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Abstract

The Microcanonical Metropolis Monte Carlo method, based on a random sampling
of the density-of-states, is revisited for the study of molecular fragmentation in the gas
phase (isolated molecules, atomic and molecular clusters, complex biomolecules, etc).
A random walk or uniform random sampling in the configurational space (atomic po-
sitions) and a uniform random sampling of the relative orientation, vibrational energy

and chemical composition of the fragments is used to estimate the density of states of



the system, which is continuously updated as the random sampling populates individ-
ual states. The validity and usefulness of the method is demonstrated by applying it
to evaluate the caloric curve of a weakly bound rare gas cluster (Arjs), to interpret
the fragmentation of highly excited small neutral and singly-positively-charged carbon
clusters (C,, n = 5,7,9; and C;', n = 4,5) and to simulate the mass spectrum of the

acetylene molecule (CoHg).

1 Introduction

High-energy ionic and electronic beams, as well as laser pulses and synchrotron radiation
sources, are widely used to investigate the properties and dynamics of complex molecular sys-
tems. Bombardment by these particles involves excitation and/or ionization of the molecular
target, which ultimately dissociates as a consequence of the excess of energy deposited by the
projectile.!™ Thus the analysis of the type of fragments resulting from the collision together
with their kinematical properties can provide useful information on the parent molecular
system, such as its stability against ionization and excitation, its electronic structure and
geometrical configuration, the type of interaction between the subunits conforming the clus-
ter /molecule, etc.®'? For this, a key point is to understand how the energy deposited on the
molecular target is distributed among the various electronic and nuclear degrees of freedom
available in the system (electronic, vibrational, rotational and translational) and how this
distribution leads in the end to the observed fragmentation.

In this respect, time-resolved experimental studies, as those making use of ultrashort light
pulses, can provide a wealth of information about the dynamics of such excited and ionized
molecules. '3 For example, by using pump-probe schemes, one can infer the motion of holes
created after ionization of a biomolecule!® or follow the nuclear dynamics of charged and
excited molecules'® by measuring fragmentation yields as a function of the pump-probe delay
time. In addition to this, new experimental techniques for cluster production and ion stor-

age rings facilitate the study of increasingly more complex systems, such as, e.g., clusters of



fullerenes!'” or clusters of polycyclic aromatic hydrocarbons.® However, the full reconstruc-
tion of the properties and evolution of complex molecular targets from such time resolved
measurements is still very challenging due to the large number of accessible fragmentation
channels, which requires the use of sophisticated multicoincidence techniques. *?-2°

In recent times, theoretical methods have partly mitigated these limitations by helping
in the interpretation of experimental measurements and by making semi-quantitative pre-
dictions that have driven experimental efforts in the appropriate direction.!! First-principles
molecular dynamics (MD) methods, for which commercial computational packages are avail-
able, are in principle the ideal tools to perform such theoretical studies. For example, by
using semiempirical methods to describe the electronic structure, fragmentation of large
polymeric molecules has been studied with MD.?2?% Also combinations of more sophisti-
cated density-functional-theory structural information with MD methods have been recently
proposed to reproduce mass spectra®! and to successfully investigate the fragmentation of

25-34) " However, these meth-

small biomolecules in collisions with fast atomic ions (see e.g.
ods are extremely expensive and therefore are of no practical use for large systems or for
explorative studies that require considering a large variety of initial conditions. In contrast,
methods based on statistical mechanics are computationally much more accessible and can

35712 gince quan-

thus be very valuable for in situ interpretation of fragmentation experiments
titative description of the processes can be obtained. Unfortunately, existing computational
tools based on statistical methods are usually designed to study a particular type of systems
and/or processes, and therefore they do not have the versatility of MD methods.

In this work we present an extension of the statistical Micro-canonical Metropolis Monte
Carlo (MMMC) method that goes a step further and can be applied to study fragmentation
processes in a large variety of systems irrespective of their composition and the nature of the
chemical bonding between their elementary constituents. The proposed extension, which we

will call M3C for short, allows us to investigate fragmentation of systems that range from

weakly bound noble-gas clusters to tightly bound carbon clusters and organic molecules. In



its origins, the MMMC method was successfully applied to study thermodynamic properties
in nuclear physics,*® then used to study fragmentation of hot metal clusters®® and highly
excited neutral carbon clusters.**¢ In essence, the MMMC consists in partitioning the mass,
charge, energy, and momentum (linear and angular) of an excited molecular system (which
are conserved in the micro-canonical approach) among all accessible fragmentation channels
with probabilities governed by considerations of maximum entropy (see Ref.*?). The key
aspect of this methodology is that it provides a random way to move in phase space until
a region of maximum entropy is reached, where the physical observables are computed by
performing a simple statistical average.

To evaluate fragmentation yields that are directly comparable with experiment, one must
know the energy distribution f(£) in the excited/ionized molecular target resulting from the
collision with the projectile.** However, in most cases, this energy distribution is not known
(Refs. #4749 are notable exceptions) and must be estimated from semi empirical arguments
or from theoretical simulations performed at different levels of approximation, such as those
based on stopping-power methods®® or on simplified close-coupling approaches.*8°175* Con-
versely, a fit of experimentally determined fragmentation yields to MMMC calculated ones
can be used to obtain the unknown energy distribution f(FE), which can then be used to
interpret other measurements performed under similar experimental conditions. Our new
M;C tool allows one to consider this second approach in a general way.

The paper is organized as follows. First (section 2), we present a detailed theoretical
description of the method by considering a molecular system in full generality. We go be-
yond earlier MMMC derivations®®* by formally including the coupling between the angular
momenta of the fragments and the energy barriers that may appear on each fragmentation
channel. We also present our implementation to compute fragmentation probabilities and
species, fragment energy distributions, temperature and heat capacities as a function of the
excitation energy, among others. In section 3, we describe the algorithms and strategies used

in the M3C software package based on the above theory. Finally, in section 4, we illustrate



the performance of the method in some prototypical systems. In particular, we evaluate the
caloric curve of the weakly bound atomic cluster Ary3, we study the fragmentation of neutral
(C5,C7,Cy) and singly charged (CJ, CF) carbon clusters, and we simulate the mass spectra

of the acetylene molecule, CoHs. Section (5) summarizes the main conclusions of this work.

2 Theory

In this section we describe in detail the ingredients of our model. As we will show, the
main goal is to reach a reliable expression for the density of states (DOS) of the system,
which is the most important quantity in the microcanonical ensemble. We first present the
Metropolis Monte Carlo approximation (section 2.1), where we provide an overview of the

method. In the second part (section 2.2) an extended derivation of the DOS is given.

2.1 Microcanonical Metropolis Monte Carlo model

In the definition of the microcanonical ensemble in statistical physics, the system under
study (nuclei, atoms, molecules, clusters, spins, etc.) has fixed energy E and its statistical
equilibrium is characterized by the microcanonical entropy, which is given by the Boltzmann’s

formula:

S=kgnQE), (1)

where kg is the Boltzmann’s constant and Q(F) is the DOS. In the following, in addition
to the conservation of energy, we will consider a microcanonical ensemble in which both the
total angular momentum J and the total linear momentum Py of the system are conserved.
Within a semi-classical description, the number of accessible micro-states is proportional to

the DOS expressed as:

B, Py, To) / AP S[H(r) ~ E]6](0) - 7] 6[P(D) Py, 2)



where H(I') represents the Hamiltonian of the system, and I" the associated phase space (all
the possible values of position and momentum coordinates).

We simplify the treatment of the translational motion by referring the linear momentum
P of the constituent fragments to the center-of-mass laboratory-oriented system of coordi-
nates. The constrain in P can be easily integrated out by fixing Py = 0. However, it is not
possible to define a system of coordinates where the system does not rotate and, therefore,
it is not possible to integrate out the constrain in J using a similar strategy. However after

some approximations, we will show in section 2.2 that Eq. (2) can be approximated as follows

N

B, Jo) =~ AY (X5 E,To) , (3)

i=1

where A is a constant independent of the energy and N is the number of state vectors of
a Markov chain in phase space (see below). Therefore, the total DOS may be seen as an

average of the local DOS, V' (X; E,J o), which is a function of the system’s state vector
X =(c,E,,R,0), (4)

where ¢ represents the composition of the system, i.e. the number of fragments (molecules)
and their compositions (charge, geometry, electronic configuration, spin multiplicity), E,
the vibrational energies, R the positions (cartesian coordinates of the centers of mass of the
fragments), and @ their orientations in space.

The mathematical representation we use for ' (X; E, J o) is deduced in section 2.2.4;
the important point in our approach is to generate the minimum number of state-vectors
that provides an accurate description of the DOS according to equation (3). In order to do
this, we take advantage of a stochastic sampling method. In particular, we use a Markov
chain Monte Carlo sampling algorithm.

