
UNIVERSIDAD AUTÓNOMA DE MADRID
ESCUELA POLITÉCNICA SUPERIOR

TRABAJO FIN DE MÁSTER

Low-Rank Approximation and Diffusion Maps

Máster Universitario en Investigación e Innovación en TIC (i2-TIC)

Autor: DORADO ALFARO, Sara

Tutor: DORRONSORO IBERO, José Ramón

Cotutor: FERNÁNDEZ PASCUAL, Ángela

Departamento de Ingenieŕıa Informática

September 4, 2018

ii

Contents

Contents ii

List of Figures vi

List of Tables ix

List of Algorithms x

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Structure . 2

2 Manifold Learning and Diffusion Maps 5

2.1 Principal Component Analysis: PCA . 6

2.2 Similarity Graphs and Laplacians . 8

2.2.1 Graph Laplacians and their Basic Properties 10

2.2.2 Spectral Dimensionality Reduction and Laplacian Eigenmaps 11

2.3 Diffusion Maps . 12

2.3.1 Anisotropic Diffusion . 15

2.4 Clustering . 17

2.4.1 Classic Algorithm: k-means . 18

2.4.2 Spectral Clustering . 18

iii

iv Contents

3 Out-Of-Sample Extension 21

3.1 Low-Rank Approximation . 21

3.1.1 Reconstructing the Kernel Matrix 23

3.1.2 Mean Squared Error of the Encoding 23

3.2 Nyström’s Encoding . 24

3.2.1 Nyström’s Low-Rank Approximation 24

3.2.2 Nyström’s Method and Diffusion Maps 25

3.3 Diffusion Nets . 26

3.3.1 Artificial Neural Networks . 26

3.3.2 OOS Example Extension: the Encoder 28

3.3.3 Decoder . 30

3.3.4 Autoencoder . 30

4 Experiments 33

4.1 Software and Datasets . 33

4.2 Computing Diffusion Maps . 35

4.2.1 Helix dataset . 35

4.2.2 Red Wine dataset . 39

4.2.3 Vowel dataset . 42

4.3 Out-of-sample Extension with Nyström’s Method 44

4.3.1 Helix OOS with Nyström’s Method 45

4.3.2 Red Wine OOS with Nyström’s Method 46

4.3.3 Vowel OOS with Nyström’s Method 47

4.4 Out-Of-Sample Extension with Deep Networks 49

4.4.1 Helix OOS with Diffusion Nets . 50

4.4.2 Red Wine OOS with Diffusion Nets 50

4.4.3 Vowel OOS with Diffusion Nets . 52

5 Discussion and Further Work 53

Contents v

Bibliography 56

vi Contents

List of Figures

2.1.1 Helix embedding via PCA . 8

2.3.1 Influence of α on an helix example . 17

2.4.1 Spectral Clustering in the noisy moons dataset 19

3.3.1 Standard Multilayer Perceptron with two hidden layers. 27

3.3.2 Autoencoder . 28

4.2.1 Replication of the Helix dataset embedding from [1] 36

4.2.2 Spectral decay of the Helix for different values of σ 37

4.2.3 Embeddings for the Helix dataset for fixed t = 1 and different values of σ . 37

4.2.4 Spectral decay of the Helix dataset for t = 1 38

4.2.5 Spectral decay of the Helix for different values of t 38

4.2.6 Embedding and spectral decay for the Helix dataset 39

4.2.7 Boxplots of the Red Wine dataset . 40

4.2.8 Spectral decay of the Red Wine dataset for different values of σ and t = 1 . 41

4.2.9 Embedding computed for the Red Wine dataset for fixed t = 1 41

4.2.10Spectral decay of the Red Wine dataset for different values of t 42

4.2.11Embedding for the Red Wine dataset. 42

4.2.12Spectral decay of the Vowel dataset for different values of σ and t = 1 . . . 43

4.2.13Embeddings computed for the Vowel dataset for fixed t = 1 43

4.2.14Spectral decay of the Vowel dataset for different values of t and p = 1 . . . 44

4.2.15Embedding for the Vowel dataset . 44

vii

viii List of Figures

4.3.1 Graphical representation of the Nyström method to extend the embedding
to OOS examples. 45

4.3.2 OOS extension of the Helix dataset with Nyström’s method and reconstruc-
tion error . 46

4.3.3 OOS extension with Nyström’s method of the Red Wine dataset 47

4.3.4 Reconstruction error via Nyström for the Red Wine dataset 47

4.3.5 OOS extension with Nyström’s method of the Vowel dataset 48

4.3.6 Reconstruction error via Nyström for the Vowel dataset 48

4.4.1 Grid search for µ . 49

4.4.2 Diffusion Nets applied to the Helix dataset 50

4.4.3 Diffusion Nets applied to the Red Wine dataset 51

4.4.4 Diffusion Nets applied to the Vowel dataset 51

List of Tables

4.1.1 Datasets description. 34

4.2.1 Distribution of the targets in the Red Wine dataset. 40

ix

x List of Tables

List of Algorithms

1 Encoder . 29

2 Decoder . 31

3 Autoencoder . 31

xi

Resumen

La teoŕıa de la reducción de la dimensionalidad es fundamental para muchos problemas de
Aprendizaje Automático. Existen multitud de enfoques, pero este trabajo se centrará en los
métodos de aprendizaje de variedades. El punto de partida es asumir que los datos viven
en una variedad de dimensión menor que la de partida para lograr entender el fenómeno
subyacente que los ha generado. Dentro de este campo, es de especial interés, debido a su
fuerte base matemática, el algoritmo conocido como Mapas de Difusión, objeto principal
de este trabajo.

Primero realizaremos un estudio de los Mapas de Difusión aśı como de la teoŕıa ma-
temática necesaria para su correcta comprensión, estudiando conceptos como los Grafos de
Semejanza y sus Laplacianos y la Distancia de Difusión. El principal inconveniente de los
Mapas de Difusión, aśı como de otros algoritmos espectrales, es que requiere la diagonali-
zación de una matriz cuadrada cuya dimensión es el número de ejemplos. Por lo tanto, su
coste computacional es O(N3), donde N se refiere al número de ejemplos. Es por ello que
uno de los objetivos de este trabajo es calcular una aproximación de rango bajo para los
Mapas de Difusión mediante el método de Nyström. Además, para evaluar la calidad de la
aproximación, propondremos una métrica que se basa en el error de reconstrucción de la
matriz de difusión. Por otro lado, existe otro problema cuando se quiere dar la proyección
de un ejemplo que no está en la muestra inicial utilizada para el cálculo de la transforma-
ción. Es necesario rehacer el análisis espectral de la matriz, lo que es especialmente cŕıtico
si las aplicaciones tienen restricciones de funcionamiento en tiempo real. En este trabajo
también analizaremos dos propuestas para paliar este coste: aprender el mapeo por medio
de redes neuronales para regresión (Redes de Difusión), pudiendo aśı calcular la proyección
para un nuevo ejemplo, y calcular una extensión de la transformación para un nuevo punto
con el método de Nyström.

A la hora de mostrar los resultados se van a utilizar tres conjuntos de datos, uno de
los cuales será sintético. Para todos ellos, se calculará la transformación a un espacio de
menor dimensión por medio de Mapas de Difusión con el objetivo de extender los mismos
a ejemplos fuera de muestra y evaluar la aproximación de rango bajo conseguida por el
método de Nyström. Además, se calcularán extensiones para patrones fuera de muestra
y se compararán los resultados obtenidos, tanto por las Redes de Difusión como por el
método de Nyström, de forma visual.

En resumen, en cuanto a la calidad de la aproximación de rango bajo veremos que,
como cabŕıa esperar, incrementar el número de ejemplos en el conjunto de entrenamiento
conlleva una reducción del error de reconstrucción de la matriz de difusión. En cuanto al
funcionamiento de los métodos para extender el mapeo a ejemplos fuera de muestra, obser-
varemos que tanto el método de Nyström como las Redes de Difusión obtienen resultados
visualmente similares, proyectando ejemplos de la misma clase en las mismas regiones del
espacio.

Este trabajo da lugar a nuevas ĺıneas de investigación, ya que como trabajo futuro es de
especial interés, entre otros, conseguir comparar la calidad de las extensiones para ejemplos
fuera de muestra.

Abstract

The theory of dimensionality reduction is fundamental for many problems of Machine
Learning. There are many approaches, but this work will focus on the methods of Manifold
Learning. The starting point is to assume that data live in a manifold of smaller dimension
than the starting one in order to understand the underlying phenomenon that has generated
them. Within this field, it is of special interest, due to its strong mathematical foundation,
the algorithm known as Diffusion Maps, the main object of this work.

First we will study the theory of Diffusion Maps, as well as the mathematical theory
necessary for its correct understanding, studying concepts such as Similarity Graphs and
their Laplacians, and the Diffusion Distance. The main drawback of Diffusion Maps, as
well as other spectral algorithms, is that they require the diagonalization of a square matrix
whose dimension is the number of examples. Therefore, its computational cost is O(N3),
where N refers to the number of examples. Because of that, one of the main objectives
of this work is to compute a low-rank approximation for Diffusion Maps using Nyström’s
method. In addition, in order to evaluate the quality of the approach, we will propose a
metric that is based on the reconstruction error of the diffusion matrix. On the other hand,
there is another problem when giving the embedding for examples that were not in the
initial sample used to compute the embedding. It is necessary to redo the spectral analysis
of the matrix, which is especially critical if the applications have operating restrictions in
real time. In this work we will also analyze two proposals to allevaite this cost: to learn
the embedding by means of neural networks for regression (Diffusion Nets), being able to
compute the embedding for a new example, and to compute an extension of the embedding
with Nyström’s method.

Regarding the results, three datasets will be used, one of which will be synthetic. For all
of them, we will compute the embedding via Diffusion Maps with the objective of extending
it to out-of-sample (OOS) examples and to evaluate the low range approximation achieved
by Nyström’s method. In addition, extensions for OOS patterns will be computed via
Diffusion Nets and Nyström’s method.

To sum up, regarding the low-rank approximation quality we will see that increasing
the number of examples in the training set entails a reduction in the reconstruction error of
the diffusion matrix, as we could expect. Regarding OOS extensions, we will observe that
both, Nyström’s method and Diffusion Nets, obtain visually similar results, embedding
examples of the same class in the same regions of space.

This work gives rise to new lines of research, since as future work it is of special interest,
among others, to be able to compare the quality of the extensions for OOS examples.

Acknowledgements

En primer lugar quiero agradecer a José Ramón Dorronsoro Ibero y a Ángela Fernández
Pascual haber sido unos tutores excepcionales. Gracias por los conocimientos, la com-
prensión y el tiempo dedicado. Nada de esto habŕıa sido posible sin vosotros. Gracias
también a Carlos Maŕıa Alaiz Gud́ın y a Alejandro Catalina Feliú por haberme acompañado
en algunas de las reuniones semanales, teniendo paciencia para escucharme y corregirme.

Gracias a la Cátedra UAM-IIC de Ciencia de Datos y Aprendizaje Automático por la
ayuda para máster concedida, que me ha permitido dedicarme a tiempo completo a mis
estudios. Gracias al equipo docente de la Escuela Politécnica Superior y de la Facultad
de Ciencias por haberme enseñado todo lo posible, siempre estando dispuestos a concertar
tutoŕıas y a aportar ideas.

Un enorme gracias a mi familia. Gracias mamá, por ayudarme cada d́ıa y por esforzarte
tanto. Gracias papá, por todos los consejos y por enseñarme que tenemos seis sentidos,
incluyendo el sentido común. Y gracias a mi hermano Sergio, por las charlas de futuro
y los ratos juntos. Son lo mejor de cada d́ıa. Gracias abuelos, t́ıos y primos por vuestro
apoyo y cariño incondicional.

A todos mis compañeros de aventuras estos últimos años. A pesar de los momentos
duros, me llevo grandes recuerdos y amigos. En especial, gracias a Carlos por haberme
acompañado y ayudado este último año. Y gracias a mis compañeras de deporte, las chicas
del Sanfer Senior, porque me habéis dado una v́ıa de escape siempre que la he necesitado.
Teneros es genial.

Chapter 1

Introduction

1.1 Motivation

In the context of Artificial Intelligence and in the era of Big Data, dimensionality reduction
plays a central role. By reducing the number of variables or features of a given problem we
do not only achieve more efficiency, but many times we obtain a higher degree of accuracy.
Methods of dimensionality reduction, both in classification and regression problems, try
to change the representation of the original data by embedding it into a space of lower
dimension in which a large part of the data information is retained.

In this work, we will study methods that suppose data lie in a manifold, a field known
as manifold learning [2]. These methods have several applications, starting from data
visualization to clustering [3]. Because of their good performance, spectral algorithms
are very popular among the existing literature. On the one hand, we have the Laplacian
Eigenmaps algorithm [4], which gives foundation to the algorithm of Spectral Clustering [5]
and has been exhaustively studied. On the other hand, we find a more general technique,
which are Diffusion Maps [6], the method that this work focuses on. This algorithm is
specially interesting due to its strong mathematical foundation, which lies on the fields of
similarity graphs and random walks. Diffusion Maps have a clear advantage over other
manifold learning methods: they embed the data into a space in which the standard
distance, that is the euclidean distance, approximates the Diffusion Distance in the original
space, a robust measure.

The main disadvantage of Diffusion Maps is its computational complexity. In order
to give the embedding, we need to compute the eigenvalues and eigenvectors of a square
matrix of dimension the number of examples. The first problem of this is that we may not
be able to compute the Diffusion Map of a huge dataset. The second problem comes when
we want to compute the embedding of new examples, which are known as out-of-sample
examples. With the arrival of a new pattern, it is necessary to recalculate the eigenvectors
and eigenvalues of a similarity matrix, whose size is, again, the number of examples.

Aiming to solve these problems, we can find several proposals in the literature. One
of them is trying to compute a low-rank approximation for the Diffusion Map [4]. That
is, to compute the eigenvalues and eigenvectors of the similarity matrix of a small sample
and, then, try to extend it to other patterns, which are the out-of-sample patterns. In this

1

2 Chapter 1. Introduction

sense, we can incorporate Nytröm’s method [7] to Diffusion Maps.

