THE JOURNAL OF CHEMICAL PHYSICS 143, 204305 (2015)

Manuel Lara,"? P. G. Jambrina,? F. J. Aoiz,? and J.-M. Launay?®

'Departamento de Quimica Fisica Aplicada, Facultad de Ciencias, Universidad Auténoma de Madrid,
28049 Madrid, Spain

’Departamento de Quimica Fisica, Facultad de Quimica, Universidad Complutense, 28040 Madrid, Spain
3Institut de Physique de Rennes, UMR CNRS 6251, Université de Rennes I, F-35042 Rennes, France

(Received 9 September 2015; accepted 7 November 2015; published online 24 November 2015)

Quantum reactive and elastic cross sections and rate coefficients have been calculated for D* + H,
(v =0, j =0) collisions in the energy range from 107® K (deep ultracold regime), where only
one partial wave is open, to 150 K (Langevin regime) where many of them contribute. In systems
involving ions, the ~R~* behavior extends the interaction up to extremely long distances, requiring a
special treatment. To this purpose, we have used a modified version of the hyperspherical quantum
reactive scattering method, which allows the propagations up to distances of 10° ay needed to converge
the elastic cross sections. Interpolation procedures are also proposed which may reduce the cost of
exact dynamical calculations at such low energies. Calculations have been carried out on the PES
by Velilla et al. [J. Chem. Phys. 129, 084307 (2008)] which accurately reproduces the long range
interactions. Results on its prequel, the PES by Aguado et al. [J. Chem. Phys. 112, 1240 (2000)], are
also shown in order to emphasize the significance of the inclusion of the long range interactions.
The calculated reaction rate coefficient changes less than one order of magnitude in a collision
energy range of ten orders of magnitude, and it is found in very good agreement with the available
experimental data in the region where they exist (10-100 K). State-to-state reaction probabilities are
also provided which show that for each partial wave, the distribution of HD final states remains
essentially constant below 1 K. © 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4936144]
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Cold and ultracold dynamics of the barrierless D* + H, reaction: Quantum
reactive calculations for ~R~% long range interaction potentials

. INTRODUCTION

The attention in the field of (ultra-)cold reaction dynamics
has mainly focused in reactions involving alkali atoms
and dimers, since (ultra-)cold samples of this species are
relatively easy to produce.'”” However, new experimental
approaches are changing this scenario, providing detailed
information on more generic bimolecular systems at very low
collision energies,>'* eventually bridging the gap between
cold (T <1 K) and ultracold (T <1 mK) regimes."
While the availability of new experimental results calls for
computational studies to be extended to the ultracold regime,
advances in the theoretical simulation of these processes are
hampered by the limitation in the accuracy of the state-
of-the-art electronic calculations, typically larger than the
collision energies involved. While for light atom+diatom
systems, collision energies in the range of ~1 K lie within the
limits of what is considered as predictable using conventional
theoretical tools, “exact” quantum results at much lower
energies can be always put into question.

Until recently, errors in ab initio PES were in the order of
1 kcal/mol, the so-called chemical accuracy. Given the high
kinetic energies and the predominance of potential barriers,
the effects of Short Range (SR) chemical interactions have
constituted the main focus. It was pointless to attempt an
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accurate description of the much smaller interactions at the
Long Range (LR). Distances as short as 20-30 ap, were
already considered as potential free regions. This was and
still is a general practice in both time-dependent and time-
independent methods in order to avoid long propagations at
thermal energies. In more recent years, electronic structure
calculations have become considerably more accurate and the
limits of accuracy can be set on the order of 10 cm™.

Nevertheless, at low temperatures, larger accuracies are
required. LR interactions are of the same order of magnitude
as the small kinetic energies considered and thus cannot be
neglected. Moreover, reactions that are studied at such low
energies are typically barrierless where only the centrifugal
barrier thwarts the reaction. Located at considerably large
intermolecular distances, the width and the height of the
centrifugal barrier are determined by the LR interactions.
Indeed, the LR part of the potential is essential as it determines
the amount of incoming flux which is able to reach the
transition state region of the PES and thus to react. In this
way, in the cold regime, both SR and LR interactions are
important, and the use of a PES which describes accurately
the whole configuration space is required.

At even lower energies, in the ultracold regime, the
influence of the LR interactions becomes paramount, leading
in extreme cases to the paradoxical idea of universality:*° the
result of the collision depends exclusively on the LR behavior
and not on the SR chemical interactions. The ultracold
regime is governed by Wigner laws?' and can be described
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in simple terms using the scattering length. The extreme
sensitivity of this parameter to the details of the PES, and the
combined action of the surface as a whole, makes extremely
difficult to predict its value theoretically or, conversely, to
deconvolute the underlying interactions from its measure-
ment.

There are already some theoretical studies in the literature
on atom + diatom neutral chemical reactions at cold and
ultracold temperatures.?>?3 Although it is difficult to assess
the accuracy of the calculations, they provide us with general
trends in the behavior of such systems. However, very few
works have focused on systems involving ions.?*’ This is
probably due to the presence of the ~R™* potential term
(instead of the common ~R~%), which extends the interaction
up to extremely long distances in ionic systems, making
very difficult to obtain converged results. Here, we will
consider the benchmark ion-molecule barrierless reaction
D* + H, — H* + HD. We will show how to account for the
~R~* LR behavior when calculating reactive and elastic cross
sections and rate coefficients. As for the accuracy of the
results, the same caveats as in similar works in the ultracold
regime hold here. In the spirit of the seminal paper by Gribakin
and Flambaum,?® our study can be considered as an effort to
unravel the “typical” scattering length that one may expect,
even when small inaccuracies in the PES can make it fluctuate.

