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Abstra
t

The Mi
ro
anoni
al Metropolis Monte Carlo method, based on a random sampling

of the density-of-states, is revisited for the study of mole
ular fragmentation in the gas

phase (isolated mole
ules, atomi
 and mole
ular 
lusters, 
omplex biomole
ules, et
).

A random walk or uniform random sampling in the 
on�gurational spa
e (atomi
 po-

sitions) and a uniform random sampling of the relative orientation, vibrational energy

and 
hemi
al 
omposition of the fragments is used to estimate the density of states of
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the system, whi
h is 
ontinuously updated as the random sampling populates individ-

ual states. The validity and usefulness of the method is demonstrated by applying it

to evaluate the 
alori
 
urve of a weakly bound rare gas 
luster (Ar13), to interpret

the fragmentation of highly ex
ited small neutral and singly-positively-
harged 
arbon


lusters (Cn, n = 5, 7, 9; and C

+
n , n = 4, 5) and to simulate the mass spe
trum of the

a
etylene mole
ule (C2H2).

1 Introdu
tion

High-energy ioni
 and ele
troni
 beams, as well as laser pulses and syn
hrotron radiation

sour
es, are widely used to investigate the properties and dynami
s of 
omplex mole
ular sys-

tems. Bombardment by these parti
les involves ex
itation and/or ionization of the mole
ular

target, whi
h ultimately disso
iates as a 
onsequen
e of the ex
ess of energy deposited by the

proje
tile.

1�5

Thus the analysis of the type of fragments resulting from the 
ollision together

with their kinemati
al properties 
an provide useful information on the parent mole
ular

system, su
h as its stability against ionization and ex
itation, its ele
troni
 stru
ture and

geometri
al 
on�guration, the type of intera
tion between the subunits 
onforming the 
lus-

ter/mole
ule, et
.

6�12

For this, a key point is to understand how the energy deposited on the

mole
ular target is distributed among the various ele
troni
 and nu
lear degrees of freedom

available in the system (ele
troni
, vibrational, rotational and translational) and how this

distribution leads in the end to the observed fragmentation.

In this respe
t, time-resolved experimental studies, as those making use of ultrashort light

pulses, 
an provide a wealth of information about the dynami
s of su
h ex
ited and ionized

mole
ules.

13,14

For example, by using pump-probe s
hemes, one 
an infer the motion of holes


reated after ionization of a biomole
ule

15

or follow the nu
lear dynami
s of 
harged and

ex
ited mole
ules

16

by measuring fragmentation yields as a fun
tion of the pump-probe delay

time. In addition to this, new experimental te
hniques for 
luster produ
tion and ion stor-

age rings fa
ilitate the study of in
reasingly more 
omplex systems, su
h as, e.g., 
lusters of
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fullerenes

17

or 
lusters of poly
y
li
 aromati
 hydro
arbons.

18

However, the full re
onstru
-

tion of the properties and evolution of 
omplex mole
ular targets from su
h time resolved

measurements is still very 
hallenging due to the large number of a

essible fragmentation


hannels, whi
h requires the use of sophisti
ated multi
oin
iden
e te
hniques.

19,20

In re
ent times, theoreti
al methods have partly mitigated these limitations by helping

in the interpretation of experimental measurements and by making semi-quantitative pre-

di
tions that have driven experimental e�orts in the appropriate dire
tion.

11

First-prin
iples

mole
ular dynami
s (MD) methods, for whi
h 
ommer
ial 
omputational pa
kages are avail-

able, are in prin
iple the ideal tools to perform su
h theoreti
al studies. For example, by

using semiempiri
al methods to des
ribe the ele
troni
 stru
ture, fragmentation of large

polymeri
 mole
ules has been studied with MD.

21�23

Also 
ombinations of more sophisti-


ated density-fun
tional-theory stru
tural information with MD methods have been re
ently

proposed to reprodu
e mass spe
tra

24

and to su

essfully investigate the fragmentation of

small biomole
ules in 
ollisions with fast atomi
 ions (see e.g.

25�34

). However, these meth-

ods are extremely expensive and therefore are of no pra
ti
al use for large systems or for

explorative studies that require 
onsidering a large variety of initial 
onditions. In 
ontrast,

methods based on statisti
al me
hani
s are 
omputationally mu
h more a

essible and 
an

thus be very valuable for in situ interpretation of fragmentation experiments

35�42

sin
e quan-

titative des
ription of the pro
esses 
an be obtained. Unfortunately, existing 
omputational

tools based on statisti
al methods are usually designed to study a parti
ular type of systems

and/or pro
esses, and therefore they do not have the versatility of MD methods.

In this work we present an extension of the statisti
al Mi
ro-
anoni
al Metropolis Monte

Carlo (MMMC) method that goes a step further and 
an be applied to study fragmentation

pro
esses in a large variety of systems irrespe
tive of their 
omposition and the nature of the


hemi
al bonding between their elementary 
onstituents. The proposed extension, whi
h we

will 
all M3C for short, allows us to investigate fragmentation of systems that range from

weakly bound noble-gas 
lusters to tightly bound 
arbon 
lusters and organi
 mole
ules. In
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its origins, the MMMC method was su

essfully applied to study thermodynami
 properties

in nu
lear physi
s,

43

then used to study fragmentation of hot metal 
lusters

38

and highly

ex
ited neutral 
arbon 
lusters.

44�46

In essen
e, the MMMC 
onsists in partitioning the mass,


harge, energy, and momentum (linear and angular) of an ex
ited mole
ular system (whi
h

are 
onserved in the mi
ro-
anoni
al approa
h) among all a

essible fragmentation 
hannels

with probabilities governed by 
onsiderations of maximum entropy (see Ref.

45

). The key

aspe
t of this methodology is that it provides a random way to move in phase spa
e until

a region of maximum entropy is rea
hed, where the physi
al observables are 
omputed by

performing a simple statisti
al average.

To evaluate fragmentation yields that are dire
tly 
omparable with experiment, one must

know the energy distribution f(E) in the ex
ited/ionized mole
ular target resulting from the


ollision with the proje
tile.

44

However, in most 
ases, this energy distribution is not known

(Refs.

44,47�49

are notable ex
eptions) and must be estimated from semi empiri
al arguments

or from theoreti
al simulations performed at di�erent levels of approximation, su
h as those

based on stopping-power methods

50

or on simpli�ed 
lose-
oupling approa
hes.

48,51�54

Con-

versely, a �t of experimentally determined fragmentation yields to MMMC 
al
ulated ones


an be used to obtain the unknown energy distribution f(E), whi
h 
an then be used to

interpret other measurements performed under similar experimental 
onditions. Our new

M3C tool allows one to 
onsider this se
ond approa
h in a general way.

The paper is organized as follows. First (se
tion 2), we present a detailed theoreti
al

des
ription of the method by 
onsidering a mole
ular system in full generality. We go be-

yond earlier MMMC derivations

38,45

by formally in
luding the 
oupling between the angular

momenta of the fragments and the energy barriers that may appear on ea
h fragmentation


hannel. We also present our implementation to 
ompute fragmentation probabilities and

spe
ies, fragment energy distributions, temperature and heat 
apa
ities as a fun
tion of the

ex
itation energy, among others. In se
tion 3, we des
ribe the algorithms and strategies used

in the M3C software pa
kage based on the above theory. Finally, in se
tion 4, we illustrate
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the performan
e of the method in some prototypi
al systems. In parti
ular, we evaluate the


alori
 
urve of the weakly bound atomi
 
luster Ar13, we study the fragmentation of neutral

(C5,C7,C9) and singly 
harged (C

+
4 , C

+
5 ) 
arbon 
lusters, and we simulate the mass spe
tra

of the a
etylene mole
ule, C2H2. Se
tion (5) summarizes the main 
on
lusions of this work.

2 Theory

In this se
tion we des
ribe in detail the ingredients of our model. As we will show, the

main goal is to rea
h a reliable expression for the density of states (DOS) of the system,

whi
h is the most important quantity in the mi
ro
anoni
al ensemble. We �rst present the

Metropolis Monte Carlo approximation (se
tion 2.1), where we provide an overview of the

method. In the se
ond part (se
tion 2.2) an extended derivation of the DOS is given.

2.1 Mi
ro
anoni
al Metropolis Monte Carlo model

In the de�nition of the mi
ro
anoni
al ensemble in statisti
al physi
s, the system under

study (nu
lei, atoms, mole
ules, 
lusters, spins, et
.) has �xed energy E and its statisti
al

equilibrium is 
hara
terized by the mi
ro
anoni
al entropy, whi
h is given by the Boltzmann's

formula:

S = kB ln Ω(E) , (1)

where kB is the Boltzmann's 
onstant and Ω(E) is the DOS. In the following, in addition

to the 
onservation of energy, we will 
onsider a mi
ro
anoni
al ensemble in whi
h both the

total angular momentum J 0 and the total linear momentumP0 of the system are 
onserved.

Within a semi-
lassi
al des
ription, the number of a

essible mi
ro-states is proportional to

the DOS expressed as:

Ω(E,P0,J 0) =

∫

dΓ δ
[

H(Γ)−E
]

δ
[

J (Γ)−J 0

]

δ
[

P(Γ)−P0

]

, (2)
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where H(Γ) represents the Hamiltonian of the system, and Γ the asso
iated phase spa
e (all

the possible values of position and momentum 
oordinates).

We simplify the treatment of the translational motion by referring the linear momentum

P of the 
onstituent fragments to the 
enter-of-mass laboratory-oriented system of 
oordi-

nates. The 
onstrain in P 
an be easily integrated out by �xing P0 = 0. However, it is not

possible to de�ne a system of 
oordinates where the system does not rotate and, therefore,

it is not possible to integrate out the 
onstrain in J using a similar strategy. However after

some approximations, we will show in se
tion 2.2 that Eq. (2) 
an be approximated as follows

Ω(E,J 0) ≈ A
N
∑

i=1

Ω′ (X i;E,J 0) , (3)

where A is a 
onstant independent of the energy and N is the number of state ve
tors of

a Markov 
hain in phase spa
e (see below). Therefore, the total DOS may be seen as an

average of the lo
al DOS, Ω′ (X ;E,J 0), whi
h is a fun
tion of the system's state ve
tor

X = (c,Ev,R, θ) , (4)

where c represents the 
omposition of the system, i.e. the number of fragments (mole
ules)

and their 
ompositions (
harge, geometry, ele
troni
 
on�guration, spin multipli
ity), Ev

the vibrational energies, R the positions (
artesian 
oordinates of the 
enters of mass of the

fragments), and θ their orientations in spa
e.

The mathemati
al representation we use for Ω′ (X ;E,J 0) is dedu
ed in se
tion 2.2.4;

the important point in our approa
h is to generate the minimum number of state-ve
tors

that provides an a

urate des
ription of the DOS a

ording to equation (3). In order to do

this, we take advantage of a sto
hasti
 sampling method. In parti
ular, we use a Markov


hain Monte Carlo sampling algorithm.

