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1 Introduction

The two-dimensional principal chiral model has several properties in common with the

more complex four dimensional gauge theories. Thus, it provides an excellent laboratory

to analyse various concepts and techniques applicable to both types of theories. Further-

more, the model is integrable at the classical level, leading to an analytical control of several

properties of the quantum system. In particular, this includes factorizable S-matrix [1, 2],

the determination of the spectrum in the antisymmetric rank r representation of the SU(N)

group, and the determination of the mass gap [3]. The latter is a nice example of the dimen-

sional transmutation mechanism. These theories have also been studied numerically [4–6]

on the lattice, showing agreement with the analytical results and exhibiting precocious

scaling when using the right bare parameters.

Our motivation to address this study is related to the large N limit of the theory. As in

the 4-d gauge theory case, this limit introduces certain simplifications without sacrificing

its fascinating properties, which might be of help in attaining a full understanding of

their dynamics. For example, the perturbative approach is restricted to planar diagrams.

Furthermore, the large N limit at the non-perturbative level can also give rise to new

phenomena such as the existence of large N phase transitions. Indeed, the nature and

properties of the phase transition observed [7, 8] in the lattice version of the model at

intermediate coupling has remained a subject of debate.

There are other open questions which have arisen in the more recent literature involving

the principal chiral model and its large N limit. This includes the study of form factors

and possible exact results on correlation functions [9]. Its role as a good testing ground
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also shows up in questions such as the existence and properties of other types of phase

transitions [10], which parallel the observed critical behaviour of Wilson loops in gauge

theories in several space-time dimensions [11, 12]. In addition, for the same reason it also

serves as a simplified situation in which to study phenomena such as resurgence [13].

Our approach in this work is based in the ideas presented many years ago by Eguchi

and Kawai [14]. In particular, they proposed that lattice Yang-Mills theories could become

volume independent in the large N limit. This led them to a matrix model, obtained by col-

lapsing the whole lattice to a point, which was conjectured to be equivalent to the ordinary

theory in an infinite lattice. The phenomenon was called reduction and might be consid-

ered a particular version of the so-called volume independence. Although, the conjecture

was soon shown to be false in the weak coupling region of the model, several modifications

were proposed to validate the reduction idea [15]. The present authors put forward a mod-

ification of the original model, which goes under the name Twisted Eguchi Kawai model

(TEK) [16, 17]. The idea is to introduce twisted boundary conditions in the 1-point box.

These conditions allow the perturbative vacuum to respect a subgroup of the invariance

group of the original model, which is enough to guarantee reduction in the large N limit.

The reduction idea can be extended to non-gauge systems [18], and the present authors

and others proposed a simple prescription to implement a similar twisted reduction to

other models [17, 19]. In particular this program was carried out soon afterwards for the

SU(N) principal chiral model [20, 21]. We will refer to this model as the twisted reduced

principal chiral model (TRPCM). Apart from analysing the Schwinger-Dyson equations of

the ordinary and reduced model and identifying the necessary conditions for reduction to

apply, the authors studied the model numerically in both two and four dimensions. From

the beginning it was clear that the two-dimensional model was rather tricky. In particular,

the ordinary model has a continuous global symmetry which cannot be broken in two-

dimensions, while the reduced model is only invariant under a discrete symmetry. Results

were however not incompatible with reduction working in both dimensions.

Many years later the twisted prescription was realized to be a discrete version of non-

commutative field theories [22]. Indeed, the lagrangian and Feynman rules for these theories

appeared first when constructing a continuum version of the twisted reduced models [23].

The connection is also there for the principal chiral model [24]. With this renewed interest

as an additional motivation, the TRPCM was then re-analysed in ref. [25] using the more

powerful computer resources and methodologies available at the time. The validity of the

equivalence between the reduced model and the infinite volume lattice model appeared to be

in question for the particular case of the two-dimensional model at sufficiently small values

of the lattice ’t Hooft coupling. A particularly relevant quantity was the susceptibility

which was seen to grow with N for the reduced model instead of converging to the value

of the ordinary model.