Other approach would be to compute the embedding for a given subset and learn it via
any Machine Learning method. This could be, for example, neural networks for regression
(the embedding is continuous) in which the target is the embedding we want to extend.
This was introduced in [1] under the name of Diffusion Nets.

Thus, the motivation of this work is to review the current state-of-the-art of Diffusion
Maps and present the mathematical theory necessary to reach a good understanding of
this field. Apart from this review, we will also experiment with different datasets to
measure the low-rank approximation quality reached by Nyström’s encoding when applied
to Diffusion Maps. In addition, we will compare the results obtained when trying to extend
the embedding to out-of-sample examples via any of the previously mentioned approaches:
Nyström’s encoding and Diffusion Nets.

1.2 Objectives

The main objective of this work is to introduce a research line focused around low-rank
approximation and out-of-sample extension in Diffusion Maps. With this general purpose,
this work is focused on the following topics:

• To study and understand the mathematical background of Diffusion Maps.

• To study the theory of Similarity Graphs and Laplacians.

• To study the Nyström’s method and its integration with Diffusion Maps.

• To study Diffusion Nets.

• To implement these concepts and methods and test them in synthetic and real
datasets, comparing its performance to extract some conclusions.

1.3 Structure

In this context, this work is structured around three main chapters:

1. Manifold learning and Difussion Maps, where we introduce and develop the
necessary mathematical background and the algorithm of Diffusion Maps. We intro-
duce Principal Component Analysis, giving an example of the necessity of non-linear
methods for dimensionality reduction. This chapter also contains the theory of Sim-
ilarity Graphs and Laplacians and the algorithm of Laplacian Eigenmaps.

2. Out-of-sample extension, where different approaches to extend the embedding
computed by Diffusion Maps are explained. Firstly, we introduce the Nyström’s
approach and its application to Diffusion Maps. We will also give an idea to measure
the low-rank approximation quality achieved by the Nyström’s method. Secondly,
the algorithm of Diffusion Nets is also explained, introducing its advantages and
applications.

1.3. Structure 3

3. Experiments, where we will implement and compare these methods. We will work
on three different problems: a synthetic three-dimensional helix, the Red Wine
dataset, which contains examples of wine quality, and the Vowel dataset, for recog-
nition of the eleven steady state vowels of British English. For each dataset, we
will compute an embedding via Diffusion Maps that will be extended both by the
Nyström’s encoding, measuring the low-rank approximation quality, and by Diffusion
Nets.

Finally, we include a chapter of conclusions and further work, where we explore future
lines of research.

4 Chapter 1. Introduction

Chapter 2

Manifold Learning and Diffusion
Maps

In this chapter we will cover a set of mathematical concepts that will be essential to develop
the analysis of the models and problems that we will deal with in the third section of this
work. In this document the initial dataset, which is composed of N patterns or examples,

is denoted as D =
{
xn
}N
n=1

, with xn ∈ Rm. We will say m is the original dimension. For
the most part, the presented methods assume data lie on a low-dimensional manifold.

Given a problem, methods for dimensionality reduction aim to find a new space, which
is usually called embedding space or projection space, where data are largely explained in
some sense and maintain initial relations, such as local distances. Some methods, like
PCA [8, 2], aim to find a projection where variables are uncorrelated and the variance re-
tained is maximum. However, these methods are linear and, hence, they have limitations.
In this work we will focus on methods that try to find meaningful structures in datasets, a
paradigm known as manifold learning. This problem, which is slightly different to dimen-
sionality reduction, aims to gain insight and understanding of the process that generated
the data. The key is to assume that data live in a manifold of lower dimension than the
original m-dimensional space.

It may be useful to recall the concept of manifold. Informally, a manifold is a topological
space that locally resembles an Euclidean space and may have a more complicated global
structure. It is locally considered as the image of a domain with lower dimension. In this
sense, manifold learning methods ideally have the objective of finding an application, Ψ,
from the original space to the projection space, such that

Ψ : D ⊂ Rm → Y ⊂ Rd (d < m)

x 7→ Ψ(x) = y ,

where d denotes the dimension of the space in which we are projecting the data. It is called
the embedding dimension.

This chapter is organized as follows:

1. In Section 2.1 we will see a derivation of the Principal Component Analysis (PCA)
algorithm, which is a linear method for dimensionality reduction. We will also see

5

6 Chapter 2. Manifold Learning and Diffusion Maps

an example to motivate non-linear methods.

2. Section 2.2 will introduce the concept of similarity graph. We will also cover some
useful theorems and applications of this mathematical theory that will lead to the
next section. The Laplacian Eigenmaps algorithm is also introduced in Section 2.2.2.

3. In Section 2.3 we will see in detail, including some implementational aspects, the
algorithm known as Diffusion Maps.

4. In Section 2.4 we will introduce the Spectral Clustering algorithm, which has become
one of the most popular modern clustering algorithms.

2.1 Principal Component Analysis: PCA

Principal Component Analysis [8, 2] (PCA) is a dimensionality reduction algorithm whose
aim is to find a subspace in which the retained variance of the projected data is maximum.
As we shall see, this method is based on the spectral analysis of the covariance matrix of
the initial dataset D = {x1, . . . , xN}. There are two approaches to derive this algorithm,
as PCA can be seen from a maximum variance formulation or minimum error formulation.
Both approaches can be found in [8], but here we will focus on the first one since it has
some similarities with other methods that will be explained in this work.

The objective is to project D into a d dimensional space, where d < m. Suppose d = 1
and let u ∈ Rm be the direction in which we want to project the data. In order to avoid
infinite solutions it is necessary to add a restriction over the vector norm, which will be
required to be unitary. That is uTu = 1. Since u is unitary the projection of a given point
xn ∈ D, n = 1, . . . , N , over the direction of u can be expressed as

yn = uTxn .

The average of the projection can also be expressed in terms of u as

y = uTx ,

where x denotes the average of the original dataset, that is

x =
1

N

N∑
n=1

xn .

Finally, the variance of the projection is

Var[y] =
1

N

N∑
n=1

(yn − y)2 = uTSu ,

where

S =
1

N

N∑
n=1

(xn − x)(xn − x)T

is the covariance matrix of the initial dataset. The optimization problem would be

max
u∈Rm

uTSu

s.t. uTu = 1,
(2.1.1)

2.1. Principal Component Analysis: PCA 7

whose maximum of the problem can be found using the Lagrangian associated to the
Problem 2.1.1.

L(u, λ) = uTSu− λ(uTu− 1) ,

where λ is a Lagrange multiplier. Taking the gradient with respect to u and equalling to
zero we obtain

Su− λu = 0 ⇐⇒ Su = λu .

That is to say, the stationary solutions of the Lagrangian are the eigenvectors of S and the
Lagrange multipliers are the corresponding eigenvalues. Since S is a covariance matrix, it
is positive semi-definite: it is easy to see that for any z ∈ Rm zTSz ≥ 0, as we have

zTSzT = zT

(
1

N

N∑
n=1

(xn − x)(xn − x)T

)
z

=
1

N

N∑
n=1

zT (xn − x)(xn − x)T z

=
1

N

N∑
n=1

∥∥(xn − x)T z
∥∥2 ≥ 0 .

In addition, S is symmetric, so it can be diagonalized into an orthonormal basis (see
Theorem 1, Section 2.2.1 of this work). Hence, if we evaluate the objective function in a
solution (u∗, λ∗), we obtain

(u∗)TSu∗ = (u∗)Tλ∗u∗ = λ∗ .

Thus, we can conclude that the variance is maximized in the direction of the eigenvector
associated with the largest eigenvalue. From here the definition is incremental: as we have
already explored the direction u, we are interested on the remaining orthonormal space.
In this space, the variance is maximzed in the direction v, the eigenvector associated with
the second largest eigenvalue of S, which is orthonormal to u, and so on.

An important observation about PCA is that, if we set d = m, i.e. the target dimen-
sion equal to the original dimension, we will find a projection in which the variables are
uncorrelated, so the covariance matrix is diagonal. If the data is normalized, then the
covariance will be the identity matrix. In addition, as we have said, S can be diagonalized
in an orthonormal basis, so we can write S = PDP T , where P is the matrix with the
eigenvectors of S in columns and D is a diagonal matrix containing the eigenvalues. The
projection of x in the basis composed by the eigenvectors of S can be written as α = P Tx.
Thus,

Var(α) = Var(P Tx) = P TSP = D .

So the components are uncorrelated and their variance is the corresponding eigenvalue.

Even though PCA is a linear method, it is widely used. However, when applying PCA
for dimensionality reduction we encounter some limitations. Figure 2.1.1 contains the 2-
dimensional embedding computed via PCA of a 3-dimensional helix that we will explain
with detail in further sections. Unfortunately, points that are far away in the original space
are near in the projection space. Observe, for example, the orange and the greenish blue
points, which appear separated in the original space and overlap in the embedding space,
which is not desirable.

8 Chapter 2. Manifold Learning and Diffusion Maps

Figure 2.1.1: Helix dataset. Left: data in the original space. Right: embedding computed
via PCA.

2.2 Similarity Graphs and Laplacians

In this section we will introduce some mathematical definitions and results that will give the
foundation of the Laplacian Eigenmaps and Spectral Clustering algorithms [5, 9, 3], that
often outperform traditional clustering algorithms, such as k-means or single linkage [10].
Given a set of points, D = {x1, . . . , xN}, and a measure of similarity, wij , between xi and
xj we can construct an undirected graph G = (X , E), in which the vertices, X , are the
set of points and the set of edges, E, is weighted by wij . Weights are commonly obtained
by means of a positive definite and symmetric kernel k(x, y). Given such a graph, we can
define its adjacency matrix.

Definition 1 (Adjacency matrix). The adjacency matrix of the graph G is W = (wij),
with i, j = 1, . . . , N . As G is undirected, it is required that wij = wji.

The adjacency matrix will be also called similarity matrix, as it contains the similarity
between points. Note that wij = 0 implies that xi and xj are not directly connected in the
graph. This is not the standard in graph theory, as normally the edges are weighted by the
cost of traveling between nodes, which is typically a decreasing function of the similarity.
Thus, generally, the weight between two nodes that are not connected should be infinite.
However, Similarity Graphs contain the similarity between vertices, which should be 0 if
two points are not connected in the graph, i.e. the two points are not considered to be
similar.

Definition 2 (Degree of a vertex). The degree of the vertex xi is computed as

d(xi) = di =

N∑
j=1

wij .

Definition 3 (Degree matrix). The degree matrix of G is D = (dij), such that

dij =

{
di if i = j

0 otherwise .
(2.2.1)

When working with subgraphs composed by a subset of vertices, A, and the edges of the
graph restricted to those vertices, EA, we will write (A,EA) ⊂ (X , E). The complementary

2.2. Similarity Graphs and Laplacians 9

of A will be denoted as Ā and the number of vertices in A is written as |A|. We will say
A ⊂ X is connected if every pair of vertices can be connected by a path totally contained in
EA. In addition, if there are no connections between A and Ā, we will say A is a connected
component. Thus, we will say G is connected if it only contains one connected component.

Definition 4 (Indicator vector). The indicator vector of A ⊂ X , 1A, is

1A = (f1, . . . , fN)T ,

where fi = 1 if xi ∈ A and 0 otherwise.

Given a dataset, D, there are several popular constructions that can be used to trans-
form the data into a graph. The most used approaches are given in [5] and they are the
following.

The simplest approach is the ε-neighborhood graph, in which two vertices are con-
nected when the distance between them is less than a given parameter ε. As the similarity
between the connected points is in the same scale (at most ε), this graph is usually con-
sidered as an unweighted graph. Simply, we set wij = 1 if xi and xj are connected and 0
otherwise.

We also have the k nearest neighbor graph, in which each vertex is connected with
its k nearest neighbors. This approach leads to a directed graph. Depending on the ways
of making the graph undirected, we can distinguish:

• The vertices xi and xj are connected if xi is among the k nearest neighbors of xj or
vice versa.

• The vertices xi and xj are connected if xi is among the k nearest neighbors of xj
and vice versa. This one is known as mutual k nearest neighbor graph.

The first approach creates a denser graph, in the sense that it contains more edges than
the second one. In this case, in contrast to the ε-neighborhood graph, the similarity wij
between xi and xj is set to 1 if xi and xj are connected and to 0 otherwise.

Finally, in the totally connected graph all vertices of G are connected by means of
a kernel that represents the notion of similarity. The Gaussian kernel is commonly used,
leading to the similarity

wij = k(xi, xj) = exp

(
−‖xi − xj‖

2

2σ2

)
,

where σ is a parameter that controls the width of the neighborhoods and xi, xj ∈ X .
Typically, the equation of this kernel is written as

wij = exp
(
−γ ‖xi − xj‖2

)
,

where γ = 1
2σ2 . However, in this work we will the σ-notation, since it will be more

comfortable when performing the experiments. Note that any symmetric and positive
definite kernel can be used instead. This is the type of graph usually built in Diffusion
Maps.

10 Chapter 2. Manifold Learning and Diffusion Maps

2.2.1 Graph Laplacians and their Basic Properties

The main tools for Spectral Clustering are graph Laplacian matrices. There exists a whole
field dedicated to the study of those matrices, called Spectral Graph theory. Given a
dataset D, its associated graph G, the adjacency or similarity matrix W and the degree
matrix D, the graph Laplacian can be defined in two ways depending on the normalization:
the Unnormalized and the Normalized graph Laplacian. For this section, it may be useful
to recall the Spectral Theorem.

Theorem 1. (Spectral theorem) Let A be a symmetric matrix of dimension N ×N . Then,
it can be diagonalized with an orthonormal basis, i.e., A = UΛUT , where

• Λ is a diagonal matrix with real entries, and

• the columns of U form an orthonormal basis of RN .