The Lapla
e prin
iple of indi�eren
e assigns a priori an equal probability to all phase

spa
e points situated on the energy surfa
e H(Γ) = E. Therefore, we 
an write this proba-
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bility density as

P (Γ;E,J 0) =
1

Ω(E)
δ
[

H(Γ)− E
]

δ
[

J (Γ)−J 0

]

(5)

The statisti
al average of a physi
al quantity f 
an be expressed in the spa
e of the system's

state-ve
tors, as follows

〈

f
〉

=

∫

dΓ P (Γ)f(Γ) =

N
∑

k=1

P (X k)f(X k), (6)

where we have omitted the parametri
 dependen
e on E and J 0 for the sake of simpli
ity

(it will be introdu
ed when needed). Probability density of �nding the system in the state

X k 
an be written as

P (X k;E,J 0) =
Ω′(X k;E,J 0)

Ω(E,J 0)
. (7)

In order to 
al
ulate statisti
al averages, this probability fun
tion may be used as a weighting

fa
tor in a mi
ro
anoni
al Markov 
hain Monte Carlo simulation (see e.g.

55�57

). In this

method, one moves in small steps (Markov 
hain)

X 1 → X 2 → · · · → X k → · · · → XN , (8)

towards the most important region of the phase spa
e, i.e. the region exhibiting the highest

values of Ω′(X k), the maximum entropy region. At the kth
step, the new generated 
andidate

X k+1 will be a

epted or reje
ted depending on the a

eptan
e ratio p(X k → X k+1), given

by

p(X k → X k+1) = min

(

1,
P (X k+1)

P (X k)

)

= min

(

1,
Ω′(X k+1)

Ω′(X k)

)

. (9)

i.e. the 
andidate is a

epted (X k+1 is used in the next step) if p ≥ 1, a

epted with a �nite

probability if U{0,1} ≥ p > 1, or otherwise reje
ted ( X k+1 is dis
arded and X k is reused

in the next step). Thus, the Markov 
hain is given by the a

epted state ve
tors, assuming

that, if a point is reje
ted, the system returns to the previous one (Xk+1 = Xk). At the end

of the simulation, after equilibration of the system (burn-in period), the expe
ted values of

7



a quantity f 
an be approximated by a simple arithmeti
 average

〈

f
〉

=
1

N

N
∑

k=1

f(X k) , (10)

where the error on 〈f〉 s
ales as 1/
√
N , being N the number of state ve
tors in the Markov


hain.

2.2 Computation of the Density of States

We 
onsider a mole
ule 
omposed of n atoms and that 
an be fragmented in Nc di�erent

ways (
hannels). The strategy that we use begins with introdu
ing a natural de
omposition

of the system's phase spa
e, whi
h results from a 
onvenient sele
tion of the intera
tion

potential among the fragments. Therefore, the (3n × Nc)−dimensional problem 
an be

redu
ed to Nc un
oupled problems (the details are shown in se
tion 2.2.1). Our se
ond

approximation is to negle
t the ro-vibrational 
ouplings; to this we 
onsider that the system


an be treated in the semi-rigid linked atomi
 framework (se
tion 2.2.2). Consequently,

the Hamiltonian model to represent a spe
i�
 fragmentation 
hannel is separable, whi
h

allows one to integrate out the vibrational 
ontribution from the total DOS by 
onvolution.

Following a similar strategy to that used in referen
e,

58

it is possible to integrate out all

the linear momenta Pµ and the 
orresponding orbital angular momenta asso
iated to the

fragments,

∑

Rµ × Pµ, where all orbital angular momenta 
ollapse to the total orbital

angular momentum by taking into a

ount their 
onservation rules. Finally, by 
hoosing a


onvenient angular momentum 
oupling s
heme, we rea
h an expression for the DOS where

the angular momentum 
onservation rules are automati
ally taken into a

ount (se
tion

2.2.3).
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2.2.1 Phase-spa
e 
hannel de
omposition

In 
lassi
al me
hani
s, the phase spa
e Γ is a 2f -dimensional spa
e, whose axes are the

generalized dynami
al 
oordinates r and their 
onjugate momenta p. In this way, ea
h

possible state of the system 
orresponds to one unique point in the phase spa
e. If one


onsiders a system with ν indistinguishable parti
les and f degrees of freedom, its state is

given by the values of r = {r1, r2, · · · , rf} and p = {p1, p2, · · · , pf}. The integration element

in the phase spa
e Γ = {r,p} reads

d2fΓ :=
1

∏

k νk!

dfr dfp

(2π~)f

and it 
an be 
onsidered as the number of quantum states asso
iated with the 
lassi
al limit

within the volume element dfr dfp. The �rst fa
tor at the right hand side of the equation

is known as the Gibbs' 
orre
tion fa
tor, whi
h appears when one takes into a

ount the

permutations of di�erent kinds of identi
al parti
les.

-8
.0 -4

.0

-4
.0

-6
.0

0.0
4.0

8.0

12.0

0.0

Figure 1: Upper panel: Double well potential for a diatomi
 hypotheti
al system AB. Lower

panel: Asso
iated phase spa
e and its 
hannel de
omposition (see text for details).
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Now, in order to introdu
e the 
on
ept of phase spa
e 
hannel de
omposition, we 
onsider

the fragmentation of a diatomi
 mole
ule AB, where the intera
tion between the atoms A

and B is given by a double well potential as shown in Fig. 1a. Let us 
onsider the following

matrix whi
h represents the 
omposition of the system:

C[AB] :=







AB AB' A B

A 1 1 1 0

B 1 1 0 1






,

where the 
olumns are asso
iated to all possible spe
ies/fragments (AB, AB', A, and B) and

the rows to the atomi
 
onstituents of those spe
ies/fragments (A and B). Number 1 indi
ates

that a given spe
ies or fragment 
ontains a parti
ular atomi
 
onstituent, and 0 that it does

not. We assign to ea
h spe
ies/fragment the set si = 
oliC[AB]. In this system, there are three

possible fragmentation 
hannels: AB(c1 = {s1}), AB'(c2 = {s2}) and A+B(c3 = {s3, s4}),

where the di�eren
e between 
hannels AB and AB' is the internu
lear distan
e. As 
an be

seen, a fragmentation 
hannel is represented as a multiset 
ontaining spe
ies as elements. At

varian
e with a set, a multiset allows multiple instan
es of its elements, where the number

of instan
es for a given element is 
alled multipli
ity.

After separation of the 
enter-of-mass motion, the asso
iated phase spa
e is the two-

dimensional 
urve plot shown in Fig. 1b. Based on the lo
al maximum position (r ∼ 4.5Å)

and the asymptoti
 limit of the intera
tion potential, it is possible to make a partition of

the phase spa
e in three regions (see Fig. 1b):

Γ = Γc1 ∪ Γc2 ∪ Γc3 ∴ Γck ∩ Γcl = 0, k 6= l

whi
h allows us to de�ne in an univo
al way the limits for ea
h fragmentation 
hannel.

Consequently, we 
an asso
iate the points in ea
h region with ea
h 
hannel: (r, p) ∈ Γc1 with


hannel AB, (r, p) ∈ Γc2 with 
hannel AB' and (r, p) ∈ Γc3 with 
hannel A+B. Therefore,

10



any kind of integral on the phase spa
e is transformed as follows

∫

dΓ =⇒
3

∑

j=1

∫

Γcj

dfcjr dfcjp

(2π~)fcj
.

On the other hand, as 
an be seen in Fig. 1b, the de
omposition of the phase spa
e indire
tly

indu
es di�erent intera
tion potentials for ea
h fragmentation 
hannel. Thus we 
an write

three di�erent Hamiltonians asso
iated with ea
h 
hannel

HΓcj
(r,p) =

p2

2m
+ Ucj (r) ∴ j = 1, 2, 3 .

It is important to emphasize that this phase spa
e de
omposition preserves the Hamiltonian

�ows, therefore, the ergodi
ity of the system is also preserved, whi
h is very important in

the statisti
al des
ription that we will use hereafter.

For the general 
ase, the phase spa
e de
omposition into Nc fragmentation 
hannels reads

as

Γ =
Nc
⋃

j=1

Γcj ∴ Γck ∩ Γcl = 0, k 6= l ,

and therefore, the integration over the phase spa
e reads

∫

dΓ =⇒
Nc
∑

j=1

Ωe(cj)Ωn(cj)

∫

Γcj

dfcjr dfcjp

(2π~)fcj
. (11)

We have introdu
ed in Eq. (11) the degenera
y of the asso
iated ele
troni
 energy level

Ωe(cj) (i.e. the ele
troni
 DOS) and the 
ombinatorial weight Ωn(cj) (i.e. the 
ombinatorial

DOS) for the 
hannel cj.

The ele
troni
 state degenera
y takes into a

ount the total number of mi
rostates of

the ele
troni
 states based in the symmetry of the ele
troni
 wave fun
tion. Expli
itly, it is

11



given by,

Ωe(cj) =

N
(j)
f
∏

i=1

Ωe(sj)

Ωe(s) =































































(2S + 1)(2L + 1) if s is an atom

(2S + 1) if s is a linear mole
ule (ML = 0)

(2S + 1)2|ML| if s is a linear mole
ule (ML 6= 0)

(2S + 1)2D if s is not a linear mole
ule

1 otherwise.

(12)

In the 
ase of atoms, the ele
troni
 state degenera
y (assuming LS 
oupling) is 
om-

pletely spe
i�ed by the total spin (S) and the total orbital angular momentum (L) quantum

numbers. In the 
ase of linear mole
ules, L is no longer a good quantum number due to

la
k of spheri
al symmetry. Thus, the number of mi
ro-states now depend on ML, whi
h


orresponds to the 
omponent of L along the mole
ular axis. Finally, in the 
ase of nonlinear

mole
ules, it is ne
essary to spe
ify the degenera
y of the asso
iated irredu
ible representa-

tion D, where D = 1 for A and B, and D = 2, 3, 4, 5 for E, F,G,H , respe
tively. Noti
e

that by knowing the fragments' atomi
/mole
ular symbol, we 
an immediately 
al
ulate the

number of mi
ro-states by using Eq. (12).

The 
ombinatorial weight Ωn(cj) takes into a

ount that the number of identi
al parti
les


an 
hange (a
tually after the phase spa
e de
omposition it is ne
essary to 
onsider identi
al

fragments instead of identi
al parti
les), keeping invariant the atomi
 
omposition and the

total 
harge of the system. It reads

Ωn(cj) =
1

∏

k m

(

s
(j)
k

)

!
δ

{ N
(j)
f

∑

i=1

s
(j)
i − s0

}

δ

{ N
(j)
f

∑

i=1

z
(j)
i − z0

}

(13)

where m

(

s
(j)
k

)

represents the multipli
ity of the k-th fragment in the 
hannel cj , and s0

and z0 the identity of the initial fragment and its 
harge, respe
tively. Thus, Dira
's delta

12



fun
tions assure the 
omposition and 
harge 
onservation rules. Eq. (13) is a generalization

of the weight wNZ (number of ordered partitions of a 
luster of NT atoms and 
harge ZT

into Nf fragments) de�ned in our earlier implementation of the MMMC methodology.

45

Indeed, it possible to demonstrate that the weight wNZ is equivalent to the summation of

all Ωn(cj) 
ontaining the same number of fragments. However, this des
ription is limited to

study mole
ules with only one kind of atoms. In our new des
ription, Eq. (13) allows us to

des
ribe the fragmentation of mole
ules 
ontaining di�erent kinds of atoms.

A

ording to Eq. (11), the integration in phase spa
e 
an be seen as the summation of

the 
ontributions from di�erent independent 
hannels. Thus, in the next se
tion, we fo
us

on obtaining the Hamiltonian fun
tion asso
iated to a given 
hannel.