Indeed, this was the first of a series of problems reported by various authors questioning

the validity of the twisted reduction idea. In particular, the four-dimensional gauge model,

the TEK model, showed signals of ZN center symmetry-breaking at large enough values of

N and intermediate values of the lattice coupling [26–29]. The breakdown of the symmetry

invalidates the non-perturbative proof of reduction.
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In view of these conflicting results, the present authors [30] observed that all of the

problems arose when the ratio of the discrete flux k over N became smaller than a certain

value (∼ 0.1). This can arise when the entropy of certain symmetry-breaking vacua can

overcome their higher energy and dominate the path integral. In other cases it is rather the

ratio of the modular inverse of the flux k̄ over N , controlling the suppression of non-planar

diagrams, which becomes too small. The proposal made in ref. [30] is to take the large

N limit keeping the ratios k/N and k̄/N bigger than a certain threshold estimated to be

around 0.1. With this additional condition a detailed verification of the equivalence has

been carried out for the gauge theory [31]. Not only there is no sign of symmetry breaking

but also in some quantities the agreement between the observables has been tested up

to the fifth decimal place. The successful comparison extends also to quantities in the

continuum limit, such as the string tension [32].

A deeper understanding has followed from our study of the 2+1 dimensional gauge

theory [33, 34]. In that case the flux choice affects the existence or not of tachyonic

instabilities. Our results indicate that the main quantity to control is Zmin defined as follows

Zmin = min
e
e||ke
N
|| (1.1)

where e is an integer coprime with N , and the symbol || · || denotes distance to the nearest

integer. To avoid instabilities one must choose Zmin to be larger that 0.1 [35]. Notice that by

definition Zmin is smaller than k/N and k̄/N , so that the new condition implies the previous

ones. A more detailed analysis of these questions and its implication can be seen in ref. [36].

It is the purpose of this paper to apply these ideas to the TRPCM, to see if they are

able to circumvent the problems mentioned earlier. The main restriction is to make an

adequate choice of the flux k characterizing twisted boundary conditions on the 2-torus.

The choice does not alter neither the general proof of reduction based on Schwinger-Dyson

equations, nor the equivalence in perturbation theory. Furthermore, it comes without any

additional computational cost. As we will see our results follow the same pattern that was

observed for the gauge theories, restoring the validity of the reduction idea in this domain.

The outline of the paper is the following. In section 2, we review some of the main

properties of the principal chiral model, its lattice version and the twisted reduced version.

In section 3 we revisit the study made by Profumo and Vicari [25], generalizing their re-

sults obtained for k = 1 to arbitrary flux. This illustrates how the problems reported only

occur in the same dangerous region as for the reduced gauge theory. In section 4 we made

a direct test of the validity of reduction by comparing the value of various observables in

the large volume and large N ordinary lattice model with those obtained for the TRPCM

with an adequate choice of flux. The agreement in some quantities is less than a permille.

In section 5 we study the mass gap for the reduced model and show that it satisfies the

predicted scaling behaviour towards its continuum limit. This shows that the reduction

extends to the continuum limit of both theories, an important ingredient to show its use-

fulness. Next, in section 6 we use the ability of the reduced model to explore larger values

of N to investigate the nature of the large N phase transition mentioned earlier. This is

an instance in which things only become clear for rather large values of N . Finally, in the

last section we present our conclusions.
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2 The reduced principal chiral model

2.1 Short review of the two dimensional principal chiral model

The SU(N) principal chiral model is a quantum field theory whose lagrangian density is

given by

L =
1

g2
Tr(∂µU(x)∂µU

†(x)) (2.1)

where the field U(x) takes values in the fundamental representation of the SU(N) group. In

two-dimensions the theory is asymptotically free and generates a mass gap by dimensional

transmutation [37]. The theory is invariant under an (SU(N)×SU(N))/ZN global symmetry

U(x) −→ Ω′U(x)Ω† (2.2)

which in two-dimensions cannot be broken by the Mermin-Wagner-Coleman theo-

rem [38, 39].

By using different techniques several properties of the model have been established.

In particular it follows from the S-matrix structure that the system contains bound states

having the quantum numbers of the r-antisymmetric representation of SU(N), whose masses

mr follow the pattern

mr = m
sin(πr/N)

sin(π/N)
. (2.3)

The mass gap m itself can be deduced by applying a magnetic field coupled to the suitable

chosen charge, and combining S-matrix results with perturbation theory:

m

ΛMS

=

√
8π

e

N sin(π/N)

π
(2.4)

where ΛMS is the Lambda-parameter of the theory, defined as for Yang-Mills theory.