In many instances, reactions of ions with neutrals, such
as the title reaction, are essentially barrierless and, due to
their LR attractive potential, exhibit large cross sections.
This renders them especially relevant at the low temperatures
typical of the interstellar medium (see Refs. 29-31, and
references therein). In the past decades, much experimental
effort was dedicated to extend the temperature range down
to a few K. The difficulties associated with the handling of
small relative translational energies in ion—-molecule reactions
have been overcome through the use of supersonic jets,3>
guided and merged beams, and ion traps.3®*" The flourishing
technology of Coulomb crystals in radio frequency ion traps*!
and the possibility of combining them with traps for neutrals
or with slow molecular beams*>** foresee a great progress in
the experimental study of cold ion-neutral reactions. Recent
experiments have been able to stabilize HY, the strongly bound
collision complex formed during the collision H* + H,, for
energies as low as 11 K in ion traps.** Indeed, experiments
to determine low temperature state specific rate coefficients in
the title system are within the reach of current radio frequency
ion trap technology.

Due to its apparent simplicity, the H system constitutes
a prototype in the field of ion-molecule reactions. As a result
of this, it has attracted great deal of attention from both
theoreticians and experimentalists.

Early calculations starting in the seventies “>~*° disclosed
the main characteristics of its mechanism that evolves from
a low energy behavior, dominated by capture into a strongly
interacting complex, to a higher energy behavior characterized
by more direct collisions. Under these circumstances, shorter
interaction times do not allow for a complete randomization of
the energy, angular momentum, and nuclear scrambling within
the reaction intermediate. The calculations, based on simple
statistical models, semiempirical PESs, and a limited number
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of classical trajectories, were able to account reasonably
well for the available experimental values of cross sections
and rate coefficients,*’9-3* although not without considerable
discrepancies.

Over the last two decades, a great progress has been
achieved in the construction of accurate potential surfaces for
the H} system.”~®! Specifically, the ARTSP PES by Aguado
et al.*® has proved to be one of the most accurate global PESs
widely used over the last few years. More recently, this PES
was modified by Velilla et al.%° (hereinafter VLABP PES)
in order to account for the LR interaction. In parallel to the
electronic structure developments, a selection of theoretical
methods of varying accuracy has been applied to the study of
the H* + H, reaction dynamics.®>7¢

Of all the possible isotopic variants of the H* + H,
reaction that of the deuteron with H, is exothermic due to the
different zero-point energies (ZPEs) of reactants and products
and hence is appropriate for its study at the cold and ultra-cold
energy regimes.’’ The isotopic substitution makes possible to
readily identify reactants and products by mass spectrometry
or spectroscopic techniques. In addition, D* + H, can play an
important role in the unusual deuterium fractionation observed
in many cold space environments.”8-3

Calculations for the D + H, reaction have been carried
out on the VLABP PES at energies slightly above the
cold regime®'~#3 using the hyperspherical quantum reactive
scattering method.®* However, the implementation used in
Refs. 81-83, suitable for the study of thermal or hyperthermal
reactions, faces problems at energies below 10 K.3' and it
cannot be used at ultracold temperatures. As it will be shown,
some methodological changes in the hyperspherical method
are required to carry out accurate calculations at cold and
ultracold energies at a reasonable computational expense.’

In a very recent work,3® we have communicated part of
the results from an extensive quantum study on the reactive
collision D* + para-H, — H* + HD using the VLABP PES®
at cold and ultracold energies. Quantum reactive and
elastic cross sections and rate coefficients were calculated
using a modified hyperspherical quantum reactive scattering
method.®*#> For the first time, quantum results were obtained
at energies as low as 1078 K for a system whose ~R™* LR
behavior implies propagations up to very large distances. To
the best of our knowledge, no other work in the literature has
attained so low energies in an atom+molecule system with
such an extended LR.

In this work, we will provide more details on the
methodology and the dynamical results. Besides, we will
discuss how the cost of time independent quantum mechanical
(TIQM) calculations can be considerably reduced by using
interpolation techniques of the logarithmic derivative matrix.
By comparing with the results obtained using the ARTSP PES,
whose fitting does not explicitly include the LR behaviour in
an analytical way, we will emphasize the significance of
the inclusion of the LR interactions. We will propose a
very simple model to improve Langevin type estimates for
cross sections at low energies in complex-mediated barrierless
reactions. Finally, we will discuss the behavior of the system
in the ultracold regime through the analysis of final-state
resolved cross sections and reaction probabilities. The paper
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is structured as follows. In Sec. II, we will briefly describe the
theoretical methodology, including the possibility of using
interpolation procedures. We also provide details on the
considered PES and the calculation of effective potentials.
The results from the dynamical calculations and the models to
understand them will be shown and discussed in Section III.
Finally, a summary of the work and the conclusions will be
given in Section IV.

Il. THEORETICAL METHODS
A. Dynamical methodology

The hyperspherical quantum reactive scattering method
developed by Launay and Dourneuf® has been widely used
for thermal and hyperthermal reactive scattering.?’~%° In this
method, the configuration space is divided into inner and
outer regions by the definition of a matching hyper-radius,
po, beyond which no inelastic or reactive transition may
appreciably occur. The positions of the nuclei in the inner
region are described in terms of Smith-Witten hyperspherical
democratic coordinates. The internal basis built in these
coordinates is particularly well suited for insertion reactions
with very deep wells. The log-derivative matrix at a particular
total energy, Z(E,p), is propagated outwards on a single
adiabatic PES. Its value at pj, Z(E,pg), is matched to a
set of suitable radial functions, called asymptotic functions
(AFs), which provide the collision boundary conditions, to
yield the scattering S-matrix. At thermal energies, the AFs
are the familiar regular and irregular radial Bessel functions
(transformed into hyperspherical coordinates). They account
for the presence of a centrifugal potential at finite distances,
avoiding to extend the calculation to very large distances
where the centrifugal potential vanishes.