2.2.2 Hamiltonian Model for a Fragmentation Channel

In our model we 
onsider three approximations: (i) we assume the validity of the Born-

Oppenheimer approximation, (ii) a given fragmentation 
hannel is represented as a set of

mole
ules/fragments 
onstru
ted in a semi-rigidly linked atomi
 framework, where the in-

tera
tion between them are introdu
ed by a pair-wise like potential that depends on the

distan
e between their 
enters of mass and does not 
onsider their relative orientations; (3)

we 
onsider a harmoni
 expansion for the internal degrees of freedom for ea
h fragment

(Q,P).

If one denotes by R =
{

R1,R2, . . . ,RNf

}

the 
enter-of-mass positions of all the frag-

ments with respe
t to the laboratory frame (lab), θ =
{

θ1, θ2, . . . , θNf

}

their orientations

with respe
t to their own body-�x frame (bf ), where θ = (α, β, γ) represents the Euler

angles (R(θ) is the asso
iated rotation matrix that allows to 
onvert from lab→bf ) and

Q =
{

Q1,Q2, . . . ,QNf

}

their internal atomi
 displa
ements in mass-weighted 
oordinates

around their equilibrium geometries (vibrations), it is possible to show that the 
lassi
al
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Hamiltonian for a given fragmentation 
hannel is given by (see e.g.

59�61

):

H (R,P ,θ,J,Q,P) =

Nf
∑

µ=1

{

1

2
P

T

µM
−1
µ Pµ +

1

2
JT

µ I
−1
µ Jµ +

1

2
PT

µPµ +
1

2
QT

µfµQµ

}

+ U(R) (14)

where P and P are the 
anoni
al 
onjugate momenta of R and Q respe
tively, Mµ is a 3×3

matrix asso
iated with the mass of the fragments Mµ = mµI3×3, and fµ represents the for
e


onstant matrix

{fµ}ij =
1

√
miµmjµ

(

∂2U

∂xiµ∂xjµ

)

, (15)

whi
h 
an be diagonalized in order to obtain the fvµ vibrational frequen
ies asso
iated to

ea
h fragment ωµ = {ω1µ, ω2µ, . . . , ωfvµµ}. Iµ is the inertia tensor related to the rotation

of the µ-th fragment around its 
enter-of-mass, in the body-�x frame of referen
e with an

angular momentum Jµ.

The potential energy in our Hamiltonian model, U(R), as we said above, is de�ned as

the sum of the pairwise intera
tions between the fragments given by

U(R) ≈
Nf
∑

µ=1

U (1)
µ +

Nf−1
∑

µ=1

Nf
∑

ν=µ

U (2)
µν (|Rµν |) , (16)

where U
(1)
µ is the one-body 
ontribution of the µ-th fragment (equivalent to ele
troni
 energy)

and U
(2)
µν (|Rµν |) is the two-body energy term whi
h depends on the distan
e between the

two fragments µ and ν, and that goes to zero as |Rµν | ≡ |Rµ −Rν | tends to in�nity. This

strategy provides a way to 
al
ulate the total intera
ting potential on
e all the pairwise

intera
tions between the fragments are obtained.

2.2.3 Density of States for a Fragmentation Channel

After the de�nition of the Hamiltonian, we perform a few algebrai
 transformations in order

to obtain an expression for the DOS of the system that is easily integrable. In parti
ular, we

show the fa
torization of the DOS in their vibrational, rotational and translational 
ompo-

nents. The fa
torization of the last 
omponent involves an integration in the 
on�gurational

14



spa
e that will be approximated by a Monte Carlo s
heme in se
tion 2.2.4.

By using the �phase spa
e 
hannels de
omposition� of Eq. (11) in the de�nition of the

DOS [see Eq. (2)℄, we obtain

Ω(E) =
Nc
∑

j=1

Ωe(cj)Ωn(cj)Ωcj (E) (17)

Thus, the DOS is now de
omposed into several 
omponents, ea
h one asso
iated to one


hannel. In the above expression, we have introdu
ed the DOS for the cj 
hannel, Ωcj (E),

whi
h 
an be expli
itly written in the system of 
oordinates de�ned in the previous subse
tion

as follows,

Ωc(E) =

∫

d3NfR d3NfP

(2π~)3Nf

dfrθdfrJ

(2π~)fr
dfvQdfvP

(2π~)fv

×δ
[

H (R,P ,θ,J,Q,P) − E
]

δ
[

J −J 0

]

δ
[

P −P0

]

dfX =

Nf
∏

µ=1

dfµXµ ∴ X = R,P ,J,Q,P, dfrθ =

Nf
∏

µ=1

1

σµ
sinβµ dfrµθµ

(18)

where, for simpli
ity, we have omitted the DOS dependen
e with the identity of the 
hannel

(it will be introdu
ed when needed). fr is the number of rotational degrees of freedom

fr =
∑

µ frµ and fv is the number of vibrational degrees of freedom fv =
∑

µ fvµ. Noti
e that

J is not the 
anoni
al 
onjugate momenta of θ. This is the origin of the prefa
tor sin βµ whi
h

is the Ja
obian of the asso
iated transformation. σµ is the rotational symmetry number, it

indi
ates the number of unique orientations of the µ-th fragment that only inter
hange

15



identi
al atoms. This number depends on the fragment's mole
ular symmetry

σµ =































































1 if µ ∈ C1, Ci, Cs, C∞v

2 if µ ∈ D∞h

n if µ ∈ Cn, Cnv, Cnh

2n if µ ∈ Dn, Dnh, Dnd

n/2 if µ ∈ Sn

(19)

The Hamiltonian fun
tion is separable sin
e rotational-vibrational 
ouplings have been

ignored; therefore, it is possible to use the 
onvolution theorem to separate the vibrational


ontribution from the rest of degrees of freedom as follows

Ωc(E) =

∫ E

0

Ωv(c, Ev)Λ(c, E −Ev) dEv (20)

where Ωv(c, Ev) is the vibrational DOS asso
iated to the 
hannel c and is given by

Ωv(c, Ev) =

∫

dfvQdfvP

(2π~)fv
δ

[

Nf
∑

µ=1

{

1

2
PT

µPµ +
1

2
QT

µω
2
µQµ

}

− Ev

]

. (21)

This equation 
orresponds to the DOS for a set of fv un
oupled harmoni
 os
illators grouped

in Nf sets (one for ea
h fragment). By using the 
onvolution theorem Nf times, we integrate

out the 
ontribution of the vibrational DOS for ea
h fragment whi
h admits the following

solution

Ωc(E) =

∫

Nf
∏

µ=1

dEvµ Ωvµ(c, Eνµ)Λ(c, E−Ev), Ωvµ(c, E) =
Efvµ−1

~fvµΓ (fvµ)

fvµ
∏

k=1

ω−1
µk . (22)

The total vibrational energy should satisfy the 
onstraint Ev =
∑Nf

µ=1Evµ, being Evµ

the vibrational energy of the µ-fragment, with fvµ internal vibrational degrees of freedom,

and ωµ1, ωµ2, . . . , ωµfvµ the asso
iated vibrational frequen
ies. As in previous work,

45

we
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suppose that the maximum energy that a fragment 
an absorb is limited by the lowest

disso
iation energy Deµ, i.e., the vibrational energy for the µ-fragment is 
onstrained to

satisfy 0 ≤ Evµ ≤ Deµ. Λ(c, E) involves the rest of the degrees of freedom (rotation and

translation of the fragments in the 
hannel):

Λ(c, E) =

∫

d3NfR d3NfP

(2π~)3Nf

dfrθdfrJ

(2π~)fr

×δ
[

Nf
∑

µ=1

1

2
P

T

µM
−1
µ Pµ +

Nf
∑

µ=1

1

2
JT

µ I
−1
µ Jµ + U(R)− E

]

×δ
[

J −J 0

]

δ
[

P −P0

]

.

(23)

This equation is parti
ularly hard to solve due to the 
omplexity in treating the 
oupling

of the angular momentum with the orbital rotation of the fragments, indu
ed by the total

angular momentum 
onservation rule. In order to integrate it, we follow a similar strategy

as the one proposed in refs.

62�66

We �rst �x the 
oordinate variables R and θ, and then we

integrate over the momentum variables P and J . Finally we integrate over R and θ.

Firstly, to eliminate the translational motion P we refer the 
oordinates Rµ and their


onjugate momenta Pµ of the fragments to the 
enter of mass laboratory system of 
oordi-

nates (P0 = 0). In 
ontrast with P , it is impossible to de�ne a system of referen
e where

the system does not rotate, then it is not possible to integrate out the rotational motion J

from Eq. (23).

To over
ome this problem, we 
an pi
ture the evolution of the overall rotation of a

nonrigid system as a rotational motion of a 
hanging rigid body, as it was previously used by

Jellinek and Ly

58

in the 
ase of rotating �oppy systems like argon 
lusters. To this, we de�ne

P
rb

µ as the momenta of the fragments 
omposing the ideal rigid body system. Then, using

∆Pµ = Pµ −P
rb

µ , the 
onstraint in the total angular momentum and the kineti
 energy is

17



transformed as follow (see details in

58

)

J −J 0 −→ L+

Nf
∑

µ=1

R(θ)TµJµ −J 0

Nf
∑

µ=1

1

2
P

T

µM
−1
µ Pµ −→

Nf
∑

µ=1

1

2
∆P

T

µM
−1
µ ∆Pµ +

1

2
LT

I
−1L,

(24)

where the total orbital angular momentum is de�ned by L =
∑

µ Rµ × P
rb

µ , and I
−1

represents the asso
iated tensors of inertia for the overall rotation of the system as a rigid

body. This approximation introdu
es a 
omplete instantaneous de
oupling of the overall

rotation energy (LTI
−1L/2) from those fragments' relative motions, giving zero Coriolis


ontribution in the Hamiltonian. Note that sin
e the tensor of inertia I
−1

depends on the

instantaneous fragments' position, the dynami
al 
oupling in the system is fully retained

and the overall rotation and the internal displa
ements ex
hange energy. Repla
ing (24) in

(23) we obtain,

Λ(c, E) =

∫

d3NfR d3Nf∆P

(2π~)3Nf

dfrθdfrJ

(2π~)fr

× δ

[

Nf
∑

µ=1

1

2
∆P

T

µM
−1
µ ∆Pµ + E

rot

(J,L;R) + U(R)−E

]

× δ

[

L+

Nf
∑

µ=1

R(θ)TµJµ −J 0

]

,

(25)

where the rotational energy is given by:

E
rot

(J,L;R) =
1

2

∑

µ

JT
µ I

−1
µ Jµ +

1

2
LTI−1(R)L (26)

The usual strategy to solve equations like (25) is to redu
e the argument of the �rst delta

fun
tion to a diagonal quadrati
 form. In this 
ase we just simply transform ∆P into a

Ja
obi system of 
oordinates (see for example

45

). However, in the rotational energy term,

the angular momentum 
onstraint prevents this possibility for the J 
oordinates. So, we

18



have to �nd a transformation of J where the rotational energy is formally diagonalized.

