 

after which the absorbance was measured at 550 nm. The concentration of NEFA 

was than determined by comparison with a standard curve prepared from serial 

dilutions of oleic acid in saline. 

 

2.2 Protein analysis 

2.2.1 Total protein extraction  

a)  Protein extraction from tissue 

Individual hypothalami were homogenized on ice in 300-500 ul of lysis buffer, 

with the volume of buffer varying according to the size of the hypothalamus. The 

lysis buffer, radioimmunoprecipitation assay buffer (RIPA), contained sodium 

phosphate buffer (PBS, 0.1 M, pH 7.4), 1 % Triton X-100, sodium dodecyl sulphate 

(SDS, 0.1 %), sodium azide (0.5 %), ethylenediaminetetraacetic acid (EDTA; 2 mM), 

sodium deoxycholate (0.5 %), phenylmethanesulfonyl fluoride (PMSF; 1 mM) and a 
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protease inhibitor cocktail (Roche Diagnostics, GmbH). Lysates were incubated 

overnight at -80°C and then centrifuged at 14000 rpm for 10 minutes at 4°C. 

Supernatants were collected and stored at -80°C for later use. Total protein 

concentration was determined by the method of Bradford (Protein Assay; Bio-Rad 

Laboratories).  

b) Protein extraction from hypothalamic astrocytes primary cultures 

To extract protein from primary astrocyte cultures, the cells were first washed 

twice with PBS. The PBS was then totally removed and the cells lysed with 200 µl of 

lysis buffer (25 mM HEPES, 150 mM KCl, 2 mM  EDTA, 0.1% Igepal, 1 mM PMSF, 10 

uM benzamidine and leupeptin and 0.5 mM DTT) in each dish. The samples were 

frozen at - 80°C to boost cell lysis. Next, samples were centrifuged for 20 minutes at 

14000 rpm (4°C). Following centrifugation, supernatants were removed and frozen 

over night. Finally, the samples were lyophilized (Cryodos. TELSTAR. Tarragona, 

Spain) and the resulting pellet resuspended in 40 µl of sterile water and stored at – 

80°C. 

Total protein concentration was determined by the method of Bradford (Protein 

Assay; Bio-Rad Laboratories). 

2.2.2 Quantification of protein concentration 

Total protein concentration was determined by the method of Bradford 

(Protein Assay; Bio-Rad Laboratories), developed by Marion M. Bradford in 1976 

(Bradford, 1976). This colorimetric method is based on the principle of protein-dye 

binding and the shifts caused in the absorbance that is measured by using a 

spectrophotometer.  

Samples were diluted in distilled water (primary cultures) or lysis buffer 

(tissue) and mixed with Bradford reagent (Bio-Rad Laboratories, Inc., Hercules, CA, 

USA), following the manufacturer’s instructions and incubated for 5 minutes at room 

temperature (RT). For each assay, a standard curve was prepared with increasing 

concentrations, from 0 to 25 µg/µl of BSA. The standard curve and unknown samples 



Materials and methods 

63 
 

were pipetted into a 96-well plate and the absorbance measured at 595 nm in an 

TECAN Infinite M200 spectrophotometer. 

2.2.3 Western blotting 

The reagents used for western blotting analysis were purchased from Bio-Rad 

Laboratories, Inc. except when indicated. 

An appropriate concentration of total protein (10, 40 or 60 µg depending on 

the protein to be analyzed) was mixed with an equal volume of Laemmli  buffer (2x), 

containing Tris-HCl  (1 M, pH 6.8), glycerol (25 %), SDS (2 %) and bromophenol blue 

(0.01 %) and denatured in a thermoblock for 5 minutes at 100 ºC. 

The protein was resolved on SDS-polyacrylamide gels under denaturing 

conditions and electro-transferred to polyvinylidene difluoride (PVDF) membranes. 

Transfer efficiency was determined by Ponceau red dyeing. Membranes were 

blocked with Tris-buffered saline (TBS, 20 mM) containing 0.1% Tween 20 and 5% 

nonfat dried milk or 5% BSA for 2 hrs and incubated overnight at 4°C under agitation 

with the primary antibody at a concentration of 1:1000 unless otherwise stated. 

Primary antibodies used were against glial structural proteins and indicators of glial 

activation: GFAP, vimentin, Iba1; intra- cellular signaling proteins: pAKT (1:500), AKT, 

pIKB (1:500), STAT3, pSTAT3(tyr705) (1:500), pSTAT3(Ser634) (1:500), pIRS (1:500), pPTEN 

(1:500), PTEN, SOCS3 and the housekeeping protein glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) and actin. Membranes were washed with TBS and 

incubated with the corresponding secondary antibodies conjugated with peroxidase 

(Pierce Biotechnology, Rockford, IL, USA). Peroxidase activity was visualized by 

chemiluminescence (Perkin Elmer Life Science, Boston, MA, USA) and quantified with 

a Kodak Gel Logic 1500 Image Analysis system and Molecular Imaging Software, 

version 4.0 (Rochester, NY, USA) and ImageQuant Las 4000 Software (GE Healthcare 

Life Sciences, Barcelona, Spain). Gel loading variability was normalized with either 

the non-phosphorylated form of the protein, GAPDH or actin. Data were normalized 

to control values on each gel. 
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2.2.4 Determination of hypothalamic levels of leptin, IL1β, IL6, IL10 and 

TNFα by using a multiplex magnetic bead immunoassay 

Hypothalamic levels of leptin, IL6, IL1β, IL10 and TNFα were determined in 

duplicated by a multiplexed magnetic bead immunoassay kit according to the 

manufacturer’s specifications (Millipore). Beads conjugated to the appropriate 

antibodies and 5 µg of hypothalamic lysate in assay buffer (25 µl each) were 

incubated for 2 hours at RT and under moderate shaking. Afterwards, plate wells 

were washed two times with the provided wash buffer and 25 µl of the biotinylated 

detection antibody was added and incubated for 1 hour at RT while shaking at 500 

rpm. Finally, 25 µl of the reporter dye, streptavidin-conjugated phycoerythrin, was 

added and incubated for 30 minutes. After washing, the beads were analyzed in a 

Bio-Plex suspension array system 200 (Bio-Rad Laboratories) and mean fluorescence 

intensity was analyzed using Bio-Plex Manager Software 4.1. 

 Leptin IL-6 IL1-β IL10 TNF-α 

Sensitivity (pg/mL) 10.2 30.7 2.8 2.7 1.9 

Intra-assay CV (%) 3.4 2.3 3.6 3.8 2.7 

Inter-assay CV (%) 14.3 12.7 11.3 9 10.8 

Table 5. Assay sensitivities (minimum detectable concentrations, pg/mL), intra- and inter-assay coefficient 

of variation for rat cytokine magnetic bead immunoassay. CV = coefficient of variation 

2.2.5 Multi-pathway magnetic bead kit primary cultures  

A Multi-Pathway Signaling Magnetic Bead kit, was used to detect changes in 

phosphorylated ERK/MAP kinase 1/2 (Thr185/Tyr187), Akt (Ser473), STAT3 (Ser727), 

JNK (Thr183/Tyr185), p70 S6 kinase (Thr412), NFkB (Ser536), STAT5A/B 

(Tyr694/699), CREB (Ser133), and p38 (Thr180/Tyr182) and the corresponding total 

protein levels in astrocyte cell lysates using the Luminex® xMAP® technology.  

After corresponding treatments, astrocytes were lysed in the supplied lysis 

buffer with protease inhibitors added. The amount of protein/well was adjusted to a 

concentration of 15 µg by diluting with the provided assay buffer. The protocol was 

followed according to the manufacturer’s specifications (Millipore). Beads 
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conjugated to the appropriate antibodies and astrocytes cell lysates (25 µl each) 

were incubated O/N at 4°C with shaking and protected from light. The next morning, 

plate wells were washed two times with the provided assay buffer and 25 µl of the 

biotinylated detection antibody was added and incubated for 1 hour at RT with 

shaking and in dark. Then, 25 µl of the reporter dye, streptavidin-conjugated 

phycoerythrin, was added and incubated for 15 minutes after which 25 µl 

amplification buffer was added for 15 minutes. Finally, the beads were analyzed in a 

Bio-Plex suspension array system 200 and mean fluorescence intensity was analyzed 

using Bio-Plex Manager Software 4.1. 

 

2.3 Quantification of relative levels of mRNA 

2.3.1 Total RNA isolation 

Total mRNA was isolated from the entire hypothalamus, subcutaneous and 

visceral fat pads, and astrocyte cultured cells using the TRIzol® Reagent method 

(Invitrogen) and according to manufacturer’s instructions. Primary astrocytes grown 

in petri dishes were rinsed with ice-cold PBS before 1 mL of TRIzol® was added in 

order to lyse and collect the cells. For the hypothalamus or adipose tissue, 1 mL of 

TRI-Reagent was used.  

Total mRNA concentration was quantified using the spectrophotometer 

Nanodrop 1000, from Thermo Scientific.  

2.3.2 Quantitative real-time polymerase chain reaction assay (qRT-PCR) 

Relative mRNA levels were quantified in subcutaneous and visceral adipose 

tissue and primary cultured astrocytes by qRT-PCR. Complementary DNA (cDNA) was 

synthesized from 1 or 2 μg of total mRNA by using a high capacity cDNA reverse 

transcription kit (Applied Biosystems, Foster City, CA, USA).  

Quantitative RT-PCR was performed by using assay-on-demand kits (Applied 

Biosystems, Foster City, CA, USA). Taq-Man Universal PCR Master Mix (Applied 
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Biosystems) was used for amplification according to the manufacturer’s protocol in 

an ABI PRISM 7000 Sequence Detection System (Applied Biosystems). Values were 

normalized to the housekeeping genes 18S and Rpl13a. According to manufacturer’s 

guidelines, the ΔΔCT method was used to determine relative expression levels. 

Statistics were performed using ΔΔCT values. All data are expressed as % control at 

each age. 

In adipose tissue, leptin, adiponectin, (IL) 1β, 6 and TNFα genes were 

analyzed. In adipose tissue, various housekeeping genes were analyzed to find an 

internal control that did not vary between groups. However, we were unable to find 

suitable housekeeping genes that did not vary with age, sex and litter size; thus, the 

mRNA levels of the genes analyzed in adipose tissue were not compared between 

ages. Results are compared at each age to determine the effects of sex and litter size 

and were normalized to two of the following: phosphoglycerate kinase 1 (Pgk-1), 

cyclophilin A (PPIA) or ribosomal protein S 18-like (Rps18). The housekeeping genes 

used did not change between groups at a given age. All data are expressed as the 

percent of the values of L12 males at each age. 

In primary cultures the following genes were analyzed:  GFAP, vimentin, (IL) 

1β, 6, TNFα DDIT, IGF-1, Esr1, Esr2, NFκb, Iκbb Results were normalized to Rps18 or 

ribosomal protein L13a (Rpl13a).  

The primers (Applied Biosystems) employed for the analysis of gene 

expression by RT-PCR are shown in Table 6. 
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Gene Reference 

Adiponectin Rn00595250_m1 

CHOP Rn00492098_g1 

GFAP Rn00566603_m1 

IGF-1 Rn99999087_m1 

IKBKB Rn00584379_m1 

IL-1β Rn01336189_m1 

IL-6 Rn01410330_m1 

IL-10 Rn00563409_m1 

Leptin Rn00565158_m1 

NFKBIA Rn01473657_m1 

PPIA Rn00690933 

Pgk-1 Rn00821429 

Rpl13a Rn00821946_g1 

TNFα Rn01525859_g1 

Vimentin Rn00579738_m1 

18s Rn01428915_g1 

 

Table 6. List of primers used in adipose tissue and astrocyte primary cultures. 

 

2.4 Transcardial perfusion 

Tissue fixation was carried out by transcardial perfusion in vivo with 0.1 M 

phosphate buffer (PB) and then PB-buffered 4% paraformaldehyde (PFA; pH 7.4) and 

1% glutaraldehyde (GA) in PB, perfusing approximately 300 mL/rat. The animals 

were previously profoundly anesthetized with an intraperitoneal (IP) injection of 

pentobarbital (1 mg/kg; Braun Vetcare, Barcelona. Spain). 

When perfusion was completed, brains and subcutaneous and visceral fat 

pads were collected and post-fixed overnight in 4% PFA overnight at 4°C. After three 

washes with PB 0.1 M, they were stored in cryoprotection solution (30% sucrose, 

30% ethylene glycol in PB) at -18°C until used. PND 10 and 21 rats were not perfused 

in vivo. At sacrifice, the brains and fat pads were directly placed into 4% PFA (pH 7.4) 

and fixed in this solution overnight at 4°C. 
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2.4.1 Histological sections  

2.4.1.1 Perfused brain sections 

Perfused brains were used to obtain 40 µm coronal sections by using a 

vibratome (Leica VT1200S, Leica Biosystems Nussloch GmbH, Nussloch, Germany). 

According to Paxinos and Watson atlas “The rat brain in stereotaxic coordinates”, all 

sections that contained the arcuate nucleus (between 2.3 and 3.3 mm from Bregma), 

were collected and preserved in cryoprotecion solution and stored at -18ºC until 

used for immunohistochemistry. 

2.4.1.2 Visceral adipose tissue sections 

Visceral adipose tissue was sectioned for subsequent histological study of 

adipocyte morphology. Sections of 15 µm were obtained with a cryostat (Leica, 

Madrid, España).  

Samples were equilibrated to -15ºC inside the cryostat workstation for 45 

minutes. A block of frozen visceral fat was then carefully attached to a microtome 

chuck with aspecial tissue glue that allows frozen sectioning at the optimal cutting 

temperature (OCT media; Tissue Tek, Electron Microscopy Sciences, Hatfield, PA, 

USA). 

The 15 µm sections were mounted onto poly-lysine treated microscope slides 

and stored at -20ºC until stained with hematoxilyn-eosin for examination. 

 

2.5 Staining techniques for histological studies 

 2.5.1 Immunohistochemistry in the hypothalamus 

Immunohistochemistry was performed on coronal free-floating brain sections 

(40 µm). Six sections per animal were selected throughout the arcuate nucleus. All 

experimental groups were assayed in parallel.  
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All washes and antibody incubations were done under mild shaking on a 

rotating platform. The wash solution (PBT) consisted of PB (0.1M; pH 7.4), 0.3% 

Triton X-100 and 0.3% BSA. This buffer was used in all washes and incubations.  

Free-floating sections were first washed several times with PB to completely 

remove the cryoprotection solution. Next, suppression of endogenous peroxidase 

activity was carried-out by incubating the sections in 30% methanol containing 3% 

hydrogen peroxide for 30 minutes at room temperature. The sections were rinsed 

with wash solution (3 times, 10 minutes each) and incubated in blocking solution (3% 

triton X-100 and 3% BSA in PB) for 2 hours at room temperature to reduce non-

specific binding. 

The sections were then incubated with a primary antibody that recognizes 

either GFAP (Sigma, 1:1000) or Iba1 (Wako, 1:500) overnight at 4ºC. The following 

day, the sections were washed (3 times for ten minutes each) and incubated in 

biotinylated anti-mouse secondary antibody (1:2000 for 2 hours at RT) or 

biotinylated anti-rabbit secondary antibody (1:1000 for 2 hours at RT). Afterwards, 3 

washes were done and sections were placed in avidin-biotin complex (ABC 32020; 

Pierce Biotechnology) for signal amplification during 2 hours. The ABC complex was 

diluted 1:500 in washing solution plus 5% BSA. The slices were then washed 3 times. 

Finally, peroxidase activity was revealed by incubating sections with 0.03% 3-

3’ diaminobenzidine (DAB; Sigma) and 0.01% hydrogen peroxide in PB. The reaction 

was monitored until the signal was clearly developed (approximately 2-3minutes). 

The sections were then placed in 0.1 M PB and mounted on poly-L-lysine hydro-

bromide (50 µg/ml; Sigma) coated glass slides. Lastly, and after dehydration in 

increasing concentrations of ethanol (70%, 96%, 100%) and then xylol, samples were 

covered with Depex (BDH Laboratory Supplies, United Kingdom) and a coverslip 

applied. The slides were examined by using an optical microscope (ZEISS. 

Thornwood, NY, USA). Images were captured at 40X magnification by using a digital 

camera and Image Pro-Plus software. Immunostaining was absent when the primary 

antibody was omitted. 
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2.5.2 Double immunohistofluorescence  

Double labeling for GFAP (Sigma) and leptin receptor, Ob-R (Santa Cruz 

Biotechnology Inc., Santa Cruz, CA, USA) was performed on coronal free-floating 

brain sections (40 µm). Six sections per animal were selected throughout the arcuate 

nucleus. All experimental groups were assayed in parallel.  

The same solution for washes, blocking and antibody incubation as described 

in 2.3.1 section were used for immunohistofluorescence. Free-floating sections were 

washed several times with PB to completely remove the cryoprotection solution 

followed by one wash with PBT and then incubated for 1.5 h in the blocking solution. 

Primary antibodies were then added, GFAP (mouse, 1:1000) and leptin receptor Ob-

R (goat, 1:250)., and incubated at 4ºC under mild shaking for 48 hours. 

After primary antibody incubation, the sections were washed (3 times for ten 

minutes each) and incubated in biotinylated anti-goat secondary antibody (1:1000 

for 5 hours at RT) for Ob-R signal amplification. Afterwards, 3 washes were done and 

sections were placed in the secondary antibody Alexa Fluor® 633 goat anti-mouse 

IgG (Molecular Probes. Eugene, OR, USA, 1:2000) and streptavidin, Alexa Fluor® 488 

conjugate (Molecular Probes, 1:2000) and incubated in the dark for 1.5 h. The slices 

were then washed 3 times with 0.1 M PB and carefully mounted while being 

protected from the light and then a coverslip was placed over the tissue using Clear 

Mount. 

Images were captured using a confocal fluorescence microscope (Leica) with 

wavelengths of 495 nm and 632 nm being used for the excitation of Alexa-Fluor-488 

and Alexa-Fluor-633 fluorophores, respectively. Negative controls, where the 

primary antibody was omitted, were included in every assay and in which 

immunofluorescence signal was absent.  

2.5.3 Hematoxylin and eosin staining of visceral adipose tissue (VAT) 

Visceral adipose tissue slices (15 µm thick) were stained with hematoxylin-

eosin. First, sections were fixed in a 10% buffered formalin solution for 15 minutes.  

Following a rinse with distilled water, sections are soaked in hematoxylin (Panreac, 
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Barcelona, Spain) for 10 minutes to stain the nuclei. Next, eosin (Leica Biosystems, 

Barcelona, Spain) staining was carried out during 1 minute and the slides then rinsed 

with water. Sections were dehydrated in increasing concentrations of ethanol (70°, 

96°, 100°) for 1 minute each and then 3 minutes in xylol. Depex was used to place a 

coverslip over the tissue. Sections were imaged with an optical microscope (ZEISS) 

using a 40X objective and the digital images were captured with a digital camera (JAI 

Corporation, CV-S3200, Japan) and analyzed with Image-Pro Plus software (version 

5.0; Media Cybernetics Inc., Silver Spring, MD, USA). The mean perimeter and area of 

the adipocytes were calculated from visceral adipose tissue slices from 4 animals per 

group, analyzing 4 sections per animal and measuring 5-10 cells per section. 

 

2.6 Quantification of GFAP+ cells and morphological analysis 

For the quantitative evaluation of astrocytes, six sections per animal 

throughout the arcuate nucleus were analyzed. In each section, images of a single 

focal plane from twenty rectangular fields of the arcuate nucleus (area of 19.5 mm2 

per field), ten on each side of the third ventricle, were captured using 40X 

magnification with an optical microscope attached to a digital camera. Images were 

processed using Image-Pro Plus software.  

The number of GFAP immunoreactive (GFAP+) cells per field was counted, as 

well as the number of primary projections (those emerging from the soma) of each 

GFAP positive cell determined with ImageJ software.  All morphometric analyses 

were performed without previous knowledge of the experimental group (samples 

were blinded for analysis). 

 Analysis of the mean levels of Ob-R immunoreactivity in GFAP positive cells in 

the arcuate nucleus was performed using ImageJ software. The red and green signals 

over individual somas were separated, measured and recorded in a mean of 10 cells 

per field and 10 fields/animal throughout the arcuate nucleus. From these 

measurements, the mean intensity of Ob-R immunoreactivity in the soma of GFAP 

positive cells was determined. 
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2.7 Double immunocytofluorescence for GFAP and Iba1 in primary 

astrocyte  cultures 

Double immunocytofluorescence was performed in hypothalamic astrocytes 

primary cultures from postnatal day 2 Wistar rats in order to determine if microglia 

can be detected in the enriched astrocyte cultures. An antibody against GFAP was 

used to label astrocytes, whereas the Iba 1 antibody was used to identify microglia.  

Cells were seeded on round coverslips that had been placed in 24-well plates 

and previously treated with poly-L-lysine hydrobromide (10 μg/ml; Sigma-Aldrich). 

All steps were performed in the well plate until coverslips were removed to be 

mounted. 

Forty-eight hours after the cells were seeded the wells were washed three 

times with cool PBS and fixed with 4% paraformaldehyde for 15 minutes at room 

temperature. The wells were washed 3 times and then equilibrated with buffer 

consisting of 0.1 M PB (pH 7.4), 0.1% BSA and 0.3% Triton-X100 for 15 minutes. 

Blocking solution [0.1 M PBS, (pH 7.4), 0.3% BSA and 0.3% Triton-X100] was added to 

the samples for 1.5 hours. The two primary antibodies, mouse anti-GFAP (Sigma, 

1:1000) and rabbit anti-Iba1 (Wako, 1:1000) were added to the corresponding wells 

and incubation was then carried out overnight at 4ºC. 

The following morning, the primary antibody solution was removed and the 

wells rinsed with PB 0.1M, three times, 5 minutes each wash. The two secondary 

antibodies (diluted in blocking solution) were added and incubated during 1 hour in 

the dark and at room temperature. The secondary antibodies (1:1000) used were 

goat anti-mouse and goat anti-rabbit IgG conjugated with Alexa Fluor® 488 and 

Alexa Fluor® 633 (Molecular Probes. Eugene, OR, USA), respectively. The final three 

washes (10 minutes each) were done in the dark and the coverslips were carefully 

mounted on microscope slides cover glasses using a drop of Clear Mount mounting 

medium and stored in the dark at 4ºC until examination.  

Images were captured using a confocal fluorescence microscope. Negative 

controls, where the primary antibody was omitted, were included in every assay and 

in which immunofluorescence signal was absent.  
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Antigen Host 
Working 
dilution 

Commercial 
source 

GFAP Mouse 1:1000 Sigma 

Iba 1 Mouse 1:1000 Wako 

Ob-R Goat 1:500 Santa Cruz 

Table 7. Antibodies used for immunohistochemistry and immunocytochemistry 

 

2.8 Detection of nitrites and nitrates in culture media 

Culture media was collected and kept frozen at -80ºC until used. 

Quantification of nitrites and nitrates (NO3
- and NO2

-
) was performed according to 

Miranda and colleagues (Miranda et al., 2001). The assay is based on the 

simultaneous detection of nitrate and nitrite concentrations by reducing nitrates 

with vanadium (III) and the combined detection by using the acidic Griess reaction 

(Griess, 1879). The resulting color is spectrophotometrically quantified at a 

wavelength of 540nm.  