2.2 The lattice version of the PCM

Formulation of the model on the lattice allows to study these properties and others in a

non-perturbative fashion (for a review of the main results and a list of references we address

the reader to ref. [40]). The partition function is given by

Z =

∫ ∏
n

dU(n) exp

{
−bN

∑
n

∑
µ

Tr(δµU(n)δµU
†(n))

}
(2.5)

where δµU(n) = U(n+ µ̂)− U(n) is the discretized derivative. The coupling b = 1/(g20N)

is the inverse of the lattice ‘t Hooft coupling.

The main observable in the lattice model is the correlation function G(n)

G(n) =
1

N
〈Tr(U(0)U †(n))〉 (2.6)

where n is a two-component integer vector. In particular one sees that the internal energy

of the model can be written as follows

E = 1− 1

2
〈Re(G(1, 0) +G(0, 1))〉. (2.7)
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It is convenient to consider the correlation function projected onto zero spatial mo-

mentum given by

Ḡ(t) =
∑
n

G(t, n) (2.8)

where t is an integer. This function falls off at large t exponentially with t. Its coefficient

defines the lattice mass gap M , which is a function of b and N . Another interesting

observable is the susceptibility χ which is the sum over t of Ḡ(t).

In order to study the continuum limit we can use the first two coefficients of the

beta-function [41] (β0 = N
8π , β1 = N2

128π2 ) to define the lattice spacing by the formula:

aΛL =
√

8πb e−8πb. (2.9)

Computing quantities in perturbation theory for large b and comparing with the results

obtained using dimensional regularization one obtains the relation [42]:

ΛMS

ΛL
=
√

32 exp

{
π(N2 − 2)

2N2

}
. (2.10)

One can also take a particular short distance observable and use it to define a different

bare coupling constant. For example by using the internal energy one can define

bE =
N2 − 1

8N2E
(2.11)

which makes the leading order perturbative formula for the internal energy exact, when

written in terms of this coupling. This choice first proposed by Parisi has been used

extensively in Yang-Mills theory, and also in the principal chiral model [5]. One can

improve the scale determination by computing the next-to-next to leading coefficient of

the beta function in this so-called bE scheme. This gives the formula [6]

aEΛE = F (bE) ≡
√

8πbE e
−8πbE

(
1− 0.00884

bE

)
. (2.12)

Using perturbation theory one can obtain the relation between ΛE and ΛL as follows:

ΛE
ΛL

= exp

{
π(N2 − 2)

4N2

}
. (2.13)

Monte Carlo simulations (and strong coupling expansions) for various N and various b

showed that the lattice model Green function approaches the behaviour of the continuum

theory and that scaling violations are small when computing in the bE scheme [6].

Here we will focus on the large N version of the lattice model which has been subject

of interest since very early times [7]. In particular, analysis of the strong coupling expan-

sion [43] and Monte Carlo simulations [8] indicate the presence of large N phase transition

around b = 0.306 displaying a peak in the specific heat. The nature of the phase transition

and the corresponding exponents are not completely settled. We will address this problem

in section 6.
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2.3 The reduced principal chiral model

The twisted reduced principal chiral model [20, 21] is a one matrix model whose large

N limit is proposed to be equivalent to the standard lattice version of the principal chiral

model. The action is obtained by the replacement of the spatial displacement by the adjoint

action by certain SU(N) matrices:

δµU −→ ∆µU ≡ ΓµUΓ†µ − U (2.14)

and then dropping the space dependence. In this way the partition function becomes

Z =

∫
dU exp

{
−bN

∑
µ

Tr(∆µU∆µU
†)

}
. (2.15)

Notice that the only dynamical degree of freedom is the SU(N) matrix U . In two dimensions

the Γµ matrices are forced to satisfy the constraint

Γ1Γ2 = exp

{
2πik

N

}
Γ2Γ1. (2.16)

If k is chosen co-prime with N the solution is unique modulo equivalences (global gauge

transformations). The restriction to coprime values is also important in perturbation the-

ory. A particular solution (choice of basis) can be given by ’t Hooft shift and clock matrices

Pij = δj i+1 and Q = diag(1, z, z2, · · · , zN−1) with z = exp{2πiN }. They satisfy PQ = zQP .