The strategy we use starts by substituting L from the angular momentum 
onstrain in

Eq. (25) into Eq. (26). Then the rotational energy 
an be rewritten as,

E
rot

(J ;R,θ) =
1

2

Nf
∑

µ=1

Nf
∑

ν=1

JT
µ I

−1
µν (θ,R)Jν + EJ0(R)

I
−1
µν (θ,R) := I−1

µ + Rµ(θ)I
−1(R)RT

ν (θ)

EJ0(R) :=
1

2
J T

0 I
−1(R)J 0

(27)

where we have introdu
ed the energy asso
iated to the overall rotation EJ0 and the 
oupling

terms I
−1
µν . The diagonal elements I

−1
µµ play the role of e�e
tive inertia tensors for the µ-th

fragment and the o�-diagonal terms represent the strength of the intera
tion among angular

momenta of di�erent fragments. In our previous implementation,

45

o�-diagonal terms and

overall rotation were not taken into a

ount.

To obtain Eq. (27), we have omitted the 
oupling terms JT
µ J 0. Note that the angular

momentum 
onservation holds when all these 
oupling terms are kept. However, to keep

the advantage of a fast numeri
al s
heme, we have omitted su
h terms. These terms allow

ex
hange of energy between rotation of the fragments and the overall rotation of the system,

whi
h is less important than the dire
t 
oupling between fragments (JT
µ Jν) and the 
entrifu-

gal distortion (J
T
0J 0). For low values of J 0, this approximation does not 
ompromise the

a

ura
y of the solution.

Then, by diagonalization of the I
−1 = {I−1

µν } matrix, we rea
h our aim. Indeed, if we

denotate by B−1
the diagonal representation of I

−1
(i.e. I

−1 = UB−1UT
), the rotational

energy gets the expe
ted quadrati
 form in the new basis of angular momentum ve
tors j

(where j = UT (J1|J2| · · · |JNf
)T being U an unitary matrix),

E
rot

(j;R, θ) =
1

2
jTB−1(R, θ)j+ EJ0(R) (28)

Thus, the new angular momenta j provide a basis where the 
ontributions to the internal

19



rotational energy are formally diagonalized. The angular momenta j 
an then be 
al
ulated

from Eq. (28), although it is not straightforward to re
over the 
ontribution from ea
h

individual fragment, sin
e this information is lost in the diagonalization of I
−1
. In any 
ase,

these individual 
ontributions are not relevant for the DOS, be
ause the �nal expression does

not in
lude them.

Finally, after performing the transformations outlined above, the term in the �rst Dira
's

delta fun
tion of Eq. (25) is now diagonal and 
an be integrated out by using a spe
ial


ase of the Diri
hlet equation (see for example

67,68

). This 
ase 
orresponds to the surfa
e

of the s-dimensional hyper-ellipsoid, being s the total number of degrees of freedom (i.e.

s = ft + fr). We get:

Λ(c, E) =
(2π)s/2

Γ(s/2)





1

M

Nf
∏

µ=1

mµ





3/2
∫

dftR

(2π~)ft
dfrθ

(2π~)fr

× detB(R, θ)1/2

[

E − U(R)− EJ0(R)

]s/2−1
(29)

Noti
e that the term involving the fragments' mass (mµ) and the total mass of the system

(M =
∑

µmµ) is obtained by integration of the linear momenta; in 
ontrast the matrix B is

produ
ed from the integration of the angular momenta. Equation (29) is general and en
om-

passes equations previously developed by other authors for parti
ular 
ases. For example, in

refs.,

63,64

analyti
al expressions for up to 3 parti
les were obtained by in
luding the internal

rotations as orbital angular momentum 
ontributions. If angular momentum 
ontributions

(Jµ) are ignored in Eq. (29) and orbital angular momentum 
omponents (Rµ × Pµ) are

removed from their des
ription, one gets an equivalent formulation. By ignoring the total

angular momenta 
ontribution, i.e., the o�-diagonal 
oupling terms JT
µJν , and by repla
ing

the rotational matri
es by unitary matri
es, we re
over the expression used in our previous

implementation.

45

When only atomi
 fragments are 
onsidered, we re
over an almost similar

expression as that obtained by Calvo and Labastie.

65

In the 
ase of two asymmetri
 top

20



intera
ting fragments, we retrive the equation proposed by Smith in Ref.

69

2.2.4 Monte Carlo Integration

The last step in our derivation of the DOS is the integration in 
on�gurational spa
e as given

in Eq. (29) and the 
onvolution de�ned in Eq. (22). Due to the 
omplexity of these integrals,

we adopt a simple Monte-Carlo des
ription by performing a random-sampling of the positions

and relative orientations of the fragments (R and θ) in Eq. (29) and a random-sampling of

the fragments' vibrational energy (Eνµ) in Eq. (22).

To obtain an expression for the �rst integral, we generate N 
on�gurations, randomly

distributed throughout the domain of R and θ. Hen
e, the approximation to the integral

in Eq. (29) is simply

Λ(c, E) ≈ 1

N VRVθ

N
∑

k=1

Λ
(

c, E,Rk, θk

)

(30)

where we introdu
ed the volume elements asso
iated to the 
on�gurational spa
e (VR and

Vθ) and the fun
tion Λ
(

c, E,R, θ
)

, whi
h gives the 
ontribution of the translational and

rotational DOS,

Λ
(

c, E,R, θ
)

=
(2π)s/2

Γ(s/2)





1

M

Nf
∏

µ=1

mµ





3/2

detB(θ)1/2

[

E − U(R)− EJ0(R)

]s/2−1

. (31)

The 
on�gurational free volume is:

VR =

∫

dftR

(2π~)ft
∴ |Rµ −Rν | > γµ + γν (32)

To 
ompute it we 
onsidered N random 
on�gurations in the ft-dimensional spa
e. Around

ea
h atom of ea
h fragment, we build a small imaginary hard sphere of radius r (
ovalen
e

radius). The volume de�ned by these spheres is forbidden to o

upation by any of the

other fragments. Then, the 
al
ulation of VR 
onsists in 
omputing the total number of

non-self overlapping 
on�gurations among the N steps. The exa
t solution for this problem

21



has only been found in one dimension. There are, however, several methods available for


omputing an approximate solution. We use here the same method des
ribed in our previous

implementation.

45

The angular volume is given by,

Vθ =

∫

Nf
∏

µ=1

[

1

σµ
sin βµ

dfrµθµ

(2π~)frµ

]

(33)

This fa
tor appears due to the angular part of the eigenrotation of the fragments, and it

depends on the symmetry of ea
h mole
ule. We 
an distinguish three 
ases as a fun
tion

of the number of rotational degrees of freedom: single atoms (frµ = 0), linear mole
ular

fragments (frµ = 2) and non-linear mole
ular fragments (frµ = 3). Its solution is analyti


and 
orresponds to the surfa
e of a (frµ+1)-dimensional sphere. Thus it is simply given by:

Vθ =

Nf
∏

µ=1

1

σµ(2π~)frµ































8π2
if frµ = 3

4π if frµ = 2

1 otherwise.

(34)

To obtain an expression for the 
onvolution integral in Eq. (22), we randomly generate

Nv values of vibrational energy distributed among all fragments. Then, Eq. (22) 
an be

approximated by,

Ωc(E) ≈ A
Nv
∑

j=1

Ωv(c, Ev,j)Λ(c, E − Ev,j), (35)

being A a 
onstant. And �nally, by repla
ing Eq. (30) and Eq. (35) in Eq. (17) we obtain

an a

essible expression to the DOS of the system, whi
h reads,

Ω(E) ≈ A
Nc
∑

i=1

Nv
∑

j=1

N
∑

k=1

Ω (E, ci, Ev,j ,Rk, θk)

Ω (E, c, Ev,j ,R, θ) := Ωn(c) Ωe(c) Ωv

(

c, Ev,j

)

VR Vθ Λ
(

c, E −Ev;R, θ
)

.

(36)
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Eq. (36) gives the total DOS as an overall sum, whi
h is 
arried out over Nc random trials

of the available fragmentation 
hannels c, Nv random trials of their vibrational energies Ev,

and N random trials of their positions R and orientations θ. These trials are always 
arried

out ensuring 
onservation of the total energy:

E = K +
∑

µ

Evµ + U(R) + EJ0 (37)

We take advantage of de�ning the state of the system as a ve
torX that 
ontains independent

variables (
alled the state ve
tor of the system):

X = (c,Ev,R, θ,J), (38)

whi
h allows us to represent the DOS as a simple average by 
onsidering N random state-

ve
tors (see equation (3)).

3 Overview of the M3C program

M3C is a general-purpose 
ode, though it primary targets are those fragmentation pro
esses

that take pla
e through non-radiative transitions, where their fragments remain together

enough time su
h that the ex
ess of energy be
omes randomly distributed over all internal

degrees of freedom. As a general-purpose 
ode, M3C is highly 
ustomizable and in
ludes

many features. Here we brie�y des
ribe some of them. The pa
kage is divided into three

parts:

In the �rst part, M3C is able to obtain data from ele
troni
 stru
ture 
al
ulations by

interfa
ing with some standard quantum 
hemistry programs. The simplest systems require

quantities su
h as geometries, ele
troni
 energies and harmoni
 frequen
ies for ea
h mole
ule

to be 
onsidered. However, it is also possible to in
lude analyti
al intermole
ular potential

energy 
urves in order to des
ribe weakly bounded systems or spe
ial e�e
ts like Coulomb

23



repulsion in fragmentation of multiply 
harged mole
ules. In this part, 
artesian 
oordinates

and vibrational frequen
ies results are stored in external �les in one of the two most pop-

ular formats (XYZ or MOLDEN).

70

These formats are used for many di�erent ele
troni



al
ulation programs. Currently M3C o�ers some bash s
ripts, to be used as interfa
es with

GAMESS

71,72

and GAUSSIAN

73

that allow for a sto
hasti
 sear
h for isomers. Ea
h step in-

volves a geometry optimization, where the initial geometry is provided by the M3C algorithm

that samples the 
on�gurational spa
e. Dupli
ate isomers are automati
ally removed. It is

possible to dis
ard some 
hemi
al spe
ies in advan
e based on stability arguments or based

on the peaks whi
h appear in the experimental mass spe
tra, if available. This 
ould be very

important for mole
ular systems that 
ontain a large number of parti
les (fragments), sin
e

the sear
h for isomers is the most expensive 
omputational part of this methodology. This

step provides the so 
alled fragmentation model, whi
h is analyzed in se
tion (3.1).

The se
ond part of the pa
kage performs the 
al
ulation of the statisti
al model itself.

This part is not self-su�
ient, sin
e it requires the mole
ular properties of the fragments,

usually provided after the �rst part has been performed. One important feature of the 
ode is

that it uses a very 
onvenient way to de�ne the Markov-Chain, as des
ribed in se
tion (3.2).

The program manages several numeri
al experiments, where ea
h one di�ers from ea
h other

in their initial state-ve
tors, whi
h are randomly 
hosen. At the end of the 
al
ulation, all

observables are reported with their errors estimated from the repli
a's standard deviation,

whi
h may be used as a 
onvergen
e 
riteria. The user 
ontrols in the input �le the maximum

permissible error in the standard deviation of the observables by spe
ifying the number of

steps in the Markov-Chain, the number of numeri
al experiments and the burn-in period.

Tipi
ally ∼50000 steps, 4 numeri
al experiments and 10% of burn-in period are enough to

rea
h errors lower than 10%.

The third part in
ludes a set of tools whi
h allows the user to analyze the obtained

results with a graphi
al interfa
e, as gnuplot.