Briefly, in a 96-well plate, 100 μL of vanadium (III) chloride (VCl3) was added 

to 100 μL of each cell culture media sample and, immediately, 100 μL of Griess 

reagent was added. The Griess reagent was prepared just before use by mixing equal 

volume of ethylenediamine dihydrochloride (NEDD) and sulfonamide. The plate was 

then incubated for 30 minutes at RT and the absorbance read (Tecan Infinite M200). 

The results were compared to a standard curve consisting of sodium nitrate (NaNO2) 

in concentrations from 1 to 200 μM. 

 

2.9 Estimation of the number of cells  

The cristal violet dye elution (CVDE) method was employed to determine cell 

viability in response to each in vitro cell treatment. The cristal violet dye binds to cell 

nuclei, which is then solubilized and quantified spectrophotometrically. The resulting 

absorbance is proportional to DNA content and therefore, cell number.  
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For this assay, cells were grown in 24 well plates. The cells were washed twice 

with PBS and then 1 mL of 1% GT was added in order to fix the cells. After 10 

minutes, the GT was removed and the cells were washed twice with PBS. The cristal 

violet solution (0.1%) was then added (1 mL) and the cells incubated at RT for 20 

minutes. The cristal violet solution was removed and the cells rinsed under running 

tap water for 20 minutes. The plate was then left at RT for 2 hours or at 37°C for 30 

minutes to dry completely. The cristal violet was then dissolved with 10% acetic acid, 

mixed well and 200 µL added to a 96 well plate and the absorbance read at 590 nm. 

The number of cells is calculated according to the following equation: Number of 

cells = (265030* absorbance)-1950. 

 

2.10 Statistical analysis 

The program SPSS version 19.0 (SPSS Inc., Chicago, IL, USA) was used for data 

analysis. To determine the effect and/or interaction of two or more factors two or 

three-way ANOVAs were used. When significant effects were found with the two or 

three-way analyses, a subsequent two-way and/or one-way ANOVA followed by 

Scheffé’s f test was used to determine whether specific differences existed amongst 

the experimental groups. Bonferroni correction was used for multiple comparisions 

in case of primary astrocyte cultures studies. Two-tailed Student’s t tests were used 

to compare differences between two independent groups. All data are presented as 

mean ± SEM. The results were considered statistically significant at p<0.05. The p 

values in the figures represent the results of the one-way ANOVA or Student’s t test 

when indicated. 
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1. Effects of neonatal overnutrition throughout development in male and 

female rats 

1.1 Effects of sex, litter size and age on body weight, body length and food 

intake. 

1.1.1 Body weight 

On the day of birth (PND0), all litters were organized and cross-fostered such 

that the mean starting weight did not differ between groups, as shown in Figure 15A. 

It is of note that body weight at birth was higher in males than females (F(1,284) = 34.1, 

p<0.0001; Figure 15B). 

   

 

 

 

 

Figure 15. A. Mean body weight (BW) of each experimental group on the day of birth. N = 62-66 for each 

experimental group. NS = not significant. B. Mean BW of males and females on the day of birth n =124-

126.  Student’s T test: *** = p<0.0001. 

 

The changes in body weight, body length and food intake were studied from 

birth to PND150. There was an effect of sex (F(1,1923) = 12539.4, p<0.0001), litter size 

(F(1,1923) = 210.05, p<0.0001) and age (F(20,1923) = 4546.4, p<0.0001) on BW, with 

interactions between sex and litter size (F(1,1923) = 20.9, p<0.0001), sex and age 

(F(20,1923) = 381.1, p<0.0001) and litter size and age (F(20,1923) = 2.8, p<0.0001). Figure 16 

shows the evolution of BW from birth to PND150. 

 

 

 

A 

A B 
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Figure 16. Change in body weight (BW) throughout development in male and female rats raised in control 

litters (L12) and small litters (L4). Data are expressed as mean ± SEM. (F(83,2006) = 1253.8); p<0.0001. a= 

Effect of litter size on BW in males; b= Effect of litter size on BW in females; c= Effect of sex on BW in small 

litters (L4); d= Effect of sex on BW in control litters (L12). ANOVA repeated measures: Sex effect (F(1, 42): 

496.15, p<0.0001) and Litter size effect: (F(1, 42): 10.1, p<0.003). 

 

Neonatal overnutrition produced changes in body weight as early as PND10. 

At this early postnatal age, both males and females from L4 weighed more than 

those from L12, (F(1, 48) = 128.0, p<0.0001), with no differences between sexes (Figure 

17). 

 

 

 

 

 

 

 

 

a 
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Figure 17. Mean body weight (BW) at PND10. There was an increase in BW as a consequence of neonatal 

overnutrition in both males and females. L12= litter of 12 pups. L4 = litter of 4 pups. (F(3,47) = 42.8); *** = 

p<0.0001. 

 

The effect of neonatal overnutrition on BW continued at weaning, PND21, 

(F(1,223) =146.9, p<0.0001), with no difference between males and females (Figure 

18A). 

At PND28, both males and females raised in small litters continued to weigh 

more than control litters (F(1,170) = 73.9, p<0.0001). In addition, even at this 

prepubertal stage there was an effect of sex on BW (F(1,170): 10.2, p<0.003), with L4 

males weighing more than L4 females (Figure 18B).  

 

 

 

 

 

 

 

 

 

 

Figure 18. Mean body weight (BW) at PND21 (A) and at PND28 (B) in rats raised in litters of 12 (L12) or 4 

(L4) pups. PND21 (F(3, 226) = 50.1); PND28 (F(3, 173) = 27.9); *** = p<0.0001. 

 

A B 
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As can be observed in Figure 19, at PND56 males weighed more than females 

regardless of their experimental group and this effect remained until the end of the 

study. However, the effect of litter size on body weight ceased to be observed at 

approximately PND56 in both sexes. 

 

 

 

 

 

 

 

 

 

 

Figure 19. Mean body weight (BW) at PND56 in rats reared in litters of 12 (L12) or 4 (L4) pups when the 

effect of litter size was no longer observed in either sex. (F(3,95) = 89.2; *** = p<0.0001. 

 

Although the effect of litter size on BW ceased to be observed at 

approximately PND56, it was again manifest at approximately PND90, but only in 

males (Figure 20A). Male rats from L4 weighed significantly more than those from 

L12 throughout the rest of the study, with no further effect seen in females (Figure 

20 B). 

 

 

 

 

 

 

 

 

Figure 20. Body weight at PND91 (A), when males from litters of 4 pups (L4) again weighed more than 

those from litters of 12 pups (L12). Males continued to weigh more than females regardless of litter size. 

B A 
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(F(3,46) = 165.7; *** = p<0.0001. At PND150 (B) the effect of litter size in males continued to be observed, 

while no effect in females was found. 

 

1.1.2 Body length 

There was an effect of sex (F(1,1144) = 1284.8, p<0.0001), litter size (F(1,1144) = 

27.8, p<0.0001) and age (F(18,1144) = 6242.7, p<0.0001) on body length with 

interactions between sex and age (F(18,1144) = 53.3, p<0.0001) and litter size and age 

(F(18,1144) = 11.1; p<0.0001). The changes in body length throughout development can 

be seen in Figure 21. 

Figure 21. Changes in body length throughout development in male and female rats from control litters of 

12 pups (L12) and overnourished litters of 4 pups (L4). Data are expressed as mean ± SEM. (F(72,1183) = 

1538.4, p<0.0001). a= Effect of litter size on BW in males; b= Effect of litter size on BW in females; c= 

Effect of sex on BW in small litters (L4); d= Effect of sex on BW in control litters (L12). ANOVA 

repeated measures: sex (F(1, 44): 168.91, p<0.0001); litter size (F(1, 44): 24.73 p<0.0001). 

 

On the day of birth, the mean body length did not differ according to litter 

size (Figure 22A; however, there was an effect of sex with males being longer than 

females (F (1,245) = 27.6, p<0.0001; Figure 22B). 
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Figure 22. A. Mean body length of each experimental group on the day of birth N = 64-66, NS = not 

significant. B. Mean body length of male and female rats showing differences between the sexes on the 

day of birth. N=124-126. *** = p <0.0001. 

 

By PND10, both males and females with neonatal overnutrition (L4) were 

longer than those from control litters (L12) (F(1,48) = 50.3, p<0.0001), as can be seen in 

Figure 23. The litter size effect continued at PND21 (F(1,179) = 85.4, p<0.0001) and 

PND28 (F(1,128) = 39.8; p<0.0001). 

 

 

 

 

 

 

 

 

Figure 23. On postnatal day 10, both males and females from litters of 4 pups (L4) were longer than those 

from litters of 12 pups (L12). There was no effect of sex observed at this time. (F(3, 47) = 18.1, *** = 

p<0.0001, n =12. 

 

At PND35, males were found to be longer than females (F(1,94) = 27.2; 

p<0.0001) and remained so at all subsequent ages.  A litter size effect (F(1,94) = 24.6; 

A B 
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p<0.0001) was also found at PND35, but was no longer observed in either sex after 

PND56 (Figure 24).  

 

 

 

 

 

 

 

 

 

 

Figure 24. Males began to be longer than females around PND 35 (A) and at PND 56 (B) the litter size 

effect on body length was no longer observed. PND35: (F(3,93) = 18.1); PND56: (F(3,47) = 38.1) ; *** = p 

<0.0001. 

 

1.1.3 Mean food intake per day  

The mean food intake per day throughout the study, was affected by sex 

being greater in males than in females (F(1,321) = 591.7, p<0.0001), by litter size, with 

L4 rats eating more than L12 rats (F(1,320) = 14.6, p<0.0001) and increased with age 

(F(15,321) = 73.6, p<0.0001), with an interaction between sex and age (F(15,321) = 9.4, 

p<0.0001) and between litter size and age (F(15,321) = 1.9, p<0.03)  . Males ate more 

than females even during the first week after weaning (PND28, sex effect: F(1,58) = 

6.5, p<0.02). At this time both male and female rats from L4 ate more than those 

from L12 (ML12: 11.3 ± 0.2, ML4: 12.7 ± 0.3, FL12: 10.1 ± 0.3, FL4: 11.7 ± 0.3 g/day; 

litter size: F(1,58) = 13.3, p<0.002). Rats from L4 continued to eat more than those 

from L12 until approximately PND50 after which there was no effect of litter size. At 

approximately PND120 (week 14 post-weaning), L4 males ate again significantly 

more than L12 males F(3,11) = 46.1, p<0.0001) . The mean daily food intake from 

weaning until the end of the study was greater in males than in females. However, 

there was no affect of litter size in either sex at the end point of the study, PND150 

B A 
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(ML12: 21.3 ± 0.9, ML4: 23.2 ± 0.5, FL12: 15.3 ± 0.3, FL4: 16.1 ± 1.1 g/rat/day; 

p<0.0001). 

Figure 25. Mean daily food intake measured at each week post-weaning in male and female rats from 

control litters of 12 pups (L12) and overnourished litters of 4 pups (L4). Data are expressed as mean ± 

SEM. (F(63, 384) = 29.4 , p<0.001). a= Effect of litter size on food intake in males (M12 different from M4); b= 

Effect of litter size on food intake in females; c= Effect of sex on food intake in small litters (L4); d= Effect 

of sex on food intake in control litters (L12). 

 

1.2 Effects of litter size and sex on adipose tissue quantity and distribution 

As described above, over-nutrition during early postnatal life resulted in rapid 

weight gain. However, this effect was attenuated in early adulthood, only to appear 

again around PND90 selectively in males. Although no litter size effect was observed 

on body weight in early adulthood, body composition could be affected. Moreover, 

it is well established that adult males and females have different adipose tissue 

distribution both in rodents (Grove et al., 2010) and in humans (Schreiner et al., 1996; 

Jackson et al., 2002; Goodpaster et al., 2005; Shen et al., 2009b), but little is known 

regarding this sex difference during prepubertal life.  
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1.2.1 Subcutaneous adipose tissue  

The amount of SCAT was influenced by sex (F(1,164) = 152.5, p<0.0001), litter 

size (F(1,164) = 78.3, p<0.0001) and age (F(5,164) = 214.8, p<0.0001) with interactions 

between sex and litter size (F(1,164) = 5.2, p<0.05), sex and age (F(5,164) = 57.3, 

p<0.0001), litter size and age (F(5,164) = 3.2, p<0.009), and sex, litter size and age 

(F(4,164) = 6.6, p<0.0001). When the amount of SCAT was normalized to body weight 

(g/100 g BW), these effects remained [sex (F(1,164): 74.0, p<0.0001), litter size (F(1,164) = 

23.8, p<0.0001) and age (F(5,164) = 85.2, p<0.0001)] with interactions between sex and 

age (F(5,164) = 87.8; p<0.0001, litter size and age (F(5,164) = 13.6; p<0.0001) and sex, 

litter size and age (F(5,164) = 3.7; p<0.01). 

At PND10, the amount of SCAT was affected by sex (F(1,47) = 20.5, p<0.0001) 

and litter size (F(1,47) = 150.5, p<0.0001), with animals from small litters having more 

SCAT than those from control litters in both sexes. In addition, L4 females had a 

greater increase in % SCAT than L4 males (F(3,46) = 59.3), p<0.0001.  

Upon weaning at PND21, the influence of litter size in the amount of SCAT 

remained (F(1,46) = 54.3, p<0.0001), as well as the sex effect (F(1,46) = 19.3, p<0.0001). 

The amount of SCAT continued to be higher in L4 rats of both sexes, with females 

having more than males of their corresponding litter size (Figure 27). 

The effect of litter size (F (1, 24) = 10.5, p<0.005) continued to be present at 

PND30, as well as an overall influence of sex (F (1, 24) = 4.5, p<0.05). 

At PND 50, no differences between males and females were observed; 

however, the effect of litter size remained (F (1, 24) = 6.5, p<0.03). 

The effect of litter size (F (1, 24) = 4.6, p<0.05) was still present at PND85, when 

males had an overall higher percentage of SCAT than females (F(1, 24) = 8.61, p<0.01). 

At PND150, there was no significant effect of litter size, but L4 males tended 

to have higher levels compared to control males, with an overall effect of sex 

observed (F(1,23) = 5.2, p<0.05). 
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Figure 26.  Relative amount of subcutaneous adipose tissue (SCAT) throughout development in male (M) 

and female (F) rats from small litters (L4) and control litters (L12). # = p<0.0001. 

 

1.2.2 Visceral adipose tissue  

Visceral adipose tissue was not collected at PND10 due to the fact that there 

was insufficient tissue for analysis. Throughout the study, the absolute weight of VAT 

depots was affected by sex (F(1,118) = 46.1, p<0.0001), and age (F(4,118) = 146.1, 

p<0.0001) and a litter size effect of p= 0.052, with an interaction between sex and 

age (F(4,118) = 18.5; p<0.0001) and sex, litter size and age (F(4,118) = 3.0, p<0.05). After 

normalizing the amount of VAT to body weight, an effect of sex (F(1,117) = 5.2, p<0.05), 

litter size (F(1,117) = 4.4, p<0.05) and age (F(4,117) = 137.1, p<0.0001) was found. 

At PND21, both sex (F(1,39) = 42.5, p<0.0001) and litter size (F(1,39) = 37.7, 

p<0.0001) influenced the relative amount of VAT. Rats raised in small litters had a 

higher percentage of VAT compared to control rats. In addition, this percentage was 

higher in males than in females of the same litter size. 

At PND30, no effect of litter size was observed, but males had a greater 

percentage of VAT than females regardless of litter size (F(1,20) = 46.2, p<0.0001). 
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In postpubertal rats (PND50, PND85 and PND150) the amount of VAT tended 

to be greater in males than females and in those animals raised in small litters 

compared to control litters, but these effects were not statistically significant, most 

likely due to the high variability within the groups. 

Figure 27. Relative amount of visceral adipose tissue (VAT) throughout development in male (M) and 

female (F) rats from small litters (L4) and control litters (L12). # = p<0.0001. 

 

1.3 Effects of litter size and sex on circulating hormones and cytokines. 

To determine how overnutrition during early life influences circulating 

metabolic hormones and cytokines in males and females throughout development 

glucose, insulin, leptin, adiponectin, IL6, IL1β and TNFα, as well as testosterone and 

17β-estradiol levels were measured.  

1.3.1 Glycemia 

Through development, glucose levels were affected by litter size (F(1,248) = 

10.4, p<0.002) and age (F(5,248) = 139.4, p<0.0001) with interactions between these 

two factors (F(5,248) = 6.2, p<0.0001; Table 8). 

At PND10, when rats were still nursing, with both L4 males and females had 

higher levels of glucose than L12 rats (F(1, 44) = 9.6, p<0.001;  

The effect of litter size remained at weaning (F(1, 42) = 25.9, p<0.0001) . 
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At PND30, glycemia decreased in rats of all groups. Between PND85 and 

PND150 glycemia rose significantly in all groups except L12 females, where this rise 

was more gradual starting at PND50. 

1.3.2 Circulating insulin levels  

Throughout the study, insulin levels (Table 8) were affected by sex (F(1,117) = 

12.8, p<0.003) and age (F(5,117) = 23.0, p<0.0001), with an interaction between these 

two factors (F(1,117) = 5.8, p<0.0001). Circulating levels of this hormone were 

significantly increased at PND150 in all groups. 

At PND10, sex (F(1,20) = 9.5, p<0.006) and litter size (F(1, 20) = 29.5, p<0.0001) 

affected insulin levels, with males from L4 having higher levels compared to those 

from L12 (F(3,23) = 13.8, p<0.0001). Females from smaller litters also tended to have 

higher levels than control females, although this difference was not significant. In 

addition, L4 males had higher insulin levels than L4 females. 

At PND21, the litter size effect continued (F(1,20) = 10.0, p<0.005), although 

there was no difference between the sexes. 

The effects of sex and litter size were not observed between PND21 and 

PND150. However, at the end of the study the effect of sex on insulin levels was 

again present (F(1,23) = 11.9, p<0.002). 

1.3.3 Homeostatic model assessment-insulin resistance (HOMA-IR) 

As an index of insulin sensitivity, homeostatic model assessment (HOMA; 

Table 8) was calculated (insulin (mIU/ml) x glucose mg/dl/405) (Table 8). There was 

an effect of sex (F(1,132) = 13.0, p<0.0005), litter size F(1,132) =7.4, p<0.008 and age 

(F(5,132) =16.3, p<0.0001), with an interaction between sex and age (F(5,132) = 5.4, 

p<0.0002).  

Males had a higher HOMA than females at PND10 (sex effect:  F(1,20) = 6.5, 

p<0.02) and PND150 (F(1,22) = 4.8, p<0.01). At PND10, L4 rats of both sexes had a 

higher HOMA index than L12 animals (litter effect: F(1,20) = 23.7, p<0.0001, with males 

L4 having a higher index than L4 females (F(3,20) = 10.9, p<0.0002). The effect of litter 



Results 

88 
 

size was maintained in both sexes at PND21 (F(1,20) = 10.9, p<0.004). There were no 

differences between groups at P30, 50 or 85.  In females, HOMA decreased between 

PND21 and PND30, and then rose again at PND150 regardless of litter size (F(11,65) = 

3.02 p<0.003). In males, HOMA decreased between PND10 and PND30 and also 

increased between PND85 and PND150 (F(11,68) = 7.0, p<0.0001). 

 

    
GLUCOSE (mg/dl) INSULIN (ng/ml) HOMA 

PND 10* 

ML12  114.4±4.1 0.44±0.07 3.2±0.5 

ML4  130.9±5.9a 0.92±0.10a 7.7±1.2 a 

FL12  121.6±5.1 0.34±0.02 2.4±0.2 

FL4  135.8±4.5a 0.60±0.06b 4.8±0.5 a,b 

PND 21* 

ML12  103.6±5.3 0.32±0.05 2.1±0.4 

ML4  131.7±5.5 0.69±0.24 a 5.4±1.9 a 

FL12  109.3±2.9 0.22±0.04 1.5±0.3 

FL4  125.6±3.1 0.80±0.16 a 6.0±1.3 a 

PND 30 

ML12  68.2±2.9c 0.19±0.03 0.8±0.1 c 

ML4  76.9±4.7 c 0.23±0.05 1.1±0.2 c 

FL12  72.7±4.8 c 0.13±0.01 0.6±0.1 c 

FL4  75.8±4.0 c 0.57±0.37 2.6±1.8 c 

PND 50 

ML12  65.7±3.3 0.89±0.44 3.5±1.8 

ML4  63.8±3.8 0.73±0.36 3.1±1.7 

FL12  63.8±2.4 0.71±0.31 2.6±1.1 

FL4  69.7±3.4 0.37±0.07 1.6±0.3 

PND 85 

ML12  68.8±3.7 0.70±0.18 3.1±0.9 

ML4  61.0±2.4 0.94±0.37 3.5±1.3 

FL12  73.3±3.4 0.15±0.03 0.7±0.2 

FL4  66.3±2.9 0.60±0.22 2.2±0.9 

PND 150 

ML12  85.7±4.0c 3.46±0.99c 13.5±4.4 c 

ML4  78.4±4.0c 2.82±0.25c 12.1±1.1 c 

FL12  81.3±8.7 1.03±0.35c 3.8±1.4b,c 

FL4  84.9±6.3c 1.55±0.40c 6.1±1.7b,c 
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Table 8. Circulating glucose and insulin levels at 10, 21, 30, 50, 85 and 150 days of age, from small (L4) 

and control litters (L12). Glycemia: F(23, 271)= 32.2, p<0.0001; Insulin: F(23, 140)= 7.1, p<0.0001; HOMA: F(23, 

150)= 7.1, p<0.0001 a
different from rats of same age and sex (litter size effect),

b
different from males of 

same age and litter size, 
c
different from preceding age (same sex and litter size). * non-fasting samples. 

 

1.3.4  Oral glucose tolerance test (OGTT) 

To further investigate insulin resistance, we performed an oral glucose 

tolerance test (OGTT) in the animals scarified at PND 150 one week before sacrifice 

as described in 1.1.1 b section. 

Blood glucose levels were measured 30, 60 and 120 minutes after glucose 

administration in all groups. No differences were found after 30 or 60 minutes. 

However, there was an effect of litter size on blood glucose levels at 120 min after 

glucose oral administration (F(1,24) = 6.5, p<0.02), with L4 rats of both sexes having 

higher blood glucose levels (ML12: 98.3 ± 3.8, ML4: 114.5 ± 4, FL12: 98.7 ± 5.2, FL4: 

115.2 ± 10.3). There were no significant differences in the area under the curve 

(AUC).  

1.3.5 Circulating leptin levels  

Circulating leptin levels (Table 9) were dependent on age (F(5,129) = 21.7, 

p<0.0001) and litter size (F(1,129) = 4.9, p<0.03), with an interaction between these 

two factors (F(1,129) = 3.0, p<0.02).  

At PND10, there was an effect of litter size (F(1,28) = 24.0, p<0.0001) with both 

L4 males and females having higher levels of circulating leptin than their controls. 

This effect remained at PND21 (F(1,18) = 9.3, p<0.007). 

Serum leptin levels increased in all groups between PND85 and PND150. In 

addition, at PND150 males had higher leptin concentrations than females regardless 

of litter size and males from small litters had significantly higher leptin levels than 

their controls (F(3,33) = 23.0, p<0.0001). 
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1.3.6 Circulating adiponectin levels  

Throughout development, circulating adiponectin levels (Table 9) were 

influenced by litter size (F(1,113) = 7.1, p<0.009) and age (F(5,113) = 71.8, p<0.0001), with 

an interaction between sex and age (F(5, 113) = 4.21; p<0.002) and sex, litter size and 

age (F(5,113) = 2.4, p<0.05).  Levels of this adipokine increased with age.  