Then Γ1 = P and Γ2 = Qk. Notice, however, that for even N some of the matrices have

determinant −1. Thus, if we impose that Γµ belong to SU(N) one should rather take

Γ1 = z1/2P and Γ2 = (z1/2Q)k.

Consistently with the association of displacement with adjoint action one can also

define the corresponding correlator to be

GR(n) =
1

N
〈Tr(UΓ(n)U †Γ†(n))〉 (2.17)

where with the previous choice of basis Γ(n) is given by

Γ(n) = Pn1Qkn2 . (2.18)

The internal energy is written in terms of GR as in the ordinary model.

In the aforementioned basis the zero-momentum projected correlation function depends

only on the diagonal elements of U as follows

ḠR(t) =
∑
l

〈U∗t+l t+lUll〉. (2.19)

Then summing over t we obtain the susceptibility

χ = 〈|Tr(U)|2〉. (2.20)
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3 Flux dependence of physical quantities

The results obtained by several authors for the TEK model and for the 2+1 dimensional

gauge model have shown the importance of choosing the flux appropriately. In this section

we will show that some physical quantities depend strongly on the value of the integer k.

Since our original motivation is to study the problems reported by Profumo and Vicari [25]

(corresponding to k = 1), we have focused in the same quantities studied by them: the

internal energy E and the susceptibility χ. For the same reason we concentrated on the

value b = 0.31. At this coupling value we analyzed several prime values of N ranging from

23 to 137, and studied all possible non-zero values of the flux k for them. Simulations of

TRPCM have been done with both heat bath [44] and over-relaxation methods [45]. In

figure 1 we illustrate our results. On the left figure we show the results for the energy E

at b=0.31 and two values of N (67 and 97). We see a smooth dependence of the result on

k/N , peaking for small values and showing a plateau above k/N ≥ 0.15. The pattern is

general and also holds for the other values of N , not displayed. Two other features are that

the value decreases with N (we will study that later) and also that the spread of values

decreases when N grows. The results are compatible with the findings of ref. [25] which

correspond to the extreme left value of each set of data (k = 1). In any case, despite the

slight differences, the authors of ref. [25] concluded that there was no problem with the

energy of the reduced model, since it was apparently converging to the same value as the

ordinary model ∼ 0.519.

However, the situation changed completely when they studied the susceptibility χ. The

value given by the reduced model differed considerably from the one of the large N principal

chiral model. Furthermore, the difference kept increasing with growing values of N .

Our results for N = 97 are displayed in the right subfigure of figure 1. The suscepti-

bility is plotted as a function of k̄/N . The data shows a strong peak for small values of

this quantity. However, for values larger than ∼ 0.12 most of the data are consistent with

each other and a value χ = 36.3 drawn as a horizontal line in the same plot. Note that the

value k = k̄ = 1 used in ref. [25] corresponds to the leftmost value of the x-axis where the

peak is more pronounced.

The pattern repeats itself for other values of N . As N increases the left peak becomes

narrower but at the value k = k̄ = 1 actually increases. This is consistent with the

observation of ref. [25]. For completeness we give the values obtained for all our values of

N . The susceptibility at k = k̄ = 1 takes the values 50, 91, 102, 127, 137, 172, 180 and 226

for the sequence of values N=23, 43, 53, 61, 67, 89, 97 and 137. The growth seems to go

as N at smaller values, which then reduces to ∼ N1/2.

What is the origin of the peak? For the purpose of answering the question, we analyzed

the correlator at the maximum distance N/2: ḠR(N/2). For a gapped theory it should go

to zero when N grows. A non-zero asymptotic value reflects a non-vanishing expectation

value. With the standard definition a non-zero expectation value gives a susceptibility

diverging with the volume (in our case N2). It is possible to subtract this constant piece

and define a new susceptibility. Indeed, if we take our result and subtract CN2ḠR(N/2)

with 1 < C < 1.025 we eliminate the peak for all values of N .

– 7 –
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(a) Internal energy as a function of k/N .
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Susceptibility at b=0.310
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(b) Susceptibility as a function of k̄/N .

Figure 1. Flux dependence of physical quantities at b = 0.31.