The Laplace principle of indifference assigns a priori an equal probability to all phase

space points situated on the energy surface H(I') = E. Therefore, we can write this proba-



bility density as

P(T;E,J0) = ﬁd[%(r) - E} 5[3(1“) - JO] (5)

The statistical average of a physical quantity f can be expressed in the space of the system’s
state-vectors, as follows

N

(f)= [ dr PIO)FIT) = D" P2 (), (6)

k=1

where we have omitted the parametric dependence on £ and J for the sake of simplicity
(it will be introduced when needed). Probability density of finding the system in the state

X, can be written as
V(X B, )

P(X, E,To) = OB, Ty (7)

In order to calculate statistical averages, this probability function may be used as a weighting
factor in a microcanonical Markov chain Monte Carlo simulation (see e.g.®>°7). In this

method, one moves in small steps (Markov chain)
X =Xy — o= Xy == Ay, (8)

towards the most important region of the phase space, i.e. the region exhibiting the highest
values of ('(X};), the maximum entropy region. At the k' step, the new generated candidate

X1 will be accepted or rejected depending on the acceptance ratio p(Xy, — Xki1), given

by

plats = 1) = min (1,58 ) i (1, 5T ) o)

i.e. the candidate is accepted (X1 is used in the next step) if p > 1, accepted with a finite
probability if U1y > p > 1, or otherwise rejected ( X4y is discarded and Xy, is reused
in the next step). Thus, the Markov chain is given by the accepted state vectors, assuming
that, if a point is rejected, the system returns to the previous one (Xy ;3 = X)). At the end

of the simulation, after equilibration of the system (burn-in period), the expected values of



a quantity f can be approximated by a simple arithmetic average

()= L5 . (10)

k=1

where the error on (f) scales as 1/v/N, being N the number of state vectors in the Markov

chain.

2.2 Computation of the Density of States

We consider a molecule composed of n atoms and that can be fragmented in N, different
ways (channels). The strategy that we use begins with introducing a natural decomposition
of the system’s phase space, which results from a convenient selection of the interaction
potential among the fragments. Therefore, the (3n x N.)—dimensional problem can be
reduced to N, uncoupled problems (the details are shown in section 2.2.1). Our second
approximation is to neglect the ro-vibrational couplings; to this we consider that the system
can be treated in the semi-rigid linked atomic framework (section 2.2.2). Consequently,
the Hamiltonian model to represent a specific fragmentation channel is separable, which
allows one to integrate out the vibrational contribution from the total DOS by convolution.
Following a similar strategy to that used in reference,®® it is possible to integrate out all
the linear momenta P, and the corresponding orbital angular momenta associated to the
fragments, » R, x P,, where all orbital angular momenta collapse to the total orbital
angular momentum by taking into account their conservation rules. Finally, by choosing a
convenient angular momentum coupling scheme, we reach an expression for the DOS where
the angular momentum conservation rules are automatically taken into account (section

2.2.3).



2.2.1 Phase-space channel decomposition

In classical mechanics, the phase space I' is a 2f-dimensional space, whose axes are the
generalized dynamical coordinates r and their conjugate momenta p. In this way, each
possible state of the system corresponds to one unique point in the phase space. If one
considers a system with v indistinguishable particles and f degrees of freedom, its state is
given by the values of r = {ry,r9,--- ,r¢} and p = {p1,p2, - - , ps}. The integration element

in the phase space I' = {r, p} reads

2T 1 drd'p

Hk l/k! (27Th)f
and it can be considered as the number of quantum states associated with the classical limit
within the volume element d/r d/p. The first factor at the right hand side of the equation
is known as the Gibbs’ correction factor, which appears when one takes into account the

permutations of different kinds of identical particles.

Figure 1: Upper panel: Double well potential for a diatomic hypothetical system AB. Lower
panel: Associated phase space and its channel decomposition (see text for details).



Now, in order to introduce the concept of phase space channel decomposition, we consider
the fragmentation of a diatomic molecule AB, where the interaction between the atoms A
and B is given by a double well potential as shown in Fig. la. Let us consider the following

matrix which represents the composition of the system:

Clag) i= ;

where the columns are associated to all possible species/fragments (AB, AB’, A, and B) and
the rows to the atomic constituents of those species/fragments (A and B). Number 1 indicates
that a given species or fragment contains a particular atomic constituent, and 0 that it does
not. We assign to each species/fragment the set s; = col;,C (ap]. In this system, there are three
possible fragmentation channels: AB(c; = {s;1}), AB’(cy = {s2}) and A+B(cs = {s3,84}),
where the difference between channels AB and AB’ is the internuclear distance. As can be
seen, a fragmentation channel is represented as a multiset containing species as elements. At
variance with a set, a multiset allows multiple instances of its elements, where the number
of instances for a given element is called multiplicity.

After separation of the center-of-mass motion, the associated phase space is the two-
dimensional curve plot shown in Fig. 1b. Based on the local maximum position (r ~ 4.5A)
and the asymptotic limit of the interaction potential, it is possible to make a partition of

the phase space in three regions (see Fig. 1b):

=T, Ul,UT, .. I, Nl,=0 k#I

which allows us to define in an univocal way the limits for each fragmentation channel.
Consequently, we can associate the points in each region with each channel: (r,p) € T¢, with

channel AB, (r,p) € I'c, with channel AB’ and (r,p) € I'c, with channel A+B. Therefore,

10



any kind of integral on the phase space is transformed as follows

3
dij,,,dfcjp
/dI‘ = > o
=,

On the other hand, as can be seen in Fig. 1b, the decomposition of the phase space indirectly
induces different interaction potentials for each fragmentation channel. Thus we can write

three different Hamiltonians associated with each channel

2

Hr, (rp)= - +Us(r) o j=123.

It is important to emphasize that this phase space decomposition preserves the Hamiltonian
flows, therefore, the ergodicity of the system is also preserved, which is very important in
the statistical description that we will use hereafter.

For the general case, the phase space decomposition into /N, fragmentation channels reads
as

Ne
r=|Jr, T, NTe, =0, k#I,
j=1

and therefore, the integration over the phase space reads

N,
< dijrdfcjp
dI' = Qe(c;)Q(cy —_—. 11
for =3 s | o (1)

c

We have introduced in Eq. (11) the degeneracy of the associated electronic energy level
Qc(cj) (i.e. the electronic DOS) and the combinatorial weight €,(c;) (i.e. the combinatorial
DOS) for the channel c;.

The electronic state degeneracy takes into account the total number of microstates of

the electronic states based in the symmetry of the electronic wave function. Explicitly, it is

11



given by,

(25 4+1)(2L+1) if sis an atom

(25+1) if s is a linear molecule (M = 0) (12)
Qe(s) = 4 (25 + 1)2|My| if s is a linear molecule (Mg, # 0)

(25 +1)2D if s is not a linear molecule

1 otherwise.

In the case of atoms, the electronic state degeneracy (assuming LS coupling) is com-
pletely specified by the total spin (S) and the total orbital angular momentum (L) quantum
numbers. In the case of linear molecules, L is no longer a good quantum number due to
lack of spherical symmetry. Thus, the number of micro-states now depend on M/, which
corresponds to the component of L along the molecular axis. Finally, in the case of nonlinear
molecules, it is necessary to specify the degeneracy of the associated irreducible representa-
tion D, where D = 1 for A and B, and D = 2,3,4,5 for E, F,G, H, respectively. Notice
that by knowing the fragments’ atomic/molecular symbol, we can immediately calculate the
number of micro-states by using Eq. (12).

The combinatorial weight €2,,(c;) takes into account that the number of identical particles
can change (actually after the phase space decomposition it is necessary to consider identical
fragments instead of identical particles), keeping invariant the atomic composition and the

total charge of the system. It reads

N(J) N}j)
Q,(cj) = ———— { ZS }5{ Zzi(j) —zo} (13)
Hk ( ) i=1

where m (s,(gj )> represents the multiplicity of the k-th fragment in the channel c;, and s

and zy the identity of the initial fragment and its charge, respectively. Thus, Dirac’s delta

12



functions assure the composition and charge conservation rules. Eq. (13) is a generalization
of the weight wyz (number of ordered partitions of a cluster of Ny atoms and charge Zr
into N; fragments) defined in our earlier implementation of the MMMC methodology.*®
Indeed, it possible to demonstrate that the weight wyy is equivalent to the summation of
all Q,,(c;) containing the same number of fragments. However, this description is limited to
study molecules with only one kind of atoms. In our new description, Eq. (13) allows us to
describe the fragmentation of molecules containing different kinds of atoms.

According to Eq. (11), the integration in phase space can be seen as the summation of
the contributions from different independent channels. Thus, in the next section, we focus

on obtaining the Hamiltonian function associated to a given channel.

2.2.2 Hamiltonian Model for a Fragmentation Channel

In our model we consider three approximations: (i) we assume the validity of the Born-
Oppenheimer approximation, (ii) a given fragmentation channel is represented as a set of
molecules/fragments constructed in a semi-rigidly linked atomic framework, where the in-
teraction between them are introduced by a pair-wise like potential that depends on the
distance between their centers of mass and does not consider their relative orientations; (3)
we consider a harmonic expansion for the internal degrees of freedom for each fragment
(Q.P).