At 10 days of age, both males and females from smaller litters had higher 

levels of circulating adiponectin than control litters (F(1,20) = 108.4, p<0.0001). When 

weaned, the effect of litter size continued (F(1,20) = 16.2, p<0.003), but only in females 

(F(3,23) = 10.9, p<0.0001). At PND21, there was also an effect of sex (F(1,20) = 11.9, 

p<0.001), with L4 females having higher levels than L4males. 

At PND30, there was an effect of sex effect on serum adiponectin levels (F(1,20) 

= 4.8, p<0.05), while at PND 50, no effect of either sex or litter size was observed. 

Females had higher levels than their corresponding male groups at PND85 

[sex effect (F(1,16) = 6.2, p<0.05)]. At PND150, L12 female rats had higher adiponectin 

levels than L12 males. Adiponectin levels were lower in L4 than L12 females, but the 

inverse occurred in males [litter size and sex interaction: (F(1,23) = 6.9, p<0.02)]). 
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LEPTIN 
(ng/ml) 

ADIPONECTIN 
(ng/ml) 

PND 10* 

ML12  1.25±0.21 21.5±2.8 

ML4  2.61±0.32a 40.0±2.3 a 

FL12  1.24±0.16 17.5±2.3 

FL4  2.43±0.322a 41.9±1.5 a 

PND 21* 

ML12  1.12±0.18 27.6±1.8 

ML4  1.80±0.21 31.9±1.6 

FL12  0.99±0.22 30.3±1.7 

FL4  1.91±0.48a 43.9±3.2 a,b 

PND 30 

ML12  0.43±0.12 62.1±6.0c 

ML4  0.97±0.44 58.4±6.3 c 

FL12  0.71±0.32 42.6±3.0 b 

FL4  1.04±0.54 54.2±5.7 

PND 50 

ML12  0.96±0.32 55.2±4.2 

ML4  0.69±0.29 76.2±5.9 a 

FL12  0.77±0.29 62.2±10.1 

FL4  0.64±0.31 60.9±9.7 

PND 85 

ML12  1.65±0.20 71.6±14.0 

ML4  1.42±0.21 78.0±19.1 

FL12  1.22±0.44 108.2±9.1 b 

FL4  1.04±0.18 105.2±2.5 b 

PND 150 

ML12  9.57±1.05c 80.6±11.1 

ML4  14.46±1.23c 109.4±7.4 

FL12  4.33±0.80b,c 108.2±7.5 

FL4  4.56±0.90b,c 86.4±12.3 

 

Table 9. Circulating leptin and adiponectin levels at 10, 21, 30, 50, 85 and 150 days of age, in rats from 

small (L4) and control litters (L12). Leptin: F(23, 146 )= 5.7, p<0.0001 ; Adiponectin: F(23,136 )= 15.7, p<0.0001. 
a
different from rats of same age and sex (litter size effect),

b
different from males of same age and litter 

size, 
c
different from preceding age (same sex and litter size). * non-fasting samples.  
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1.3.7 Serum IL1β levels 

 

The levels of the inflammatory cytokine IL1β (Table 10) were affected by age 

(F(5,124) = 5.1, p<0.0001) with an interaction between sex and litter size (F(1,124) = 5.1, 

p<0.03).  

At PND10, there was an effect of litter size on circulating IL1β levels (F(1,28) = 

7.5, p<0.02) with males and females from L4 tending to have lower levels of this 

cytokine; however, this effect was not significant between specific groups in the  

post hoc analysis. At weaning, males from L4 tend to have higher levels of IL1β than 

L12 males, with females having the opposite tendency. 

This pattern (L4 males having higher levels than L12 males and L4 females 

having lower levels than L12 females) was repeated at most ages, but these 

differences did not reach statistical significance.  

1.3.8 Serum IL6 levels 

There was an overall effect of age on IL6 levels (F(5,125) = 6.2, p<0.0001; Table 

10). At PND 10, there was an overall effect of sex with males having overall higher 

levels of this cytokine than females (F(1,26) = 4.3, p<0.05). Circulating IL6 levels did not 

vary between groups at PND21 or 30.  

At PND50, there was an effect of sex on circulating IL6 levels (F(1,19) = 4.6, 

p<0.05). There was no effect of sex or litter size at PND85 or PND150, with many 

animals having values below the limit of detection.  

1.3.9 Serum TNFα levels 

There was an effect of age (F(5,131) = 5.5, p<0.0001) on circulating TNFα levels 

(Table 10).  

At PND 10, there were overall effects of sex (F(1,28) = 6.9, p<0.02) and litter size 

(F(1,28) = 10.9, p<0.003) on circulating TNFα levels. Females from small litters had 

lower levels than control females and lower levels than males from small litters.  
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There was no effect of either sex or litter size at PND21 or 30. After PND50, 

most of the animals had circulating TNFα levels at the limit of detection of the assay.  

    IL-1β (pg/dl) IL-6 (pg/ml) TNFα (ng/ml) 

PND 10* 

ML12  14.9±3.1 126.1±38.5 5.1±0.3 

ML4  5.1±1.2
a 

89.2±44.6 3.4±0.7
a
 

FL12  15.0±4.1 16.4±12.2 4.0±0.6 

FL4  7.9±2.0
a 

40.9±29.7 1.3±0.4
 a,b

 

PND 21* 

ML12  19.6±6.8 56.5±44.6 4.6±1.0 

ML4  46.9±11.3 85.6±39.7 2.5±1.2  

FL12  28.0±9.4 60.4±34.3 2.5±0.8 

FL4  22.8±3.7 112.1±69.8 1.9±0.6 

PND 30 

ML12  32.1±8.0 76.2±47.4 1.6 ±0.4 

ML4  61.3±41.4 18.4±14.4 2.0±0.9 

FL12  67.5±29.0 86.5±35.0 4.1±1.3 

FL4  29.2±13.6 78.3±23.8 2.1±0.7 

PND 50 

ML12  10.6±2.3 0.62 BLD 

ML4  20.9±3.9 0.62 BLD 

FL12  19.3±8.9 17.7±12.7 BLD 

FL4  7.3±2.4 22.1±11.4 BLD 

PND 85 

ML12  15.6±5.5 5.63±5.01 BLD 

ML4  15.7±6.6 4.50±3.88 BLD 

FL12  6.1±2.1 2.58±1.96 BLD 

FL4  6.7±2.1 0.62 BLD 

PND 150 

ML12  23.4±9.6 14.5±6.2 BLD 

ML4  35.3±20.0 15.5±3.6 BLD 

FL12  29.3±26.4 16.4±3.7 BLD 

FL4  22.6±8.0 19.1±0.7 BLD 

 

Table 10. Circulating levels of IL-1β, IL-6 and TNFα at 10, 21, 30, 50, 85 and 150 days of age, from small 

(L4) and control (L12) litters. IL-1β: F(23, 147)= 1.6 , p<0.05; IL-6: F(23, 148)= 2.1 , p<0.005; TNFα: F(3, 31)= 6.1 , 

p<0.003.   a
different from rats of same age and sex (litter size effect), 

b
different from males of same age 

and litter size, 
c
different from preceding age (same sex and litter size), BLD: below limit of detection * 

non-fasting samples.  
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1.3.10 Testosterone levels 

Circulating testosterone levels in males varied according to age (F(5,50) = 15.1, 

p<0.0001), showing an increase in levels at PND85 and a further increase at PND150. 

(Table 11). 

 

    Testosterone (ng/dl) 

PND 10* 
ML12  0.19±0.05 

ML4  0.76±0.27 a 

PND 21* 
ML12  0.60±0.20 

ML4  0.63±0.21 

PND 30 
ML12  0.48±0.24 

ML4  0.35±0.13 

PND 50 
ML12  0.72±0.41 

ML4  0.63±0.15 

PND 85 
ML12  2.60±0.91 

ML4  2.61±0.87 

PND 150 
ML12  11.55±3.42 

ML4  18.68±4.46 
 

Table 11.  Circulating testosterone levels at 10, 21, 30, 50, 85 and 150 days of age in males from small and 

control litters. a: Litter size effect. 

 

1.3.11 17β-Estradiol levels  

Circulating 17β-estradiol levels were affected by age (F(5,41) = 6.4, p<0.0001), 

with an interaction between age and litter size (F(5,41) = 2.7; p<0.04). At PND21, 

females from small litters tended to have higher levels than control females (F(1,5) = 

7.5, p=0.052), as well as at PND30 (F(1,7) = 6.1; p= 0.06). No differences were 

observed at PND50 or PND85. However, 17β-estradiol levels increased at PND150 in 

L4 females such that they were higher than in L12 females (F(1, 16) = 7.78; p<0.02; 

Table 12). 
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    17β-estradiol (pg/ml) 

PND 10* 
FL12  10.96±1.51 

FL4  8.51±3.53 

PND 21* 
FL12  7.06±3.07 

FL4  17.60±2.23 

PND 30 
FL12  16.69±1.72 

FL4  26.18±3.90 

PND 50 
FL12  22.86±1.61 

FL4  24.10±1.39 

PND 85 
FL12  26.61±4.68 

FL4  24.31±1.99 

PND 150 
FL12  32.45±4.42 

FL4  89.38±18.78a 

 

Table 12. Circulating 17β-estradiol levels at 10, 21, 30, 50, 85 and 150 days of age, in females from small 

and control litters. a 
Litter size effect. 

 

1.3.12 Circulating triglycerides at PND150. 

Circulating triglyceride levels at PND150 were affected by litter size (F(1,21) = 

5.7, p<0.03), being increased in rats from small litters, but only in males (F(3, 24) = 4.1, 

p<0.05; Figure 28). 

 

 

 

 

 

 

 

 

 

 

Figure 28. Circulating triglyceride levels at PND150 in male and female rats from L12 and L4 litters. * = 

p<0.05. 
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1.3.13 Non-sterified fatty acids (NEFA) at PND150. 

Niether litter size nor sex affected circulating NEFA levels at PND150 (ML12: 

0.77 ± 0.06, ML4: 1.00 ± 0.08, FL12: 1.03 ± 0.09, FL4: 0.96 ± 0.09 mmol/L). 

 

1.4 Effects of litter size, sex and age on adipokine expression in adipose 

tissue 

Because the amount of adipose tissue changed as a consequence of neonatal 

overnutrition in a sexually dimorphic manner, as did circulating adipokine levels, we 

analyzed adipokine expression in adipose tissue at PNDs 10, 21, 85 and 150 to better 

understand these changes. 

1.4.1 Adipokine expression in subcutaneous adipose tissue 

As early as 10 days of life, overnutrition (F(1,20) = 12.8, p<0.002) produced an 

increase in leptin mRNA levels (Figure 29A) in SCAT of both sexes, although this 

increase was only statistically significant in males. Adiponectin mRNA levels (Figure 

29 B) were not significantly modified. 

 

Figure 29. Relative leptin (A) and adiponectin (B) mRNA levels in subcutaneous adipose tissue at PND10 in 

male and female rats from litters of 4 (L4) and 12 (L12) pups. Leptin mRNA: (F (3, 19) = 4.9)  * = p<0.02.  

 

IL-1β mRNA levels (Table 13) were reduced in L4 compared to L12 rats (F(1,16) = 

11.6; p<0.004) with this being significant only in females. IL-6 and TNFα mRNA levels 

(Table 13) were not affected by either sex or litter size. 

 

B A 
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At PND21, litter size (F(1,19) = 14.7, p<0.001) continued to affect leptin mRNA 

levels in SCAT, but with this being significant only in males (Figure 30 A). Adiponectin 

mRNA levels were modulated by litter size (F(1,19) = 20.7, p<0.0001) with an 

interaction between litter size and sex (F(1,19) = 5.7, p<0.03) as this affect was only 

significant in males (Figure 30 B).  

 

 

 

 

 

 

 

 

 

Figure 30. Leptin (A) and adiponectin (B) mRNA levels in subcutaneous adipose tissue at PND21 in male 

and female rats from litters of 4 (L4) and 12 (L12) pups. Leptin mRNA: (F(3, 22) = 7.1); Adiponectin mRNA: 

(F(3, 22) = 8.7). * = p<0.02; **= p<0.001. 

 

In general, the expression of cytokines in SCAT tended to be decreased in 

over-nourished animals at PND21, although a significant effect of litter size was only 

observed on IL6  levels (F(1,18) = 6.5, p<0.02), with L12 rats having higher levels than 

L4 in both sexes. No effect of litter size or sex was found on IL1β or TNFα mRNA 

levels at PND21.  

 

At PND85 there was an overall effect of sex on leptin mRNA levels (F(1,18) = 5.3, 

p<0.04, Figure 31A). Likewise, IL1β mRNA levels were affected by sex (ML12: 100 ± 

27.7, ML4: 78.2 ± 27.2, FL12: 7.6 ± 2.2, FL4: 8.2 ± 4.1; F(1,18) = 6.9, p<0.02). 

Adiponectin mRNA levels (Figure 31B) were not statistically different between 

groups. As to IL6 and TNFα levels most of the results were very late in amplifying and 

thus not reliable. 

 

 

 

A B 
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Figure 31. Leptin (A) and adiponectin (B) mRNA levels in in SCAT at PND85 in male and female rats from 

litters of 4 (L4) and 12 (L12) pups.  

 

At PND150, leptin mRNA levels (Figure 32A) were different between the sexes 

(F(1,18) = 62.8, p<0.0001) and there was a litter size effect on adiponectin mRNA levels 

(Figure 32B) (F(1,19)= 7.1, p<0.02). At PND150, expression of IL1β, IL6 and TNFα in 

SCAT was below the detection limits of the assay.   

 

Figure 32. Leptin (A) and adiponectin (B) mRNA levels in subcutaneous adipose tissue at PND 150 in male 

and female rats from litters of 4 (L4) and 12 (L12) pups.  

 

1.4.2 Adipokine expression in visceral adipose tissue 

At PND10 there was insufficient VAT for analysis. 

At PND21, L4 rats had higher leptin mRNA levels than L12 rats in both sexes 

(litter size effect: F(1,21) = 21.7, p<0.0001; Figure 33 A). Adiponectin mRNA levels were 

not affected by sex or litter size, although males from small litters clearly tended to 

A B 

NS 

A B 
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have increased expression levels of this adipokine compared to control males and 

females (Figure 33B). 

 

 

 

 

 

 

 

 

Figure 33. Leptin (A) and adiponectin (B) mRNA levels in visceral adipose tissue at PND21 in male and 

female rats from litters of 4 (L4) and 12 (L12) pups. Leptin mRNA levels: F(3,20) = 7.3 **= p<0.003. 

 

IL6 mRNA levels in VAT were increased in L4 rats of both sexes (F(3,23) = 6.6; 

p<0.01). Males had higher levels of the inflammatory cytokine IL1β than females (sex 

effect: F(1,19) = 12.7, p<0.002), with this being significant between control males and 

females (F(3,22) = 5.2; p<0.009; Table 14). Males also had higher TNFα mRNA levels in 

VAT compared to females (sex effect: F(1,20) = 4.9; p<0.04). 

 At PND85, leptin mRNA levels in VAT were lower in females compared to 

males (sex effect: F(1,24) = 18.1, p<0.0001, Figure 34A). There was a similar effect of 

sex on adiponectin (F(1,24) = 11.1, p<0.003 Figure 34B), IL1β (F(1,19) = 8.9, p<0.008), IL6 

(F(1,22) = 23.9, p<0.0001) and TNFα (F(1,23) = 22.6, p<0.0001) (Table 15), with females 

having lower levels than males. 

NS 

A B 
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Figure 34. Leptin (A) and adiponectin (B) mRNA levels in visceral adipose tissue at PND85 in male and 

female rats from litters of 4 (L4) and 12 (L12) pups. Leptin mRNA: (F(3,23) = 6.7); Adiponectin mRNA: (F (3,23) 

= 4.5) **= p<0.01; *= p<0.03. 

At PND150, leptin expression remained higher in males than females (F(1, 22) = 

71.2; p<0.0001) regardless of litter size (Figure 35A). Adiponectin mRNA levels were 

also higher in males than females from both litter sizes (F(1,23) = 63.8; p<0.0001; 

Figure 35B). 

Figure 35 . Leptin (A) and adiponectin (B) mRNA levels in visceral adipose tissue at PND150 in male and 

female rats from litters of 4 (L4) and 12 (L12) pups. Leptin mRNA: F(3, 21) = 24.4; Adiponectin mRNA: F(3, 22) = 

24.5; ***=p<0.0001. 

However, IL1β mRNA were higher in females compared to males (F(1,23) = 29.4, 

p<0.0001) with both L12 and L4 females having higher IL1β mRNA levels than L12 

and L4 males (F(3,22) = 9.99; p<0.0001; Table 16). TNFα mRNA levels were affected by 

litter size (F(1,23) = 9.9, p<0.01), being higher in L4 compared to L12 males (F (3, 22) = 

4.22, p<0.03. 

A B 

A B 
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IL6 mRNA levels were below the detection limit in many of the samples and 

therefore not reported. 

  
SCAT mRNA VAT mRNA 

IL1β IL6 TNFα IL1β IL6 TNFα 

PND 10* 

ML12  100±21.3 100±10.5 100±10.5 TNA TNA TNA 

ML4  100.5±29.6 99.6±56.6 88.9±13.2 TNA TNA TNA 

FL12  156.4±44.6 94.9±22.4 89.8±12.3 TNA TNA TNA 

FL4  32.4±13.3a 38.7±12.1 54.3±11.1 TNA TNA TNA 

PND 21* 

ML12  100±55.4 100±38.7 100±28.9 100±23.7 100±18.5 100±21.5 

ML4  42.5±9.3 19.3±1.7a
   95.0±25.7 70.3±21.5 339.8±73.8a 161.4±53.6 

FL12  97.8±42.5 112.3±46.6 142.1±32.9 18.4±4.7b 72.8±20.1 50.2±13.8 

FL4  51.3±23.6 20.7±8.2a 41.7±6.3 36.2±8.1 331.0±79.9a 75.4±13.2 

PND 85 

ML12  BLD BLD BLD 100±42.1 100±28.9 100.0±28.8 

ML4  BLD BLD BLD 70.0±19.3 124.3±30.3 124.3±30.3 

FL12  BLD BLD BLD 47.7±29.1 174.8±135.4 31.8±24.7b 

FL4  BLD BLD BLD 51.0±23.5 22.9±12.4b 15.8±90.1b 

PND 150 

ML12  BLD BLD BLD 100±29.5 BLD 100±39.5 

ML4  BLD BLD BLD 80.5±37.0 BLD 450.5±186.6a 

FL12  BLD BLD BLD 703.9±142.6b BLD   211.0±49.4 

FL4  BLD BLD BLD 617.3±145.8b BLD 256.4±65.2 

 

Table 16. Relative mRNA levels of cytokines in subcutaneous and visceral adipose tissue at post-natal days 

(PND) 10, 21, 85 and 150 in male (M) and female (F) rats raised in litters (L) 4 or 12 pups. 
a 

different from 

rats of same age and sex (litter effect),
b 

different from males of same age and litter size (sex effect). 

@
Litter size effect by 2-ways ANOVA. * Non-fasting samples. TNA: tissue not available. BLD: below limit of 

detection 

 

1.5 Central effects of early overnutrition throughout development in 

males and females. 

To correlate the metabolic changes observed as a consequence of neonatal 

overnutrition with possible signs of hypothalamic inflammation, hypothalamic levels 

of leptin, IL-6, IL-1β, IL-10 and TNF-α were determined at PND10, 50 and 150.  
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1.5.1 Hypothalamic cytokine levels at PND 10 

At PND10 there was an overall litter size effect on hypothalamic leptin levels 

(F(1,24) = 6.7, p<0.02), with L4 rats tending to have higher levels than L12 rats (Figure 

36A).  

There was an interaction between sex and litter size (F(1,20) = 5.3, p<0.05) on 

hypothalamic IL6 levels, with this cytokine tending to increase in L4 males and 

decrease in L4 females.  

 

 

 

 

 

Figure 36.  Leptin (A) and IL6 (B) levels in the hypothalamus at PND 10 in male and female rats from litters 

of 4 (L4) and 12 (L12) pups. IL6: T-test, *p<0.05. 

 

No significant differences were found in hypothalamic IL-1β, IL-10, or TNF-α 

levels, although there was a trend for all of these cytokines to increase in L4 males 

(Table 17).  

  Hypothalamic cytokine levels  

  
IL10 

(pg/mL) 
IL1β  

(pg/mL) 
TNFα 

(pg/mL) 

PND 10* 

ML12  22.7±5.7 27.1±4.9 1.8±0.1 

ML4  42±11.1 39.6±8.7 4.5±1.6 

FL12  31.7±7.7 34.1±6.3 2.5±1.2 

FL4  27.4±3.9 29.2±3.4 0.8±0.1 

 

Table 17. Hypothalamic levels of IL10, IL1 β and TNFα at PND10 in males and females from L12 and L4.  

*: Non- fasting samples. 

A B 
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1.5.2 Hypothalamic cytokine levels at PND50 

At PND50, when the litter size-induced changes in body weight or circulating 

metabolic factors were no longer observed, leptin levels in the hypothalamus did not 

differ between groups. However, L4 males had higher hypothalamic IL6 levels 

compared to females from the same litter size (sex effect: F(1,24) = 4.8, p<0.05; Figure 

37). 

 

 

 

 

 

Figure 37.  Leptin (A) and IL6 (B) levels in the hypothalamus at PND 50 in male and female rats from litters 

of 4 (L4) and 12 (L12) pups. IL6: ANOVA: F (3, 23) = 3.5 *= p<0.05. 

There were no significant differences between groups in hypothalamic levels 

of IL10 or IL1β. There was an overall sex effect on TNFα levels (F (1, 22) = 4.5, p<0.05) 

with levels being generally higher in males. 

  
Hypothalamic cytokine levels  

IL10 
(pg/mL) 

IL1β (pg/mL) TNFα (pg/mL) 

PND 50 

ML12  101±17.9 70.9±10 1.6±0.2 

ML4  108±17.5 76.7±9 5.0±1.8 

FL12  85.6±11.4 57.9±4.9 1.2±0.2 

FL4  197±74.8 79.3±14.7 1.2±0.1 

Table 18. IL10, IL1 β and TNFα hypothalamic levels at PND50 in males and females from L12 and L4. 

1.5.3 Hypothalamic cytokine levels at PND 150 

At PND150, leptin levels in the hypothalamus were found to be higher in 

males than in females (sex effect: F(1,24) = 6.1, p<0.03, Figure 38). 
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Figure 38.  Leptin levels in the hypothalamus at PND 150 in male and female rats from litters of 4 (L4) and 

12 (L12) pups. 

 

No significant differences in hypothalamic IL1β, IL6 or IL10 levels were found, 

although L4 males tended to have higher levels of all these cytokines (Table 19). 

 

  
Hypothalamic cytokine levels  

IL10 (pg/mL) IL1β (pg/mL) IL-6 (pg/mL) 

PND 150 

ML12  50.0±12.0 45.3±7.7 706.5±205.4 

ML4  69.7±14.3 51.9±7.3 1144.1±417.2 

FL12  55.4±8.9 42.3±4.2 614.9±88.6 

FL4  53.1±5.3 40.6±3.8 347.6±55.1 

 

Table 19. Hypothalamic IL10, IL1 β and IL6 levels at PND150 in males and females from L12 and L4. 
 