Our prescription is, however, much simpler and compliant with the one adopted for

the 2+1 and 3+1 dimensional gauge theories [30, 33]. As explained in the introduction one

should take the continuum limit keeping both k/N and k̄/N bigger than a certain threshold

which is roughly equal to 0.1. Indeed, a better way to select the adequate values of k is

to constrain the quantity Zmin(N, k), defined by eq. (1.1), to be larger than that same

value. A good test that this criteria eliminates the problems associated with the non-zero

expectation value is to plot ḠR(N/2) as a function of N . Our data give a neat exponential

fall-off of the form 0.278 exp (−0.176N/2) until the moment that this value is smaller than

the statistical errors (N ∼ 97). The fall-off is the characteristic one for a gapped theory

with no expectation value.

In conclusion, we emphasize that, also for the two-dimensional principal chiral model,

it is convenient to adopt the same criteria for flux selection as advocated in ref. [30]. As

mentioned in the introduction, for the 2+1 dimensional case [35, 36] we observed that this

choice avoids the presence of symmetry-breaking phase transitions at N large. However,

even if no transition is present it is still very important for practical purposes to reduce

the size of the finite N corrections. In the following sections we will adopt this criteria and

we will explore the behaviour of the reduced model at large N both on the lattice and in

the continuum limit.

4 Validity of reduction at large N

In this section we make a precision study of the validity of the volume independence

hypothesis for the case of the two-dimensional principal chiral model. A successful test

was already done in ref. [25] for 3 and 4 dimensions. The test for the 2-dimensional model

failed for the reasons explained in the previous section. Having identified the source of the

problem we will retake the original goal. Notice, that it is not only a question of proving

the validity but also a way to estimate the errors associated to finite N . Our study is very

similar to the one done by the present authors [31] for Wilson loops on the TEK model.

– 8 –
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(a) Internal energy.
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Figure 2. N dependence of physical quantities at b = 0.31. Points labeled AVERAGES are

obtained for the TRPCM averaging over various values of k. The single flux correspond to other

measurements at fixed value of k. The points labeled L = 2, 3 are obtained for an L × L lattice

with twisted boundary conditions.

Sticking first to the value b=0.31 of the lattice coupling, we summarize our results

in figure 2. The left plot focuses on the internal energy E and the right one on the

susceptibility χ. The data points labelled as AVERAGES correspond to the results men-

tioned on the previous section averaged over all values of the flux k satisfying the criteria

Zmin(N, k) ≥ 0.15. We have also added other measurements performed at single flux val-

ues but satisfying the same criteria. The N -dependence of the results shows two regimes.

One up to values of the order of N = 50 which is rather flat, and one for larger values

which is consistent with a 1/N2 linear dependence. Extrapolating the results to infinite

N we get E∞ = 0.5190(2) and χ∞ = 34.4(2). These values are consistent with the values

obtained by previous authors from extrapolation in the ordinary lattice model (0.519 and

34.1(2) respectively). We have also made our own high-precision simulation in a 64 × 64

lattice at N = 64 and periodic boundary conditions. Our results are E = 0.519004(13)

and χ = 34.67(4). Thus, within the precision of our results (a permille and a percent

respectively) we have verified that the reduced model tends to the infinite volume lattice

model at large N .

We have also studied the coupling value b = 0.32. In that case we did not scan all

values of k but simply chose appropriate ones according to our criteria. In particular we

studied several values of N (43, 53, 67, 89, 97, 131, 137, 233). The results of the energy

could be fitted (with good chi square) by the function E = 0.485758(15) + 2.7(2)/N2. This

matches with the rough estimate 0.485 given in ref. [25]. The situation for the susceptibility

is not that good. A good fit to a linear function in 1/N2 is only possible for N > 67. The

extrapolated result at N = ∞ is 63.4(6) which is not too far from the estimate of 65

provided earlier [25]. The coefficient of 1/N2 being huge (∼ 120000). Although our results

for the reduced model do not seem to be in conflict with those of the ordinary lattice model,

a more precise comparison would require more statistics for the ordinary model simulation.
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As mentioned in ref. [25] the N -dependence is rather strong compared with that of

the ordinary model. To a large extent this is because the N -dependence takes the role of

the volume dependence which for the ordinary model is much stronger. For example, the

value of the energy for the ordinary model with N = 43 on a 6 × 6 lattice at b = 0.31

