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Abstract

The thesis project is mainly focused on the study of the magnetic and structural

properties in superconductors and thin flakes of layered materials. Particularly, a

BCS prototype superconductor (β-Bi2Pd), an iron based superconductor (Ca(Fe0.965

Co0.035)2As2), a cuprate superconductor (BiSr2CaCu2O8 or Bi-2212) and graphene.

To access the local magnetic properties of this materials we have used a low tem-

perature magnetic force microscope (LT-MFM) capable to work between 2 and 300

K.

MFM is a widely used technique in the field of superconductivity, specially for

vortex characterization and manipulation. It allows to map and manipulate not only

the vortex lattice but also individual vortices, being an ideal tool to study their

distribution and local pinning forces.

The vortex distribution in a superconductor at very low fields is still an open

debate in the scientific community. For example, bitter decoration experiments per-

formed in the single gap, low-κ superconductor, Nb, shows areas where flux expulsion

coexists with regions showing a vortex lattice. Moreover, Scanning Hall Microscopy

experiments have shown vortex chains and clusters in ZrB12 (0.8>κ<1.12) at very

low fields [1]. Both experiments were explained with the existence of an attractive

term in the vortex-vortex interaction in superconductors with κ < 1.5 . This regime

is known as the Intermediate Mixed State. On the other hand, the existence of vortex

free areas between cluster and stripes of vortices at very low fields was also reported in

the multigap superconductor MgB2 [2–4]. In this case, the authors propose that this

behavior corresponds to a new state that they called Type 1.5 superconductivity, due

to the existence of two different values of the Ginzburg-Landau parameter, κ, for the
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two gaps of the compound. In addition, a recent theoretical work have also proposed

that pinning may have an important role in the formation of the vortex patterns in

MgB2 [5]. Comparatively, β−Bi2Pd has a small, yet sizable, value of κ ≈ 6. It has

very weak pinning and is a single gap isotropic superconductor [6–8]. This allow us to

characterize the vortex distribution at very low field in a material with only one gap

and a moderate value of κ for first time. We have found vortex clusters and stripes

as in the case of low-κ or multigap superconductors. But, in this case, we have found

that they are associated with local changes in the value of the penetration depth of

the superconductor.

In the fourth chapter of the thesis, we have focus in the local manipulation of

superconducting vortices in the high-temperature cuprate superconductor Bi-2212.

It has a two-dimensional layered (perovskite) structure and with superconductivity

taking place in the copper oxide planes. When a magnetic field is applied tilted with

respect to the c crystallographic axis, it decomposes in two perpendicular components,

one parallel (Josephson vortices) and another perpendicular (Pancake vortices) to the

CuO planes. In our work, we have achieved local manipulation of single PVs and we

have experimentally determine the pinning force of isolated PVs and the attracting

force between PVs and JVs.

Ca(Fe0.965Co0.035)2As2 is an iron based compound with extremely high sensitivity

to pressure and strain. Due to the presence of Ca ions, small pressures result in

dramatic changes in the ground state of the system. Moreover, the recent proposal of

phase separation between superconducting and antiferromagnetic domains under the

action of biaxial strain in this compound [9], opens a good opportunity to the local

characterization of a system where magnetic and superconducting domains coexist,

for first time. We have characterized the formation of alternating superconducting

antiferromagnetic domains at low temperatures and related them with the separation

of the material in two structural phases at higher temperatures.

Finally, in the last chapter of the thesis, we have focused in the exfoliation and

deposition of layered superconductors and in the study of graphene/superconductor

interphases. 2D superconductivity in thin films and crystals flakes has attracted the

attention of many researchers in the last decade [10–18]. For example, superconduct-
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ing crystals like BSCCO or TaS2 have been successfully exfoliated down to a single

layer and deposited in a substrate in the past [19–21]. In addition, a lot of work has

been done trying to induce superconductivity in graphene in contact with a supercon-

ductor due to the proximity effect [10, 11, 22–26]. In our case, we have measured the

magnetic profile of a Bi-2212 flake bellow the superconducting transition, developed

an experimental procedure to localize graphene flakes deposited on top of a β-Bi2Pd

single crystal and demonstrated the possibility of deposit thin flakes of the β-Bi2Pd

superconductor on a substrate. We have also measured the vortex lattice at low

temperatures of a β-Bi2Pd single crystal with a graphene sheet deposited on top.



Resumen

Este proyecto de tesis está principalmente enfocado en el estudio de las propiedades

magnéticas y estructurales en superconductores y capas delgadas de materiales lam-

inares.

la microscopía de fuerzas magnéticas (MFM) es una técnica ampliamente uti-

lizada en el campo de la superconductividad, especialmente para la caracterización y

manipulación de vórtices. Esta técnica permite medir y manipular no solo la red de

vórtices, si no, ademas, vórtices aislados. Ello la convierte en una herramienta ideal

para el estudio de la distribución de los vortices y su fuerzas de pinning locales.

La distribución de los vórtices en un superconductor a campos muy bajos es aún un

debate abierto en la comunidad científica. Por ejemplo, experimentos de decoración

magnética llevados a cabo en el supercondcutor de un solo gap y pequeño κ, Nb,

muestran áreas donde la expulsión de flujo coexiste con regiones donde está presente

la red de vórtices. Además, experimentos de microscopía Hall, han mostrado cadenas

y acumulaciones de vórtices en ZrB12 (0.8<κ>1.12) a campos muy bajos. Ambos

experimentos fueron explicados mediante la existencia de un término atractivo en la

interacción entre vórtices en superconductores con κ<1.5. Este regimen es conocido

como el Estado Intemedio Mixto. Por otro lado, la existencia de áreas libres de

vórtices entre acumulaciones y cadenas de ellos a campos muy bajos ha sido tambien

demostrada en el superconductor de varios gaps MgB2. En este caso, los autores

propusieron que esto se debe a un nuevo estado conocido como Superconductividad

tipo 1.5, debido a la existencia de dos valores diferentes del parámetro de Ginzburg-

Landau, κ, para los dos gaps del compuesto. Además, un trabajo teórico reciente, ha

propuesto que el pinning puede jugar un papel importante en la distribución de los
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vórtices en MgB2. Comparativamente, el β-Bi2Pd tiene un gap pequeño con un valor

de κ≈6. Tiene un pinning muy debil y es un superconductor con un solo gap isótropo.

Esto nos ha permitido caracterizar la distribución de vórtices a campos muy bajos

en un material con un solo gap y un valor moderado de κ por primera vez. Hemos

encontrado acumulación y cadenas de vórtices como en el caso de los superconductores

de bajo κ . Pero, en este caso, hemos encontrado que están asociados con cambios

locales en el valor de la longitud de penetración en el superconductor.

En el cuarto capítulo de la tesis, nos hemos enfocado en la manipulación local de

los vórtices superconductores en el superconductor de alta temperature Bi-2212. Este

material tiene una estructura consistente en láminas bidimensionales (tipo peroskita)

con la superconductividad originándose en los planos de óxido de cobre. Cuando un

campo magnético es aplicado inclinado con respecto al eje cristalográfico c, este se

descompone en dos componentes, una paralela (vórtices de Josephson) y otra perpen-

ticular (vortices pancake) a los planos de CuO. En nuestro trabajo, hemos conseguido

manipular de manera local vortices pancake y hemos determinado de manera exper-

imental la fuerza de pinning de vortices pancake aislados y la fuerza atractiva entre

vórtices pancake y Josephson.

El Ca(Fe0.965 Co0.035)2As2 es un superconductor basado en hierro con una gran

sensibilidad a la presión y la tensión. Debido a la presencia de los átomos de Ca,

pequeñas presiones resultan en cambios dramáticos en el estado fundamental de este

sistema. Además, con la reciente propuesta de una separación de fases sueprconduc-

toras y antiferromagnética bajo el efecto de una tensión biaxial en este compuesto,

ha surgido una gran oportunidad para la caracterización local de un sistema donde

magnetismo y superconductiidad conviven por primera vez. Nosotros hemos caracter-

izado la formación de dominios alternativos superconductores y antiferromagnéticos

a bajas temperaturas y los hemos relacionado con la separación del material en dos

fases estructurales distintas a temperaturas mayores.

Finalmente, en el último capítulo de la tesis, nos hemos centrado en la exfo-

liación y transferencia de superconductores laminares y en el estudio de interfases

grafeno/superconductor. La superconductividad 2D en láminas delgadas y en copos

de critales ha atraido la atención de muchos investigadores en la última década. Por
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ejemplo, cristales superconductores como el BSCCO o el TaS2 han sido esfoliados con

exito hasta una monocapa y depositados en un substrato en el pasado. Por otro lado,

mucho trabajo se ah invertido tratando de inducir superconductividad en grafeno en

contacto con un superconductor mediante el efecto proximidad. En nuestro caso,

hemos medido el perfil magnético de un flake de Bi-2212 por debajo de la transición

superconductora, desarrollado un procedimiento experimental para localizar flakes de

grafeno depositados encima de β-Bi2Pd y demostrado la posibilidad de depositar pe-

queños flakes del superconductor β-Bi2Pd en un substrato. Además, hemos medido

la red de vórtices a bajas temperaturas de un monocristal de β-Bi2Pd con una lámina

de grafeno depositada encima.
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CHAPTER 1

Introduction

1.1 Historical remarks

Figure 1.1: K. Onnes original

measurement of the superconducting

transition in Hg.

Superconductivity was first discovered by H. K.

Onnes in 1911 [27] after he was able to lique-

fied He in his laboratory in 1908 opening a new

branch in physics, the low temperature physics.

Onnes expected a gradual approach of the re-

sistivity to zero with decreasing the tempera-

ture, however he found that the resistance of Hg

dropped to zero below 4.15 K. Onnes realized

that he had found a new state of the matter char-

acterized by zero resistivity, the superconductiv-

ity. One year later he also discovered that apply-

ing a strong magnetic field to superconducting

Hg, the normal state was recovered. In the fol-

lowing years new superconducting materials were discovered: Pb, Nb etc. In 1933

Meissner and Ochsenfeld found that if a superconductor material is cooled down be-

low its transition temperature, it expels any external magnetic field below a certain

value called the critical magnetic field, HC , [28]. This effect is called nowadays the

Meissner state. Later, superconductors where the magnetic field can penetrate the

1
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material without loosing the zero resistivity were discovered and superconducting

materials were split in two categories, type I and type II superconductors.

Type I superconductors present zero resistivity and perfect diamagnetism below

TC and HC . Type II superconductors present zero resistivity below TC and the the

upper magnetic critical field, HC2, but only perfect diamagnetism below the lower

magnetic critical field, HC1. Between HC1 and HC2, the magnetic field penetrates the

material in form of magnetic vortices that carry one single magnetic quantum flux,

φ0 = 2.067 · 10−15 Wb. This regime is called the mixed state. For more details see

references [29, 30].

1.2 Superconducting theories

These discoveries prompted the London brothers to propose the first phenomenolog-

ical theory to explain the new phenomena in 1935 [31]. In 1950 a new supercon-

ducting theory was developed, the Ginzburg-Landau theory [32]. It describes the

superconductivity in terms of an order parameter. Today the most advanced the-

ory on superconductivity is the BCS theory [33], named after John Bardeen, Leon

Cooper, and John Robert Schrieffer. The BCS theory is the first microscopic theory

on superconductivity.

1.2.1 Ginzburg-Landau Theory

The thermodynamic superconducting properties can be described in terms of the

Gibbs free energy GS . Ginzburg and Landau assumed that close to the transition

temperature the Gibbs free energy density can be expanded as function of a complex

order parameter, ψ = |ψ|eiθ [34] as:

GS =GN +a |ψ|2 + b

2 |ψ|
4 + 1

2m∗
∣∣∣(ih̄∇−e∗ ~A)ψ

∣∣∣ (1.1)

m∗ = 2me and e∗ = 2e are the superelectron mass and charge (me and e, are
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the electron mass and charge), ~A the vector potential and a and b parameters only

dependent of the temperature with values a≈ a0[T/TC−1] and b≈ b0 near TC . The

square of the order parameter is the super electron density, ns. The order parameter

ψ is zero above TC and increases as the temperature decreases below TC . Taking

the derivative of equation 1.1 with respect to the order parameter they found what

is now called the first G-L equation:

1
2m∗ (ih̄2∇2ψ−2ih̄e∗ ~A ·∇ψ−e∗2 ~A2ψ)−aψ− b |ψ|2ψ = 0 (1.2)

The free energy is also a minimum with respect to to the vector potential ~A.

Taking the derivative of GS with respect to ~A, we obtain the second G-L equation:

∇× (∇× ~A) + ih̄e∗

2m∗ (ψ∗∇ψ−ψ∇ψ∗) + e∗2

m∗
~A |ψ|2 = 0 (1.3)

The G-L equations can be used to calculate the two principal length scales in a

superconductor as we will introduce in the following.

1.2.1.1 Coherence length

Lets now study the following case: a semiinfinite superconductor from x= 0 to x=∞

and a normal metal from x=−∞ to x=0. Setting ~A= 0 in the first G-L equation we

obtain:

− h̄2

2m∗∇
2ψ+aψ+ b |ψ|2ψ = 0 (1.4)

Since the phase, θ of the order parameter is arbitrary, we can take ψ real (θ = 0)

and therefore, ψ=ψ(x). Now, we can simplify the equation 1.4 to the one dimensional

case:

− h̄2

2m∗
dψ2

dx2 +aψ+ b |ψ|2ψ = 0 (1.5)
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which has the solution:

ψ = ψ∞tanh
x√
2ξ

(1.6)

where ξ is a characteristic length of ψ. ξ is called the coherence length and is one

of the two main parameters of the G-L theory. The order parameter ψ is zero inside

the normal material and increases until ψ∞ over an intermediate width of ξ in the

superconducting material.

1.2.1.2 Penetration depth

Now, we will consider the same semiinfinite geometry than in the previous section

but with an homogeneous magnetic field in the Z direction, which has a potential

vector ~A=Ay(x).

Substituting in the second G-L equation, we find:

d2Ay(x)
dx2 = µ0e

∗2 |ψ|2

m∗
Ay(x) (1.7)

and the solution for the vector potential inside the superconductor is:

Ay(x) =A0e
(−x/λ)x (1.8)

And therefore:

Bz(x) =B0e
(−x/λ) (1.9)

where A0 and B0 are constants and λ is the penetration depth, the second char-

acteristic length of the G-L theory. It represents the distance in which an external

magnetic field decreases inside the superconductor a factor e−1.
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1.2.1.3 Type I and type II superconductors

Using the two characteristic lengths of the G-L theory, we can define the dimensionless

quantity:

κ= λ

ξ
(1.10)

which is call theG-L parameter and is the most important parameter of the theory.

It helps to separate the superconductor material in two classes, type I and type II

superconductors. Values of κ < 1/
√

2 and κ > 1/
√

2, separates the G-L equations in

two different branches of solutions. For κ < 1/
√

2 the energy difference between a

normal and a superconducting domain is positive and for κ > 1/
√

2 is negative which

means that for the superconductor becomes favorable the formation of many small

superconducting and normal domains [29].

Figure 1.2: Phase diagram for type I (left) and type II (right) superconductors.

In orange, the region presenting Meissner state. In white, the normal region. In

yellow, the mixed state region.

Solving the G-L equations for κ < 1/
√

2 the B-T phase diagram for type I super-

conductors is found. In this phase diagram, there are only two regions, normal and

Meissner state, separated by the critical field, with a dependence of the temperature

following:

BC(T ) =BC(0)[1−
(
T

TC

)2
] (1.11)
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For κ> 1/
√

2 a B-T phase diagram with three regions is found. The phase diagram

is separated in normal state, Meissner state and mixed state. The two first regions

are analogous to the regions in type I superconductors and the mixed state is a region

where the magnetic flux is allowed to enter into the superconductor material in form

of superconducting vortices that carry a flux φ0. Vortices represents singularities

where the order parameter is suppressed and the material is in the normal state,

allowing the formation of normal-superconducting interfaces. The three regions are

separated by two critical fields, following the equations:

BC1(T ) =BC1(0)[1−
(
T

TC

)2
] (1.12)

BC2(T ) =BC2(0)[1−
(
T

TC

)2
] (1.13)

Where:

BC1(0) = φ0
4πλ2 ln(κ) (1.14)

BC2(0) = φ0
2πξ2 (1.15)

Both phase diagrams are schematized in the figure 1.2.

1.2.1.4 Vortex lattice

As it has been mentioned in the previous section, in type II superconductors, above

a certain value, the magnetic field is not fully expelled from the superconducting

material. It penetrates in form of magnetic vortices where the superconductivity is

broken. As we have introduced using the G-L theory, in such an interface (normal-

superconductor) the coherence length and the penetration length determines how the

superconducting electron density of states and the magnetic field behaves.
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Figure 1.3: In the left panel, an scheme of the superconducting density of states

(blue) and the magnetic field (red) inside a superconducting vortex. The center of

the vortex is located at the center of coordinates in the scheme. In the right panel,

an schematic representation of the Abrikosov vortex lattice of SC vortices with a

lattice parameter a4. SC vortices are represented as yellow circles. The lattice is

schematized with dashed black lines.

Thus, we can separate vortices in two spatial scales, the first is the supercon-

ducting density of states scale and is determined by ξ. The vortex consist in a core

region of 2ξ width where nS is zero at the center and increases until it reaches a

finite value outside this region. From the magnetic point of view, the highest field

is in the core. The core is surrounded by a region of larger radius λ within which

magnetic flux and screening currents flowing around the core are present together.

The supercurrent density Js of these shielding currents decays with distance from the

core in an approximately exponential manner [30]. Both spatial dependence of the

vortex structures are shown in figure 1.3.

Vortices have a repulsion interaction between them, for this reason they arrange

in a hexagonal lattice (it is the configuration that minimizes such a system as it

was proved by Kleiner, Roth y Autler [35]) called the Abrikosov lattice after Alek-

sei Abrikosov who first propose the existence of superconducting vortices in type II

superconductors [36]. The parameter of the vortex lattice is:

a4 = 1.075
√
φ0/B (1.16)

which is only dependent in the value of the magnetic field. An schematic repre-
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sentation of the vortex lattice is shown in figure 1.3.

1.2.2 BCS theory

In 1956, L.N Cooper demonstrated that the normal ground state of an electron gas, is

unstable with respect the formation of bound electron pairs [37]. Cooper, developed

his theory following an original idea of Frohlich [38]. Frohlich argument that an

electron moving across a crystal lattice, due to its negative charge will attract the

positive ions in the lattice. In the surroundings of the electron, there will be an

accumulation of positive charge, changing locally the density of charge in the lattice

and exciting a phonon. If a second electron is near this perturbation, it will be

attracted by it absorbing a phonon (figure 1.4). Cooper considered a pair of electrons

near the Fermi level whose attraction due to the phonon interaction was greater that

the Coulomb repulsion, creating a bound state between both electrons. The attraction

is maximum when the momentum of the electrons is equal and has opposite sign

( ~k1 =− ~k2), the resulting cooper pair has momentum and spin equals to zero.

Figure 1.4: Scheme of the phonon mediated pairing of Cooper pairs. The atomic

cores are represented with blue circles and the electrons with red circles. The di-

rection of the movement of the electrons is schematized by a black arrow. The

movement of the atomic lattice is represented by transparent circles. In the upper

panel, an electron coming from the left, slightly distorts the atomic lattice. In the

lower panel, another electron coming from the right is attracted by the accumulation

of positive charge at the distortion.

One year later, J. Bardeen, L. N. Cooper y J. R. Schrieffer presented the basis of

their new microscopic theory of superconductivity [33]. A theory that nowadays is



CHAPTER 1. Introduction 9

known as the BCS theory. They extrapolated Cooper’s result to a system with many

electrons. As Cooper pairs have zero spin, they behave as bosons and therefore they

can condensate in a Bose-Einstein condensate. This state is described in the BCS

theory with a macroscopic wave function that keeps the phase coherence a distance

equal to the coherence length ξ.

1.2.2.1 Superconducting gap

Forming Cooper pairs, decreases the energy of the system a quantity equal to the

energy of the bonding between electrons in the pair, 2Λ. In the ground state, copper

pairs are condensed in a state with an energy Λ below the Fermi level and the first

excited state has an energy Λ above the Fermi level. Λ is know as the superconducting

gap.

1.3 Intermediate and Intermediate Mixed States

As it was presented before, below HC (Type I SC) or HC1 (Type II SC) no magnetic

field penetration is expected. Below this critical fields, both types of superconductors

should behave as perfect diamagnets. But, some works have reported flux penetration

below HC in type I SCs [39, 40] and below HC1 in type II SCs [2–4, 40–43]. This

unexpected behaviour can be explained as a intermediate state (IS) in type I SCs and

a intermediate mixed state (IMS) in type II SCs.

1.3.1 Intermediate State

Lets consider the case of a type I superconducting sphere (demagnetization factor,

N=1/3) in the presence of an external magnetic field in the Z direction. Below TC ,

the magnetic field at the surface of the sphere is:

Bsurface = 3
2BasinΘ (1.17)
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Figure 1.5: B-T phase diagram of a type I superconducting sphere. The curve

B=2/3BC(T ) separates the Meissner from the IS. The region where the IS takes

places is dashed.

Figure 1.6: Typical IS patterns in an In sample with thickness d= 10µ m for in-

creasing values of the applied magnetic field. Images a and b, correspond to h=0.105

and h=0.345, respectively (h=H/HC) at T = 1.85 K. SC domains are represented

in black and have circular or lamellar shapes. The edge of the sample is along the

right edge of the image. Adapted from [44]

where Ba is the external magnetic field and Θ the polar angle in spherical coor-

dinates. If the external magnetic field is lower than 2/3BC , the surface field will be

lower than BC in all the surface, and the sphere will remain in the superconduct-

ing state. But, if the external magnetic field is greater than 2/3BC , from equation

1.17, there will be a range of angles where the surface field will exceed BC and the

sphere can not remain in the perfect superconducting state. In the range of external

magnetic fields:
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2
3BC <Ba <BC (1.18)

The surface must decompose into superconducting and normal regions that keep

the internal field below the critical value HC . This state is known as the intermediate

state (IS). The trigger of this state is the inhomogeneous distribution of the magnetic

field on the surface due to the demagnetization factor of the samples. An scheme

of the phase diagram for a superconducting sphere is shown in figure 1.5, where the

dashed area represent the region where the IS takes place. The IS was observed in

various type I superconductors in form of tongues or alternative domains of Meissner

and normal states [39, 40, 44] (figure 1.6).

1.3.2 Intermediate Mixed State

Figure 1.7: Magnetic decoration of a square disk 5 × 5 × 1 mm3 of high pu-

rity polycrystalline Nb at 1.2 K and 1100 Oe, showing domains of Meissner and

mixed states. Magnetic flux penetrates from the edges in form of fingers which are

composed of vortex lattice. Adapted from [43].

Following the same arguments than for type I SC, if a magnetic field is applied

to a type II superconductor, at certain fields below BC1, the SC will decompose

in domains in the Meissner state and domains in the mixed state, depending on

its demagnetization factor [40]. This regime is called the intermediate mixed state

(IMS). Experimentally it was found that the intervortex distance in the IMS domains
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corresponds to the expected value corresponding to the inductance BC1 in equation

1.16. It was also found that the area occupied by the domains with zero induction

decreases linearly with the magnetic field, to reach BC1 when entering the mixed

phase [40]. An example of the IMS in a type II superconductor is presented in

figure 1.7 where the magnetic flux penetrates into the Nb forming domains in the

Meissner states and domains with a regular vortex lattice with a4 = 1.075
√
φ0/BC1,

independent of the magnetic field.

1.4 Anisotropic Superconductors

In anisotropic superconductors, the electronic properties have a huge dependence on

the direction of the space and new consideration have to be taken into account in

order to understand their behaviour. For example, in cuprates, cooper pairs and vor-

tices are confined into 2D copper oxide planes [45–51]. The penetration depth and the

coherence length have to be separated in two components, one associated to super-

currents parallel (ξ‖ and λ‖) and perpendicular (ξ⊥ and λ⊥) to the superconducting

planes [45, 46, 48]. Then, we can define the anisotropic factor, γ = ξ‖/ξ⊥ = λ⊥/λ‖.

In highly anisotropic layered superconductors like BSCCO, when a magnetic field

is applied perpendicular to the superconducting planes, it penetrates the material in

form of stacks of 2D vortices in the CuO planes, called pancake vortices (PVs). If the

magnetic field is applied parallel to the CuO planes, it penetrates the superconductor

parallel to the CuO planes in form of Josephson vortices (JVs) [49][52].

1.4.1 Pancake vortices

In BSCCO and other highly anisotropic superconductors, the CuO planes are sepa-

rated in the c-axis direction a distance s > ξ⊥ and therefore they act as Josephson

junctions [47–51]. A vortex perpendicular to these layers, which conventionally would

be considered a uniform cylinder of confined flux, is interpreted in high anisotropic

superconductors as a stacking of 2D pancake shaped vortices (PVs), one PV per layer

with surrounding currents confined to the layer [45, 53–56]. PVs are so weakly cou-
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Figure 1.8: Stack of 2D pancake vortices in a layered superconductor. Red circles

represents the 2D PVs while blue lines are a guide to the eye to connect the PVs at

different layers (grey planes).

pled that thermal agitation can decouple the stack of PVs [57]. An scheme of PVs in

different layers of a highly anisotropic superconductor is presented in figure 1.8.