In contrast, TNFα levels in the hypothalamus were affected by sex (F(1,11) = 

42.6, p<0.0001) and litter size (F(1,11) = 22.17, p<0.02), with an interaction between 

these two factors (F(1,11) = 14.3, p<0.01). Males from small litters had higher 

hypothalamic TNFα levels than those from control litters and higher levels than 

females from small litters (Figure 39). 
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Figure 39. Hypothalamic TNFα levels at PND150 in male and female rats from litters of 4 (L4) and 12 (L12) 

pups. F(3,10) = 24.2, ***= p<0.0001. 

 

1.5.4 Effects of early overnutrition and sex on hypothalamic glial proteins  

Hypothalamic GFAP protein levels were not affected by sex or litter size at 

PND10, PND21, PND30, PND50 or PND85 (Table 20). At PND 150, hypothalamic GFAP 

levels were affected by litter size (F(1, 20) = 5.5, p<0.03; Figure  40A), with L4 males 

having higher levels than L12 males. 

At PND150, the microglia marker, Iba 1, was influenced by litter size (F(1, 20) = 

5.9, p<0.03; Figure 40B), with its levels being lower in the rats that had been exposed 

to neonatal overnutrition, regardless of sex.  

 

 

 

 

 

 

 

 

 

 

Figure 40.Relative hypothalamic GFAP (A) and Iba1 (B) protein levels in male and female rats from L12 and 

L4 at PND 150. N=6. #: p<0.05 Litter size effect by 2-ways ANOVA. 
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    GFAP 

PND 10* 

ML12  100 ± 7.8 

ML4  97.7 ± 12.9 

FL12  93.7 ± 12.9 

FL4  103.1 ± 12.9 

PND 21* 

ML12  100 ± 6.7 

ML4  101 ± 8.4 

FL12  101 ± 6.5 

FL4  107.6 ± 12 

PND 30 

ML12  100 ± 4.2 

ML4  73.9 ± 14.2 

FL12  105.8 ± 5.7 

FL4  95.7 ± 12.2 

PND 50 

ML12  100 ± 12.6 

ML4  106.1 ± 17.4 

FL12  98.8 ± 10 

FL4  81.6 ± 17.2 

PND 85 

ML12  100 ± 10 

ML4  88.4 ± 5 

FL12  117.1 ± 202 

FL4  87.8 ± 5.8 

 

Table 20. Hypothalamic GFAP protein levels at PND10, PND21, PND30, PND50 and PND85, which 

levels were not significantly different between the experimental groups. 

 

Hypothalamic vimentin protein levels were affected by litter size at PND30 (F 

(1, 24) = 6.5, p<0.02; Figure 41), when the animals exposed to early over nutrition had 

lower levels of this protein. There was no effect at any other ages (results not 

shown). 
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Figure 41. Relative hypothalamic vimentin protein levels in male and female rats from L12 and L4 at PND 

30. N=6 

 

To investigate whether neuronal maturation was affected by neonatal 

overnutrition during the prepubertal stages, nestin levels were analyzed at PND 10, 

21 and 30. There was no effect of sex or litter size at PND10 or 21. In contrast, at 

PND30, nestin protein levels tended to be increased in the animals raised in small 

litters in both sexes (ML12: 100 ± 28.1, ML4: 191.1 ± 79.0, FL12: 37.3 ± 11.8, 

FL4:175.5 ± 60.1 %ML12; litter size effect p=0.058).  

 

Given that changes in hypothlamic GFAP levels were found in response to 

early overnutrition in males, but not females, at PND150 we asked whether this was 

associated with increased markers of inflammation and/or changes in the activation 

of intracellular pathways associated with leptin and insulin signaling.  

The p-Stat3(Tyr705) protein levels were increased by litter size (F(1,20) = 6.1, 

p<0.03) in both sexes. However, p-Stat3(Ser 634) protein levels were unaffected (data 

not shown). 
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Figure 42. Relative hypothalamic pSTAT3
(Tyr705) protein levels in male and female rats from L12 and L4 at 

PND 30. N=6 #: p<0.03 litter size effect by 2-ways ANOVA. 

 

There was an interaction between litter size and sex on SOCS3 protein levels (F(1,18) = 

5.1, p<0.05), with this inhibitor of cytokine signaling tending to decrease in L4 males 

and increase in L4 females. 

 

 

 

 

 

 

 

 

 

Figure 43. Relative hypothalamic SOCS3 protein levels in male and female rats from L12 and L4 at PND 30. 

N=6  

 

Hypothalamic protein levels of p-IRS, p-AKT, p-Iκβ and p-PTEN were not 

different between groups at PND150 (data not shown).  
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1.5.5 Early overnutrition and sex influence on astrocyte cell number and 

morphology  

Although neonatal overnutrition did not increased GFAP levels in PND150 

females, it is possible that the number or morphology of astrocytes could be 

affected. Hence, we analyzed the number and morphology of astrocytes in the 

hypothalamus of male and female rats at PND150.  

There was an effect of litter size (F (1,19) = 9.8, p<0.005; Figure 44A), with an 

increase in the mean number of GFAP cells/area in the arcuate nucleus of the 

hypothalamus of males that had been exposed to early overnutrition. There was an 

overall effect of sex (F (1,19) = 5.4, p<0.04; Figure 44B) on the number of projections 

per GFAP cell, with females tending to have more primary projections. Primary 

projections were also measured to determine their length, an effect of litter size was 

found (F (1,19) = 19.4, p<0.003; Figure 44C), with ML4 having shorter primary 

projections than ML12 and no effect on females. 
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Figure 44. Number of GFAP positive cells/area (A), number of projections per GFAP positive cell (B) and 

primary projections length (C) in the arcuate nucleus of male and female rats from L12 and L4 at PND 150. 

Number of cells/area: F(3, 22) = 3.8, *=p<0.0 3; Length of projections: F(3,22)= 8.1**=p<0.01 

 

As leptin receptor expression in astrocytes has been reported to increase in 

hypothalamic astrocytes as a result of HFD-induced obesity (Hsuchou et al., 2009), we 

analyzed whether the increase in weight in male rats due to neonatal nutrition is 

associated with changes in LepR levels in astrocyte of the arcuate nucleus. The level of 

LepR immunoreactivity over GFAP positive somas was increased in rats raised in a small 

litter (litter effect: F(1,8)=24.6, p<0.001; Figure 45), regardless of sex.  
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Figure 45. Relative signal intensity of ObR over GFAP cells in male and female rats from L12 and L4 at PND 

90.  

1.5.6 Early overnutrition and sex effects on microglia cell number 

There were no significant differences in the mean number of Iba1+ cells/area 

in the arcuate nucleus of the hypothalamus of 150 day old rats (Figure 46), although 

the number of Iba1+ cells tended to decrease in rats with neonatal overnutrition, 

similar to that observed for Iba1 protein levels in the hypothalamus. 

 

 

 

 

 

 

 

Figure 46. Mean number of Iba1 positive cells/ and immunohistochemitry images in the arcuate nucleus 

of male and female rats from L12 and L4 at PND 150.   
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2. Neonatal androgenization 

2.1 Metabolic effects of neonatal androgenization 

2.1.1 Metabolic effects of neonatal androgenization at PND10 

At PND10, testosterone levels remained elevated in females that received 

testosterone on PND1 (M: 6.6 ± 3.4, F: 1.2 ± 0.4. AF: 7.0 ± 2.9 ng/ml). To determine if 

neonatal testosterone levels could play a role in the development of the sexually 

dimorphic effects observed at PND10 in the neonatal overnutrition study, 

testosterone levels were also measured in females at this age. At PND10 there was 

an effect of litter size (F(1,18) = 4.4, p<0.05) with an interaction between sex and litter 

size (F(1,18) = 5.7, p<0.03), as L12 males had lower levels than L4 males, but with no 

effect in females (ML12: 0.19 ± 0.05, ML4: 0.76 ± 0.27, FL12PND10: 0.35 ± 0.04, 

FL4PND10: 0.31 ± 0.02 ng/ml). 

Circulating 17β-estradiol levels showed no differences between groups (M: 

37.2 ± 4.0, F: 39.7 ± 6.1, AF: 28.4 ± 2.3 pg/ml) 

Neonatal androgenization did not alter body weight (M: 17.7 ± 0.4, F: 17.8 ± 

0.4, AF: 18.3 ± 0.4 g) or body length (M: 7.4 ± 0.1, F: 7.5 ± 0.1, AF: 7.7 ± 0.1 cm) at 

PND10.  

The amount of SCAT was higher in females than in males and even greater in 

androgenized females (Figure 47). 

 

 

 

 

 

Figure 47. Percentage (A) and absolute (B) amount of subcutaneous fat (SCAT) at PND10 in males, females 

and androgenized females SCAT/100g BW: (F(2,28)= 53.9); SCAT (g): (F (2,28)= 47.8) ***= p<0.0001. 
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At PND10, glycemia (M: 112.3 ± 3.1, F: 104.1 ± 4.0, AF: 102.1 ± 3.7 mg/dl) and 

insulin levels (M: 0.69 ± 0.24, F: 0.72 ± 0.19, AF: 0.49 ± 0.07 ng/ml) were not 

different between groups. 

Serum leptin levels were higher in females compared to males, but 

androgenized females were not different from either males or females (F(1,18) = 10.3; 

p<0.01; Figure 48). There was a similar effect on serum adiponectin levels, with 

higher levels of this adipokine in females compared to males (F(1,25) = 11.3; p<0.01) 

with androgenization reducing adiponectin levels so that they were no longer 

different from males. 

 

 

 

 

 

Figure 48. Serum leptin (A) and adiponectin (B) levels at PND10 in males, females and androgenized 

females. Leptin: (F(2,17) = 6.3, p<0.02; Adiponectin: (F(2,22) = 5.6; p<0.01)   *= p<0.05. 

 

Circulating levels of the inflammatory cytokines IL1β (M: 41.8 ± 24.7, F: 39.2 ± 

9.2, AF: 27.1 ± 14.9 pg/ml) and TNFα (M: 1.7 ± 0.3, F: 1.1 ± 0.4, AF: 1.0 ± 0.4 pg/ml) 

were not affected by neonatal androgenization. In contrast, circulating IL6 levels 

were lower in females than in males, with androgenization of females ablating this 

difference (F(2,16) = 4.0, p<0.05; (Figure 49). 
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Figure 49. Serum IL6 levels at PND10 in males, females and androgenized females. (F(2,16) = 4.0, *= p<0.05 

 

2.1.2 Metabolic effects of neonatal androgenization at PND90 

At PND90 circulating testosterone levels were not affected by neonatal 

testosterone injection, with males having significantly higher levels than both control 

and androgenized females (F(1,29) = 20.0, p<0.0001; Figure 50). No significant 

differences were found in circulating 17β-estradiol levels (M: 49.1 ± 2.1, F: 47.6 ± 

2.8, AF: 42.1 ± 2.2 pg/ml).  

 

 

 

 

 

 

 

Figure 50. Circulating testosterone levels at PND90 in males, females and androgenized females. 

Testosterone: F(2, 28) = 13.5, ***= p<0.0001.  

 

At PND90, males were heavier than both females and androgenized females 

(F(1,31) = 231.3, p<0.0001) and the latter weighed more than control females (Figure 

51). No differences in length were observed at this age. 
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Figure 51.  Representation of BW (A) and length (B) at PND90 in males, females and androgenized 

females.  BW: F (2,30) = 128.6 ***=p<0.001; T-student: F vs AF *= p<0.05 . 

 

The percentage of both SCAT (F(1,22) = 84.7, p<0.0001) and VAT (F(1,21) = 15, 

p<0.001) was higher in males compared to both female groups, with no effect of 

neonatal testosterone treatment, Figure 52. 

 

 

 

 

 

Figure 52. Percentage of subcutaneous adipose tissue (SCAT; A) and visceral adipose tissue (VAT; B) at 

PND90 in males, females and androgenized females. SCAT/100 g BW: F(2,21) = 7.9; VAT/100g BW: F(2,20) = 

7.9 *= p<0.01. 

 

At PND90, glycemia was higher in males compared to females (sex effect: 

F(1,26) = 5.1; p<0.05, Figure 53A) and neonatal androgenization of females increased 

glucose levels such that they were no longer different from males. Insulin levels 

were lower in both females groups (sex effect: F(1,13) = 6.8, p<0.01; Figure 53B).  
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Figure 53.  Serum glucose (A) and insulin (B) levels at PND 90 in males, females and androgenized 

females. Glycemia: F(2,28) = 3.7 *= p<0.05 ; Insulin: F(2,15) = 5.1 **= p<0.01 

 

Serum leptin levels were lower in females compared to males and neonatal 

testosterone treatment resulted in leptin levels being higher than in control females 

(F(1,18) = 10.3, p<0.01; Figure 54A) and not different from males. At PND90, circulating 

adiponectin levels (Figure 54B) did not vary between the experimental groups.  

 

 

 

 

 

 

 

 

 

Figure 54. Serum leptin (A) and adiponectin (B) levels at PND90 in males, females and androgenized 

females. Leptin: F(2,17) = 22.3; ***= p<0.0001.  

Circulating levels of IL1β were lower in females compared to males (F(1,17) = 

15.1, p<0.003) and neonatal androgenization increased the levels of this cytokine in 

adult female rats (F(1,17) = 8.8, p<0.03; Fig. 55). Serum TNFα levels were below the 

limit of detection of the assay employed.  
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Figure 55. Serum IL1β levels at PND90 in males, females and androgenized females. ANOVA: F (2,16) = 5.9 

*= p<0.03. 

 

2.2 Cytokine profile in adipose tissue 

2.2.1 Expression of cytokines in subcutaneous adipose tissue at PND10 

The injection of testosterone to neonatal females had no significant effect on 

the mRNA levels of leptin, adiponectin, IL1β, IL6 or TNFα in SCAT (Table 21) at 

PND10. 

 

  
Leptin 
mRNA 

Adiponectin 
mRNA 

IL1β mRNA IL6 mRNA TNFα mRNA 

MALES 100 ± 26.3 100 ± 21.0 100 ± 22.8 100± 20.8 100±34.1 

FEMALES 138.8± 21.7 130.4 ± 9.5 57.8± 14.8 74.1±16.3 115.1±13.3 

ANDROGENIZED 
FEMALES 

142.9± 27.2 103.7 ± 15.3 80.3± 14.4 94.1±17.6 132.5 ± 13 

 

Table 21. Expression of leptin, adiponectin, IL1β, IL6 and TNFα mRNA levels in subcutaneous adipose 

tissue at PND10 in males, females and androgenized females. All data are normalized to the expression 

level of males. 
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2.2.2 Expression of adipokines and cytokines in subcutaneous adipose 

tissue at PND90 

The expression of leptin, adiponectin and TNFα did not differ between groups 

in SCAT, while IL1β and IL6 were not reliably detectable in most samples (Table 22) 

at PND90. 

  
Leptin 
mRNA 

Adiponectin 
mRNA 

IL1β mRNA IL6 mRNA TNFα mRNA 

MALES 100 ± 67.8 100 ± 50.2 BLD BLD 100 ± 64.8 

FEMALES 
151.2 ± 

77.6 
188.1 ± 27.1 BLD BLD 156.6 ± 43.9 

ANDROGENIZED 
FEMALES 

170.2 ± 
74.3 

293.8 ± 90.3 BLD BLD 129.5 ± 19.8 

Table 22. Expression of leptin, adiponectin, IL1β, IL6 and TNFα mRNA levels in subcutaneous adipose 

tissue at PND90 in males, females and androgenized females. BLD= below limits of detection. Data are 

normalized to the levels in males. 

2.2.3 Expression of adipokines and cytokines in visceral adipose tissue at 

PND90 

At PND90, leptin mRNA levels in VAT were higher in males compared to 

females of both groups, but androgenization of females increased leptin expression 

so that it was higher than in normal females (F(2,14) = 18.5, p<0.0002; Fig. 56). 

Adiponectin (F(2,14) = 6.5, p<0.01; Fig. 57A), IL6 (F(2,15) = 9.7, p<0.003; Fig 57B) and 

TNFα (F(2,15) = 15.1, p<0.0001; Fig. 57C) were lower in both groups of females 

compared to males. IL1β mRNA levels were not significantly different between 

groups (M: 100 ± 41.4, F: 30.6 ± 23.7, AF: 282.9 ± 154.9 % M). 
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Figure 56. Relative leptin mRNA levels  in visceral adipose tissue at PND90 in males, females and 

androgenized females. ***= p<0.0001.  

 

 

 

 

 

 

 

Figure 57.  Relative adiponectin (A), IL6 (A) and TNFα (B) mRNA levels in visceral adipose tissue at PND 90 

in males, females and androgenized females. **= p<0.001, ***=p<0.0001. 

 

2.3 Histological analysis of visceral adipose tissue at PND90 

The histological study of VAT at PND90, indicated that VAT adipocytes were 

larger in males than females and andogenized females (F(1,7) = 21.9, p<0.003; Figure 

58), with no differences between females and androgenized females. 

 

 

 

 

 

 

Figure 58.  Relative adipocyte area in visceral adipose tissue at PND 90 in males, females and 

androgenized females. F(2,9) = 13.9, **= p<0.005. 
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2.4 Central effects of neonatal androgenization of female rats 

2.4.1 Effects of neonatal androgenization on glial proteins in the 

hypothalamus at postnatal days 10 and 90 

At PND10 neonatal androgenization had no effect on GFAP (M: 100 ± 24.4; F: 

91.5 ± 22.3; AF: 100.2 ± 18.6 % M) or vimentin (M: 100 ± 42.7; F: 71.1 ± 17.9; AF: 82.9 

± 7.8 %M) protein levels in the hypothalamus. However, at PND90 females tended to 

have lower hypothalamic GFAP levels than males, while neonatal androgenization 

increased GFAP levels such that they were significantly higher than in the control 

females (F(1,14) = 8.4, p<0.03; Figure 59A). Vimentin protein levels in the 

hypothalamus tended to be higher in females than in males, but this was not 

statistically significant due to high variability within the groups (Figure 59B). 

 

 

 

 

 

 

 

 

 

 

Figure 59. Relative GFAP (A) and vimentin (B) protein levels in the hypothalamus at PND90 in males, 

females and androgenized females. GFAP: (F(2,16) = 4.2) *= p<0.05. NS = not significant. 
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3. Primary astrocyte cultures 

Neonatal overnutrition resulted in changes in GFAP expression in the 

hypothalamus of male, but not female, rats. Indeed, the number of GFAP positive 

cells was higher in males from small litters compared to control males at PND150. 

Moreover, the effects seen on hypothalamic inflammatory markers were different 

between males and females. Therefore, we analyzed whether male and female 

hypothalamic astrocytes in vitro respond differently to hormonal signals and fatty 

acids (FAs).  

3.1 Dose response curve of male and female hypothalamic astrocytes to 

palmitic acid 

We performed a dose response curve to palmitic acid in primary astrocyte 

cultures of both sexes. Astrocytes were exposed to increasing concentrations of 

palmitic acid: 0.05, 0.1, 0.25 and 0.5mM during 24 hours as concentrations between 

0.05 and 0.6 mM have been shown to induce cytokine release and are within a 

physiological range in serum, as NEFA levels in rat range from 100–200 μM in 

control, non-fasting conditions to 500–600 μM in fasted animals (Rustan et al. 1992), 

(Xu et al. 2010).  Samples were processed to determine if the expression of diverse 

proteins was affected as a consequence of FAs exposure.  

 

3.1.1 Change in cell number in response to palmitic acid treatment 

We first determined if PA affects the number of astrocytes in vitro. No 

significant change in the number of cells was found in response to this FA (Figure 

60). 

 

 

 

 



Results 

122 
 

 

Figure 60. Number of cells in primary astrocyte cultures from 2 day old male and female Wistar rats after 

treatment with increasing levels of palmitic acid (PA) for 24 hours. N=4 cultures with each experimental 

group being performed in triplicate in each culture.   

3.1.2 Changes in the mRNA levels of GFAP, IL6, IL1β, TNFα, CHOP and IGF-

1 in response to increasing concentrations of palmitic acid 

GFAP mRNA levels were progressively decreased in response to increasing 

concentrations of PA (F(4,30) = 21.34; p<0.0001; Figure 61). 

Figure 61. Relative GFAP mRNA levels in primary hypothalamic astrocyte cultures from 2 day old male and 

female Wistar rats. (F(9,39) = 9.9; p<0.0001). Ct: control; PA: Palmitic acid. N=4 cultures with at least 3 

repetitions of each group in experiment.  
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Carnitine palmytoil transferase 1a increased in astrocytes from both sexes in 

response to PA (F(4,31) = 6; p<0.002; Figure 62), although specific differences between 

the groups were not found in the posthoc analysis. 

Figure 62. Relative CPT-1a mRNA levels in primary hypothalamic astrocyte cultures from 2 day old male 

and female Wistar rats. (F(9,40) = 2.9; p<0.02). Ct: control; PA: Palmitic acid. N=4 cultures with at least 3 

repetitions of each group in experiment.  

The expression of IL6 increased with increasing levels of palmitic acid in both 

sexes (F(4, 29) = 5.4, p<0.003; Figure 63). 

Figure 63. Relative IL6 mRNA levels in primary hypothalamic astrocyte cultures from 2 day old male and 

female Wistar rats. Ct: control; PA: Palmitic acid. ANOVA: (F(9,38) = 3, p<0.03). N=4 cultures with at least 3 

repetitions of each group in each experiment.  
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No significant effects were found on IL1β mRNA levels (Males: Ct0: 100, 

Ct24h: 49.9 ± 15.7, PA 0.05 mM: 61.2 ± 18.6, PA 0.1 mM: 91.2 ± 34.2, PA 0.25 mM: 

96.0 ± 50.9, PA 0.5mM: 159 ± 115.7; Females: Ct0h: 104.3 ± 35.8, Ct24h: 54.9 ± 21, 

PA 0.05 mM: 116.9 ± 31.6, PA 0.1 mM: 83.4 ± 28.9, PA 0.25 mM: 34.4 ± 8.8, PA 0.5 

mM: 144.1 ± 66.6 %Ct0 Males). 

 There was an effect of sex on TNFα expression, with females expressing 

lower levels than males (F(1,29) = 4.7, p<0.05; Figure 64). No effect of PA was found. 

Figure 64. Relative TNFα mRNA levels in primary hypothalamic astrocyte cultures from 2 day old male and 

female Wistar rats. Ct: control; PA: Palmitic acid. N=4 cultures with at least 3 repetitions of each group in 

each experiment.  

Levels of CHOP mRNA were increased after PA exposure (F(4,31) = 8.6, 

p<0.0001; Figure 65). This difference reached significance at the highest dose in 

males. 
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Figure 65. Relative CHOP mRNA levels in primary hypothalamic astrocyte cultures from 2 day old male and 

female Wistar rats. Ct: control; PA: Palmitic acid. ANOVA: (F(9,40) = 4, p<0.003). N=4 cultures with at least 3 

repetitions of each group in each experiment. 

On the contrary, the mRNA levels of the trophic factor IGF1 were reduced 

when exposed to PA (F(4,31) = 6.3, p<0.003; Figure 66), with this effect being more 

pronounced in females. 