74

Some available features that 
an be 
al
ulated

are: probability density distributions for 
hannels or fragments as a fun
tion of the internal
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energy, fragmentation bran
hing ratios based on a given or a �tted deposited energy fun
tion,


oin
iden
e patterns between several pairs of energy 
omponents for a given internal energy,

among others.

3.1 Setting up a Fragmentation Model

A fragmentation model 
onsists of a set 
ontaining all possible 
hemi
al spe
ies that may

play some role during the fragmentation pro
ess, in
luding possible isomers. In order to

illustrate this, let us 
onsider the parti
ular 
ase of the CH2 mole
ule. This mole
ule 
an

break leading to di�erent fragments (or spe
ies):

S = {CH2, CH, H2, H, C} (39)

Ea
h one of these spe
ies 
an be 
hara
terized by several ele
troni
 states or geometries,

whi
h we will 
all isomers:

CH2 =
{

CH2(X
3
B1), CH2(a

1
A1), · · ·

}

CH =
{

CH(X 2Π), CH(a 4Σ−), · · ·
}

H2 =
{

H2(X
1Σ+

g ), H2(a
3Σ+

u ), · · ·
}

H =
{

H( 2S), H( 2P ), · · ·
}

C =
{

C( 3P ), C( 1D), · · ·
}

(40)

On the other hand, the mole
ule 
an experien
e di�erent fragmentation rea
tions,

R = {CH2, H2 + C, CH + H, H+ H+ C} (41)

asso
iated to di�erent fragmentation 
hannels in whi
h the geometry and the ele
troni


states of the 
orresponding fragments is spe
i�ed, as for example:

H2 + C =
{

H2(X
1Σ+

g ) + C( 3P ), · · · , H2(a
2Σ+

u ) + C( 1D), · · ·
}

. (42)
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As higher energy ranges are studied, a larger number of isomers (energy order in
reasing)

should be in
luded. For the systems investigated in this paper and for internal energies


overing a range from 0 eV up to 20 eV, two spin multipli
ities per mole
ular geometry is

enough (if they are stable). Then, for an easier des
ription of the fragmentation using M3C

it is ne
essary to in
lude all 
onsidered fragments grouped by 
hemi
al spe
ies.

3.2 Sampling State's Ve
tor Spa
e

Given an internal energy and a fragmentation model (a set of possible isomers in
luding all

the 
hemi
al spe
ies of interest) M3C 
al
ulates the set of ve
tor-states that are in
luded into

the region of maximum entropy; then the physi
al observables are obtained by performing

a statisti
al average in this region. In ea
h step of the Markov 
hain, the lo
al DOS is


al
ulated a

ording to Eq. (36). Figure 2 shows the diagram of dependen
ies for the main

values involved in the 
al
ulation of the lo
al density of states Ω(E,X ). The quantities

marked with the symbol represent those variables that are sampled in a random way.

When one of them is 
hanged, all items 
onne
ted by arrows are also updated/
hanged to


ompute Ω(E,X ),

Figure 2: S
hemati
 diagram showing the dependen
ies of the main quantities involved in

the random sampling of the systems's state-ve
tor X a

ording to the Ω(E,X ) distribution.
See text for details.
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For a spe
i�
 mole
ular system, there are several 
hanges that one 
an 
arry out to explore

the state-ve
tor spa
e in the Markov 
hain. Our 
hoi
e is based on a physi
al meaning and

on the dependen
ies diagram shown in the Fig. 2. In order to design the Markov 
hain, we

asso
iate the di�erent 
ontributions to the DOS with abstra
t obje
ts 
alled rea
tors. One

introdu
es a set of mole
ules (rea
tants) into one of these rea
tors and one gets a set of

mole
ules (produ
ts) with new properties; for instan
e, 
hanges in the vibrational ex
itation

or in the 
hemi
al 
omposition 
an be obtained.

The vibrational rea
tor (V̂ ) is responsible for the random sampling of the vibrational

energy for ea
h fragment. The e�e
t on the state X 
an be represented as

V̂X → X
′ : (c,E′

v,R, θ) . (43)

In the rotational rea
tor (R̂) the orientation of the individual fragments are sampled in

a random way from a uniform distribution, and the angular momentum 
ouplings between

mole
ules are 
omputed by taking into a

ount the 
onservation of the total angular mo-

mentum. This rea
tor also 
arries out a transformation of the inertia tensors a

ording to

the 
oordinate referen
e system:

R̂X → X
′ : (c,Ev,R, θ′) . (44)

The translational rea
tor (T̂ ) samples the position of ea
h fragment employing two pos-

sible algorithms: (i) a random-walker algorithm, where the position of the fragments is

sampled allowing 
hanges within a sphere of radius ∆R, 
entered on its previous position

R (R → R+∆R), (ii) a 
ompletely random algorithm, where any 
hange in the position

of the fragment is possible: R → R
′
. In this rea
tor, the 
orresponding intera
tion energy

between fragments (potential energy fun
tion) is 
omputed with the new positions:

T̂X → X
′ : (c,Ev,R

′, θ) . (45)
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The stru
ture rea
tor 
al
ulates the possible fragmentation patterns by satisfying the


omposition and 
harge 
onservation rules. The algorithm is based on a random sear
h tree

over all possible fragments provided by the user. The 
hange in the number of fragments


an be 
hosen within an input parameter n:

ŜnX → X
′ : (c+∆n,E′

v,R
′, θ′) . (46)

In this way, the Markov 
hain withN steps 
an be written as the produ
t of an irredu
ible

set of rea
tors (Ŝ1T̂ R̂V̂ ) as follows,

X 0
V̂−→ X 1

R̂−→ X 2
T̂−→ X 3

Ŝ1−→ X 4
V̂−→ X 5

R̂−→ · · ·

MC :





N/4
∏

i=1

Ŝ1T̂ R̂V̂



X 0 .

(47)

Typi
ally the Markov 
hain must be modi�ed so that the average a

eptan
e ratio is roughly

30-50%. Too small values of this parameter result in a slow exploration of the phase spa
e.

Too large will result in 
on�gurations without statisti
al meaning.

4 Appli
ations

In this se
tion we illustrate the 
apabilities of the M3C 
ode. We start by 
onsidering a sim-

ple system, a neutral 
luster of Ar atoms, for whi
h the interatomi
 potential is known and

there exist previous theoreti
al 
al
ulations to 
ompare with .

64,75,76

To 
he
k the validity of

our new implementation in su
h weakly bound systems, we have 
omputed several thermo-

dynami
 properties. The se
ond kind of systems we analyze is small neutral 
arbon 
lusters,

for whi
h there is a

urate experimental information on fragmentation bran
hing ratios.

44

In

this 
ase we apply a mole
ular des
ription of the di�erent fragments and disso
iation 
han-

nels that 
an be produ
ed when these 
arbon 
lusters are highly ex
ited. We then 
onsider
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fragmentation of small singly positively 
harged 
arbon 
lusters and of 
harged mole
ules


ontaining di�erent kinds of atoms. In both 
ases, 
omparison with available experimental

fragmentation yields

77�80

will be 
arried out in order to validate our new methodology.

4.1 Calori
 Curve for Ar13

A re
urrent topi
 in 
luster physi
s is the identi�
ation and 
hara
terization of phase transi-

tions, in
luding solid-to-liquid and liquid-to-gas phase transitions. Sin
e 
lusters are parti
les

of �nite size, the question of how to dete
t and/or 
hara
terize su
h transitions is a 
on-


eptual 
hallenge. S
hmidt and 
o-workers

81

reported the �rst experimental determination

of a 
alori
 
urve for the melting transition in a small 
luster. Spe
i�
ally, they studied

a singly-
harged sodium 
luster with 139 atoms. Other experimental and theoreti
al stud-

ies on the thermodynami
 properties of metalli
 
lusters have also been reported (see for

example

39,82�84

) and their properties are nowadays well understood. However, in the 
ase

of small weakly bound 
lusters, experimental 
alori
 
urves are mu
h harder to obtain and

the theoreti
al simulations play a very important role to analyze su
h transitions. The �rst

appli
ation of our method is to 
ompute the 
alori
 
urve of the argon 
luster Ar13. For this

system, theoreti
al studies have been published before by using Mole
ular Dynami
s and

Monte-Carlo simulations (see for example

64,75,76

).

We monitor the o

urren
e of a phase transition in the 
alori
 
urve T (E) (temperature

versus internal energy) and its heat 
apa
ity Cv(T ). The 
alori
 
urve E(T ) was obtained by


omputing the temperature at di�erent internal energies. A

ording to the thermodynami


de�nition of temperature (in the mi
ro
anoni
al ensemble), it 
an be easily 
al
ulated by

using the following equation

T =
∂S
∂E

=

〈

s/2− 1

K

〉−1

(48)

where K is the kineti
 energy, s the number of degrees of freedom (see Eq. (37)) and 〈〉
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represents the averaging over an entire simulation. The heat 
apa
ity Cv(T ) was 
al
ulated

as the �rst derivative of E(T ) (previously smoothed with a �natural spline interpolation�):

Cv =
∂E

∂T
(49)

a)

b)

Figure 3: Computed mi
ro
anoni
al 
alori
 
urve for Ar13. a) The ex
itation energy is plot-

ted as a fun
tion of the temperature for three values of total angular momentum J 0. Red

points and their errors bars (standard deviation) are the dire
t results of the simulations.

Blue solid lines are a �t obtained with a �natural spline interpolation�. Bla
k 
ir
les 
orre-

spond to the 
alori
 
urve 
al
ulated by Jellinek et. al.

35

In the 
oexisten
e region, �lled


ir
les are used. b) Heat 
apa
ity as a fun
tion of the temperature. Blue solid lines are

the heat 
apa
ities obtained as �rst derivative of the 
alori
 
urves (gray). Noti
e that the

melting temperatures T =0.00299, 0.00268 and 0.00221 eV (0.29, 0.26 and 0.21 in LJ units)

appear for |J 0| =0.0, 272.6, and 407.4 a.u. (0, 8, and 12 in LJ units) respe
tively.

In this 
ase we only 
onsidered one possible fragment, the argon atom. The initial
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positions of the atoms in the Ar13 
luster were taken from the geometry reported in �The

Cambridge Cluster Database� (tightly-bound i
osahedral 
luster).

85,86

For the lowest internal

energies, a random-walker-radius (∆R) of 0.1 Å was ne
essary to prevent the evaporation of

the 
luster. This radius was gradually in
reased up to 0.3 Å for the highest values of internal

energy. We also in
luded a maximum overlapping radius of 0.2 Å to allow the system to

rea
h the 
lassi
al turning point. The 12-6 Lennard-Jones potential

U (2)
µν (|Rµν |) = 4ε

[

(

σ

|Rµν |

)12

−
(

σ

|Rµν |

)6
]

(50)

with ε = 0.0104 eV and σ = 3.4 Å87

was employed to des
ribe the inter-atomi
 Ar-Ar

intera
tions. Simulations with Markov 
hains of 1.5 ·105 steps, using 10% of them as burn-in

period and six repli
as (or numeri
al experiments), were 
arried out for ea
h value of the

internal energy. In this example, only the simplest Markov 
hain was used, T̂ , i.e. only

the translational rea
tor was used. Three values of |J 0| were studied 0.0, 272.6 and 407.4

a.u., whi
h are equivalent to 0, 8 and 12 in Lennard-Jones units respe
tively. These values

were 
hosen in order to 
ompare with results from Ref.