If one denotes by R = {7'\’,1, Ro, ..., ’T\’,Nf} the center-of-mass positions of all the frag-
ments with respect to the laboratory frame (lab), 6 = {91,92, . .,BNf} their orientations
with respect to their own body-fix frame (bf), where @ = («, 3,7) represents the Euler
angles (R(0) is the associated rotation matrix that allows to convert from lab—bf) and
Q= {Ql, Qo ..., QNf} their internal atomic displacements in mass-weighted coordinates

around their equilibrium geometries (vibrations), it is possible to show that the classical

13



Hamiltonian for a given fragmentation channel is given by (see e.g.?*%1):

Ny
1 1
H(R,P,0,J,Q,P) = § { —P,M, P, + JTI L+ §PEPH + §Q3quH} +U(R) (14)
p=1

where P and P are the canonical conjugate momenta of R and Q respectively, M, is a 3 x 3

matrix associated with the mass of the fragments M,, = m,Is.3, and f, represents the force

0= ——— (5 ) (15)

My, \ 0%;,07;),

constant matrix

which can be diagonalized in order to obtain the f,, vibrational frequencies associated to
each fragment w, = {wi,,way, ..., wy,,u}. I, is the inertia tensor related to the rotation
of the p-th fragment around its center-of-mass, in the body-fix frame of reference with an
angular momentum J,,.

The potential energy in our Hamiltonian model, U(R), as we said above, is defined as

the sum of the pairwise interactions between the fragments given by

Nj—1 Ny

ZU + > D UD(RWI) (16)

u=1 v=p

where U,Sl) is the one-body contribution of the u-th fragment (equivalent to electronic energy)
and U;(L,%)(|’R,W|) is the two-body energy term which depends on the distance between the
two fragments p and v, and that goes to zero as |R,,| = |R, — R, | tends to infinity. This
strategy provides a way to calculate the total interacting potential once all the pairwise

interactions between the fragments are obtained.

2.2.3 Density of States for a Fragmentation Channel

After the definition of the Hamiltonian, we perform a few algebraic transformations in order
to obtain an expression for the DOS of the system that is easily integrable. In particular, we
show the factorization of the DOS in their vibrational, rotational and translational compo-

nents. The factorization of the last component involves an integration in the configurational

14



space that will be approximated by a Monte Carlo scheme in section 2.2.4.
By using the “phase space channels decomposition” of Eq. (11) in the definition of the
DOS [see Eq. (2)], we obtain

Q(E) = ZQG(Cj)Qn(Cj)ch(E) (17)

Thus, the DOS is now decomposed into several components, each one associated to one
channel. In the above expression, we have introduced the DOS for the c; channel, Qc,(E),

which can be explicitly written in the system of coordinates defined in the previous subsection

as follows,
Qu(E) = BNIR BN P dfr0d I dfQdP
o (2rn)3Ns  (2rnh)fr  (2wh)fe
<6 AR, P.6,3,Q,P) - B|3[T ~ Fo|s[P - Py (18)
Ny Nroy
dX=[]dx, .. X=RPJIQP,  do=]] —sing, a0,
pn=1 pn=1 K

where, for simplicity, we have omitted the DOS dependence with the identity of the channel
(it will be introduced when needed). f, is the number of rotational degrees of freedom
fr=72_, fruand f, is the number of vibrational degrees of freedom f, = >~ f,,. Notice that
J is not the canonical conjugate momenta of 8. This is the origin of the prefactor sin 3, which
is the Jacobian of the associated transformation. o, is the rotational symmetry number, it

indicates the number of unique orientations of the pu-th fragment that only interchange

15



identical atoms. This number depends on the fragment’s molecular symmetry

1 if RS Cl,Ci,CS,COOU
2 if n e Do,
op=9 n if p€C, Cp,Cu (19)

2n if JURS Dnanhand

n/2 if  pes,

\

The Hamiltonian function is separable since rotational-vibrational couplings have been
ignored; therefore, it is possible to use the convolution theorem to separate the vibrational

contribution from the rest of degrees of freedom as follows
E
Q(F) = / Qy(c, Ey)A(c, E — E,) dE, (20)
0

where Q,(c, E,) is the vibrational DOS associated to the channel ¢ and is given by

N
df* QdP (1 . 1 1
QU(C,EU) = W 5 Z:l {§PMP“ + §Q“w“Qu} - Ev (21)
/"L:

This equation corresponds to the DOS for a set of f, uncoupled harmonic oscillators grouped
in Ny sets (one for each fragment). By using the convolution theorem Ny times, we integrate

out the contribution of the vibrational DOS for each fragment which admits the following

solution
Ny Efer—l Jon
O (E) = ngw Quu(c, Byy)A(c, E-E,), Quu(c, E) = RFouT (fon) (fon) 3 Hw

The total vibrational energy should satisfy the constraint E, = Zgil E,,, being E,,
the vibrational energy of the u-fragment, with f,, internal vibrational degrees of freedom,

and wy1, Wy, .- .., wyy,, the associated vibrational frequencies. As in previous work,* we

16



suppose that the maximum energy that a fragment can absorb is limited by the lowest
dissociation energy D.,, i.e., the vibrational energy for the p-fragment is constrained to
satisfy 0 < E,, < D.,. A(c, E) involves the rest of the degrees of freedom (rotation and

translation of the fragments in the channel):

dBNIR PN P dlr0d! I

A(C7 E) = (27Th)3Nf (27Th)fr
Ny 1 Ny 1
x| Y SPuM Pyt Y S, + U(R) — E
p=1 p=1

xé[J—Jo}é['P—'Po} )
(23)

This equation is particularly hard to solve due to the complexity in treating the coupling
of the angular momentum with the orbital rotation of the fragments, induced by the total
angular momentum conservation rule. In order to integrate it, we follow a similar strategy
as the one proposed in refs.527% We first fix the coordinate variables R and 0, and then we
integrate over the momentum variables P and J. Finally we integrate over R and 6.

Firstly, to eliminate the translational motion P we refer the coordinates R, and their
conjugate momenta P, of the fragments to the center of mass laboratory system of coordi-
nates (Po = 0). In contrast with P, it is impossible to define a system of reference where
the system does not rotate, then it is not possible to integrate out the rotational motion J
from Eq. (23).

To overcome this problem, we can picture the evolution of the overall rotation of a
nonrigid system as a rotational motion of a changing rigid body, as it was previously used by
Jellinek and Ly®® in the case of rotating floppy systems like argon clusters. To this, we define
’PLb as the momenta of the fragments composing the ideal rigid body system. Then, using

AP, =P, — ’sz, the constraint in the total angular momentum and the kinetic energy is

17



transformed as follow (see details in®®)

Ny
T-To—L+> RO)J,— Ty
pn=1
Al Al 1 2
Tng—1 Tng—1 T—1
> SPuM,' P, — > SAPIM, AP, + LT 'L,
p=1 p=1

where the total orbital angular momentum is defined by L = 3 R, x PLb, and Z7*
represents the associated tensors of inertia for the overall rotation of the system as a rigid
body. This approximation introduces a complete instantaneous decoupling of the overall
rotation energy (LTZ 'L/2) from those fragments’ relative motions, giving zero Coriolis
contribution in the Hamiltonian. Note that since the tensor of inertia Z=! depends on the
instantaneous fragments’ position, the dynamical coupling in the system is fully retained

and the overall rotation and the internal displacements exchange energy. Replacing (24) in

(23) we obtain,

BNIR EBENr AP dIr0d]

Ale, B) = Grh)Nr (@rh)h

Ny
1 -
X (5[ > §A’PEMM1A’PH + By (J,L;R)+UR)—E | (29)
pn=1
Ny
X 6 L“_ZR(G)Z']M—«TO] )
pn=1
where the rotational energy is given by:
1 1
Eror(J, LiR) = 5 S Jrntg,+ 5LTI—l(R)L (26)
n

The usual strategy to solve equations like (25) is to reduce the argument of the first delta
function to a diagonal quadratic form. In this case we just simply transform A7P into a
Jacobi system of coordinates (see for example®®). However, in the rotational energy term,

the angular momentum constraint prevents this possibility for the J coordinates. So, we

18



have to find a transformation of J where the rotational energy is formally diagonalized.
The strategy we use starts by substituting L from the angular momentum constrain in

Eq. (25) into Eq. (26). Then the rotational energy can be rewritten as,

Nf Ny

rot J R, 0 ZZJ;JJH;W +EJO(R)
,u lv=1

L (0,R):=1"+R,(0)Z"(R)R(0)
By (R) = 5 TET (R)Tg
where we have introduced the energy associated to the overall rotation £, and the coupling
terms H;Vl The diagonal elements H ., Dlay the role of effective inertia tensors for the p-th
fragment and the off-diagonal terms represent the strength of the interaction among angular
momenta of different fragments. In our previous implementation,®® off-diagonal terms and
overall rotation were not taken into account.