In the following, we do not necessarily assume that the eigenvectors are normalized so
the vector v and a × v, a ∈ R, are considered to be the same eigenvector. Eigenvalues
will always be ordered from lowest to highest, respecting multiplicities. By the first k
eigenvectors we refer to the eigenvectors corresponding to the k smallest eigenvalues.

Definition 5 (Unnormalized graph Laplacian). The Unnormalized graph Laplacian of a
graph is defined as

L = D −W . (2.2.2)

Note that W = (wij) is a similarity matrix, so we have wij ≥ 0 for i, j = 1, . . . , N .
Some important facts of the Unnormalized graph Laplacian are summarized in the following
theorem, whose proof can be found in [5].

Theorem 2. L satisfies the following properties:

1. ∀f ∈ RN , f ′Lf = 1
2

∑N
i=1,j=1wij(fi − fj)2.

2. L is symmetric and positive semidefinite.

3. The smallest eigenvalue of L is 0. The corresponding eigenvector is the constant
vector 1 ∈ RN . The normalized eigenvector would be 1√

N
∈ RN .

4. L has N non-negative real eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λN and real eigenvectors.

There is another matrix which is called Normalized graph Laplacian in the literature
and it is widely used when doing Spectral Clustering.

Definition 6 (Normalized graph Laplacian). We call the Normalized graph Laplacian of
a similarity graph G to the matrix

Lrw = D−1L = I −D−1W .

The reason to write Lrw is that this Laplacian is related to the probability matrix of a
random walk defined over the graph. We will see this in more detail in Section 2.3. The

2.2. Similarity Graphs and Laplacians 11

Normalized graph Laplacian is closely related to the Unnormalized version. In fact, it is
easy to check that λ is an eigenvalue of Lrw with eigenvector v if and only if λ solves the
generalized eigenproblem

Lv = λDv . (2.2.3)

That is to say, like L, Lrw is positive definite and has N non-negative eigenvalues 0 = λ1 ≤
λ2 ≤ · · · ≤ λN and real left eigenvectors v1, . . . , vN . The main result for the Normalized
graph Laplacian is related to the number of connected components in the graph, as detailed
in Theorem 3. The proof can be found in [5].

Theorem 3. Let G = (X , E) be an undirected graph with non-negative weights. Let
A1, . . . , Ak be its connected components. Then, the multiplicity of the eigenvalue 0 in Lrw
is k. The corresponding eigenvectors are {1A1 , . . . ,1Ak

}.

2.2.2 Spectral Dimensionality Reduction and Laplacian Eigenmaps

The Laplacian Eigenmaps (LE) method is a very successful procedure for dimensionality
reduction [2] while preserving local properties under certain conditions, as we will see below.
In the following we will suppose a fully connected graph. Given a dataset D = {xi}i=1,...,N

and a similarity measure between points, wij = k(xi, xj), the algorithm works as follows:

1. Build the undirected similarity graph G = (X = D, E) and compute the similarity
matrix W following any of the approaches shown in Section 2.2.

2. Solve the problem Lv = λDv, where L and D are defined in Equations (2.2.2)
and (2.2.1) respectively.

3. Compute the embedding:

Ψ : xi ∈ D → (v2(xi), . . . , vd(xi)) ,

where vk(xi) denotes the i-th component of the k-th generalized eigenvector from
Equation (2.2.3). Note that just v1(x) is constant as we are supposing a fully con-
nected graph.

The justification of this algorithm can be found in [2]. If we denote the embedding
matrix by Y ∈ RN×d, a reasonable objective function would be to penalize points that are
close in the original space (and hence the edge between them has a large weight) but are
mapped far apart in the embedding space. Therefore, a plausible objective function is∑

i,j

‖yi − yj‖2wij ,

where yk denotes the embedding of the point xk, that is to say, the k-th row of Y . It can
be shown that ∑

i,j

‖yi − yj‖2wij = trace(Y TLY) .

Hence, we get the following optimization problem:

argmin
Y TDY=I

trace(Y TLY) ,

12 Chapter 2. Manifold Learning and Diffusion Maps

where I denotes the identity matrix. We constrained one degree of freedom in order to
avoid an arbitrary solution. Since L is positive definite (see Theorem 2), this optimiza-
tion problem is solved by the eigenvectors corresponding to the first d eigenvalues of the
generalized problem

Lv = λDv , (2.2.4)

which will be denoted as vi, i = 1, . . . , d. That is to say, the solution is the matrix

Y = [v1, . . . , vd] ,

where vj , j = 1, . . . , d, denotes the j-th solution of the Equation (2.2.4). Thus, the columns
of Y are the first d left eigenvectors of Lrw.

As we will see in the next section, Laplacian Eigenmaps, which are a particular case of
Diffusion Maps, handle only manifolds from which the data is sampled uniformly, something
that rarely happens in real Machine Learning tasks. Diffusion Maps address this problem.

2.3 Diffusion Maps

Diffusion Maps [6] are another technique for finding meaningful geometric descriptions
for datasets even when the observed samples are non-uniformly distributed. Similarity
graphs seen in Section 2.2 give us a powerful tool to depict the notion of geometry. In this
algorithm, Coifman and Lafon provide a new motivation for Normalized graph Laplacians
by relating them to Diffusion Distances.

In the original work the algorithm is motivated with continuous data, so we work in a
probability space (X ,A, µ) where a symmetric kernel that verifies k(x, y) ≥ 0 presents the
notion of local structure (similarity). The degree of a vertex x ∈ X is the integral

d(x) =

∫
X
k(x, y)dµ(y) .

So, we define the transition probability between vertices as

p(x, y) =
k(x, y)

d(x)
.

Even though the kernel p(x, y) is not symmetric, it inherits the positive-preserving property
of k(x, y). That is, p(x, y) ≥ 0. In addition, we have gained the conservation property∫

X
p(x, y)dµ(y) = 1 .

This means that p can be viewed as the transition kernel of a Markov chain on X . The
diffusion operator associated to p(x, y) is defined as

Pf(x) =

∫
X
p(x, y)f(y)dµ(y) .

We say ψ(x) is an eigenfunction, with associated eigenvalue λ, of the operator P if it verifies

Pψ(x) = λψ(x) .

2.3. Diffusion Maps 13

In practice, we always work with finite samples. The diffusion operator is then a matrix
Pij = p(xi, xj) and p(xi, xj) is now the transition probability in a random walk defined
over the initial dataset X = {x1, . . . , xN}. In the same way, instead of working with
eigenfunctions we work with eigenvectors. The transition matrix P is related to Lrw from
Definition 6 as

Lrw = I −D−1W = I − P ,

where W is the similarity matrix from Definition 1. That is, Wij = k(xi, xj), xi, xj ∈ X .
From this we can conclude that if λ is an eigenvalue with right eigenvector v of Lrw, then
1 − λ is an eigenvalue with right eigenvector v of P . As a consequence of Theorem 3 we
can deduce that the multiplicity of the eigenvalue λ = 1 in P is the number of connected
components. In addition, if we suppose a connected graph, as P defines the transition
matrix of a random walk, we can assert that P has a discrete sequence of eigenvalues

1 = λ0 > λ1 ≥ λ2 ≥ . . . ≥ 0 ,

and, in addition, Pψl = λlψl, where ψl denotes the l-th eigenvector of P , which are real
eigenvectors. As already mentioned, the eigenvector associated to λ0 = 1 is constant,
collapsing all the elements of each component around 1 and, therefore, not providing any
information. In [6] the authors gave a measure, known as Diffusion Distance, that estab-
lishes how two points are connected in a graph.

Definition 7 (Diffusion Distance). A family of Diffusion Distances {Dt}t∈N in time t is
defined as:

D2
t (x, y) = ‖pt(x, ·)− pt(y, ·)‖2L2(X ,dµ)

=

∫
X

(pt(x, u)− pt(y, u))2dµ(u) ,

where pt(x, y) denotes the probability of traveling from x to y in time t.

Note that if we have Dt(x, y) ' 0 then we also have pt(x, u) ' pt(y, u) for u ∈ X .
This means that it should be also posible to travel from x to y in time t. In practice, the
integrals are intractable. Given a dataset D, the discrete version of the Diffusion Distance
for x, y ∈ D is

D2
t (x, y) = ‖pt(x, z)− pt(y, z)‖2d

=
∑
z∈D

(pt(x, z)− pt(y, z))2d(z) ,

where pt(x, y) is now the probability of traveling from x to y in t steps. The definition
is intuitive: two points are closer the more short paths (with large weights) connect them.
Dt(x, y) involves all paths of length t. Hence, it is a robust measure. In addition, this
measure can be expressed in terms of the eigenvalues and eigenvectors of P , as proved
in [6].

Theorem 4. We have

D2
t (x, y) =

∑
l≥1

λ2tl (ψl(x)− ψl(y))2 ,

where ψl(x) denotes the value of the l-th eigenvector of P . The case l = 0 is omitted
because ψ0 is constant, as we are assuming a fully connected graph.

14 Chapter 2. Manifold Learning and Diffusion Maps

We have seen that the eigenvalues of P are a decreasing sequence, so the diffusion
distance can be approximated up to a certain precision s(δ, t), where δ is the relative
accuracy, by truncating the summation,

D2
t (x, y) '

s(δ,t)∑
l=1

λ2tl (ψl(x)− ψl(y))2 .

Choosing δ is not trivial. In [6] the authors propose the following

s(δ, t) = max{l ∈ N : |λl|t > δ|λ1|t} . (2.3.1)

We will identify s(δ, t) with the dimension of the embedding, which we have denoted by d.
In this way, we can formally define the concept of Diffusion Map.

Definition 8 (Diffusion Map). A Diffusion Map is a function Ψt(x) : X → Rd such that

Ψt(x) =

λt1ψ1(x)
λt2ψ2(x)

...
λtdψd(x)

 .

Theorem 5. The diffusion map Ψt : X → Y embeds the data into the Euclidean space
Y = Rd in which the Euclidean distance is approximately the diffusion distance Dt in the
original space.

Proof. The Euclidean distance between two points, y1 = Ψt(x1) and y2 = Ψt(x2), in the
embedding space is

‖Ψt(x1)−Ψt(x2)‖2 =

d∑
l=1

(
λtlψl(x1)− λtlψl(x2)

)2
=

d∑
l=1

λ2tl (ψl(x1)− ψl(x2))2

' D2
t (x1, x2) .

To sum up, the Diffusion Map is an embedding that projects the original data in a
Euclidean space in which the Euclidean distance approximates the diffusion distance.

In this work we will try to extend the embedding given by Diffusion Maps to examples
that were not in the initial dataset. The transition matrix P = D−1W is not symmetric,
but when diagonalizing or giving an extension of the embedding for new patterns, it is
convenient to define a symmetric kernel, whose eigenvectors compose an orthonormal basis
of Rd. Therefore, it is common to define a symmetric operator as

a(xi, xj) =
k(xi, xj)√
d(xi)

√
d(xj)

, (2.3.2)

and, consequently, the matrix Aij = a(xi, xj), which can be expressed in terms of the
kernel and degree matrices as A = D−1/2WD−1/2. Note that A is symmetric, so we are

2.3. Diffusion Maps 15

not distinguishing between right and left eigenvectors anymore (they are the same but
transposed). The eigenvalues and eigenvectors of A, which will be denoted as λl and φl
respectively, are directly related to those of P (λl, ψl). We have

Aφl = λlφl . (2.3.3)

Multiplying both sides by D−1/2, we obtain

PD−1/2φl = λlD
−1/2φl .

So the eigendecomposition of P can be recovered by choosing, associated with the eigen-
value λl, the right eigenvector

ψl = D−1/2φl .

2.3.1 Anisotropic Diffusion

The density of the sample is not, in general, related to the geometry of the manifold.
When the sampling on the manifold is not uniform, the diffusion maps may not recover the
original geometry. We are interested in recovering the structure of the manifold regardless
of the density of the sample, which suggests the following question: What is the influence
of the density of the points and the geometry of the possible manifold underlying the data
in the eigenvectors and the diffusion spectrum?

The family of Anisotropic Diffusions [6] introduces a new parameter, α, that can be
tuned to specify the influence of the density of the sample points. The following is an outline
of how the Anisotropic Diffusion works, emphasizing the similarities with the Diffusion
Maps introduced in the previous section. Let q(x) be the density of the points on the
manifold.

1. Fix σ ∈ R and a kernel kσ = exp
(
−‖x−y‖2

2σ2

)
.

2. Define

qσ(x) =

∫
X
kσ(x, y)q(y)dy ,

which is an approximation of the true density q(x), and the kernel

k(α)σ (x, y) =
kσ(x, y)

qασ (x)qασ (y)
.

Setting α = 0 we obtain k
(α)
σ = kσ.

3. Define the degree in terms of k
(α)
σ (x, y) as

d(α)σ (x) =

∫
X
k(α)σ (x, y)q(y)dy ,

and define the anisotropic diffusion as

pσ,α(x, y) =
k
(α)
σ (x, y)

d
(α)
σ (x)

.

16 Chapter 2. Manifold Learning and Diffusion Maps

4. Apply Diffusion Maps as usual. The diffusion matrix is then

(Pσ,α)ij = pσ,α(xi, xj) , i, j = 1, . . . , N .

For a finite sample, the integrals are approximated by sums in the following way

qσ(xi) =

N∑
j=1

kσ(xi, xj) ,

d
(α)
σ (xi) =

N∑
j=1

k
(α)
σ (xi, xj)

qασ(xi)qασ(xj)
,

pσ,α(xi, xj) =
k
(α)
σ (xi, xj)

d
(α)
σ (xi)

.

In order to understand the impact of the new parameter α in the algorithm we may
introduce the Laplace-Beltrami operator of the manifold [11]. This operator is a general-
ization of the Laplace operator but applied over functions and it is related to the geometry
of the manifold. We assume that the data, X , is the entire manifold. If we define the
operator

Lσ,α =
I − (Pσ,α)

σ
,

then, it is proved in [11] that for any function f , it is verified

lim
σ→0

Lσ,αf =
∆(fq1−α)

q1−α
− ∆(q1−α)

q1−α
f , (2.3.4)

where ∆(·) denotes the Laplace-Beltrami operator. Some values of interest of α are dis-
cussed in [11]:

• When α = 0 the diffusion is reduced to the classical problem with the normalized
Laplacian Lrw. From the previous equation we obtain

lim
σ→0

Lσ,αf =
∆(fq)

q
− ∆(q)

q
f .