65

Here J 0 plays the same role as L

be
ause Jµ = 0 for all fragments. The |J 0| ve
tor was always in the dire
tion of the larger

inertia moment of the system.

Fig. 3a shows the 
al
ulated 
alori
 
urves for the Ar13 system, in
luding standard devi-

ations. The results show that, at T ∼ 0.02− 0.03 eV, a large amount of energy is needed to

in
rease the temperature. This range of temperatures 
omprises a region where two phases


oexist: solid-like and liquid-like, whi
h is 
onsistent with previous theoreti
al studies (see

for example

58,65,87

). The Figure also shows a 
omparison with the 
alori
 
urve obtained

by Jellinek et. al.

35

for the 
ase of |J 0| = 0. The agreement between both sets of results is

evident. Our results in the 
oexisten
e region exhibit larger error bars, be
ause both phases


ompete during the 
al
ulation of the average temperature and it is not possible to distin-

guish them. Fig. 3b shows the heat 
apa
ity per atom as a fun
tion of temperature, Cv(T ).

At low temperature, Cv(T ) is approximately 
onstant and 
lose to the value predi
ted by
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the harmoni
 approximation: the number of degrees of freedom per atom, s/13 ∼ 2.54. In

the range T ∼ 0.02 − 0.03 eV, the system leaves the 
rystalline stru
ture and a
quires a

disordered liquid-like behavior, where the melting temperature is indi
ated by the peak of

the 
urve. For larger values of temperature, the system rea
hes its �uid phase entirely where

Cv(T ) is again approximately 
onstant. Our results agree fairly well with those previously

reported in

65

for the same values of J 0. Melting temperatures T =0.00299, 0.00268 and

0.00221 eV (0.29, 0.26 and 0.21 in LJ units) are obtained for |J 0| =0.0, 272.6, and 407.4 a.u.

(0, 8, and 12 in LJ units), respe
tively. That is, the melting temperature de
reases with the

total angular momentum, and so does the peak-transition width. These results show that

the new M3C s
heme 
an predi
t the thermodynami
 properties of weakly bound systems

with high a

ura
y.

P
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y
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Figure 4: Fragmentation of Cn (n = 5, 7, 9) mole
ules from M3C simulations and 
omparison

with experiment. Panels a), b) and 
): Channel probabilities as a fun
tions of the internal

energy (breakdown 
urves) for C5, C7 and C9, respe
tively. The points represent an average

value over 6 di�erent runs and their verti
al error bars 
orrespond to the standard deviation.

Panels d), e) and f): Bran
hing ratios for C5, C7 and C9 respe
tively. Blue full 
ir
les

and their error bars, experiment from.

44

Red open squares, theoreti
al results obtained by


onvolution with the �tted energy distribution fun
tions shown in gray on left panels. Dashed

lines are to guide the eye.

32



4.2 Fragmentation Spe
trometry of Neutral Carbon Clusters Cn (n =

5, 7, 9)

Carbon-based mole
ules are important in many astrophysi
al environments su
h as the in-

terstellar medium or planetary atmospheres, and they have been the subje
t of intense theo-

reti
al and experimental resear
h (see, for example,

46,88�91

and referen
es therein). From the

experimental point of view, a very important resear
h a
tivity has been 
arried out by the

group of Béro� and Chabot.

92�94

In these experiments, ex
ited 
arbon 
lusters are formed

by 
harge transfer rea
tions in 
ollisions of 
harged 
arbon 
lusters with helium atoms and

the subsequent fragmentation yields are measured. Here, we will 
ompare the results of our

simulations with these measurements. The pro
ess 
an be summarized as follows:

C

+
n (E0,K) +He(ε) → Cn(E0 + E) +He

+(ε+K − E)

Cn(E0 + E) → Cn−1 + C

→ Cn−2 + C2

→ Cn−1 + C+ C

→ · · ·

(51)

being E0 the initial internal energy of the 
luster, K its kineti
 energy and E the ex
ess of

internal energy after the 
ollision. Our main hypothesis is that the fragmentation pro
ess is

independent of the 
ollision, sin
e the former is mu
h slower that the latter. The quantity

that relates both pro
esses is the energy distribution fun
tion f(E), whi
h tells us how likely

is to deposit a given amount of energy E in the mole
ular target as a result of the 
ollision.

For short, we will 
all this fun
tion the deposited-energy fun
tion. This fun
tion 
ontains all

the physi
s related to the parti
ular 
ollision pro
ess that leads to ex
itation of the mole
ular

target. Due to the large amount of available energy in su
h 
ollisions, one 
an safely assume

that E0 ≪ E, so that E0 
an be ignored.

These neutral 
arbon 
lusters were studied in the past by using our previous implemen-

tation of the MMMC method.

45

Thus, these results represent a very important sour
e of
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information for 
he
king the validity of our model and therefore we will fo
us on the im-

provements that have been rea
hed with the new implementation presented in this work.

The �rst step in our simulations is to get all geometries for the possible fragments and

their isomers. First, we made a sto
hasti
 sear
h with 40 trials by using the M3C interfa
e

with the mole
ular ele
troni
 stru
ture 
ode GAMESS.

72,95

These 
al
ulations were done

at the DFT-B3LYP/6-311G level of theory. Then, by using the M3C interfa
e with the

GAUSSIAN pa
kage,

73

this �rst guess of the mole
ular stru
tures were re�ned at the DFT-

B3LYP/6-311+G(3df) level of theory; vibrational frequen
ies were also obtained at the same

level. We performed 
al
ulations for the two lowest spin multipli
ities of all proposed stru
-

tures. Finally, the ele
troni
 energies were obtained by using the more elaborate 
oupled


luster method CCSD(T)/6-311+G(3df). In total, we des
ribed the fragmentation of these

mole
ules in
luding 21, 43 and 68 possible fragments for C5, C7 and C9, respe
tively. All op-

timized geometries are shown in the Supplementary Information (SI). They are in agreement

with previous results.

89,96�102

With these stru
tures, fragmentation models for C5/C7/C9 
an

follow 7/15/53 fragmentation rea
tions in
luding 85/247/401 fragmentation 
hannels. As an

example, the fragmentation model we used for the C5 
luster is:

C =
{

C( 1D), C(3P)
}

C2 =
{

C2(
1Σ+

g ),C2(
3Πu)

}

C3 =
{

C3(
1Σg),C3(

3A′
1), C3(

3A′′)
}

C4 =
{

C4(
1Σg), C4(

1Ag), C4(
1A′), C4(

3Σg), C4(
3B3u), C4(

3A1)
}

C5 =
{

C5(
1Σg), C5(1

1A1), C5(
1A′

1), C5(2
1A1), C5(

3Πg),

C5(
3A), C5(

3B2), C5(
3A′′)

}

(52)

Regarding the statisti
al simulation, we used a system radius of 8/9/10 Å, six numeri-


al experiments with 1/3/10 ×105 events ea
h one and the sequen
e 5V̂ T̂ R̂Ŝ05V̂ T̂ R̂Ŝ1:-1 as

Markov 
hain (10% of burn-in period). The initial mole
ule was sele
ted as the ground state
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of C5/C7/C9, whi
h 
orresponds to a linear singlet isomer (C5.q0.m1-1/C7.q0.m1-1/C9.q0.m1-1

see SI). An example of the M3C input �le for C5 is available in the SI.

In order to 
ompare our results with experimental measurements, the deposited-energy

distribution f(E) asso
iated to the 
ollision should be known. However, existing experimen-

tal approa
hes 
annot provide this information for this kind of systems. Also, its evaluation

from rigorous theoreti
al modeling of the 
ollisions is nearly impossible. Here we will adopt

the same strategy as in Refs.

44�46

and estimate the deposited-energy fun
tion from the 
om-

parison between the experimental fragmentation probabilities (intensities in mass spe
trum)

and the 
omputed M3C probabilities. The mathemati
al des
ription of the �tting pro
edure

used to obtain this fun
tion is explained in detail in the SI. We do not introdu
e any 
on-

straint about how this fun
tion should be, ex
ept that 1) the fun
tion should only exhibit a

single maximum, 2) it should de
rease monotoni
ally as the ex
itation energy in
reases, and

3) it should go to zero at the origin. These are typi
al 
hara
teristi
s of the few deposited-

energy distribution that have so far been determined experimentally.

47,49

We noti
e that the

f(E) fun
tion is very similar for the three systems investigated in this subse
tion (see Fig.

4a-
), whi
h is 
ompatible with the fa
t that the measurements were performed under the

same experimental 
onditions. They are also very similar to those used in Ref.,

44

whi
h were

based on semi-empiri
al arguments. We also noti
e that, if the 
al
ulated M3C probabilities

were wrong, a �t to a fun
tion ful�lling the above three restri
tions would be impossible.

In general, C5, C7, and C9 
lusters do not disso
iate up to ∼6 eV. In the range of

ex
itation energy ∼6-15 eV, the dominant disso
iation 
hannels are C3/C2, C3/C4, and

C3/C6 respe
tively, but C4/C5 is also signi�
antly observed for C9. The probability for the

loss of a 
arbon atom is, in all 
ases, pra
ti
ally zero in this energy range. At higher energies,

(∼15-20 eV for C5, ∼20-30 eV for C7 and ∼30-40 eV for C9) fragmentation 
hannels leading

to C3 have a higher probability. Noti
e also that in this energy range, 
hannels leading to C2

be
ome dominant when the ex
itation energy in
reases. These trends 
an be understood in

terms of the energy sharing among the fragments (see SI). Fragmentation 
hannels involving
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C3 are more important in energy regions where the vibrational 
ontribution is larger than the

rotational one. However, in 
hannels involving C2 the rotational 
omponent of the energy is

larger than the vibrational one. The swapping takes pla
e at ∼20 eV, ∼30 eV, and ∼35 eV

for C5, C7, and C9 respe
tively.

An earlier implementation of the MMMC method

45

allowed us to understand the main

fa
tors governing the fragmentation of small 
arbon 
lusters and to extra
t the energy de-

posited in the 
ollision.

44�46,103

The main improvements 
onsidered in the present implemen-

tation are: 1) the angular momentum 
onstraint J = 0 is now fully satis�ed, and 2) many

more isomers have been 
onsidered. We dis
uss both 
ontributions separately.