1.4.2 Josephson vortices

In the case of an applied magnetic field parallel to the superconducting planes, the

field penetrates in highly anisotropic superconductors in form of Josephson vortices

(JVs) [51]. JVs do not have normal cores, but have rather wide non linear cores located

between two superconducting layers [49, 51]. The structure of the core is similar to the

structure of the phase drop across a flux line in two-dimensional Josephson junctions,

where the phase changes 2π between the two layers over a distance of ΛJ [51]. For

3D superconductors, this length is given by ΛJ = γs, and we can think of a central

region of γs wide and s high as the core of the JV [51] (figure 1.9). Beyond this core,

the screening of the z-axis currents is weaker than by in-plane currents, and the flux

line is stretched into and ellipsoidal shape with a large width (λ⊥) along the layers.

An scheme of a JV is shown in figure 1.9.

Under an applied magnetic field parallel to the CuO planes, in the Y direction,

they arrange in a strongly stretched triangular lattice along the direction of the layers

with lattice parameters [51]:

az =
√

2φ0/
√

3γBx (1.19)
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Figure 1.9: Scheme of a JV in a layered superconductor with the in plane magnetic

field applied in the Y direction. Horizontal blue lines represents the SC planes and

the black arrows the Josephson currents (vertical) and the supercurrents (horizontal)

resulting from the JV. The phase difference between the CuO planes is summarized

in the upper part of the image.

ax =
√√

3γφ0/2Bx (1.20)

1.4.3 Crossing lattice

A huge variety of vortex configurations have been proposed when applying magnetic

field tilted with respect the c axis in highly anisotropic superconductors [47, 49, 50,

52, 58]. We will focus in the crossing lattices of PVs and JVs. In this configuration,

the JVs interact with the stacks of PVs splitting them in two branches giving a zig-zag

like structure perpendicular to the CuO planes [47, 49, 50, 52].

A JV in the Y direction between two superconductor layers carries a current

with opposite sign in the two layers (±J). The current, interacts with the stack

of PVs in the Z direction with a Lorenz force +Fy and −Fy in the two different

superconductor layers. As a result the PV stack is displaced a distance +a and −a in

the two planes in the direction of the JV, causing a zig-zag like structure in the PV

stack [47, 49, 50, 52], as is represented in figure 1.10 e and f. The amplitude of the

distortion has been extensively studied by [49], finding that the maximum pancake

displacement at the JV core position is:
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Figure 1.10: Vortices in isotropic and highly anisotropic superconductors. In a and

b, the vortex lattice in an isotropic superconductor where the repulsion between vor-

tices leads to the formation of hexagonal lattice. Curved arrows indicate circulating

supercurrents around the vortex core. In c, hexagonal ordering of the vortex lattice

in layered superconductors with the magnetic field applied along the c axis. In this

case, vortices are formed of vertical stacks of 2D PVs situated in the CuO planes.

In d, with the magnetic field parallel to the layers, crystalline anisotropy leads to

the formation of elliptical JVs. In e, tilted vortices spontaneously decompose into

coexisting orthogonal PVs and JVs. Where a PV stack intersects a JV stack, small

PV displacements (indicated by white arrows) driven by the JV supercurrents lead

to an attractive interaction. In f, the vortex chain state when all PVs stacks become

trapped on vertical stacks of JVs. Adapted from [59].

a≈
2.2λ‖

γslog(2γs/λ‖)
(1.21)

The distorted PV stack crossing a JV have less energy compared with other stacks,

which makes favourable to add an extra stack on top of the JV and form PV rows

along the JV [47] separated a distance[60]:
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d≈ 2λ‖log
B‖γ

2s2

φ0λ‖
(1.22)

The existence of PVs rows decorating JVs have been confirmed in previous exper-

imental works [61–68].

The crossing lattice of PVs and JVs causes a rearrangement of the phase distri-

bution on the CuO planes and therefore in the JV structure. In a isolated JV in the

Y direction, the phase difference, ∆φ = φ1−φ0 ( φ1 and φ0 are the phases at both

CuO planes), between the top and bottom CuO planes changes by 2π over a distance

ΛJ in the X direction. The phase difference is 0 and 2π at the edges and π at the

centre of the JV (figure 1.11 b). Adding one PV in each layer, separated by a in-plane

distance 2a in the Y direction, causes a change in the phase in each CuO plane. The

phase changes by π between the extremes of the line that crosses a PV parallel to the

JV. The phase changes by π in both layers at different positions, creating a narrow

region, 2a width, where the phase difference between CuO layers is 2π instead of π

in the centre of the JV [49] (figure 1.11 c). This phase distribution is very effective

to pin the PV and JV lattice.

Figure 1.11: In a, we schematically describe PVs and JVs crossing lattice. The

ellipse signals a Josephson vortex and the circles pancake vortices pinned to it. The

relevant approximate length scales, such as JVs size and distance between pancake

vortices is also shown. In b, we show a two dimensional scheme of the Josephson

currents and phase difference in a JV. In c, blue areas represents areas where ∆φ= π

and green areas where ∆φ= 2π as a consequence of the PVs displacement.
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1.5 Iron Based Superconductors

Iron based superconductors (FeBSC) were first discovered by Kamihara et al. in

2006 [69]. They found that LaFePO transits to a superconducting state below 4 K.

Two years later, they found superconductivity in LaFeAsO1−xFx with a TC of 26

K [70]. Fe is a well known magnetic material and magnetism was thought to dam-

age superconductivity. Actually, magnetism and superconductivity are considered as

competing states. For this reasons, finding superconductor with Fe was a big surprise.

Moreover, as in the case of cuprates superconductors, the BCS phonon-mediated cou-

pling was not able to explain the formation of cooper pairs in this superconductors.

Before 2008, the term high-temperature superconductivity (HTS) was reserved for the

cuprates. Now the term HTS equally applies to both cuprates and FeBSC.

Figure 1.12: In a, crystal structure of different families of iron pnictides. Fe-As

planes are highlighted as common features in all structures. In b, the FeAs plane

from a frontal (top) and upper (bottom) point of view. Spins are aligned ferro

and antiferromagnetic alternately in a structure called stripe like antiferromagnetic

order. Adapted from [71].

Among the FeBSCs, the 122 family has focused a lot of attention in the last years.

Specially the compounds derived from BaFe2As2 and CaFe2As2. Nematicity for in-

stance, was first reported in a STM study of Co doped CaFe2As2 [72]. The electronic

nature of this state was showed performing resistivity measurements on detwinned sin-

gle crystals of Co doped BaFe2As2 by [73]. Recently, strain induced phase separation

between superconducting tetragonal domains and non-superconducting orthogonal
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domains was proposed by [9] in Co doped CaFe2As2.

FeBSC are also promising compounds to the study of superconductivity in the

2D limit. In FeBSC, superconductivity has it origin in the 2D Fe-As layers, similar

to the CuO planes in the cuprates. In fact, a recent work has obtained signs of 2D

superconductivity in the novel FeBSC Ca1−xLaxFe1−yNiyAs2 [74]. This compound

presents an extra As-As chain spacer-layer that increases the FeAs layer interdistance

up to s = 10.34 A, and it is expected to be strongly anisotropic. The authors in [74],

argue that they have obtained crystals with γ ≈ 30 ξc(0) smaller than the FeAs layer

interdistance, s, leading to a 2D superconducting behaviour at accessible reduced

temperatures.

1.5.1 Phase diagram

FeBSC have 2D lattices of 3d transition metal ions as the building block, sitting

in a quasi-ionic framework composed of rare earth, oxygen, alkali or alkaline earth

blocking layers. They present similar phase diagrams, with a magnetic ordered phase

in the parent compound and a superconducting dome developing with doping. They

also present orthorhombic transition at small doping.

Some compounds, for instance, LaFeAsO, shows first order transition between

magnetic and superconducting phases and in other compounds like the 122 family,

both states coexist for certain doping levels. FeBSC magnetic phases are metallic with

linear dependence of the resistivity with the temperature. They also shown an struc-

tural phase transition which is often coupled with the magnetic transition. Above

them, a nematic transition has been reported in some compounds. Superconductiv-

ity emerges as a dome at finite doping levels with the optimal doping level located

where the magnetic transition extrapolates to zero temperature. For some materi-

als there is a region where magnetism and superconductivity coexist. An schematic

representation of the generic phase diagram of FeBSC is presented in figure 1.13.
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Figure 1.13: Generic temperature versus doping/pressure phase diagram for the

FeBSC. The parent compound usually presents a structural/magnetic transition

that reduces its temperature with increasing doping/pressure. The structural and

magnetic transitions are coupled or separated depending on the compound. Above

the structural transition and usually coupled to it and to the magnetic one there is

an electronic nematic phase. Superconductivity emerges in a dome-shape with finite

doping/pressure with the optimal doping usually coinciding with the extrapolation

of the magnetic phase to zero temperature. Adapted from [75].

1.5.1.1 Electronic structure

The Fermi Surface (FS) of FeBSC is dominated by the dxy, dyz and dxz orbitals of Fe

and the out of plane orbital of the As, with which Fe is in tetrahedral coordination

in a 2D layer (figure 1.12).

The electronic band structure has been calculated using the local density approx-

imation [78], showing that the electronic properties are dominated by five Fe d states

at the Fermi energy, with a FS consisting of at least four quasi-2D electron and hole

cylinders. These consist of two hole pockets centred at the Brillouin zone (BZ) centre

and two electron pockets centred at (0,±π) and (±π,0) in the tetragonal unit cell

(figure 1.14 c). Two non-equivalent As positions result in the folding of the BZ to

include two Fe atoms per unit cell and to put the electron pockets at (±π,±π) as

shown in figure 1.14 d. A fifth hole band is also proposed to sit at (0,±π) in the

folded BZ, and its presence may be very sensitive to structural details [79].
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Figure 1.14: In a, FeAs lattice indicating As above and below the Fe plane. Dashed

green and solid blue squares indicate 1- and 2-Fe unit cells, respectively. In b, FSs

of BaFe2As2 with 10% substitution of Co, calculated using DFT using experimental

atomic positions and drawn using the folded BZ representation with two Fe per unit

cell. In c, schematic 2D Fermi surface in the 1-Fe BZ whose boundaries are indicated

by a green dashed square. The arrow indicates folding wave vector QF. In d, Fermi

sheets in the folded BZ whose boundaries are now shown by a solid blue square.

Adapted from [76] and [77].

1.5.1.2 Magnetism

The nature of magnetism in the FeBSC parent compounds is a hotly debated topic,

the electronic structure suggests that the same magnetic interactions that drive the

antiferromagnetic (AFM) ordering also produce the pairing interaction for supercon-

ductivity [76]. As predicted before experiments [80], AFM order in all FeAs-based

superconducting systems is found to have a wave vector directed along (π,π) in the

tetragonal unit cell with a real-space spin arrangement consisting of AFM stripes

along one direction of the Fe sublattice and ferromagnetic stripes along the other

(figure 1.12).

It was predicted by DFT calculations [81] and confirmed by experiments [82] that

the magnetic ground state of FeTe has a double-stripe-type antiferromagnetic order in

which the magnetic moments are aligned ferromagnetically along a diagonal direction

and antiferromagnetically along the other diagonal direction of the Fe square lattice,
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as shown schematically in figure 1.15 a. Meanwhile, DFT calculations predict that

the ground state of FeSe has the single-stripe-type antiferromagnetic order, similar

to those in LaFeAsO and BaFe2As2, as shown in figure 1.15 b.

Figure 1.15: In a, double-stripe-type antiferromagnetic order in FeTe. The solid

and hollow arrows represent two sublattices of spins. In b, single-stripe-type anti-

ferromagnetic order in BaFe2As2. The shaded area indicates the magnetic unit cell.

Adapted from [82]

The energetic stability of (π, 0) antiferromagnetic ordering over (π, π) ordering

in FeTe has been studied by [81]. They found that it can be described by the nearest,

second nearest, and third nearest neighbor exchange parameters, J1, J2, and J3,

respectively, with the condition J3 > J2/2. Authors in [83] found that Te height from

the Fe plane is a key factor that determines antiferromagnetic ordering patterns in

FeTe, so that the magnetic ordering changes from the (π, 0) with the optimized Te

height to the (π, π) patterns when Te height is lowered.

1.5.1.3 Superconducting gap

The symmetry of the superconducting gap function Λ(k) has turned out to be a sub-

ject of debate in FeBSC. Figure 1.16 schematically presents various possible scenarios.

The conventional s-wave state (a) has a gap with the same sign everywhere on the

FS. The simplest scenario for FeBSC is the s+- state (b) in which the gaps on hole

and electron FSs are treated as constants and only differ in sign.

Theorists realized early on, however, that because of the multiorbital nature of

FeBSC, an s+- gap function on each pocket necessarily has an angular variation that

may be substantial. Due to this angular variation, it is possible that four nodes
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Figure 1.16: Schematic representation of the different scenarios proposed for pair-

ing symmetries in FeBSC, colors represent the phase of the order parameter at each

pocket. Adapted from [79].

develop on each FS (c). Such nodes have been called accidental, since their position

is not set by symmetry. In contrast, a d-wave gap (d), by symmetry, must have its

nodes along certain directions in reciprocal space. But if there is no central hole

pocket, a d-wave state need not have nodes (e). The presence or absence of the nodes

is highly relevant, as it completely changes the low-temperature behavior of a system

compared with a conventional s-wave superconductor.

An even more subtle issue is the actual structure of the gap function phase in a

generalized s+- state. We considered the case when the phase changes by π between

hole and electron pockets, but in multiband systems other cases are possible, for ex-

ample, a sign change, as in s+-, but now between different hole pockets, or phase

differences which are not integer multiples of π (f). In the second case, superconduct-

ing order breaks time-reversal symmetry and is therefore dubbed s + is.

1.6 Motivation

The vortex distribution has been studied in a huge amount of superconducting system

like type I, BCS prototype type II or High TC superconductors. The knowledge of

their interaction and distribution had a remarkably advance in the last decades. But,

there are still open questions on this matter. For example, the study of the vortex

distribution is usually made on the mixed state of type II SCs at magnetic fields well
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above HC1. Some works have advanced in the understanding of the IMS in type II

SCs, but the mechanism of formation of vortex patterns bellow HC1 is still an open

debate [2–4]. In particular, the possible mechanisms of the vortex distributions at

very low fields and the current controversies on this matter are discussed extensively

in [43]. Moreover, the majority of the previous works have been focused in the

“passive” characterization of the vortex lattice but not in its local manipulation with

scanning techniques. Some recent works have successfully manipulated Abrikosov

vortices in 3D superconductors [84–87] but the manipulation of 2D pancake vortices

and Josephson vortices in highly anisotropic systems have not been achieved yet. In

particular, the force exerted on a PV by a JV has not been measured yet. On the

other hand, the coexistence between superconductivity and magnetism have attracted

a lot of attention in the last decade. Several theoretical and experimental attempts to

understand the interplay between both states have been done in the last years. But,

the play of the magnetism in the superconducting state and the paring mechanism

of the copper pairs in this systems remains unclear [71, 76, 80, 88–90]. In addition,

the local characterization of a system where magnetic and superconducting domains

coexist has not been achieved yet. The recent proposal of phase separation between

superconducting and antiferromagnetic domains under the action of biaxial strain in

CaFe2As2 Co doped, opens a good opportunity to the local characterization of this

coexistence [9].

From an experimental point of view, answer those question needs a scanning

probe technique capable to measure the topographic and magnetic profiles in areas of

several tens of microns at low temperatures in a short period of time and under tilted

magnetic fields. In order to manipulate the superconducting vortices in a controlled

way, the scanning technique also has to be able to interact with them when it is

necessary and do not perturb them when it is not desired. For these reasons, during

the thesis, a set-up with a magnetic force microscope of low temperatures working in

combination with a homemade three axis superconducting magnetic coil was employed

as the main technique. The magnetic force microscopy is the only technique that

allow to measure simultaneously the topography and the local magnetic profile of

samples. This property is of vital importance to determine the possible effect of

pinning at topographic defects on the vortex distributions, or to correlate topography
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and magnetic profiles in samples showing magnetostructural transitions for example.

In addition MFM has probed to be an effective tool to local manipulation of magnetic

structures.

Our set-up have allowed us to characterize areas up to 20×20 µm2 at low tem-

peratures in a few minutes with tilted applied magnetic fields and interact with

magnetic structures on the samples in a controlled way. Three system where se-

lected in the thesis due to their specifics properties to try bring some light in the

topics we have presented in the previous paragraphs, β-Bi2Pd, Bi2Sr2CaCu2O8 and

Ca(Fe0.965Co0.35)2As2.



CHAPTER 2

Experimental methods

In this thesis, I have used magnetic force microscopy (MFM) at low temperatures to

investigate the local properties of several superconductors. MFM allow to measure

the magnetic field distribution at low temperatures in big areas (20 × 20 µm2 at 2

K) in rough or nanostructured samples where the differences in high are too big to

another techniques like scanning tunnelling microscopy (STM). MFM also allow to

single vortex manipulation [91]. For this reasons, MFM has become one of the most

interesting techniques to study the local magnetism in different systems.

I have separated this chapter in three sections. In the first one, I will discuss our

experimental set-up. Then, in the second section I will present a detailed charac-

terization of the MFM probes at low temperatures. Finally in the third section, I

will introduce the solution growth method that we have used to grow several crystals

during the thesis.

2.1 Set-up

A Low Temperature Atomic Force Microscope (LT-AFM) from Nanomagnetics In-

struments was employed during the thesis. It was used to characterize the supercon-

ducting vortex lattice and magnetic domains of several samples using the MFM mode.

The microscope was used in combination with a commercial cryostat, a homedesigned

25
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variable temperature insert (VTI), a vibration isolation stage and a homemade three

axis magnetic vector magnet.

2.1.1 Cryostat, VTI and vibration isolation stage

Figure 2.1: Schemes of the homedesigned cryostat and the VTI. Different chambers

and walls are represented as black lines. In the left panel, the 80 L liquid He chamber

is observed at the bottom, covered by the 50 L liquid Nitrogen chamber on top of

it. Inside the cryostat, the position of the superconducting magnet, the microscope

and the VTI are also shown. In the right panel, an scheme of the VTI shows the

different valves to control the gas flow, the heater and thermometer to control its

temperature and the copper radiation baffles in between.

Our cryostat consists in a 80 L liquid He main chamber where the VTI and the

superconducting coil are placed. To isolate the liquid He bath from room temperature,

the chamber is covered on top by a 50 L liquid nitrogen bath and both chambers are

surrounded by a high vacuum compartment separated by stainless steel walls. The

isolation of the liquid He bath allow us to perform experiments down to 2 K for a

couple of days without refilling the cryostat. The Cryostat is specially designed to fit

a commercial VTI and a magnet inside. An scheme of the cryostat is shown in figure

2.1.

The VTI (scheme in figure 2.1) is actually a double-layered vacuum can with two



CHAPTER 2. Experimental methods 27

spaces in between. It is designed to fit inside the magnetic coil in the He chamber.

The inner space of the VTI is designed to fit our LT-AFM inside. To perform the

measurements, the inner space is pumped to high vacuum and then filled with helium

gas to a desired pressure (typically 0.5 atmospheres) to control the thermal contact

between the liquid He bath and the microscope. The operating principle can be briefly

described as follows. Through a narrow capillary, the helium liquid from the bath

is siphoned into the outer space of the VTI, carefully controlled by a needle valve.

Meanwhile, the gaseous helium is pumped out through a mechanical pump. Thus,

the cooling power is generated by the evaporation process of liquid helium and cold

gas flowing through the outer space. It was designed by Dr. Norbert Marcel Nemes

from the Universidad Complutense de Madrid (UCM).

There are two working modes for VTI, that is, one-shot mode and continuous-flow

mode. In one-shot mode, the needle valve is fully opened for a while, and a large

amount of liquid helium is transferred into the outer space. Then, the needle valve

is totally closed and no liquid comes in. Through sustained pumping, the base tem-

perature could be achieved with a typical value of 1.3 K, which depends on the heat

load and pumping speed. In continuous-flow mode, the needle valve is kept open at

a delicate position and the liquid helium flows into VTI continuously. As the gaseous

helium is pumped out, a wide range of temperature can be stabilized by controlling

the temperature of the He gas with a 50 Ω heater on the bottom of VTI. The heater

response is fixed by a commercial Cryocon Temperature controller. The VTI provides

excellent thermal response with greater sample thermal stability allowing to a perfect

control of the temperature at the microscope during the experiments with oscillations

bellow 0.01 K.

The He evaporated and pumped out from the cryostat is heated and directed

to a recovery line to liquefied it again at the Servicios de Apoyo a la Investigacion

Experimental (SEGAINVEX) facilities.

The cryostat is placed on an isolation stage that makes negligible the vibrational

noise during the measurements.

In figure 2.2, a picture of the cryostat, the isolation stage, the mechanical pump,
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Figure 2.2: Picture of our set-up at the lab. In the image are shown the electron-

ics to control the superconducting magnet (a), the temperature controller (b), the

mechanical pump used to control the gas flow in the VTI (c), the isolation stage (d),

the cryostat (e), the heaters to warm the cold He pumped from the VTI (f), the He

recovery line (g) and the electronics of the LT-AFM (h).

the heaters, the recovery line and the control electronics is presented.

2.1.2 Three axis magnetic vector magnet

A three axis homemade magnetic vector magnet is placed inside the cryostat, in the

liquid He bath. The magnet design is presented in reference [92] and consist in five

superconducting coils made of NbTi wire, one coil for z axis field and two sets of split

coils for the xy-plane field. The five coils are mounted in an Al cage. In figure 2.3 a

and b, an scheme and a real picture of the coil are presented.

The magnet allow us to generate a magnetic field in any direction of the space

up to fields of 5 T in the Z direction and 1.2 T in the X and Y direction, using a

current of about 100 A. We have measured the magnetic field as a function of the

distance and find a homogeneous field within a sphere around the center of the coil

system of 0.2% for the magnetic field along the z axis, and of 1% for the magnetic field

in the plane (Fig2.3 c). The three coil systems are equipped each with a persistent

mode switch which allows maintaining the magnetic field constant when the liquid
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Figure 2.3: In a, and scheme of our homemade three axis vector magnet. The

superconducting coils are represented in orange and the Al cage in yellow. One long

coil is used to generate the z-axis magnetic field. For the in-plane field, we use two

crossed split coil systems centred on the z-axis coil. The three directions of the

space, X, Y and Z are marked with black arrows on the scheme of the coils, together

with the real dimensions. In b, a real picture of the vector magnet. In c, we show

the magnetic field vs z-axis position, with respect to the centre of the magnet when

the z-coil is energized (50 A) (main panel) and when the x or y coils are energized

(75 A, inset). Red line is a guide to the eye.

Figure 2.4: In a, we show a scheme of the current power supply for the magnet.

In b, we show a photograph of the power supply. It is rather compact, 50 cm high

and 80 cm long.

helium is above the magnet. The magnet is energized using a power supply with three

independent current sources, each one has a commuted internal commercial stage of

5 V 100 A, followed by a voltage to current converter consisting of a stage providing

linear regulation which uses MOSFET power transistors. Figure 2.4 shows an scheme

of the circuits and a photograph of the power supply. The power supply was designed

and made at SEGAINVEX mostly by M. Cuenca.
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2.1.3 Low Temperature Microscope

The LT-AFM can be divided in two main parts, the insert and the head. The insert

can be attached to the microscope head using low temperature connectors, what

allow to connect it to multiple microscope heads with different equipments (AFM,

SHPM, STM, etc). Radiation buffers are placed along a stainless steel tube that

gives mechanical shielding and guide to all the necessary wires. It has a KF 40/50

connector on the top that fits in the variable temperature insert (VTI) space of the

cryostat. An schematic representation of the microscope is presented in figure 2.5.

Figure 2.5: Scheme of the LT-AFMmicroscope. In the picture the hole microscope,

insert and head, is shown. On the top of the microscope, the KF-40 neck that fits

on the VTI. In the middle, the docking station to attach the insert to different

microscope heads. In the head, the outer piezo, the quartz tube and the sample

holder are shown.

The microscope head is formed by the AFM holder, two concentric lead zirconate

piezotubes, a quartz tube, and the sample holder. A real picture of the LT-AFM

head is shown in figure 2.6).

2.1.3.1 AFM holder

The AFM holder is attached to the inner piezotube by two screws. It has an com-

mercial AFM alignment holder from NanoSensors, glued on top of a small piezo stack

element, which is sandwiched between two alumina plates. The AFM probe is fixed

on the AFM holder using an spring connected to the body of the holder. The AFM

holder also has a Zirconium ferrule tube used to align the end of an optical fibre

with respect the AFM probe. The optical fibre is used to control the cantilever

displacement with the so-called optical laser interferometer method. The piezo bel-
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Figure 2.6: Real picture of the head of the LT-AFM. It shows the piezo holders,

the two piezo tubes (wrapped in Teflon in the picture), the quartz tube and the

AFM holder.

Figure 2.7: In the left panel, an scheme of the AFM holder. The body of the

holder is represented in blue. The ferrule tube is shown in black, the AFM probe

in yellow, the AFM alignment holder in brown, the piezo in grey and the spring in

orange. In the right panel, a picture zoomed in the ferrule tube and the probe.

low the alignment holder is used to control the fibre-probe distance. An schematic

representation of the AFM holder is presented in figure 2.7.

2.1.3.2 Sample holder

The sample holder is a hollow cylinder made of Phosphor bronze with a hole at the

top that fits in the quartz tube. At the bottom, it has a plate where the sample is

glued and a connector to bias the sample. At the side, it has a leaf spring used to

attach it to the quartz tube. A picture of the sample holder is presented in figure 2.8.
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Figure 2.8: Real picture of the sample holder. In the image are visible, the leaf

spring used to attach the sample slider to the quartz tube, the plate where is sample

is glued and the bias connector.

2.1.3.3 Scanning and tip oscillation system

The inner piezotube is used to oscillate and scan the AFM probe over the samples.