To obtain Eq. (27), we have omitted the coupling terms JEJO. Note that the angular
momentum conservation holds when all these coupling terms are kept. However, to keep
the advantage of a fast numerical scheme, we have omitted such terms. These terms allow
exchange of energy between rotation of the fragments and the overall rotation of the system,
which is less important than the direct coupling between fragments (J, 3 J,) and the centrifu-
gal distortion (JOTJO). For low values of J, this approximation does not compromise the
accuracy of the solution.

Then, by diagonalization of the I"" = {I. )} matrix, we reach our aim. Indeed, if we
denotate by B~! the diagonal representation of I™! (i.e. I-! = UB~!UT), the rotational
energy gets the expected quadratic form in the new basis of angular momentum vectors j

(where j = UT(J1|Js|---|Jn,)" being U an unitary matrix),
. Lo .
Bt R.6) = LB (R.6)i + Eq(R) 25)

Thus, the new angular momenta j provide a basis where the contributions to the internal
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rotational energy are formally diagonalized. The angular momenta j can then be calculated
from Eq. (28), although it is not straightforward to recover the contribution from each
individual fragment, since this information is lost in the diagonalization of I"!. In any case,
these individual contributions are not relevant for the DOS, because the final expression does
not include them.

Finally, after performing the transformations outlined above, the term in the first Dirac’s
delta function of Eq. (25) is now diagonal and can be integrated out by using a special

67,68)

case of the Dirichlet equation (see for example . This case corresponds to the surface

of the s-dimensional hyper-ellipsoid, being s the total number of degrees of freedom (i.e.

s = fi + fr). We get:

(2m)*/? Ny v I i
2m)* 1 d"R  d' 0
A(c, E) = — H my

['(s/2) \ M et (2wh)fe (27ch) I

29
s/2—1 ( )

x det B(R,0)? |E -~ U(R) — E4(R)

Notice that the term involving the fragments’ mass (m,) and the total mass of the system
(M =}, my) is obtained by integration of the linear momenta; in contrast the matrix B is
produced from the integration of the angular momenta. Equation (29) is general and encom-
passes equations previously developed by other authors for particular cases. For example, in

refs., 6364

analytical expressions for up to 3 particles were obtained by including the internal
rotations as orbital angular momentum contributions. If angular momentum contributions
(J,) are ignored in Eq. (29) and orbital angular momentum components (R, x P,) are
removed from their description, one gets an equivalent formulation. By ignoring the total
angular momenta contribution, i.e., the off-diagonal coupling terms JgJ v, and by replacing
the rotational matrices by unitary matrices, we recover the expression used in our previous

implementation.*> When only atomic fragments are considered, we recover an almost similar

expression as that obtained by Calvo and Labastie.®® In the case of two asymmetric top
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interacting fragments, we retrive the equation proposed by Smith in Ref.%

2.2.4 Monte Carlo Integration

The last step in our derivation of the DOS is the integration in configurational space as given
in Eq. (29) and the convolution defined in Eq. (22). Due to the complexity of these integrals,
we adopt a simple Monte-Carlo description by performing a random-sampling of the positions
and relative orientations of the fragments (R and ) in Eq. (29) and a random-sampling of
the fragments’ vibrational energy (E,,) in Eq. (22).

To obtain an expression for the first integral, we generate N configurations, randomly
distributed throughout the domain of R and 6. Hence, the approximation to the integral

in Eq. (29) is simply

N
Ale B) = 1 VeV Y. A(e B, Ry 60) (30)
k=1

where we introduced the volume elements associated to the configurational space (Vg and
Vp) and the function K(C,E, R, 9), which gives the contribution of the translational and

rotational DOS,

Ny 3/2 s/2-1
A(c,E,R,0) = 2m) [ 1 JJE det B(0)'*|E —U(R) — E;(R) (31)
s ) F(S/Q) M e iz Jo .
The configurational free volume is:
VR = AR IR, —Ru| > v+ (32)
@rpyfe T T Tl 2 e T

To compute it we considered N random configurations in the f;-dimensional space. Around
each atom of each fragment, we build a small imaginary hard sphere of radius r (covalence
radius). The volume defined by these spheres is forbidden to occupation by any of the
other fragments. Then, the calculation of Vx consists in computing the total number of

non-self overlapping configurations among the N steps. The exact solution for this problem
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has only been found in one dimension. There are, however, several methods available for
computing an approximate solution. We use here the same method described in our previous

implementation.*® The angular volume is given by,

i@
Vg = H |: Sll’lﬁu W)]ﬁju (33)

This factor appears due to the angular part of the eigenrotation of the fragments, and it
depends on the symmetry of each molecule. We can distinguish three cases as a function
of the number of rotational degrees of freedom: single atoms (f,, = 0), linear molecular
fragments (f,, = 2) and non-linear molecular fragments (f,, = 3). Its solution is analytic

and corresponds to the surface of a (f,, + 1)-dimensional sphere. Thus it is simply given by:

(

8% if  fr, =
Ny
1
Vo = _ ; — 34
e H O'“(27Th)f”“ 47T ].f fTM = 2 ( )
pn=1
1 otherwise.

To obtain an expression for the convolution integral in Eq. (22), we randomly generate
N, values of vibrational energy distributed among all fragments. Then, Eq. (22) can be

approximated by,

AZQ ¢.E—E,;), (35)

being A a constant. And finally, by replacing Eq. (30) and Eq. (35) in Eq. (17) we obtain

an accessible expression to the DOS of the system, which reads,

N

Ne Ny
~ AZZZ Q(EaciaEv,j>Rka0k)

i=1 j=1 k=1 (36)

Q. c,E,;,R,0) :=Q,(c) Q(c) Q, (c,Evvj) Vr Vo K(C,E — FE,; R, 0).
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Eq. (36) gives the total DOS as an overall sum, which is carried out over N, random trials
of the available fragmentation channels c, N, random trials of their vibrational energies E,,
and N random trials of their positions R and orientations 8. These trials are always carried

out ensuring conservation of the total energy:

E=K+Y B, +UR)+Eg (37)
n
We take advantage of defining the state of the system as a vector X that contains independent

variables (called the state vector of the system):
X = (c,E,,R,0.,J), (38)

which allows us to represent the DOS as a simple average by considering N random state-

vectors (see equation (3)).

3 Overview of the M;C program

M;C is a general-purpose code, though it primary targets are those fragmentation processes
that take place through non-radiative transitions, where their fragments remain together
enough time such that the excess of energy becomes randomly distributed over all internal
degrees of freedom. As a general-purpose code, M3C is highly customizable and includes
many features. Here we briefly describe some of them. The package is divided into three
parts:

In the first part, M3C is able to obtain data from electronic structure calculations by
interfacing with some standard quantum chemistry programs. The simplest systems require
quantities such as geometries, electronic energies and harmonic frequencies for each molecule
to be considered. However, it is also possible to include analytical intermolecular potential

energy curves in order to describe weakly bounded systems or special effects like Coulomb
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repulsion in fragmentation of multiply charged molecules. In this part, cartesian coordinates
and vibrational frequencies results are stored in external files in one of the two most pop-
ular formats (XYZ or MOLDEN).”™ These formats are used for many different electronic
calculation programs. Currently M3C offers some bash scripts, to be used as interfaces with
GAMESS ™ and GAUSSIAN ™ that allow for a stochastic search for isomers. Each step in-
volves a geometry optimization, where the initial geometry is provided by the M3C algorithm
that samples the configurational space. Duplicate isomers are automatically removed. It is
possible to discard some chemical species in advance based on stability arguments or based
on the peaks which appear in the experimental mass spectra, if available. This could be very
important for molecular systems that contain a large number of particles (fragments), since
the search for isomers is the most expensive computational part of this methodology. This
step provides the so called fragmentation model, which is analyzed in section (3.1).

The second part of the package performs the calculation of the statistical model itself.
This part is not self-sufficient, since it requires the molecular properties of the fragments,
usually provided after the first part has been performed. One important feature of the code is
that it uses a very convenient way to define the Markov-Chain, as described in section (3.2).
The program manages several numerical experiments, where each one differs from each other
in their initial state-vectors, which are randomly chosen. At the end of the calculation, all
observables are reported with their errors estimated from the replica’s standard deviation,
which may be used as a convergence criteria. The user controls in the input file the maximum
permissible error in the standard deviation of the observables by specifying the number of
steps in the Markov-Chain, the number of numerical experiments and the burn-in period.
Tipically ~50000 steps, 4 numerical experiments and 10% of burn-in period are enough to
reach errors lower than 10%.

The third part includes a set of tools which allows the user to analyze the obtained

t.74

results with a graphical interface, as gnuplot. * Some available features that can be calculated

are: probability density distributions for channels or fragments as a function of the internal
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energy, fragmentation branching ratios based on a given or a fitted deposited energy function,
coincidence patterns between several pairs of energy components for a given internal energy,

among others.