To study cold and ultracold collisions of alkalis, the
AFs were modified to account for both the centrifugal and
the isotropic R™® LR potential.”> > More recently, these
changes were generalized to allow the treatment of general
anisotropic LR potentials:® the AFs are obtained numerically
and they are adapted to the specific LR behavior of the system,
ensuring the collisional boundary conditions while working
at finite distance. This avoids propagations in hyperspherical
coordinates up to extremely large intermolecular separations.
The AFs are calculated by solving a system of radial
differential equations in Jacobi coordinates®® using the
coupled-equation version of the method of De Vogelaere.”?
Very long propagations are required for their calculation,
starting at large radial distances—where LR interactions
are negligible—up to po. In any case, the expense is
minimal in comparison with the propagation in hyperspherical
coordinates. Such implementation is applied here to a system
involving ions, with ~R™* LR behavior. Let us note that
to converge the partial elastic cross sections at a collision
energy of 10™® K, propagations starting at separations of
3 x 10° ay were needed. However, the computational cost of
this calculation is affordable; furthermore, for the case j = 0,
the number of coupled equations is reduced to one. Reaching
so large intermolecular separations would be unfeasible by
considering a sole propagation in hyperspherical coordinates.
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B. The interpolation procedures

The implementation of the hyperspherical method in two
regions, the inner region, using hyperspherical coordinates,
and the outer region described in Jacobi coordinates using AFs
(see Fig. 1), is very appropriate for interpolation procedures
in the spirit of multi-quantum defect theory (MQDT)**’ that,
to the best of our knowledge, have not been exploited in the
field of conventional (non-MQDT) atom-molecule reaction
dynamics. The value of the hyperradius that separates the
two regions, pg, has to be large enough such that there
are not inelastic or reactive transitions for p > po. However,
as the calculations in hyperspherical coordinates are very
demanding, po values as small as possible are preferred,
what implies that the chosen py has to be converged. For
low collision energies, in general, the kinetic energy at the
converged py is large in comparison to the collision energy.
The interpolation method is as follows.

Let us assume that we are running a set of QM
propagations for a small range of energies E € [E\, E,], where
AE = E, — E|. The propagation in the outer region, where
LR interactions prevail, is likely to be extremely sensitive
to small energy differences. However, the propagation in
the inner region, where SR chemical forces prevail, may
not fluctuate that much as long as the kinetic energy at po,
Exin(po), is essentially the same in the whole range of energies
considered. In particular, if AE < Eyn(po), it is expected
that the log-derivative Z(E, pg) will barely change in the
considered AE. In this way, the value Z(E, py) for any energy
in the interval can be calculated by interpolating the values
at the endpoints, Z(E, pg) and Z(Ey, pg). The interpolated
Z(E, pp) is then matched to the correct AFs in order to get
the S matrix. Similarly, one could calculate Z(E, pg) for a
sparse grid of energies, Ej, E,,. .. in the desired range, and
obtain the value for any other intermediate energy by linear
or higher order interpolation.’* These procedures may lead
to a considerable reduction of the computational cost. For
the title reaction, we have checked that using quadratic

Inner region: Outer region
FIG. 1. Interpolation procedures can be used in order to get the logarithmic
derivative at any collision energy, E, in the interval [E}, E2], Z(E, po)interps
by starting from the logarithmic derivative at the endpoints Z(E1, pg) and
Z(E2, po)-
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(three-point) interpolation of the logarithmic derivatives
obtained for E; = 108K, E, = 0.1 K, and E5 = 0.2 K, we can
successfully reproduce the cross section for any energy below
0.1 K, within relative errors <0.1%. Nevertheless, it must be
emphasized that no interpolation procedure has been used in
any of the results presented hereinafter.

C. Potential energy surface

At energies below 1.7 eV, such as those considered in
this work, the only reactive process that can take place is the
non-charge-transfer proton exchange process, and the reaction
can be rigorously described using the ground adiabatic PES.
The absence of any potential barrier, a deep well (=4.5 eV),
and a small exoergicity (that of the difference of the zero
point energies) are the main features of the PES. The
energy of the Hy(v =0, = 0) state is slightly larger than
that of the HD(v = 0, = 2), so even at the lowest collision
energies considered here, three product rovibrational states are
accessible. The HD(v = 0, j = 3) state has an internal energy
above the largest total energy considered (~150 K) in this
work and is closed.

Among the existing available PESs, the VLABP PES,%
chosen in this work, is expected to fulfill our requirement
for accuracy in both the SR and LR regions. LR interactions
are included in the functional form of the potential. The
asymptotic form of the PES in reactant Jacobi coordinates
(r,R,0) is given by

Q(r)Py(cos H)R*3
_ {%ao(r) + %[a”(r) — ("] Pa(cos 9)} R
+ooe (1)

Vir(r, R,6) =

where Q»(r) is the quadrupole moment, and ao(r), o (r),
and «a,(r) are, respectively, the isotropic, parallel, and
perpendicular polarizabilities of H,.%° As Eq. (1) shows,
the dominant contributions involve the charge-quadrupole
interaction, varying as ~R~3, and the charge-induced dipole,
varying as ~R™*.

To show the importance of LR effects, the results obtained
by using the VLABP PES are compared with those obtained
using its predecessor, the ARTSP PES.*° The VLABP PES is
a recent refinement of the ARTSP, based on the same set of
ab initio points; however, the VLABP PES correctly accounts
for the LR behavior while the ARTSP PES does not.

D. The effective potentials

If ¢ labels the relative orbital angular momentum, and
J the rotational angular momentum of H,, the total angular
momentum of the nuclei is given by J =j + £. A convenient
basis in order to expand the nuclear wavefunction in the
LR region is the one characterized by quantum numbers
(J,M,v,j,{), represented as <pv ’v» with (J, M) the total angular
momentum and its projection on the Space-Fixed (SF) Z axis,
(v,j) the rovibrational quantum numbers of the diatom and
¢ the relative orbital angular momentum. Let us consider the
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matrix of the electronic potential expressed in this basis,

Vee(R) = (@3 i IVIgien, @)

where we will denote with primes other quantum states
corresponding to the H + D, arrangement channel that can
be coupled via the potential. The corresponding diagonal
elements are useful in order to understand the dynamics
because the diabatic effective potential felt by the colliding
partners at a distance R when approaching in the state ¢’
is given by

v lofo

4 o(f o+ 1)7l2

2uR?
where (...) indicates here the integration over the Jacobi
coordinates r and 6.