It has quadrant electrodes and a circular electrode at its apex as is schematized in

figure 2.9. If and opposite voltage is applied to reciprocal electrodes, the tube will

bend as is show in figure 2.9 a. On the other hand if the same voltage is applied

to all quadrature electrodes with respect to the inner electrode, the tube will extent

or contract in the Z direction. It has a ≈ 20µm scan range in the XY plane and

a ≈ 1.5µm retract range in the Z direction at 2 K applying a voltage difference of

200 V between electrodes. The single electrode at its apex is used to oscillate the

AFM probe by applying and oscillating difference of potential to the electrode as is

schematized in 2.9 c.

2.1.3.4 Approaching-retracting mechanism

The outer piezotube and the quartz tube are used to perform the approaching an

retracting movement of the sample with respect to the AFM probe using the so-

called stick-slip method [93]. The piezotube has quadrant electrodes and the quartz

tube is glued to its end.

The principle of the stick-slip method is schematized in figure 2.10. First, the

sample holder is attached to the quartz tube with the leaf spring and is approached

to a safe distance of the AFM probe by hand (A). Then, an exponential voltage is

applied to the outer piezotube in about 3 ms contracting (retracting) it (B). During
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Figure 2.9: Scheme of the inner piezotube and its electrical contacts. On top,

the motion of the piezotubes is schematically represented by dashed lines. On the

bottom, the electrical contacts on the piezotube are shown as curved black lines. In

a, an scheme of the scan movement of the inner piezotube is shown. In b, an scheme

showing the five contacts to perform the scan movement, denoted by X, Y and Z.

In c, an scheme of the oscillatory movement of the single electrode at the apex. In

d, an schematic view of the electrical contacts of the single electrode to perform the

oscillatory movement, denoted by Z′.

the exponential pulse, the sample holder moves together with the quartz tube due to

the friction between them. Finally, the voltage is turned to zero in less than 1µs and

the outer piezo is retracted (contracted). As a consequence, the sample holder slides

on the quartz tube due to its inertia, approaching (retracting) the sample to the AFM

holder (C). This slider mechanism can move few hundred grams at 4 K, successfully.

Note that the success of the method depends on the equilibrium between the inertia

and the friction force of the sample holder, which is controlled by the pressure of the

leaf spring against the quartz tube. For this reason the quartz tube has to be carefully

cleaned and the leaf spring tested at room temperature before all the measurements.
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Figure 2.10: Scheme of the stick-slip method to move the sample holder. On

the upper panel, an scheme of the LT-AFM head, showing the outer piezotube, the

quartz tube and the sample holder. Dashed lines are used to represents the portion

of the quartz tube inside the sample holder. A, B and C, represent the three steps

during the sample holder displacement described in the text. In A, the sample holder

is attached to the quartz tube. Then, between A and B an exponential voltage pulse

is applied to the piezotube to extent or contract it. Finally between B and C the

voltage is turned down to zero in less than 1 µs. As a result the sample holder

is displaced a given distance. In the lower panel, a real image of the pulse on a

oscilloscope, with the three steps presented on the top panel marked with A, B and

C letters.

2.1.3.5 Optical laser interferometer method

As it was introduced before, the optical laser interferometer method [94] [95] [96] was

used in our LT-AFM to detect the displacement of the AFM probe. In this method, a

laser (I) is pointed to the cantilever through an optical fibre. At the end of the fibre,

some of the light is reflected by the surface (Irs) and some scape the fibre and goes to

the cantilever that acts as a mirror, then the laser is reflected (Irc) trough the fibre,

back to the source where they interfere. The interferometer pattern is a function of

the optical path of each beam and therefore of the fibre cantilever separation, which

allows to monitor the bending of the cantilever. It is schematically represented in

figure 2.11. The photocurrent at the interferometer can be described as follows [97]:

Iinter = I0[1−V cos(4πdf−c
λ

)] (2.1)



CHAPTER 2. Experimental methods 35

Figure 2.11: Scheme of the interferometer sensor method. The laser beam, I,

travels through the fibre. At the end of the fibre, some of the light is reflected by

the surface (Irs) and some escapes the fibre and goes to the cantilever that acts as

a mirror, then the laser is reflected (Irc) trough the fibre, back to the source where

Irs and Irc form an interferometer pattern (red line in the plot) as a function of the

fibre-cantilever distance, df−c.

I0 = Imax+ Imin
2 (2.2)

V = Imax− Imin
Imax+ Imin

(2.3)

where I0 is the midpoint current, V the visibility, df−c the fibre-cantilever sepa-

ration, R the reflectivity and λ the laser wavelength. The slope of the interference

is:

m= 4πI0
V

λ
(2.4)

As all the magnitudes except df−c are constant, the photocurrent can be used to

measure the fibre cantilever distance and therefore, the oscillation of the cantilever.

To maximize the accuracy of the measurements, the equilibrium distance between

the fibre and the cantilever is chosen the make the slope of the interferometer patter

maximum. This point is determined by measuring the interference pattern when

changing the cantilever-fibre distance with the piezo beneath the cantilever. The
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piezo is driven between 0−125 V forward and backward, with respect to the fibre. An

example of the interferometer patter recorded at room temperature in our microscope

is presented in figure 2.12.

Figure 2.12: In the upper panel, the interferometer pattern obtained by our LT-

AFM at room temperature as a function of the fibre position with respect to the

resting cantilever. In the lower panel, the slope of the interferometer patter. The

green and blue lines represents the interferometer patter obtained when approaching

and retracting the AFM probe to the cantilever. The pattern is used to lock the

fibre-tip distance at the maximum slope, marked by red dashed lines in the image.

2.1.3.6 LT-AFM controller

The bending of the cantilever is measured by the interferometer and received by

a digital Phase Lock Loop (PLL) card, which excites the cantilever at the desired

frequency and measures the frequency shift, the phase and the Amplitude of the

output signal from the cantilever.

The LT-AFM controller has a very low noise power supply unit. It has four

channels of low noise high voltage amplifiers to drive scan piezo. A Digital PID loop

is operated at 250 kHz for the feedback, which gives analog 24 Bits signals to drive the

Z position and 32 Bits digital output for the software. A sample slider card produces

exponential pulses up to 400 V for the stick-slip mechanism. A diagram of the control
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mechanism of our LT-AFM microscope is presented in figure 2.13. Both, electronics

and software were developed by Nanomagnetics Instruments LTD.

Figure 2.13: LT-AFM control scheme. In the image, different elements of the LT-

AFM head are schematized using black lines. Dotted lines are used to represent the

fibre position inside the piezotube. Dashed lines are used to represent the connection

between the microscope and the different element in the control electronics. The

information of the AFM probe displacement is recorded in the interferometer and

transmitted to the Phase Locked Loop (PLL) card which excites the cantilever at the

resonance frequency and measure the frequency shift, phase and amplitude changes.

Either frequency shift or amplitude change is used for a feedback which is operated

by the controller. The scan and coarse approach mechanism is also managed by the

controller.

2.1.3.7 Operational modes

Several measurement modes have been introduced in AFM to be able to measure

variety of forces in different conditions [98]. In this section we will introduce the two

main modes used during the thesis in our LT-AFM, the dynamic mode and the MFM

mode:

2.1.3.7.1 Dynamic mode In the dynamic mode the AFM cantilever is oscillated

at a given amplitude at its resonance frequency and placed near to the sample (5-

15nm). In such scenario, the tip is near enough to the surface to interact via short
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range Van der Waals (VdW) forces with the surface [98, 99]. The oscillation ampli-

tude should be large enough to ensure that the restoring force at the lower turning

point is larger than the attractive force between tip and sample. This will avoid an

instability, which would stop or at least seriously distort the oscillation. The tip-

sample interaction causes a shift in the resonance frequency which is used to measure

the force acting on the tip [98, 99].

If we approximate the cantilever and the tip as point-mass spring (figure 2.14),

we can consider the AFM probe as a damped oscillator due to friction forces, with

some driving force, and into a force field created by the tip sample interaction, then

its movement can be described by a linear, second-order differential equation [98]:

Figure 2.14: Point-like mass spring as an approximation of the AFM cantilever. In

a, a simple point like mass spring as an approximation of the cantilever movement.

In b, an scheme of the oscillating tip is showed.

mz̈+ δż+k(z−z0) = Fd+Ft−s (2.5)

where Fd = F0cos(ωt) is the driving force provided by the piezotube to oscillate

the cantilever at an angular frequency ω, Ft−s is the force due to the tip sample

interaction and δ is the damping factor which can be calculated as [98]:

δ = k

f0Q
(2.6)

where Q is the quality factor of the oscillator and f0 =
√

k
m the resonance frequency

of the free oscillator. To solve equation 2.5, Ft−s is expanded into a Taylor series:



CHAPTER 2. Experimental methods 39

Ft−s(z) = Ft−s(z0) + δFt−s(z0)
δz

(z−z0) (2.7)

and equation 2.5 can be rewritten as:

mz̈+ δż+k(z−z0) = Fd+Ft−s(z0) + δFt−s(z0)
δz

(z−z0) (2.8)

mz̈+ δż+ [k− δFt−s(z0)
δz

](z−z0) = Fd+Ft−s(z0) (2.9)

The term k− δFt−s(z0)
δz in equation 2.9 is called the effective spring constant, ke.

Solving 2.9, we will find:

z(t) = z0 +Acos(2πfet−φ) (2.10)

Equation 2.10 represents an harmonic oscillator with angular frequency ωe differ-

ent that the angular frequency of the free oscillator and with a phase shift of φ. The

frequency of the oscillator is:

fe =

√
k

m
− 1
m

δFt−s
δz

=

√
f2

0 −
1
m

δFt−s
δz

(2.11)

Taking into account that k >> δFt−s
δz , equation 2.11 can be reduced to:

∆f ≈ f0
2k
δFt−s
δz

(2.12)

Therefore, when the cantilever is brought into a force field, the resonance fre-

quency will be shifted and the force gradient can be measured by measuring the shift

in the resonance frequency or if the excitation frequency is kept constant, by measur-

ing the change in amplitude (∆A) or the change in phase (∆φ) of the oscillation as

is seen in Figure 2.15.
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Figure 2.15: Oscillation amplitude (A) and phase (φ) versus frequency. In the

plots, the blue line represents the amplitude and phase of the cantilever far from the

surface and the red line their shift due to the interaction with the sample. In the

upper panel, the oscillation amplitude decreases by ∆A when the tip os oscillated at

a frequency f0 due to the shift in the oscillation frequency ∆f . In the lower panel,

the corresponding change in the oscillation phase ∆φ is shown.

In our system, in the dynamic mode, topographic images are measured by keeping

constant the excitation frequency and the amplitude of the oscillation. A feedback is

used to keep the amplitude constant by changing the length of the scan piezotube.

The topography is measured using the change in the length of the piezotube.

2.1.3.7.2 MFM mode In MFM, the interaction between a magnetic probe and

a magnetic sample is measured.

The topography and the magnetism of a magnetic sample can be measured inde-

pendently using the a modification of the dynamic mode, called two pass mode. In

this mode, the operational parameters are chosen such that either, the non-magnetic

or the magnetic interaction becomes dominant. This is achieved due to the small

contribution of the magnetic forces at small distances (< 5nm) and the VdW forces
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at big distances (> 50nm) [98].

Figure 2.16: In a, an schematic representation of the MFM two pass mode. A

first scan near the surface at a distance, d, and amplitude, A, is made to record the

topographic profile. Then, the tip is retraced a distance dr and scans the same profile

at a constant height, dr, and amplitude Ar to measure the long range magnetic

interaction. The trajectory of the tip during the scans is represented with a red line.

In b and c two examples of the magnetic and topographic images obtained in a Hard

Disk Drive (HDD).

In the MFM two pass mode, the topography is measured in a first scan (forward)

in the same way that in the dynamic mode. Then, the probe is retraced a large

distance and a second scan is performed (backward). In the second scan, the tip is

oscillated at the same frequency that the first scan but with the amplitude feedback

opened. In this case, the length of the piezotube is used to keep the tip-sample

separation constant, using the information of the topographic scan. Then, the tip-

sample magnetic interaction is recorded by measuring either ∆A or ∆φ. An scheme

of the two pass mode is presented in figure 2.16.

The MFM contrast is associated to the magnetic domains in the sample. Assuming

that the magnetization of the tip is in the axial direction, when the stray field from the

sample is parallel to the tip magnetization there is an repulsive force which is typically

represented in MFM images as dark contrast and if the stray field is antiparallel the

contrast will be light.
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2.2 Characterization of MFM probes for low tempera-

ture experiments

During the thesis mainly two AFM probes were used: Nanosensors Point Probe

Plus Force Modulation Mode - Reflex Coating (PPP-FMR) and Nanosensors Point

Probe Plus Magnetic Force Microscopy - Reflex Coating (PPP-MFMR) probes. Both

probes are made of Silicon with a cantilever length of 225 µm, width of 30 µm,

thickness of 3 µm and spring constant of 3 nN/nm. The difference between them

is that PPP-MFMR probes have a CrCo alloy layer of ≈ 20nm deposited on the

tip and the cantilever, allowing to magnetic characterization of the samples. PPP-

FMR probes were used to preliminary topographic characterization and PPP-MFMR

probes to magnetic characterization. Figure 2.17 shows the AFM probes geometry

with a rectangular cantilever and a sharp tip at the end.

Figure 2.17: SEM images of an AFM probe. In the left panel, the silicon chip

where the probe is lithographed, the rectangular cantilever and the pyramidal tip.

In the right panel, a zoom on the tip showing its pyramidal shape.

The CrCo alloy that cover the PPP-MFMR probes is a ferromagnetic material,

and therefore it presents an hysteresis cycle in its magnetization when changing the

magnetic field. At room temperature the coercive field (≈ 300Oe) and magnetic

moment (10-13 emu) are provided by the manufactured, but for lower temperatures a

magnetic characterization of the probe must be done in order to obtain its coercive tip

to a proper tip magnetization. For this purpose we have measured the ferromagnetic

domains of a Hard Disk Drive (HDD) as a function of the temperature from 300 K

to 2 K.

Ferromagnetic domains of HDD are known to have coercive fields much greater
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(2000-5000 Oe) [100] than typical MFM probes. This makes them the perfect candi-

dates to characterize de hysteresis cycle of MFM probes as their magnetic state will

be not change by the small magnetic fields needed to change the state of the tip.

Figure 2.18: Ferromagnetic cycles of a PPP-MFMR tip measured at 205 K, 77 K

and 2.5 K, using a HDD as a sample. Three MFM images of the magnetic domains

at 1500, 0 and -1500 Oe at 2.5 K of the HDD are also shown. In the images, the

switching of the tip magnetization is recorded as a change in the contrast from dark

to light and vice versa in the magnetic domains of the HDD.

The hysteresis cycle of a typical PPP-MFMR probe was recovered by measuring

the surface of a HDD at different fields and constant temperature for several tem-

peratures. We have calculated the magnetic moment of the tip (in arbitrary units)

as the difference in contrast between domains walls of the HDD in the MFM image

[101]. The hysteresis cycles for 250 K, 77 K and 2.5 K are represented in figure 2.18.

The coercive field of the tip changes from ≈ 300 Oe at RT to ≈ 1000 Oe at 2.5 K.

This characterization is of huge importance to a proper interpretation of the MFM

images, as they are the result of the interaction of the tip magnetization and the stray

field of the sample [98].
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2.2.0.1 MFM features

To illustrate the importance of the characterization of the MFM tips at low tempera-

tures, we will present the particular cases of MFM images of superconducting vortices

when a PPP-MFMR tip is magnetized bellow and above its coercive field.

If the tip is not magnetized up to its coercive field, different domains with different

orientation will appear at the tip and could cause artefacts in the magnetic image

[102–104]. A good example are the series of images that are presented in figure

2.19. In the images, superconducting vortices were measured in β−Bi2Pd at 2 K

with a tip magnetized up to 500 Oe at 5 K, which is well bellow the coercive field.

As it was presented in the introduction of the thesis, superconducting vortices are

known to have circular shapes with radius determined by λ. In our experiment, the

superconducting vortices appear as star-like features instead of as circles, pointing

out the existence of a complicated distribution of the magnetic domains of the tip.

A simple explanation of the origin of the star-like features will be discussed in the

following:

Figure 2.19: Examples of star-like features at superconducting vortex positions

when a MFM tip is not magnetized up to its coercive field. The three MFM images

where taken at 2 K. Images a and b were taken at 100 Oe while c was taken at 200

Oe.

The tip-vortex interaction can be approximately written as [105]:

δF

δz
=mx

δ2Hx

δx2 +my
δ2Hy

δy2 +mz
δ2Hz

δz2 . (2.13)
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Where mi; i = x,y,z are the components of the magnetic dipolar moment of the

tip and Hi; i= x,y,z are the components of the field created by the vortex. The field

created by a vortex can be described as [29]:

B = φ0
2πλ2K0((r/λ)e

−2πz
d (2.14)

where K0 is the modified Bessel functions of second order and r and z the radial

and vertical distances from the vortex core.

Figure 2.20: In a, we schematically shown a MFM tip with with a non-zero in

plane component of the dipolar moment (grey arrow on the tip) and the vortex

lattice (coloured circles bellow). In b, we show star like vortices obtained at 2 K

and 100 Oe with a tip magnetized with 300 Oe at 5 K. In c and d we compare

a simulation and an MFM image of a single vortex measured with a tip with an

in-plane magnetization component. The same colour scale is used at the scheme,

the simulation and the MFM images.

Typically the components X and Y of the dipolar moment of the tip are neglected

due to the predominant Z magnetization of the tip [104]. To explain the star shaped

vortices, we assume that this is no longer the case, as schematically show in Fig.2.20

a. We consider a tip with non zero X an Y components. By calculating spatial

maps of the force gradient sensed by the cantilever using equation 2.13, we find that

indeed finite x and y components of the magnetization provide star shaped vortices

as is shown in Fig.2.20 c. The starlike features obtained by our simple model, are
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very similar to the vortices shapes obtained in the experiments. Real MFM images

of starlike vortices are shown in figures 2.20 b and d together with the result of the

simulations to highlight this fact.

Figure 2.21: Here we show images taken at the same temperature (2 K) and

magnetic fields (300 Oe) with a tip having in-plane components of the magnetization

(a) and only z-component (b). The blue and black profiles shown in c were taken

at the lines with the same colour in a and b. The profiles provides a measure of the

spatial resolution, which is improved when the tip has an in-plane anisotropy.

In order to compare the images obtained by a MFM tip magnetized bellow and

above its coercive field, we have measured the vortex lattice at the same area and

the same magnetic applied field with different tip magnetization conditions. In figure

2.21 two cases are shown, one with the tip magnetized at 500 Oe (bellow its coercive

field) and another with the tip magnetized at 1500 Oe (above its coercive field).

Interestingly, when the tip is not magnetized above its coercive field, the lateral

resolution is improved as is shown in figure 2.21 c. The vortex profile in figure 2.21 a

is thinner that in figure 2.21 b. We suggest that the MFM lateral resolution can be

improved by tuning the magnetization of the tip or what is the same, the amount of

magnetic domains in the Z, X and Y direction.

2.3 Crystal growth

Binary phase diagrams contain the information of all known crystallographic struc-

tures for a pair of elements as a function of the composition and the temperature.

An example of a simple binary phase diagram for arbitrary elements, A and B, is

presented in figure 2.22.
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Figure 2.22: Example of a binary phase diagram. Black curved line represent the

solid-liquid equilibrium line. Point 1 and 2 are the initial and final points in the

growing process described in the text and 3 is the eutectic point. Dashed lines are

used to point the exact temperature and composition of points 1 and 2. The red

arrows represents the evolution of the composition of the liquid phase as explained

in the text.

The phase diagram in figure 2.22, consists in a series of vertical, horizontal and

curved lines. The vertical lines, represent different known stable compositions of

A-B crystals. Curved lines are the solid-liquid equilibrium lines of the compounds,

meaning that at a given composition, above this line, the mixture will be in the

liquid phase and bellow this line, a determined solid phase or phases will grow. The

horizontal lines represents the temperatures where a different solid will grow

The solution growth method is a powerful technique to grown single crystals using

the information provided by binary phase diagrams [106]. In order to grow single

crystal of a determined composition, the desired amount of A and B is placed inside

two alumina crucibles with glass wool in between and sealed in a quartz ampoule

in a He atmosphere using a blowtorch. The mixture is heated up to melt it, and

them cooled down to the desired temperature where the crystals will start to grown,

for example, for a composition of 80 percent of B in figure 2.22, 340◦C (1). Then,

the ampoule is slowly cooled down to a temperature above the eutectic point, as the

temperature decreases, the crystal becomes bigger and the liquid mixture composition

varies following the liquid line (2). If the temperature is decreased bellow the eutectic
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point (3), the remnant liquid will solidify enclosing the B crystals, making especially

hard to separate them. For this reason, the alumina crucibles has the glass wool in

between. Taking quickly the ampoule from the furnace and spinning it, will separate

the liquid and the solid phases at both sides of the glass wool that acts as a filter.

Then, clean and intact B crystals can be obtained for their research. An schematic

representation of the growing process is presented in figure 2.23

Figure 2.23: Scheme of the solution growth method. Alumina crucibles are rep-

resented as beige cylinders and the quartz tubes with blue lines. In a, the desired

elements A and B (black and red circles) are placed inside the alumina crucibles.

Then in B, they are encapsulated between two alumina crucibles with quartz wool in

between (black line) and sealed in a quart tube in vacuum. In c, the quartz ampoule

is heated in a furnace to melt the elements inside and grow the crystals. Finally, in

d, the crystals are separated from the flux excess by spinning the quartz ampoule.

Sometimes, the interesting phase of a given crystal is not stable at ambient con-

ditions. This phase could be stable for example above 500 ◦ and transits to another

(uninteresting) phase bellow this temperature. In this case, is still possible to obtain

the desired crystals by forcing them to cool down very quickly from a temperature

where they are stable to the room temperature by immersing them in water or liquid

nitrogen for example. Doing so, the crystal will not transit to the low temperature

phase and will remain in the desired phase [106]. With this process, the remnant

liquid is not filtered and the crystals will be immersed in an amorphous solid with

the composition of the remnant liquid.

In conclusion, knowing the binary phase diagram of two elements allow to grow

binary crystals using the solution growth method in a simple way.
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Figure 2.24: Phase diagram of Bismuth and Palladium system. The red line

represents the liquid-solid equilibrium line for β−Bi2Pd and the purple circle the

initial liquid concentration during the growth.

2.3.1 β−Bi2Pd single crystals growth

During the thesis, single crystals of β−Bi2Pd were grown using slight excess of Bi

[107], [108]. We grew our samples from high purity Bi (Alfa Aesar 99.99%) and Pd

(Alfa Aesar 99.95%). Bi and Pd were introduced in alumina crucibles and sealed in

quartz ampoules at 140 mbar of He gas using a blowtorch. Then, the ampoules were

heated from room temperature to 900◦C in 3 h, maintained 24 h at this temperature,

slowly cooled down to 490◦C in 96 h and finally cooled down to 395◦C in 200 h in

a furnace. This temperature is about 15◦C above the temperature for the formation

of the α−Bi2Pd phase [109] (figure 2.24). To avoid formation of the α phase, we

quenched the crystals down to ambient temperature by immersion in cold water. We

obtained large crystals of 5mm×5mm×3mm (inset in figure 2.25).

To characterize them, we made x-ray diffraction on crystals milled down to powder

(Fig.2.25, using x rays with wavelength 1.54
◦
A). We find β−Bi2Pd (I4/mmm, see

Ref.[111]) with refined lattice parameters a= b= 3.36(8)
◦
A and c= 12.97(2)

◦
A and no

trace of α−Bi2Pd. We made in total twelve growths, varying slightly the conditions

for the quench, growth temperature and initial composition, and obtained always

crystals with a resistivity vs temperature very similar to the one shown in Fig 2.25.
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Figure 2.25: Powder diffraction pattern of β−Bi2Pd. Red symbols are the ex-

perimental points. The black line is the best fit to β−Bi2Pd diffraction pattern

[110]. Residuals are given by the blue line. The two series (upper and lower) of ver-

tical green strikes represent, respectively, the position in 2θ scale of the reflections

from the β−Bi2Pd (I4/mmm) and α−Bi2Pd (C12 =m1) phases. The inset show

a photograph of one β−Bi2Pd crystal. In b, the temperature dependence of the

resistivity. In c, the unit cell with the lattice parameters of β−Bi2Pd

To ensure that the crystals composition is homogeneous on the hole crystal and

discard the presence of Bismuth or Pd clusters in it, we have performed Energy-

dispersive X-ray spectroscopy (EDX) measurements in a scanning electron microscope

(SEM) at the Servicio Interdepartamental de Investigacion (SIdI) of the Universidad

Autonoma de Madrid. We found that the 2:1 stoichiometry is constant in the hole

crystal and that there is not any presence of Bi or Pd precipitates on it. We have

measure the very same sample before and after exfoliate it using the Scotch tape

method, finding the same results in the outer and inner layers of the β −Bi2Pd

crystals. A SEM image of the crystal with the three different areas where EDX

experiments were performed is presented in figure 2.26.

EDX experiments reveals and almost constant composition of ≈ 65at.% of Bi and

≈ 35at.% of Pd on the hole sample, pointing out the very good quality of our crystals.

An example of the EDX spectra on the crystals is also presented in figure 2.26 b.

The superconducting vortex lattice in β−Bi2Pd at very low fields was measured

during the thesis and our result will be presented in chapter 3.
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Figure 2.26: In a, a SEM image of an β−Bi2Pd crystal. The pink rectangles

points the areas where different EDX spectres were measured. In b, the EDX spectra

measured in the area marked with a 2 in the SEM image. Each peak of the EDX

spectra is marked with the symbol of the corresponding element. The spectres at

different areas of the crystal shown a perfect match with the Bi2Pd composition.