3.1 Setting up a Fragmentation Model

A fragmentation model consists of a set containing all possible chemical species that may
play some role during the fragmentation process, including possible isomers. In order to
illustrate this, let us consider the particular case of the CHy molecule. This molecule can

break leading to different fragments (or species):
S = {CH,, CH, H,, H, C} (39)

Each one of these species can be characterized by several electronic states or geometries,

which we will call isomers:
CH2 = { CHQ(XgBl), CHQ(alAl), tee }
CH = { CH(X"I), CH(a"%"7), -+ }
Hy = { H2(X12;—)7 H2(a321—r)7 T } (40)
H={ H(?S), H(*P), ---}

C={c(p),Cc('D), -}

On the other hand, the molecule can experience different fragmentation reactions,
R ={CHy, Ho+C, CH+H, H+H+ C} (41)

associated to different fragmentation channels in which the geometry and the electronic

states of the corresponding fragments is specified, as for example:
Hy+C = { Hy(X'S$) + C(*P), -+, Hy(a?S) + C('D), - } . (42)

25



As higher energy ranges are studied, a larger number of isomers (energy order increasing)
should be included. For the systems investigated in this paper and for internal energies
covering a range from 0 eV up to 20 eV, two spin multiplicities per molecular geometry is
enough (if they are stable). Then, for an easier description of the fragmentation using M3C

it is necessary to include all considered fragments grouped by chemical species.

3.2 Sampling State’s Vector Space

Given an internal energy and a fragmentation model (a set of possible isomers including all
the chemical species of interest) M3C calculates the set of vector-states that are included into
the region of maximum entropy; then the physical observables are obtained by performing
a statistical average in this region. In each step of the Markov chain, the local DOS is
calculated according to Eq. (36). Figure 2 shows the diagram of dependencies for the main
values involved in the calculation of the local density of states Q(E, X). The quantities
marked with the symbol & represent those variables that are sampled in a random way.
When one of them is changed, all items connected by arrows are also updated/changed to

compute Q(E, X),

/ 2 (c)Qe(c) — | QE,X) ‘\

Alc, E)
e |——~ dEv Oy (E,c) — K —/
\_ ) )
R |—| z(®)
L
2 I,

E,
\—‘ C} E, <= E4+UR)+E,

Figure 2: Schematic diagram showing the dependencies of the main quantities involved in
the random sampling of the systems’s state-vector X according to the Q(F, X’) distribution.
See text for details.
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For a specific molecular system, there are several changes that one can carry out to explore
the state-vector space in the Markov chain. Our choice is based on a physical meaning and
on the dependencies diagram shown in the Fig. 2. In order to design the Markov chain, we
associate the different contributions to the DOS with abstract objects called reactors. One
introduces a set of molecules (reactants) into one of these reactors and one gets a set of
molecules (products) with new properties; for instance, changes in the vibrational excitation
or in the chemical composition can be obtained.

The wvibrational reactor (V) is responsible for the random sampling of the vibrational

energy for each fragment. The effect on the state X can be represented as

VX - X':(c,E,,R.0). (43)

~

In the rotational reactor (R) the orientation of the individual fragments are sampled in
a random way from a uniform distribution, and the angular momentum couplings between
molecules are computed by taking into account the conservation of the total angular mo-
mentum. This reactor also carries out a transformation of the inertia tensors according to

the coordinate reference system:

RX - X':(c,E,,R.6) . (44)

A

The translational reactor (T') samples the position of each fragment employing two pos-
sible algorithms: (i) a random-walker algorithm, where the position of the fragments is
sampled allowing changes within a sphere of radius AR, centered on its previous position
R (R - R+ AR), (ii) a completely random algorithm, where any change in the position
of the fragment is possible: R — R’. In this reactor, the corresponding interaction energy

between fragments (potential energy function) is computed with the new positions:

TX - X':(c,E,,R,0) . (45)

27



The structure reactor calculates the possible fragmentation patterns by satisfying the
composition and charge conservation rules. The algorithm is based on a random search tree
over all possible fragments provided by the user. The change in the number of fragments

can be chosen within an input parameter n:
S,X - X' :(c+An,E | R.6) . (46)

In this way, the Markov chain with N steps can be written as the product of an irreducible

set, of reactors (S;TRV) as follows,

xXoox ba, b, S, ba s
N/4 (47)
MC: | [[STRV| X .
i=1
Typically the Markov chain must be modified so that the average acceptance ratio is roughly
30-50%. Too small values of this parameter result in a slow exploration of the phase space.

Too large will result in configurations without statistical meaning.

4 Applications

In this section we illustrate the capabilities of the M3C code. We start by considering a sim-
ple system, a neutral cluster of Ar atoms, for which the interatomic potential is known and
there exist previous theoretical calculations to compare with .47 To check the validity of
our new implementation in such weakly bound systems, we have computed several thermo-
dynamic properties. The second kind of systems we analyze is small neutral carbon clusters,
for which there is accurate experimental information on fragmentation branching ratios.** In
this case we apply a molecular description of the different fragments and dissociation chan-

nels that can be produced when these carbon clusters are highly excited. We then consider
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fragmentation of small singly positively charged carbon clusters and of charged molecules
containing different kinds of atoms. In both cases, comparison with available experimental

77-80

fragmentation yields will be carried out in order to validate our new methodology.

4.1 Caloric Curve for Ar;s

A recurrent topic in cluster physics is the identification and characterization of phase transi-
tions, including solid-to-liquid and liquid-to-gas phase transitions. Since clusters are particles
of finite size, the question of how to detect and/or characterize such transitions is a con-
ceptual challenge. Schmidt and co-workers®' reported the first experimental determination
of a caloric curve for the melting transition in a small cluster. Specifically, they studied
a singly-charged sodium cluster with 139 atoms. Other experimental and theoretical stud-
ies on the thermodynamic properties of metallic clusters have also been reported (see for

example and their properties are nowadays well understood. However, in the case

39,82-84)
of small weakly bound clusters, experimental caloric curves are much harder to obtain and
the theoretical simulations play a very important role to analyze such transitions. The first
application of our method is to compute the caloric curve of the argon cluster Arys. For this
system, theoretical studies have been published before by using Molecular Dynamics and
Monte-Carlo simulations (see for example 647576),

We monitor the occurrence of a phase transition in the caloric curve T'(E) (temperature
versus internal energy) and its heat capacity C,(7"). The caloric curve E(T") was obtained by
computing the temperature at different internal energies. According to the thermodynamic

definition of temperature (in the microcanonical ensemble), it can be easily calculated by

using the following equation

T:§_§:<5/2K‘1>_1 (15)

where K is the kinetic energy, s the number of degrees of freedom (see Eq. (37)) and ()
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represents the averaging over an entire simulation. The heat capacity C,(T") was calculated

as the first derivative of E(T') (previously smoothed with a “natural spline interpolation”):

_ 0B
- aT

c, (49)

-0.20

-0.25

-0.30

-0.35

Internal Energy (eV)

-0.40

-0.45
-0.20

16

Internal Energy (eV)
Heat Capacity per atom

-0.40

-0.45

o o
‘0, 0, 0, 0, 0, O o
% % 2 D B R E Gy

0,
(®)
%

Temperature (eV)

Figure 3: Computed microcanonical caloric curve for Arys. a) The excitation energy is plot-
ted as a function of the temperature for three values of total angular momentum J,. Red
points and their errors bars (standard deviation) are the direct results of the simulations.
Blue solid lines are a fit obtained with a “natural spline interpolation”. Black circles corre-
spond to the caloric curve calculated by Jellinek et. al.3® In the coexistence region, filled
circles are used. b) Heat capacity as a function of the temperature. Blue solid lines are
the heat capacities obtained as first derivative of the caloric curves (gray). Notice that the
melting temperatures 7" =0.00299, 0.00268 and 0.00221 eV (0.29, 0.26 and 0.21 in LJ units)
appear for | Jo| =0.0, 272.6, and 407.4 a.u. (0, 8, and 12 in LJ units) respectively.

In this case we only considered one possible fragment, the argon atom. The initial
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positions of the atoms in the Ary3 cluster were taken from the geometry reported in “The
Cambridge Cluster Database” (tightly-bound icosahedral cluster).® % For the lowest internal
energies, a random-walker-radius (AR) of 0.1 A was necessary to prevent the evaporation of
the cluster. This radius was gradually increased up to 0.3 A for the highest values of internal
energy. We also included a maximum overlapping radius of 0.2 A to allow the system to

reach the classical turning point. The 12-6 Lennard-Jones potential

e (e I

with ¢ = 0.0104 eV and ¢ = 3.4 A% was employed to describe the inter-atomic Ar-Ar

interactions. Simulations with Markov chains of 1.5-10° steps, using 10% of them as burn-in
period and six replicas (or numerical experiments), were carried out for each value of the
internal energy. In this example, only the simplest Markov chain was used, T, i.e. only
the translational reactor was used. Three values of |J | were studied 0.0, 272.6 and 407.4
a.u., which are equivalent to 0, 8 and 12 in Lennard-Jones units respectively. These values
were chosen in order to compare with results from Ref.%® Here J plays the same role as L
because J,, = 0 for all fragments. The |J| vector was always in the direction of the larger
inertia moment of the system.