To determine the potential matrix V;, #(R), it is convenient
to calculate first the matrix elements on the helicity basis,
labeled by the projection ; of J on the Body—Fixed (BF)
coordinate system, whose z-axis is chosen along the reactant
Jacobi R vector. This BF basis set is given by

(@omiocol VRO gu ) + 3)

o, = X 2 b By Ya 0.0, @)
r 4r

where y, j(r) is the radial rovibrational wave function,
Yo, (0, ¢) the spherical harmonics, and D o, denotes a Wigner
rotation matrix element with (e, 8,y) bemg the Euler angles
corresponding to the transformation between SF and BF
frames. The matrix elements of V(R,r, ) are easily calculated
in this basis using

Va. o (R) = 6q o210 / X2 (NY3, (8,0)V(R,r,0)sin 6 dr db.
Jo2j J=j v.J J23j
(5)

Once the potential matrix is known in the BF frame, we
change to the SF basis (what involves a combination using 3
symbols) thus obtaining

Ve o(R) = (-D)N26 + 1V20 + 1

i ¢ J)(j r
X
%(Q_,- 0 -Q;J\Q, 0

J
iy Va,.0,(R).

(6)

We will limit our study to collisions with Hy(v = 0, j = 0).
For this particular case, the rotational wave function is the
spherical harmonic Yy, (~P;) and the integral in § coordinate
(j = 0|Py(cos 8)|j = 0) is null. Thus, both the contributions
from the charge-quadrupole and anisotropic polarization terms
in Eq. (1) vanish, and although the asymptotic potential
contains a ~R™> term, the effective potential behaves as
—C4/R*.

E. Classical Langevin model

The classical Langevin capture model for a R™* potential
is used to rationalize the cross sections and rate constants
corresponding to ion + molecule collisions at thermal energies.
This model is approximately valid for collisions dominated by
attractive potentials and large reaction probabilities. It assumes
a classical non-quantized orbital angular momentum and that
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reaction takes place whenever the system is captured by the
potential; if the kinetic energy is larger than the centrifugal
barrier, the colliding partners are able to enter the inner part
of the PES, and strongly interact, leading to reaction. Usually,
this model gives the higher-limit to the reaction probability.
The Langevin expression for the reaction cross section,
oL(E), and rate coefficient, ki (E), can be obtained starting
from the quantum expression

(B = Y rl(E) = (/) S0+ DEUE), ()
=0 =0

where k is the wavenumber and P/(E) the reaction probability
for a particular partial wave ¢, by (i) calculating the
centrifugal barrier height for each ¢ corresponding to an
analytical potential —Cy/R*; (ii) assuming that P{(E) = 1 if
the kinetic energy is higher than the centrifugal barrier, and
null otherwise. (We will indistinctly use P(E) or P/(E) in
the notation below, as J and ¢ quantum numbers are equal
for the particular case j = 0). With these approximations, the
summation over ¢ is ({max + 1)% Where £may is the maximum
(integer) value of ¢ for which the kinetic energy is greater
than the maximum of the effective potential. And finally, (iii)
replacing the summation with an integral over continuous
values of ¢ (valid for high enough values of ¢), the cross
section becomes o (E) = (7/k*)€max(€max + 1), Where €may is
now a real number given by

4uC,*E'"
A2

Hence, the resulting expression is the classical Langevin
model cross section

gmax(gmax + 1) = (8

oU(E) = 2n(C4/ E)'?, ©)
and the Langevin rate coefficient
ki(E) = 2m(2Cy/ )" (10)

which is independent on the temperature.

Notice the difference in the partial cross sections for
continuous (classical Langevin deduction) and that assuming
that the values of ¢ are discrete (integer) in the limit of ultracold
temperatures. For £ = 0 and assuming discrete values,

o{E) = 75 < B (11)

while for £ >0, o =0 at energies below the centrifugal
barrier.

In contrast, for continuous values of ¢, o(E) < E~
regardless of the energy and the maximum value of ¢.
Therefore, with continuous values of ¢, the result foran = 4
potential accidentally coincides with the correct Wigner limit,
as will be shown below.

A value of C4 = 2.70 a.u. can be estimated according to
the usual ansatz for ion-neutral interactions, C4 = aog’/2,
where ¢ is the charge of the ion (in a.u.) and «( the
isotropic polarizability of the neutral atom or molecule
(@p =541 a(3) (Ref. 96)). The value C,=2.71 a.u., in
excellent agreement with the former, can be extracted from
the PES by equating the asymptotic effective potential for

172
2
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the (J=0,M =0,v =0, =0,/ =0) state to the expression
—Cy4/R*. This latter value is the one we will consider below.

F. Numerical-capture statistical model

As it has been formulated, the Langevin model is a
crude approximation. However, this model can be improved
by (i) calculating the heights of the centrifugal barriers
numerically, using the effective potentials, thus accounting for
deviations from the R™* behavior at short-range; (ii) carrying
the summation over discrete partial waves instead of the
integral; and (iii) correcting the assumption P/(E) = 1 with a
statistical factor to account for the fact that the probability of a
complex to decompose into the products arrangement channel
is lower than the unity. We will name this improved model
“Numerical-Capture Statistical” model, in short NCS model.
Note that when only ¢ = 0 partial wave is open, this model
predicts an o, o« E-! behavior instead of the right Wigner
limit.