Regarding the angular momentum s
heme used to ful�ll the 
ondition J = 0, in this

work we have used L +
∑Nf

µ=1 Jµ = 0, instead of

∑Nf

µ=1 Jµ = 0 as in previous work. If we

rewrite these 
onstraints as follows: L = −∑Nf

µ=1 Jµ and JNf
= −∑Nf−1

µ=1 Jµ, respe
tively, it

is apparent that, in the �rst 
ase, all the angular-momenta ve
tors are independent, while,

in the se
ond 
ase, only the Nf − 1 momenta are independent. This means that, if the

angular momenta values are 
hanged, the ve
tors JNf
and L should be 
hanged as well in

order to satisfy the angular momentum 
onservation 
onstraint (sin
e these ones are used

to 
ompensate the �rst ones). Thus, in the previous implementation, the 
ontribution of

the angular momenta to the DOS from the Nf -th fragment was ignored and now we in
lude

it. The most important e�e
t of this improvement 
an be 
learly appre
iated on the tails

observed in the breakdown 
urves at high ex
itation energy, whi
h now are longer and more

pronoun
ed. For instan
e, in the fragmentation of the C5 
luster, 
hannels 3C/C2 and 5C are

in 
ompetition in the transition region at ∼ 26 eV (see Fig. 4a). In the new implementation,

the probability to �nd the 3C/C2 
hannel extends by ∼ 5 eV at higher energies before it

goes to zero, while in Ref.,

45

this probability is redu
ed suddenly. Basi
ally, when L is

used to 
ompensate the angular momenta, the C2 fragment may ex
hange energy with other

rotational and translational 
omponents, allowing for a gradual fragmentation. A similar

e�e
t is observed in the high energy region of the fragmentation 
urves for C7 and C9. In
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all 
ases, the �rst breaking of the parent mole
ule is less abrupt than reported earlier

45

(see Fig. 4a-
). This improvement also re�e
ts in the appearan
e of new fragmentation


hannels, whi
h were not visible in Ref.

45

In parti
ular, the C/C4 
hannel resulting from

the fragmentation of C5 (Fig. 4a) is now quite apparent, whi
h agrees better with the

experimental observations. The rotational 
ontribution of C4 allows for an in
rease of the

global probability for this 
hannel, whi
h in
reases from zero to ∼5% with respe
t to the

previous 
al
ulations. However, this is not enough to a

ount for the 
ontribution of ∼ 20%

observed in the experiment (Fig. 4d). Channels 2C/C2/C3 for C7 and C4/C5 for C9, also

present in
reased probabilities; and 
hannels C/C2/C4 for C7, and C2/C7,C2/C3/C4 for

C9 show a non-zero 
ontribution. In all 
ases, the new results improve on the existing


al
ulations and lead to a better agreement with experiments (see Fig.4e-f).

Regarding the number of isomers, in our earlier work we only 
onsidered two spin multi-

pli
ities (singlet and triplet states) and two stru
tural isomers (linear and 
y
li
 geometries)

for ea
h fragment, while we are now in
luding many more isomers, 21/43/68 in 
ontrast with

16/24/32 for C5/C6/C7, respe
tively. The present results indi
ate that the new 
onsidered

isomers parti
ipate in less than ∼10% of the fragmentation probabilities. Thus, ∼90% of

results obtained by only 
onsidering one linear and one 
y
li
 isomer for a given value of

spin and multipli
ity 
orre
tly reprodu
e the experiment. As a general trend, the breakdown


urves are not drasti
ally a�e
ted. We have found, however, an ex
eption: for the C4 frag-

ment, the singlet isomer with a planar stru
ture in whi
h three 
arbon atoms are atta
hed to

the same 
entral 
arbon atom (see C4.q0.m1-3 at SI) plays a very important role in the frag-

mentation of Cn(n = 5, 7, 9). This isomer has been well des
ribed theoreti
ally

102

and also

dete
ted in Coulomb explosion experiments.

104

In almost all 
ases this isomer 
ontributes

about 50% to the signal in 
hannels where the fragment C4 parti
ipates, spe
i�
ally C/C4

for C5, C/C2/C4 for C7 and C2/C3/C4 for C9. In the spe
ial 
ase of 
hannel C4/C5 for C9,

this isomer does not play any role; the largest 
ontribution in this 
hannel 
omes from the

linear triplet isomer (see C4.q0.m3-1 at SI). Thus, the larger probability observed in this
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hannel is ex
lusively due to the new angular momentum s
heme in
luded in the 
urrent

implementation.

In summary, these results show that a 
orre
t implementation of the angular momentum


onservation improves signi�
antly the des
ription of the fragmentation of neutral 
arbon


lusters.
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Figure 5: Fragmentation of C

+
n (n = 4, 5) mole
ules from M3C simulations and 
omparison

with experiment. Panels a), b): Channel probabilities as a fun
tions of the internal energy

for C

+
4 and C

+
5 , respe
tively. The points represent an average value over 6 di�erent runs

and their verti
al error bars 
orrespond to the standard deviation. Panels d), e): Bran
hing

ratios for C

+
4 and C

+
5 , respe
tively. Blue full 
ir
les and their error bars, experimental results

for.

79

Red open squares and green points, theoreti
al results obtained by 
onvolution with

the �tted energy distribution fun
tions shown in gray on left and 
enter panels, respe
tively.

Green points, represent the results obtained when potential energy 
urves are 
onsidered,

red open squares otherwise. Dashed lines are to guide the eye.

4.3 Fragmentation Spe
trometry of Singly Charged Carbon Clus-

ters C

+
n (n = 4, 5)

Experimental works fo
ussed in fragmentation of 
harged 
arbon 
lusters have been also


arried out by the group of Béro� and Chabot

79,105

by measure the bran
hing ratios of all

possible fragmentation 
hannels. In this 
ase, ex
ited singly 
harged 
arbon 
lusters are

experimentally obtained in 
ollisions with helium atoms following a disso
iative ex
itation
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pro
ess, a

ording to the following s
heme:

C

+
n (E0,K) +He(ε) → C

+
n (E0 + E) +He(ε+K − E)

C

+
n (E0 + E) → C

+
n−1 + C

→ Cn−1 + C

+

→ Cn−2 + C

+ +C

→ · · ·

(53)

Note that, unlike for neutral 
arbon 
lusters, new 
hannels appear in the fragmentation of

singly 
harged 
arbon 
lusters, su
h as C

+
n−1/C and Cn−1/C

+
. This means that, in addition

to the 
ombinatorial problem asso
iated with the number of bonds that 
an be broken, it

is ne
essary to in
lude an extra degree of freedom to des
ribe how the 
harge is distributed

among the di�erent fragments. Many of the 
hannels leading to di�erent 
harge distribu-

tions are 
lose in energy but the measured bran
hing ratios are substantially di�erent. For

example, 
hannels C3/C
+
and C

+
3 /C, in the fragmentation of C

+
4 , are only 0.3 eV apart from

ea
h other, but their bran
hing ratios are 7.2% and 19.6%, respe
tively.

79

Hen
e, analysis

solely based on energeti
 
riteria are not adequate to explain this behavior. Fragmentation

of singly-
harged 
arbon 
lusters is thus a more stringent test of the M3C approa
h.

We have studied the fragmentation of these systems employing the same 
omputational

setup as for neutral 
arbon 
lusters. In the sto
hasti
 sear
h, we found 2, 2, 4, 5 and 7

isomers for C

+
, C

+
2 , C

+
3 , C

+
4 and C

+
5 respe
tively, all of them are shown in the SI. The

fragmentation model also in
ludes the 
orresponding isomers of the neutral 
arbon 
lusters.
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For example, the fragmentation model employed to study C

+
4 is:

C =
{

C( 1D), C(3P)
}

C

+ =
{

C

+( 2P), C+(4P )
}

C2 =
{

C2(
1Σ+

g ), C2(
3Πu)

}

C

+
2 =

{

C

+
2 (

4Σ−
g ),C

+
2 (

2Πu)
}

C3 =
{

C3(
1Σg),C3(

3A′
1), C3(

3A′′)
}

C

+
3 =

{

C

+
3 (

2B2),C
+
3 (

2Σ), C+
3 (

4A′
1), C

+
3 (

4Πu)
}

C

+
4 =

{

C

+
4 (

1Σg), C
+
4 (

1A1), C
+
4 (

1A′), C+
4 (

3Σg), C
+
4 (

3B3u), C
+
4 (

3A1),

C

+
4 (

2Πg), C
+
4 (

2A′), C+
4 (

4B3u), C
+
4 (

4A2), C
+
4 (

4B1)
}

(54)

In total we used 20 and 33 mole
ules to des
ribe the fragmentation of C

+
4 and C

+
5 respe
tively.

With this fragmentation model, C

+
4 and C

+
5 may follow 15 and 53 fragmentation rea
tions

or 247 and 401 fragmentation 
hannels 
orrespondingly. The initial state was sele
ted as the


orresponding ground state. C

+
4 has a 
y
li
 doublet isomer (C4.q1.m2-2 see SI) and C

+
5 a

linear doublet (C5.q1.m2-1 see SI). We also 
ompare with previous experimental results.

79

In this kind of systems, the most 
ompli
ated part is to des
ribe the 
harge distribution

into fragments with the same stoi
hiometry, e.g. C

+
n−m+Cm versus Cn−m+C

+
m. Experimental

bran
hing ratios indi
ate that, in general, the most probable 
on�guration 
orresponds to the


ase where the 
harge goes onto the heaviest fragment (see Fig.5). On the other hand, the


omputed lowest disso
iation energies indi
ate that the energeti
ally most favorable 
hannels

are C

+
/C3 (4.8 eV) and C2/C

+
3 (6.5 eV), for C

+
4 and C

+
5 respe
tively. Thus, disso
iation

energies only 
orrelate with experimental bran
hing ratios for the C

+
5 
ase.

To simulate the fragmentation of these mole
ules, we have used the hard-sphere model

(HSM, default option in M3C) to represent the inter-fragment intera
tions, by using the

same strategy as for neutral 
arbon 
lusters. Panels a-b on Fig. 5 show the breakdown
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urves obtained for the fragmentation of these systems. If we �rst 
on
entrate on those


hannels leading to two fragments, we 
an see that the C

+/Cn−1 
hannel opens before the

C/C+
n−1 one for n = 4 (∼7 eV) and that the C2/C

+
3 
hannel opens pra
ti
ally at the same

energy as the C

+
2 /C3 one (∆E = 0.1 eV) for C

+
5 . However, for both systems, those 
hannels

where the 
harge is lo
ated on the heaviest fragment rapidly in
rease their probability in

the range 7-15 eV (C/C

+
3 and C2/C

+
3 , respe
tively). A
tually, by analyzing 
ontributions to

the DOS (see SI), we observe that this behavior is a 
onsequen
e of a larger 
ontribution

from the vibrational part of C

+
3 , sin
e their harmoni
 frequen
ies are signi�
antly smaller

than those of C3 (155 
m

−1
and 20 
m

−1
respe
tively). In 
ontrast, for C2, the rotational


ontribution is dominant, sin
e its smaller bong length leads to an in
rease in the DOS (due

to the in
rease in the inertia tensor elements). The three-fragments region of C

+
5 is again

dominated by the high 
ontribution to the DOS by vibrations, due to the presen
e of the

C

+
3 fragment in the most probable 
hannel. The four/three-fragments region for C

+
5 /C

+
4 is

mainly governed by the Gibbs' 
orre
tion fa
tor, whi
h redu
es signi�
antly the probability

of those 
hannels 
ontaining indistinguishable fragments. Thus, the probability of 3C/C

+
2 is

smaller than that of 2C/C2/C
+
for C

+
5 , and the probability of 2C/C

+
2 is smaller than that

of C/C2/C
+
for C

+
4 .

Comparison of these results with the experimental bran
hing ratios is 
arried out after


onvolution of the probabilities with the deposited-energy fun
tion (also shown in Fig. 5).

This fun
tion has been derived by using the same pro
edure as in the pre
eding subse
tion.

We see a very good agreement for C

+
4 . However, for C

+
5 , the simulations overestimate the

2C/C

+
3 
hannel. The possible origin of this dis
repan
y 
an be found with the help of Fig. 6.