That is to say, the density influence is very strong in this case. Assuming an uniform
distribution in the manifold, i.e., that the points are equally distributed among the
manifold, then the density is a constant. Thus, we can write q = C, where C is a
real number. Hence, we have ∆(q) = 0 and ∆(fq) = q∆(f). Thus we can simplify
the expression to obtain

lim
σ→0

Lσ,αf = ∆(f) .

As we said before, assuming a constant density, the Laplace-Beltrami operator can
be approximated by the graph Laplacian.

• When α = 1, if the points are actually in a submanifold of Rd, we get from Equa-
tion (2.3.4)

lim
σ→0

Lσ,αf = ∆(f) ,

so the geometry of the manifold is perfectly retrieved (in the limit). Thus, an ap-
proximation of the Laplace-Beltrami operator is always obtained independently of
the density and the Riemmanian geometry of the dataset can be retrieved.

2.4. Clustering 17

Figure 2.3.1: Influence of α on an helix example. Up: original curve. Down: the em-
bedding via the graph Laplacian (α = 0) and the embeddings via the Laplace–Beltrami
approximation (α = 1). In the latter case, the curve is perfectly unrolled

To give an idea, in Figure 2.3.1 we can see the original curve and the embedding of an
helix with equation

xi = cos(θi) ,

yi = sen(2θi) ,

zi = sen(3θi) ,

where θi ∈ (0, 2π); we added Gaussian white noise with standard deviation σr = 0.5. This
example has been previously used in Section 2.1, where we saw that the 2-dimensional
embedding computed via PCA was not able to retrieve the geometry of the manifold. In
Figure 2.3.1, we can see that, when taking the density of the sample into account, the
curve is perfectly unrolled. Note that when the density is not taken into account, spikes
are observed in the embedding, corresponding to changes in the helix, where there is more
density of points. When we apply α = 1 this effect disappears, and the helix is embedded
into a smooth 2-dimensional circumference.

2.4 Clustering

An important and recent application of Laplacian Eigenmaps and Diffusion Maps is known
as Spectral Clustering. We have noted before that both algorithms try to embed the data
into a space where local magnitudes are preserved. In the case of Diffusion Maps, the data

18 Chapter 2. Manifold Learning and Diffusion Maps

is projected into a Euclidean space where the usual notion of distance is similar to the
Diffusion Distance Dt, which is a robust measure that takes into account probabilities of
transition between points in the manifold. Recall that the quantity Dt(x, y) involves all
paths of length t that connect x to y and vice versa. As a consequence, this number is very
robust to noise perturbation.

This section will also provide a practical example in which algorithms based in the
euclidean distance, such as k-means in the original space, are not able to cluster the points
perfectly. However, we will see that applying k-means in the embedding space for this
particular dataset provides a perfect separation between classes.

2.4.1 Classic Algorithm: k-means

K-means [8] tries to find groups or clusters in the data. Firstly, K centroids are initialized,
{µ1, . . . , µK}, and each pattern is then assigned to its closest centroid. The error is defined
as

J =

N∑
n=1

K∑
k=1

rnk ‖xn − µk‖2 , (2.4.1)

where rnk is 1 if the point xn is associated with the k-th centroid. The optimization is
done in two steps:

• First, rnk is updated as

rnk =

{
1 if k = argminj ‖xn − µj‖

2

0 otherwise .

• Then we update the cetroids µk by minimizing Equation (2.4.1) with rnk fixed.

Deriving (2.4.1) with respect to µk and equaling to zero, we obtain,

2
N∑
n=1

rnk(xn − µk) = 0 .

Therefore, solving the equation, we finally obtain

µk =

∑N
n=1 rnkxn∑N
n=1 rnk

.

That is to say, the optimal centroid of the cluster k is the average of the points in the
cluster. These steps are repeated until the centroids stop being updated or a maximum
number of iterations is reached. Note that this algorithm is sensible to the notion of
distance. The Euclidean distance may not be the best selection, specially if we are working
with data that lies in a manifold, which is the case studied in this work.

2.4.2 Spectral Clustering

To conclude this section, let us quickly sketch the application of Diffusion Maps to Spectral
Clustering algorithms. Typically in the literature [5], Spectral Clustering algorithms are

2.4. Clustering 19

Figure 2.4.1: Spectral Clustering in the noisy moons dataset. Left: data in the original
space. Right: The embedding computed via Diffusion Maps, with kernel scale σ = 0.1234
and α = 0.

focused in the embedding computed via Laplacian Eigenmaps. However, note that Lapla-
cian Eigenmaps is a particular case of Diffusion Maps, in which the anisotropic parameter
α is set to 0 and the number of steps is t = 0. Given a dataset, the steps are the following:

1. Construct the similarity graph.

2. Compute the embedding, Y ⊂ Rd, via Diffusion Maps or Laplacian Eigenmaps.

3. Cluster points yi ∈ Y with k-means using the Euclidean distance.

The main advantage of applying k-means in the embedding space instead of the original
space is that, if the diffusion metric is right in the manifold, we will obtain better results.
Close points in the manifold will also be close in the embedding space.

An illustration of the advantages of doing clustering with k-means in the embedding
space is shown in Figure 2.4.1. While it is not possible to separate in two groups the
image on the left with k-means (see Section 2.4.1), the Diffusion Map embedding provides
a perfect separation for both targets. The noisy moons problem is linearly separable in the
embedding space.

20 Chapter 2. Manifold Learning and Diffusion Maps

Chapter 3

Out-Of-Sample Extension

In the previous chapter we described some very foundational concepts covering the basic
theory and tools that are needed in order to understand more advanced topics regarding
manifold learning and dimensionality reduction when using Diffusion Maps. In this section,
we will show different ways to extend the embedding given by Diffusion Maps to new
patterns without re-doing the eigenanalysis over an extended similarity matrix, which is
computationally expensive (O(N3)). From now on, the patterns to which we want to
extend the embedding will be referred as OOS (out-of-sample). This chapter is divided
into the next sections that will cover the following topics:

1. In Section 3.1 we introduce different ways to extend the embedding, depending on
the target of the approximation. We will also introduce two ways to measure the
low-rank approximation quality in order to compare the different approaches to OOS
extensions.

2. In Section 3.2 we will explain how the Nyström method can be used to define the
projections of OOS patterns.

3. In Section 3.3 we will introduce a recent development that aims to merge deep learn-
ing concepts with the extension of the embedding. In particular, a neural network
will be trained to learn the encoding and decoding map.

3.1 Low-Rank Approximation

Predicting the embedding given by Diffusion Maps for an OOS example can be done
following different options. The general set up, given a sample with N patterns, is as
follows:

1. Select a subset of size NL of the entire sample, i.e. a subset of landmarks patterns,
and calculate the corresponding diffusion matrix, P (L), and its symmetric version,
A(L). These patterns will compose the landmark subset L = {x1, . . . , xNL

}.

2. Define an extension of the resulting encoding map to be applied to the remaining
N ′ = N −NL patterns, which are seen as OOS examples.

21

22 Chapter 3. Out-Of-Sample Extension

Landmark selection is an important problem for which several solutions have been pro-
posed [12, 13]. This work is focused only on the encoding and decoding extensions, so no
analysis on how to choose the subset of landmarks will be carried out. Suppose we want
to give the diffusion coordinates of a new point x. We could take two different approaches.

The first one is to learn an eigenvector extension for the OOS patterns, either from the
diffusion matrix P (L), or from the symmetric operator A(L) defined in Section 2.3. Once
we have the eigenvector extension, we can reconstruct the embedding for an OOS pattern
Ψ̂t(x), where t denotes, as usual, the number of steps. When extending the eigenvectors
of P (L) to a point x, we will write ψ̂i(x), i = 1, . . . , d, where d denotes the embedding
dimension. This is the approach followed in [14]. The extension of the Diffusion Map
embedding, following the scheme of Definition 8, would be(

Ψ̂t(x)
)
i

= λtiψ̂i(x) ,

where λi is the i-th eigenvalue of P (L). It is also possible to learn the eigenvector extension
at a point x for the symmetric matrix A(L). It may be useful to recall that A(L) and
P (L) have the same eigenvalues (See Section 2.3, Equation (2.3.3)). In this case, the
eigenvector extension is denoted by φ̂i(x), i = 1, . . . , d. The extension to OOS patterns of
the embedding would be (

Ψ̂t(x)
)
i

=
λti√
d(x)

φ̂i(x) ,

where d(x) is the degree of the OOS example x. The degree of an OOS pattern is computed
by means of the kernel k(x, y), from Equation (2.3.2), and the subset of landmarks as

d(x) =
∑
xk∈L

k(xk, x) . (3.1.1)

Another approach would be to learn directly a projection extension of the Diffusion
Map, Ψ̂(x) ∈ Rd, which is the approach used in [1]. The eigenvector extension for the
matrix P (L) can be recovered as

ψ̂i(x) =
(

Ψ̂t(x)Λ−t
)
i
,

where Λ is a diagonal matrix with the first d eigenvalues of P (L) or A(L) in the diagonal,
which are the same for both matrices. In the case of A(L), the eigenvector extension would
be

φ̂i(x) =
√
d(x)

(
Ψ̂t(x)Λ−t

)
i
,

where d(x) is calculated as in Equation (3.1.1). Identifying terms in the last two equations,
we can relate the extensions of the eigenvectors of P (L) and A(L) as

φ̂i =
√
d(x)ψ̂i . (3.1.2)

When measuring the quality of the embedding to OOS patterns, there are several paths
that can be followed. The first one is a straightforward approach, in which we calculate
the Frobenius norm of the difference of the original matrices A and P , computed from
the complete sample, and the one reconstructed using the landmark subset, so the best
approach would be the one minimizing this quantity. This option is developed in Section
3.1.1. The second option, explained in Section 3.1.2, would be to directly measure the error
between the original embedding and the predicted one. The problem with this method is
that, when changing the data to compute de Diffusion Map, the embedding can change up
to a rotation, which we have to compute.

3.1. Low-Rank Approximation 23

3.1.1 Reconstructing the Kernel Matrix

This section provides an explanation on how to measure the low-rank approximation quality
of the embedding by reconstructing the matrix A. Recall that the matrix A is built using a
measure of similarity between points, k(xi, xj), which is a symmetric and positive definite
kernel, as

Aij = a(xi, xj) =
k(xi, xj)√
d(xi)

√
d(xj)

,

where d(xi) and d(xj) are the degrees of the patterns, as shown in Equation (2.3.2). In Sec-
tion 2.3 it was shown that the matrix A has a discrete sequence of eigenvalues λ0, . . . , λN−1,
and eigenvectors, ψ0, . . . , ψN−1, so we can write A = UΛUT , where Λii = λi is a diagonal
matrix and U contains the eigenvectors of A in columns, which compose an orthonormal
basis. Given a landmark subset L, A can be decomposed as follows

A =

(
A(L) BT

B C

)
(3.1.3)

where Bpq = a(xp, xq) contains the kernel values computed for the landmark patterns and
the testing subset; and A(L) is the matrix calculated for the landmark subset. That is to
say, given a pair xi, xj ∈ L,

(A(L))ij = a(xi, xj) .

Since A(L) is also symmetric and positive definite, it has an eigenvalue decomposition.

Following the notation, we will write A(L) = U (L)Λ(L)
(
U (L)

)T
, obtaining

A =

(
U (L)Λ(L)

(
U (L)

)T
BT

B C

)
.

Let Û be the matrix with a possible OOS extension of the eigenvectors for the test set,
which is composed of OOS patterns. Then, we can write an approximation for A as

Â =

(
U (L)

Û

)
Λ(L)

((
U (L)

)T
ÛT
)

=

(
U (L)ΛL

(
U (L)

)T
U (L)Λ(L)ÛT

ÛΛ(L)
(
U (L)

)T
ÛΛ(L)ÛT

)
.

The error will be measured with the Frobenius norm of the difference as

ERR =
∥∥∥A− Â∥∥∥

F
, (3.1.4)

where
‖X‖F = trace(XTX),

for any matrix X. Depending on the method used to predict the embedding for an OOS
pattern, this error is simplified. This fact will be developed in further sections.

3.1.2 Mean Squared Error of the Encoding

This section provides an explanation on how to measure the low-rank approximation quality
of the embedding in terms of the mean squared error between the OOS extension and

24 Chapter 3. Out-Of-Sample Extension

the true embedding. That is the embedding computed via Diffusion Maps when using
the complete sample, i.e. the OOS examples and the subset of landmarks. The process
is explained in [11]. It is necessary to calculate a rotation matrix due to the possible
transformations that suffers the embedding when training with different data points. Given
the original embedding for the N examples, Ψ ∈ RN×d, and the approximation Ψ̂ ∈ RN×d
for the OOS examples, the procedure is as follows:

• Define Sij =
∑

k Ψi(xk)Ψ̂j(xk), with xk in the landmark subset and i, j = 1, . . . , d.

• Compute the singular value decomposition of S, S = UΛV T .

• Compute the rotation between Ψ and Ψ̂ as the matrix R = V UT .

• Define SEq =
∥∥∥Ψ(xq)−RΨ̂(xq)

∥∥∥2, where xq is in the test set.

• Finally, the MSE for the test set would be the average of the SEq, q = NL, . . . , N .

This work is focused on measuring the quality of the OOS extensions by means of the
reconstruction error of the kernel matrix. This other approach may be explored in future
work.

3.2 Nyström’s Encoding

This section is divided in two parts. The first part, Section 3.2.1, will explain the Nyström’s
approach to approximate a matrix built for an arbitrary symmetric and positive definite
kernel, k(x, y). In the second part, we will adapt this method to give an OOS extension
for Diffusion Maps.