Figure 66. IGF-1 mRNA levels in primary hypothalamic astrocyte cultures from 2 day old male and female 

Wistar rats. Ct: control; PA: Palmitic acid. ANOVA: (F(9,40) = 3.8, p<0.003) **p<0.003. N=4 cultures with at 

least, 3 repetitions of each group in each experiment.  
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3.1.3 Nitrites and nitrates released in response to PA  

Palmitic acid stimulated the release of NO2 and NO3 to the culture media in a 

dose dependant manner in astrocytes from both sexes (F(4,28) = 4.4, p<0.01; Figure 

67). 

Figure 67. Concentration of NO2 and NO3 in the culture medium of hypothalamic astrocytes after 24 hours 

of palmitic acid (PA) exposure. Ct: control; ANOVA: (F(9,37) = 2.2), p=0.057. N=4 cultures with at least 3 

repetitions of each experimental group in each culture.  

 

3.2 Response of male and female astrocytes to saturated and unsaturated 

fatty acids. 

The hypothalamic inflammatory response to FAs has been shown to depend 

on the type of FFAs, therefore we analyzed if male and female astrocytes were 

differentially affected by different classes of FFAs. Astrocytes were exposed to oleic 

(monounsaturated) and palmitic (saturated) acids for 24 hours, as these are 

common FFAs found in our diet. In addition, as these FFAs are not normally 

consumed individually, the effect of the combination of OA and PA on astrocytes was 

also analyzed.  
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3.2.1 Changes in the mRNA levels of GFAP, CPT-1a IL-6, IL-1β, TNFα, CHOP 

and IGF-1   

Astrocyte cultures were treated with 0.5 mM of each FA, as this is reported to 

be at the high end of physiological concentrations (Thaler and Schwartz, 2010; Gupta et al., 

2012; Yuan et al., 2013). 

Palmitic acid alone drastically reduced the mRNA levels of the astroglial 

marker GFAP (F(1,24) = 47.7, p<0.0001). There was no effect of OA on GFAP mRNA 

levels; However, there was an interaction between PA and OA (F(1,24) = 9, p<0.01), 

with OA partially blocking the effect of PA. In addition, GFAP mRNA levels were 

affected by sex (F(1,24) = 4.3, p<0.05; Figure68). 

Figure 68. Relative GFAP mRNA levels in primary hypothalamic astrocyte cultures from 2 day old male and 

female Wistar rats. Ct: control; F(7, 31) = 10; ***: p<0.0001, @: p<0.05 by T-test. N=4 cultures with at least 3 

repetitions of each experimental group in each one.  

CPT-1a mRNA levels were modulated by OA (F(1, 17) = 24.3 p<0.0001), with this 

FA increasing CPT-1a mRNA levels regardless of the presence or not of PA (Figure69). 
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Figure 69. Relative CPT-1a mRNA levels in primary hypothalamic astrocyte cultures from 2 day old male 

and female Wistar rats. Ct: control; F(7, 31) = 11.2; ***: p<0.0001. N=4 cultures with at least 3 repetitions of 

each experimental group in each one.  

Palmitic acid induced the expression of IL6 mRNA levels in both sexes (F (1, 17) = 

24.3 p<0.0001;Figure 70). Oleic acid had no effect alone, but reduced the effect of 

PA (F(1, 17) = 24.3 p<0.0001). 

Figure 70. Relative IL6 mRNA levels in primary astrocyte cultures from 2 day old male and female Wistar 

rats. Ct: control; (F(7,24) = 5.1); **:p<0.005. N=4 cultures with at least, 3 repetitions of each experimental 

groups in each one.  
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IL1β mRNA levels were unaffected (MCt-0h: 100; MCt-24h: 140.1 ± 37.1; M-

OA: 138.2 ± 35.2; M-PA: 168.5 ± 148.8; M-OA+PA: 73.7 ± 25.7; F-Ct24h: 417.2 ± 

134.1; F-OA: 212.1 ± 89.4; F-PA: 181.7 ± 97.5; F-OA+PA: 89.6 ± 16 % MCt0h). 

TNFα mRNA levels were affected by PA (F(1,20) = 36.4 p<0.0001) and OA (F(1, 20) 

= 14.4 p<0.003), with an interaction between PA and sex (F(1, 20) = 4.2 p=0.054) and 

PA and OA (F(1, 20) = 5.4 p<0.05; Figure 71). Both OA and PA reduced TNFα mRNA 

levels, with an additive effect of these FAs. 

Figure 71. TNFα mRNA levels in astrocyte primary cultures from 2 days old male and female Wistar rats. 

Ct: control; h: hours. ANOVA: (F (7,27) = 8.9, p< 0.0001). N=3 cultures with at least 3 repetitions of each 

experimental group in each one. 

We analyzed CHOP mRNA levels, which is activated by ER stress and 

promotes apoptosis. We found expression of this gene to be affected by OA (F(1,16) = 

5.3, p<0.05) and PA (F(1,16) = 17.3, p<0.002; Figure 72), with PA inducing CHOP and OA 

inhibiting the effect of PA. 
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Figure 72. CHOP mRNA levels in astrocyte primary cultures from 2 days old male and female Wistar rats. 

Ct: control; h: hours. ANOVA: (F (7, 23) = 4, p< 0.02). **: p<0.02. N=4 cultures with at least 3 repetitions of 

each experimental group in each one. 

 

As IGF-1 production by astrocytes is involved neuronal protection, we 

analyzed the expression of this trophic factor. IGF-1 mRNA levels (Figure 73) were 

decreased by PA (F(1,24) = 16.5, p<0.0001). On the contrary, OA stimulated IGF-1 

expression (F(1, 24) = 11.8, p<0.03), with this effect being significant in male astrocyte 

cultures. The addition of both FAs simultaneously resulted in no change in IGF-1 

mRNA levels, suggesting that PA affects the ability of these cells to produce this 

neuronal protector factor in response to OA. 
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Figure 73. Relative IGF-1 mRNA levels in primary astrocyte cultures from 2 day old male and female Wistar 

rats. Ct: control; (F (7,31) = 4.7, p< 0.003). **: p<0.02. N=4 cultures with at least 3 repetitions of each 

experimental group in each one.  

 

3.2.2 Nitrites and nitrates released to the culture media after FAs 

treatment  

As astrocytes are activated and can respond to FAs by releasing inflammatory 

signals, we asked if they also released neurotoxic free radicals such as nitric oxide 

(NO) in response to FAs. 

The amount of NO2 and NO3 released to the culture media by astrocytes was 

affected by PA exposure (F(1,17) = 32.6, p<0.0001), with an interaction between OA 

and PA (F(1,17) = 8.1 p<0.02; Figure 74). Although OA alone had no significant effect, in 

combination with PA the release of NO2 and NO3 was significantly increased. 
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Figure 74. Concentration of NO2 and NO3 in the culture media of hypothalamic astrocytes after 24 hours of 

exposure to palmitic acid (PA), oleic acid (OA) or a combination of these two fatty acids. Ct: control; (F(7,24) 

= 6.1, p< 0.002). N=4 cultures with at least 3 repetitions of each experimental group in each one. 

 

3.3 Palmitic acid and 17β -estradiol 

To determine if estrogens can modify the astrocytic response to PA, 17β–

estradiol (E2) was added to the astrocyte cultures 3 hours before PA (0.1 mM) 

exposure. There was no effect of sex on the mRNA levels of either ERα or ERβ. ERα 

mRNA levels (Figure 75) were decreased by PA (F(1,17) = 15.4, p<0.002) and E2 

increased the levels of this receptor (F(1,17) = 16.7, p<0.002). Besides, E2 

pretreatment followed by PA impede the decrease in ERα in females but not in 

males. 
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Figure 75. Relative ERα mRNA levels in primary astrocyte cultures from 2 day old male and female Wistar 

rats. Ct: control; PA: Palmitic acid; E2: 17β-estradiol. ANOVA (F(7,24) = 3.5, p<0.03). 

 N=4 cultures with at least, 3 repetitions of each experimental groups in each one. 

 

As found in the previous experiments, GFAP expression was reduced by PA, but 

this decrease did not reach significance in this experiment (Figure 76). 

Figure 76. Relative GFAP mRNA levels in primary astrocyte cultures from 2 day old male and female 

Wistar rats. Ct: control; PA: Palmitic acid; E2: 17β-estradiol. N=4 cultures with at least 3 repetitions of 

each experimental group in each one.  
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 IL6 mRNA levels (Figure 77) were affected by PA (F (1, 20) = 48, p<0.0001), E2 (F 

(1, 20) = 15.4, p<0.002) and the interaction between these two factors (F (1, 34) = 13.4, 

p<0.03). Palmitic acid increased IL6 mRNA levels, and the previous addition of E2 

reduced this effect. 

Figure 77. Relative IL6 mRNA levels in primary hypothalamic astrocyte cultures from 2 day old male and 

female Wistar rats. Ct: control; PA: Palmitic acid; E2: 17β-estradiol. ANOVA (F (7, 27)= 10.6, p<0.0001). N=4 

cultures with at least 3 repetitions of each experimental group in each one. 

 

The expression of IL1β  (Figure 78) was also affected by PA (F (1, 19) = 7.9, p<0.02) 

and E2 (F(1, 19) = 4.7, p<0.05). Although PA increased IL-1β levels and this was reduced 

by E2, no significance differences were found by one-way ANOVA probably due to 

the increased variability. 
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Figure 78. Relative IL1β mRNA levels in primary astrocyte cultures from 2 day old male and female Wistar 

rats. Ct: control; PA: Palmitic acid; E2: 17β-estradiol. N=4 cultures with at least 3 repetitions of each 

experimental group in each one. 

 

Similar results were found with TNFα mRNA levels, where PA tended to 

increase the levels of this cytokine and E2 impeded this increase, although these 

changes were not significant (MCt-24h: 147 ± 4.4; M-PA: 215.9 ± 86.9; M-E2: 124.4 ± 

32.1; M-PA+E2: 132.3 ± 28.3; F-Ct24h: 169.9 ± 66.2; F-PA: 204.3 ± 82.3; F-E2: 164.2 ± 

31.9; F-PA+E2: 196.6 ± 109.8), again most likely due to the high variability.  

 

IL10 mRNA levels decreased in astrocytes in response to PA (F(1,19) = 13.4, 

p<0.003; Figure 79), but with individual differences not being found in the posthoc 

analysis. 
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Figure 79. Relative IL10 mRNA levels in primary astrocyte cultures from 2 day old male and female Wistar 

rats. Ct: control; PA: Palmitic acid; E2: 17β-estradiol. ANOVA (F(7, 26) = 2.9, p<0.03). N=4 cultures with at 

least 3 repetitions of each experimental group in each one. 

 

The mRNA levels of IGF-1 tended to decrease with PA, but these effects did 

not reach significance in this experiment (MCt0h: 100; MCt-24h: 92.7 ± 18.2; M-PA: 

65.2 ± 6.8; M-E2: 89 ± 25; M-PA+E2: 62.4 ± 7.4; F-Ct24h: 68.7 ± 12.9; F-PA: 50 ± 18.3; 

F-E2: 72.8 ± 12.2; F-PA+E2: 68.3 ± 11.8). 

 

 The mRNA levels of CHOP (Figure 80) were affected after PA exposure (F(1,17) = 

29, p<0.0001), E2 (F(1,17) = 5.6, p<0.05) and the interaction between these two factors 

(F(1,19) = 5.4, p<0.05 ). There was an increase in response to PA that was reduced by 

pre-incubation with E2. 
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Figure 80. Relative CHOP mRNA levels in primary astrocyte cultures from 2 day old male and female 

Wistar rats. Ct: control; PA: Palmitic acid; E2: 17β-estradiol. ANOVA (F (7, 24) = 5.8, p<0.002). N=4 cultures 

with at least 3 repetitions of each experimental group in each one. 

 

3.4 Palmitic acid and the Toll receptor 4 antagonist RS-LPS 

It has been proposed that FAs can activate glial cells through activation of 

TLR4 (Milanski et al., 2009). Hence, we analyzed whether the observed astroglial 

responses to palmitic acid could be inhibited with a TLR4 antagonist. Palmitic acid at 

0.1mM was combined with LPS-RS to determine if the expression of inflammatory 

cytokines induced by PA was via Toll receptor 4 in astrocytes. The mRNA levels of (IL) 

1β, 6, TNFα, CHOP, nuclear factor of kappa light polypeptide gene enhancer in B-cells 

inhibitor alpha (NFKBIA) and inhibitor of kappa light polypeptide gene enhancer in B-

cells kinase beta (IKBKB) were determined. 

 

IL1β mRNA levels (MCt-24h: 60 ± 9.3; M-RS-LPS: 685.5 ± 2031; M-PA: 105.5 ± 

8.9; M-PA+RS-LPS: 1330.5 ± 684.8; F-Ct24h: 39.9 ± 2.9; F-RS-LPS: 420 ± 246.4; F-PA: 

46.4 ± 9.6; F-PA+RS-LPS: 843.8 ± 574) were increased by RS-LPS (F(1,16) = 10.2, p<0.01) 

and females tended to have lower levels than males, although no specific differences 

were found in the posthoc analysis. 
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IL6 mRNA levels (Figure 81) were increased by both PA (F(1,16) = 8.9, p<0.01) 

and RS-LPS (F(1,16) = 10.9, p<0.01), with this increase being greatest with the 

combination of these two substances. 

Figure 81. Relative IL6 mRNA levels in primary astrocyte cultures from 2 day old male and female Wistar 

rats. Ct: control; PA: Palmitic acid; LPS-RS: Lipopolysaccharide from the photosynthetic bacterium 

Rhodobacter sphaeroides. ANOVA (F(7,23) = 4.5, p<0.01). N=4 cultures with at least 3 repetitions of all 

experimental groups in each one. 

 

TNFα mRNA levels (Figure 82) were increased by RS-LPS (F(1,16) = 17.8, p<0.01). 

Figure 82. TNFα mRNA levels in astrocyte primary cultures from 2 days old male and female Wistar rats. 

Ct: control; h: hours; PA: Palmitic acid; LPS-RS: Lipopolysaccharide from the photosynthetic bacterium 

Rhodobacter sphaeroides. mM: mili Molar. ANOVA (F (7, 23) = 2.9, p<0.05). N=4 cultures with at least, 3 

experimental groups in each one 
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CHOP mRNA levels (Figure 83) were affected by PA (F(1,16) = 9.6, p<0.01) and 

RS-LPS (F(1, 16) = 5.5, p<0.05). 

Figure 83. CHOP mRNA levels in astrocyte primary cultures from 2 days old male and female Wistar rats. 

Ct: control; h: hours; PA: Palmitic acid; LPS-RS: Lipopolysaccharide from the photosynthetic bacterium 

Rhodobacter sphaeroides. mM: mili Molar. N=4 cultures with at least, 3 experimental groups in each one. 

 

NFκB inhibitor α (NFKBIA) (F (1, 16) = 6.5, p<0.03; Figure 84) and IKKβ (IKBKB) (F 

(1, 16) = 11, p<0.01; Figure 85) mRNA levels tended to increase by RS-LPS and the 

combination with PA although these differences did not reach significance due to 

variability. 

 

 

 

 

 

 

 

 

 

 



Results 

140 
 

 

 

Figure 84. NFKBIA mRNA levels in astrocyte primary cultures from 2 days old male and female Wistar rats. 

Ct: control; h: hours; PA: Palmitic acid; LPS-RS: Lipopolysaccharide from the photosynthetic bacterium 

Rhodobacter sphaeroides. mM: mili Molar. N=4 cultures with at least, 3 experimental groups in each one. 

Figure 85. IKBKB mRNA levels in astrocyte primary cultures from 2 days old male and female Wistar rats. 

Ct: control; h: hours; PA: Palmitic acid; LPS-RS: Lipopolysaccharide from the photosynthetic bacterium 

Rhodobacter sphaeroides. mM: mili Molar. ANOVA (F (9, 29) = 2.5, p<0.05). N=4 cultures with at least, 3 

experimental groups in each one. 
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3.5 Intracellular signaling in astrocytes in response to PA 

Astrocyte lysates were processed after PA 0.1mM exposure to detect possible 

changes in the following phosphoproteins: cAMP response element-binding protein 

(CREB), c-Jun N-terminal kinase (JNK), nuclear factor kappa-light-chain-enhancer of 

activated B cells (NF-κB), P38 mitrogen activated protein kinase (p38), extracellular  

signaling-regulated kinases 1 (ERK1) and 2 (ERK2), protein kinase B (Akt), the 70kDa 

ribosomal S6 kinase (p70S6K), STAT3 and signal transducer and activator of 

transcription 5 (STAT5). 

Table 22 encompasses the mean fluorescent intensity of the cited 

phosphoproteins corrected by their corresponding total proteins. 

  Males Females 
  Ct 15 min  PA 15 min Ct 15 min  PA 15 min 

p-CREB 100 ± 0 66.6 ± 23.9 79.7 ± 24.6 43.1 ± 17 

p-JNK 100 ± 0 109.2 ± 50.6 82.5 ± 29.1 113.5 ± 68.6 

p-NF-κB 100 ± 0 138.8 ± 41.2 166 ± 105.9 351.3 ± 236.9 

p-P38 100 ± 0 88.7 ± 24.9 99.6 ± 49 158.7 ± 115.7 

p-AKT 100 ± 0 91.3 ± 21.4 99.4 ± 24.7 123.2 ± 50.6  

p-ERK 100 ± 0 99.1 ± 3.1 96.2 ± 0.9 97.7 ± 2.1 

p-P70s6k 100 ± 0 111.6 ± 43 83.4 ± 26 146.6 ± 44.1 

p-STAT3 100 ± 0 105.3 ± 42.5 88.4 ± 38.3 132.1 ± 64.3 

p-STAT5 100 ± 0 145.5 ± 15.4a 125.9 ± 31.6 159.4 ± 71.2 

 

Table 22. Mean fluorescent intensity of CREB, JNK, (NF-κB), p38, ERK2, Akt, p70
S6K

, STAT3 STAT5 in 

primary astrocyte cultures after 15 minutes with PA incubation. 
a 

different from control group of the same 

sex by T-test, p<0.05. Ct: control group; PA: Palmitic acid group. N= 3. 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

VI. DISCUSSION 

 

 

 

 



 



Discussion 

143 
 

Obesity and its associated comorbidities continue to be one of the major 

public health concerns in developing countries, without signs of a decrease in this 

epidemic. We now know that becoming overweight or obese is not only the result of 

poor nutrition and/or the lack of physical activity, but also that early nutritional 

perturbations can have long-term consequences on metabolism. The experimental 

model employed here, neonatal overnutrition, is known to cause abnormal 

metabolic responses and obesity in adulthood (Godfrey and Barker, 2000; Stettler et al., 

2002; Viner and Cole, 2006; Barker, 2007; Gluckman et al., 2007; Freedman et al., 2009; 

Reynolds et al., 2015a). In addition, although not thoroughly studied, males and 

females have been previously reported to respond differently to this and other early 

nutritional alterations (Fuente-Martin et al., 2012c; Reynolds et al., 2015a). The studies 

reported here indicate that early postnatal weight gain as a consequence of being 

raised in a small litter not only causes alterations in diverse metabolic parameters, 

but that many of these alterations are both age and sex dependent. 

In rodents, the long-term disruption of energy homeostasis induced by 

overfeeding during critical periods of development has been shown to be at least 

partially due to effects on metabolic neurocircuit formation (Plagemann et al., 1999b; 

Fuente-Martin et al., 2012c; Vogt et al., 2014; Collden et al., 2015). Here we show that 

being raised in a small litter, which results in increased food intake during this early 

age due to increased maternal milk availability (Fiorotto et al., 1991; Fink et al., 2001), 

resulted in increased body weight, body length and fat mass, as well as elevated 

serum glucose, insulin, leptin and adiponectin levels during the period of nursing in 

rats of both sexes. Some of the changes could be involved in the modifications in 

neurocircuit formation. Importantly, increased weight gain during this critical period 

was not only associated with systemic metabolic alterations, but also with 

hypothalamic changes, with both metabolic and central changes being different 

between males and females. 
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1. Effects of neonatal overnutrition on food intake, body weight and body 

length throughout development 

In rodents, the neonatal period is the most sensitive developmental stage 

with regards to hormonal programming of the brain, with hormonal fluctuations 

during this period having an impact in the adult brain (Sun et al., 2012; Vogt et al., 2014). 

The increased availability and intake of milk (Fiorotto et al., 1991; Cunha et al., 2009) is 

most likely a direct cause of the increased body weight gain of pups raised in small 

litters, but it is the resulting hormonal and metabolic changes that induce the long-

term effects.  

We found that pups raised in small litters showed increased body weight, 

length, SCAT and glycemia, as well as hyperinsulinemia and hyperleptinemia, as early 

as PND10. These early modifications in L4 pups are most likely due to the increased 

energy intake during nursing as described above, but could also be influenced by 

changes in maternal nurturing (Connor et al., 2012; Reynolds et al., 2014; Segovia et al., 

2014). Even after weaning, when all rats had ad libitum access to a chow diet, L4 rats 

of both sexes continued to eat more than L12 rats, but only until approximately 

PND50, suggesting that at this point in the study their higher energy intake is not 

due to more food availability, but probably to having an increased appetite. An 

increase in food intake in adult rats previously exposed to early overnutrition has 

been reported by some authors (Rodrigues et al., 2011; Fuente-Martin et al., 2012b; 

Collden et al., 2015), while other studies report no effect (Stefanidis and Spencer, 2012; 

Bei et al., 2015). These discrepancies could be due to differences in the age at which 

the animals were studied, as here we found that this effect changed throughout 

postnatal development. In addition, even before pubertal onset, males ate more 

than females, with L4 males already being heavier than L4 females, indicating that 

even before the influence of post-pubertal gonadal steroids there are differences 

between the sexes. These early difference could be at least partially due to the 

neonatal peak of testosterone in males that could affect the neuronal circuits 

involved in food intake regulation. 
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The effect of litter size on food intake was present until approximately PND50 

and then waned until later adulthood, when L4 males again began to eat more than 

control males. In association with this, during adolescence and early adulthood, the 

effects of litter size on body weight and metabolic hormone levels also disappeared. 

This observation is in accordance with several studies showing that some of the 

changes produced in the early ages, are normalized when the animal reaches young 

adulthood (Vickers et al., 2005; Glavas et al., 2010; Stefanidis and Spencer, 2012). As many 

hormonal and metabolic changes occur during puberty, it is possible that the early 

neonatal effects are masked or modified during this period.  

Despite the attenuation of some of these outcomes in young adult rats, the 

effect of early overnutrition on body weight reappeared in later adulthood, but in a 

sexually dimorphic manner, as it was only present in males. Litter size effects on 

body weight and leptin levels have been previously shown to vary with age in male 

rats, being present early in development and disappearing at 11 weeks of age 

(Velkoska et al., 2005), while Wiedmer and colleagues (Wiedmer et al., 2002) reported 

that male rats from small litters weighed more than those from large litters from 2 

to 5 weeks of age and then again from 10 to 12 weeks of age.  Metabolism is known 

to change with age (Aasum et al., 2003), with an animal or individual becoming more 

susceptible to body weight gain and fat accumulation as they become older (Han et 

al., 2013). This can occur although energy intake is not increased, as there is an age 

dependent decrease in energy expenditure (Han et al., 2011). Thus, it is possible that 

neonatal overnutrition advances the physiological aging of metabolism, with males 

being more susceptible to this process. Moreover, some of the intracellular 

mechanisms involved in aging are identical to those activated in obesity associated 

complications (Tang et al., 2015). For instance, low-grade hypothalamic inflammation 

can be triggered by both obesity (De Souza et al., 2005; Zhang et al., 2008; Purkayastha et 

al., 2011; Cai, 2013) and aging (Tang and Cai, 2013; Zhang et al., 2013). Several studies have 

reported that inflammation in the hypothalamus induces the development of 

systemic aging (Purkayastha and Cai, 2013; Tang and Cai, 2013; Zhang et al., 2013). 

