
UNIVERSIDAD AUTÓNOMA DE MADRID

ESCUELA POLITÉCNICA SUPERIOR

Doble Grado en Ingeniería Informática y Matemáticas

TRABAJO FIN DE GRADO

ANALYSIS OF XILINX SDNET TOOL FOR PACKET
FILTERING IN 100 GBPS NETWORK MONITORING

APPLICATIONS

Sergio Fuentes de Uña
Tutor: José Fernando Zazo Rollón
Ponente: Sergio López Buedo

JUNIO 2018

ANALYSIS OF XILINX SDNET TOOL FOR PACKET
FILTERING IN 100 GBPS NETWORK MONITORING

APPLICATIONS

DISEÑO E IMPLEMENTACIÓN DE FILTROS DE
PAQUETES PARA REDES 100 GBPS ETHERNET

MEDIANTE LA HERRAMIENTA XILINX SDNET Y LOS
LENGUAJES PX Y P4

Autor: Sergio Fuentes de Uña
Tutor: José Fernando Zazo Rollón
Ponente: Sergio López Buedo

Departamento de Tecnología Electrónica y de las Comunicaciones
Escuela Politécnica Superior

Universidad Autónoma de Madrid

JUNIO 2018

Acknowledgment

“Do everything by hand,

even when using the computer.”

–宮崎駿 (Hayao Miyazaki)

I should like to start by expressing my gratitude to the Ministry of Education, Culture

and Sport as well as the UAM Electronic and Communication Technologies Department

for supporting this project with a Collaboration Grant (B.O.E. 12th August 2017).

I would like to thank my mentors José and Sergio for introducing me into the FPGA

jungle and carefully guiding me through all my work with such kindness, as well as

every single person in the HPCN lab who has added their grain of sand to this project:

Rafa, Dani, Mario, Gustavo, Tobi, David... Thank you for making this work possible!

Of course I cannot fail to thank my family for their unconditional love and belief in

me ever since I was a little boy: my mom Alicia, my aunt Mari Paz, my cousin Ana and

my always-favorite cousin Maribel, who left us this year. Rest in peace, Yeye. I love you.

Allowme to add one last line to thankmy friends, more like brothers, Raúl and Diego.

Thank you for always being there by my side, willing to pick me up every single time I

have fallen along all these years, thank you from the bottom of my heart.

v

Abstract

Abstract

Network trafficmonitoring is becomingmore andmore challenging due to the relent-

less increase in network speeds. At 100 Gbps, the classical approach of storing all traffic

for a later analysis might not be feasible, since the huge volume of data that needs to be

saved could make it impossible. Nevertheless, packet filtering allows network monitor-

ing tools to focus on a certain problem, discarding all packets that are not relevant for

the analysis and thus easing storage requirements. The high performance and guaran-

teed line-rate operation of FPGA-based solutions make them optimal for packet filtering

at 100 Gbps. However, the effort required by a conventional, HDL-based FPGA devel-

opment methodology might be prohibitive. To address this problem, in this work we

have analyzed the results obtained with the Xilinx SDNet high-level tool for two packet

filtering cases. These two filters are related to the monitoring of sites visited by network

users and, for both cases, the SDNet designs were able to operate at line rate on actual

100 Gbps Ethernet links. SDNet results were also compared to HDL implementations

made by an experienced engineer. Though HDL-based designs allow for reduced la-

tency and resource utilization, SDNet excels in terms of productivity: the description of

themost complex filter only takes about 100 lines of SDNet code, that is, significantly less

than the HDL counterpart. While pushing the limits of the SDNet architecture, related

systems from the field of Queuing Theory were also modeled and studied.

Keywords—sdnet, fpga, packet, filter, processing, 100 gbps, network, traffic,monitoring,

high performance, client hello, dns, ascii, data plane, header, payload, queuing, xilinx.

vii

Resumen

Resumen

Monitorizar tráfico de red es cada vez unmayor desafío debido al incesante aumento

de las velocidades de red. A 100 Gbps, la estrategia clásica de almacenar todo el tráfico

para su posterior análisis puede no ser factible, dado el enorme volumen de datos que

se ha de guardar. Sin embargo, el filtrado de paquetes permite que las herramientas

de monitorización de red se enfoquen en un problema particular, descartando los pa-

quetes irrelevantes para el análisis y facilitando así los requisitos de almacenamiento.

El alto rendimiento y la tasa de línea que brindan las soluciones basadas en FPGA las

hacen óptimas para el filtrado de paquetes a 100 Gbps. No obstante, el esfuerzo reque-

rido por la metodología convencional de desarrollo FPGA es en ocasiones problemático.