3.2.1 Nyström’s Low-Rank Approximation

The Nyström encoding [4, 7] is useful when trying to approximate the kernel matrix,
K, from the one calculated from a landmark sample L = {x1, . . . , xNL

}, by means of a
symmetric and positive definite kernel

k(x, y) =
∑
i≥1

λiφi(x)φi(y) ,

where λi ≥ 0. The matrix K(L) associated to k(x, y) for the given landmark sample L is

K
(L)
ij = k(xi, xj), with xi, xj ∈ L.

Hence, K(L) is symmetric and positive definite and, by the spectral theorem, we can write

K(L)V (L) = V (L)Λ(L) ,

where Λ(L) is a diagonal matrix with diagonal λ
(L)
1 ≥ λ

(L)
2 ≥ . . . ≥ λ

(L)
N ≥ 0 and V (L) is

the matrix with the eigenvectors in columns. That is to say,

NL∑
k=1

k(xj , xk)V
(L)
ki = λ

(L)
i V

(L)
ji .

3.2. Nyström’s Encoding 25

or, equivalently,

V
(L)
ji =

1

λ
(L)
i

NL∑
k=1

k(xj , xk)V
(L)
ki . (3.2.1)

We can identify each row of V (L) with the image of each example in L. So, for any xj ∈ L,
we define the function

Vi(xj) = V
(L)
ji , 1 ≤ i ≤ d .

That is to say, Vi(xj) denotes the i-th component of the j-th row of V (L). Equation (3.2.1)
suggests to define the Nyström extension to a new x /∈ L through the kernel values k(x, xk),
xk ∈ L, as

V̂i(x) =
1

λ
(L)
i

NL∑
k=1

k(x, xk)V
(L)
ki .

3.2.2 Nyström’s Method and Diffusion Maps

As shown above, the Nyström’s encoding can be applied as long as the kernel is symmetric
and definite positive. Therefore, in the context of Diffusion Maps, it can be applied to the
kernel a(x, y) to extend the eigenvectors of A to OOS examples x as

φ̂i(x) ' 1

λi

NL∑
k=1

a(x, xk)φi(xk) ,

where φi(xk) denotes the k-th element of the i-th eigenvector of A. Note that we write
φi(·) to refer both to an eigenfuction of the operator associated to the kernel a(x, y) and to
an eigenvector of A. This is because the theory of Diffusion Maps is developed in the con-
tinuous case, but when working with finite datasets, the eigenfunctions are approximated
by eigenvectors.

In addition, it is easy to check that the Nyström’s method can be also directly applied
to P , obtaining the equation

ψ̂i(x) ' 1

λi

NL∑
k=1

p(x, xk)ψi(xk) .

To prove it, we have

ψ̂i(x) =
φ̂i(x)√
d(x)

=
1

λi
√
d(x)

NL∑
k=1

a(x, xk)φi(xk)

=
1

λi

NL∑
k=1

k(x, xk)

d(x)
√
d(xk)

φi(xk)

=
1

λi

NL∑
k=1

p(x, xk)
φi(xk)√
d(xk)

=
1

λi

NL∑
k=1

p(x, xk)ψi(xk) ,

26 Chapter 3. Out-Of-Sample Extension

where we have used the relation between the extensions of the eigenvectors of Equa-
tion (3.1.2), φ̂i =

√
d(x)ψ̂i.

Equivalently, the OOS extension for the matrix containing the eigenvectors of A can
be written as

Ûqi = φ̂i(xq) = (BU (L)(Λ(L))−1)qi ,

where Û denotes the approximation for U , q = NL, . . . , N are the indices of the OOS set
and B, U (L) and Λ(L) are the same as in Equation (3.1.3). The low-rank approximation Â
is then

Â =

(
U (L)

Û

)
Λ(L)

((
U (L)

)T
ÛT
)

=

(
A(L) U (L)Λ(L)(Λ(L))−1(U (L))TBT

BU (L)(Λ(L))−1Λ(L)
(
U (L)

)T
BU (L)(Λ(L))−1Λ(L)(Λ(L))−1(U (L))TBT

)

=

(
A(L) BT

B B(A(L))−1BT

)
.

Thus the reconstruction error when using the Nyström approximation [12] to extend the
eigenvector of A would be, substituting in Equation (3.1.4),

ERRnys =
∥∥∥C −B(A(L))−1BT

∥∥∥2
F
, (3.2.2)

where

Bkq = a(xk, xq) =
k(xk, xq)√
d(xk)

√
d(xq)

, with xk ∈ L, xq /∈ L , and

Cpr = a(xp, xr) =
k(xp, xr)√
d(xp)

√
d(xr)

, with xp, xr /∈ L .

3.3 Diffusion Nets

The aim of Diffusion Nets [1] is to employ deep learning from a manifold learning perspec-
tive. The authors address three problems: OOS embeddings of new points, a pre-image
solution that can include regularization, and outlier detection on test data. The proposal is
to train two neural networks, which will be referred as encoder and decoder, and combine
them in an autoencoder. Of these three we will study the encoder solution as an OOS
extension method.

3.3.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are networks composed of connected units, which are
called neurons. A particular example is the Multilayer Perceptron (MLP), a network with
fully connected layers. An example of a MLP can be seen in Figure 3.3.1. The output of
each layer is computed as

o(l+1) = h(W (l)o(l) + b(l)) ,

where h(·) is a non-linear function called activation, W (l) are the weights that connect the
neurons in the layer l with those in the layer l + 1, o(l) is the output of the previous layer

3.3. Diffusion Nets 27

Figure 3.3.1: Standard Multilayer Perceptron with two hidden layers.

and b(l) is a bias term. The set of weights is defined as Θ = {W (l), b(l)}. We denote by L the
number of layers in the network and by sl the number of neurons in the layer l, 1 ≤ l ≤ L.
The experiments carried out in [1] are done using the sigmoidal as the activation for the
hidden layers. This is

h(z) = σ(z) =
1

1 + e−z
.

Other choices may include h(z) = tanh(z) or the rectified linear units,

h(z) = ReLU(z) = max{0, z} .

Particularly, these kind of networks can be used for regression. Following the standard
for regression, the activation functions for the output layer are the identity. The training
set will be composed of N observations

D = {(x1, y1), . . . , (xN , yN)} ,

where xi ∈ Rd and yi ∈ Rm, i = 1, . . . , N . The MLP is, thus, a function

o : Rm → Rd

x 7→ o(x,Θ) ,

where m denotes the input dimension, d is the output dimension and Θ is the set of weights
of the neural network. When we refer to the complete output matrix, which contains the
image by the MLP of all the patterns in our dataset, we will write O. These parameters
are chosen to minimize a loss function. For this purpose, gradient descent based methods
are used. The gradient is computed with the back propagation algorithm. For regression
problems the standard regularized loss function is

JREG(Θ) =
1

2N

N∑
i=1

‖o(xi,Θ)− yi‖2 +
µ

2

L−1∑
l=1

∥∥∥W (l)
∥∥∥2 , (3.3.1)

28 Chapter 3. Out-Of-Sample Extension

Figure 3.3.2: Autoencoder. Left: encoder with one hidden layer. Right: decoder with one
hidden layer.

where µ is a parameter to control the importance of the regularization term. This term
aims to avoid overfitting.

3.3.2 OOS Example Extension: the Encoder

When using a neural network to predict the embedding for OOS examples, we will assume
the data lies on a smooth, compact, d-dimensional Riemannian manifold. The Diffusion
Map for the training set embeds the landmark subset L = {x1, . . . , xNL

} into the Euclidean
space Rd. The diffusion embedding is denoted by Ψ ∈ RN×d, which is a matrix whose rows
correspond to the embeddings computed for the training points.

Given new test points, X ′ = {xq}q=NL,...,N , the aim is to calculate an approximation as

close as possible to the true embedding. For each test point xq ∈ X ′, we will write Ψ̂(xq) to
denote the embedding approximation. It is also desirable that the approximation preserves
the original properties of the embedding. With this purpose, the encoder is designed as
an MLP, minimizing the L2 loss between the diffusion embedding Ψ and the output of
the net, which is denoted by Oe ∈ RN×d. Since the coordinates of the Diffusion Map are
eigenvectors of the random walk matrix on the data, P , the j-th column of Oe should fulfill

POej ' λjOej , 1 ≤ j ≤ d . (3.3.2)

where, as usual, λj denotes the j-th eigenvalue of P .

The architecture of the encoder is shown in the left part of Figure 3.3.2 and the algo-
rithm to train the encoder is shown in Algorithm 1. The set up is: define a MLP with L

3.3. Diffusion Nets 29

hidden layers whose output layer is a regression layer (i.e. the identity is its activation)
and minimize the loss function defined in (3.3.1). However, the authors of [1] proposed a
modified loss function,

Je(Θ) = JREG(Θ) + JEV (Θ) , (3.3.3)

where JREG is the standard regularized loss for regression of Equation (3.3.1) and

JEV (Θ) =
η

2NL

d∑
j=1

∥∥(P − λjINL×NL
)Oej

∥∥2 , (3.3.4)

where η is an optimization cost parameter and INL×NL
denotes the identity matrix of

dimension NL. They also provide a calculation for the gradient of this loss function with
respect to the output layer, which is

∇JEV =
η

NL

d∑
j=1

(Oej)
T (P T − λjINL×NL

)(P − λjINL×NL
) .

The aim of the penalization of Equation (3.3.4) is to force the output of the neural
network to be eigenvectors of the Diffusion Matrix P , so the embedding still conserves its
initial properties. The value of η has to be chosen carefully because, otherwise, the output
will be forced to be 0. In contrast to general constraints, this restriction needs output
values of the different test points together. For this reason, using this term can lead to
computational problems, as the new gradient cannot be decomposed to use online training
because the loss function needs the values predicted to all the examples in order to be
evaluated. In [1] it is shown that incorporating this term does not lead to extremely better
solutions, so in this work we will not consider (3.3.4).

Algorithm 1: Encoder

Input: Training set X, diffusion embedding Ψ for X, number of layers L, neurons
per layer sl, l = 1, . . . ,L.

Output: None
1: Initialize the weights Θ of the encoder and set X as input and Ψ as target.
2: Train the network minimizing (3.3.3) with back-propagation

Once we have a prediction for the test set, there are different ways to measure the
quality of the approximation. In the original work [1], they used the approach explained
in Section 3.1.2, measuring the MSE made by the encoder using LOOCV (Leave One Out
Cross Validation). However, this approach does not verify that the predicted embedding
fulfills the property of Equation (3.3.2) and we may lose the eigenvalue structure of the
embedding.

The authors not only proposed in [1] an extension of the embedding to OOS using
neural networks. They also provide a theoretical bound on the error rate for approximating
eigenfunctions of the Laplacian using a MLP with sigmoids activations. SupposeM⊂ Rn
a d-dimensional manifold.

Definition 9 (Locally bi-Lipschitz metric). We say ρ : M×M → R+ is a locally bi-
Lipschitz metric with respect to the Euclidean metric if ∀ε ∃δ such that ‖x− y‖ ≤ δ then,

(1− ε) ‖x− y‖ ≤ ρ(x, y) ≤ (1 + ε) ‖x− y‖ .

30 Chapter 3. Out-Of-Sample Extension

Theorem 6. Let M be a smooth compact Riemmanian submanifold of Rm equipped with
a locally bi-Lipschitz metric.

• Let Br be a ball of radius r such that M⊂ Br. That is to say, M is bounded.

• Let ψ be an eigenfunction of the Laplacian of M, with eigenvalue λ.

• Let f be an extension of ψ defined as

f(x) = exp
(
−λ
∥∥∥x− P 2

M(x)

∥∥∥)ψ (PM (x)) ,

where PM (x) = argminy∈M ‖x− y‖
2.

Then, there exists a linear combination of K sigmoid units, fk(x), such that

‖f(x)− fk(x)‖2 ≤
C√
K

.

Corollary 1. Under the same conditions of Theorem 6, let ψ1, . . . , ψd be the eigenfunctions
of the diffusion operator and f(x) = (f1(x), . . . , fd(x)) their respective extensions. Then,
there exists a neural network with one hidden layer, K×d sigmoid units and output o(x) ∈
Rd such that

‖f(x)− o(x)‖2 ≤
C√
K

.

Note that there may be better bounds. The result, whose full derivation can be seen
in [1], is theoretical and it depends on the architecture and the activations of the net. Hence,
the bound might not be reached, as the loss function is not convex and back propagation
does not guarantee convergence to the global minimum.

3.3.3 Decoder

The network that tries to obtain the initial point, x ∈ Rm, given its embedding o, is
called a decoder. The architecture is shown in the right part of Figure 3.3.2. It is also
a standard neural network for regression trained with the loss shown in Equation (3.3.1).
The eigenvector penalization does not make sense in this architecture.

The set up is explained in Algorithm 2. It is important to note that the recovered
points x of the decoder may not exist in the available dataset, so this network can be
used to increase the amount of data, a technique known as Data Augmentation. Another
application would be, related to clustering, to pullback the centroids calculated by k-means
in the embedding space (see Section 2.4).

Due to time restrictions, the decoder has not been implemented in this work.

3.3.4 Autoencoder

Having trained the encoder and the decoder, both networks can be stacked together to
obtain an autoencoder. The architecture is shown in Figure 3.3.2. One application is

3.3. Diffusion Nets 31

Algorithm 2: Decoder

Input: Training set X, diffusion embedding Ψ for X, number of layers L, neurons
per layer sl, l = 1, . . . ,L.

Output: None
1: Initialize the weights Θ of the encoder and set Ψ as input and X as target.
2: Train the network minimizing (3.3.1) with back-propagation

Algorithm 3: Autoencoder

Input: Trained encoder and decoder
Output: None
1: Stack decoder trained as in Algorithm 2 on top of encoder trained as in Algorithm 1.
2: Calculate the average reconstruction error ε.

anomaly detection. Denoting the output of the autoencoder by r(·), the training data is
used to calculate the average reconstruction error as

ε =
1

NL

NL∑
i=1

‖xi − r(xi)‖2 ,

where xi ∈ L. For a new given point x, we will say it is an outlier if

‖x− r(x)‖2 ≥ ρε ,

where ρ is a constant determined by the user.