with periodic boundary conditions is 0.4889, which is much further away from the infinite

volume result than any of twisted results. In any case, it is clear that taking twisted

boundary conditions pays off. For example, one can study a model reduced to a 2 × 2

box with twisted boundary conditions (a matrix model of 4 matrices instead of 1). In

that case the corresponding values of the energy and susceptibility also appear in the plot

under the label L = 2. The plot also contains (under the label L = 3) the results obtained

on a 3 × 3 lattice with twisted boundary conditions. For the energy the L = 2 data are

independent on N within errors. This is in part accidental, as there is a compensation of

finite volume errors which tend to raise the value with the genuine finite N corrections of

the ordinary SU(N) model which tend to decrease it. In particular, we mention that the

results at N = 64 but using twisted boundary conditions with k = 19 on a 2×2 lattice gives

E = 0.51946(5) and χ = 35.8(5), and in a 3×3 lattice E = 0.51918(10) and χ = 35.94(35).

At b = 0.32 we also studied the twisted model on a 2 × 2 lattice and N=67. The energy

becomes E = 0.48569(5) and the susceptibility becomes χ = 70.2(9).

Our comment about the “partially reduced” model could be of practical importance for

simulations. The larger number of degrees of freedom might pay off. This also neutralizes

a similar criticism presented by Profumo and Vicari. For example, they studied a lower

value of b (b = 0.28). In that case, they observed convergence of the reduced model results

towards the ordinary model at large N . However, they observed that in the coefficient

of the 1/N2 corrections was two orders of magnitude larger for the reduced model. For

example, they obtained at N = 30 a value of the susceptibility of 9.49(3) to be compared

with the large N result estimated to be 7.02(2). We have performed the measurement on

a 2× 2 twisted box with flux k = 11 and we obtained 7.09(5). The correction is then not

much bigger than the one of the ordinary model.

5 Continuum limit

In this section we will study the reduced model in the continuum limit and compare it

with the exact results that we have for this model. To be precise we will concentrate on

the calculation of the mass gap m extracted from the zero-momentum projection of the

propagator ḠR(t). For that purpose we simulated the reduced model for various values of

b ranging from b = 0.3 up to 0.37 and various values of N (67,89, 97 and 137). We will

concentrate here on the N = 137 data for which we have a much higher statistics. In that

case we generated 120000 configurations separated by 100 sweeps between each two. We

did this for two different fluxes k = 37 and 50. For each configuration we computed the

zero-momentum correlator ḠR(t) with errors estimated by jacknife. As a sample of the

quality of the data we show in figure 3a the correlator for b = 0.32 and k = 37. The data

is then fitted to a 3 parameter formula as follows:

A+B exp(−Mt). (5.1)
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Figure 3. Analysis of the correlator and scaling.

In this way we obtain a lattice mass M as a function of b. Using the fitting range 5 ≤ t ≤ 25

we obtain good fits with chi square per degree of freedom smaller than 1. The corresponding

fit for b = 0.32 is shown as a solid line in figure 3a.

According to the scaling analysis explained earlier, we consider that our lattice mass

M equals maE(b), where aE is given in eq. (2.12). Substituting we obtain

M =
m

ΛE
F (bE) (5.2)

which according to scaling should hold asymptotically for large b. In figure 3b we plot the

ratio M/F (bE) obtained from our data in the weak coupling region (b > 0.306; the bE
scheme is singular below). The result is remarkably constant to within 3% in the whole

range. This is quite non-trivial as F (bE) is three times larger in lower edge than in the

upper edge of the displayed region. Furthermore, the constant is predicted to be

m

ΛE
=

m

ΛMS

ΛMS

ΛL

ΛL
ΛE

= 16

√
π

e

sin(π/N)

π/N
exp

{
π
N2 − 2

4N2

}
= 37.72. (5.3)

This value is displayed as the orange line in the figure. The agreement is remarkable.

Nonetheless, it must be mentioned that our result has systematic errors which are estimated

to be of order 5%. This comes from changes in the fitting range and the choice of k. Smaller

values of N give similar results but the plateau is shorter.