The so-called “statistical factor” deserves more detailed
comments. If the collision is assumed to be mediated by
a complex, it is possible to decompose the whole collision
process in two steps: the step of formation of the collision
complex (capture) and the step of its dissociation. In complex
mediated reactions with deep wells, the statistical ansatz can
be applied: if there existed a complete loss of memory of
the reacting flux within the complex, the break down of
the complexes into fragments would be independent of the
details of the initial state of the reagents which originated
them (except for the total angular momentum and energy
conservation). In that case (ergodic hypothesis), the total
(summed over final states) reaction probability, P,J (E), can be
factorized as

Pl(E) ~ Pl (E)x P! ((E), (12)

where P/ (E) s the probability for the colliding partners to

be captured in the complex and P’ prod(E) is the probability
to decompose, once the complex is formed, into products,
i.e., what we have called statistical factor. When applied to
a complex-mediated reaction, the assumption P/(E) =1 in
the Langevin model is equivalent to a statistical factor of
one, which is not generally true. An alternative value can be
estimated by statistical means.

Within the statistical hypothesis, assuming total random-
ization inside the well, the fraction of complexes which
decompose into the reactants (D* + Hj) or products (H*
+ HD) arrangements would be roughly proportional to the
corresponding number of energetically accessible channels
available from the complex, considering all of them as
equiprobable. In particular, if we denote with A(E) and B(E)
the number of energetically open channels corresponding
to the reagent and product arrangements, respectively, the
statistical factor may be approximated by B(E)/(A(E) + B(E))
(number of favored outcomes divided by the total number
of equiprobable outcomes).®> For any J > 1°7 (see note!%),
we find that A(E)=1 and B(E) =6, and one gets that
P/, pro J(E) = 6/7 ~ 86%, which is the statistical factor we have
used to correct the Langevin result. Only for / = 0 and J = 1,
the fractions are different: 3/4 ~ 75% and 5/6 ~ 83%, as it
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corresponds to 3 and 5 open product channels (respectively)
versus 1 open reactant channel. The factor 6/7 can be taken
as an average statistical factor in the Langevin regime (where
many partial waves are open) and is the factor we will use
to correct the Langevin expression for the fraction of formed
complexes which really decompose into the products. Let
us note that whenever B(E) > A(E), P_poi(E)’ ~ 1, and
the result would be equivalent to the Langevin assumption.
This simple reasoning, just counting states, can be put in
more solid grounds by making use of statistical models,”®
in their quantum,®’ or quasiclassical versions®® which have
been applied in the past to the Hj system at thermal energies.
They relate the fraction of complexes which decompose into
a particular channel to the capture probability of forming
the complex starting from it. In our simple procedure, we
were assuming capture probabilities of 1 for the reactant and
product states energetically accessible, what has sense if we
are not extremely close to threshold; indeed, for attractive
potentials in the absence of internal barriers, a few kelvin over
threshold is enough.

lll. RESULTS AND DISCUSSION

We have calculated quantum reactive cross sections and
rate coefficients for D* + Hy(v = 0, j = 0) » H* + HD in the
collision energy range 1078-150 K. Partial waves J = 0-17
were needed in order to converge the reactive cross sections
in such range. The elastic counterparts require higher total
angular momenta and they are only converged in partial waves
up to approximately 1 K. The number of adiabatic channels
in hyperspherical coordinates included in the calculations lies
in the range from 200 to 1885, which correspond to J =0
and J = 17, respectively. The propagation in hyperspherical
coordinates was taken from p = 0.5 ag up to po = 35 ayp, where
the matching to the AFs was performed. In turn, the integration
to calculate the AFs corresponding to the incoming channel
at each considered energy was taken from a radial distance
where the potential is 10% times smaller than the collision
energy up to po. As noted above, this amounts to 3 x 103 ag
for the lowest considered energy. Such a stringent criterion is
found necessary in order to obtain the correct Wigner behavior
of the partial elastic cross sections.

The considered energy range covers part of the thermal
or Langevin regime, where an appreciable number of partial
waves is open and the classical Langevin capture model
may approximately work, and the cold (7 <1 K) and
ultracold (7' < 1 mK) regimes. We will discuss each region
separately.

A. The reaction in the Langevin regime

In general, the applicability of the Langevin expression
implies the concurrence of high enough partial waves.'% At
the energies explored in this work, the Langevin regime can
be considered as spanning the 1-150 K range, with 5 and 17
partial waves open at 1 K and 150 K, respectively. The reaction
cross sections obtained in this region are shown in the upper
panel of Fig. 2. Results on the VLABP PES are compared
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FIG. 2. Reaction cross sections for D +H, (v =0, j = 0) at collision energies
in the Langevin regime. Upper panel: Comparison of the results calculated on
the two considered PESs. The ARTSP PES is somewhat less reactive than
the VLABP PES. The inset displays the cross sections for both PESs in the
cold and ultracold regimes in logarithmic scale. The lower panel shows the
comparison between the QM cross sections calculated using the VLABP PES
with those obtained using the classical Langevin formula, Eq. (9), and the
more realistic numerical-capture statistical model.

with the ones obtained using its precursor, the ARTSP PES,
which does not account correctly for the LR interactions.

The inclusion of the ~R™* LR term has led to significant
changes in the cross section and, as expected, the role of
the LR interactions is crucial at low collision energies. On
average, the VLABP PES is somewhat more reactive than the
ARTSP below 80 K, especially below 20 K. In the cold and
ultracold regimes (see the inset in the upper panel of Fig. 2),
the situation is critical, and the cross section calculated on the
VLABP PES reaches a value forty times larger than that on
the ARTSP PES. Of course, at such low energies, care should
be exercised when comparing with a PES whose LR behavior
is poorly described.

The lower panel of the Fig. 2 shows a comparison between
the QM cross section calculated on the VLABP PES and that
obtained using the Langevin and the NCS model. While the
Langevin model overestimates the reactivity, there is a better
agreement between the NCS model and our QM results. The
sharp structures in the NCS model cross sections reflect the
opening of partial waves and are located almost in coincidence
with some of the peaks that survive the J averaging of the QM
cross section. Most of the QM fine-grid structure, however,
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FIG. 3. The effective potentials (centrifugal plus attractive potential) for
both PESs. The horizontal lines correspond to the maxima of the effective
potentials on the ARTSP PES. The centrifugal barriers are lower in the case
of the VLABP PES, which explains the higher reactivity observed at low
energies.

cannot be explained in terms of the opening of additional
partial-waves and can be attributed to resonances.