Another application of the autoencoder is noise reduction. Noise in data is related to
eigenvalues with small value, which are not considered when doing the embedding. So
noisy points related to the same original point in the manifold should have an identical
embedding. This original point is recovered by the decoder, while suppressing noise.

32 Chapter 3. Out-Of-Sample Extension

Chapter 4

Experiments

After covering the concepts and ideas of Spectral Embedding and Diffusion Maps and
some of the possibilities to extend the embedding to out-of-sample (OOS) examples, we
will divide this chapter in the following sections:

1. In Section 4.1 we will review the available software and libraries to apply Diffusion
Maps. We also propose three datasets, which will be used to test the OOS extensions.

2. In Section 4.2, we will test our implementation of Diffusion Maps.

3. In Section 4.3 the Nyström’s encoding will be used to extend the embedding for OOS
examples.

4. Lastly, in Section 4.4 we will extend the embedding using Diffusion Nets, measuring
the error by reconstructing the Gramm Matrix.

4.1 Software and Datasets

The experiments carried out in this work have been done using standard libraries and
well proven packages that are available in the web. The code has been implemented using
Python as the programming language. Manifold Learning is a well known topic and the
following packages contain implementations of different algorithms:

• megaman: Manifold Learning for Millions of Points [15] is a scalable manifold learning
package implemented in Python. It has a front-end API designed to be familiar to
scikit-learn but harnesses the C++ Fast Library for Approximate Nearest Neighbors
(FLANN) and the Sparse Symmetric Positive Definite (SSPD) solver Locally Optimal
Block Precodition Gradient (LOBPCG) method to scale manifold learning algorithms
to large datasets.

• NumPy [16] is a Python package that contains an implementation of a powerful
N -dimensional array object. It adds support for large, multi-dimensional arrays and
matrices, along with a large collection of high-level mathematical functions to operate
on these arrays.

33

34 Chapter 4. Experiments

Name Data Type N m L

Helix Continuous 2000 3 -
Red Wine Continuous 1599 11 10
Vowel Continuous 990 13 11

Table 4.1.1: Description of the datasets used in the experiments. N is the number of
examples, m denotes the initial dimension and L is the number of different values that can
take the target.

• scikit-learn [17] contains simple and efficient tools for data mining and data analysis
and it is accessible to everybody, and reusable in various contexts. It contains efficient
ways to compute the eigendecomposition of kernel matrices.

Even though megaman is a powerful library, it has not been tested with the last version
of Python. Due to incompatibilities with the software installed in the computer in which
the experiments have been carried out, we have discarded its use.

scikit-learn is the natural election to implement an efficient library to compute Diffusion
Maps. It contains scalable ways to compute the kernel matrix of a given dataset. There are
also methods to calculate the eigendecomposition of symmetric kernel matrices accurately
and efficiently. For these reasons, we have implemented the class DiffusionMap, which
was not available in any of the used packages. The construction of the kernel matrix and
its eigenanalysis harnesses the power of scikit-learn and NumPy. Matrix operations are
always carried out using NumPy.

Regarding to the experiments related to the encoder and the Diffusion Nets, which
are MLP (Multilayer Percentron) regressors, we will use the implementation of the class
MLPRegressor of scikit-learn, which contains an efficient implementation that optimizes
the standard regularized squared-loss using LBFGS or stochastic gradient descent. It also
incorporates a variety of activation functions and it is compatible with GridSearchCV, class
that makes an exhaustive search over specified parameter values for an estimator.

Regarding the datasets, three problems have been chosen. The first one, the helix
dataset, is a synthetic experiment. The other two datasets are real life examples. From
them we will obtain three embeddings that we will try to extend to OOS examples in order
to provide an estimation of the quality of the extension given by Nyström or Diffusion
Nets. They are summarized in Table 4.1.1, which contains information about the data
type, the number of examples available, the dimension and the number of classes of each
dataset. Next, we provide descriptive information about them.

• Helix. This is a synthetic experiment proposed in [1]. It is a 1-dimensional mani-
fold that lives in the Euclidean space R3. It has been previously introduced in the
Section 2.3.1 of this work. The parametrization of the curve is:

xi = cos(θi) + ε (4.1.1)

yi = sen(2θi) + ε

zi = sen(3θi) + ε ,

where ε denotes Gaussian white noise with standard deviation σr = 0.5. The number
of generated samples is N = 2000.

4.2. Computing Diffusion Maps 35

• Red Wine. This dataset is related to red variants of the Portuguese Vinho Verde
wine. For more details, see [18]. It contains N = 1599 instances, each one of m = 11
features and an output attribute that denotes the quality of the wine.

• Vowel. This dataset contains speaker independent recognition of the 11 steady
state vowels of British English. It contains N = 990 instances, each one of m = 10
features. For more details, see [19].

4.2 Computing Diffusion Maps

This section contains some analysis on the embeddings computed via Diffusion Maps of
the datasets described in the previous section (see Table 4.1.1). Recall that the Similarity
Graph used in Diffusion Maps is always a fully connected graph, so there will be just
one connected component. The notion of similarity is given by a positive definite kernel,
k(x, y). In our experiments, we will use the Gaussian kernel

k(x, y) = exp

(
−1

2σ
‖x− y‖2

)
,

where σ is the scale of the kernel. In Section 2.3 we introduced the Anisotropic Diffusion and
it was proved that setting α = 1 would recover the geometry of the manifold, independently
of the density of the sample. Because of that, the experiments are carried out with that
configuration. After normalization through the degrees, we obtain the anisotropic kernel
k(α)(x, y), which will help us compute the diffusion matrix P .

Diffusion Maps is based in the eigenalysis of the Diffusion Matrix P , which is related
with the probability of transition in a random walk defined over the set of points. However,
P is not symmetric and, in order to apply theory of Section 3, we will always work with A,
the symmetric matrix, whose eigenvectors are related to those of P by means of the degree
matrix D. Given (λ, φ) an eigenvalue and an eigenvector of A, then (λ, ψ = D−1/2φ) are
an eigenvalue and a right eigenvector of P . Finally, given a point x we can compute its
embedding as

Ψt(x) =

λt1ψ1(x)
λt2ψ2(x)

...
λtdψd(x)

 ,

where t is the number of steps considered in the random walk over the data. For each
datasets we will analyze the spectrum decay of A, so the most appropriate values for σ, t
and d are chosen, given the criterium of Equation (2.3.1)

d = s(δ, t) = max{l ∈ N : |λl|t > δ|λ1|t} ,

where δ controls the precision of the approximation of the Diffusion Distance Dt in the
embedding space. We will set δ = 0.1 in every experiment.

4.2.1 Helix dataset

The Helix dataset was proposed in [1], so our first approach is to duplicate the experiment
carried out by the authors. Figure 4.2.1 contains the helix generated by the Equation (4.1.1)

36 Chapter 4. Experiments

Figure 4.2.1: Replication of Helix dataset embedding. Left: original curve. Right: the
Laplace–Beltrami approximation (α = 1) following the set up given in [1].

and the embedding computed via Diffusion Maps with σ = 0.1 for the scale parameter and
t = 1 for the number of steps, which is the authors’ proposal. The 2-dimensional embedding
is a smooth circle. The Helix will be always represented graphically with a color code that
is related to the value of the parameter θ at each point. As an idea, we will consider a good
embedding the one that keeps points with similar colors near (in an Euclidean sense).

Even though the curve is perfectly unrolled with the proposed configuration, the authors
do not provide an explanation for the selection of σ and t.

A proposal to select σ is to analyze the matrix of distances between each pair of points
in the dataset. The parameter for the scale of the kernel can be set by taking into account
certain percentile of the distances, which will be denoted by p. Note that the percentile
chosen might depend on the density of the sample and the dimension. It is well known that
the volume of a ball of radius r decreases roughly when increasing the dimension, which
is typically the case to apply dimensionality reduction. Higher dimensions may require to
consider wider neighborhoods. In particular, if we set r = 1, we can compute the volume
of the d-sphere as:

Vd =
πd/2

Γ(d/2 + 1)
,

where d denotes the dimension of the sphere and Γ(·) is the Gamma function. Note that
Γ can be thought as an extension of the factorial to noninteger arguments, so it dominates
the term πd/2 when d → ∞. That is to say, depending on the dimension we may need to
increase the scale of the kernel, so the same number of neighbors are taken into account
by the kernel function. Otherwise, the kernel matrix will be close to a diagonal matrix.

The spectral decay when varying the value of p with t = 1 fixed can be seen in Fig-
ure 4.2.2. Recall that the multiplicity of the eigenvalue 1 is related to the number of
connected components in the graph. As the width of the kernel increases, the weights
in the graph also increase, and the graph becomes denser (weights that where practically
zero before, now are larger). Because of that, setting small values for p or σ implies a flat
spectrum. In the limit, if σ → 0, the multiplicity of the eigenvalue 1 would be N , as every
point would be a connected component. We can also see the resulting embeddings fixing
t = 1 and varying the percentile of the distances in Figure 4.2.3. The Helix is perfectly
unrolled choosing p = 2.

4.2. Computing Diffusion Maps 37

Figure 4.2.2: Spectral decay of the Helix for different values of σ and t = 1. In this case,
σ is calculated as the p-th percentile of the distances.

Figure 4.2.3: Embeddings for the Helix dataset for fixed t = 1 and different values of σ.
In this case, σ is calculated as the p-th percentile of the distances.

In this experiment the embedding dimension has been set to two without any prior
analysis, in spite of the fact that the actual dimension of the underlying manifold is actually
one, as it can be parametrized with just one parameter (i.e. θ). It can be argued that,
since we are working with a closed manifold, we need two dimensions to embed the data.
Otherwise, the helix would be broken and points that are near in the original space would
be mapped far away. In Section 2.3 we gave a criterion to select the dimension of the
embedding depending on the spectral decay of the eigenvalues of the matrix P = D−1W ,
where D is the degree matrix and W denotes the adjacency matrix. Recall that, given a
precision δ, the embedding dimension would be

d = s(δ, t) = max{l ∈ N : |λl|t > δ|λ1|t} .

Figure 4.2.4 shows the spectral decay of the eigenvalues given the kernel parameter σ = 0.1
(left) and the percentile p = 2 (right) for t = 1 fixed. The spot line is set to 0.1|λ1|, where λ1
is the biggest eigenvalue different to 1. Obviously, if we follow the proposed criterium, the
embedding dimension would be set to a value bigger than 20, which does not make sense, as
the initial dataset is 3-dimensional. This is because the Helix dataset is synthetic, and, due
to the high density of points it is very difficult to obtain a fast decay of the spectrum. There
are other popular criteria in the literature. For example, we could set d as the number of

38 Chapter 4. Experiments

Figure 4.2.4: Spectral decay of the Helix dataset for t = 1. Left: the kernel scale is set
to σ = 0.1. Right: the kernel scale is computed as the 2-th percentile of the distances. In
both cases, the spot line indicates the value 0.1|λ1|.

Figure 4.2.5: Spectral decay of the Helix for different values of t. In this case, σ is
calculated as the 2-th percentile of the distances.

components in which there is not a significant gap in the spectrum [5]. However, we still
cannot set d = 2, because there is not such a gap.

We can see that aiming to obtain a spectral decay big enough to select only two di-
mensions would result in a catastrophic embedding. However, we have just analyzed the
spectral decay for different values of p but keeping t = 1 fixed. In Figure 4.2.5 we can see
the spectral decay for different values of t, but keeping the scale parameter computed as
the 2-th percentile of the distances. Note that the spectral decay is very slow for small
values of t, so we might need to increase the kernel scale or set a higher value for t if we are
aiming to obtain a 2-dimensional embedding. Recall that t is related with the probability
of transition, as we are measuring the probability of traveling from a given point to another
in t steps. As the helix dataset is very dense, it makes sense to consider a large number of
steps.

As the number of samples is N = 2000, taking this percentile means that, normally, we
consider that about 40 points are connected to a given one. That is, on average, for each
point x we can find about 40 points y for which the value k(x, y) is significantly different
to zero. Following this criterion, for our final embedding, we will set t = 40, as t is related
to the number of steps in the Markov chain of the random walk defined over the data. In
any case, taking 40 steps in the Markov chain does not mean that we are traveling to the
nearest 40 points. The relation between t and the percentile p is still not clear, and it may

4.2. Computing Diffusion Maps 39

Figure 4.2.6: Embedding and spectral decay for the Helix dataset. The kernel parameter
σ is chosen as the 2-th percentile of the distances, which is σ = 0.1756. The number of
steps is set as t = 40.

be analyzed in further work.

Summing up, the embedding we will try to replicate for the Helix dataset will be the one
given via Diffusion Maps, setting σ as the 2-th percentile of the distances and the number
of steps t = 40. The final embedding and the spectral decay for the chosen parameters
can be seen in Figure 4.2.6. Even though following the proposed criterion to select the
dimension of the embedding does not work in this example, the are other criteria that are
also popular in the literature. As we have said before, another possibility is to set d as the
number of components in which there is not a significant gap in the spectral [5]. It is easy
to see that, apart from the first eigenvalue (which is obviously 1), the next two are very
similar, but a significant decay occurs when considering the fourth eigenvalue.

In the following experiments, we will make a similar analysis. First, we will study
the spectrum and the embeddings for different values of σ in terms of the p-th percentile.
Second, once we have fixed the kernel scale, we will fit t. The dimension of the embedding
will be chosen following one of the two previously explained heuristics.

4.2.2 Red Wine dataset

The Wine dataset contains information about the quality of red and white Portuguese
wine. In this work we will focus on the red wine variant. The dataset is composed of
N = 1599 examples, each one with m = 11 features, and a label, an integer between 1
and 10 that indicates the wine quality. However, Table 4.2.1 shows that the problem is
unbalanced. Furthermore, some values of the target never appear. For this reason, we
have cleaned the dataset, and only the three main classes are kept for the analysis. They
comprise the 94.93% of the total.