2.4 Summary and conclusions

In conclusion, we have successfully implemented an experimental set up that allows us

to perform AFM-MFM measurements between 1.8 K and 300 K, applying magnetic

fields in any direction of the space up to 5 T in the Z direction and 1.2 T in the

X and Y directions. With this set up, we have characterized for the first time the

hysteresis cycle of MFM commercial probes as a function of the temperature from

1.8 to 300 K. We have also found that the MFM images of superconducting vortices

show star-like features at vortex positions when the MFM tip is magnetized bellow

its coercive field. Interestingly, at some magnetization fields, bellow the coercive field

of the tips, the lateral resolution is improved with respect to tips magnetized above

their coercive field. In addition, during the thesis, single crystals of β−Bi2Pd and

Mn5Si3 were successfully grown via the solution growth method and characterized in

our lab, presenting different properties as superconductivity or anomalous hall effect.
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Vortex lattice at very low fields in the low κ

superconductor β−Bi2Pd

3.1 Introduction

Historically, magnetic microscopy techniques have been of huge importance in the

study of superconducting materials. The first visualization of the vortex lattice was

done by Essman and Trauble [112] in Pb by Bitter magnetic decoration in 1967

(figure 3.1 a). The Bitter decoration technique consists in depositing small magnetic

particles on the surface of the superconductor. Under a magnetic field, the magnetic

particles will be aligned with the magnetic flux lines, pointing the position of the

individual vortices. Bitter decoration was also the first technique used to visualize

the vortex lattice in high TC superconductors in 1987 by Gammel et al. [113] in

YBCO (figure 3.1 b). The MFM was used for first time to measure the vortex lattice

in a superconductor in YBCO by Moser et al. [114] in 1995 in MgB2 (figure 3.1 c).

A few pioneers works of magnetic bitter decoration have studied the intermediate

state in Type I and the intermediate mixed state (IMD) in Type II superconductors,

proving the coexistence between domains of normal and Meissner state in type I and

between Meissner and mixed state in type II superconductors [40, 42, 43, 115, 116].

52
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Figure 3.1: a shows the first magnetic image of superconducting vortices in 1967,

it was measured by bitter decoration technique in Nb. Black dots points the position

of the vortices, revealing an hexagonal lattice. b shows the first visualization of the

vortex lattice in a High Tc superconductor (YBCO) in 1987, also by bitter decoration

technique. White dots points the position of the vortices. c shows the first image of

superconducting vortices measured by MFM in MgB2 in 1995. Vortices are shown

as green spots, in this case showing disordered arrangement. Images from references

[112] [113] and [114]

3.1.1 Single and multi band superconductors in the IMS

At fields below Hc1, in type II superconductors, the internal magnetic field can be

strongly inhomogeneous. Because of the full flux expulsion of the Meissner state,

demagnetizing effects can dominate the magnetic field behaviour. The sample sepa-

rates into domains with zero induction B = 0 and an induction close to µ0Hc1 between

(1−N)µ0H0 < µ0H < µ0H0 [40].

Thin films of Nb, TaN, PbIn and other materials show a IMS [40–43]. In high

quality single crystal of Nb with κ = 1.1
√

1
2 , flux expulsion coexists with regions

showing a vortex lattice. Small angle neutron scattering finds exactly the intervortex

distance expected at Hc1 in the vortex domains [42]. The area occupied by the

domains with zero induction decreases linearly with the magnetic field, so that the

magnetic induction reaches the value corresponding to the mixed phase [42, 43]. The

morphology of the IMS domains is mainly governed by geometric barriers preventing

domain nucleation [116], surface barriers which hamper the entrance of flux lines into

the sample [117, 118], VL anisotropies [42] as well as pinning forces [119]. A few

selected images of different domains geometries in the intermediate mixed state in
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Nb are presented in figure 3.2. Nb has only a single superconducting gap, but a

highly complex Fermi surface with three bands crossing the Fermi level [42].

Figure 3.2: Different domains morphologies in the IMS observed in Nb by bitter

decoration technique. In a, a high purity Nb disk 1 mm thick, 4 mm diameter, at 1.2

K and 600 Oe (Hc1 = 1400 Oe). Round islands of Meissner phase are surrounded

by a regular vortex lattice. In b, a square disk 5 × 5 × 1 mm3 of high purity

polycrystalline Nb at 1.2 K and 1100 Oe. Magnetic flux penetrates from the edges

in form of fingers which are composed of vortex lattice. In c, high-purity Nb foil 0.16

mm thick at 1.2 K and 173 Oe. It shows round islands of vortex lattice embedded

in a Meissner phase. Images adapted from [43, 120].

Recently, the interest in the IMS in low-κ superconductors has been renewed

thanks to the advances in the studies of new materials and visualization techniques.

SHM experiments have shown vortex chains and clusters in ZrB12 (0.8>κ<1.12) at

very low fields [1]. SHM measurements showed two different behaviours in ZrB12, one

at temperatures close to TC , characterized by an Abrikosov lattice with a first neigh-

bour distance, d= (0.75)1/4
(

Φ0
B

)1/2
and another at lower temperatures characterized

by the formation of vortex clusters and stripes with first neighbour distances almost

independent of the magnetic field.

Authors in [1] claim that the formation of vortex chains and clusters arises from

the combined effect of quenched disorder and the attractive vortex-vortex interaction

in the type-II/1 phase at lower temperatures. They observed that at the clusters, non-

pinned vortices tend to form the triangular arrangement with pinned vortices at the

centre (figure 3.3). The averaged first-neighbour distance inside the cluster exhibits a

very weak dependence on the external field (figure 3.3). They associated the regular

Abrikosov lattice observed at higher temperatures with the type-II/2 phase dominant

at these temperatures.
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Figure 3.3: Vortex cluster formation in ZrB12. In the left panel, SHM images

observed at 4.2 K after FC with progressively increasing magnetic fields, showing

the formation of a vortex cluster. The symbols indicate the location of the vortices.

Squares points the position of vortices pinned on defects and circles of vortices not

pinned on defects. In the right panel, averaged nearest-neighbour distance as a

function of the applied magnetic field for the vortex cluster (green circles). The

nearest-neighbour distance for the VL at 5.85 K is shown by the squares, which

follows the triangular arrangement of the Abrikosov VL (dashed line). Adapted

from [1]

On the other hand, 2H-NbSe2 and MgB2 show two superconducting gaps with

strong interband interactions[121–123] and both are extreme type II superconductors,

with κ� 1√
2 [124]. Several experiments to characterize the vortex lattice bellow HC1

have been done in this two materials using different magnetic microscopic techniques

[2–4].

Bitter decoration studies at very low fields, showed a remarkable different be-

haviour between 2H-NbSe2 and MgB2 [2]. Decoration measurements in 2H-NbSe2

showed a distorted hexagonal lattice (figure 3.4 a) while in MgB2, they showed vor-

tex accumulation in clusters at H=1 Oe and in stripes at H=5 Oe (figure 3.4 b and

c). Clusters and stripes are separated by vortex free areas, whose size is of a few

intervortex distances. Further Scanning squid measurements in MgB2 showed accu-

mulation of vortices in clusters with an intervortex distance almost independent of

the magnetic field [4]. Moreover, SHM measurements at very low fields showed an

hexagonal lattice for NbSe2 with the intervortex distance expected for the applied

magnetic field (figure 3.5 a and b) and vortex accumulation in clusters and stripes in

MgB2 [3] (figure 3.5 c and d).
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Figure 3.4: Bitter decoration images of the vortex structure at very low fields

in 2H-NbSe2 and MgB2. Vortex positions are shown as white dots on the blue

background. In a, vortices in NbSe2 in a distorted triangular lattice at T = 4.2 K

and H = 1 Oe. In b, vortices in MgB2 are accumulated in clusters at T = 4.2 K and

H = 1 Oe. In c, vortices in MgB2 are accumulated in stripes at T = 4.2 K and H =

5 Oe. Images adapted form [2].

Figure 3.5: Scanning Hall Microscopy images of the vortex structure at very low

fields in 2H-NbSe2 and MgB2. In a and b, SHM images of a distorted triangular

vortex lattice in NbSe2 at 4.2 K and 2 Oe. In c and d, SHM images of stripes and

clusters of vortices in MgB2 at 4.2K and 2 Oe.

The hexagonal lattice founded in 2H-NbSe2 was ascribed to vortices nucleated

in the mixed state at temperatures where H0 = 0[3]. Vortices are formed at high

temperatures, when Hc1(T ) is negligible and remain trapped when cooling. Vortices

then, form hexagonal lattice with a first neighbour distance, d = (0.75)1/4
(

Φ0
B

)1/2

and are retained at low temperatures by surface barriers [125]. No vortex free areas

have been reported in 2H-NbSe2.
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Authors in [2–4] propose that the existence of vortex free areas between cluster

and stripes in MgB2 can be explained in term of a new state that they called Type 1.5

superconductivity, based on the semi-Meissner state predicted by [126]. They argue

that the two gaps of MgB2 have different λ and ξ and subsequently different κ, one

bellow
√

1
2 and another above

√
1
2 . As a consequence, the vortex-vortex interaction is

the result of the competition between short-range repulsion and long-range attraction.

This, leads to the appearance of vortex clusters and stripes. They also argue that

the vortex stripes are independent of the crystal lattice and therefore they can not

be related to pinning due to topographic features.

A recent theoretical work have proposed that the vortex patterns in MgB2 can be

also explained as a result of the interplay between repulsive-attractive vortex-vortex

interaction, due to vortex-core deformations and pinning [5].

Figure 3.6: Plot of the theoretical and experimental values of the intervortex

distances in NbSe2 and MgB2 obtained by different techniques at very low fields.

Intervortex distances in NbSe2 show good agreement with the expected Abrikosov

lattice (red line). Vortices in MgB2 show two different intervortex distances, one

intergroup distance which agrees with the expected evolution of the Abrikosov lattice

and another intragroup distance which remains almost independent of the magnetic

field. Adapted from reference [3].

Figure 3.6 summarizes intervortex distances obtained from the experiments men-

tioned above in NbSe2 and MgB2. In NbSe2, the intervortex distance fits the expected

evolution with the applied magnetic field for an Abrikosov lattice. The intervortex

distance in MgB2 is separated in two groups, the intragroup and the intergroup dis-
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tances. The intragroup distance remains almost constant when changing the magnetic

field while the intergroup distance follows the expected behavior of the Abrikosov lat-

tice [3].

Comparatively, β−Bi2Pd has a small, yet sizable, value of κ≈ 6. It has very weak

pinning and is a single gap isotropic superconductor [6–8].

3.1.2 Previous works on β−Bi2Pd crystals

In 2012 Imai et al. [127] grew β−Bi2Pd single crystals and suggested the possibility

of a multigap behaviour. Their macroscopic measurements appeared to be consistent

with multigap superconductivity. Their specific heat measurements showed a peculiar

behaviour bellow TC when changing the temperature, similar to the observed in the

two gap superconductors MgB2 and Lu2Fe3Si5 (the jump magnitude at TC , a fast

increase at low-temperature and a small shoulder in between) [128–130] (figure 3.7

b). Moreover, their HC2 measurements as a function of temperature were also con-

sistent with the two gap scenario as they showed positive curvature near the critical

temperature similar to other multi-gap superconductors [131–134] (figure 3.7 c).

Several works have been done since in order to understand the electronic struc-

ture and the gap behaviour of β−Bi2Pd. Both, vortex lattice and superconducting

gap behaviour studied by STM are actually close to prototypical single gap s-wave

behaviour [6]. Single gap was also confirmed by ac calorimetric measurements by [8].

3.1.2.1 STM and specific heat measurements

Recent STM and specific heat measurements performed in β−Bi2Pd single crystals

grown in the LBTUAM have probed the single gap behaviour of β−Bi2Pd [6, 8].

STM measurements were done by Dr. Edwind Herrera at the LBTUAM and specific

heat measurements were done by the group of Prof. Peter Samuely at the Centre of

Low Temperature Studies in Slovakia. Both measurements were done in β−Bi2Pd

samples of the same series that we have grown and measured in this work (see section
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Figure 3.7: In a, the evolution of the resistivity with the temperature for β−Bi2Pd

obtained by [127]. Insets show ρ near TC and ρ at temperatures less than 25 K

plotted as a function of T 2. Black circles represents the experimental data and red

line a fit proportional to T 2. b shows the behaviour at low temperatures of the

normalized electronic specific heat in zero field. The red circles are the experimental

data and the dashed black curve was calculated using the two-band model [127]. In

c, the evolution of the upper critical field with the temperature, also measured by

[127]

2.3). In figure 3.8 a the evolution with the temperature of the normalized experimental

tunnelling conductance in β−Bi2Pd is presented, together with the evolution of the

superconducting GAP with the temperature extracted from it (Figure 3.8 b). Both,

conductance measurements and GAP evolution are consistent with a single GAP BCS

superconductor with ∆ = 0.76 meV [6]. The specific heat represented in figure 3.8

c was obtained using an ac technique [135, 136]. The electronic contribution of the

specific heat perfectly fits the BCS single GAP theory [8]. The fit reproduces very

well the jump at the anomaly and the shape of the experimental curve. In the data

there is not any signature of an additional second GAP.

In a recent STM experiment in epitaxially grown thin films, authors find supercon-

ducting properties that are very different from the bulk behaviour [137]. The critical
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Figure 3.8: In a, the normalized tunnelling conductance curves for β −Bi2Pd

at different temperatures are presented. Experimental data (black circles) matches

the BCS single GAP fit (red line). The evolution of the superconducting GAP

obtained from the curves in a is shown in b (black circles), matching the prototypical

BCS single GAP behaviour (red line). In c the evolution of the specific heat with

the temperature measured by [8] at 0 and 1 T. The inset shows the normalized

electronic specific heat showing the sharp jump in the superconducting transition.

The continuous blue line is the theoretical curve based on the BCS theory. Adapted

from references [6, 8].

temperature is somewhat larger and two gaps appear in the tunnelling conductance.

Furthermore, a zero bias peak appears in the centre of the vortex cores, indicating

the formation of vortex bound states [121, 138, 139]. Authors argue that these states

could be topologically non-trivial.

3.1.2.2 Fermi Surface

The first calculation of the electronic band structure and Fermi surface (FS) in

β−Bi2Pd were made by Shein and Ivanovskii [140] (figure 3.9 a), finding that the

Pd 4d and Bi 6p states are responsible from the metallic character of the material.

They studied the system with and without spin orbit coupling (SOC) determining

that the effect of the SOC is of minor importance. The FS can be divided in four
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main structures: a 2D hole-like deformed cylinder parallel to the Kz direction (green

colour in 3.9 a), a hole-like pocket centred in the Γ -point, electron-like 3D pockets

overlapping the 2D hole like deformed cylinder and one pocket inside the 3D elec-

tron like pockets (yellow in 3.9 a) [140]. FS calculations have probed that there are

anisotropies of chemical bonding which causes that Bi/Bi layers are less coupled than

Bi/Pd layers. This result is also consistent with STM topographic measurements of

[6] and with our own result as it will be discussed.

Figure 3.9: In a, the calculated Fermi surface of β−Bi2Pd is shown with the first

Brillouin zone [140] and in b, the Fermi surface of β−Bi2Pd recorded by angle-

resolved photoemission spectroscopy (ARPES). Two electron-like and two hole-like

Fermi surfaces are denoted by α, β and γ, δ, respectively [141].

A later work [141] also have found topological protected states in β−Bi2Pd using

angle-resolved photoemission spectroscopy (ARPES). The FS obtained by ARPES

mostly agrees with the calculations of [140]. The resulting FS obtained in [141] is

presented in figure 3.9 b. It represents the projection in the Kx-Ky plane of the 3D

FS. Photoemission reveals a Dirac cone well below the Fermi level[141]. Spin resolved

measurements provide polarized bands close to the Dirac cone. The same authors

suggest that topologically non-trivial spin polarized bands crossing the Fermi level

might rise up to the surface.

3.2 MFM and SOT characterization

Previous works have studied the bulk properties and the vortex lattice at high fields

with STM [6, 7]. However, prior to our work, the study of the vortex lattice bellow

and near HC1 has not been reported yet. This was our main motivation and the
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starting point of our study in this compound.

3.2.1 Topographic characterization

For topographic characterization of the sample, AFM measurements were made in a

disk like sample approximately 1 mm thick and 1 cm radius, glued with low tempera-

ture silver epoxy to our LT-AFM sample holder and exfoliated at room temperature

using scocht tape. Topographic measurements were taken using the dynamic mode

described in section 2.1.3.7.1 with typical sample tip separation around 10 nm.

Figure 3.10: Different areas of the β−Bi2Pd crystals after exfoliation with scotch

tape at RT. Both images were measured at 2K. In c and d, the topographic profiles

corresponding to the green and red lines in the a and b images are shown. Image a

has atomic flat areas separated by steps of few Armstrongs while b has steps up to

tens of nanometres. In e, the unit cell of β−Bi2Pd with the distance between Bi

layers highlighted.

After exfoliate it, the sample presents a combination of very clean areas with flat

terraces and atomic steps and areas with steps up to some tens of nanometres. The

atomic flatness of the surface makes it a very good candidate to SPM measurements

including MFM. Figure 3.10 a and b show two 7× 7µm2 topographic images took

at 2 K. In c, the profiles of the green and red lines on the images are shown. The

heigh of the step marked with the green line corresponds with the distance between

Bi atoms in the unit cell as it is shown in figure 3.10 e, pointing out that the surface

is terminated by Bi as it was observed in STM measurements by [6]. The flatness of

the sample allows measuring, at 2K, areas up to 10×10m2 large.
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3.2.2 Magnetic characterization

The magnetic profile of the sample was mapped together with its topography using

the MFM mode described in section 2.1.3.7.2. For magnetic imaging, the tip-sample

separation was kept constant at 120 nm during the scan and the MFM probe mag-

netized up to 1500 Oe at 10 K.

Figure 3.11: In a, we show a topographic image, with a line cut in the inset.

Note that the height of the observed steps is of about 10 nm. In b, we show a

vortex lattice image taken with MFM at 2K and 300 Oe in the same area, together

with its Fourier transform (inset). The lattice is hexagonal over the whole area.

The diagonal blue lines in the magnetic image are features due to the long range

electrostatic interaction with the steps of the topography.

Fig.3.11 shows simultaneous topographic and magnetic images acquired at 2 K and

300 Oe after Field Cool (FC). The topography shows terraces separated by steps of

≈ 10nm, produced during the cleaving of the sample. In the simultaneous magnetic

signal a vortex lattice is observed over the complete scanned area. We observe a

hexagonal vortex lattice over the whole image. Dark blue contrast is also seen in

the magnetic images at the position of the topographic steps due to the long range

electric interaction between the steps and the MFM tip [101, 142].

3.2.2.1 Evolution of the vortex lattice with the applied magnetic field

We have observed vortices at extremely small applied magnetic fields, using a com-

bination of Squid on the Tip microscopy (SOT) with a set up described in [143]

and MFM measurements. SOT measurements were done always in FC conditions by
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Dr. Yonathan Anahory and Dr Lior Embon in the group of Prof. Eli Zeldov at the

Weizmann Institute in Israel with a tip-sample separation of several microns.

Figure 3.12: Evolution of the vortex distribution in β−Bi2Pd with the applied

magnetic field. Images a-g were taken with SOT and present a disordered distribu-

tion at the lowest field that become more orderer at higher fields, vortex accumula-

tion in clusters and linear features is also shown. Images from h-l were taken with

MFM, a regular Abrikosov lattice is clearly shown in all images. The lattice becomes

denser as the magnetic field increases, as expected. The color scale represents the

out-of-plane field, with span of 2 in a, 3.5 in b-c, 8.4 in d, 7.2 in e and 7.0 in f-g Oe

in the SOT images and of 2 Hz in the MFM images, h-l. The scale bar in white bar

is 4µm in a-g, 560 nm in h and 1µm in i-l.

The measurements at very low magnetic fields using SOT and at higher fields

with MFM provide a radically different behaviour. The vortex lattice is disordered

at the lowest fields and becomes gradually more ordered, reaching the hexagonal

arrangement for fields close to 100 Oe. Above this field, vortices always arrange

in a hexagonal lattice. Selected SOT and MFM images are shown in Figure 3.12.

From visual inspection it is clear that, at the lower fields, the vortices are randomly

arranged. Upon increasing the field, the flux line lattice becomes gradually more

ordered in a hexagonal arrangement, expected for Abrikosov flux line lattice as is

clearly seen in the images above 100 Oe.
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Figure 3.13: Examples of Delaunay triangulated images. Images at the left column

were taken with scanning SQUID at low fields (5 Oe and 12.5 Oe) and images in

the right column were taken with MFM (300 and 400) Oe. In e, an example of

the Delaunay triangulation method. Black dots represents the vortex positions and

and black straight lines the intervortex distances, black circles are the circumcircle

corresponding to each triangle formed be three vortices.

To quantitatively describe the vortex distribution, Delaunay triangulation was

performed for all SOT and MFM images. In the SOT images, along the defects,

above H ≈ 10 Oe, we do not fully resolve isolated vortices. We have used the small

peaks observed in the local magnetic field profile to identify vortex positions. To

independently verify that the count is right, we have integrated the magnetic field in

the SOT images along the defects and verified that the resulting flux coincides with

expected value from the number of vortices we use in the triangulation. A few images

are shown in Fig. 3.13 as an example, together with a Delaunay triangulation scheme.

A Delaunay triangulation for a set of vortices in a plane is a triangulation such that

no vortex in the set is inside the circumcircle of any triangle in the triangulation [144].

The results of the triangulation are presented in in figure 3.14. The colour map

correspond to the probability of the intervortex distances extracted from the Delau-

nay Analysis. For fields below ∼ 100 Oe, the histogram broadens and the distances

between vortices become wide-spread. At very low magnetic fields we can observe

intervortex distances ranging between half and twice the expected intervortex dis-

tance for a hexagonal lattice (d = (0.75)1/4
(

Φ0
B

)1/2
). Image inspection shows the

strong spread in distances is due to location of vortices at lines, with the formation of

vortex chains. This accumulation leaves vortex-free areas in between. Interestingly,
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Figure 3.14: Intervortex distances vs the applied magnetic field. The black line

represents the expected intervortex distance (d = 1.075
√

φ0
B ), the red circles the

measured intervortex distances with the MFM and the colour map the distribution

of probabilities of intervortex distances obtained with the triangulation of the SOT

images. Two different regimes are found, one at fields bellow HC1 ≈ 100 Oe, where

the vortex distribution is wide spread and other above HC1 ≈ 100 Oe, where the

vortices are ordered forming the Abrikosov lattice. The lower critical field measured

by [8] is represented by the green doted line. Colour scale is as represented by the

bar at the right. In the insets, the histograms obtained for 3 and 25 Oe.

the histogram is peaked at the expected intervortex distance d, although it is skewed

at large distances, reflecting that pinning is limited by intervortex repulsion. It is

important to note that the vortices arrange in an hexagonal lattice well bellow the

HC1 of the sample, 225 Oe [8].

3.2.2.2 Penetration depth at the defects

Simultaneous topographic images were not recorded in SOTmeasurements and we can

not unambiguously determine that the magnetic features are related with topographic

steps, despite is the most probable scenario. Vortices located at defects give weaker

spots in the SOT images. The value of the magnetic field at the vortex centre is

smaller than the value we find for vortices located far from the defect. This is nicely
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visible at lower fields when vortices are well separated and do not overlap, (see figure

3.15 b), where the vortices arranged in a chain like structure, present weaker spots

that the ones far from the chain. There are a few vortices in the SOT images that

are not arranged along the main line and also show weaker spots, for example the

one marked by an yellow arrow in figure 3.15 c. At higher magnetic fields, vortices

cluster along lines close to these positions are found (figure 3.15 d). These vortices

are thus also located close to a defect.

Figure 3.15: Selected images of SOT in β−Bi2Pd. In a, two vortices on a defect.

In b, c and d the evolution of the same area when increasing magnetic field. Vortices

on the defects have weaker spots. In the inset the profiles of two vortices, one on the

defect and another far from it together with the fitting described in the text. In c,

the yellow arrow points a vortex far from the stripe which also shows a weaker spot.

Visual inspection of d, shows that there is a vortex cluster at this position at higher

fields, pointing out that there is also a defect at this position. 2 (a), 3.5 (b-d). The

scale bar is white is 4µm

In the inset of Fig. 3.15 a we show magnetic field profiles along two vortices

showing weak and bright spots respectively. We can fit the profile of the isolated

vortex to a monopole located at a distance λ+ dSOT from the SOT where λ is the

penetration depth and dSOT is the distance from the tip to the sample surface. We

estimate the value of dSOT by taking λ = 132± 20 nm [8] for the bright spots. We

then leave the penetration depth as a free parameter to fit the profile of the weak

spots and find λD = 270±40 nm which is about two times the value found elsewhere.

3.2.3 Origin of the variation in λ

The dependence of λ and ξ with the strain produces an effective interaction between

the crystal and the vortex lattices [145]. Also, the stress produced by flux pinning
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has been proposed as a source of magnetostriction effects in superconductors [146].

A recent theoretical work has demonstrated that strain can induce a square vortex

lattice in the tetragonal superconductors [147]. The coupling between crystalline

elasticity and the vortex lattice can be treated using the dependants of the critical

temperature with the pressure dTc/dP [145, 148–150]. Generally, vortices are repealed

from places where the internal strain is bigger if dTc/dP > 0 and are attracted to those

places if dTc/dP < 0. The value of dTc/dP in β−Bi2Pd is unknown and therefore

we can not unambiguously prove that the vortex accumulation at the defects in our

crystals are due to strain effects, but it is known that the non-centrosymmetric α-

Bi2Pd crystallizes at 3.8 K, 1.2K bellow the β-Bi2Pd. At low magnetic fields, we find

that vortices are accumulated along defects, which is compatible with dTc/dP < 0.

