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It is well known that the problem of the cosmological constant appears in a new light in unimodular
gravity. In particular, the zero-momentum piece of the potential does not automatically produce a
corresponding cosmological constant. Here we show that quantum corrections do not renormalize the
classical value of this observable.
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I. INTRODUCTION

There are many facets to the problem of the cosmologi-
cal constant. One of them is to explain why the vacuum
energy does not produce a huge value. It would appear that
either Wilsonian ideas of effective theories do not work in
this case, or else that vacuum energy does not obey the
equivalence principle.
In unimodular gravity the vacuum energy (actually all

potential energy) is naively decoupled from gravitation,
because when the spacetime metric is unimodular, that is

ĝ≡ det ĝμν ¼ −1; ð1Þ

the interaction term between the potential energy and the
metric is of the type

Sin ≡
Z

dnx

�
1

2
ĝμν∂μψ∂νψ − VðψÞ

�
; ð2Þ

(where ψ generically stands for any matter field), so that
the matter potential does not couple to gravitation at the
Lagrangian level. Actually things are not so simple, and
there is an interaction forced upon us by the Bianchi identity.
A novel aspect is that the unimodular condition breaks full
diffeomorphism invariance DiffðMÞ (where M is the space-
time manifold) to a subgroup TDiffðMÞ consisting of those
diffeomorphisms x → y that have unit Jacobian, that is

det
∂yα
∂xμ ¼ 1: ð3Þ

Incidentally, van der Bij, van Dam, and Ng [1] showed a
long time ago that TDiff is enough to make gauge artifacts of
the three excess gauge polarizations when going to the

massless limit in a spin-two flat space theory. (There are
five polarizations in the massive case and only two in the
massless limit).
It is possible (and technically convenient) to formulate

the theory in such a way that it has an added Weyl
invariance by writing

ĝμν ≡ g−
1
ngμν ð4Þ

because then the variations δgαβ are unconstrained, whereas

ĝαβδĝαβ ¼ 0: ð5Þ
We shall first recall in what sense the issue of the
cosmological constant is changed in unimodular gravity;
this we first do in a flat space setting, and then in the
full nonlinear theory. We then will report on a one-loop
calculation in which we computed the counterterm and
found that no cosmological constant is generated to this
order. The argument can actually be extended to any order
in perturbation theory.

II. FLAT SPACE GAUGE SYMMETRY

In Ref. [2] an analysis of the most general action
principle built out of dimension-four operators for a
spin-two field hμν was made, namely

L≡X4
i¼1

CiOðiÞ ð6Þ

Oð1Þ ≡ 1

4
∂μhρσ∂μhρσ

Oð2Þ ≡ −
1

2
∂ρhρσ∂μhμσ

Oð3Þ ≡ 1

2
∂μh∂λhμλ

Oð4Þ ≡ −
1

4
∂μh∂μh; ð7Þ
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where all indices are raised and lowered with the flat space
metric ημν, and h≡ ημνhμν. Also C1 ¼ 1 fixes the global
normalization. The result of the analysis was that LTDiff
(that is, linearized TDiff) invariance forces

C2 ¼ 1; ð8Þ
where LTDiff symmetry is just invariance under the trans-
formations

δhμν ¼ ∂μξν þ ∂νξμ ð9Þ

with

∂μξ
μ ¼ 0: ð10Þ

The most important result was, however, the following.
Amongst all the TDiff invariant theories obtained for
arbitrary values of C3 and C4, there are only two that
propagate spin-two only, without any admixture of spin-
zero. These include

C3 ¼ C4 ¼ 1; ð11Þ

which has an enhanced symmetry under linearized diffeo-
morphisms (without the transversality restriction). This is
the Fierz-Pauli theory.
The other one corresponds to

C3 ¼
2

n
C4 ¼

nþ 2

n2
: ð12Þ

This second theory is actually a truncation of the Fierz-
Pauli one, obtained by

hμν → hμν −
1

n
hημν ð13Þ

(which is not a field redefinition because it is not invert-
ible). This theory was called WTDiff and is actually the
linear limit of unimodular gravity.

III. THE NONLINEAR REGIME

The truncation of general relativity to unimodular
metrics is simply

S≡ −Mn−2
P

Z
dnxðR½ĝ� þ Lmatt½ψ i; ĝ�Þ

¼ −Mn−2
P

Z
dnxjgj1n

�
Rþ ðn − 1Þðn − 2Þ

4n2

×
∇μg∇μg

g2
þ Lmatt

�
. ð14Þ

In terms of a general metric, the equations of motion
(EM) are given [2] by the manifestly traceless expression

Rμν −
1

n
Rgμν −

ðn − 2Þð2n − 1Þ
4n2

�∇μg∇νg

g2
−
1

n
ð∇gÞ2
g2

gμν

�

þ n − 2

2n

�∇μ∇νg

g
−
1

n
∇2g
g

gμν

�

¼ M2−n
P

�
Tμν −

1

n
Tgμν

�
: ð15Þ

When jgj ¼ 1 they are quite similar to the ones posited
in 1919 by Einstein for obscure reasons [3,4] related to
Mie’s theory.
Now it is easy to see that the Bianchi identities bring the

trace back into the game, albeit in a slightly different form,

n − 2

2n
∇μR ¼ −

1

n
∇μT; ð16Þ

which integrates to

n − 2

2n
Rþ 1

n
T ¼ −C; ð17Þ

so that going back to (15) we recover the full Einstein
equations,

Rμν −
1

2
Rgμν − Cgμν ¼ Tμν; ð18Þ

with an arbitrary integration constant which takes the
role of a cosmological constant and whose value is to be
defined by boundary conditions. Moreover, since the
original equations couple to the traceless part of the
energy-momentum tensor, any possible vacuum energy,
or dynamical cosmological constant coming from a non-
trivial minimum in the potential of a scalar field, is
absorbed into the still arbitrary constant [5].