In addition, this dataset contains outliers. Figure 4.2.7 shows the boxplots of the
dataset before and after removing extreme values. Outliers may affect the embedding, as
an outlier can be seen as a connected component in the graph, since weights assigned to
edges that connect any point with an outlier will be near zero; thus it is convenient to
remove them. The proposal to remove these points is the following: for each attribute,
compute the first and the third quantile (i.e. the percentiles 25 and 75 respectively). Let
Q1 and Q3 be the vectors containing the first and the third quantiles for every attribute.
Then, the interquartile range is defined as IRC = Q3 − Q1. We will say a given point x

40 Chapter 4. Experiments

Wine quality Number of instances Relative amount

1 0 0.0
2 0 0.0
3 10 0.00625391
4 43 0.03314572
5 681 0.42589118
6 638 0.39899937
7 199 0.12445278
8 18 0.01125704
9 0 0.0
10 0 0.0

Table 4.2.1: Distribution of the targets in the Red Wine dataset.

Figure 4.2.7: Boxplots of the Red Wine dataset. Left: original data. Right: data without
outliers.

is an outlier if it verifies either one of the following conditions:

x > Q3 + 3× IRC, or,

x < Q1− 3× IRC .

After some research, we also realize that the dataset contains repeated examples. As
the algorithms addressed in this work are related to kernel matrices and spectral decom-
positions we need to remove these entries, so non-invertible kernel matrices are avoided.
After applying this, we are in conditions to analyze the decay of the spectrum for the Red
Wine dataset, which, after the cleaning process, contains N = 1175 examples.

The spectral decay for different values of p, the percentile used to calculate the scale of
the kernel, and t = 1 is shown in Figure 4.2.8. For small values of p the spectrum decays
gradually, as the number of connected components increases. In the limit, setting p → 0,
the graph would contain N connected components. This phenomenon has already been
observed in the previous section when studying the spectral decay of the Helix dataset.

The 3-dimensional embeddings computed via Diffusion Maps for the Red Wine and
different values of p and t = 1 can be seen in Figure 4.2.9. For p = 15 the dataset is
embedded into a smooth 3D curve. In addition, the spectral decay presents a significant
gap when p = 15 between the third and the fourth eigenvalue (excluding the first one,
which is always 1). This may indicate that d = 3 features could be enough to represent
the data in the embedding dimension.

4.2. Computing Diffusion Maps 41

Figure 4.2.8: Spectral decay of the Red Wine dataset for different values of σ and t = 1.
In this case, σ is calculated as the p-th percentile of the distances.

Figure 4.2.9: Embedding computed for the Red Wine dataset for fixed t = 1. In this case,
σ is calculated as the p-th percentile of the distances.

After setting p = 15, we might study how the spectrum changes with t. Figure 4.2.10
shows the spectral decay for a fixed p = 15 and different values of t. The spot line is 0.1|λ1|,
where λ1 is the biggest eigenvalue of P different to 1. The plot indicates that setting t = 16
steps is enough to select 3 features in the embedding space. Recall that after the cleaning
process, the Red Wine dataset contains N = 1175 examples. If we were in dimension 1,
taking the 15-th percentile of the distances means that, normally, we are considering that
almost 175 points are similar to a given one, number far away from 16, which is the number
of steps we are taking into account. Actually, the Red Wine dataset has dimension 11, so,
due to the curse of dimensionality, the number of neighbors decreases when keeping the
scale of the kernel constant. For this reason, we are forced to select a smaller value for t,
which is the number of steps in the random walk defined over the data. This means that
we will consider that two points are nearby in the initial space (the manifold) if we can
travel between them in less than 16 steps.

Finally, Figure 4.2.11 shows the final embedding computed via Diffusion Maps for
the Red Wine dataset. Recall that even though the original problem was composed of
10 different classes, it has been reduced to 3 types of wine quality. The configuration
parameters are set to p = 15 and t = 16. In the following sections we will try to extend
this embedding with OOS extension methods.

42 Chapter 4. Experiments

Figure 4.2.10: Spectral decay of the Red Wine dataset for different values of t. In this
case, σ is calculated as the 15-th percentile of the distances.

Figure 4.2.11: Embedding for the Red Wine dataset. The parameters are set to p = 15
and t = 16. Up: a 3D plot of the embedding. Down: 2D projections for each pair of
variables of the embedding. The color code indicates the class.

As we can observe, aiming to solve the Red Wine classification problem in the embed-
ding space would not give good results. The classes are not separated but overlapped. In
any case, the shape of the embedding is a smooth three-dimensional curve and it is an
interesting example to extend via OOS methods.

4.2.3 Vowel dataset

The Vowel dataset contains information about 11 vowel sounds from the English language.
In this problem, the targets are equally distributed. There are 90 examples of each vowel,
adding a total of N = 990 examples. The dimension of the problem is m = 10. There is
no need to clean the dataset, as it does not present outliers nor repeated data.

The spectral decay of the eigenvalues of P for the Vowel dataset is very fast, even for
small values of σ, as it is shown in Figure 4.2.12. The image contains the spectral decay

4.3. Out-of-sample Extension with Nyström’s Method 43

Figure 4.2.12: Spectral decay of the Vowel dataset for different values of σ and t = 1. In
this case, σ is calculated as the p-th percentile of the distances.

Figure 4.2.13: Embeddings computed for the Vowel dataset for fixed t = 1. In this case,
σ is calculated as the p-th percentile of the distances.

of the eigenvalues of P for t = 1 and different values of p, which, as usual, indicates the
percentile of the distances that we are using to set the scale of the kernel. In addition,
different 3-dimensional embeddings for this dataset can be seen in Figure 4.2.13. Some
separation between classes is achieved setting p = 1. Because of that, we will choose this
percentile of the distances.

As the spectral decay is very fast in this dataset, the number of steps t we take in the
random walk will be small. Figure 4.2.14 contains the spectral decay for different values
of t and p = 1 fixed. Following the proposed criterion to select the embedding dimension,
it is enough to make t = 8 steps to select d = 3 as the embedding dimension. The final
embedding, which will be the one extended in the following sections, is the one shown in
Figure 4.2.15.

As a conclusion we can say that certain separation between classes is achieved. Due
to the difficulty of the problem, which is composed of L = 11 different classes, hoping a
perfect separation may be overambitious. In any case, different colors, which represent
different targets, are grouped. In addition, the shape of the embedding is peculiar and it
is an interesting example to extend via OOS methods.

44 Chapter 4. Experiments

Figure 4.2.14: Spectral decay of the Vowel dataset for different values of t. In this case, σ
is calculated as the 1-th percentile of the distances.

Figure 4.2.15: Embedding for the Vowel dataset. The parameters are set to p = 1 and
t = 8. Up: a 3D plot of the embedding. Down: projections for each pair of variables of
the embedding. The color code indicates the class.

4.3 Out-of-sample Extension with Nyström’s Method

In this Section various experiments will be carried out in order to evaluate the recon-
struction quality of the matrix A by extending the embedding to OOS examples using the
Nyström’s method, as explained in Section 3.2. The embeddings that we will try to extend
are the ones obtained in the previous section. The set up is the same for all datasets.
Firstly, we select at random the landmark subset, which sometimes will be denoted as
training set. Recall that the number of examples composing the entire dataset is denoted
by N , the number of patterns in the landmark subset is NL and we write N ′ to refer to
the number of patterns in the testing set. If we are dealing with a classification problem
the proportion of the targets is maintained. Secondly, the embedding for the remaining
patterns is computed via Nyström’s extension. Finally, the average reconstruction error of
A is measured. The whole set up is shown in Figure 4.3.1.

4.3. Out-of-sample Extension with Nyström’s Method 45

Figure 4.3.1: Graphical representation of the Nyström method to extend the embedding
to OOS examples.

Recall that the reconstruction error of the Nyström method was computed in Equa-
tion (3.2.2) as

ERRnys =
∥∥∥C −B(A(L))−1BT

∥∥∥
F
,

where the meaning of each term can be found in Section 3.2.

4.3.1 Helix OOS with Nyström’s Method

The Helix dataset is the first example used to compute the embedding to OOS examples
via the Nyström’s encoding. Recall that the final embedding was a smooth circle. Both,
the configuration and the embedding for the N = 2000 patterns via Diffusion Maps, can
be seen in Section 4.2.1. As an illustration, Figure 4.3.2 shows the embedding computed
for a landmark subset of NL = 1000 patterns selected at random in blue and the extended
embedding for the remaining testing patterns in red (right part of the figure). The result
is visually accurate, keeping the embedding of the out-of-sample examples in the circle
defined by the embedding of the subset of landmarks.

In addition, Figure 4.3.2 (left part of the figure) contains the average reconstruction
error of the matrix A as a function of the percentage of patterns picked from the training
subset that are considered in the landmark subset. For this experiment, we first split the
data into a training subset of size Ntrain = 1200 and a testing subset of size N ′ = 800.
Then, using a certain percentage ptrain of patterns picked at random from the training
set, which form the subset of landmarks, we compute the reconstruction error for the
patterns in the testing set, which are the OOS patterns. This percentage varies in ptrain =
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, so the number of patterns in the subset of landmarks

46 Chapter 4. Experiments

Figure 4.3.2: Left: OOS extension of the Helix dataset for a landmark subset of NL =
1000 patterns chosen at random. The reconstruction error is 0.00917. Right: Average
reconstruction error for the Helix dataset when using the Nyström method to calculate
OOS extensions for N ′ = 800 patterns in the testing set.

varies in NL = {120, 240, 360, 480, 600, 720, 840, 960, 1080}. For each subset of landmarks
we redo the computation of A(L), B and C and of the degrees of the points in the testing
subset, so only the current patterns are taken into account to measure the reconstruction
error. After 10 realizations of each experiment with different train and testing sets, the
mean of the error as a function of ptrain is computed (see Equation (3.2.2)). Note that
the size of the testing set is fixed in this experiment. This is because we measure the
reconstruction error as the Frobenius norm of a matrix of size N ′ × N ′; therefore, it is
sensitive to the testing set size and we cannot compare results from testing sets of different
size.

We can observe that, as the train percentage grows, the mean of the reconstruction error
after ten realizations of the experiment decreases. Note that the Nyström method would be
exact when computing the extension of patterns that are in the subset of landmarks; but
this phenomenon never occurs, as we are keeping the testing subset totally independent
from the train test. As a conclusion, we can say that the more examples available to train,
the more accurate the Nyström approximation is. This is known as consistency.

4.3.2 Red Wine OOS with Nyström’s Method

This Subsection contains the experiments carried out to extend the embedding of OOS
patterns in the Red Wine dataset via Nyström’s encoding. After the cleaning process, in
which we delete outliers and repeated patterns, this dataset contains N = 1175 examples
divided in three different classes. Recall that the embedding we are extending for this
example is shown in Figure 4.2.11. Figure 4.3.3 contains the Nyström extension when
using half of the patterns (NL = 587) as subset of landmarks and the other half to extend
the embedding, always maintaining the proportion of classes in each set.

We can see that the shape of the curve is perfectly imitated. The colors, which encode
the classes, are also mapped in similar regions. The reconstruction error of the matrix

4.3. Out-of-sample Extension with Nyström’s Method 47

Figure 4.3.3: OOS extension with Nyström’s method of the Red Wine dataset for a subset
of landmarks of NL = 587 patters chosen at random. Left: embedding for the subset of
landmarks. Right: OOS extension for the testing subset.

Figure 4.3.4: Average reconstruction error for the Red Wine dataset when using the
Nyström method to calculate OOS extensions for N ′ = 470 patterns in the testing set.

A for different percentages of the training set, imitating the approach followed for the
Helix dataset, is shown in Figure 4.3.4. The number of OOS patterns, i.e. the number of
patterns in the testing set has been set to N ′ = 470 and the remaining patterns are kept
in the training set. Then, setting the subset of landmarks as a percentage of patterns of
the training set, we reconstruct the matrix A. The experiment is repeated for ten different
training and testing subsets, and then the average of the reconstruction error as a function
of the landmark size is computed.

4.3.3 Vowel OOS with Nyström’s Method

This Subsection contains the experiments carried out to extend the embedding of OOS
patterns of the Vowel dataset via the Nyström’s encoding. Recall that the embedding
we are extending for this example is shown in Figure 4.2.15 and that this dataset did
not contain outliers or repeated patterns, so all the examples are taken into account for

48 Chapter 4. Experiments

Figure 4.3.5: OOS extension with Nyström’s method of the Vowel dataset for a landmark
subset ofNL = 445 patters chosen at random. Left: embedding for the subset of landmarks.
Right: OOS extension for the testing subset.

Figure 4.3.6: Average reconstruction error for the Vowel dataset when using the Nyström
method to calculate OOS extensions for N ′ = 396 patterns in the testing set.

the computations. In total there are N = 990 examples equally distributed in L = 11
classes. Figure 4.3.5 contains the Nyström extension when using half of the patterns as
subset of landmarks and the other half to extend the embedding (NL = N ′ = 445), always
maintaining the proportion of classes in each set.

We can see that the shape of the embedding is perfectly imitated. The colors, which
encode the classes, are also mapped in similar regions. The reconstruction error of the
matrix A for different percentages of the training set, following the same approach that
the one in the Helix and the Red Wine datasets, is shown in Figure 4.3.6.

The conclusion of this experiment is that, effectively, the reconstruction of the matrix
A improves when the number of patterns in the subset of landmarks increases. This
phenomenon is observed in the tests performed over the three datasets of this work. Note
that the reconstruction error will never be zero in these experiments, since the testing
subset is always completely disjoint from the training subset.

4.4. Out-Of-Sample Extension with Deep Networks 49

Figure 4.4.1: Grid search for µ. The negative mean squared error (MSE) for each dataset
is shown for the values µ = {10−6, 10−5, 10−4, 10−3, 10−2, 0.1, 1, 10, 100, 1000}. The mean
is computed averaging in ten folds.