Likewise, ER stress is also linked to both overnutrition (Zhang et al., 2008; Ozcan et al., 
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2009) and aging (Greenamyre and Hastings, 2004; Katayama et al., 2004; Wootz et al., 2004). 

This inflammation in the hypothalamus also involves glial cells, including astrocytes 

that can produce cytokines, as well as diverse factors such as transforming growth 

factor beta (TGF-β) in response to obesity or aging conditions. This process can lead 

to loss of function of IκBα and consequently, activation of NF-κB (Yan et al., 2014). 

Here not only did L4 males begin to gain more weight as adults, but they also 

demonstrated signs of hypothalamic inflammation as TNFα levels were increased. 

Neither of these processes were observed in females at PND150, but this does not 

negate the fact that they might occur at an older age. 

At PND90, when an increase in body weight was again found in L4 males, 

there was no difference in food intake. This suggests that the metabolic efficiency of 

the neonatally over-nourished rats may begin to be affected at this time, at least in 

males. This is in agreement with a report by Stefanidis and Spencer indicating that 

there is metabolic compensation by these rats in attempt to restore a normal body 

weight, but this compensation is different between the sexes (Stefanidis and Spencer, 

2012). Around PND119, food intake again began to be higher in males from small 

litters compared to their controls. During the following weeks there are variations in 

food intake in the neonatally over-nourished rats compared to their controls and this 

could indicate that these animals are continuously trying to readjust their body 

weight/food intake. In addition to increased food intake, a decrease in energy 

expenditure, especially as they get older, could also contribute to body weight gain, 

but this was not analyzed here. 

2. Effects of neonatal overnutrition on circulating parameters throughout 

development: hormones and cytokines 

The long-term effects of being raised in a small litter could be due to 

modification of the postnatal leptin surge as a result of neonatal overfeeding. Leptin 

is a key signal in determining the development of hypothalamic neuronal circuits 

involved in feeding behavior (Bouret et al., 2004a; Bouret and Simerly, 2007; Bouret, 2013). 

Although in the rodent most neurons are born prenatally, the outgrowth of their 
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projections occurs after birth (Ishii and Bouret, 2012). Hence, changes in leptin levels in 

perinatal life can impact on the development of hypothalamic “wiring” and result in 

lifelong metabolic deregulation (Bouret et al., 2008). Some long-term effects of 

changes in neonatal leptin levels have been shown to become manifest only later in 

adulthood (Granado et al., 2011; Granado et al., 2014); here we found long-term effects 

until approximately PND50, which disappear to reappear again in later adulthood. In 

the studies by Granado et al., leptin levels were directly modified; here other factors 

such as insulin levels in addition to leptin were indirectly modified. This, as well as 

the temporal differences in these hormonal changes, could underlie the differential 

outcomes of our studies. Variations in neonatal leptin concentrations can also 

modify leptin receptors expression in the hypothalamus, possibly modifying 

feedback mechanisms of this hormone. Rodrigues et al reported higher leptin levels 

at PND21 as a consequence of neonatal overnutrition; but they show no change in 

leptin receptor protein levels at PND21 or PND180 (Rodrigues et al., 2009). However, 

Toste et al showed a decrease in leptin receptor levels in the adult hypothalamus 

after leptin treatment during lactation (Toste et al., 2006), We observed that 

neonatally overfed male and female adults presented higher intensity of leptin 

receptor immunoreactivity specifically over GFAP-positive cells, this is in accordance 

with (Hsuchou et al., 2009), who showed that diet-induced obesity increases astrocytic 

leptin receptor expression.  

A change in neonatal leptin levels could also have direct effects on adipose 

tissue development and adipocyte functions, which could modify their ability to 

produce metabolic cytokines (Harris et al., 1998). Leptin expression in adipose tissue 

was increased at PND10 and PND21 in L4 rats of both sexes, a similar effect  has 

been previously observed in lambs whose mothers where overfed in late gestation 

(Muhlhausler et al., 2007). Thus, the higher circulating leptin levels at this age are most 

likely due to the rise in fat mass, as well as increased relative leptin production per 

gram of adipose tissue. These results suggest that leptin could indeed play a role in 

the observed long-term effects on metabolism by inducing permanent changes in 



Discussion 

148 
 

the hypothalamic feeding circuits during this sensitive period of development and 

possibly in adipose tissue development, although this remains to be demonstrated.  

Perinatal insulin levels are also implicated in hypothalamic maturation, as this 

hormone affects the development of projections of the main metabolic neuronal 

populations (Plagemann et al., 1999a; Konner et al., 2009; Vogt et al., 2014), with aberrant 

development due to changes in insulin levels disrupting glucose homeostasis and 

possibly leading to obesity and metabolic disorders such as T2D (Vogt et al., 2014). 

Here, glycemia and circulating insulin levels were higher in prepubertal L4 rats 

compared to L12 rats of both sexes. These results are in accordance with several 

studies that have reported elevated insulin levels in neonatally over-nourished 

rodents (Boullu-Ciocca et al., 2005; Pereira et al., 2006). Therefore, this perinatal 

hyperinsulinemia could also participate in the development of metabolic alterations 

seen in the adult. Moreover, at PND 10 insulin levels in L4 males were higher than in 

L4 females, which could possibly contribute to the sex differences observed in the 

long-term outcomes of this experimental manipulation.  

At PND 10, adiponectin levels were elevated in L4 male and female rats, with 

this elevation remaining at weaning in females. The effect of adiponectin on 

hypothalamic metabolic circuit development remains unknown; however, this 

adipokine is positively correlated with leptin levels and adiposity in cord blood and is 

suggested to play a role in early growth (Kotani et al., 2004; Tsai et al., 2004; Ballesteros 

et al., 2011). Moreover, adiponectin receptors are expressed in the embryonic mouse 

brain (Zhou et al., 2005). Although adiponectin is implicated in glucose metabolism, 

with high adiponectin levels acting to increase insulin sensitivity and, on the 

contrary, decreased adiponectin levels associated with a higher risk of developing 

insulin resistance (Yamauchi et al., 2001), there is little evidence linking adiponectin 

with insulin sensitivity in neonates (Kotani et al., 2004; Meral et al., 2011). Thus, it is 

possible that during early life, adiponectin has a different physiological role; indeed, 

PND10 and PND21 pups from L4 litters had higher adiponectin levels despite having 

higher insulin and HOMA index than their control litter mates. Supporting these 

observations, neonates are reported to have higher adiponectin levels at birth and in 
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contrast to adults, adiponectin levels in neonates are positively correlated with birth 

weight (Kotani et al., 2004; El-Mazary et al., 2015). Hence, in neonatal overnutrition, 

insulin and adiponectin, two metabolic hormones involved in the control of glucose 

homeostasis in adulthood, are elevated in early ages and this could participate in 

development of the observed metabolic effects. Moreover, these hormones are 

increased in a sexually dimorphic manner and this could possibly contribute to the 

sex differences in the long-term metabolic outcomes.  

Obesity is reported to course with systemic inflammation (Gregor and 

Hotamisligil, 2011), but the increased weight gain due to neonatal overnutrition did 

not result in a rise in circulating cytokines at any age. Indeed, in adult animals levels 

of these cytokines were either very low or undetectable. This of course could be due 

to the fact that the increase in weight gain was not severe, at least in adults. 

However, during the neonatal and peripubertal periods, although there was 

approximately a 40% increase in body weight at PND10 and a 50% increase at PND21 

in both sexes, the cytokines measured either decreased or did not change. At 

PND10, TNF-α and IL-1β levels were actually lower in rats raised in small litters, with 

no significant change in IL-6 levels. One possibility is that the developing animal 

responds differently to this increase in weight gain, as discussed below.  

The decrease in circulating TNF-α and IL-1β were associated with a significant 

decline in the mRNA levels of IL-1β in SCAT of females at PND10, but not in males. It 

is possible that at this age circulating levels of these cytokines do not reflect their 

production by SCAT. On the contrary, there was no effect of neonatal overnutrition 

on circulating cytokine levels at PND21, but the mRNA levels of IL6 were increased in 

VAT and decreased in SCAT of both sexes. These opposite changes in the expression 

of IL-6 could result in a net result of no change in circulating levels. This interleukin 

has a dual role, as it can be either anti-inflammatory or pro-inflammatory depending 

on the basal situation, the type and/or duration of the stimuli and the tissue where it 

is exerting its actions, with the correlation between IL-6 and obesity and insulin 

resistance being controversial (Wallenius et al., 2002; Di Gregorio et al., 2004; Vida et al., 

2015). In this line, while IL-6 is reported to induce insulin resistance in adipocytes 
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(Rotter et al., 2003), IL-6 treatment improves insulin-stimulated glucose metabolism in 

humans and enhances glucose uptake and fatty acid oxidation in myotubes, in 

addition to exerting anti-inflammatory actions (Starkie et al., 2003; Carey et al., 2006). 

Although there was no effect of litter size on IL-6 levels at these early ages, there 

was an effect of sex, with males having higher IL-6 levels than females, which could 

also contribute to the metabolic differences observed between the sexes. 

At PND10, testosterone levels were higher in L4 males compared to L12 

males, with 17β-estradiol levels being unaffected by neonatal overnutrition. 

Therefore, the neonatal testosterone surge that occurs in males (Raisman and Field, 

1973) appears to be modified by early overnutrition and this could be involved in the 

sexually dimorphic long-term responses. Indeed, the early sex steroid environment is 

important for the correct development of the hypothalamus (Lenz and McCarthy, 

2010), and modifications in androgen levels during early development have been 

shown to modify later metabolism (Nohara et al., 2013a; Nohara et al., 2013b; Ongaro et 

al., 2015). Hence, during neonatal overnutrition there are early changes in the 

hormonal environment, including leptin, insulin, adiponectin and testosterone that 

could influence the normal development of hypothalamic feeding circuits, as well as 

adipose tissue development and, thereby condition the metabolic status later in life.  

During the adolescent and young adult stages (PND30, 50 and 85), few effects 

of neonatal overnutrition were found. However, as mentioned above, in older adults 

(PND150) males were again found to be affected, although females were not. Not 

only was weight increased, but these rats were also hyperleptinemic, as reported in 

other studies (Fuente-Martin et al., 2012b; Stefanidis and Spencer, 2012; Ye et al., 2012). 

Circulating adiponectin levels were unaffected, which is in accordance with other 

studies analyzing neonatally overnourished male rats of 120 (Velkoska et al., 2005) and 

180 days of age (Rodrigues et al., 2011). In contrast, Boullu-Ciocca et al. reported 

hypoadiponectinemia in over-nourished male rats at PND150 (Boullu-Ciocca et al., 

2008). However, there was an interaction between sex and litter size on adiponectin 

levels, which tended to be higher in L4 males compared to their controls, with the 

inverse occurring in females. Adult females had higher adiponectin levels than males 
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and this could be associated with the lower insulin levels in females, as adiponectin 

acts as an anti-diabetic hormone. 

Triglyceride levels were also elevated in PND150 male rats, in association with 

the increased body weight. This is consistent with a study by Cai  and coworkers in 

which higher levels of triglycerides were found in males from small litters, in addition 

to being more elevated than in females (Cai et al., 2014). In contrast, no significant 

change or sex differences were found in circulating NEFA levels. Together these 

results suggest that male rats are more susceptible than females to the long-term 

metabolic effects of neonatal overnutrition. 

3. Effects of neonatal overnutrition on adipose tissue throughout 

development: amount, distribution and cytokine gene expression  

Many studies have established that WAT distribution in adult humans and 

animals is different between the sexes (Power and Schulkin, 2008; Fuente-Martin et al., 

2013a). Men are prone to accumulate central visceral fat, whereas women store 

peripheral or SCAT (Kotani et al., 1994; Demerath et al., 2007). However, less is known 

regarding fat distribution and its possible implications in the prepubertal period. In 

our experimental model, there was a very rapid increase in SCAT as a consequence 

of increased food intake during the neonatal period. Moreover, this increase in SCAT 

was sexually dimorphic even before puberty, with overnourished females having a 

greater increase in SCAT than males from the same litter size. The same pattern was 

observed at weaning, but at this age, both female groups had a greater percentage 

of SCAT than both male groups. These differences in SCAT continued at PND30 with 

litter size continuing to increase the amount of SCAT at PNDs 50 and 85. However, at 

PNDs 85 and 150, the sex differences are inverted, with males having more SCAT 

than females, which suggest a possible influence of post-pubertal gonadal steroids. 

Visceral adipose tissue was also increased by neonatal overnutrition at 

PND21, but in this case L4 males accumulated more VAT than L4 females. Although 

the effect of litter size did not persist at PND30, males continued to accumulate 

more VAT than females. SCAT and VAT differences between over-nourished and 
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control rats dissipated in the young adult rat, being coincident with the loss of effect 

of neonatal overnutrition on food intake, body weight and body length. At the end of 

the study, males tended to have higher amounts of both SCAT and VAT than females 

without reaching significant differences, most likely due to high variability among the 

experimental groups and the method used. A more refined method, such as MRI, 

would be more suitable to detect these changes (Johnson et al., 2008). 

Therefore, even before the pubertal rise in gonadal steroids, clear sex 

differences exist regarding adipose tissue distribution and accumulation in response 

to overnutrition. Excess VAT accumulation is a source of proinflammatory cytokines, 

which contribute to the development of insulin resistance, type 2 diabetes and 

cardiovascular diseases (Carey et al., 1997; Weiss, 2007b; Macotela et al., 2009; Shulman, 

2014). In contrast, SCAT has been associated with beneficial metabolic effects, such 

as lower cardiovascular and diabetes mortality and protecting against impaired 

glucose metabolism (Van Pelt et al., 2002; Tran et al., 2008; Manolopoulos et al., 2010), 

with the greater accumulation of SCAT possibly protecting females from some of the 

negative consequences of obesity. Hence, as the amount and distribution of adipose 

tissue differs significantly between males and females during the early postnatal 

period, this could contribute to the earlier development of metabolic complications 

in males. This is consistent with the fact that at PND10 and PND21 males had a 

greater increase in circulating insulin levels, which could be associated to the 

increased amount of VAT and cytokine production by VAT (discussed below), which 

is related to insulin resistance (Hotamisligil et al., 1993; Uysal et al., 1997; Bastard et al., 

2002; Jager et al., 2007; Nov et al., 2010). Therefore, even before sex steroids rise, there 

is a sexual dimorphic response to overnutrition in adipose tissue distribution.  

The early increase in fat mass in L4 pups was also directly related with 

elevated leptin mRNA levels in adipose tissue and circulating leptin concentrations. 

At PND21, L4 males had higher leptin expression in SCAT than L12 males, an effect 

that was not significant in females. At this age, VAT expression of leptin was higher 

in L4 than L12 pups of both sexes. In adulthood (PND85 and 150) males, expressed 

more leptin mRNA levels than females in SCAT and VAT, regardless of litter size as 
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previously shown by others in humans and rodents (Montague et al., 1997; Shen et al., 

2009b). These increases in leptin expression in adipose tissue correlated with 

circulating leptin levels.  

In normal adults, adiponectin expression in adipose tissue is inversely 

correlated with the amount of fat mass (Kern et al., 2003). In contrast, during the 

neonatal period when fat mass was greater in L4 rats, we found circulating 

adiponectin levels to also be higher. This was coincident with significantly increased 

expression of adiponectin in adipose tissue in L4 males, with the same trend 

occurring in females. In adult rats, although there was no effect of neonatal 

overnutrition on circulating adiponectin levels, there was an overall increase in the 

expression levels in SCAT at PND150 and in VAT at PND85 and PND150 in males, 

whereas circulating adiponectin levels were higher in females. How this change in 

cytokine production affects overall metabolism cannot be determined from the 

studies presented here, but it is of interest that apparent rise in production is found 

when effects on bodyweight have begun to reappear in males and males had higher 

adiponectin mRNA levels than females in both adipose depots. These differences 

could be attributed to the greater affectation of metabolic control in males, with the 

increased expression of adiponectin in males being a protective response.   

Obesity and the accumulation of white adipose tissue particularly, VAT, are 

often accompanied by a chronic low-grade inflammatory state (Gregor and 

Hotamisligil, 2011). At PND10, although there was a significant increase in SCAT in the 

over-nourished rats, cytokine mRNA levels were not increased. One possibility is that 

the organism must be exposed to the inflammatory-inducing factors associated with 

increased weight gain for a more extended period of time. In addition, adipose tissue 

is still developing in these animals and the characteristics of developing adipose 

tissue differ from mature adipose tissue (Rosen and Spiegelman, 2014). At this young 

age, the increase in fat mass could be due to hyperplasia (formation of new 

adipocytes) more than to hypertrophy (increase in adipocyte size) of the existing 

adipocytes. The two mechanisms of adipose tissue growth, hyperplasia and 

hypertrophy, have different outcomes; whereas hyperplasia is characterized by an 
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increase in adipocyte number by infiltration and proliferation of new and small 

preadipocytes, which have a higher fat storage capacity and are more sensitive to 

insulin; hypertrophy of adipose tissue implies that the volume of the adipocyte 

increases, which is associated with higher metabolic risk (Weisberg et al., 2003; 

Lundgren et al., 2007). Therefore, the observed decrease in expression of IL-1β and IL-6 

in SCAT at PND21, as well as in IL-1β at PND10 in females SCAT, could possibly be 

associated with adipose tissue expansion due to proliferation more than 

hypertrophy of the existing adipocytes, although this observation requires further 

investigation. Indeed, as adipocytes differentiate, their expression of cytokines 

changes, with for example, only mature adipocytes producing leptin (Rosen and 

Spiegelman, 2014). Hence, the early changes in adipokine expression could be 

representative of modifications in adipocyte proliferation and maturation in 

response to early over-nutrition. 

In contrast, at PND21, over-nourished rats had higher expression of IL-6 in 

VAT. This observation does not necessarily indicate inflammation, as it is possible 

that the initial response to nutrient and energy excess in VAT is to produce this 

cytokine as an acute anti-inflammatory response in an attempt to fight against the 

excessive nutritional insult. IL-6 has been shown to have inhibitory actions on TNF-α 

and IL-1β through activation of interleukin-1 receptor antagonist (IL-1ra) (Tilg et al., 

1994). Although this anti-inflammatory effect has been more thoroughly studied in 

response to the IL6 increase after exercise (Starkie et al., 2003), it is possible that this 

mechanism could participate in other situations such as early overnutrition. 

However, if weight gain becomes chronic, this cytokine could contribute to the 

pathophysiological inflammatory process in obesity (Rotter et al., 2003).  

In adults, cytokine expression in SCAT was undetectable, indicating the lack of 

inflammatory processes in this tissue.  The only indication of inflammation in VAT 

was the increased expression of TNF-α in L4 males, which is coincident with the 

increase in bodyweight in these animals. Males raised in small litters are reported to 

have increased content of IL-6 mRNA in mesenteric adipose tissue at 150 days of age 

(Boullu-Ciocca et al., 2008), although the expression of this cytokine was undetectable 
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in the two adipose depots studied here. As different functions and implications on 

health are associated with the different types of adipose tissue, this cytokine may 

also have different roles in each type of adipose tissue. In this line, it has been 

reported that omental adipose tissue release 2-3 times more IL6 than subcutaneous 

abdominal adipose tissue (Fried et al., 1998). Visceral adipose tissue is directly related 

with secondary complications of obesity and this may be the first site that responds 

to the excess of calories, secreting IL-6 at first as an anti-inflammatory signal, as 

explained above. It is also possible that this rise in IL6 represents a signal that is 

already associated with the induction of insulin resistance, as previously reported 

(Rotter et al., 2003). These changes did not occur in SCAT, which is not as tightly 

associated with obesity secondary complications. 

 Increased TNF-α is reported to be directly related to metabolic syndrome and 

impairment of insulin signaling (Hotamisligil et al., 1993). However, although L4 males 

had increased expression of TNF-α in VAT at PND150, no change in their HOMA 

index suggests that systemic insulin resistance is not present. Circulating levels of 

this cytokine were below the level of detection of the assay employed, thus other 

tissues might not be affected. Moreover, it is suggested that TNF-α does not induce 

insulin resistance when IL6 is down regulated in adipose tissue (Sultan et al., 2009), 

and here IL-6 expression was undetectable in VAT. High circulating leptin levels also 

contribute to maintain the chronic inflammatory state (Paz-Filho et al., 2012) and at 

the same time, pro-inflammatory cytokines induce the increase in circulating leptin 

levels and its expression in adipose tissue (Grunfeld et al., 1996; Faggioni et al., 1998). 

Thus, together these results could indicate that these male rats are beginning to 

exhibit signs of further metabolic impairment. Moreover, leptin has differential 

effects on male and female adipocytes (Guo et al., 2009) and this could also contribute 

to the sex differences observed. 
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4. The neonatal sex steroid environment influences the long-term 

responses to neonatal overnutrition 

Adult males and females are known to respond differently to some metabolic 

challenges, including being raised in a small or large litter (Fuente-Martin et al., 2012c; 

Sanchez-Garrido et al., 2014; Sanchez-Garrido et al., 2015),and this is at least partially due 

to post-pubertal differences in sex steroids (Castellano et al., 2011; Sanchez-Garrido et 

al., 2013). As males and females responded differently to neonatal overnutrition even 

prepubertally, we hypothesized that these differences could be due, at least in part, 

to sex differences in the neonatal hormonal milieu. It is possible that the neonatal 

testosterone surge that occurs in males (Miyachi et al., 1973) could be involved, not 

only in the differential response to overnutrition during the neonatal period, but also 

in the sex differences in long-term metabolic outcomes. Administration of 

testosterone to neonatal females has been classically used as an experimental model 

to study the mechanisms underlying sex differences in the brain (Raisman and Field, 

1973). This model has also been employed to analyze the long-term effects of 

increased neonatal androgen levels on the female reproductive axis and the 

development of polycystic ovary syndrome (Dunlap et al., 1972; Gellert et al., 1977; 

Goomer et al., 1977; Ongaro et al., 2015), and more recently on metabolic abnormalities 

(Nohara et al., 2013c; Mauvais-Jarvis, 2014; Ongaro et al., 2015).  

Testosterone levels remained elevated at PND10 in females that had received 

an injection of this sex steroid on PND1, and this was associated with the loss of 

some early sex differences. For example, the higher levels of adiponectin seen at 

PND10 in females compared to males in the neonatal overnutrition experiment were 

reduced by androgenization of females, such that they were no longer different from 

males. This could be due to the direct inhibitory effect of testosterone on 

adiponectin synthesis (Xu et al., 2005; Capllonch-Amer et al., 2014). Likewise, the lower 

levels of IL-6 in PND10 females were increased in androgenized females and were no 

longer different from males. This could be due to androgen effects on adipocyte 

differentiation, which can affect their expression of cytokines (Chazenbalk et al., 2013; 

O'Reilly et al., 2014). However, neonatal androgenization exacerbated the sex 
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difference in subcutaneous fat mass observed at PND10. This observation is of 

interest as studies have indicated that the number of X chromosomes determines 

adiposity (Chen et al., 2012) and the results obtained here suggest that this might also 

affect the response to early sex steroid levels. Indeed, hyperandrogenism in 

polycystic ovarian syndrome (PCOS) is associated with increased abdominal fat in 

women (Dunaif, 1997). Thus, some of the sex differences seen at PND10 could be at 

least partially due to sex differences in testosterone levels at this early age. 