A few comments on our result are necessary. The first concerns the constant term A

in the fitting formula. This term is needed to get high precision fits for b > 0.31. This

constant term actually grows as b grows. Comparing similar fits for smaller values of N , one

sees that the constant decreases with N . This is presumably also related with the non-zero

value of Tr(U) observed at even larger values of b. Indeed, its phase takes a longer time

to jump to different values, which demands impractically long simulations in order to see

Tr(U) averaging out to zero. The phenomenon is not a phase transition because for finite

N there cannot be phase transitions and indeed at fixed b the phenomenon is ameliorated
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when N grows. It can be regarded as a phenomenon similar to a topology freezing. A

genuine large N phase transition of our model, replicating the one of the principal chiral

model takes place at smaller values of b, and will be the subject of the next section.

A final comment is that adding a second exponential one can fit all the correlation

functions in the full range (including zero). The lowest mass is compatible with the values

obtained before, and the additional mass is around 4 times bigger than this. The coupling

to the state is around 0.1 times the corresponding one of the lower mass state.

6 Analysis of the large N phase transition

More than twenty years ago, Campostrini, Rossi and Vicari [8] studied the large N be-

havior of the SU(N) lattice chiral model by Monte Carlo simulations with N in the range

9 ≤ N ≤ 30. They found that the specific heat has a peak around b = 0.306, whose height

grows as N increases, suggesting that there is a large N second order phase transition. The

reduced model allows us to reach much bigger values of N so we can analyze the existence

and nature of the phase transition in greater depth. The purpose of this section is to present

the results of our study of the TRPCM around b = 0.306 with N in the range 67 ≤ N ≤ 233.

Apart from studying the TRPCM we also explored the ordinary lattice model on a

64 × 64 lattice at b = 0.3055 and N = 64. In figure 4 we show the time history of

the internal energy E starting from both ordered and disordered configurations, plotting

the values every 10 iterations. The pattern shows two different values for each starting

configuration, suggesting that the phase transition is first order rather than second order.

The amount of computer time required, due to the large number of degrees of freedom,

limited the number of iterations of the model to 4000 in each case.

At b = 0.306 we have run 1.2 × 107 Monte Carlo iterations for the TRPCM with

N = 67, 89, 137, 193 and 233. In figure 5, we show the time history of E for the first

300000 iterations, plotting only the values every 100 iterations. The actual values have

been displaced vertically to allow all values of N to be put in the same plot. It is clear

– 12 –
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that at N = 67, the fluctuations of the internal energy are much bigger than those of the

ordinary lattice chiral model with N = 64 shown in figure 4. This is expected since the

Energy of the ordinary model is an average over the 64 × 64 points of space.

As we increase N the dispersion of the internal energy of the TRPCM decreases and

the existence of two different states becomes clear. This can be also seen by looking at

the histogram of E values displayed in figure 6. The two peak structure becomes better

defined as N increases, while the peak positions do not seem to change much. This is all

pointing towards the first order character of the transition.

It is also clear from figure 5 that the number of flip-flops between both states is

decreasing as N increases. To quantify this phenomenon, we smoothen out the fluctuations

by averaging the measurements in groups of 10. Then we count the number of jumps from

one phase to the other Njumps. The logarithm of the values are displayed versus N2 in

figure 7, together with a linear fit to the data. This implies that the number of jumps
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decreases exponentially with the number of degrees of freedom of the system (N2), or

conversely that the tunneling times grow proportionally to the inverse of this number.

This is precisely the expected behaviour for a large N phase transition. Incidentally, the

values are consistent with the presence of no jumps in the 4000 iterations of the ordinary

model at N = 64. To make a final check we performed 3× 106 iterations at N = 377 with

k = 233 and found no flip-flops.

We also studied the b dependence of E and the specific heat C=4b2N2(<E2>−<E>2)

close to the phase transition by the re-weighting method. Figure 8 and 9 show the results

of these analysis. If the transition is second order, the peak height of C should behave as

Cmax(N) ∼ Nα with α the critical index characterizing a second order phase transition.

However, Cmax(N) seems to be approaching a growth with the exponent α = 2 character-

istic of a first order phase transition. Actually using the peak values for the two largest

values of N (233 and 193) the value of α is found to be 1.985. At the same time the profile

for E approaches a step function.