4.4 Out-Of-Sample Extension with Deep Networks

This Section contains experimental results concerning the theory explained in the Sec-
tion 3.3 of this work. Recall we are going to extend the embedding to OOS patterns
training a Multilayer Perceptron (MLP) for regression which we name encoder. In this
sense, the input of the net is the original point and the target is its embedding, which has
been previously computed via Diffusion Maps. The standard loss for an MLP regressor is,
as seen in Equation (3.3.1),

JREG(Θ) =
1

2N

N∑
i=1

‖o(xi,Θ)− yi‖2 +
µ

2

L−1∑
l=1

∥∥∥W (l)
∥∥∥2 ,

where Θ is the set of weights, W (l) are the weights of the l-th layer and µ is a parameter to
control the importance of the regularization term. The MLPs of the experiments will have
L = 2 hidden layers, each one with 100 units or neurons using the ReLU(z) = max{0, z} as
activation function. In order to select the best value for µ, we perform a grid search cross
validation in each dataset. Setting the number of folds to ten, we will measure the average
mean squared error for µ = {10−6, 10−5, 10−4, 10−3, 10−2, 0.1, 1, 10, 100, 1000}. Particular
results can be seen in Figure 4.4.1, but the procedure is common. First, the dataset is
split into a training and a testing subset, which comprise the 40% and 60% of the total of
patterns respectively. Then, the training subset is divided in ten folds, which will be used
to give the mean square error of each configuration, which is the score used in Figure 4.4.1.
The folds and the splits are made preserving the percentage of samples for each class.

50 Chapter 4. Experiments

Figure 4.4.2: OOS extension via Diffusion Nets of the Helix dataset for a landmark subset
of NL = 1200 patters chosen at random. The regularization parameter is set to µ = 10−4.

4.4.1 Helix OOS with Diffusion Nets

The embedding extension to OOS examples for the Helix dataset via Diffusion Nets has
been previously studied in [1]. Replicating the experiments carried out by the authors is
complicated, since some details as the regularization parameter µ are not given. In our
experiments, the best encoder is obtained setting µ = 10−4, as it can be seen in Figure 4.4.1.
The extension of the embedding for the patterns in the testing subset can be seen in
Figure 4.4.2. The color code is as follows: blue indicates the embedding computed for the
landmark subset and red is the extension computed by the net. Recall that the proposal
in [1] was to add a new penalization term with the aim of preserving the eigenvector
structure of the Diffusion Map embedding. However, good results are also obtained when
training the net just with the standard loss function.

As when computing the extension via Nyström’s encoding, both the subset of landmarks
and the OOS samples are embedded in a smooth circle. Further work would contain a
comparison of both extensions by means of the reconstruction error of the anisotropic
matrix A, following a similar approach to the one given in the previous Section of this
work and trying to obtain a faithful low-rank approximation of A via Diffusion Nets.

4.4.2 Red Wine OOS with Diffusion Nets

After the cleaning process described in Section 4.2.2, the Red Wine dataset was composed
of N = 1175 examples. The grid search for the parameter µ is carried out with 705 patterns
that are split in ten folds. The best encoder is obtained setting µ = 0.1, as it can be seen
in Figure 4.4.1. The OOS extension, which can be observed in Figure 4.4.3 is computed

4.4. Out-Of-Sample Extension with Deep Networks 51

Figure 4.4.3: OOS extension via Diffusion Nets of the Red Wine dataset for a landmark
subset of NL = 705 patterns chosen at random. Left: embedding for the subset of land-
makrs. Right: OOS extension for the testing subset. The regularization parameter is set
to µ = 0.1.

Figure 4.4.4: OOS extension via Diffusion Nets of the Vowel dataset for a landmark subset
of NL = 594 patterns chosen at random. Left: embedding for the subset of landmarks.
Right: OOS extension for the testing subset. The regularization parameter is set to µ = 1.

for the remaining patterns. As usual, different colors indicate the class belonging. On the
left, we can see the embedding computed via Diffusion Maps for the landmark subset and,
on the right, the extension given by the net.

The embedding, as with Nyström’s encoding, is recovered faithfully. Patterns of the
same class are mapped to similar regions in the embedding space. In addition, the shape of
the curve is also recovered. Note that both, the extension with the Nyström’s method and
with the one with Diffusion Nets, are shown using the same training and testing subsets.

52 Chapter 4. Experiments

4.4.3 Vowel OOS with Diffusion Nets

For the Vowel dataset the same approach has been followed. First, the 60% of the total
of the patterns is used for the grid search. The best model is obtained by setting µ = 1,
as we can see in Figure 4.4.1. The extension of the embedding for the remaining patterns
can be seen in Figure 4.4.4. On the left we can see the embedding computed via Diffusion
Maps for the landmark subset and, on the right, the extension given by the encoder. The
color code is related to the class belonging and its distribution in the embedding space is
kept by the net.

In addition, comparing the extension achieved by the net and the one obtained by
the Nyström’s method we can see the results are very similar. The training and testing
set are the same in both sections, that is one containing the OOS extension with the
Nyström’s method (see Figure 4.3.5, Section 4.3.3) and the extension given by the net.
Both approaches are similar in the sense that the shape of the embedding is well visually
imitated, and the color distribution, which indicates the class belonging, is also similar in
both OOS methods.

Chapter 5

Discussion and Further Work

The theory of Manifold Learning is important to find the solution of many problems in
Machine Learning. In particular, due to its good performance, spectral algorithms, like
Laplacian Eigenmaps and Diffusion Maps, are very popular nowadays. Their application
is specially interesting in the fields of clustering and dimensionality reduction. However,
these methods are computationally expensive, as they require the diagonalization of a
square kernel matrix, whose cost is O(N3). In addition, in order to give the embedding of
a new point, we need to recompute the kernel matrix and redo its eigenanalysis. Different
extensions to avoid this situation have been proposed in the literature. In this work we
have considered the following two:

• To extend the eigenvectors of the diffusion matrix by means of the Nyström’s method,
which is a technique usually applied in low-rank approximation of kernel matrices.

• To learn the encoding given by Diffusion Maps with neural networks for regression,
that is known as Diffusion Nets.

In addition, Diffusion Maps have other challenges: there are two parameters that need to
be set. On the one hand, the kernel scale σ. Our proposal is to choose it by analyzing the
matrix of distances computed for the sample and selecting a percentile p, so σ is the p-th
percentile of the distances. On the other hand, as these spectral algorithms are related to
Markov chains and random walks, we also need to fit the parameter t, which is the number
of steps to be taken into account. The selection of these parameters is specially difficult,
as there is no clear and well accepted way of comparing embeddings.

It is not clear what the best approach to extend the embedding is. Because of that,
this work has been focused on the following main objectives:

1. Computing the embeddings for three different datasets, trying to find the best com-
bination of the parameters σ, p and t.

2. Measuring the low-rank approximation of the kernel matrix when integrating the
Nyström’s encoding into Diffusion Maps.

3. Training neural networks for regression to extend the embedding. In order to select

53

54 Chapter 5. Discussion and Further Work

the best network, we need to fit the regularization parameter. This analysis has not
been done before.

4. Comparing the extension of the embedding to out-of-sample examples when using
either Nyström’s method or Diffusion Nets.

From the results seen in Section 4 of this work, two important conclusions can be drawn.
We summarize them next.

Regarding the low-rank approximation quality, we have observed a common behavior:
the low-rank approximation of Diffusion Maps improves, as expected, when the number
of examples in the training set increases. In the case of the Helix dataset, which was a
synthetic example, the decay of the reconstruction error is very fast. For the Vowel dataset
we observe the same phenomenon, but in the case of the Red Wine the reconstruction error
does not decay once it has achieved the value 102.

Regarding the comparison of the extensions, we have seen that both, Nyström’s ap-
proach and Diffusion Nets, lead to good results. Both algorithms embed the training and
testing data maintaining the shape of the embedding. In addition, when the problem we
are dealing with is of classification, points of the same class are mapped in similar regions
of the space.

This line of research suggests many possible directions to improve in further work, some
of which we are currently undertaking:

• As we have suggested in this work, the percentile of distances p and the number of
steps t may be related. Further work would be to study this relation. In addition,
the criterion to set the embedding dimension is not clear, as it changes when varying
p and t, so this also needs to be studied.

• Due to time limitations, we have only carried out tests with the encoder trying
to extend the embedding to out-of-sample examples. However, the decoder is also
interesting and trying to replicate the experiments in [1] but giving more information
about the network configuration, carrying out a grid search for the regularization
parameter, would be part of the future work. Another idea is to test the decoder in
real datasets to do data augmentation.

• Even though we have compared the extension of the embeddings given by Diffusion
Nets and Nyström’s method, we have only done it in a visual way. However, once
the Diffusion Net has been trained to extend the embedding, we could obtain also
an eigenvector extension (as seen in Section 3.1), so a low-rank approximation of the
diffusion matrix is also obtained. Although we have not developed the theory to do
that, it is an interesting research line.

• In this work we have seen that using neural networks to extend the embedding leads to
good results. In [1] the authors also proposed the implementation of an autoencoder,
which would consist in setting the output of the encoder as input of the decoder.
This is used for outlier detection. However, we could also train an autoencoder using
a multilayer perceptron that tries to replicate the input, which would be the initial
dataset. There would be a hidden layer l that tries to imitate the embedding and the
loss function would be split in two terms. On the one hand, a term that penalizes

55

that the values of the layer l are different to the embedding computed by Diffusion
Maps. On the other hand, a second term whose aim is to penalize that the input
and the output differ.

56 Chapter 5. Discussion and Further Work

Bibliography

[1] Gal Mishne, Uri Shaham, Alexander Cloninger, and Israel Cohen. Diffusion nets.
Applied and Computational Harmonic Analysis, 2017.

[2] Richard Socher and Matthias Hein. Manifold Learning and Dimensionality Reduction
with Diffusion Maps. In Seminar report, Saarland University, 2008.

[3] Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral clustering: Analysis and
an algorithm. In Advances in neural information processing systems, pages 849–856,
2002.

[4] Yoshua Bengio, Jean-françois Paiement, Pascal Vincent, Olivier Delalleau, Nicolas L
Roux, and Marie Ouimet. Out-of-sample extensions for LLE, Isomap, MDS, eigen-
maps, and Spectral Clustering. In Advances in neural information processing systems,
pages 177–184, 2004.

[5] Ulrike von Luxburg. A Tutorial on Spectral Clustering. CoRR, abs/0711.0189, 2007.

[6] Ronald R Coifman and Stéphane Lafon. Diffusion maps. Applied and computational
harmonic analysis, 21(1):5–30, 2006.

[7] Christopher K. I. Williams and Matthias Seeger. Using the Nyström Method to Speed
Up Kernel Machines. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances
in Neural Information Processing Systems 13, pages 682–688. MIT Press, 2001.

[8] Nasser M Nasrabadi. Pattern recognition and machine learning. Journal of electronic
imaging, 16(4):049901, 2007.

[9] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE
Transactions on pattern analysis and machine intelligence, 22(8):888–905, 2000.

[10] John C Gower and Gavin JS Ross. Minimum spanning trees and single linkage cluster
analysis. Applied statistics, pages 54–64, 1969.

[11] Ronald R Coifman and Matthew J Hirn. Diffusion maps for changing data. Applied
and computational harmonic analysis, 36(1):79–107, 2014.

[12] Mohamed-Ali Belabbas and Patrick J Wolfe. Spectral methods in machine learning
and new strategies for very large datasets. Proceedings of the National Academy of
Sciences, 106(2):369–374, 2009.

[13] Alex Kulesza, Ben Taskar, et al. Determinantal point processes for machine learning.
Foundations and Trends R© in Machine Learning, 5(2–3):123–286, 2012.

57

58 Bibliography

[14] Aren Jansen, Gregory Sell, and Vince Lyzinski. Scalable out-of-sample extension of
graph embeddings using deep neural networks. Pattern Recognition Letters, 94:1–6,
2017.

[15] James McQueen, Marina Meilă, Jacob VanderPlas, and Zhongyue Zhang. Megaman:
Scalable manifold learning in Python. The Journal of Machine Learning Research,
17(1):5176–5180, 2016.

[16] Stéfan van der Walt, S Chris Colbert, and Gael Varoquaux. The NumPy array: a
structure for efficient numerical computation. Computing in Science & Engineering,
13(2):22–30, 2011.

[17] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[18] Paulo Cortez, António Cerdeira, Fernando Almeida, Telmo Matos, and José Reis.
Modeling wine preferences by data mining from physicochemical properties. Decision
Support Systems, 47(4):547–553, 2009.

[19] Mahesan Niranjan and Frank Fallside. Neural networks and radial basis functions in
classifying static speech patterns. Computer Speech & Language, 4(3):275–289, 1990.

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation
	Objectives
	Structure

	Manifold Learning and Diffusion Maps
	Principal Component Analysis: PCA
	Similarity Graphs and Laplacians
	Graph Laplacians and their Basic Properties
	Spectral Dimensionality Reduction and Laplacian Eigenmaps

	Diffusion Maps
	Anisotropic Diffusion

	Clustering
	Classic Algorithm: k-means
	Spectral Clustering

	Out-Of-Sample Extension
	Low-Rank Approximation
	Reconstructing the Kernel Matrix
	Mean Squared Error of the Encoding

	Nyström's Encoding
	Nyström's Low-Rank Approximation
	Nyström's Method and Diffusion Maps

	Diffusion Nets
	Artificial Neural Networks
	OOS Example Extension: the Encoder
	Decoder
	Autoencoder

	Experiments
	Software and Datasets
	Computing Diffusion Maps
	Helix dataset
	Red Wine dataset
	Vowel dataset

	Out-of-sample Extension with Nyström's Method
	Helix OOS with Nyström's Method
	Red Wine OOS with Nyström's Method
	Vowel OOS with Nyström's Method

	Out-Of-Sample Extension with Deep Networks
	Helix OOS with Diffusion Nets
	Red Wine OOS with Diffusion Nets
	Vowel OOS with Diffusion Nets

	Discussion and Further Work
	Bibliography