The red lines represent the default intera
ting potential used by M3C and the bla
k lines

the real potential energy 
urves that des
ribe the 
harge distribution into the disso
iative


hannels. As 
an be seen, for C

+
5 , the simple M3C potential 
annot a

ount for the 
rossing

between the states that ultimately di
tates the relative probability of fragmentation 
hannels

that pla
e the 
harge in one 
enter or the other. To avoid this problem, one might then use
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arbon in linear a)

C

+
4 and b) C

+
5 .

the a
tual potential energy surfa
es of the system. However, 
omputing these surfa
es for the

C

+
n mole
ules is not a simple task due to symmetry-breaking problems (see

106

and referen
es

therein). In the C

+
n linear 
lusters, ele
troni
 states des
ribed at the B3LYP level su�er from

spatial symmetry breaking sin
e for this ele
troni
 state the unpaired ele
tron is essentially

lo
alized on the terminal 
arbon atoms. Thus, these stru
tures 
an only be des
ribed by

two resonant stru
tures, whi
h means that one has to deal in fa
t with a multi-referen
e

problem and use expensive methods su
h as CASSCF, CASPT2, MRCI, et
. Computing

the potential energy surfa
es for all the fragmentation 
hannels in
luding all the isomers is


omputationally prohibitive.

All in all, the present results, whi
h are the �rst ones ever 
omputed for fragmentation

of 
harged 
arbon 
lusters, 
at
h all the essential features and, for the smaller system C4

+
,

lead to an ex
ellent quantitative agreement with the experimental results.

4.4 Mass Spe
trometry of C2H2

The last example of the M3C 
apabilities is the simulation of mole
ular mass spe
tra. For

this we have 
hosen the a
etylene mole
ule, C2H2, whose mass spe
trum is available from the
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NIST Mass Spe
trometry Data Center.

80

In the experimental setup, a

elerated ele
trons

(typi
ally with ∼ 70 − 100 eV of energy) 
ollide with the neutral mole
ules in gas phase

produ
ing ex
itation+ionization. The ex
ited and ionized mole
ule undergoes fragmentation

and the intensity of the 
ationi
 fragments produ
ed are re
orded as a fun
tion of their mass

over 
harge ratio (m/z). The pro
ess 
an be summarized as follows:

C2H2(E0) + e−(ε) → C2H
+
2 (E0 + E) + 2e−

C2H
+
2 (E0 + E) → C2H

+ + H

→ C

+
2 + H2

→ CH+ + CH

→ · · ·

(55)

To obtain the 
orresponding mass spe
trum, one must simulate the fragmentation pro
ess

of the C2H
+
2 
ation, 
onvoluted as usual with the energy distribution fun
tion f(E) (see SI for

details). The �rst step in our simulations is to get all geometries for the possible fragments

and their isomers. First, we made a sto
hasti
 sear
h by using the M3C interfa
e with

the mole
ular ele
troni
 stru
ture 
ode GAMESS.

71,72

These 
al
ulations were done at the

DFT-B3LYP/6-311G level of theory. We in
reased gradually the number of trials from 20

until 
onvergen
e in the number of di�erent isomers was a
hieved. Then, by using the M3C

interfa
e with the GAUSSIAN pa
kage,

73

this �rst guess of mole
ular stru
tures were re�ned

at the DFT-B3LYP/6-311+G(3df) level of theory; vibrational frequen
ies were also obtained

at this level of theory. Finally, the ele
troni
 energies were obtained by using the 
oupled


luster theory CCSD(T)/6-311+G(3df), whi
h in
ludes all single and double ex
itations,

as well as triple ex
itations in a perturbative way. On
e all stru
tures, ele
troni
 energies

(in
luding wave fun
tion symmetry) and vibrational frequen
ies for all possible fragments

were 
omputed, we used them to build the M3C input �le (see SI for details). In total,

we des
ribed the fragmentation of this mole
ule in
luding 31 mole
ules (geometries for ea
h
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onsidered mole
ule 
an be found in the SI); energy and geometry for these mole
ules are

in agreement with previously reported data in the literature.

107�111

We only 
onsidered the

two lowest spin multipli
ities. The fragmentation model we used is:

H =
{

H( 2
S)

}

C =
{

C( 1D), C(3P)
}

H2 =
{

H2(
1Σ+

g )
}

CH =
{

CH( 2Π), CH( 4Σg)
}

C2 =
{

C2(
1Σ+

g ),C2(
3Πu)

}

CH2 =
{

CH2(
1A1), CH2(

3B1)
}

C2H =
{

C2H( 2Σg), C2H(
2A1), C2H(

4A′′)
}

H

+ =
{

H

+
}

C

+ =
{

C

+( 2P), C+( 4P )
}

H

+
2 =

{

H

+
2 (

2Σg)
}

CH

+ =
{

CH

+( 1Σ),CH+( 3Π)
}

C

+
2 =

{

C

+
2 (

2Πu), C
+
2 (

4Σ−
g )

}

CH

+
2 =

{

CH

+
2 (

2A1), CH
+
2 (

4A2), CH
+
2 (

1Σg)
}

C2H
+ =

{

C2H
+( 1A′), C2H

+( 3Π)
}

C2H
+
2 =

{

C2H
+
2 (

2Πu), C2H
+
2 (

2A′), C2H
+
2 (

4Bg), C2H
+
2 (2

4A2), C2H
+
2 (1

4A2)
}

(56)

where isomers in bold indi
ate the 
orresponding ground state. With this fragmentation

model, the ex
ited C2H
+
2 mole
ule may follow 17 fragmentation rea
tions in 117 di�erent

fragmentation 
hannels, whi
h are in 
ompetition all along the simulation. In the se
ond

step, we performed the statisti
al 
al
ulation itself. To this, we used a system radius of 8 Å,

six numeri
al experiments with 6× 104 events ea
h and the sequen
e 5V̂ T̂ R̂Ŝ05V̂ T̂ R̂Ŝ1:-1 as
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Markov 
hain, using 10% of them as burn-in period. The ground state of C2H
+
2 (

2Π) was

sele
ted as initial 
ondition, whi
h 
orresponds to a linear doublet isomer (C2H2.q1.m2-2 see

SI). The deposited energy fun
tion f(E) was obtained by �tting to the experimental mass

spe
trum observed with ele
trons of 70 eV of kineti
 energy

80

(see SI for details).

In panel a) of Fig. 7, we show the probability of the di�erent fragmentation 
hannels

as a fun
tion of the internal energy. The inta
t mole
ule C2H
+
2 does not disso
iate up to

∼ 6 eV. In the range of internal energy 6-8 eV, the CH

+
2 /H 
hannel is dominant, but in the

range 8-12 eV it 
hanges to C

+
2 /H2. Only these 
hannels play a signi�
ant role, be
ause,

for larger energies, the f(E) fun
tion is pra
ti
ally zero. Panel b) on the same �gure shows

the probability of appearan
e of the di�erent 
harged fragments. In the range of ex
itation

energy 6 − 12 eV, we observe 
ompetition between C2H
+
and C

+
2 , being dominant the �rst

one, with a small 
ontribution of C2H
+
. This is in agreement with the experimental mass

spe
trum, where these three 
harged spe
ies are asso
iated to the highest intensity peaks

(see lower panel of Fig. 7).

The deposited-energy fun
tion f(E) (top panel in Fig. 7) presents a maximum at ∼ 4

eV. A 
omparison between the experimental mass spe
trum (ele
tron ionization) taken from

NIST Mass Spe
trometry Data Center

80

and our theoreti
al results 
onvoluted with the

above des
ribed energy distribution is shown in the lower panel of Fig. 7. In general, we

observe a good agreement between theory and experiment, ex
ept for isotope peaks like M+1

at 27 m/z, whi
h are not taken into a

ount in our 
al
ulations.

An interesting option that this methodology o�ers is to perform an isomer analysis. For

example, Fig. 7b shows the probability for all 
onsidered isomers of C2H
+
2 as a fun
tion of

the ex
itation energy. As 
an be seen, about 46% of the C2H
+
2 peak in the mass spe
trum


orresponds to the vinylidene-like isomer (

2A′
, C2H2.q1.m2-1 see SI), ∼53% to the a
etylene

linear 
on�guration (

2Π, C2H2.q1.m2-2 see SI) and less than 1% to the three remaining iso-

mers. It means that the most probable fragmentation pattern implies the existen
e of a tran-

sient isomerization me
hanism of the mole
ular ion (a
etylene→vinylidene→fragmentation).
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mass spe
trum. Last one was obtained by 
onvolution with

the deposited energy fun
tion whi
h shown in gray on the upper panels.
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Previous theoreti
al and experimental studies have rea
hed a similar 
on
lusion (see for

example

112,113

).

5 Con
lusion

We have presented a 
omputational implementation of the Mi
ro-
anoni
al Metropolis Monte

Carlo method, 
alled M3C, whi
h 
an be applied to study fragmentation pro
esses in a large

variety of mole
ular and 
luster systems irrespe
tive of their 
omposition and the nature

of the 
hemi
al bonding between their elementary 
onstituents. Its performan
e has been

demonstrated by applying it to evaluate the 
alori
 
urve of the weakly bound rare gas 
luster

Ar13, to simulate the mass spe
tra resulting from the bombardment of the a
etylene mole
ule

with fast ele
trons, and to interpret the yields observed in the fragmentation of both neutral

and singly-
harged 
arbon 
lusters in fast 
ollisions with atomi
 spe
ies. Our results for

singly-
harged 
arbon 
lusters are the �rst ones to explain re
ent experimental observations

for this kind of systems. Due to the generality of the M3C implementation, appli
ation

to more 
ompli
ated systems is also possible. Cal
ulations to understand fragmentation

of protonated 
arbon 
lusters, sulfur 
lusters, and other large systems, for whi
h existing

experimental results remain unexplained, are already in progress.

In spite of these signi�
ant advan
es, there are a few more 
hallenges that one should

fa
e in the near future. One of them is the appli
ation of the 
urrent M3C methodology

to study fragmentation of multiply 
harged mole
ules and 
lusters, where Coulomb explo-

sion pro
esses, whi
h tend to split the 
harge among all possible fragments, 
ompete with

fragmentation 
hannels where the 
harge ex
lusively remains in one of the fragments. An

appropriate des
ription of these pro
esses requires a

ounting for Coulomb barriers, whi
h is

straightforward by using the M3C methodology, but requires performing elaborate quantum


hemistry 
al
ulations of transition states to determine the magnitude of su
h barriers. In

this respe
t, the sear
h of less time-
onsuming pro
edures to estimate the height and the
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width of su
h barriers is highly desirable. Another 
hallenge is to explore simple ways to

in
orporate non adiabati
 e�e
ts that are involved in the 
rossings between potential energy

surfa
es leading to di�erent disso
iation limits, i.e., asso
iated with fragmentation 
hannels.

As dis
ussed in this paper for the 
ase of singly 
harged 
arbon 
lusters, these 
rossings 
an

strongly in�uen
e the fate of the 
harge in the fragmentation pro
ess, di
tating if it goes

to one or another fragment. Therefore, a

ounting for these non adiabati
 e�e
ts 
an be


ru
ial for an a

urate evaluation of fragmentation yields in 
harged spe
ies. Work along

these dire
tions is already in progress in our laboratory.
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edure used to obtain the deposited energy fun
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This material is available free of 
harge via the Internet at http://pubs.a
s.org/.
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