Let us remark that the pressure dependence of Tc and of Hc2 in MgB2 is sizeable,

so that one can also in principle expect some coupling between strain and the vortex

lattice[151].

3.2.4 Origin of the flux landscape

All our experiments are in field cooled conditions, so we quench, during cooling,

vortices at locations where the free energy landscape is more favourable [116–118, 125].

For the lowest magnetic fields, we find strong gradients in the vortex distribution. To

analyse this further, we calculate the elastic energy associated to pairs of vortices, F ,

at different locations in our images. We compare the result for vortices located at a

defect and giving weak spots in SOT with the elastic energy for pairs of vortices far

from the defects. To this end, we use F = φ2
0

4πµ0λ2 log(κ) + φ2
0

4πµ0λ2K0(d/λ) for the free

energy per unit length of two vortices interacting with each other at a distance d [29].

The first term comes from the energy of superfluid currents, giving the line tension

of the vortex, and the second term the interaction energy between vortices. K0 is

the modified Bessel function of the second kind. We then calculate F for vortices far

from defects using the bulk λ and for vortices at the defects we use the measured λD
. Below ≈ 50Oe the intervortex distances vary from 0.5 to 4 µm and the second term

of the interaction energy remains negligible with respect to the first term, giving a

difference in free energy between both situations of ∆F ≈ 2× 10−11 independent of
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the intervortex distance.

We can now compare ∆F with the pinning energy of a vortex pinned at a normal

inclusion in β-Bi2Pd using Ucore = B2
cπξ

2

µ0
[152], with Bc the thermodynamic critical

field and ξ the superconducting coherence length (ξ ≈ 25 nm, [6, 153]). We find

a value which is smaller than ∆F , 1× 10−11Jm−1. Thus, single vortex pinning at

defects play an unimportant role in the vortex distribution on β−Bi2Pd. Moreover,

it is difficult to think of normal inclusions as big as ξ ≈ 25 nm to pin isolated vortices.

Thus, pinning seems to play a minor role in β-Bi2Pd at low fields. The accumulation

of vortices at the defects can be explained with the lower free energy caused by the

experimentally determined changes in λ.

It is quite remarkable that simple estimation provide such clear results, and are

probably particularly valid when vortices are very far apart at the lowest magnetic

fields we have studied. For higher magnetic fields, the vortex lattice density in-

creases and the previous two-vortex interaction approximation is no longer valid. For

fields above ≈ 50 Oe we have consider the free energy of a vortex, interacting with

his first six neighbours arranged in a hexagonal lattice using: F = n
φ2

0
4πµ0λ2 log(κ) +

3n φ2
0

4πµ0λ2K0(a/λ) [29], where a is the lattice parameter of the Abrikosov lattice de-

termined by a = (0.75)1/4
(

Φ0
B

)1/2
and n the number of vortices per unit area. The

difference of energy between six vortices close to a defect with λD and six vortices

far from the defect with λ changes with the intervortex distance. We find that when

vortices at the defect are closer than about 400 nm, it is no longer energetically

favourable to add new vortices to the defect. This can explain the vortex distribution

at low fields shown in Fig. 3.14. We find that the cross-over field is of ≈ 200 Oe.

In the experiment, we find that already at ≈ 100Oe the distance histogram closes

and the vortex lattice becomes hexagonal. We believe that, given the crude approx-

imations made, the agreement is remarkable and provides a simple but successfully

explanation to the vortex landscape at low fields.

It is also noteworthy that the average value of the intervortex distances follows d

for all magnetic fields. This finding has not been previously reported, to our knowl-

edge, at low magnetic fields and in presence of strongly inhomogeneous vortex distri-

butions. Instead the usual pictures consist of clusters of vortices with widely differing
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intervortex distances that are often smaller than d.

At the beginning of this chapter, we have introduced previous measurements in

MgB2 where vortex clusters, stripes and vortex free areas in between were found.

Authors of [2–4] point out that the attractive-repulsive vortex-vortex interaction in

the Type 1.5 superconducting state due to the existence of multiple superconducting

gaps can explain this vortex distribution. Results in NbSe2 are by contrast quite dif-

ferent. A distorted hexagonal lattice was found at very low fields with first neighbour

distance following d= (0.75)1/4
(

Φ0
B

)1/2
. This was explained as trapped vortices that

remains at the sample after FC bellow HC1 due to surface barriers [2, 3].

The vortex patterns that we have measured in β-Bi2Pd showed both behaviours.

At very low fields, the patterns are similar to the ones described for MgB2 with

vortex stripes, clusters and vortex free regions. At higher magnetic fields, still below

Hc1, we observe by contrast a hexagonal, defect free, vortex lattice.

β-Bi2Pd is clearly a single gap superconductor, so vortex clustering cannot be

associated to multiple gap opening here [6, 8]. Thus, the vortex patterns at very low

fields in β−Bi2Pd are due to the distortion of the hexagonal lattice formed during

the FC process by pinning at crystalline defects due to differences in the values of

the penetration depth. At very low fields, the vortex-vortex repulsion potential is

small, and pinning dominates, leading to the observed vortex clustering. At higher

fields, the vortex-vortex repulsion potential impedes pinning of isolated vortices and

the vortex lattice arranges as a whole in a regular hexagonal lattice.

3.2.4.1 Evolution of the vortex lattice with the temperature

The penetration depth is expected to increase as the temperature approaches TC ,

therefore, the superconducting vortex profile will be broader as the temperature in-

creases. Eventually, at Tc, the magnetic profile will become homogeneous over the

hole surface of the superconductor [29, 154].

We have measured the magnetic profile of the same area at different temperatures

and constant magnetic field. After cool down the sample to 2.75 K in a perpendicular
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Figure 3.16: Evolution of the vortex lattice with the temperature. In the upper

panel, a plot of the evolution of the magnetic contrast with the temperature is shown.

The experimental data (black circles) was obtained from MFM images measured

under a perpendicular magnetic field of 300 Oe at the same area. The blue line

represents the expected magnetic contrast due to the theoretical evolution of λ

as explained in the text. Both curves have the same behaviour, proving that the

evolution of the vortex width is dominated by the evolution of λ. In the lower panel,

four of the MFM images used to obtain the plot. Scale bar in white is 1µm.

magnetic field of 300 Oe, the temperature was increased to 3, 3.25, 3.5, 4, 4.5 and 5

K recording the magnetic profile at each temperature. The evolution of the vortex

profile width with the temperature is presented in figure 3.16. Experimental data was

obtained as the difference between the MFM signal at the centre of the vortices and

the background between vortices. Vortices magnetic profile become broader as the

temperature increases. This can be related to the natural increase in the penetration

depth, λ(T ) = λ(T=0)
1−(T/TC)4 , that characterizes the decay of the magnetic field outside

of the vortex core. In the image, the relation between the experimental data and

the theoretical evolution of the penetration depth is clear. We have calculated the

theoretical value of the contrast as the difference of the magnetic field at the centre

of a vortex and in between its neighbours in an hexagonal lattice using equation [?

]. At 5 K, no vortex lattice was found in the sample, in agreement with the resistive
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TC [6].

In our measurements we have not founded any evidence of vortex clustering or

lattice distortion at the lower temperatures associated to the attractive interaction

between vortices in the type II/1 regime reported in ZrB12 [1].

3.2.4.2 Orientation of the vortex lattice

Previous works in the same β−Bi2Pd crystals have found that at high fields, the

hexagonal vortex lattice is oriented with one of its axis along a crystallographic di-

rection [6]. AFM has no atomic resolution and therefore, it can not determine the

directions of the crystals lattice, but they can be inferred from the direction of the

atomic steps that are easily measured with an AFM.

Figure 3.17: Example of the two vortex lattice orientations found. In a, the vortex

lattice at 200 Oe form ≈ 30◦ with respect to the topographic step (dashed black line

in the image). In b, at 300 Oe, one of the main directions of the vortex lattice is

normal to the topographic step. In both images the direction of the vortex lattice

os highlighted with a light blue line.

Here, we have found that at low magnetic fields, bellow ≈ 200Oe, the vortex lattice

is preferentially oriented with one axis following the steps. It can be related to the

accumulation of vortices at the defects due to the differences in penetration depth.

At higher magnetic fields, when the distances are practically homogeneous over the

whole field of view, the vortex lattice is oriented at 90◦ to the defects (figure 3.17).

This hints that another mechanism, possibly the interaction between the hexagonal

vortex lattice and the tetragonal crystalline symmetry observed at higher magnetic
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fields [6], is fixing the orientation of the vortex lattice.

3.3 Summary and conclusions

In conclusion, we have observed two different regimes in the patterns of pinned super-

conducting vortices at low magnetic fields in the single gap superconductor β-Bi2Pd.

We have shown that lines of vortices form at defects due to pinning at very low

magnetic fields, while at higher fields the vortex lattice acts as a whole, leaving a

regular hexagonal lattice even below Hc1. Crystalline strain close to defects deter-

mines the vortex arrangements at low fields and leads to sizeable modifications of

the local superconducting screening properties, as shown by the measured increase in

the penetration depth λ close to defects. The mutual influence of crystalline strain

and the vortex lattice has been extensively studied at high magnetic fields. Here,

we show that this mutual influence also modifies vortex arrangements at very low

magnetic fields. At fields slightly above HC1, where vortices are arranged in a regular

Abrikosov lattice, we have found that the magnetic profile of the vortices follow the

expected behaviour when changing the temperature. We have not found any evi-

dence of vortex clustering when decreasing the temperature associated to Type II/1

superconductivity in ZrB12 [1].



CHAPTER 4

Manipulation of the crossing lattice in

Bi2Sr2CaCu2O8

4.1 Introduction

Bismuth strontium calcium copper oxide, or BSCCO, is a family of high-temperature

superconductors having the generalized chemical formula Bi2Sr2Can−1CunO2n+4,

with n = 2 being the most commonly studied compound, also called Bi-2212. Dis-

covered in 1988 [155], BSCCO was the first high-temperature superconductor which

did not contain a rare earth element. It is a cuprate superconductor, an impor-

tant category of high-temperature superconductors sharing a two-dimensional layered

(perovskite) structure with superconductivity taking place in the copper oxide planes.

The crossing lattice of Josephson vortices (JVs) and pancake vortices (PVs) in Bi-

2212 have attracted a lot of attention in the scientific community in the last decades.

Theoretical works have described the interaction between PVs and JVs at different

regimes [47, 49, 50, 52, 58] and experimentalist have imaged the crossing lattice by

several techniques like magneto optical (MO) imaging [63–65] (figure 4.1 a), bitter

decoration [61, 62] (figure 4.1 b), and Hall microscopy [66–68] (figure 4.1 c).

Those works have characterized the crossing lattice at different polar angles and

strengths of the applied magnetic field. They have found good agreement between

74
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theory and the experimental values of the lattice parameters of the JV lattice and

the distribution of PVs on top of JVs [66, 67]. They have also achieved PVs ma-

nipulation in some extent [68]. But, the local manipulation of single PVs and the

experimental measurement of the force between PVs and JVs has not been achieved

yet. On the other hand, local manipulation of single vortices was achieved in YBCO,

another anisotropic high-TC superconductor. Authors in [84, 91] have demonstrated

that MFM allow to interact with the vortex lattice, making possible to manipulate

individual or groups of vortices to study their dynamics and interactions.

Figure 4.1: In a, a MO image measured in a Bi-2212 single crystal showing vortex

chains. Obtained at T = 72 K, B⊥ = 13.8 Oe and B‖ = 60 Oe. In b, bitter decoration

image in a Bi-2212 single crystal showing vortex chains with vortices in between.

Obtained at T = 72 K, B⊥ = 12 Oe and B‖ = 32 Oe. In c, a SHM image of PV

chains in a Bi-2212 single crystal at T = 81 K, B⊥ = 0.8 Oe and B‖ = 35 Oe. In

the three images, vortices appear as white dots on the black background. Adapted

from [61, 65] and [59].

4.1.1 Interaction between JVs and PVs

At small fields and high anisotropy factor, γ, PVs do not influence much the structure

of JVs. However, there is a finite interaction energy between PV stacks and JVs

(crossing energy) due to the PVs displacements under the action of the JVs in-plane

currents [49]. This interaction causes an effective attractive force between PVs and

JVs. The force per unit length along the c-axis, between a PV stack and a JV stack

was calculated by [49] as:

fx = 1.4φ2
0

4π2azγ3s2log(λab/s)
(4.1)
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Where φ0 is the quantum of flux, az the lattice parameter of the JV lattice in the c-

axis direction, s the distance between superconducting layers and λab the penetration

depth for superconducting currents in the a-b plane.

4.1.2 Manipulation of the crossing lattice in Bi-2212

Figure 4.2: SHM images at T = 80 K and H‖ = 27.5 Oe, with the JV lattice

rotated by (left to right, top to bottom, anticlockwise rotation): 0◦, 15◦, 30◦, 45◦,

60◦, 75◦, 105◦, 120◦, 135◦, 150◦, 165◦, and 180◦. PVs appear as black dots in the

grey background. The black arrow indicates the direction of the magnetic field Scan

size 28 µm × 28 µm. Adapted from [68].

Previous works have been able to manipulate the crossing lattice in Bi-2212,.

They were able to drag PVs with the JVs by changing the direction of the in-plane

magnetic field at temperatures close to TC [59, 68]. An example is presented in figure

4.2, where the crossing lattice was successfully rotated in Bi-2212 at 80 K.

Authors in [68] argue that the attraction force between JVs and PVs at 80 K

in their crystals is three times larger that the pinning force of the PVs. Therefore

changing the direction of the JVs by rotating the in-plane the magnetic field, drags
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the PVs with them.

4.1.3 Manipulations of superconducting vortices with MFM

4.1.3.1 Force of a MFM tip on a vortex

MFM tips exerts a given force on magnetic samples, this fact is often a disadvan-

tage, as the tip-sample interaction could change the magnetic state of the sample

and somehow introduce artefacts in the measurement [102–104, 156]. In the current

chapter, we deliberately have used this force to manipulate superconducting vortices.

We have magnetized the tip parallel to the vortices to give attraction force between

them. Such a force, will decrease as the tip-sample separation increases.

To obtain an insight of the force acting on the vortices, we have followed the

calculation of the tip-vortex interaction made by [157]. This model, treats both, tip

and vortex, as monopoles. The model assumes that the tip is and infinitely long and

narrow cylinder with its mains axis and magnetization parallel to the Z axis and the

vortex as a monopole residing at a distance λ bellow the surface of the superconductor,

which fills the half space z<0 with a magnetic field [158, 159]:

~B(~r,z)≈ φ0(~r+ (z+λ)ẑ)
2π(R2 + (z+λ2))3/2 (4.2)

Where r is the radial distance from the tip, z the vertical distance and R the

radios of the tip. Thus, the force acting on the tip due to the interaction with the

superconducting vortex is:

~F (~r,z)≈m~B(~r,z) (4.3)

where m is the dipolar moment per unit length of the tip. Maximizing the force of

equation 4.3 in z, we obtain:
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Fmaxz = mφ0
2π(z+h0)2 (4.4)

where h0 is the offset in the tip-sample separation due to the approximation of

the monopole model. The maximum lateral force is approximated as:

Fmaxlat = αFmaxz (4.5)

Here, α is a constant of proportionality whit a value between 0.3 and 0.4 [158, 160].

4.1.3.2 Vortex manipulation in YBCO

Previous measurement have probed the possibility of drag vortices in the High-TC
superconductors, YBCO [84, 91]. In particular, the authors in [84] have measured

the interaction of a moving vortex with the local disorder potential. They found an

unexpected and marked enhancement of the response of a vortex to pulling when they

wiggled it transversely. The probed that wiggling the vortex along the fast scan of

the MFM image, allows to move the vortex along the slow axis of the image when the

magnetic tip is near enough to the sample and therefore the magnetic force between

tip and sample increases. An schematic representation of the process is presented in

figure 4.3 together with real MFM images of stationary and dragged vortices.

4.2 AFM/MFM studies

We have presented how previous works have manipulated individual vortices in YBCO

and groups of PVs trapped on JVs in Bi-2212 at temperatures close to TC . But,

prior to our work, individual manipulation of PVs on JV, i.e. manipulation of the

superconducting phase on a JV, has not been studied yet. Moreover, the force to move

a PV out a JV remains unknown. This was our main motivation and the starting

point of our study in this compound.
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Figure 4.3: Scheme of vortex movement by MFM. The MFM tip (triangles) attracts

a vortex (thick lines) in a sample with random pinning sites (dots). In a, the applied

force Flat is too weak to move the vortex due to the big tip-sample distance. In b,

the vortex moves right, as the tip rasters over it in the direction indicated by the

arrow. The blue line illustrates the initial vortex position, the dashed blue line shows

an intermediate position and the green line shows the final configuration. In c and

d, MFM scans for two different scan heights, z = 420 nm (Fmaxlat ≈ 6 pN), not enough

to perturb vortices (c) and z = 170 nm (Fmaxlat ≈ 12 pN), enough to drag the vortices

(d). Inset: Scan at 5.2 K, showing a stationary vortex. Adapted from [84].

We make several manipulation experiments. First, we show that PVs can be dis-

placed by exciting them with the tip motion and turning the magnetic field. Then,

we show how the tip motion can move PVs from one JV to another. We have also

crossed JVs after induce a JV lattice at an angle with respect to a strongly pinned

JV. Finally, we have studied the PVs entry in the sample at low temperatures, de-

termining that it is governed by pinning. Our experiments show that phase patterns

in superconductors, even when these are strongly pinned, can be controlled by the

action of small forces and the direction of the magnetic field.

AFM/MFM measurements were performed in the set up of our lab described in
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section 2.1 in a Bi-2212 single crystal. The crystal was grown by the group of Prof.

Kadowaki at the University of Tsukuba in Japan, following a procedure similar to the

one described in [161]. It has a superconducting critical temperature of ≈ 88 K.

4.2.1 Topographic characterization

For topographic characterization of the sample, AFM measurements were made in a

Bi-2212 single crystal glued with low temperature silver epoxy to our LT-AFM sample

holder and exfoliated at room temperature using scotch tape. The cleaving of the

surface occur in the c-axis [162, 163]. We have aligned the crystal with the main axis

of our coil system, to apply the Z component of the magnetic field along the c axis

and Bx and By along the in-plane crystalline axis. Topographic measurements were

taken using the dynamic mode described in section 2.1.3.7.1 with typical sample tip

separation around 10 nm.

After exfoliate it, the sample presents very clean areas with flat terraces and

atomic steps. The atomic flatness of the surface have allowed us to measure areas

of ≈ 10× 10µm2 at 5 K. An example of the crystal surface is presented in figure

4.4 together with the unit cell and a plot of evolution of the magnetization with the

temperature near the superconducting transition.

4.2.2 Obtaining the Crossing Lattice

We have imaged the crossing lattice in our Bi-2212 single crystal using the MFMmode

described in 2.1.3.7.2. First, we have cooled the sample under an applied magnetic

field of 30 Oe in the Z direction down to 5.3 K and measured the resulting PV

distribution. We obtained the regular Abrikosov lattice with the intervortex distance

expected for the applied magnetic field (figure 4.5).

After measure the Abrikosov lattice, we ramped the field in Z down to zero and

applied a magnetic field of 200 Oe in the Y direction. We obtained images as shown

in Fig.4.6 a. The Abrikosov lattice is interspersed with lines of PVs pinned on JVs.
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Figure 4.4: In the upper panel, in the left, an AFM topographic image of the

cleaved Bi-2212 single crystal and its unit cell (right). The topography shows atom-

ically flat terraces with with steps ≈ 15 nm high. In the lower panel, the evolution of

the magnetization of the same Bi-2212 crystal with the temperature near TC ≈ 88K.

The line is a guide to the eye.

Figure 4.5: MFM image of the regular Abrikosov lattice. Measured in the Bi-2212

single crystal after FC at 5.3 K with a perpendicular magnetic field of 30 Oe.

To eliminate as far as possible PVs, we heated the sample quickly above 70 K and

cooled it again to 2 K. This freed the PVs from their pinned positions and more JVs

decorated with PVs are visible (figure 4.6 b). After repeating this process several
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times we have obtained areas with almost every PV pinned on top of a JV (figure 4.6

c). The same process was always used to obtain the decorated JVs in the following

sections.

Images in figure 4.6 were used to calculate the anisotropic factor of our Bi-2212

crystal (for the details of the calculation see chapter 1). Using the distance between

JVs, we have calculated γ = 250 and az = 15.4 nm. The size of the JVs was also

calculated using the relation aJV = γs and bJV = s [51], finding aJV = 375nm and

bJV = 1.5nm.

Figure 4.6: Decorated JVs with PVs. Images obtained with B‖ = 200 Oe along

the Y direction, at 5.3 K. In a, the vortex arrangement after FC with B⊥ = 30 Oe

and turn it to zero and B‖ to 200 Oe at 5.3 K. Some decorated JVs are visible with

a significant number of trapped PVs in between. In b, a different configuration after

heat the sample up to 70 K and cool it down again to 5.3 K. More decorated JVs

are visible and the number of PVs in between have decreased. After repeat the same

process several times, almost all the PVs are decorating JVs (c). The field of view

has moved during heating, so that the images are not taken at exactly the same

position.

The penetration depth, λab, of Bi-2212 single crystals was experimentally deter-

mined by previous work using different methods [164–167]. This works have reported

values between 180-270 nm for λab. Thus, the lateral size of the PVs and the JVs is

comparable. Therefore, only one PV row fits inside a JV.

4.2.3 Evolution of the crossing lattice with the temperature

We have measured the evolution of the crossing lattice at the same area for differ-

ent temperatures. Images in figure 4.7 were measured at 5.5 K, 12 K and 15.5 K.
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They show that the vortices width increases with the temperature. At 20 K the flux

distribution becomes homogeneous over the surface and no magnetic contrast was

obtained. This, suggest that PVs are able to move far enough from their equilib-

rium position to overlap between them. Figure 4.7 also represents the evolution of

the magnetic profile of the same vortex at different temperatures, it shows that the

magnetic contrast decreases as the temperatures increases. The potential well of the

vortices was extracted from the evolution of this magnetic profile. It represents the

thermal energy associated to each temperature of the experiment versus the vortex

profile width.

Figure 4.7: Thermal motion of PVs. In a, b and c, MFM images measured at

5.5 K, 12 K and 15.5 K respectively at the same area. The magnetic field is By=

200 Oe in the three images. The size of the PVs increases with temperature due to

thermal motion. At 20 K the magnetic distribution becomes homogeneous in the

whole field of view. In d, the magnetic profiles, measured at the same PV at the

three temperatures. The PV is marked by black red and blue lines in the images.

In e, the potential well of the PVs extracted from the data in d, the line is a guide

to the eye.

The melting temperature, T∗m ≈ 20 K, obtained from figure 4.7 is far bellow the

melting temperature reported by previous works, Tm≈ 80 K, for the same material at

low fields [154, 168–170]. Moreover, according to [47], the dependence of the melting

temperature with the tilted angle of the magnetic field is not enough itself to explain
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such a low melting temperature. More likely, the melting of PVs is not exclusively a

consequence of large thermal fluctuations. It has been pointed out by [84, 91, 160]

that lateral magnetostatic forces during MFM imaging could also lead to a depinning

of vortices. In our experiment, dragging due to the magnetostatic attraction between

PVs and tip could also play a significant role, which suggest that the vortex-probe

interaction is big enough to force PVs to move outside their equilibrium position at

temperatures above 20K. This result gives a powerful tool to vortex manipulation in

this system, as it shows that PVs can be manipulated by the MFM probe at reasonable

low temperatures.

4.2.4 Manipulation of the crossing lattice

We have successfully manipulated the crossing lattice in our crystal. As a first step,

we have manipulated a disordered arrangement of PVs. Then, we have successfully

manipulated PV rows pinned on JVs.

4.2.4.1 Manipulation of PVs

We have successfully manipulated PVs combining the action of the in-plane magnetic

field and the force of the MFM tip on the PVs. Figure 4.8 shows the evolution of

an arbitrary arrangement of PVs when changing the angle of the in-plane magnetic

field. The fast scan axis of the MFM is parallel to the X direction in all images.

Figure 4.8 a, shows the original configuration of PVs, with round shapes and well

localized positions at 12 K. After rotate the magnetic field by 10 degrees (figure 4.8

b) the same area was measured again. In the image, several PV magnetic profiles

are elongated in the direction of the magnetic field. This behaviour is better seen

after changing the angle to 45◦ (figure 4.8 c), 70◦ (figure 4.8 d) and 90◦ (figure 4.8

e). PV profiles became more elongated as the angle between the slow scan axis and

the in-plane magnetic field decreases, always following the direction of the magnetic

field. The elongation is maximum when the magnetic field is aligned with the slow

axis of the MFM. Figure 4.8 f, summarizes the evolution of the PV elongation as a

function of the angle between the fast scan axis and the magnetic field.
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As it was presented in the introduction of this chapter, such vortex elongated

profile was ascribed to vortex movement in previous works in YBCO [84, 87, 157].

The straight field of the MFM tip exerts a given lateral force, Flat, on the vortices. The

lateral force can be decomposed in two components, Flat,s and Flat,f in the directions

of the slow and fast scan axis respectively. Flat,f shakes the vortices, moving them

back and forth on its well potential while Flat,s can be use to drag vortices along the

scan axis if the gain in energy of the vortex due to Flat,f is enough [84, 87, 157] (figure

4.9 a).