Furthermore, testosterone levels were increased in over-nourished PND10 males 

compared to their controls. This rise in sex steroid levels could play a role in the 

development of long-term metabolic effects in over-nourished males and contribute 

to the sexually dimorphic outcomes of this experimental manipulation. 

Adult levels of testosterone and estradiol were unaffected in females that had 

received testosterone neonatal treatment. However, there were long-term changes 

in metabolic parameters in response to neonatal androgenization, as previously 

reported in other studies (Perello et al., 2003; Ongaro et al., 2013). Although body 

weight and glycemia were slightly increased at PND90 in androgenized females, the 

most drastic effects were observed on circulating leptin and IL1β levels, which rose 

above normal female values. The rise in serum leptin correlated with increased 

expression of this adipokine in VAT, while the sexual dimorphism in visceral adipose 

expression of IL6 and TNFα was not affected by neonatal testosterone. Thus, the 

neonatal rise in testosterone in males could play a role in the development of sexual 

dimorphisms in adipose tissue function. However, the fact that the production of 

some adipokines was actually increased above the levels found in both males and 

females suggests that female rats exposed to increased levels of testosterone, at 

least at this period of development, are prone to develop metabolic pathologies. 

Indeed, neonatal androgenization of females is associated with metabolic 

dysfunctions and PCOS development in the adult (Roland et al., 2010; Nohara et al., 

2013c; Mauvais-Jarvis, 2014). 

The factors involved in the sex differences observed in the long-term 

responses to neonatal overnutrition could thus include differential changes in 
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testosterone and some metabolic factors such as insulin. These changes could affect 

the development of central metabolic circuits, as previously shown (Mauvais-Jarvis, 

2014; Vogt et al., 2014), as well as that of other metabolic tissues such as adipose 

tissue. These developmental modifications would then also interact with the 

differential hormonal environment found in post-pubertal animals. For example, 

higher estrogen levels in post-pubertal females would have protective effects 

through inhibition of food intake and increasing energy expenditure (Palmer and Gray, 

1986; Musatov et al., 2007; Xu et al., 2011) and it is possible that this could reduce or 

delay the long-term effects of rapid neonatal weight gain. Estrogens also modulate 

adipose tissue deposition and function, favoring lipid accumulation in the 

subcutaneous depot in women and visceral fat deposition in men. Indeed, direct 

administration of estrogens to the CNS was shown to drastically reduce visceral 

adiposity (Adler et al., 2012) and increase thermogenesis (Martínez de Morentin et al., 

2014). Thus, another factor involved in the sexual dimorphic responses could be the 

differences found with regards to the amount, distribution and function of adipose 

tissue between the sexes from very early ages, as previously discussed, and the later 

interaction of this adipose tissue with the adult sex steroid environment. 

5. Central response to neonatal overnutrition in males and females 

Neonatal overnutrition has been previously reported to modify the levels of 

hypothalamic neuropeptides in the adult (Davidowa et al., 2003; Velkoska et al., 2005; 

Bouret et al., 2007; Chen et al., 2009). Here we analyzed the association between the 

rapid early weight gain due to neonatal overnutrition and the hypothalamic changes 

regarding inflammatory markers specifically, in glial cells. 

 

Astrocytes in neuroendocrine control 

Astrocytes participate in the regulation of the neuroendocrine functions 

including reproduction, osmotic control and energy homeostasis (Tweedle and Hatton, 

1977; Garcia-Segura et al., 1996b; Garcia-Caceres et al., 2012). Although astrocytes have 

also been shown to participate in the neuroendocrine control of metabolism 
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(Cheunsuang and Morris, 2005; Horvath et al., 2010; Garcia-Caceres et al., 2011; Yi et al., 2011; 

Fuente-Martin et al., 2012a), much is yet to be learned , including whether astrocytes 

participate in the long-term metabolic effects of neonatal nutritional or hormonal 

changes.  

Hypothalamic development in rodents takes place mainly during the 

postnatal period (Markakis, 2002; Bouret, 2013; Alvarez-Bolado et al., 2015), with 

astrogenesis occurring primarily during the second and third postnatal weeks 

(Bandeira et al., 2009; Freeman, 2010). Therefore, changes in the hormonal 

environment, such as in leptin, glucocorticoids, insulin, sex steroids or in other 

factors known to influence the development of this brain area (Bouret, 2010b; 2013), 

occurring during this period could affect not only neuronal, but also astrocyte 

development. Moreover, astrocytes are essential for neuronal proliferation, 

maturation, synaptic connectivity and homeostasis maintenance in the extracellular 

space (Chowen et al., 1996; Fields and Stevens-Graham, 2002), which indicates that any 

modification in these glial cells could impact on neuronal development and function, 

including the regulation of energy homeostasis and overall metabolism. 

5.1 Effects of neonaltal overnutrition on astrocytes  

In the hypothalamus of adult male rats that had been exposed to neonatal 

overnutrition, GFAP levels are increased and this is associated with an increase in the 

number of GFAP-positive astrocytes and structural changes in these glial cells (Garcia-

Caceres et al., 2011; Fuente-Martin et al., 2012a). One possibility is that this increase in 

the number of hypothalamic astrocytes is due to developmental influences. The 

neonatal leptin surge that normally occurs between postnatal days 5 and 13 

promotes not only promotes neuronal outgrowth and maturation, but also 

astrogenesis (Ahima et al., 1998; Bandeira et al., 2009; Rottkamp et al., 2015) and astrocyte 

development (Udagawa et al., 2006; Fisette and Alquier, 2015). Moreover, Wang et al 

recently showed that leptin receptor ablation in GFAP-positive astrocytes of 

embryonic mice reduces leptin-induced STAT3 activation in the hypothalamus and 

make these mice more vulnerable to diet-induced obesity (Wang et al., 2015), 
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indicating a key role of leptin signaling in astrocytes in the organization of 

hypothalamic neurocircuits. Thus, it is coherent to hypothesize that the rise in 

circulating leptin levels induced at PND10 by neonatal overnutrition could modulate 

astrocyte development. However, at this early age, GFAP protein levels in the 

hypothalamus were not modified in L4 pups despite having increased leptin levels. 

This does not necessarily indicate that there is no change in astrocyte development 

or even the number of astrocytes at this age. We have to take into consideration 

that GFAP protein levels were analyzed in the whole hypothalamus and not in 

specific hypothalamic areas directly involved in food intake regulation. Of note, 

immature astrocytes and radial glia mainly express vimentin early in development; 

whereas GFAP is more highely expressed in differentiated astroglial cells(Bignami and 

Dahl, 1995; Gomes et al., 1999). Moreover, during CNS development, GFAP can label 

radial glial, which give rise to neurons, astrocytes and oligodendrocytes. Thus, it is 

possible that at this early age, GFAP levels also reflect other cell types. Under normal 

circumstances GFAP levels increase with age (Nichols et al., 1993) and it is possible that 

at this early age, when the astrocyte population is being formed, a high percentage 

of astrocytes are GFAP negative (Sofroniew, 2009). Althgouh vimentin is expressed in 

immature astrocytes (Pixley and de Vellis, 1984; Bignami and Dahl, 1995), at PND10 

hypothalamic vimentin did not vary in L4 pups from control levels in males or 

females. However, at PND30 vimentin levels were lower in L4 pups of both sexes, 

suggesting overnutrition might accelerate astrocyte maturation. 

Further studies are necessary to determine if astrocyte 

proliferation/development is affected by this manipulation. However, it is of interest 

to note that the level of expression of the leptin receptor in hypothalamic astrocytes 

appears to be increased, as indicated by the double immunohistochemistry analysis 

reported here. These changes were found in the hypothalamus of both adult male 

and female rats that had experienced neonatal overnutrition. In contrast, although 

the number of GFAP positive cells in the hypothalamus of adult males that had 

experienced neonatal overnutrition was increased as previously reported (Fuente-

Martin et al., 2012a), this effect was not observed in females. Based on these results, 
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one might hypothesize that both the number and phenotype of the hypothalamic 

astrocytes are modulated by the early nutritional environment.  

Neonatal overnutrition did not affect hypothalamic levels of GFAP at any 

timpoint throughout development until PND150, when neonatally overnourished 

males had higher levels than control males. The changes in GFAP levels did not 

correlate with changes in bodyweight, as L4 males began to weigh more than their 

controls around PND90. Moreover, as stated above over-nourished animals of both 

sexes weighed more than their controls before weaning and GFAP levels were 

unaffected. Although it has been reported that activation of glial cells is not directly 

related to changes in body weight and that signals such as leptin are most likely 

involved (Gao et al., 2014), here changes in GFAP levels did not correlate with 

modifications in either body weight or serum leptin levels, at least in neonatal 

animals. Previously we have found hypothalamic GFAP levels to be modified in 

neonatally overnourished males at PND85-90, (Fuente-Martin et al., 2012a); however, 

in contrast to what we observed here the animals in the previous study were already 

hyperleptinemic at this earlier age. It is unclear why there was a delay in the 

development of hyperleptinema in the rats in the studies reported here, even 

though the rats had begun to weigh significantly more than their controls. However, 

it does appear that there is an influence of hyperleptinemia on the increase in 

hypothalamic GFAP levels, although other factors are most likely involved. 

Hypothalamic GFAP levels have been shown to increase in other models of 

obesity, such as in HFD-induced obese rats (Hsuchou et al., 2009). These obese animals 

are hyperleptinemic and leptin increases GFAP levels both in vivo and in vitro (Garcia-

Caceres et al., 2011), whereas low or null leptin levels are associated with decreased 

GFAP in spite of the animals presenting obesity (Ahima et al., 1999). Hyperleptinemia 

is reported to be associated with increased hypothalamic leptin levels (Hsuchou et al., 

2009). In our study, at PND150 neonatally overnourished male rats were 

hyperleptinemic, but the levels of leptin in the hypothalamus were not significantly 

increased, although there was a tendancy to do so. This could indicate a possible 

impairment of the leptin transport system in L4 males, which is suggested to occur 
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into become saturated in obese animals (Banks et al., 1999; Burguera et al., 2000). It is of 

interest to note that males had higher hypothalamic leptin levels than females, 

reflecting what occurs in serum. 

Circulating leptin increases in obese individuals and in response to fat rich 

diets (Argente et al., 1997; Hoffler et al., 2009), and obese subjects often develop leptin 

resistance which is thought to participate in further weight gain and secondary 

complications (El-Haschimi et al., 2000; Scarpace and Zhang, 2009). The increased 

resistance is reported to be partially due to decreased leptin transport into the brain 

(Caro et al., 1996; Schwartz et al., 1996) and/or decreased signaling in response to leptin 

(Van Heek et al., 1997).  At PND150, hypothalamic p-Stat3(Tyr705) levels were increased 

by neonatal overnutrition in both sexes with no changes in SOCS3 levels, an inhibitor 

of cytokine signaling including of the leptin signaling pathway; thus, we found no 

signs of central leptin resistance. This observation is in contrast to a study by 

Rodrigues et al where they found decreased pSTAT3 and an increase in SOCS3 

expression in the hypothalamus of neonatally overnourished rats (Rodrigues et al., 

2011). In the study by Rodrigues the rats also desplayed persistent hyperphagia, 

which also indicates central leptin resistance; however, the detected no 

hyperleptinemia in these 180 day old animals. The explanation for this is unclear. .  

At PND150, in our study the animals were also eating more, so it is possible that a 

failure in leptin signaling is beginning to appear although not detected here. Indeed, 

the age of the rats could be an important factor, since the animals in which central 

leptin resistance was found were 180 days old and it is possible that our animals 

would continue to develop further metabolic complications, including central leptin 

resistance. 

As mentioned above, we found an increase in the intensity of leptin receptor 

immunoreactivity over GFAP positive cells in hypothalamic astrocytes of male and 

female adult rats that were neonatally overfed. This increase in astrocytic leptin 

receptor expression was correlated with increased weight in both sexes, as the 

neonatally overnourished rats of both sexes weighed more at the timpoint used in 

this study.  This increased leptin receptor expression in adulthood could be the result 
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of developmental influences, or of signals related to the weight gain. The increase in 

leptin concentrations due to early overnutrition have been previously reported to 

modify the expression of the leptin receptor in the hypothalamus (Toste et al., 2006; 

Manuel-Apolinar et al., 2010). Thus, the observed hyperleptinemia at PND10 and 21 in 

both sexes could be responsible for the increase in leptin receptors in astrocytes in 

adulthood.  

The expression of leptin receptors in astrocytes increases in response to diet 

induced-obesity, at least in males (Hsuchou et al., 2009). The physiological role of 

leptin signaling in astrocytes was established by Kim et al (Kim et al., 2014a). In this 

study that the lack of the leptin receptor in adult GFAP-positive cells, was shown to 

blunt the anorectic effect of leptin and increase the response to ghrelin as well as 

the response to fasting when the animals were refeeding. In addition, leptin receptor 

ablation in GFAP cells modified astrocyte morphology, reduced glial coverage and 

altered synaptic inputs to AgRP and POMC neurons of the ARC.  

Together these data indicate that astrocytes are respond to early nutritional 

disturbances, possibly in a sexually dimorphic pattern, and that they could be 

involved in the long-term metabolic consequences. However, further investigation is 

required todetermine the different responses to metabolic challenges in male and 

female astrocytes. 

5.2 Hypothalamic inflammatory signals in response to neonatal 

overnutrition 

The hypothalamus is now known to be an important site of cytokine 

bioactivity within the CNS, as they appear to modulate appetite and energy 

homeostasis (Schobitz et al., 1993; Wong and Pinkney, 2004). Hypothalamic inflammation 

was first reported in obese rodents by De Souza and coworkers approximately 10 

years ago, when mice maintained on HFD were found to have an increase in the 

production of inflammatory cytokines and insulin resistance in the hypothalamus (De 

Souza et al., 2005). Inflammation within the hypothalamus in association with obesity 
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appears to occur as a consequence of a combination of factors, including the type of 

diet and the resulting changes in circulating nutrients and hormones. These factors 

can to lead to an inflammatory response disrupting metabolic, glucose and 

cardiovascular homeostasis (Cai and Liu, 2012). The inflammatory response of the 

hypothalamus to HFD-induced obesity can thus lead to decreased sensitivity to 

leptin and/or insulin and therefore have negative consequences on the regulation of 

food intake, triggering the development of secondary complications, such as type 2 

diabetes (Carvalheira et al., 2003). However, there is little information regarding the 

changes in cytokine levels in obesity that is not due to HFD, such as  increased 

weight gain as a result of early overnutrition, or in young animals. 

At PND10, hypothalamic IL-6 levels were increased by overnutrition in males, 

but not in females. This could indicate an increase in central production of this 

cytokine, or increased transport of IL-6 across the BBB (Banks et al., 1995), although no 

increase in serum levels was found.  The fact that this rise was only observed in 

males in response to overnutrition is of interest, as both sexes had increased weight 

gain and increased leptin levels. Androgenization of females resultsed in a rise in 

circulating IL6, and it is possible that the central differences in this cytokine are due 

to the sex steroid environment at this time. The increase of IL-6 at this early age 

could be related to the regulation of food intake (Wallenius et al., 2002; Flores et al., 

2006; Senaris et al., 2011), and not necessarily inflammatory processes.  

Hypothalamic inflammation during development in response to early 

overfeeding was studied in pups by Ziko et al., where they found a reduction in IL-1β 

expression in overfed pups at PND14 and suppression of TNFα in overfed pups at 

PND7 (Ziko et al., 2014), with no change in IL-6 expression at any of these early ages. 

This is similar to our observations, where we found no change in protein levels of IL-

1β or TNFα, and supports the hypothesis that hypothalamic inflammation does not 

occur in these young overweight animals. 

Peripheral and central IL-6 levels have been previously reported to be 

increased in adult male rats (8 weeks old) in response to neonatal overfeeding 
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(Stofkova et al., 2009; Tapia-González et al., 2011; Ziko et al., 2014) and we found an 

increase in the hypothalamus of males at PND50, although it did not reach signficance. 

The higher levels of central IL-6 were not associated with a change in body weight at 

this age and IL-6 could act as an anorectic signal to prevent overfeeding (Ropelle et al., 

2010). Indeed, in older animals that had increased food intake and were overweight, 

IL-6 levels in the hypothalamus were not increased.  

No differences in hypothalamic IL-1β or TNF-α levels were found at PND50, 

which was in accordance with Ziko et al. where no changes in these proinflammatory 

cytokines were found in the hypothalamus of neonatally overfed male adults at 

PND70 (Ziko et al., 2014). Here similar results are also shown in females. Levels of the 

proinflammatory cytokine IL-1β in the hippocampus are reported to be higher in 

males than in females (Bilbo and Tsang, 2010), but we found no differences between 

the sexes in the levels of hypothalamic IL-1β, IL6, or IL10. In contrast, TNFα levels 

were higher in males than in females, regardless of littersize. 

 Hypothalamic inflammation has been tightly associated with increased TNF-α 

levels and signaling (Thaler et al., 2012; Wang et al., 2012; Valdearcos et al., 2015). At 

PND150, hypothalamic TNF-α levels were only found to be increased in neonatally 

overnourished males, which was associated to increased body weight. This 

observation could indicate that these animals could develop hypothalamic insulin 

and/or leptin resistance, as observed in other studies (De Souza et al., 2005; Milanski et 

al., 2009; Posey et al., 2009; Thaler et al., 2013), although hypothalamic levels of p-

Stat3(Tyr705) were increased with no change in SOCS3. However, the techniques 

employed would not detect changes if only select cell populations become leptin or 

insulin resistant. The elevated hypothalamic TNFα levels could be related to the 

increase in GFAP protein levels and GFAP+ cell number in L4 males. Increased 

hypothalamic TNF-α levels in response to saturated fatty acids has been associated 

with activated microglia (Valdearcos et al., 2014); however, here we did not detect 

changes in Iba1 protein levels or immunostaining as a consequence of neonatal 

overnutrition. Microglial activation does not always correlate with weight gain 

(Fuente-Martin et al., 2013b; Gao et al., 2014; Garcia-Caceres et al., 2014), indicating that 
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other factors are involved, such as the diet associated with the weight gain. At 

PND150, hypothalamic TNF-α levels were higher in males than females, regardless of 

litter size. This could also indicate that overfed males are starting to show 

vulnerability to the early overnutrition as they get older, which does not occur in 

females, at least at this age. Thus TNFα could be one factor participating in the 

sexual dimorphism in response to aging.  

6. Sex differences in the responses to neonatal overnutrition 

According to the results presented, it is clear that modification of the 

nutritional status during the sensitive period of lactation, produces a hormonal 

imbalance during the initial postnatal weeks in L4 pups and triggers short and long-

term effects not only on peripheral, but also central systems that regulate energy 

balance in a sexually dimorphic manner. The most striking differences that we found 

between the sexes were the long-term effects of neonatal overnutrition reflected in 

an increased body weight in males, but not females, as well as a change in GFAP 

immunopositive cells in males but not females. This is consistent with previous 

studies in which neonatal overnutrition alters body weight in adulthood (Glavas et al., 

2010; Hou et al., 2011; Fuente-Martin et al., 2012b; Bei et al., 2015; Collden et al., 2015) and is 

associated with an increase in the number of GFAP-positive cells in the 

hypothalamus (Garcia-Caceres et al., 2011; Fuente-Martin et al., 2012a), although all of 

these studies employed only male animals. In addition, androgenized females had 

increased hypothalamic GFAP compared to control females and this was associated 

with higher body weight and circulating leptin levels, which is consistent with 

previous studies that show that perinatal androgens cause sexual differences in 

GFAP expression and morphology in different brain areas (Garcia-Segura et al., 1988; 

Chowen et al., 1995; Mong et al., 1999; Amateau and McCarthy, 2002; Conejo et al., 2005). 

Whether glial changes due to early weight gain as a consequence of neonatal 

overnutrition affect synaptic inputs to metabolic neurons and if this is sexually 

dimorphic requires further investigation. 
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Thus, taking together body weight, GFAP protein levels and the number of 

GFAP positive cells, these results suggest that males and females have a differential 

long-term response to neonatal overnutrition. There are scarce data showing the 

long-term effects in females. However, as seen here some studies indicate that long-

term effects are influenced by sex, with males suggested to be more susceptible 

than females to early nutritional disturbances (Bassett and Craig, 1988; Boubred et al., 

2009; Fuente-Martin et al., 2012c; Stefanidis and Spencer, 2012). As previously discussed, 

neonatal testosterone among other factors could be involved in the sexually 

dimorphic long-term effects of early nutritional alterations. 

6.1 Response of male and female hypothalamic astrocytes in vitro 

Astrocytes can participate in hypothalamic inflammation and HFD-induced 

obesity results in hypothalamic astrogliosis (Horvath et al., 2010; Thaler et al., 2012; 

Buckman et al., 2013). Along with microglia, astrocytes participate in the central 

inflammatory response (Rivest, 2009; Thaler et al., 2012; Buckman et al., 2014; Morselli et 

al., 2014; Valdearcos et al., 2014), producing pro- and anti-inflammatory cytokines, 

chemokines or other factors in response to a stimulus; therefore, these glial cells 

could be the source of the increases in central cytokine levels. Indeed, astrocytes are 

directly exposed to nutrients, including FAs, and have essential roles in relaying 

information concerning hormonal and nutritional signals to neurons; therefore, FAs 

could produce modifications in astrocytes that could indirectly affect neuronal 

regulation of energy balance. Specifically, the saturated FA, palmitic acid, is reported 

to induce pro-inflammatory cytokine production and central leptin sensitivity, but 

this leptin resistance is not observed in response to the unsaturated oleic acid 

(Karaskov et al., 2006; Milanski et al., 2009; Gupta et al., 2012; Morselli et al., 2014). The 

initial responses of glial cells are thought to be mainly protective; however, a 

prolonged inflammatory response and glial activation can be damaging and 

contribute to further metabolic complications. 

Studies indicate that the inflammatory response of astrocytes differs between 

the sexes, with a more exaggerated inflammatory response from male compared to 
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female astrocytes.  (Liu et al., 2007; Santos-Galindo et al., 2011; Morselli et al., 2015), 

Likewise, we found sex differences in the long-term glial and inflammatory response 

to neonatal overnutrition, including changes in GFAP and hypothalamic cytokines, 

with males being more affected than females. Estrogens could be involved in the 

protective effects in females (Wang et al., 2014a; Zhang et al., 2014), but sex differences 

in astrocytes could also be due to differences in the sex chromosomes or from sex 

steroid exposure during development (Arnold, 2009). Here we analyzed whether the 

response of these glial cells to fatty acids was sex dependent and if estrogens 

affected this response. 