In order to understand the differences in reactivity
between the two surfaces, we have calculated the effective
potentials associated to some of the higher partial waves
considered. These results are displayed in Fig. 3. As can be
observed, the effective (potential plus centrifugal) barriers are
significantly lower for the VLABP PES than for the ARTSP
PES, and this fact explains the higher reactivity on the former
PES. The polarization term, accurately included in the VLABP
PES, makes the potential more attractive and pulls the effective
potential down, thus allowing more incoming flux to reach
the inner region where reaction may occur. Consistently, the
reaction probabilities as a function of the energy for a given
J on the ARTSP PES exhibit larger thresholds, as shown in
Fig. 4. The height of the respective effective barriers for each
value of J is indicated with vertical red and blue dotted lines
for the VLABP and ARTSP potentials, respectively. Those
would be the values of the reaction threshold in the absence
of tunneling. However, tunneling across the effective barrier
is relevant in all the cases and becomes more important with
increasing J. This fact can be explained in terms of the
decreasing width of the barriers with increasing J, as shown
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in Fig. 3. It is worth noticing that in some cases, tunneling is
greatly enhanced by resonances just below the thresholds, as
is the case for J = 15 on both PESs (Fig. 4). In addition, there
is a dense resonance structure above threshold.

Reaction probabilities as a function of J (opacity
functions) at four different kinetic energies, E.,; = 13, 24,
41, and 81 K are shown in Fig. 5. For small values of J
and leaving aside the resonance pattern, results on both PES
are remarkably similar. However, for the largest values of J,
in accordance with the effective potentials, the VLABP PES
is somewhat more reactive. The differences are smaller with
increasing collision energies as the effect of LR interactions
is less significant and results on both PESs tend to converge.
At the four energies considered, the maximum value of J that
would be open neglecting tunneling, Jmax, is the same for both
PESs, and the NCS results, which are thus also the same, are
shown for the sake of comparison. Apart from the quantum
oscillations, they are found to be in a reasonable agreement
with the QM results. At the four energies studied, tunneling
across the centrifugal barrier becomes evident and seems to be
more important on the VLABP PES. From this comparison,
we can easily conclude the need of a good description of the
LR interactions when working at low collision energies, even
for energies well above the cold regime.

In Fig. 6, the quantum specific rate coefficients (the
cross sections multiplied by the relative velocity), k(E), on
the VLBAP PES are compared with the experimental results
from Ref. 37. The agreement is fairly good, even though the
experiments include the contribution from ortho-H,, which is
three times more abundant than para-H, in the experiment.
Actually, the cross sections for j =0 and j =1 are not
expected to be very different according to recent theoretical
results.®3 The simple procedure of counting states leads to a
statistical factor equal to 3/4 for the initial state Hy(j = 1), very
similar to the 6/7 corresponding to j = 0. It is worth noticing
that 3/4 is precisely the ratio between the experimental cross
sections in Ref. 37 and the pure Langevin value.

B. Low partial waves in the (ultra)cold regime

In the analysis of the (ultra)cold regime for a LR
potential behaving as —C,,/R" (n > 3), it is convenient to
define the characteristic length, R, = (2uC,/H*)"/"=2), and
the characteristic energy, E, = #?/(2uR2). The latter is of the
order of the p-wave centrifugal barrier, which appears around
R,,. For the case of n = 4, E, actually coincides with the height
of the centrifugal barrier assuming that R, is large enough for
a —C4/R* asymptotic behavior to be valid. It also coincides
with the so-called mean scattering length @.?® In our system,
Ry =a=~99.7apand E; ~ 8.6 X 1073 K.86

The behavior of the cross sections at very low kinetic
energies is given by the well known Wigner threshold
laws, 2100 which state that the elastic, 0'51, and the total-loss
(non-elastic) cross section, O'{OSS, associated to each partial
wave varies close to threshold as

ol ~ EX, (13)
Tlogs ~ B2, (14)
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Nevertheless, the threshold laws for elastic scattering are
modified for a potential with n = 4.21:1°! The phase shift for
¢ > 0 at very low collision energies is dominated by a term
~E originating from the polarization potential.'°> Hence, the
anomalous behavior of the elastic cross section is given by

15)
(16)

0'21 ~ constant,

0'51~E for ¢ > 0.

In summary, while the partial reaction cross sections are
expected to change as E‘~!/2, the partial elastic cross section
will remain constant for £ = 0, while changing as E for £ > 0.

Given that Hy(v =0, j =0) is the only rovibrational
state of the reactants open at the considered energies, the
inelastic process is absent and losses are only associated

to reaction, o-f; o= o!. As long as one is not interested on

product-state resolved magnitudes, it must be stressed that
all the information is contained in the diagonal elements
Sfm,fm(k)v

T
cu= ) 0d" = e D= Semem(R)P, (17)
tm tm
m T
o= 00" = Iz D= 1Smem(®PL (18)
tom ‘m

The expected behaviors can be distinguished in the left
panels of Fig. 7, where the ultracold reaction and elastic cross
sections calculated on the VLABP PES, for the lowest four
partial waves, are shown in logarithmic scale. Note the change
of slope of the reactive J = 1(= £) p-wave at energies around
E4 (8.6 mK). It is also remarkable the anomalous behavior for

0'51, with the slope of the elastic cross sections being the same
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— 0.75 ] and is shown using a vertical line. The
2 P,(J) calculated according to the NCS
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lines).
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for any ¢ > 0. Given the behaviors expected for £ = 0, the total
reaction cross section should change as E~'/? (the reaction
rate coefficient being thus constant) and the total elastic cross
section remain constant (the elastic rate coefficient changing
as E'/?) in the limit of extremely low kinetic energies, where
only £ =0 is open (see, for example, total reaction and
elastic rate coefficients shown in Fig. 8, which is discussed
below). Interestingly, when the partial elastic cross sections are
calculated on the ARTSP PES (bottom-right panel of Fig. 7)
their slope is different for any ¢ > 1, in clear contradiction
with the expected threshold behavior for a n = 4 potential.
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This can be taken as an indication that a particular surface,
the ARTPS surface in this case, is not reliable to describe low
energy collisions.