Figure 4.8: Motion of PVs by the combined action of the MFM tip and the rotating

magnetic field. We show the evolution of a set of PVs when changing the direction

of B‖ = 200 Oe (marked as a yellow arrow in the images). In a, b, c, d and e, MFM

images measured with an angle of B‖ with respect the X axis of 0◦, 10◦, 45◦, 70◦

and 90◦ respectively. Some PVs presents elongated magnetic profiles in the direction

of B‖ as the angle increases. The direction of the fast scan axis is represented by

a yellow arrow at the bottom. In f, we show the average PVs displacement vs the

angle, the line is a guide to the eye.

In addition, a parallel magnetic field applied to Bi-2112, will enter the material

in form of JVs. As a consequence, superconducting currents flow on the CuO planes

perpendicular to the direction of B‖. These currents exerts a Lorentz force, FL, on

the PVs parallel to the direction of B‖.



CHAPTER 4. Manipulation of the crossing lattice in Bi2Sr2CaCu2O8 86

Combination of the two previous forces was used to manipulate PVs. From figure

4.8, it is clear that there is not movement when both forces are perpendicular and

maximum when they are parallel. The process is schematized in figure 4.9. When

Flat,s and FL are perpendicular, no vortex movement was found, suggesting that Flat,s
was not strong enough to manipulate the PVs. When the angle, Θ, between Flat,s
and FL is different from 90◦, PVs movement was measured in the direction of B‖.

The movement, in this case is due to the sum of FL and the projection of Fts in the

direction of FL, as is shown in figure 4.9 c. PVs movement is stronger when Θ = 0 as

the total forces becomes maximum and PVs can be dragged far from their equilibrium

positions (figure 4.9 d).

Figure 4.9: Scheme of the motion of PVs by the combined action of the MFM tip

and the rotating magnetic field. The MFM tip is represented as a blue triangle, the

CuO layers as grey planes and the PVs as yellow circles. We use transparent yellow

circles to represent the PVs movement. In a, the force of the MFM tip acting on a

PV is schematized. The force is decomposed in two components, Flat,s and Flat,f
in the directions of the slow and fast scan axis respectively. Flat,s shakes the PV

back and forth and Flat,f drags the PV. In b, the Lorentz force, FL, acting on the

PVs and the slow scan axis are perpendicular. They are not strong enough to move

the PVs. In c, the the parallel magnetic field form an angle Θ 6= 90 with the slow

axis and the sum of both forces becomes strong enough to drag PVs a short distance

in the direction of FL. In d, both forces are parallel and the PVs move a bigger

distance.

We have estimated the value of Lorentz force acting on a PV due to the JV

supercurrents of about 50 pN. Pinning force of PVs is therefore stronger as FL by itself

is not enough to drag PVs. We have calculated the force exerted by the MFM probe
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on a PV by using the equation 4.5. For our calculation we have use typical values of

α= 0.35, h0 = 250 nm andm= 30 nAm following [157, 171, 172], and the experimental

tip-sample separation of 120 nm, obtaining Fmaxlat = 80pN. PVs movement was achieved

by the combination of the force of the MFM tip and the Lorentz force. Thus, we

estimate the force needed to drag isolated PVs of ≈ 130 pN.

4.2.4.2 Manipulation of PVs on top of JVs

Figure 4.10 a, shows JVs decorated with PVs at 5.3 K. In the image, the in plane

component of the magnetic field is aligned with the slow axis of the scan. PVs are

well localized on top of the JVs with some clusters in between, without any signature

of vortex movement. After change the direction of the scan by 90◦ and increase the

temperature up to 12 K, the same area was measured again. Result are presented

in figures 4.10 b and c. In these images, PVs are not well localized. They present

an elongated profile in the direction of the slow scan axis, visible in the images as

straight lines of magnetic flux connecting different JVs.

Figure 4.10: Triggering motion of PVs between JVs by the MFM tip. In a, we

show an image measured at 5.4 K and Bx= 200 Oe with the slow scan axis parallel

to Bx. In b and c, we show the same field of view at 12 K, changing the scanning

direction (marked by the yellow arrow) with respect to a. Between b and c we

change the direction over which the tip is scanned during imaging, from left to right

and bottom to top in b and to right to left and top to bottom in c. Note that, in

addition to the signal on top of the JVs, we observe strikes in between JVs.

Figure 4.10 b, was obtained by scanning from the bottom to the top and from

right to left of the image while 4.10 c, was obtained by scanning from the top to
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the bottom and from right to left. From visual inspection is clear that the straight

trajectories of the PVs follow the direction of the tip during the scan.

In this case PVs are not randomly arranged on the surface but pinned on JVs

forming rows. In this particular configuration we have found PVs movement in the

direction of the scan. In this case, the force on the PVs from the tip is strong enough

to depin them from the JVs, moving them from one JV to another. The process is

schematized in figure 4.11, where the trajectories of three PV are shown, full yellow

circles represents their equilibrium positions on the JVs and empty yellow circles their

positions during the scan as a result of the force of the MFM tip.

Figure 4.11: Scheme of the motion of PVs between JVs by the MFM tip. The

MFM tip is represented as a blue pyramid, the JVs as blue cylinders, the PVs as

yellow circles and the CuO layers as grey planes. The movement of the PVs is

schematized by transparent yellow circles. The MFM tip exerts a given force, Flat
on the PVs in the direction of the scan.

We have calculated the attractive force per unit length along the c-axis, between

a PV stack and a JV stack following equation 4.1. We have used γ = 250 and az =

15.4nm calculated in previous sections, obtaining fx = 2.28 · 10−7N/m. Assuming a

sample width of about 0.5 mm, the attraction force will be fx ≈ 114 pN, smaller than

the estimated force to drag isolated PVs and comparable to the force of the MFM tip

on the PVs.

4.2.5 Crossing JVs

Previous works have demonstrated that the JV-PV interaction is sufficiently strong

to indirectly pin JVs stacks at the location of pinned PVs [173]. We have used this

behaviour to generate and keep a JV in a fixed direction and then cross other JVs

with it by rotating the in-plane magnetic field.
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Figure 4.12: Crossing JVs. In a, a JV (denoted by JV1) pinned at a topographic

feature at 5.3 K and B‖ = 200 Oe. In b, the same area, measure after heat the

sample up to 20 K and modify the direction of B‖ by -5◦ with respect to the Y axis.

Three new JVs appears in the image, two of them (denoted as JV2 and JV3) cross

JV1. In c, after heat and cool the sample again, JV2 and JV3 have changed slightly

their position. We mark the previous position of JV1 and JV2 by dashed yellow

lines. Remarkably, JV2 is attracted to JV1 and JV3 cut JV1.

After localized an area with a longitudinal topographic feature, we have applied a

tilted magnetic field with B‖, parallel to the topographic feature, generating a series

of decorated JVs at 5.3K. As a result, one JV and several PVs were pinned to the

topographic feature. Then, we have heated the sample up to 20 K and cooled down to

5.3 K quickly. After that, we have measured the same area again. All PVs that were

pinned on the JVs where depinned, except the ones on the JV on the topographic

feature labelled as JV1 (figure 4.12 a). The pancake intervortex distances within the

feature are consistent with the presence of a JV, indicating that the original JV is

still pinned to the feature. Then, the angle of the in-plane magnetic field was changed

by -5 degrees generating a new JV lattice tilted 5◦ with respect to the topographic

feature. The new JV lattice crosses the topographic feature in two points (figure 4.12

b). Finally, the sample was heated up to 20 K and cooled down again to 5.5K to favour

the JV lattice movement. After scanning the area again, we have found that the JVs

have moved a few microns crossing the topographic feature at new points (figure 4.12

c). In figure 4.12 c) the JV labelled as JV2 approaches to the topographic feature in

a asymptotic way while the JV labelled as JV3 form a kink with the feature.

A similar situation was previously reported by [66]. In this work, they were able

to split the PVs row on top of a JV in two ‘forks’ by quickly changing the direction

of the magnetic field. In their work, the double row of PVs relaxed back to a single
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chain after a few minutes. This suggest that the JV was not split in two branches.

Instead, the most possible scenario is that when changing the direction of magnetic

field and therefore the direction of the JV, some of the PVs are dragged with it and

others are not. Finally the PVs that were not dragged are attracted again to the JV

forming a single row again.

Our case is completely different as the JV configuration was stable during all

the experiment (several hours). Thus, we suggest that we are in a crossing flux

configuration, where we have successfully crossed three JVs. The MFM does not

allow to determine the direction of the JVs at the crossing point, but a twist, crossing

and reconnection of the magnetic field inside the material is the most likely scenario

as it was previously suggested by [174, 175].

4.2.6 Pinning of the crossing lattice at low temperatures

A previous work, has reported the possibility of manipulate JVs and PVs by changing

the azimuthal angle of the applied magnetic field at high temperatures (80 K), where

the pinning potential is weak [68]. Authors in [68], argue that at 80 K the pinning

force acting on the PVs in their crystal is three times smaller that the attractive force

between JVs and PVs. Thus, changing the direction of B‖ modifies the direction of

the JVs and drags the PVs with them.

We have measured the evolution JVs decorated by PVs at low temperatures (5.5

K and 10 K) for different azimuthal angles. We have rotated the magnetic field in the

XY plane up to 120◦ without finding any movement of the crossing lattice. JVs and

PVs remain pinned at their original positions and do not change with the direction

of the magnetic field. At 10 K only a increment of the PV profiles was measured.

Results are presented in figure 4.13.

Our results prove that pinning of PVs on the JV lattice at low temperatures is

big enough to avoid any JV movement with the magnetic field.

The effect of pinning in our crystal is also seen when raping B⊥ from 0 Oe to
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Figure 4.13: Pinned crossing lattice in rotating magnetic fields. In the figure

we show the same field of view when changing the direction of B‖=200 Oe. The

direction of B‖ is marked by a yellow arrow at the images. a, b, c and d were

measured at 5.3 K and e, f, g and h at 10 K. Clearly, JVs and PVs remain pinned,

in spite of the varying direction of the magnetic field at both temperatures. The

yellow stripe on the left is a feature due to the electrostatic interaction with an step.

2000 Oe as is presented in figure 4.14. Firsts, we have obtained two JVs decorated

with PVs at 5.5 K. Then we have increased the perpendicular magnetic field from 0

Oe to 2000 Oe in several steps, measuring the surface at each step. Surprisingly, the

vortex distribution almost does not change until 2000 Oe where the flux distribution

becomes homogeneous. Then, the magnetic field was decreased to 50 Oe and the

hexagonal vortex lattice was recovered (Figure 4.14 i).

This indicate that the magnetic flux does not penetrate to the centre of the sam-

ple until the field reaches a trigger value (2000 Oe in our case), accumulating flux

elsewhere.

The vortex distribution at low fields in High-TC superconductors result from the

competition of pinning and geometrical barriers (GBs) [176]. The GB is formed by

the interplay between the vortex line tension and the Lorentz force that is induced by

the circulating Meissner currents [176–182]. When B⊥ is increased, vortices entering

through the edges are swept by the Meissner currents toward the center, where they

accumulate, giving rise to a dome-shaped induction profile. If the effect of pinning

is weak, the GB potential will dominate and PVs will accumulate at the centre of
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Figure 4.14: Ramping the Z field in crossed lattices. We show the evolution of

the crossing lattice with the perpendicular component of the magnetic field (B⊥) at

constant temperature (5.3 K). B‖ remained constant at 200 Oe in the Y direction

and the perpendicular component was 0 Oe (a), 100 Oe (b), 300 Oe (c), 500 Oe

(d), 750 Oe (e), 1000 Oe (f), 1500 Oe (g), 2000 Oe (h). Clearly, the crossed lattices

remain roughly at the same position bellow B⊥ = 1500 Oe. At B⊥ = 1500 Oe, no

vortices are resolved. When decreasing B⊥ down to 50 Oe, we observe again the

lattice of PVs.

the sample, if not, PVs will accumulate elsewhere depending on the pinning potential

landscape on the surface. It has been also demonstrated that JVs in Bi-2212 serve as

narrow channels for easy vortex entry and exit through the geometrical barrier (GB)

[183], in this case, PVs still accumulate at the centre of the sample but with some of

them decorating JVs outside the central dome.

We have found that there is not vortex entry to the centre of the samples at low

fields. PVs only reach the centre of the sample at fields above 2000 Oe, which is

a much bigger value than previous reported values for the entry of PV in Bi-2212

crystals with low pinning (≈ 5 Oe) [183]. From our experiment, we conclude that

at low temperatures, the effect of pinning on PVs determines the flux entry on the
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sample.

4.2.7 Evolution of the PV lattice with the polar angle of the mag-

netic field

Figure 4.15: Evolution of the PV lattice with the polar angle. We show a set of

images measured at constant magnetic field (27.5 Oe) and azimuthal angle (φ= 0)

but different polar angle. All are taken at 5.3 K in FC conditions, with the magnetic

field applied above TC = 88 K. Polar angle is 80◦ in a, 70◦ in b, 60◦ in c, 15◦ in

d and 0◦in e. The field of view is different in each image. In i, we compare the

measured vortex density with the expected value within Ginzburg-Landau theory.

We have investigated the influence of B⊥ from a different approach. To avoid the

pinning of the PVs, each measurement was taken at FC conditions. The sample was

heated above its critical temperature and a constant magnetic field of 27.5 Oe was

applied for different polar angles. Then, the sample was cooled down to 5.5 K. This

procedure avoid the effect of pinning and allow to measure the evolution of the lattice

at different angles, but do not allow to measure an specific area due to the thermal

drift of the sample. Results are summarized in Figure 4.15.

All images of 12× 12µm2 were measured at different positions of a bigger area

about 30×30µm2. The number of vortices at the area, follows the expected behaviour

(figure 4.15 g), indicting that at high temperatures where the pinning potential is



CHAPTER 4. Manipulation of the crossing lattice in Bi2Sr2CaCu2O8 94

smaller, PVs enter to the centre of the sample with an homogeneous distribution.

4.3 Conclusions

In this chapter, we have studied the crossing lattice of Bi-2212 single crystal at low

temperatures and low fields. We have successfully manipulated an arbitrary arrange-

ment of PVs and the crossing lattice of JVs and PVs. We have measured the depen-

dence of the PV movement with the angle between the in-plane magnetic field and

the scan of the MFM. We have measured the necessary force to manipulate isolated

PVs and PVs trapped on JVs. We were able to cross three JVs. We have also demon-

strated that pinning determines the entry of PVs from the edges to the centre of the

sample at low temperatures.

To our knowledge, ours is the first work showing manipulation of the crossing

lattice in a superconductor.



CHAPTER 5

Strain induced magneto-structural and

superconducting transitions in

Ca(Fe0.965Co0.35)2As2

Tuning parameters are a essential tool in the study of materials, since they can be

use to promote an specific interaction. As an example, unconventional superconduc-

tivity often emerges around the point where antiferromagnetic order is suppressed by

hydrostatic pressure [184]. Strain has been occasionally used as a tuning parameter

[185–188], but is less employed than pressure. Additionally, strain has been employed

to probe the nematic susceptibility of iron-based superconductors [189–192].

Iron-based superconductors have a huge and complex tunable interplay between

antiferromagnetism, orthorhombic to tetragonal distortion and superconductivity.

There are numerous of tuning parameter in iron-based superconductors, including:

chemical substitution [193], hydrostatic pressure [194, 195], epitaxial strains in thin

films [196, 197], uniaxial strain in CaFe2As2 and BaFe2As2 [198–203] and biaxial

pressure in Ca(Fe1−xCox)2As2 [9].

95
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5.1 Previous studies in the parent compound CaFe2As2

The parent compound, CaFe2As2, presents tetragonal structure together with param-

agnetism at ambient conditions and transits to either an antiferromagnetic/orthorhombic

(AFM/ORTH) phase or a paramagnetic/collapsed tetragonal (PM/CT) phase when

decreasing the temperature, depending on the hydrostatic pressure [204]. The AFM/ORTH

transition is also present on other compounds of the same family like BaFe2As2, but

CaFe2As2 is extremely sensitive to the pressure, for example it transits from or-

thorhombic to a collapsed tetragonal phase under 0.35 GPa at 33 K [204], which is a

much more moderated pressure than BaFe2As2 (29 GPa [205]).

Figure 5.1: Phase diagram of CaFe2As2 as a function of the post growth anneal-

ing temperature and the hydrostatic pressure. In the lower x-axis, the annealing

temperature and in the upper x-axis, the hydrostatic pressure. Black asterisks are

the pressure data measured in [204] and red circles are the data obtained from the

annealing treatment in [206]. Green and blue lines are a guide to the eye. Adapted

from [207].

The possibility of stabilizing the PM/CT ground state at ambient pressure was

also proved by [206] using a post growth annealing treatment. They argued that

the changes in the internal strains due to the formation of FeAs nanoparticles in

the sample are the cause of the change in the ground state as a function of the

annealing temperature. Changing the annealing temperature will modify the size
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of the FeAs precipitates and therefore the internal strain. The combination of the

phase diagrams obtained in [204] and [206] is shown in figure 5.1. From the plot the

equivalence between pressure and annealing temperature is clear.

5.1.1 Structural domains at low temperatures

Studies of polarized light microscopy have shown the formation of structural domains

bellow the tetragonal to orthorhombic transition in iron-arsenide superconductors,

AFe2As2, A= Ca, Sr, Ba [208]. The authors of this work have associated the contrast

of the optical images to the rotation of the polarization plane between neighbouring

domains in twin boundaries of orthorhombic domains. Therefore, proportional to the

degree of orthorhombic distortion

Figure 5.2: In the upper panel, a white light optical image measured in a polar-

ization microscope showing a pattern of structural domains in CaFe2As2, at T≈ 5

K. The characteristic spacing between the lines is about 10 µm and the contrast in

optical images follows the magnitude of orthorhombic distortion in the compound.

The inset shows terraces on the crystal at room temperature at the same area. The

c axis is perpendicular to the surface. In the lower panel, in the left, an scheme

of the atomic positions in the tetragonal lattice. In the right, an scheme of the or-

thorhombic distortion and formation of domain walls at low temperatures. Different

colours are used to different domains. Adapted form [208]
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In figure 5.2 we show an optical image of a CaFe2As2 single crystal at 5 K,

well bellow the tetragonal to orthorhombic transition. A regular pattern of domain

boundaries oriented in two orthogonal directions is clearly visible. A typical domain

width is about 10 µm. Over large areas, sometimes covering the whole surface of the

crystal, domains form stacks of parallel plates. In some areas perpendicular domain

sets interpenetrate. The crystal under study has terraces on the sample surface

running at an angle to the figure and shown in inset at RT, with a step size of the

order of 20 µm axis. On crossing the terraces, the domain lines perfectly match at

different levels. This clearly shows that the domain walls are extended along the c

axis.

A later work have shown the possibility of mechanical detwinning single crystals

of CaFe2As2 via uniaxial strain [202]. Proving the huge dependence on the strain of

the of structural domains in the compound.

5.2 Previous studies in Ca(Fe1−xCox)2As2

A different approach was made by authors in [209], they combined the effect of cobalt

substitution and post growth annealing to characterize the 3D phase diagram of

Ca(Fe1−xCox)2As2 as a function of these two tuning parameters. In Ca(Fe1−xCox)2As2,

substitution of Co for Fe suppresses a coupled first-order magnetostructural transition

at Ts,N and induces superconductivity with a maximum Tc of 16 K [209]. Authors

in [209] probed that the ground state of Ca(Fe1−xCox)2As2 can be tuned to two new

states, one superconducting, paramagnetic and tetragonal (SC/PM/T) state and an-

other normal, paramagnetic and tetragonal (N/PM/T) state. The phase diagram

obtained via resistivity, susceptibility and specific heat measurements is shown in

figure 5.3. It is important to note that the studies from [209] were performed on free

standing samples, only fixed using soft glues.

Ca(Fe1−xCox)2As2 is also exceptionally pressure sensitive. Authors in [210] found

a large rate of suppression of Ts,N with hydrostatic pressure in the compound with

x=0.028, dTs,N/dp≈−1100 K/GPa.
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Figure 5.3: 3D phase diagram of Ca(Fe1−xCox)2As2. x is the substitution

level and TA/Q the annealing/quenching temperature. Four phases are observed,

in red the antiferromagnetic/orthorhombic (AFM/ORTH), in green the super-

conducting/paramagnetic/tetragonal (SC/PM/T), in white the non superconduct-

ing/paramagnetic/tetragonal (N/PM/T) and in blue the collapsed tetragonal (CT)

state. Adapted from [207].

5.2.1 Effect of biaxial strain

A recent work has focused in the effect of biaxial strain on the doped compound

Ca(Fe1−xCox)2As2 [9]. The authors have studied the effect of biaxial strain by mak-

ing use of the different thermal expansion between the sample and a rigid substrate

where the sample was glued. They measured a series of samples with different Co con-

centrations, first in free standing conditions and then glued to a rigid substrate. With

a combination of high energy x-ray diffraction (XRD) and capacitance dilatometry

techniques, they compared the evolution of the lattice parameters of both, free stand-

ing and glued samples, finding that the effect of biaxial strain induced by the difference

between substrate and sample thermal expansion coefficients, modifies the sample

state. The different expansion coefficients, causes strain in the a-b plane of the sam-

ple affecting the c/a ratio. They found that samples that do not show AFM/ORTH

transition when free standing, show an structural transition when glued to a substrate,

proving that the c/a ratio is a suitable tuning parameter in Ca(Fe1−xCox)2As2 [9].
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Figure 5.4: In the left panel, the in plane and c axis structural data for

Ca(Fe1−xCox)2As2 x=0.35 is presented. The colour code intensity maps represents

the lattice parameters measured by x-rays diffraction when warming the sample.

Lines indicate uniaxial fractional length changes, ∆Li = Li (i=c, c axis and i=a, b,

in-plane average), of free overdoped (OD samples, x=0.035 in a and x=0.029 in b)

and of a representative underdoped (UD) x=0.027 sample obtained by capacitance

dilatometry. The blue line shows the substrate thermal expansion and the red line

indicates the average in-plane length of strained Ca(Fe0.965Co0.035)2As2 inferred

from the diffraction data. The right inset in a shows an scheme of the deformation

of the unit cell due to the strain. The row of insets in a, show the diffraction pat-

tern close to the tetragonal (660) reflection revealing orthorhombic domains. The

inset in b presents the data on expanded scales. In the right panel, in c, the phase

diagram of Ca(Fe1−xCox)2As2 in the free (black) and strained (red) state. The

AFM/ORTH transition at Ts,N (ε) is only gradual. Red open symbols and dashed

lines correspond to the remaining phase fraction within the strained sample. In e,the

superconducting shielding fraction of free and strained samples, respectively. Lines

are a guide to the eye. Adapted from [9].

In the figure 5.4 a, the in plane and c axis structural data for samples with

x=0.35 is presented in combination with the data for free standing samples obtained

by capacitance dilatometry. The substrate thermal expansion is also shown. In

figure 5.4 c, the phase diagram of Ca(Fe1−xCox)2As2 in the free and strained state is

presented. In the diagram is shown how the AFM/ORTH transition in the strained

sample takes place at higher Co concentration than in the free standing samples, as

the temperature decreases, the c/a ratio is modified due to the strain on the sample,
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favouring the nucleation of orthorhombic domains in certain regions of the sample,

splitting the samples in orthorhombic and tetragonal domains. In the under doped

(UD) samples (x<0.28) the samples have an strain induced orthorhombic structural

transition at a temperature above the structural/magnetic transition of free samples.

Bellow this temperature the sample is slitted in tetragonal and orthorhombic domains

and bellow a temperature close to the orthorhombic transition of free samples, the

remaining tetragonal domains of the UD samples transit to the orthorhombic phase.

For overdoped (OD) samples with cobalt concentrations between 0.28 and 0.49, the

strained produces the coexistence of tetragonal and orthorhombic domains in the

sample bellow Ts,N (ε) that persists until lower temperatures. For those samples, when

the temperature is deceased bellow the TC of free standing samples, the strained ones,

presents a superconducting transition associated to the tetragonal domains. Above

concentrations of 0.49, there is no structural transition associated with strain while

the superconducting transition is still present bellow TC .

5.2.1.1 Domain boundaries in strained samples

The samples that presents coexistence between orthorhombic and tetragonal do-

mains, have domains boundaries separating both phases and different orientations

of the same phase [9]. In the orthorhombic phase, the small axis, bORTH , is equal

to the lattice parameter of the tetragonal phase, aTET and therefore, the tetrag-

onal/orthorhombic domain boundary will occur along the crystallographic direction

determined by bORTH . Note in particular that the interface between this domains has

no stress within the plane, because in-plane lattice constants coincide along the inter-

face [9]. Domain boundaries between orthorhombic domains are by contrast, oriented

at 45◦ with respect to the crystallographic axis, forming a twin boundary similarly to

the case of the parent compound CaFe2As2 described before [208]. In figure 5.5 two

examples of the orthorhombic/tetragonal and orthorhombic/orthorhombic domain

walls are presented
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Figure 5.5: Example of the structural domain boundaries in strained

Ca(Fe1−xCox)2As2. In the left panel, two domain boundaries between two or-

thorhombic and a tetragonal domain, the domain boundary develops along the crys-

tallographic direction determined by bORTH . In the right panel, the boundary be-

tween two orthorhombic domains, forming 45◦ with respect to the crystallographic

axis. Different colours are used to different crystallographic domains. The domain

wall is represented as a red line. Adapted from [75, 208].

5.3 AFM/MFM studies in Ca(Fe0.965Co0.35)2As2

Previous works have studied the coexistence of tetragonal and orthorhombic domains

in strained Ca(Fe1−xCox)2As2 single crystals from a macroscopic point of view [9].

Prior to our work there was not microscopic evidence of the distribution of those do-

mains or the geometry of their boundaries. Moreover, the interplay between tetrag-

onal and orthorhombic domains in the superconducting phase remains unclear. This

was our main motivation and the starting point of our study in this compound.