Fig. 3a shows the calculated caloric curves for the Ary3 system, including standard devi-
ations. The results show that, at 7'~ 0.02 — 0.03 eV, a large amount of energy is needed to
increase the temperature. This range of temperatures comprises a region where two phases
coexist: solid-like and liquid-like, which is consistent with previous theoretical studies (see

58,6587) " The Figure also shows a comparison with the caloric curve obtained

for example
by Jellinek et. al.?® for the case of | Jo| = 0. The agreement between both sets of results is
evident. Our results in the coexistence region exhibit larger error bars, because both phases
compete during the calculation of the average temperature and it is not possible to distin-

guish them. Fig. 3b shows the heat capacity per atom as a function of temperature, C, (7).

At low temperature, C,(7T") is approximately constant and close to the value predicted by
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the harmonic approximation: the number of degrees of freedom per atom, s/13 ~ 2.54. In
the range 7' ~ 0.02 — 0.03 eV, the system leaves the crystalline structure and acquires a
disordered liquid-like behavior, where the melting temperature is indicated by the peak of
the curve. For larger values of temperature, the system reaches its fluid phase entirely where
C,(T) is again approximately constant. Our results agree fairly well with those previously
reported in® for the same values of Jy. Melting temperatures 7' =0.00299, 0.00268 and
0.00221 eV (0.29, 0.26 and 0.21 in LJ units) are obtained for | J | =0.0, 272.6, and 407.4 a.u.
(0, 8, and 12 in LJ units), respectively. That is, the melting temperature decreases with the
total angular momentum, and so does the peak-transition width. These results show that
the new M3C scheme can predict the thermodynamic properties of weakly bound systems

with high accuracy.
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Figure 4: Fragmentation of C,, (n = 5,7,9) molecules from M3C simulations and comparison
with experiment. Panels a), b) and c): Channel probabilities as a functions of the internal
energy (breakdown curves) for Cs, C; and Cg, respectively. The points represent an average
value over 6 different runs and their vertical error bars correspond to the standard deviation.
Panels d), e) and f): Branching ratios for Cs, C; and Cy respectively. Blue full circles
and their error bars, experiment from.%* Red open squares, theoretical results obtained by
convolution with the fitted energy distribution functions shown in gray on left panels. Dashed
lines are to guide the eye.
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4.2 Fragmentation Spectrometry of Neutral Carbon Clusters C, (n =
5,7,9)

Carbon-based molecules are important in many astrophysical environments such as the in-
terstellar medium or planetary atmospheres, and they have been the subject of intense theo-

168891 and references therein). From the

retical and experimental research (see, for example,
experimental point of view, a very important research activity has been carried out by the
group of Béroff and Chabot.??™* In these experiments, excited carbon clusters are formed
by charge transfer reactions in collisions of charged carbon clusters with helium atoms and

the subsequent fragmentation yields are measured. Here, we will compare the results of our

simulations with these measurements. The process can be summarized as follows:

CH(Fy, K) + He(e) = Cp(Eg + E) + Het (e + K — E)

Cn(BEog+E)—Ch1+C
— Cn—2 + C2 (51)
—-Ch1+C+C

— e

being Ej the initial internal energy of the cluster, K its kinetic energy and £ the excess of
internal energy after the collision. Our main hypothesis is that the fragmentation process is
independent of the collision, since the former is much slower that the latter. The quantity
that relates both processes is the energy distribution function f(F), which tells us how likely
is to deposit a given amount of energy E in the molecular target as a result of the collision.
For short, we will call this function the deposited-energy function. This function contains all
the physics related to the particular collision process that leads to excitation of the molecular
target. Due to the large amount of available energy in such collisions, one can safely assume
that Fy < E, so that Ej can be ignored.

These neutral carbon clusters were studied in the past by using our previous implemen-

tation of the MMMC method.*® Thus, these results represent a very important source of
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information for checking the validity of our model and therefore we will focus on the im-
provements that have been reached with the new implementation presented in this work.
The first step in our simulations is to get all geometries for the possible fragments and
their isomers. First, we made a stochastic search with 40 trials by using the M3C interface
with the molecular electronic structure code GAMESS. % These calculations were done
at the DFT-B3LYP/6-311G level of theory. Then, by using the M3C interface with the
GAUSSIAN package,™ this first guess of the molecular structures were refined at the DFT-
B3LYP/6-311+G(3df) level of theory; vibrational frequencies were also obtained at the same
level. We performed calculations for the two lowest spin multiplicities of all proposed struc-
tures. Finally, the electronic energies were obtained by using the more elaborate coupled
cluster method CCSD(T)/6-311+G(3df). In total, we described the fragmentation of these
molecules including 21, 43 and 68 possible fragments for C5, C; and Cy, respectively. All op-
timized geometries are shown in the Supplementary Information (SI). They are in agreement
with previous results.*>?%"1% With these structures, fragmentation models for C5/C;/Cq can
follow 7/15/53 fragmentation reactions including 85/247/401 fragmentation channels. As an

example, the fragmentation model we used for the Cs cluster is:

C ={c('D), ci®P) }
Co = { C2('%)), C2(°IL,) }
C3 = { C3('%g), C3(°A)), C3(°A") }
(52)
Cy={ Ca('%y), Ca('4y), Ca(MA"), Ca(°%y), Ca(®Bzu), Ca(PA1) }
Cs = { Cs('Zg), Cs(1' A1), Cs(" A7), C5(2" A1), C5(°TL),
Cs(°A), C5(°By), C5(*A") }
Regarding the statistical simulation, we used a system radius of 8/9/10 A, six numeri-

cal experiments with 1/3/10 x10° events each one and the sequence 5VTRS,5VTRS,.., as

Markov chain (10% of burn-in period). The initial molecule was selected as the ground state
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of C5/C7/Cy, which corresponds to a linear singlet isomer (C5.q0.m1-1/C7.q0.m1-1/C9.9q0.m1-1
see SI). An example of the M3C input file for Cs is available in the SI.

In order to compare our results with experimental measurements, the deposited-energy
distribution f(FE) associated to the collision should be known. However, existing experimen-
tal approaches cannot provide this information for this kind of systems. Also, its evaluation
from rigorous theoretical modeling of the collisions is nearly impossible. Here we will adopt

the same strategy as in Refs. 4416

and estimate the deposited-energy function from the com-
parison between the experimental fragmentation probabilities (intensities in mass spectrum)
and the computed M3C probabilities. The mathematical description of the fitting procedure
used to obtain this function is explained in detail in the SI. We do not introduce any con-
straint about how this function should be, except that 1) the function should only exhibit a
single maximum, 2) it should decrease monotonically as the excitation energy increases, and
3) it should go to zero at the origin. These are typical characteristics of the few deposited-
energy distribution that have so far been determined experimentally.*”*® We notice that the
f(E) function is very similar for the three systems investigated in this subsection (see Fig.
4a-c), which is compatible with the fact that the measurements were performed under the
same experimental conditions. They are also very similar to those used in Ref.,** which were
based on semi-empirical arguments. We also notice that, if the calculated M3C probabilities
were wrong, a fit to a function fulfilling the above three restrictions would be impossible.
In general, Cs, C7, and Cg clusters do not dissociate up to ~6 €eV. In the range of
excitation energy ~6-15 eV, the dominant dissociation channels are C3/C,, C3/Cy, and
C3/Cg respectively, but C,/Cjs is also significantly observed for Cy. The probability for the
loss of a carbon atom is, in all cases, practically zero in this energy range. At higher energies,
(~15-20 eV for Cy, ~20-30 eV for C; and ~30-40 eV for Cy) fragmentation channels leading
to Cs have a higher probability. Notice also that in this energy range, channels leading to Cy
become dominant when the excitation energy increases. These trends can be understood in

terms of the energy sharing among the fragments (see SI). Fragmentation channels involving
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Cj3 are more important in energy regions where the vibrational contribution is larger than the
rotational one. However, in channels involving C, the rotational component of the energy is
larger than the vibrational one. The swapping takes place at ~20 eV, ~30 eV, and ~35 eV
for Cs, C7, and Cg respectively.

An earlier implementation of the MMMC method®® allowed us to understand the main
factors governing the fragmentation of small carbon clusters and to extract the energy de-
posited in the collision.** 46193 The main improvements considered in the present implemen-
tation are: 1) the angular momentum constraint J = 0 is now fully satisfied, and 2) many
more isomers have been considered. We discuss both contributions separately.