To obtain information about the energy partition after the
collision, we have calculated the state-to-state reaction cross
sections (Fig. 9). Not only the total reactive cross sections
follows the Wigner threshold law (o, o< E~'/?) but also the
state-to-state cross sections do. Furthermore, for energies
below 107* K, the o,(j)/ 3 ;70 r(j') ratio seems to remain
constant. However, while j’ = 0 is the highest populated state
at the lowest energies, it is clearly less populated than j’' = 1
and 2 for energies above 10 mK. Further information can be
obtained resorting to the state-to-state reaction probabilities. In
Fig. 10, their relative value to the overall reaction probability,

ﬁr (j"), is shown, where

-7, P!(j")
P = —
A= S G

and the summation runs over all the product channels. This
ratio is preferred to the reaction probabilities per se because
in contrast to the latter, which vanishes in the limit of zero
kinetic energy, the former remains constant. Indeed, according
to the factorization given by the statistical ansatz in Eq. (12),
the dependence on the capture probability in numerator and
denominator has to be cancelled. The capture probability,
which would die as k in the limit of zero kinetic energy in
order to fulfill the threshold law'®” would be the responsible for
the individual reaction probabilities vanishing. Besides, and
according to our simplistic approach to the statistical model,
the ratio would remain constant and given by the quotient of
the number of open channels corresponding to such rotational

(19)
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FIG. 7. Reaction and elastic partial cross sections corresponding to the lowest partial waves for D* +Hy (v =0, j = 0) collisions in the cold and ultracold regimes.

Note that the scales of left and right panels are different.
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state and the total number of open channels. Indeed, roughly
below 1 K (cold and ultracold energies) and regardless of the
value of J, the ﬁ: (j”) and thus the distribution of internal states
for each partial wave, remain constant. In contrast, they are
governed by a dense oscillating pattern above 1 K (Langevin
regime).

Focusing on the cold regime, for J =0, most of the
reactive flux goes to j* = O state, followed by j* = 1 and j' = 2.
For J = 1, thattrend changes and j” = 1 is more populated than
j’ =2 and 0. Finally, for J > 2, j’ = 2 is the most populated,
followed by j' =1 and 0. This trend can be rationalized in
statistical terms. For J = 0, regardless of j’, there is only one
open channel for each HD rotational state — with quantum
numbers (v’ =0, j’, Q; =0, J =0) in a body-fixed basis or
(=0, j, ¢=j,J=0)in a space-fixed basis — and the
statistical reasoning predicts the same probability irrespective
of j’for J = 0. Although similar, the quantum results show that
there is some preference for small values of ¢’ so that j' =0
gets more populated. For J = 1, the populations for j’ = 0,
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FIG. 9. State resolved reaction cross section for the collision D*+H,
(v=0, j=0)>HD(»'=0, j’)+H" on the VLABP PES.
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1, and 2 should keep the ratios 1:2:2, according to the open
number of channels. Indeed, j' = 1 has a population around
40%, but the population for j' = 0 is somewhat too high and
the one for j/ = 2 is too low. Finally, for J > 2, there are three
j’ =2 channels, two j’ = 1 channels, and one j’ = 0 channel,
leading to P/(j’ =2) > P/(j’=1) > P/(j’ = 0). This crude
statistical reasoning, based in the number of projections of

Jj’, is in agreement with the lower population of j’ =0, at
energies above 10 mK, as found in Fig. 9.

C. The quantum Langevin behavior

It must be stressed again that the energy dependence of
the Langevin model o (E), which should be valid only for
high energies (when many partial waves are open), meets the
requirements of Wigner threshold law (o (E) ~ E~'/?) in the
zero collision energy limit. Such situation only occurs for the
n = 4 case; for n # 4, the collision energy dependence of the
Langevin cross section is not any longer E~'/2. Therefore, for
an = 4 asymptotic potential, both the Langevin model at high
energy and the Wigner threshold law in the ultracold regime
predict energy independent reaction rate coefficients. Notably,
this does not imply that their values must be coincident.
However, the calculations show that in the present case,
the ultracold rate coefficient is just ~1.1 times bigger than
that given by the Langevin model. Considering that in the
high energy range, the rate coefficients are well accounted
for by the latter model, it turns out that the reaction rate
changes less than a factor of ten in a ten orders of magnitude
energy range. Averaging over the Boltzmann distribution
would surely make differences smaller. Hence, if confirmed
by experimental measurement, it would result of a basically
constant thermal rate coefficient. In what follows, we will try
to rationalize this unexpected Langevin behavior at ultracold
energies, where the centrifugal barrier does not even exist.

Very recently, and starting from slightly different quantum
defect theory frameworks, two quantal versions of the
Langevin model have been proposed.'®*!%* These universal
models (in the sense of an exclusive dependence on the LR)
allow to change smoothly from the high energy regime to
the ultracold region under the same Langevin assumption:
all the flux reaching the short-range region leads to reaction.
Or translated into the language of the model in Ref. 103,
the one we will consider below: the loss probability at SR,
P, is the unity. P™, the flux that is irreversibly lost from
the incoming channel at SR, is not directly observable nor
necessarily coincides with the reaction probability P/(E).
In very simplistic terms, the incoming flux which leads to
reaction, PrJ (E), has to overcome two obstacles: (i) it needs
to reach the SR region (without being reflected by the LR
potential or the centrifugal barrier); (ii) it has to find its way
to the products arrangements from the SR region. The latter
process is precisely the one described by the P™ parameter.
Only at high energies, in the absence of tunneling through
the centrifugal barrier and when quantum reflection by the
LR potential is negligible, we can affirm that P/(E) ~ P™.
Furthermore, the expression

o(E) ~ P* - o (E) (20)
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FIG. 10. Relative rotational state resolved reaction probability, Py (j")/ ) //Prj (j), for the collision D*+H; (v =0, j =0) on the VLABP PES.

should be valid in the Langevin regime if P™ is weakly
dependent on the energy and the partial wave.!%

Rather surprisingly, the conclusion derived from these
models for n = 4, under the Langevin assumption (P™ = 1),
is that the reaction cross section should reach a value
20 (E), as will be elaborated below, in the limit of zero
kinetic energy. This is twice the value predicted by the
Langevin expression, and not simply o (E), which is what
we have essentially got in the Wigner regime. To the
extent that the model could be applied to the system,
we can conclude that our system is not universal. That
is, the SR interactions play a role and the probability
to react once attained the transition state is not simply
one.