AFM/MFM measurements were performed in the set up of our lab described

in section 2.1 in a Ca(Fe1−xCox)2As2 single crystal doped with a 3.5% of Co and

annealed at 350◦. The crystal was grown by the Group of Prof. Paul Canfield at

Ames Laboratory in Iowa, following the procedure described in [207].

Before the AFM/MFMmeasurements, the crystal was glued on a copper substrate

with low temperature silver epoxy to apply a biaxial strain on it at low temperatures,

similarly to the experiment in [9]. The same sample was also measured with STM

at the Laboratorio de Bajas Temperaturas de la Universidad Autonoma de Madrid

(LBTUAM) by Dr. Anton Fente in a set-up similar to the one described in [211].
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Some of his STM result will be presented together with the AFM/MFM measurement

to complement them, but the specifics of the STM experiments will not be given here

as they are beyond the scope of this thesis. It is important to emphasize, that the

sample was never unglued from the copper substrate, neither between AFM/MFM

experiments, neither to perform the STM measurement. Therefore, the strain on the

sample should be the same or at least comparable in the AFM/MFM and the STM

measurements.

5.3.1 Topographic characterization

Figure 5.6: In a, a topographic AFM image of the sample at 100 K. The image

shows large flat areas separated by steps of few nanometres high. Scale bar is 2µm.

In b, the heigh of the profile marked as a green line on the topography is presented.

In c, the unit cell of the sample. Ca atoms are represented in blue, Fe atoms in

yellow and As atoms in purple.

Topographic measurements were taken using the AFM dynamic mode described

in section 2.1.3.7.1 with typical tip-sample separation around 10 nm.

Very flat surfaces were easily found after cleaving the sample, making possible

topographic and magnetic images at 2 K up to ≈ 15×15µm2 with heigh differences

of tens of nanometres. The cleaving of the surface is expected to occur in the c-axis

[75]. An example of the crystal surface is presented in figure 5.6 together with a

topographic profile, and the unit cell of the crystal.
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5.3.2 Tetragonal to orthorhombic structural transition

As it was presented at the introduction of this chapter, a partial tetragonal to or-

thorhombic structural transition is expected for strained Ca(Fe0.965Co0.35)2As2 sam-

ples at Ts,N (ε)≈ 100 K.

Figure 5.7: Topography of the strained Ca(Fe0.965Co0.35)2As2 sample above and

bellow Ts,N (ε). In a, a topographic image measured at 100 K. In b, the same area

measured at 32 K. At 100 K the image shows atomically flat terraces with steps of

few nanometres in between. At 32 K longitudinal stripes at an angle with respect

to the image are visible. The scale bar represents 2µm.

We have performed AFM measurements above and bellow Ts,N (ε) in different

areas of the sample, finding radically different topographies. Above Ts,N (ε), in the

tetragonal phase, flat terraces and small steps of few nanometres were found (figure

5.7 a). Slightly bellow the structural transition expected from [9], we have observed

clear stripes in the topographic images (figure 5.7 b). The stripes are separated by

flat regions, few microns wide and are straight and parallel on the hole field of view.

The origin of the stripes will be discussed in the following.

5.3.2.1 Origin of the topographic stripes

The corrugation observed reminds AFM measurements bellow the tetragonal to or-

thorhombic transition in BaTiO3 [212] and STM measurement bellow the Verwey

transition in FeO3 [213]. In both material, the corrugation in the surface was associ-

ated to the reorientation of the structural domains due to the changes in the lattice

parameters in the transition. We believe that our images can be explained in the
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same way. We now will introduce a simple model originally developed to explain the

corrugation in BaTiO3 single crystals[214].

Figure 5.8: Scheme of the corrugation bellow the structural transition. The or-

thorhombic and tetragonal unit cells are represented in blue and yellow rectangles

respectively. The unit cell at the interface is represented as a grey polygon.

A condition to the formation of domain walls, is the matching and continuity

of the lattice at the wall [214]. Due to the differences in the c lattice parameter

between the two phases bellow Ts,N in our crystal, this condition is fulfilled by the

accommodation of the tetragonal and orthorhombic domains schematically showed

in figure 5.8. The angle formed by the perpendicular and in-plane axis of both

lattices at each side of the wall is not exactly 90◦. It differs from 90◦ by an angle

α =arctan(ctet/atet)+arctan(aort/cort) [214]. We have calculated the expected angle

of the corrugation at the tet/orth domain wall using the lattice parameters obtained

for strained samples from [9]. We have found a corrugation angle of α≈ 0.55◦.

Topographic features in form of stripes were also measured in STM experiments

in the same sample (figure 5.9). In this case, the stripes are separated by tens of

nanometres and are few Angstroms high. The STM measurements also show the

2x1 reconstruction of Ca atoms expected for CaFe2As2 [75, 215] covering most of

the surface. The two main axis of the Ca reconstruction (corresponding to the two

main axis of the Ca sublattice) form 45◦ with the crystallographic axis [153]. As is

shown in figure 5.9, the reconstructions is found forming 45◦ with the topographic

stripes (vertical lines in the figure), thus the stripes are oriented with the direction

of the crystallographic axis. As it was presented in the introduction of the chapter,

the domain boundary compatible with a direction of the crystallographic axis is the
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tetragonal/orthorhombic domain wall, with the domain parallel to the aTET and

bORTH axis. This support the idea that stripes are related with the tet/orth domain

boundaries

Figure 5.9: In the left panel, an STM topographic image taken at T<4.2K. The

image display parallel elongated stripes, forming 45◦ with the 2x1 Ca reconstruction.

The white scale bar represents 100 nm. In the right panel, a schematized tetrag-

onal/orthorhombic domain wall. The 2x1 Ca reconstruction is pointed by black

arrows and different domains are represented by different colours.

We have calculated the angle between domains at both sides of the stripes in AFM

and STM images, finding that it remains almost constant in all the stripes with a

value between 0.8 and 1.3◦. A few STM and AFM selected images are shown together

with their topographic profiles an the measured angle at the stripes in figure 5.10. It

is noticeable that images with such different scales, present the same angle between

domains.

The value of the angle measured at the stripes greater the calculated angle for this

system (≈ 0.55◦). But, it is important to note that the distortion of the tetragonal an

orthorhombic lattice is dependent on the strain and therefore on the substrate where

the sample is glued. We have followed a procedure similar to the one in reference

[9] but we can not measure the magnitude of the strain in our samples. Thus, we

can not unambiguously determine the magnitude of the distortion of the unit cells

in our crystal. Moreover, the model used to calculate the distortion of the lattice at

the boundary proposed in [214] is very simple. It suppose that the unit cell at the

boundary is deformed, presenting exactly the same cell parameters of the tetragonal

and orthorhombic phases at each side of the boundary, which do not have to be exactly

true. For example, small deviation of ≈ 0.5% from the values of the cell parameters

measured by [9], leads to a different α≈ 1◦.
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Figure 5.10: In the left column, thee topographic images measured by STM (a) and

AFM (c and e). The images, show step-like features associated to the tetragonal-

orthorhombic domain boundaries. In the right column, three topographic profiles

measured black lines on the topographic images. All the step-like features showed

in the profiles present an angle of ≈1◦ between the tetragonal and the orthorhombic

domains. The surface of the tetragonal and orthorhombic domains is highlighted in

the profiles using a blue and a red line respectively.

We believe that, given the simple approximations made, the agreement is remark-

able and provides a simple but successfully explanation to the corrugation on the

topography in our samples.

5.3.2.2 Evolution of the corrugation on the surface

We have measured the evolution of the stripes with the temperature at the same area.

The results are shown in figure 5.11.
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Figure 5.11: Evolution of the stripes on the surface with the temperature. Images

measured when heating the sample at 17 K (a), 32 K (b), 55 K (c) and 68 K (d), e

and f where measured after cooled the sample again at 55 K from 68 K. The stripes

on the images become less visible at 55 K and they are not present at 68 K, they

reappear at the same positions after decrease the temperature again. Scale bars

represents 2µm.

Images a, b, c and d were taken at 17 K, 32 K 55 K and 68 K respectively. In them,

the stripes remain at the same positions until the temperature reaches 55 K were some

of the stripes start to vanish to be completely lost at 68 K. This temperature is close

to the expected Ts,N (ε) [9]. Then, the sample was cooled down and measured again

at 55 K (figure 5.11 e and f), obtaining the same position for the stripes that in

the previous case. This result is in perfect agreement with our assumptions that the

topographic stripes are domain walls formed bellow Ts,N (ε).

It is important to clarify, that the value of Ts,N (ε) can not be unambiguously

determined by te measurements of the stripes on the surface. Domain boundaries

can nucleate first in another area of the surface at higher temperatures and extent to

our field of view at lower temperatures. Therefore the measured value of Ts,N (ε)≈ 68

K for our sample could be smaller that the real value for the magneto structural

transition. Also, the transition measured in [9] is very broad, beginning at Ts,N (ε)≈

100K and extending down to almost 50 K, which suggest that the formation of the

orthorhombic domains is continuous when decreasing the temperature.
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Figure 5.12: In a and b the topographic and magnetic image of the same area

measured at 4.2 K and 1360 Oe. The magnetic image show elongated stripes that

perfectly matches the topographic features originated when the sample is cooled

bellow Ts,N (ε). White scale bars represents 2µm.

5.3.3 Superconducting transition

To further understand the behaviour of the tetragonal and orthorhombic domains on

the sample and they interplay in the superconducting properties, we have measured

the same area presented in figure 5.11, in the MFM mode at 4 K. After FC the

sample at 1360 Oe bellow the superconducting critical temperature of free standing

samples (TC ≈ 16 K), we have performed MFM measurements, finding that magnetic

images show elongated an alternative paramagnetic and diamagnetic domains that

exactly coincide with the topographic stripes observed in the AFM images (figure

5.12). Similar stripes where found in SQUID microscopy and MFM measurements

in the compound of the same family, Ba(Fe1−xCox)2As2, by Kalisky et al [216, 217].

In this case, they have associated the alternative stripes to an enhanced superfluid

density on twin boundaries. By contrast, in our case, the magnetic domains seems

to be related to the orthorhombic phase which exhibits antiferromagnetism and the

tetragonal phase which exhibits superconductivity at low temperatures. We have not

found any difference with the topography at higher temperatures.

5.3.3.1 Evolution with the Temperature

To clarify if the magnetic signal is related or not with the superconducting transition,

we have imaged the same area after FC the sample at 230 Oe, at different temper-
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Figure 5.13: Evolution of the magnetic stripes with the temperature. In a, the

topographic image of the area where the magnetic images were measured. In b-

h, the magnetic images measured at 3.7 K, 4.8 K, 7.8K, 11.2K, 12.6K, 14 K and

16 K respectively. The contrast of the superconducting domains (white and light

yellow), become softer as the temperature increases, until they are not visible at

16 K in agreement with the expected TC for the superconducting transition. All

measurements were done with an applied field of 230 Oe. Scale bar is 2µm.

atures, keeping the magnetic field constant. We have found that the diamagnetic

domains become broader and less intense as the temperature increases and they are

completely gone at temperatures above 16 K, which is the expected TC for the sample

[9].

We have combined the information obtained in the MFM measurements with the

STM data. In STM experiments, conductance maps at zero magnetic field near the

stripes also saw a GAP opening that matches the expected GAP for the material

(∆ = 1.78KBTC ≈ 2.3 mV) [72, 75]. STM conductance maps at 6 T also show vortex

images at the tetragonal domains with intervortex distance corresponding to the

expected one as is presented in figure 5.14 [75].

Therefore we can conclude that the diamagnetic domains observed in the MFM

measurements are the result of the superconducting transition of the tetragonal do-

mains of the sample that are still present at the sample bellow Ts,N (ε). The param-

agnetic domains are related with the orthorhombic domains. It is interesting to note
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Figure 5.14: In a, a topographic STM image measured at 2 K. Surface shows a

step-like feature similar to those founded in the AFM measurement. In b, zero bias

normalized conductance map of the area in the white square in a at zero magnetic

field. In c, normalized conductance curves along the line in b, showing a supercon-

ducting GAP in the expected energy range opening in the tetragonal domain. In

d, an STM topographic image measured at 2 K. In e, zero bias normalized conduc-

tance map measured in the area of the white rectangle in d at H = 6 T, showing

superconducting vortices (green spots on the blue area). Adapted from [75].

that the sample is split in two different phases normal/superconductor related with

structural domains.

5.3.3.2 Evolution with the magnetic field

MFM measurements were taken at different applied magnetic fields at 4 K to char-

acterize the evolution of the tetragonal-superconductor domains. The same area was

mapped from perpendicular fields of 25 Oe to 1360 Oe after FC at 25 Oe. The re-

sults are shown in figure 5.15. The superconducting domains become thinner as the

magnetic field increases. At the lower fields, there are some small domains perpen-

dicular to the topographic stripes. When increasing the magnetic field we observe

that the overall difference between large and small magnetization decreases and that
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the perpendicular domains become normal.

Figure 5.15: Evolution with the applied magnetic field of the magnetic stripes.

In a, the topographic image of the area were the MFM images were measured. In

b-h the magnetic images measured at 25, 70, 300, 430, 700, 1160 and 1360 Oe

respectively. The superconducting domains (white and light yellow) become thinner

as the magnetic field increases and some small domains perpendicular to bigger

domains along the vertical dimension are visible at the lower field and are not visible

at higher fields. Scale bar is 2 µm.

The AFM resolution do not allow to determine if there are smaller stripes associ-

ated to this domains. The possible origin of this orthogonal domains will be discussed

in the following section.

5.3.4 Origin of the perpendicular domains

In the previous section, it was shown that there are some superconducting domains

that are perpendicular to the topographic stripes and seems not to be related with

any feature in the topographic image. This is nicely seen in images at bigger areas

as the one presented in figure 5.16.

Figure 5.16 shows intersection of superconducting domains, always forming angles

of ≈ 90◦. This may be explained by the formation of tetragonal-orthorhombic domain

walls at each side of the twin boundaries between two orthorhombic domains as is

schematized in figure 5.16. Two orthorhombic domains in a twin boundary, form an

angle of ≈ 2◦ between them due to the orthorhombic distortion [72, 75]. As a result,

the angle between two tetragonal domains at both sides of a twin boundary should
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Figure 5.16: In the upper panel, two MFM and AFM images measured at 4K and

100 Oe. In the left, in the MFM image, elongated diamagnetic stripes associated

to the tetragonal domains are observed. The stripes presents two main directions

with an angle between them that differs from 90◦ by a few degrees. In the right,

the topography image of the same area. In the lower panel, in the left, an schematic

representation of two tetragonal domains at both sides of an orthorhombic twin

boundary. Orthorhombic domains are represented in blue and green and tetragonal

domains in white. The twin boundary is represented as a red line. In the right, a

closer MFM image to the intersection of three tetragonal domains.

differ from 90◦ by this small angle. This is compatible with the MFM images, where

the angle between the stripes gives values that differs from 90◦ by a few degrees,

the same distortion that was found in the STM measurements for the 2x1 Ca recon-

struction [75]. However, that would also result in some surface corrugation, which

we do not observe. Another possibility is that fluctuations induce superconducting

correlations in some parts of the orthorhombic phase. In both cases, this result shows

that superconductivity in the tetragonal linear domains can be connected with each

other.

In the topographic image of the same area, a huge step of several tens of nanome-
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tres is shown at the centre of the image. On crossing the big step, the domain lines

perfectly match. This shows that the domain walls are extended along the c axis.

Figure 5.17: An optical image taken with polarized light in a different

Ca(Fe0.965Co0.35)2As2, revealing orthogonal domains on the whole field of view.

Optical images taken with polarized light by the group of Prof. Paul Canfield

at 5 K in another strained sample also shows perpendicular domains covering the

hole field of view (figure 5.17). The optical image compares nicely with our MFM

measurements but, in it, is not clear if the contrast is formed by the orthorhombic

distortion at the twin boundaries as in the case of the parent compound presented in

the introduction of this chapter or due to the tetragonal/orthorhombic domains as in

the MFM images.

5.4 Conclusions

In this chapter we have studied the effect of strain in a Ca(Fe0.965 Co0.35)2As2 single

crystal from the microscopic point of view. We have imaged the coexistence of tetrag-

onal/orthorhombic domain walls bellow the strains mediated transition at Ts,N (ε).

Bellow the superconducting critical temperature of free standing samples, we have

measured the formation of diamagnetic domains coinciding with the tetragonal do-
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mains. We have associated the diamagnetic domains with the superconducting tran-

sition of the remaining tetragonal phase. We have characterized their evolution with

the applied magnetic field and the temperature. STM images are consistent with our

results, showing the opening of a superconducting GAP and the existence of vortices

in the tetragonal domains bellow TC .

Quite likely, the size of the domains can be modified by applying uniaxial stress to

the substrate, either perpendicular or parallel to the stripes. Or simply by changing

the substrate. For instance, the thermal expansion of glass is of -0.1% which should

result in a differential thermal expansion of 0.6% between sample and substrate and

eventually lead to modified length scales in the domain size and distribution. Thus,

strain might be used as a control parameter to produce novel kinds of superconducting

systems, such as intrinsic Josephson junction arrays or to use the domain structure

to improve vortex pinning. At very low magnetic fields we observe sometimes linear

diamagnetic structures in the orthorhombic phase that might join elongated tetrago-

nal domains, suggesting that such a coupling between elongated domains can indeed

happen in some parts of the sample.

To our knowledge, ours is the first experimental work showing phase separation

associated to strain bellow TC in pnictides. The likely absence of magnetic order

in the tetragonal domains, having in close spatial proximity a magnetically ordered

domain, suggests that magnetic and superconducting order are both antagonistic,

although they are probably fed by the same fluctuations.



CHAPTER 6

Exfoliation and characterization of layered

superconductors and graphene/superconductor

heterostructures

6.1 Introduction

The pioneering work published by Novoselov et al. [218] gave rise to the isolation of

single layers of graphene. They reported the repeated peeling of high oriented py-

rolytic graphite (HOPG) on a photoresist layer and the final release of the resulting

thin flakes in acetone. This method was later improved with the dry exfoliation of

several layered materials by simply pushing the surface of crystalline samples against

different surfaces [219]. This basic methodology gave access to large surface area flakes

of atomically-thin graphene and also to flakes of certain transition metals dichalco-

genides TMDCs like the superconducting NbSe2 or MoS2 among others [12–15]. The

technique was implemented in a variety of different ways under the generic name of

micromechanical cleavage also known more informally as the Scotch tape method.

During the last decade a great variety of different mechanical cleavage methods

were developed for the clean deposition of 2D materials on different surfaces. Among

them, we can highlight micromechanical exfoliation techniques based on the use of

silicone stamps that do not present any glue on their surfaces that could contaminate

116
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the sample as in the case of the scotch tape method [220, 221].

2D superconductivity in thin films and crystals flakes has attracted the attention

of many researchers in the last decade [10–18]. For example, superconducting crystals

like BSCCO or TaS2 have been successfully exfoliated down to a single layer and

deposited in a substrate in the past [19–21]. In addition, a lot of work has been done

trying to induce superconductivity in graphene in contact with a superconductor due

to the proximity effect [10, 11, 22–26].

During the thesis, we have used both, the silicone stamp method and the scotch

tape method to prepare thin flakes of several superconductors and graphene. The

main method employed was the silicon stamp method due to its great simplicity,

cleanness and relatively high efficiency. Unfortunately, from our attempts to exfoliate

BSCCO crystals with the stamp method, it appeared to be less easily exfoliated by

silicone stamps and we had to exfoliate them with the regular scotch tape procedure,

obtaining high quality flakes but with some contaminants attached to their surfaces.

Finally, we have also transfered a hole sheet of graphene grown on a copper foil on

top of a β-Bi2Pd crystal using a PMMA as a wetting layer. We have investigated

several flakes of this superconductors and superconductor/graphene heterostructures

with the goal of establish the basis for future experiments to induce superconductivity

in graphene via proximity effects.

6.2 Micromechanical exfoliation

In order to transfer microscopic flakes of a macroscopic crystal on top of a substrate we

have used Polydimethylsiloxane (PDMS) stamps, a well known viscoelastic material

used to exfoliate and transfer crystal flakes in the last years [220, 221].

In this method, first, the PDMS stamp is gently placed on top of the crystal and

an small pressure is applied by hand (figure 6.1 a and b). Then, the stamp is removed

from the crystal surface with some flakes of the crystal attached to it (figure 6.1 c).

Next, the PDMS stamp is placed on top of a the desired substrate applying again an

small pressure by hand (figure 6.1 d). Finally, the stamp is removed, leaving small
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Figure 6.1: In a, b and c, we show the exfoliation process using a PDMS stamp.

First, the stamp is gently pushed against the clean crystal surface and then they

are separated. Some crystals flakes are attached to the stamp after separate it from

the crystal. In d and e, we schematically show the deposition of the crystal flakes

on top of a substrate. The PDMS stamp is pushed against the substrate and few

flakes are deposited on top of it. In f and g, we show two optical images of arbitrary

β-Bi2Pd flakes deposited on a SiO2 substrate. In h, we show a real picture of the

PDMS stamp with some crystal flakes attached on top.

flakes of the crystal deposited on the substrate (figure 6.1 e). The PDMS stamp

facilitates the accommodation of the crystal to the substrate when they are put in

contact, thanks to its viscoelastic properties. It is important to note that the PDMS

stamps do not have any glue on their surfaces, the crystals remains attached to the

stamp due to its viscoelastic properties. Thus, the crystal flakes deposited with this

technique are free of the contaminants that typically appear with the regular scotch

tape method [222]. An schematic representation of the exfoliation-transfer method is

represented in figure 6.1 together with some pictures of the deposited flakes and the

stamp.

After deposit the crystal flakes on top of a substrate, they are localized using an

optical microscope using a combination of x10, x50 and x100 zoom lenses (figure 6.2

a and b). Then, the sample is moved to our room temperature AFM (RT-AFM) and
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the same area is localized using another optical microscope attached to the RT-AFM

(figure 6.2 c). Finally, the flakes are measured with the RT-AFM to determine their

height.

Figure 6.2: In a and b, we show two pictures of two β-Bi2Pd flakes deposited on

top of a SiO2 substrate with zooms x10 and x100 respectively. In both images the

position of the flakes are highlighted with yellow and red circles or ellipses. In c, the

same area imaged with an optical microscope attached to our RT-AFM showing the

AFM cantilever above the area where the crystal flakes are deposited.

6.2.1 BSCCO on top of SiO2

We have exfoliated BSCCO crystals down to a few layers and deposited them in a Si

substrate with a SiO2 layer of 300 nm on top, following the same procedure described

in the previous section. We have successfully localized and measured a 25 nm thick

flake at low temperatures under different magnetic applied fields in our LT-MFM.

6.2.1.1 Moderate magnetic fields

First, we have localized the flake at 10 K and measured its topography and magnetic

profile under an applied magnetic field of 100 Oe in the out of plane direction, as is

shown in figure 6.3. We have found that the magnetic profile was homogeneous in

the whole field of view. This homogeneity can be understood as an increment in the

size of the superconducting vortices in very thick samples proposed by Pearl in 1964

[223].

The mayor problem of magnetic image in thin superconducting material is the

evolution of the penetration depth as the thickness of the superconductor decreases.

The thin-film problem differs from the behavior of currents and vortices in bulk
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Figure 6.3: In a, we show the topographic image measured at 10 K of a BSCCO

flake deposited on a SiO2 substrate. In b, we show the corresponding magnetic image

measured under an applied magnetic field of 100 Oe at 10 K. From the images is

clear that the magnetic profile is homogeneous at the BSCCO flake surface.

superconductors by the dominating role of the magnetic stray field outside the film.

The interaction between vortices occurs mainly by this stray field, while in bulk

superconductors the vortex currents and the vortex interaction are screened and thus

decrease exponentially over the length λ [159, 223, 224].

If we consider one vortex in the center of a large circular film with infinite radius

and in the limit of zero λ. The point vortex behaves like a magnetic dipole, composed

of two magnetic monopoles: one above and another bellow the film. The magnetic

field lines of this point-vortex are straight radial lines, all passing through this point.

The magnitude of this magnetic stray field is φ0/2πr2 above and −φ0/2πr2 below

the film. This jump of the magnetic field component parallel to the film is caused by

a sheet current that circulates around the vortex and equals this field difference in

size, J = φ0/µ0πr
2. This result differs form the strong decay of screening currents of

bulk superconductors, J = φ0
2πµ0λ3K1(r/λ) [29], where K1 is the first order modified

Bessel function. In his original paper, Pearl found and effective penetration depth for

superconductors when λ < d with d the thickness of the superconductor, is equal to

Λ = 2λ2/d. Where Λ is known as the Pearl penetration depth.

The expected penetration depth for a BSCCO crystal is ≈ 200 nm [164, 165, 167],

in good agreement with our LT-MFM measurements in chapter 4. Therefore, for a

flake 25 nm thick, a Pearl penetration depth of ≈ 5 µm is expected. From equation

1.16, the intervortex distance at a magnetic field of 100 Oe is expected to be ≈ 500
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nm. Thus, superconducting vortices will present a huge overlapping among them at

this field, therefore, the magnetic profile on the superconductor is expected to become

homogeneous, in good agreement with our measurements.

6.2.1.2 Very low magnetic fields

At very low fields, for example 1 Oe, the intervortex distance is expected to be ≈ 5

µm. This corresponds to the value of the Pearl penetration depth for our flake. Thus,

at 1 Oe, the magnetic profiles of the superconducting vortices will not have a huge

overlapping and some corrugation in the magnetic profile of the superconducting flake

should be measurable.