Regarding the angular momentum scheme used to fulfill the condition J = 0, in this
work we have used L + Zﬁfil J, = 0, instead of nyil J, = 0 as in previous work. If we
rewrite these constraints as follows: L = — Zﬁil Jyand Jy, = — Zﬁi;l J ., respectively, it
is apparent that, in the first case, all the angular-momenta vectors are independent, while,
in the second case, only the Ny — 1 momenta are independent. This means that, if the
angular momenta values are changed, the vectors Jy, and L should be changed as well in
order to satisfy the angular momentum conservation constraint (since these ones are used
to compensate the first ones). Thus, in the previous implementation, the contribution of
the angular momenta to the DOS from the Ny-th fragment was ignored and now we include
it. The most important effect of this improvement can be clearly appreciated on the tails
observed in the breakdown curves at high excitation energy, which now are longer and more
pronounced. For instance, in the fragmentation of the Cs cluster, channels 3C/Cy and 5C are
in competition in the transition region at ~ 26 eV (see Fig. 4a). In the new implementation,
the probability to find the 3C/Cy channel extends by ~ 5 eV at higher energies before it
goes to zero, while in Ref.,% this probability is reduced suddenly. Basically, when L is
used to compensate the angular momenta, the C, fragment may exchange energy with other
rotational and translational components, allowing for a gradual fragmentation. A similar

effect is observed in the high energy region of the fragmentation curves for C; and Cq. In
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all cases, the first breaking of the parent molecule is less abrupt than reported earlier?®
(see Fig. 4a-c). This improvement also reflects in the appearance of new fragmentation
channels, which were not visible in Ref.*® In particular, the C/C, channel resulting from
the fragmentation of C; (Fig. 4a) is now quite apparent, which agrees better with the
experimental observations. The rotational contribution of C, allows for an increase of the
global probability for this channel, which increases from zero to ~5% with respect to the
previous calculations. However, this is not enough to account for the contribution of ~ 20%
observed in the experiment (Fig. 4d). Channels 2C/Cy/C3 for C; and C,/Cs for Cy, also
present increased probabilities; and channels C/Cy/Cy for C;, and Cy/C;,Cy/Cs/Cy for
Cgy show a non-zero contribution. In all cases, the new results improve on the existing
calculations and lead to a better agreement with experiments (see Fig.4e-f).

Regarding the number of isomers, in our earlier work we only considered two spin multi-
plicities (singlet and triplet states) and two structural isomers (linear and cyclic geometries)
for each fragment, while we are now including many more isomers, 21/43/68 in contrast with
16/24/32 for C5/Cg/Cr, respectively. The present results indicate that the new considered
isomers participate in less than ~10% of the fragmentation probabilities. Thus, ~90% of
results obtained by only considering one linear and one cyclic isomer for a given value of
spin and multiplicity correctly reproduce the experiment. As a general trend, the breakdown
curves are not drastically affected. We have found, however, an exception: for the C, frag-
ment, the singlet isomer with a planar structure in which three carbon atoms are attached to
the same central carbon atom (see C4.90.m1-3 at SI) plays a very important role in the frag-

102 3nd also

mentation of C,(n = 5,7,9). This isomer has been well described theoretically
detected in Coulomb explosion experiments.'® In almost all cases this isomer contributes
about 50% to the signal in channels where the fragment C, participates, specifically C/Cy
for Cs, C/Cq/Cy for C; and Cy/C3/Cy for Cy. In the special case of channel C;/Cs for Cy,

this isomer does not play any role; the largest contribution in this channel comes from the

linear triplet isomer (see C4.q0.m3-1 at SI). Thus, the larger probability observed in this
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channel is exclusively due to the new angular momentum scheme included in the current
implementation.
In summary, these results show that a correct implementation of the angular momentum

conservation improves significantly the description of the fragmentation of neutral carbon

clusters.
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Figure 5: Fragmentation of C! (n = 4,5) molecules from M3C simulations and comparison
with experiment. Panels a), b): Channel probabilities as a functions of the internal energy
for CJ and CI, respectively. The points represent an average value over 6 different runs
and their vertical error bars correspond to the standard deviation. Panels d), e): Branching
ratios for CJ and CZ, respectively. Blue full circles and their error bars, experimental results
for.™ Red open squares and green points, theoretical results obtained by convolution with
the fitted energy distribution functions shown in gray on left and center panels, respectively.
Green points, represent the results obtained when potential energy curves are considered,
red open squares otherwise. Dashed lines are to guide the eye.

4.3 Fragmentation Spectrometry of Singly Charged Carbon Clus-
ters C! (n =4,5)

Experimental works focussed in fragmentation of charged carbon clusters have been also

carried out by the group of Béroff and Chabot ™% by measure the branching ratios of all

possible fragmentation channels. In this case, excited singly charged carbon clusters are

experimentally obtained in collisions with helium atoms following a dissociative excitation

38



process, according to the following scheme:

Cl(FEo, K) + He(e) = C}(Eo + E) + He(e + K — E)

CHEy+E)—CH +C
—Ch1+ Cc* (53)
—Cpa+CT+C

Note that, unlike for neutral carbon clusters, new channels appear in the fragmentation of
singly charged carbon clusters, such as C;_;/C and C,_;/C". This means that, in addition
to the combinatorial problem associated with the number of bonds that can be broken, it
is necessary to include an extra degree of freedom to describe how the charge is distributed
among the different fragments. Many of the channels leading to different charge distribu-
tions are close in energy but the measured branching ratios are substantially different. For
example, channels C3/C* and C§ /C, in the fragmentation of CJ, are only 0.3 eV apart from
each other, but their branching ratios are 7.2% and 19.6%, respectively.™ Hence, analysis
solely based on energetic criteria are not adequate to explain this behavior. Fragmentation
of singly-charged carbon clusters is thus a more stringent test of the M3C approach.

We have studied the fragmentation of these systems employing the same computational
setup as for neutral carbon clusters. In the stochastic search, we found 2, 2, 4, 5 and 7
isomers for C*, C5, CI, Cf and C; respectively, all of them are shown in the SI. The

fragmentation model also includes the corresponding isomers of the neutral carbon clusters.
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For example, the fragmentation model employed to study CJ is:

c ={c('D), cip)}
Ct={C"(*P), C*("'P) }
Cy = { C2('%y), Co(*1L,) }

Cy ={ Ci("'%,), C5 (°1L,) } (54)
Cs = { 03(1Eg)’c3(3A,1)a 03(314”) }

C§ = { C3(*Ba),Ci(*%), Ci(*A}), C5 ("11,) }
Cl={Ci('%y), C{ (1A, CF('A), CT(°%,), CI(°Bsu), CT(PAy),

Ci(*IL), C3(*A"), G ("Bsu), Cf ("Az), CT("By) }

In total we used 20 and 33 molecules to describe the fragmentation of CJ and C; respectively.
With this fragmentation model, CJ and CJ may follow 15 and 53 fragmentation reactions
or 247 and 401 fragmentation channels correspondingly. The initial state was selected as the
corresponding ground state. CJ has a cyclic doublet isomer (C4.q1.m2-2 see SI) and C7 a
linear doublet (C5.q1.m2-1 see SI). We also compare with previous experimental results. "

In this kind of systems, the most complicated part is to describe the charge distribution
into fragments with the same stoichiometry, e.g. C_ +C,, versus C,,_,,,+C;. Experimental
branching ratios indicate that, in general, the most probable configuration corresponds to the
case where the charge goes onto the heaviest fragment (see Fig.5). On the other hand, the
computed lowest dissociation energies indicate that the energetically most favorable channels
are CT/C3 (4.8 eV) and Cy/C3 (6.5 eV), for Cf and CF respectively. Thus, dissociation
energies only correlate with experimental branching ratios for the CZ case.

To simulate the fragmentation of these molecules, we have used the hard-sphere model
(HSM, default option in M3C) to represent the inter-fragment interactions, by using the

same strategy as for neutral carbon clusters. Panels a-b on Fig. 5 show the breakdown
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curves obtained for the fragmentation of these systems. If we first concentrate on those
channels leading to two fragments, we can see that the C*/C,_; channel opens before the
C/Ct | one for n = 4 (~7 ¢V) and that the Cy/C3 channel opens practically at the same
energy as the C3 /Cs one (AE = 0.1 eV) for C3. However, for both systems, those channels
where the charge is located on the heaviest fragment rapidly increase their probability in
the range 7-15 eV (C/C3 and Cy/C3, respectively). Actually, by analyzing contributions to
the DOS (see SI), we observe that this behavior is a consequence of a larger contribution
from the vibrational part of CJ, since their harmonic frequencies are significantly smaller
than those of Cz (155 cm™! and 20 cm™! respectively). In contrast, for Cy, the rotational
contribution is dominant, since its smaller bong length leads to an increase in the DOS (due
to the increase in the inertia tensor elements). The three-fragments region of C7 is again
dominated by the high contribution to the DOS by vibrations, due to the presence of the
C7 fragment in the most probable channel. The four/three-fragments region for C} /CJ is
mainly governed by the Gibbs’ correction factor, which reduces significantly the probability
of those channels containing indistinguishable fragments. Thus, the probability of 3C/CJ is
smaller than that of 2C/C,/C™T for C}, and the probability of 2C/CJ is smaller than that
of C/Cy/CT for Cj.