This result was not unforeseen. The universal case
(P =1) is expected when the number of product states
is large enough that all the reactive flux is irreversibly lost
from the incident channel due to couplings. Nevertheless, this
is probably not the case for the title reaction. There are many
channels coupled to the initial one inside the well, and the
randomization is equivalent to the population of all of them in
the complex. However, there are only four open channels at the
considered energies for J = 0, three of them corresponding to
products. This makes reasonable the possibility of about 1/4 of
the flux at SR trying to return from the complex to the incident
channel, and thus P™ =~ 3/4. It can be argued that this estimate
should be corrected: in order to reach the asymptotic region
of the reactant channel, this flux has to traverse again the LR
potential and part of it may be quantum reflected back into
the well; however, these processes of transmission/reflection
through the LR potential are not accounted for by the P™
parameter, but by the combination of the latter with the
s parameter (see below). We can get another estimate for
P™ from our quantum results. The relation P/=%(E) ~ P

=~

is expected to hold above the cold regime, when quantum
reflection effects are negligible. If we average P;=%(E) (in
order to eliminate energy dependent details) in the range
1-150 K, the value 0.58 results. However, it may be preferable
to use the values for o-(E), which is a more averaged quantity
than the individual reaction probabilities, in order to get an
effective value for P™ to characterize the reactive behaviour
of the PES. Using Eq. (20) to fit our quantum results in the
Langevin region, we find that o-(E)/oL(E) has an average
value of ~0.8 in the range 1-150 K.5¢

The value we have obtained for the quantum rate at
threshold, k(E) ~ 1.1ky, is expected to be very sensitive
to small inaccuracies in the PES. In contrast, our estimate
for P, obtained by fitting the QM results in the Langevin
region, where they are supposed to be almost quantitative,
is expected to be more robust. Using this estimate, we will
try to go further in our predictions regarding the ultracold
regime. However, we need to delve more into the quantum
defect model. According to it, the behavior in the Wigner
limit depends on two parameters y and s. The first parameter,
0 < y < 1, is directly connected to P™ through the equation

P =4y/(1+y) (1)

The second parameter is related to the tangent of an entrance
channel phase (similar to the semiclassical phase at zero
collision energy in the model by Gribakin et al.?®) and thus
it can vary in the range +oco. The model provides analytical
expressions in terms of these parameters which can be used to
fit experimental data.'® In particular, under the validity of the
model, the value of the reaction rate in a system with n = 4 is
given by'®

k(E) = danth X

u

y(1+ 52

R 22
1+ 52y (22)
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where u is the reduced mass of the system. In the
same notation, the Langevin rate can be expressed as
ki (E) =2anh/u and the result from Eq. (22) in the limit
y = 1 is twice the Langevin result, k(E) = 2k, (E), as noted
before.

The determination of the y (P™) and s parameters for
systems complying with the model amounts to characterize
its behavior in the ultracold regime completely, as well as
in a wide range of collision energies above it.'% Assuming
P =~ 0.8, the value we have got on average in the Langevin
region, we obtain y = 0.38 and only s needs to be determined
to completely characterize the ultracold rate. In Fig. 11, all the
values for k(E) which are compatible with y = 0.38 through
Eq. (22) are shown. To the extent of the validity of the model,
this would allow us to bound its value. Therefore, although the
QM ultracold reaction rate coefficient, k(E) ~ 1.1k, is prob-
ably affected by the inaccuracies of the PES, the experimental
value is likely to be confined in the 0.76ky < k(E) < 5.2kr
range. This reinforces our finding of a mainly constant rate
coeflicient in the whole considered range.

IV. SUMMARY AND CONCLUSIONS

We have carried out a detailed study of the D* + H,
ion-molecule system under the cold and ultracold regimes,
covering the 1078-150 K collision energy range. Rigorous
quantum mechanical calculations have been performed on
the potential energy surface by Velilla et al. (VLABP PES),
which faithfully reproduces the long range (quadrupole and
charge-induce dipole) behavior. The quantum dynamical
methodology used in this work is especially appropriate to
calculate ab initio cross sections at extremely low collision
energies. In addition, the method is ideally suited to tackle
complex mediated reactions.

The methodology has been applied to a reactive ion-
molecule system governed by a R™* potential at sufficiently
large distances. Such a long-range interaction makes the
calculations more demanding than other shorter range
potential (such as ~R~®) since propagations up to distances
on the order of 10° a, are required. Interpolation methods
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in the spirit of MQDT are suggested which may lead
to a considerable reduction of the computational cost.
The calculated elastic and reactive cross sections and rate
coefficients have been found to comply with the expected
threshold laws.

Interestingly, the absolute value of the rate coefficient
and its energy dependence in the ultracold regime are well
accounted for by the classical Langevin model, which, in
principle, is expected to work only when several partial waves
are open. However, such coincidence must be deemed as
accidental and would only occur for n = 4 potentials. Should
this behavior be confirmed by the experiment, a system would
have been found with a reaction rate coefficient which remains
almost constant in a kinetic energy range of more than ten
orders of magnitude. We have analyzed the behavior found
in the ultracold regime in terms of the quantum-defect model
in Ref. 103. The expressions of the model provide some
additional arguments to support the finding of an essentially
constant rate coefficient.
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