Figure 6.4: In a, we show the topographic image measured at 47 K on a BSCCO

flake deposited on a SiO2 substrate, showing some contamination deposited on the

flake during the deposition. In b, c and d, the corresponding magnetic images

measured under an applied magnetic field of 1 Oe at 47, 12 and 5 K respectively. The

magnetic profile is homogeneous at the BSCCO surface at the three temperatures.

There are only few inhomogeneities at the positions of the contaminations, probably

related with the electrostatic long range interaction between them and the tip.



CHAPTER 6. Exfoliation and characterization of layered superconductors and
graphene/superconductor heterostructures 122

For these reasons, we have imaged again the magnetic profile of the same flake at

very low applied magnetic fields (1 Oe) and different temperatures. Our results are

summarized in figure 6.4 and 6.5. In figure 6.4, we show three magnetic images with a

magnetic field of 1 Oe at 47, 12 and 5 K together with the corresponding topographic

image. As it is clear from the images, the magnetic profiles are homogeneous in

the whole field of view at the three temperatures, presenting only small corrugations

related with the contamination deposited on top of the flake during the exfoliation.

The homogeneity of the magnetic profiles point that the overlap between vortices

is strong enough to avoid single vortex resolution with our LT-MFM even at this

very low fields. Another possibility is that the electrostatic interaction with the

contamination deposited on the crystal dominates the interaction with the tip and

therefore no vortex resolution can be achieved.

We have also measured a region where the edge of the BSCCO flake and the SiO2

substrate are clearly visible to determine if there is any measurable screening of the

magnetic field in the superconducting flake. Our results are presented in figure 6.5.

The magnetic image in figure 6.5 shows that the magnetic profile is homogeneous in

the whole field of view. There is not visible difference between the region occupied by

the superconductor with respect to the substrate. There is only some contrast in the

magnetic image at the positions of the edge of the BSCCO flake and of a longitudinal

topographic feature in the right part of the image, due to the electrostatic interaction

with the AFM tip at this locations.

Unfortunately, the screening of the magnetic field in the superconducting flake

with respect to the substrate is bellow our experimental resolution at this thickness.

Thus, we were not able to measure the existence of Pear vortices or another supercon-

ducting effect related with the thickness in our experiments on BSCCO. Nevertheless,

we were able to deposit small flakes of this material and localize them at low tem-

peratures opening the possibility for further experiment in BSCCO flakes of different

thicknesses in the future.
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Figure 6.5: In a, we show the topographic image measured at 17 K of the edge of the

BSCCO flake (left) and the SiO2 substrate (right). In b, we show the corresponding

magnetic image measured under an applied magnetic fields of 1 Oe at 17 K. From

the image is clear that the magnetic profile is homogeneous at the BSCCO flake and

at the substrate, indicating that there is not a measurable difference in the magnetic

field between the two places. There is only contrast at the edge of the flake and at

the position of longitudinal topographic feature on the right of the image due to the

electrostatic interaction with the tip.

6.2.2 β-Bi2Pd on top of SiO2

As it was presented in chapter 3, β-Bi2Pd is a layered compound that can be easily

exfoliated using the regular scotch tape method. In contrast with another layered

crystals that were successfully exfoliated down to a single monolayer, the layers of

β-Bi2Pd are not weakly coupled via Van de Waals interactions but strongly coupled

via covalent bonds [140]. Nevertheless, a recent theoretical work has establish that

the bonds between Bi layers in the crystal are much weaker that the Bi-Pd or Pd-Pd

bonds and therefore, the crystal is expected to cleave in this planes. This theoretical

calculation was demonstrated experimentally by [6] and [7] and also corroborated

in this thesis in chapter 3. We have tried to exfoliate our β-Bi2Pd crystals to the

minimum possible thickness to open the possibility of studying superconductivity in

the 2D limit in this non VdW superconductors.
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6.2.2.1 Exfoliation down to few tens of nanometers

Using the PDMS stamp method described before, we have successfully deposited

several β-Bi2Pd flakes of different thickness on SiO2 substrates, as is shown in figure

6.6.

Figure 6.6: In the left panel, two AFM images of two β-Bi2Pd flakes deposited on

top of a SiO2 substrate. In the right panel, the corresponding topographic profiles

marked as green lines on the images in the left. The images show the possibility of

deposit flake of β-Bi2Pd of a great variate of thicknesses.

In the image, two examples of β-Bi2Pd flakes are presented, one thick flake of

several hundreds of nanometers and a thin flake of just some tens of nanometers.

The thin flake reveals that it is possible to exfoliate a β-Bi2Pd single crystal down to

very small thicknesses were changes in the superconducting behavior are expected,

for example, the formation of Pearl vortices introduced in the previous sections. Un-

fortunately, the density of thin flakes of β-Bi2Pd that we achieved with the stamp

method was not enough to allow us to localize one of this flakes at low temperatures.

The thermal drift of our LT-MFM have prevented us to locate a β-Bi2Pd flakes at

low temperature despite all our efforts. More work is need in this direction to inves-

tigate the superconducting behavior of β-Bi2Pd thin flakes. In particular, improve

the deposition technique to increase the ratio of success and the density of flakes is

of particular interest in this system.
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6.2.3 Graphene on top of β-Bi2Pd

We have successfully exfoliated several graphene and few-layers-graphene (FLG) flakes

and deposited them on top of a single crystal of the superconductor β-Bi2Pd. The

flakes were characterized with our RT-AFM after localize them with an optical mi-

croscope. An example is shown in figure 6.7, where three pictures at different zooms

are presented together with a topographic AFM image. The AFM topographic mea-

surements show a combination of several FLG flakes at the edge of the big graphite

flake.

Figure 6.7: In a b and c, three optical images with zooms x10, x50 and x100, used

to localize the graphene flakes deposited on to of the β-Bi2Pd crystal. In d, the

corresponding topographic image of the area highlighted with a black square in c.

It shows flakes with different thicknesses with a graphene flake signaled with a black

arrow

6.2.3.1 Friction measurements

It is know that graphene has lubricant properties [225]. This, allows to improve

the localization of the flakes via friction images, as the contrast in friction images

between graphene, FLG and the substrates is often huge [226]. For this reason, we
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have performed a combination of topographic and friction measurements at the same

flake to localize the different graphene or FLG flakes.

The physical basics of the friction measurements in AFM are as follows. When

scanning in the contact mode at a constant force, besides the cantilever’s deflection

in the normal direction, an additional torsion bending of the cantilever takes place.

When moving over a flat surface with zones of different friction factors, the angle of

torsion will be changing in every new zone. This allows measuring of the local friction

force. If the surface is not absolutely flat, such an interpretation is complicated. To

distinguish zones of different friction and relief influence one can utilize second pass

on the same line in opposite direction (for a detail study of friction measurements in

AFM see reference [98]).

In figure 6.8 b, there are several FLG flakes on the right of the image that are not

easily localized in the topographic image. They appear as a clear dark contrast in

the friction image. In our case, we have not found mayor differences between friction

images on graphene and FLG on top of the β-Bi2Pd crystal, probably due to surface

contamination during the exfoliation-transfer method. Friction images do not allow

us to distinguish between graphene or FLG flakes on top of β-Bi2Pd but is still the

best technique to quickly localize FLG flakes on top of β-Bi2Pd that are not visible

in the topographic image.

6.2.3.2 Kelvin Probe Microscopy (KPM) measurements

We have used a different approach to establish a experimental procedure that unam-

biguously distinguish between graphene and FLG flakes deposited on β-Bi2Pd. We

have performed Kelvin Probe Microscopy (KPM) measurements on the same flake to

characterize the surface potential difference between the β-Bi2Pd substrate, graphene

and FLG flakes. KPM is a tool that enables nanometer-scale imaging of the surface

potential of a broad range of materials. KPM measures the Surface Potential Differ-

ence (SPD) between a conducting tip and the sample.
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Figure 6.8: In a, a topographic image of some graphene flakes with different thick-

nesses, from 25 to 1 layers. The area occupied by different flakes is approximately

signaled with black lines. In b, a friction map measured with our RT-AFM showing

two different regions, one on top of the graphene flakes and another corresponding to

the β-Bi2Pd crystal. In c and d two KPM images revealing a clear contract between

the β-Bi2Pd crystal, the single layer graphene flake and thicker graphene flakes.

VSPD = φtip−φsample
−e

(6.1)

Where φtip and φsample are the work functions of the tip and the sample (for a

more detailed study of the KPM see reference [98]).

In figure 6.8 c and d, KPM maps at the same areas that the topographic and

friction images are shown. In this case, is clear that the difference in surface potential

between graphene, different FLG flakes and β-Bi2Pd is measurable. More important,

the surface potential in a single layer graphene is smaller that the surface potential

of the β-Bi2Pd crystal and the surface potential of thicker flakes is higher that in the

β-Bi2Pd. This allows to unambiguously distinguish between single layer graphene

and thicker flakes by simply comparing the value of the surface potential of a flake



CHAPTER 6. Exfoliation and characterization of layered superconductors and
graphene/superconductor heterostructures 128

Figure 6.9: In a, our RT-AFM with the crystal chamber used to control the ambient

humidity with the N2 flux. In b, a KPM image measured during the experiment as

an example. In c, the evolution of the surface potential for the substrate (β-Bi2Pd),

graphene and FLG after decrease the humidity of the sample chamber by applying a

constant current of N2, in the image. The moment when the N2 flux was turned on

is signaled in gray. In d, the evolution of the surface potential of the same system as

a function of the number of layers of graphene for four different times after decrease

the humidity. Both plots show that the surface potential difference between the

β-Bi2Pd, the graphene and the FLG remains almost constant with the time.

and the β-Bi2Pd substrate.

KPM surface potential measurement are often affected by adsorbates on the sur-

faces of study. As Oxygen, Hydrogen and another adsorbates present in the atmo-

sphere attached to the graphene and β-Bi2Pd surfaces. For this reason, we have

sealed our AFM in a crystal chamber with a continuous flux of Nitrogen for sev-

eral hours. Nitrogen flux is expected to dramatically decrease the humidity inside

the crystal chamber and partially remove the adsorbates from the sample. We have

maintained the Nitrogen flux for 50 hours, performing several KPM measurement

during the process. We have found that the Surface potential of all FLG, graphene
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and β-Bi2Pd decreases with the time and approaches an stable value after turn on

the N2 flux. After reach a stable value, the difference between the surface potential

of the different flakes and the β-Bi2Pd substrate, is almost the same than before,

showing that this technique allow to localize graphene flakes even at ambient condi-

tions with contaminants deposited on the surface. The results of this experiment are

summarized in figure 6.9.

Our results shows that KPM is the best experimental microscopic technique to

individual localize graphene flakes on top of the superconductor β-Bi2Pd. By contrast

friction maps have probed to be a valuable tool to localize graphene and FLG flakes on

top of β-Bi2Pd but no dot allow to unambiguously determine the number of graphene

layers.

6.3 Electrochemical transfer of graphene on top of β-

Bi2Pd

We have transfered a graphene sheet of ≈ 1 cm × 1 cm area on a β-Bi2Pd substrate.

The graphene sheet was grown in high vacuum on a copper foil by Jon Azpeitia at

the laboratory of Prof. Jose Martin Gago (for a detailed description of the graphene

growth see reference [227]).

To transfer the graphene sheet from the copper foil to the β-Bi2Pd substrate we

have use the common electrochemical transfer method described in [229, 230]. In this

method, first, the graphene is covered by a PMMA layer via spin coating (figure 6.10

a). Then, the coper foil with the graphene and the PMMA is immersed in a solution

of potassium chloride at a rate of 1 mm/s (figure 6.10 b). The copper is negatively

polarized up to 5 V with respect to a carbon anode. When the graphene/copper

cathode is negatively polarized, hydrogen bubbles appear at the graphene/copper

interface due to the reduction of water molecules and allow graphene to gently detach

(figure 6.10 c). Then, the graphene/PMMA layer is placed on top of the substrate

(figure 6.10 d) and the PMMA layer is dissolved with acetone to obtain free graphene

deposit on top of the substrate (figure 6.10 e and f).
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Figure 6.10: Schematic representation of the graphene sheet transfer method.

The PMMA layer is presented in light pink, the graphene in blue, the copper foil

in orange and the substrate in green. First, the graphene is covered by a PMMA

layer via spin coating (a). Then, the coper foil with the graphene and the PMMA

is immersed in a solution of potassium chloride at a rate of 1 mm/s (b). The

copper is negatively polarized with respect to a carbon anode. When the cathode is

negatively polarized, hydrogen bubbles appear at the graphene/copper interface due

to the reduction of water molecules and allow graphene to gently detach (c). Then,

the graphene/PMMA layer is placed on top of the substrate (d) and the PMMA

layer is dissolved with acetone and heated up to 70 ◦ to obtain free graphene deposit

on top of the substrate (e and f) Adapted from [228].

6.3.1 Characterization at room temperature

After transfer the graphene on the β-Bi2Pd crystal, we have measured it in our RT-

AFM to ensure the success of the transfer. We have found that the whole surface of

the crystal is covered by graphene showing its characteristic wrinkles, pointing the

big success of the transfer (figure 6.11).

6.3.2 Characterization at low temperatures

We have measured the vortex lattice in the same sample at low temperatures in or

LT-AFM. Figure 6.12 d shows the topographic image of sample at 2 K. It reveals

the characteristic wrinkles of the graphene layers and some steps and terraces of the

β-Bi2Pd crystal. Figure 6.12 e shows the magnetic image measured at the same area
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Figure 6.11: In the figure, we show two topographic images measured at RT with

our RT-AFM in a sample with graphene deposited on top of a β-Bi2Pd crystal.

In both images are visible the characteristic wrinkles of the graphene pointing the

success of the transfer.

at 2 K and under an applied magnetic field of 200 Oe in the out of plane direction.

The image shows an hexagonal vortex lattice in the whole field of view, revealing that

it is possible to observe the vortex lattice even when graphene is present. We have

not found any any visible effect due to pinning or screening of the superconducting

vortices on the graphene layer.

Further experiments are needed to determine if there is induced superconductivity

or not on the graphene due to the proximity effect as it was previously reported by

[11] in a Pr2−xCexCuO4 graphene heterostructure. In particular STM measurements

in the same β-Bi2Pd/graphene sample are of particular interest to reveal if there is a

superconducting gap opening at the graphene.

6.4 Conclusions

In conclusion, we have successfully exfoliated several superconducting crystals and

graphene and deposit them in different substrates using a combination of PDMS sili-

con stamps and the regular scotch tape method. We have investigated three different

system with this method, BSCCO on SiO2, β-Bi2Pd on SiO2 and graphene and FLG

on β-Bi2Pd.

In the case of BSCCO flakes deposited in SiO2, we were able to measure one thick
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Figure 6.12: In a, the experimental set-up to transfer the PMMA/graphene

layer to an arbitrary substrate. In b, a photography of the copper foil with the

graphene deposited on top. In c, a photography of the β-Bi2Pd crystal with the

graphene/PMMA layer deposited on top. In d and e, topographic and magnetic

images of the transfered graphene layer on top of the β-Bi2Pd crystal measured at

the same area at 2 K and an applied magnetic field of 200 Oe perpendicular to the

surface. The topographic image reveal the characteristic wrinkles of the graphene

sheet an the steps and terraces of the β-Bi2Pd crystal. The magnetic image shows

the ordered hexagonal vortex lattice even with the presence of the graphene layer.

flake at low temperatures and characterize its magnetic profile in the superconducting

state at different magnetic fields and temperatures. We have found that the screening

of the magnetic field in this flakes is bellow our experimental resolution at moderate

(100 Oe) and very low fields (1 Oe).

For β-Bi2Pd flakes deposited on SiO2, we were able to exfoliate and deposit flakes

of this system for the very first time, down to some tens of nanometers. This results

open the possibility to study the superconducting behavior in the 2D limit in this

system in the future.

We have also transfered graphene and FLG flakes on top of a β-Bi2Pd single crystal

and developed a experimental procedure to unambiguously localize graphene and FLG

flakes on top of β-Bi2Pd using a combination of friction and KPM measurements with

an AFM. We have also probed that this method allow to localize the flakes at ambient

and at low humidity conditions.
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Finally, we have transfered a ≈ 1 cm × 1 cm graphene sheet on top of a β-Bi2Pd

single crystal with the electromechanical transfer method and measured the vortex

lattice of the β-Bi2Pd crystal at the superconducting state at 2K trough the graphene

layer. This experiment, opens the possibility of characterize this heterostructure in

future experiments to determine if there is a gap opening in the graphene in this

situation.



CHAPTER 7

General conclusions

In this project we have used magnetic force microscopy at low temperatures to study

three different superconducting compounds. We have focused our research in the

study of superconducting vortices and their manipulation. We have also studied

the decomposition in superconducting and ferromagnetic domains in a Ca(Fe0.965

Co0.035)2As2 single crystal and the exfoliation and deposition of several 2D systems.

Regarding the experimental system, we have used a set-up that allows us to perform

AFM-MFM measurements between 1.8 K and 300 K, applying magnetic fields in any

direction of the space up to 5 T in the Z direction and 1.2 T in the X and Y directions.

With this set up, we have characterized for the first time the hysteresis cycle

of MFM commercial probes as a function of the temperature from 1.8 to 300 K.

We have also found that the MFM images of superconducting vortices show star-like

features at vortex positions when the MFM tip is magnetized bellow its coercive field.

Interestingly, at some magnetization fields, bellow the coercive field of the tips, the

lateral resolution is improved with respect to tips magnetized above their coercive

field.

We have observed two different regimes in the patterns of pinned superconduct-

ing vortices at low magnetic fields in the single gap superconductor β-Bi2Pd. We

have shown that lines of vortices form at defects due to pinning at very low magnetic

fields, while at higher fields the vortex lattice acts as a whole, leaving a regular hexag-
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onal lattice even below Hc1. Crystalline strain close to defects determines the vortex

arrangements at low fields and leads to sizable modifications of the local supercon-

ducting screening properties, as shown by the measured increase in the penetration

depth λ close to defects.

We have studied the crossing lattice in a Bi-2212 single crystal at low temperatures

and low fields. We have successfully manipulated an arbitrary arrangement of PVs

and the crossing lattice of JVs and PVs. We have measured the dependence of the

PV movement with the angle between the in-plane magnetic field and the scan of the

MFM. We have measured the necessary force to manipulate isolated PVs and PVs

trapped on JVs. We were able to cross three JVs. To our knowledge, ours is the first

work showing manipulation of the crossing lattice in a superconductor.

We have studied the effect of strain in a Ca(Fe0.965 Co0.35)2As2 single crystal

from the microscopic point of view. We have imaged the coexistence of tetrago-

nal/orthorhombic domain walls bellow the strains mediated transition at Ts,N (ε).

Bellow the superconducting critical temperature of free standing samples, we have

measured the formation of diamagnetic domains coinciding with the tetragonal do-

mains. We have associated the diamagnetic domains with the superconducting tran-

sition of the remaining tetragonal phase. We have characterized their evolution with

the applied magnetic field and the temperature. At very low magnetic fields we ob-

serve sometimes linear diamagnetic structures in the orthorhombic phase that might

join elongated tetragonal domains, suggesting that such a coupling between elongated

domains can indeed happen in some parts of the sample. To our knowledge, ours is

the first experimental work showing phase separation associated to strain bellow TC
in pnictides.

We have successfully exfoliated several superconducting crystals and graphene and

deposit them in different substrates using a combination of PDMS silicon stamps and

the regular scotch tape method. We have investigated three different system with

this method, BSCCO on SiO2, β-Bi2Pd on SiO2 and graphene and FLG on β-Bi2Pd.

In the case of BSCCO flakes deposited in SiO2, we were able to measure one thick

flake at low temperatures and characterize its magnetic profile in the superconducting
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state at different magnetic fields and temperatures.

For β-Bi2Pd flakes deposited on SiO2, we were able to exfoliate and deposit flakes

of this system for the very first time, down to some tens of nanometers. This results

open the possibility to study the superconducting behavior in the 2D limit in this

system in the future.

We have also transfered graphene and FLG flakes on top of a β-Bi2Pd single crystal

and developed a experimental procedure to unambiguously localize graphene and FLG

flakes on top of β-Bi2Pd using a combination of friction and KPM measurements with

an AFM. We have also probed that this method allow to localize the flakes at ambient

and at low humidity conditions.

Finally, we have transfered a ≈ 1 cm × 1 cm graphene sheet on top of a β-Bi2Pd

single crystal with the electromechanical transfer method and measured the vortex

lattice of the β-Bi2Pd crystal at the superconducting state at 2K trough the graphene

layer. This experiment, opens the possibility of characterize this heterostructure in

future experiments to determine if there is a gap opening in the graphene in this

situation.



CHAPTER 8

Conclusiones generales

En este proyecto hemos usado la microscopía de fuerzas magnéticas a bajas temper-

aturas para estudiar tres compuestos superconductores distintos. Hemos centrado

nuestra investigación en el estudio de los vórtices superconductores y en su manipu-

lación. Hemos estudiado además, la descomposición en demonios superconductores

y ferromagnéticos en un monocristal de Ca(Fe0.965 Co0.035)2As2 y la exfoliación de

varios sistemas 2D. Acerca del sistema experimental, hemos usado un set-up que nos

permite realizar medidas de AFM/MFM entre 1.8 K y 300 K, aplicando campos mag-

néticos en cualquier dirección del espacio hasta 5 T en la dirección Z y 1.2 T en las

direcciones X e Y.

Con este set-up, hemos caracterizado por primera vez el ciclo de histéresis de una

punta comercial de MFM en función de la temperatura, desde 1.8 K hasta 300 K.

Además, hemos encontrado que las imágenes de MFM de vórtices superconductores

muestras estructuras en forma de estrella en la posición de los mismos cuando la punta

de MFM está magnetizada por debajo de su campo corecitivo. Es interesante que a

algunos campos de magnetización, por debajo del campo coercitivo de la punta, la

resolución lateral mejora con respecto a puntas magnetizadas por encima del campo

coercitivo.

Hemos observado dos regimenes distintos en la distribución de los vórtices super-

conductores en β-Bi2Pd. Hemos mostrado que a campos magnéticos muy bajos, estos

137



CHAPTER 8. Conclusiones generales 138

se distribuyen en forma de líneas en los defectos, debido al pinning, mientras que a

campos más altos, la red de vórtices actúa como un todo, distribuyéndose en una

red hexagonal incluso por debajo de HC1. La tensión cristalográfica en los defectos

determina la distribución a campos bajos y lleva a modificaciones de las propiedades

superconductoras locales, como se muestra por el aumento medido en la longitud de

penetración λ cerca de los defectos.

Hemos estudiado la red cruzada en un monocristal de Bi-2212 a bajas temper-

aturas y bajos campos magnéticos. Hemos conseguido manipular una distribución

aleatoria de PVs y la red cruzada de JVs y PVs. Hemos medido la dependencia del

movimiento de los PVs con el ángulo del campo magnético en el plano y el eje de

medida el MFM. Hemos medido la fuerza necesaria para manipular PVs aislados y

PVs decorando JVs. Hemos cruzado tres JVs. En nuestro conocimiento, este es el

primer trabajo mostrando manipulación de la red cruzada en un superconductor.

Hemos estudiado el efecto de la tensión en un monocristal de Ca(Fe0.965 Co0.035)2As2
desde el punto de vista microcópico. Hemos medido la coexistencia de dominios

tetragonales y ortorrómbicos por debajo de la transición producida por la presencia

de tensión en el cristal, TS,N (ε). Por debajo de la transición superconductora de

muestras sin tensión externa, hemos medido la formación de dominios diamagnéticos

coincidiendo con la localización de los dominios tetragonales. Hemos asociado los

dominios diamagnéticos con la transición superconductora de la fracción de dominios

tetragonales aún presente en la muestra. Hemos caracterizado su evolución con la

temperatura y el campo magnético. A campos muy bajos, hemos obervado que en

algunos casos estructuras diamagnéticas unen distintos dominios dimagnéticos, su-

giriendo que el acoplamiento entre dominios diamagnéticos puede ocurrir en algunas

partes de la muestra. En nuetro conocimiento, el nuestro, es el primer trabajo exper-

imental que muestra separación de fases asociada con tensión por debajo de TC en

superconductores basados en hierro.

Hemos exfolaido distintos cristales superconductores y grafeno y los hemos de-

positado en distintos substratos usando una combinación de sellos de PDMS y cinta

adhesiva. Hemos investigado tres sistemas diferentes con estos métodos: BSCCO en

SiO2, β-Bi2Pd en SiO2 y grafeno en β-Bi2Pd.
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En el caso de los flakes de BSCCO depositados en SiO2, fuímos capaces de medir

un flake fino a bajas temperaturas y de caracterizar su perfil magnético en el estado

superconductor a distintos campos magnéticos y temperaturas.

Para los flakes de β-Bi2Pd en SiO2, fuímos capaces de exfoliar y depositar flakes

de este sistema por primera vez hasta espesores de decenas de nanómetros. Este

resultado abre la posibilidad a estudiar el comportamiento superconductor en el límite

2D de este sistema en el futuro.

También hemos transferido grafeno y FLG flakes en un monocristal de β-Bi2Pd y

desarrollado un método experimental para localizar sin ambiguedad grafeno y FLG

depositados en β-Bi2Pd, usando una combinación de medidas de fricción y KPM

con AFM. Además, hemos probado que este método funciona tanto en condiciones

ambientales normales como en condiciones de muy baja humedad.

Finalmente, hemos transferido una lámina de 1 cm × 1 cm de grafeno en un

monocristal de β-Bi2Pd mediante el método de transferencia electromecánica y hemos

medido la red de vórtices superconductores del β-Bi2Pd en el estado superconductor

a 2 K a través del grafeno. Este experimento abre la posibilidad de caracterizar esta

heteroestructura en futuros experimentos y determinar si se induce un gap supercon-

ductor en el grafeno.
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