If the large N phase transition were of second order, the correlation length should

diverge as we approach the phase transition. This is certainly not consistent with what we

observe when coming from the ordered phase. From our data at N = 233 our measured cor-

relation lengths for b = 0.307, 0.308, 0.309 and 0.310 are (in lattice units) 3.82(2), 4.12(4),

4.45(10) and 4.61(20) respectively. Errors include systematics. We also determined the

correlation length at b = 0.306 from the ordered data at N = 377 being 3.64(8).

Given that the transition is first order one might wonder about the different behaviour

of observables in the two phases, apart from the value of the energy E. For that purpose

we calculated the eigenvalue distribution of UΓµU
†Γ†µ in both ordered and disordered

states. To this end, we selected 30000th and 60000th N = 233 configurations shown in

figure 5. The eigenvalue distribution are shown in figure 10a for the disordered 30000th

configuration and in figure 10b for the ordered 60000th configuration. It is clear that the

eigenvalue distributions are quite different in the two phases.
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7 Conclusions and outlook

In this paper we have re-examined the matrix model obtained by applying the twisted

reduction procedure to the principal chiral model. Earlier, the two-dimensional model was

found to give controversial results in its claim to be equivalent to the ordinary model at large

N . Due to the new information acquired lately about similar issues of the reduced gauge

theory model, we have been able to show that the difficulties can be avoided by choosing

adequately the integer flux appearing in twisted boundary conditions. The criteria are very

much the same as the ones found in gauge theories. Applying these guidelines we were

able to show with great numerical precision that the results of the reduced and ordinary

models agree within errors. Concerning the finite N corrections its size also gets reduced

by the choice of flux. An even stronger reduction is obtained by using only a partial

reduction [46, 47] to a twisted 2×2 or 3×3 box. It is beyond any doubt that using twisted

boundary conditions in the study of this model pays off.
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Our test of the reduced model has been extended to the continuum limit where it can

be directly tested against exact results obtained for the principal chiral model. Our results

also give conclusive evidence of scaling as dictated by the beta function of the model.

Finally, we have used the reduced model to investigate the interesting issue of the

large N phase transition of the principal chiral model. The larger values of N that can be

reached are an important benefit when studying this problem. Our conclusion is that the

transition is actually of first order nature.

The simplicity of the TRPCM (a single unitary matrix model) makes it suitable for

future studies including attempts of an exact solution. Several open problems, already

mentioned in the introduction, could be analyzed.
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[20] A. González-Arroyo and M. Okawa, Twisted reduced chiral model, Nucl. Phys. B 247 (1984)

104 [INSPIRE].

[21] S.R. Das and J.B. Kogut, Twisted Reduced Chiral Models at Large N , Nucl. Phys. B 235

(1984) 521 [INSPIRE].

[22] J. Ambjørn, Y.M. Makeenko, J. Nishimura and R.J. Szabo, Finite N matrix models of

noncommutative gauge theory, JHEP 11 (1999) 029 [hep-th/9911041] [INSPIRE].

[23] A. González-Arroyo and C.P. Korthals Altes, Reduced Model for Large N Continuum Field

Theories, Phys. Lett. B 131 (1983) 396 [INSPIRE].

[24] S. Profumo, Noncommutative principal chiral models, JHEP 10 (2002) 035

[hep-th/0111285] [INSPIRE].

[25] S. Profumo and E. Vicari, Twisted Eguchi-Kawai reduced chiral models, JHEP 05 (2002) 014

[hep-th/0203155] [INSPIRE].

[26] T. Ishikawa and M. Okawa, ZDN Symmetry Breaking on the Numerical Simulation of Twisted

Eguchi-Kawai Model, talk given at The Annual Meeting of the Physical Society of Japan,

March 28–31, Sendai, Japan (2003).

[27] W. Bietenholz, J. Nishimura, Y. Susaki and J. Volkholz, A Non-perturbative study of 4-D

U(1) non-commutative gauge theory: The Fate of one-loop instability, JHEP 10 (2006) 042

[hep-th/0608072] [INSPIRE].

[28] M. Teper and H. Vairinhos, Symmetry breaking in twisted Eguchi-Kawai models, Phys. Lett.

B 652 (2007) 359 [hep-th/0612097] [INSPIRE].

[29] T. Azeyanagi, M. Hanada, T. Hirata and T. Ishikawa, Phase structure of twisted

Eguchi-Kawai model, JHEP 01 (2008) 025 [arXiv:0711.1925] [INSPIRE].
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