Comparison of these results with the experimental branching ratios is carried out after
convolution of the probabilities with the deposited-energy function (also shown in Fig. 5).
This function has been derived by using the same procedure as in the preceding subsection.
We see a very good agreement for C;. However, for CF, the simulations overestimate the
2C/C3 channel. The possible origin of this discrepancy can be found with the help of Fig. 6.
The red lines represent the default interacting potential used by M3C and the black lines
the real potential energy curves that describe the charge distribution into the dissociative
channels. As can be seen, for C3, the simple M3C potential cannot account for the crossing
between the states that ultimately dictates the relative probability of fragmentation channels

that place the charge in one center or the other. To avoid this problem, one might then use
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the actual potential energy surfaces of the system. However, computing these surfaces for the
C molecules is not a simple task due to symmetry-breaking problems (see'% and references
therein). In the C; linear clusters, electronic states described at the B3LYP level suffer from
spatial symmetry breaking since for this electronic state the unpaired electron is essentially
localized on the terminal carbon atoms. Thus, these structures can only be described by
two resonant structures, which means that one has to deal in fact with a multi-reference
problem and use expensive methods such as CASSCF, CASPT2, MRCI, etc. Computing
the potential energy surfaces for all the fragmentation channels including all the isomers is
computationally prohibitive.

All in all, the present results, which are the first ones ever computed for fragmentation
of charged carbon clusters, catch all the essential features and, for the smaller system C4™,

lead to an excellent quantitative agreement with the experimental results.

4.4 Mass Spectrometry of CoH,

The last example of the M3C capabilities is the simulation of molecular mass spectra. For

this we have chosen the acetylene molecule, CoHs, whose mass spectrum is available from the
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NIST Mass Spectrometry Data Center.®® In the experimental setup, accelerated electrons
(typically with ~ 70 — 100 eV of energy) collide with the neutral molecules in gas phase
producing excitation+ionization. The excited and ionized molecule undergoes fragmentation
and the intensity of the cationic fragments produced are recorded as a function of their mass

over charge ratio (m/z). The process can be summarized as follows:

CQHQ(E()) +e (E) — CQH;—(EO + E) + 2e”

CoHF (Eo + E) — CoHT + H
— CH'* +CH

— ...

To obtain the corresponding mass spectrum, one must simulate the fragmentation process
of the CoHj cation, convoluted as usual with the energy distribution function f(E) (see SI for
details). The first step in our simulations is to get all geometries for the possible fragments
and their isomers. First, we made a stochastic search by using the M3C interface with
the molecular electronic structure code GAMESS. ™™ These calculations were done at the
DFT-B3LYP/6-311G level of theory. We increased gradually the number of trials from 20
until convergence in the number of different isomers was achieved. Then, by using the M3C
interface with the GAUSSIAN package, ™ this first guess of molecular structures were refined
at the DFT-B3LYP/6-311+G(3df) level of theory; vibrational frequencies were also obtained
at this level of theory. Finally, the electronic energies were obtained by using the coupled
cluster theory CCSD(T)/6-311+G(3df), which includes all single and double excitations,
as well as triple excitations in a perturbative way. Once all structures, electronic energies
(including wave function symmetry) and vibrational frequencies for all possible fragments
were computed, we used them to build the M3C input file (see SI for details). In total,

we described the fragmentation of this molecule including 31 molecules (geometries for each
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considered molecule can be found in the SI); energy and geometry for these molecules are
in agreement with previously reported data in the literature.!” ! We only considered the

two lowest spin multiplicities. The fragmentation model we used is:

H={H(’S) }
C={C('D), C(P) }
Hy, = { Ho('%)) }
CH = { CH(*1I), CH("%,) }
Co ={ Ca('E{),C:(°IL) }

CH, = { CHy('4;), CHz(*By) }

CoH = { CH(?3y), CoH(2Ay), CoH('A”) }
H*={H"} (56)
Ct={C*(*P), C*("P) }

Hy = { Hy(*%) }
CH* = { CH*('®:),CH*(°1I) }

C; ={ C3(*Ma), C5("%;) }
CH; = { CH;(?A,), CHj (*A4,), CH; ('%,) }
CoH" = { CHT('4), CH(°10) }

CoHy = { CoHj (*IL,), C.HJ (%A4'), CoHy (*B,), CoHj (2% A,), CoHY (1%4,) }

where isomers in bold indicate the corresponding ground state. With this fragmentation
model, the excited CoHJ molecule may follow 17 fragmentation reactions in 117 different
fragmentation channels, which are in competition all along the simulation. In the second
step, we performed the statistical calculation itself. To this, we used a system radius of 8 A,

six numerical experiments with 6 x 10* events each and the sequence 5VT ES05VT Rgl:_l as
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Markov chain, using 10% of them as burn-in period. The ground state of CoH3 (*I1) was
selected as initial condition, which corresponds to a linear doublet isomer (C2H2.q1.m2-2 see
SI). The deposited energy function f(E) was obtained by fitting to the experimental mass
spectrum observed with electrons of 70 €V of kinetic energy® (see SI for details).

In panel a) of Fig. 7, we show the probability of the different fragmentation channels
as a function of the internal energy. The intact molecule CoHJ does not dissociate up to
~ 6 eV. In the range of internal energy 6-8 eV, the CHy /H channel is dominant, but in the
range 8-12 eV it changes to Cj /Hy. Only these channels play a significant role, because,
for larger energies, the f(F) function is practically zero. Panel b) on the same figure shows
the probability of appearance of the different charged fragments. In the range of excitation
energy 6 — 12 eV, we observe competition between CoH and CJ, being dominant the first
one, with a small contribution of CoH™*. This is in agreement with the experimental mass
spectrum, where these three charged species are associated to the highest intensity peaks
(see lower panel of Fig. 7).

The deposited-energy function f(F) (top panel in Fig. 7) presents a maximum at ~ 4
eV. A comparison between the experimental mass spectrum (electron ionization) taken from
NIST Mass Spectrometry Data Center® and our theoretical results convoluted with the
above described energy distribution is shown in the lower panel of Fig. 7. In general, we
observe a good agreement between theory and experiment, except for isotope peaks like M+1
at 27 m/z, which are not taken into account in our calculations.

An interesting option that this methodology offers is to perform an isomer analysis. For
example, Fig. 7b shows the probability for all considered isomers of CoHy as a function of
the excitation energy. As can be seen, about 46% of the CoHj peak in the mass spectrum
corresponds to the vinylidene-like isomer (?A’, C2H2.q1.m2-1 see SI), ~53% to the acetylene
linear configuration (*II, C2H2.q1.m2-2 see SI) and less than 1% to the three remaining iso-
mers. It means that the most probable fragmentation pattern implies the existence of a tran-

sient isomerization mechanism of the molecular ion (acetylene—vinylidene—fragmentation).
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the deposited energy function which shown in gray on the upper panels.
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Previous theoretical and experimental studies have reached a similar conclusion (see for

example1%113),

5 Conclusion

We have presented a computational implementation of the Micro-canonical Metropolis Monte
Carlo method, called M3C, which can be applied to study fragmentation processes in a large
variety of molecular and cluster systems irrespective of their composition and the nature
of the chemical bonding between their elementary constituents. Its performance has been
demonstrated by applying it to evaluate the caloric curve of the weakly bound rare gas cluster
Ary3, to simulate the mass spectra resulting from the bombardment of the acetylene molecule
with fast electrons, and to interpret the yields observed in the fragmentation of both neutral
and singly-charged carbon clusters in fast collisions with atomic species. Our results for
singly-charged carbon clusters are the first ones to explain recent experimental observations
for this kind of systems. Due to the generality of the M3C implementation, application
to more complicated systems is also possible. Calculations to understand fragmentation
of protonated carbon clusters, sulfur clusters, and other large systems, for which existing
experimental results remain unexplained, are already in progress.

In spite of these significant advances, there are a few more challenges that one should
face in the near future. One of them is the application of the current M3C methodology
to study fragmentation of multiply charged molecules and clusters, where Coulomb explo-
sion processes, which tend to split the charge among all possible fragments, compete with
fragmentation channels where the charge exclusively remains in one of the fragments. An
appropriate description of these processes requires accounting for Coulomb barriers, which is
straightforward by using the M3C methodology, but requires performing elaborate quantum
chemistry calculations of transition states to determine the magnitude of such barriers. In

this respect, the search of less time-consuming procedures to estimate the height and the
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width of such barriers is highly desirable. Another challenge is to explore simple ways to
incorporate non adiabatic effects that are involved in the crossings between potential energy
surfaces leading to different dissociation limits, i.e., associated with fragmentation channels.
As discussed in this paper for the case of singly charged carbon clusters, these crossings can
strongly influence the fate of the charge in the fragmentation process, dictating if it goes
to one or another fragment. Therefore, accounting for these non adiabatic effects can be
crucial for an accurate evaluation of fragmentation yields in charged species. Work along

these directions is already in progress in our laboratory.
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