IV. QUANTUM CORRECTIONS

We have computed [6] the quantum corrections around
an arbitrary unimodular background,

gμν ≡ ḡμν þ κhμν; ð19Þ

with

jḡj ¼ 1: ð20Þ
The calculation has some technical complications stem-
ming from the fact that the full gauge symmetry is a
combination of TDiffðMÞ with WeylðMÞ. This makes the
gauge fixing somewhat involved, and solving the problem
requires the introduction of a gauge-fixing term through a
Becchi-Rouet-Stora-Tyutin quantization instead of the
usual and simpler Faddeev-Poppov technique. The most
important issue is that we need to introduce a new
collection of fields representing not only the usual
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Faddeev-Poppov ghost fields but also a collection of
Nielsen-Kallosh ghosts in order to implement the constraint
over transverse diffeomorphisms∇μcTμ ¼ 0. The full set of
fields required for the quantization is then

hð0;0Þμν ; cð1;1Þμ ; bð1;−1Þμ ; fð0;0Þμ ;ϕð0;2Þ

πð1;−1Þ; π0ð1;1Þ; c̄ð0;−2Þ; c0ð0;0Þ

cð1;1Þ; bð1;−1Þ; fð0;0Þ;

where ðm; nÞ are the Grassman number, defined mod 2, and
the ghost number of each field.
Here we have three families—displayed in three lines—

of fields. The first line includes the physical graviton field
together with the usual ghost field content we would assign
naively to fix an unrestricted Diff symmetry together with
an extra Nielsen-Kallosh field ϕ. The second line represents
the field content introduced to fix the gauge symmetry
inherited by the ghost fields. Finally, the third line is the
field content due to Weyl invariance.
This way SUG þ Sfixing will then contain interactions

between all the different fields. However, by choosing the
gauge fixing properly, all the complications can be contained
in only one of the quadratic operators, the one involving hμν,
f and c0 which happens to be nonminimal. Its determinant
has been computed using the generalized Barvinsky-
Vilkovisky technique developed by [7]. Full details will
be given in [6] but let us emphasize that we have been able to
keep one free gauge parameter in all intermediate steps,
which should cancel when putting the final counterterm on
shell owing to the Kallosh theorem. It does, indeed, which is
a test of our computations.
At any rate, the free background EM are given by

R̄μν ¼
1

n
R̄ḡμν; ð21Þ

which implies

R̄ ¼ constant; ð22Þ

as well as

R̄μνR̄μν ¼ 1

n
R̄2 ¼ constant: ð23Þ

This in turn means that the Weyl tensor squaredW4, which
is related to the Euler density E4 by the four-dimensional
relationship

W4 ¼ E4 þ 2R̄μνR̄μν −
2

3
R̄2 ¼ E4 þ constant; ð24Þ

is also a topological density modulo a dynamically irrel-
evant term.

The one-loop counterterm is

S∞ ¼ 1

16π2ðn − 4Þ
Z

d4x

�
119

90
RμνρσRμνρσ −

83

120
R2

�

¼ 1

16π2ðn − 4Þ
Z

d4x

�
119

90
E4 þ constant

�
: ð25Þ

This is to be contrasted with the counterterm of general
relativity with a cosmological constant [8]

SGR ¼ 1

16π2ðn − 4Þ
Z ffiffiffiffiffi

jḡj
p

d4x

�
−
1142

135
Λ2 þ 53

45
W4

�
:

ð26Þ

This result has been obtained in dimensional regularization,
where quadratic divergences are regularized to zero. The
physical meaning of quadratic divergences in quantum
gravity has been subject to some discussion in the literature
cf. [9–11]. Now the important thing is that all constant
contributions, which usually contribute to the cosmological
constant because they couple to the metric through the
volume element, are here dynamically irrelevant precisely
because they do not couple to the gravitational field. Those
terms that we computed, in spite of being gauge indepen-
dent, are then physically irrelevant.

V. CONCLUSIONS

It has been argued in this paper that quantum corrections
do not generate a cosmological constant in unimodular
gravity. It would be more precise to say that the cosmo-
logical constant is generated, but it does not couple to the
gravitational field.
It is worth remarking that although we have performed

an explicit computation at the one-loop level only, our
result can be extended to any loop order, since it relies only
in the fact that the corresponding operators are nondynam-
ical (or in the absence of anomaly) and not in the particular
numerical value of the counterterms.
The result reported in this paper is not a consequence of

having chosen ḡ ¼ −1, but rather it stems from Weyl
symmetry which prevents dimension-zero terms in the
action. That is,

S ¼ Mn
P

Z
dnxð−ḡÞβ ð27Þ

for any nonvanishing β.
We believe this is a step forward in the understanding of

the cosmological constant.
Unimodular gravity is quite close to general relativity in

spite of the technical complications caused by the absence
of full DiffðMÞ symmetry. It is worth exploring it in further
detail to fully understand the subtle differences between
both theories.
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