7. The effect of fatty acids on hypothalamic primary astrocytes from male 

and female rats  

7.1 Palmitic acid 

Studies show that excesive ingestion of dietary fats is associated with 

increased GFAP expression and astrocyte reactivity in the brain (Hsuchou et al., 2009; 

Horvath et al., 2010). Palmitic acid is the most abundant saturated FA in the diet and in 

plasma. In addition, plasma PA levels increase in obesity (Opie and Walfish, 1963; 

Reaven et al., 1988) and this FA has been suggested to directly induce hypothalamic 

inflammation (Milanski et al., 2009; Cheng et al., 2015). Importantly, obese patients with 

metabolic syndrome have a higher FA uptake into the brain than healthy patients, 

with HFD intake increasing this uptake (Wang et al., 1994; Karmi et al., 2010). However, 

in addition to FAs, other metabolic signals are modified in obesity and reach the 

brain and therefore, could be also responsible for the observed changes in glia and 

inflammation. Indeed, HFD ingestion alters circulating levels of insulin, 

glucocorticoids, estrogens and cytokines (Tannenbaum et al., 1997; Kubota et al., 1999; 

Cohen, 2000; Hoffler et al., 2009), which can modify astrocytes (Toran-Allerand et al., 1991; 

Garcia-Segura et al., 1996b; Garcia-Caceres et al., 2011) and these factors could be 

involved in astrocyte activation independently of FAs. Indeed, ob/ob mice in which 

leptin levels are nule, GFAP levels are decreased (Ahima et al., 1999). Astrocytes from 

mixed male and female cerebral cortices have been shown to respond to FAs in vitro 
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(Gupta et al., 2012); hence, we aimed to further understand the response of these glial 

cells, but specifically in the hypothalamus, to increased levels of FAs in both sexes.  

Hypothalamic astrocytes cultured in vitro responded to palmitic by decreasing 

GFAP mRNA levels and this response was similar in both sexes. The decrease in GFAP 

expression was not associated with a decrease in cell number. These results are in 

contrast to the study by Morselli and colleagues (Morselli et al., 2015) where GFAP 

expression was increased after exposure to palmitic acid. In the study by Morselli et 

al., the time of exposure to this fatty acid was only 8 hours compared to 24 hours 

used here. As the protein levels of GFAP in the hypothalamus and in hypothalamic 

astrocyte cultures change in a biophasic manner in response to leptin (Garcia-Caceres 

et al., 2011), it is possible that a similar phenomenon occurs in response to FAs. 

Another possibility is that palmitic acid is inhibiting growth, as shown by Beeharry et 

al (Beeharry et al., 2003), and this occurs after longer exposition. Moreover, the 

astrocyte cultures of Morselli et al were derived from mice and thus the response 

could be different in rat astrocytes. In support of this, we have found that the GFAP 

response to ghrelin differs between astrocyte cultures from male mice and male rats 

(Fuente-Martin et al., in press). Reactive astrocyes are structurally more complex and 

present higher GFAP level (Gomes et al., 1999), therefore a decrease in GFAP levels 

could indicate decreased astrocyte differentiation and/or proliferation. Moreover, 

astrocyte morphology could also be affected and the decrease in GFAP due to fewer 

or shorter projections as a result of palmitc acid. Further studies are necessary to 

determine if the change in mRNA levels is associated with similar changes in protein 

levels and in astrocyte morphology, as well as to determine if the changes in GFAP 

mRNA levels in response to palmitic acid depend on the time of exposure to this FA. 

Free fatty acids, especially saturated FAs, can activate an inflammatory 

response in different cell types (Boden and Shulman, 2002; Iyer et al., 2010), as well as ER 

stress (Gregor and Hotamisligil, 2007). In addition to inducing central inflammation 

(Milanski et al., 2009; Gupta et al., 2012; Morselli et al., 2014), palmitate causes ER stress, 

ERK activation, and apoptosis in adipocytes (Guo et al., 2007) and hepatocytes (Malhi et 
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al., 2006), as well as in hypothalamic neurons (Mayer and Belsham, 2010). In agreement 

with this, we found that in astrocytes palmitic acid increased IL6 and CHOP 

production in a dose dependent manner. Astrocytes are the predominant source of 

IL-6 in the CNS (Van Wagoner and Benveniste, 1999) and the PA-induced increase in IL-6 

expression could be part of an inflammatory response, as IL-6 is one of the effectors 

of the neuroinflammatory cascade (Rothwell and Hopkins, 1995; Allan and Rothwell, 

2003). However, IL-6 could also be functioning as a neuroprotective beneficial signal, 

avoiding brain damage and enhancing neuronal survival (Van Wagoner et al., 1999). 

Indeed, an increase in IL6 in astrocytes and microglia has also been shown to have a 

protective role from diet induced obesity, preventing further weight gain and 

limiting the adverse hypothalamic consequences (Hidalgo et al., 2010).  Moreover, IL-6 

functions as a neuroendocrine signal and could be acting as an anorectic signal to inhibit food 

intake in response to FA excess (Ropelle et al., 2010). 

The increase in CHOP production by palmitic acid suggests ER stress, which 

has been linked to obesity, with increased levels of FFAs known to contribute to the 

development of ER stress in other cell types (Oyadomari and Mori, 2004; Ozcan et al., 

2004; Nakatani et al., 2005; Ozcan et al., 2006; Szegezdi et al., 2006; Ron and Walter, 2007; 

Zhang et al., 2008). Increased ER stress can induce cytokine production, and thus induce 

inflammatory processes that can lead to insulin resistance (Ozcan et al., 2004; Ozcan et 

al., 2006; Shi et al., 2006) and can also lead to apoptotic cell death (Oyadomari and Mori, 

2004; Karaskov et al., 2006; Szegezdi et al., 2006).  

Palmitic acid also stimulated the release of nitrites and nitrates to the culture 

media in a dose dependent manner, which can have a cytotoxic role on the 

surrounding cells under pathological circumstances (Moncada et al., 1991; Zhang et al., 

1994a). Nitric oxide production increases in pancreatic β-cells in response to palmitic 

acid (Shimabukuro et al., 1997). Nitric oxide is proposed to link ER stress and 

inflammation (Gotoh and Mori, 2006) and is associated with insulin resistance (Kaneki et 

al., 2007). There is evidence of induction of CHOP by nitric oxide (Kawahara et al., 2001; 

Gotoh et al., 2004), which is consistent with our results. Studies have indicated that in 

vitro, hypothalamic neurons do not have an inflammatory response to saturated 
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fatty acids, although an ER stress response does occur (Choi et al., 2010). Prolonged 

HFD is reported to induce neuronal apoptosis (Moraes et al., 2009) and to decrease the 

neuronal number in the hypothalamus (Thaler et al., 2012). A similar response was also 

observed in neural stem cells (NSCs), which differentiate into neurons and 

astrocytes, after exposure to palmitic acid (Yuan et al., 2013). Therefore, FAs induce 

stress in hypothalamic astrocytes with these glial cells releasing factors that could 

regulate or damage surrounding neurons and thus indirectly affect neuronal 

regulation of energy balance. 

Astrocytic production of IGF-1 is involved in neuroprotection (Madathil et al., 

2013; Genis et al., 2014) and IGF-1 protects astrocytes from oxidative stress (Davila et 

al., 2016). PA reduced IGF-1 mRNA levels in astrocytes, with this reduction being more 

apparent in females at higher doses. Whether this decrease in IGF-1 production is 

related to the increased ER stress in response to PA, as well as whether there is a 

decreased protective effect of astrocytes on the surrounding neurons, remains to be 

demonstrated.  

The increase in CHOP mRNA levels in response to PA was significant in males, 

but not in females. In addition, the release of nitrites and nitrates and the increase in 

IL-6 expression was higher in males than females, although this did not reach 

statistical significance. This is probably due to the large variability in some groups, 

and the large number of groups being analyzed. Indeed, if the sexes are analyzed 

separately, some changes do become significant. Moreover, increasing the number 

of experiments could possibly reduce the variability in these results. 

7.2 Palmitic and oleic acids interaction 

There are distinct inflammatory responses to the different fatty acids present 

in our diet. Likewise, saturated and unsaturated fatty acids are reported to produce 

different effects on energy homeostasis (Lee et al., 2001; Karaskov et al., 2006; Gupta et 

al., 2012; Itariu et al., 2012; Kien et al., 2014). Here, the response of hypothalamic 

astrocytes to oleic acid was significantly different from that seen in response to 

palmitic acid.  
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Oleic acid did not produce the dramatic decrease in GFAP seen in response to 

PA exposure, nor were IL-6 or CHOP expression levels or the release of nitrites and 

nitrates increased by OA. Moreover, when OA was added, it was capable of blocking 

the effects of PA on GFAP, IL-6 and CHOP mRNA levels. However, although the 

increased release of nitrites and nitrates that was found after PA exposure was 

unapparent with OA, the combination of both fatty acids still stimulated the release 

of nitrites and nitrates, which was significant in males but not in females. 

This suggests that OA does not trigger the inflammatory, ER stress or certain 

cytotoxic effects on astrocytes that are seen with PA and supports the fact that 

saturated and unsaturated FAs can have different impacts on energy homeostasis 

(Lee et al., 2001; Beeharry et al., 2003; Karaskov et al., 2006; Benoit et al., 2009; Milanski et 

al., 2009; Cintra et al., 2012; Gupta et al., 2012; Itariu et al., 2012; Kien et al., 2014). Here we 

show that some of these differential effects of fatty acids could possibly be mediated by 

astrocytes. 

The observation that CPT1A mRNA levels were differentially regulated by 

palmitic and oleic acids in astrocytes is of interest. This enzyme is essential for fatty 

acid oxidation, as it is the first and rate-limiting step in the formation of 

palmitoylcarnitine (Lee et al., 2011). Palmitoylcarnitine, or acyl-carnitine, is then 

moved to the inner mitochondrial membrane through a specific shuttle system to be 

oxidized. The fact that palmitic acid is less capable than oleic acid of inducing CPT1A 

in astrocytes, and thus of initiating  fatty acid oxidation in these cells, could 

contribute to its toxicity. In combination with OA, palmitic acid could be more freely 

shuttled into the mitochondria and oxidized due to the increased levels of CPT1A 

and this could decrease its toxicity. 

Interestingly, OA increased the expression of IGF-1, with this elevation being 

significant in males, but not in females. Although PA alone had no effect on the 

expression of this neuroprotective factor, it inhibited the effect of OA in males.  In 

contrast in females, PA reduced IGF-1 mRNA levels and OA blocked this reduction. 

Further studies are necessary to determine the mechanisms by which fatty acids 

modulate IGF-1 production in astrocytes, including whether this is a primary 
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response to the fatty acids, or an indirect response through previous modulation of 

other factors. Indeed, these studies were done at 24 hours of exposure to fatty 

acids. However, it is of interest that this neuroprotective factor (Genis et al., 2014) is 

differently modulated by these fatty acids in males and females.  

In contrast to the studies with PA alone, here we found a decrease in TNFα 

mRNA levels in response to both PA and OA, with the combination of these fatty 

acids being additive. The fact that the variability in the results of the first 

experiments was greater could explain this differential result as there was also a 

tendency to decrease in the previous study. This decrease in TNFα mRNA levels was 

unexpected, as this cytokine has been directly associated with the inflammatory 

response to fatty acids, however TNFα is also reported to be inhibited by IL-6; 

therefore, it could be that the increased production of IL-6 in response to PA is 

exerting an inhibitory effect on TNFα levels (Oh et al., 1998; Calder et al., 2013). 

7.3 Protective effects of estrogens against palmitic acid 

The central anti-inflammatory effects of estradiol have been widely studied 

(Arevalo et al., 2010; Cerciat et al., 2010; Guo et al., 2012). However, less is known 

regarding the effect of estradiol specifically in hypothalamic astrocytes in 

overnutrition or obese conditions. Here we found that PA decreased the expression 

of ERα in primary astrocytes of both sexes, but estradiol had the opposite effect and 

was able to block the effect of PA, especially in female astrocytes. It has been 

reported that female hypothalamic astrocytes express higher levels of ERα in in 

response to estradiol stimulation (Kuo et al., 2010). This was in accordance to the 

observations of Morselli et al (Morselli et al., 2014), despite that they employed 

hypothalamic astrocytes from mice, the estradiol concentration used was higher, the 

PA concentration lower and the treatment exposuretime was only 8 hours. 

Pretreatment of astrocytes with estradiol reversed some of the changes 

produced by palmitic acid, such as IL6 and CHOP production, showing protective 

effects in both sexes. Neuroprotection and anti-inflammatory effects through ERα 

has been shown in astrocytes and neurons (Barreto et al., 2009; Spence et al., 2013; 
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Arevalo et al., 2015). Moreover, estrogens are known to be inhibitors of inflammatory 

cytokines such as IL6 and IL1β in peripheral tissues and brain (Koka et al., 1998; Bruce-

Keller et al., 2000). 

Although IGF-1 production tended to decrease after PA, no effect of estradiol 

was found. As IGF-1 is produced by astrocytes as a neuroprotective factor and as 

protection against oxidative stress (Genis et al., 2014), it would be coherent to think 

that estradiol may protect astrocytes and thus surrounding neurons by modulating 

the release of IGF-1. However, although female astrocytes showed a slight increase, 

there was no significant increase in IGF-1 levels after estradiol pre-treatment , 

although with an increased “n” the effect could possibly be found to be significant. 

Likewise, the anti-inflammatory cytokine IL-10 showed a light increase in response to 

estradiol alone and estradiol plus PA compared to PA alone in females, but not in 

males. These results suggest that estradiol may mediate its protective effects in 

females by stimulating the release of IGF-1 and IL-10 in response to PA, althoug 

further experiments are needed to confirm this hypothesis. 

These data indicate that estradiol could play an important role as an anti-

inflammatory or anti-ER stress factor in astrocytes when exposed to saturated fatty 

acids. In males, estradiol was less capable of protecting against the decline in ERα 

expression induced by PA, which could possibly decrease the ability of estradiol to 

impede neuronal damage, as previously shown (Carbonaro et al., 2009). The increase in 

IL-6 and CHOP expression induced by PA were similarly reversed by estradiol in 

males and females. However, as in vivo females have higher circulating levels of 

estradiol than males, this mechanism could be involved in the higher level of 

protection against high fat diets observed in females.  

7.4 Palmitic acid and the Toll receptor 4 antagonist RS-LPS 

 Activation of TLR signaling cascades produce a wide array of proinflammatory 

cytokines, including IL-1β, IL-6 and TNF-α, in addition to reactive oxygen and 

nitrogen species mediators such as NO (Takeda and Akira, 2015). In response to PA, the 

most striking results that we observed were the increase in CHOP, IL-6 and the 
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amount of nitrites and nitrates released to the media, which are signs of 

inflammation and oxidative stress. Importantly, oxidative stress activates 

mechanisms that result in glia-mediated inflammation, which can produce secondary 

neuronal damage. As saturated fatty acids have been proposed to activate TLR4 in 

the hypothalamus (Milanski et al., 2009), we asked whether PA activated TLR4 in 

astrocytes. It is well known that TLR4 is activated by lipopolysaccharide (LPS) 

(Poltorak et al., 1998). Whereas LPS stimulates TLR4 in microglia, the main cells 

responsible for the immune response in the CNS to activate an inflammatory 

response (Qin et al., 2005; Rivest, 2009), lower constitutive expression of TLR4 is found 

in astrocytes. However, TLR4 activation in astrocytes is also reported to activate 

proinflammatory processes mediated by the NFκB, MAPK and Jak1/Stat1 signaling 

pathways (Carpentier et al., 2005; Gorina et al., 2011). We used a form of LPS, RS-LPS, 

that is purported to antagonize TLR4 (Kutuzova et al., 2001) to determine if 

hypothamic astrocytes respond to PA through this receptor. However, not only did 

RS-LPS not block the effects of PA, but it also stimulated IL-6, CHOP, IL-1β, Nfκbia 

(IκBα) mRNA levels and this was additive with the effects of PA. This could indicate 

that in astrocytes the expression of these factors in response to PA is not dependant 

on TLR4 activation. Inflammation could be activated in astrocytes through another 

TLR, such as TLR3, which is reported to be more highly expressed in these glial cells 

than is TLR4 (Farina et al., 2005). This receptor mediates the release of a wide variety of 

predominantly anti-inflammatory and neuroprotective, as well as pro-inflammatory 

factors, IL-6 among them (Bsibsi et al., 2006), whereas TLR4 mainly triggers the release 

of pro-inflammatory mediators such as TNF-α (van Noort and Bsibsi, 2009). What is 

clear is that RS-LPS is not acting as a TLR4 antagonist in these cells, but as at least a 

partial agonist. Moreover, the effects of PA and RS-LPS appear to be additive.  

Astrocytes from cerebral cortex are reported to release proinflammatory 

cytokines in response to TLR4 activation (Gorina et al., 2011)  and the TLR4 antagonist 

used here has been shown to attenuate inflammation in microglial cells by reducing 

TLR4 and NF-κB and MAPKs signaling pathways (Gaikwad and Agrawal-Rajput, 2015). 

However, the activation of TLRs in astrocytes and microglia is not the same, as 
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astrocytes respond later than microglia to activation of TLRs (Rivest, 2003; Owens, 

2005). Thus, the mechanism of activation could be different and could possibly 

explain the lack of an antagonist response to this factor in astrocytes. 

7.5 Intracellular signaling in astrocytes in response to PA 

We found that male astrocytes rapidly increased the amount of STAT5 in 

response to PA. The STAT family has a central role in inflammatory reactions and is 

stimulated by multiple cytokines to regulate the expression of inflammatory 

mediators. Particularly, STAT5 has been shown to be activated by glycogen synthase 

kinase-3 (GSK-3) in primary cultures of cerebral cortical astrocytes to trigger 

inflammatory responses (Beurel and Jope, 2008; Wang et al., 2011) and PA induces GSK-3 

activation in cultures of primary hepatocytes (Ibrahim et al., 2011). Thus, STAT5 

activation appears to be one of the inflammatory signaling pathway activated by PA. 

In addition, STAT5 participates in the regulation of glycogen storage in astrocytes 

(Bosier et al., 2013) and the increase found in STAT5 could indicate an increase in 

glycogen storage in response to fatty acids, however if GSK-3 is activated to induce 

STAT5 increase and trigger inflammation, glycogen synthase would be inactivated by 

GSK-3 and thus glycogen storage inhibited. Further studies are necessary to 

determine the implication of this signaling pathway in astrocytes response to 

nutrient–derived signals. 

Stress and inflammation can also activate NFκB, ERK and JNK pathways in 

astrocytes leading to the synthesis and release of inflammatory mediators (Gao and Ji, 

2010; Gorina et al., 2011). NFκB and MAPKs play an important role in triggering 

microglia activation and subsequent secretion of inflammatory mediators 

(Vallabhapurapu and Karin, 2009). However, we found no changes in the activation of 

these pathways. This could be due to the degree of variability found in these result . 

Moreover, as only one time-point after exposure to PA is reported here, it is possible 

that some of these pathways are activated either more rapidly, or at a later time-

point. 
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1. Males and females respond differently to increased food intake even 

during the neonatal period; thus, the sex differences in metabolic control 

cannot be solely attributed to post-pubertal differences in circulating 

gonadal steroid levels.  

 

2. Neonatal overnutrition induces significant changes in circulating insulin, 

leptin, and adiponectin levels during a critical period of hypothalamic 

development. Hence, modifications in the levels of these hormones, some 

of which are known to influence hypothalamic development, could be 

involved in the long-term metabolic effects of early overnutrition. 

 
3. The hormonal changes induced by overnutrition differed between males 

and females during the neonatal period. The greater increase in serum 

insulin, as well as in testosterone levels in males, during this critical 

developmental period, could be involved in the differential long-term 

metabolic outcomes observed between the sexes.   

 
4. The long-term effects of neonatal overnutrition change throughout 

development, with males being more susceptible to metabolic alterations 

during adulthood.  

 
5. Increased weight gain during the perinatal period was not associated with 

any indication of systemic inflammation, which could be due to the ability 

of adipose tissue to expand due to hyperplasia during early development. 

This observation supports the fact that obesity during childhood is 

different from that seen in adults. 

 
6. The increased bodyweight in adult male rats was associated with 

significant elevations in the hypothalamic levels of the inflammatory 

cytokine TNFα and the astroglial marker GFAP, as well as the number of 

GFAP+ astrocytes. However, there was no increase in other markers of 

astrocyte activation, such as vimentin, or in microglial markers or 

inflammatory signaling. This suggests that the inflammatory and gliosis 

responses in the hypothalamus may occur gradually in conditions of 

increased weight gain that are not due to ingestion of diets, such as those 

high in fats, that have direct effects on inflammatory processes and on 

glial cells. 
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7. Hypothalamic astrocytes respond differentially to palmitic acid and oleic 

acid, with oleic acid protecting against the inflammatory processes 

induced by palmitic acid. Thus, the harmful effects of a high fat diet will 

depend on the relative composition of the different fatty acids and not 

only the quantity.  

 
8. Higher circulating levels of estrogens in adult females can have protective 

effects on astrocytes against palmitic acid. 
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1. Machos y hembras responden de forma diferente al incremento de la 

ingesta de alimentos, incluso durante el periodo neonatal. Por 

consiguiente, las diferencias sexuales en el control metabólico no pueden 

atribuirse únicamente a las diferencias postpuberales en los niveles 

circulantes de esteroides gonadales.  

 

2. La sobrenutrición neonatal induce cambios significativos en los niveles 

circulantes de insulina, leptina y adiponectina durante un periodo crítico 

del desarrollo hipotalámico. Por tanto, las modificaciones en los niveles de 

estas hormonas, algunas de las cuales son conocidas por influenciar el 

desarrollo hipotalámico, podrían afectar los efectos metabólicos a largo 

plazo de la sobrenutrición temprana. 

 
3. Los cambios hormonales inducidos por la sobrenutrición difieren entre 

machos y hembras durante el periodo neonatal. El mayor incremento en 

insulina sérica, así como de los niveles de testosterona, en machos 

durante este periodo crítico de desarrollo, podría intervenir en la 

diferenciación de los efectos metabólicos a largo plazo observados entre 

ambos sexos.   

 
4. Los efectos a largo plazo de la sobrenutrición neonatal se modifican 

durante el desarrollo, siendo los machos más susceptibles a las 

alteraciones metabólicas durante la época adulta.  

 
5. El incremento de la ganancia ponderal durante el periodo perinatal no se 

asoció con ningún signo de inflamación sistémica. Este hecho podría 

deberse a la capacidad del tejido adiposo a expandirse debido a la 

hiperplasia durante el desarrollo temprano. Esta observación apoya el 

hecho de que la obesidad durante la infancia es diferente a la que se 

aprecia en adultos. 

 
6. El incremento del peso corporal en las ratas adultas se asoció con 

elevaciones significativas en los niveles hipotalámicos de citoquina TNFα y 

del marcador astroglial GFAP, así como del número de astrocitos GFAP+. 

No obstante, no se evidenció incremento de otros marcadores de la 

activación astrocítica, tales como vimentina, o marcadores de microglía o 

de señalización inflamatoria. Esto sugiere que las respuestas inflamatorias 

y de gliosis en el hipotálamo pueden acontecer gradualmente en 

situaciones de ganancia ponderal que no son debidas a la ingesta de 
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dietas, como es el caso de aquellas ricas en grasas, que tienen efectos 

directos sobre los procesos inflamatorios y sobre las células de la glía. 

 
7. Los astrocitos hipotalámicos responden de forma diferente a los ácidos 

palmítico y oleico. En efecto, el ácido oleico es capaz de proteger contra 

los procesos inflamatorios inducidos por el ácido palmítico. Por 

consiguiente, los efectos nocivos de una dieta con alto contenido graso, 

dependerán de la composición relativa de los diferentes ácidos grasos y 

no únicamente de su cantidad.  

 
8. Los niveles circulantes más elevados de estrógenos en las ratas hembra 

adultas pueden tener efectos protectores en los astrocitos contra el ácido 

palmítico. 
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