Para abordar este inconveniente, en este trabajo hemos analizado los resultados obte-

nidos mediante la herramienta de alto nivel Xilinx SDNet para dos casos de filtrado de

paquetes. Dichos filtros están relacionados con la monitorización de las páginas visita-

das por los usuarios de red y, en ambos casos, los diseños de SDNet fueron capaces de

funcionar a tasa de linea en enlaces 100 Gbps Ethernet reales. Los resultados de SDNet

se han comparado también con implementaciones HDL realizadas por un ingeniero ex-

perimentado. Aunque los diseños HDL logran menor latencia y uso de recursos, SDNet

sobresale en términos de productividad: la descripción del filtro más complejo sólo re-

quiere 100 líneas de código SDNet, esto es, significativamente menos que el HDL equiva-

lente. Durante la investigación de la arquitectura de SDNet, también se han modelado y

estudiado sistemas de gran interés, pertenecientes al campo de la teoría de colas.

Palabras clave—sdnet, fpga, paquete, filtro, procesar, 100 gbps, red, tráfico,monitorizar,

alto rendimiento, client hello, dns, ascii, data plane, header, payload, colas, xilinx.

ix

Contents

List of Tables xiii

List of Figures xv

Glossary xvii

Acronyms xix

1. Introduction 1

1.1. Scope . 3

1.2. Outline . 4

2. Technology 5

2.1. Current Standard Proposals . 5

2.2. Related Work . 7

2.2.1. Automated tool for generating packet filters 7

2.2.2. P4-to-VHDL . 7

2.2.3. P4FPGA . 7

2.2.4. Whippersnapper . 7

2.2.5. HyPaFilter . 8

2.2.6. “Matching circuits can be small” . 8

2.2.7. NetFPGA SUME . 8

3. Design 9

3.1. Hardware Design . 9

3.2. Implemented Filters . 10

3.2.1. Reference HDL Filter Architecture . 12

3.2.2. SDNet Filter Architecture . 13

xi

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

3.3. Sample Packets . 13

3.4. Target Board and Experiments . 13

4. Results 15

4.1. Bitrate . 15

4.2. Latency . 16

4.3. Hardware Utilization . 17

4.4. Productivity . 17

4.5. Abstraction . 18

4.6. Limitations . 19

4.7. Interoperability Testbed . 20

5. Analytical Model 23

5.1. Motivation . 23

5.2. Filter Design . 24

5.3. Stochastic Queuing Model . 26

5.3.1. Model identification . 27

5.3.2. FIFO length estimation . 30

5.4. Hardware Implementation . 30

5.5. Results . 31

6. Remarks 33

7. Future Work 35

A. Formal Proof of Little’s Law 37

A.1. Proof of Little’s Law for a System Empty at 0 and T 37

A.2. Proof of Little’s Law with Permissible Initial and Final Queues in [0, T] . . . 38

B. Kolmogorov-Smirnov Test 39

C. PX Source Code of Implemented SDNet Filters 41

C.1. TLS Client Hello Filter . 41

C.2. DNS Filter . 45

C.3. DPI Filter . 49

xii CONTENTS

List of Tables

2.1. Technical Comparison between the PX and P4 Languages 6

3.1. Lines of Code Required for Each Implementation 11

4.1. Filter Bandwidth and Latency Comparison . 15

5.1. Variables and Mean Values for the Queuing Model 27

xiii

List of Figures

3.1. Hardware Block Diagram. 10

3.2. Reference HDL Filter Scheme. 12

3.3. Xilinx Virtex UltraScale FPGA VCU108 Evaluation Kit. 14

4.1. Hardware Utilization Comparison (Mean for Both Filters). 17

4.2. Interoperability Hardware Testbed Equipment. 20

5.1. DPI Filter Diagram. 24

5.2. DPI Filter with Recirculation Diagram. 26

5.3. Kolmogorov-Smirnov Test for the Distribution of Time Between Arrivals. . 28

5.4. DPI Filter Hardware Implementation Scheme. 30

xv

Glossary

AXI4-Stream AXI4-Stream is one of many AMBA-based protocols designed to transport

data streams of arbitrary width in hardware. Most usually 32-bit bus width is

used, which means that 4 bytes get transferred during one cycle. At 100MHz of

programmable logic frequency on FPGAs this yields throughput of magnitude of

hundreds of megabytes per second depending onmemorymanagement unit capa-

bilities and configuration. 9, 10, 16, 19, 30, 31

Data Plane The data plane (sometimes known as the user plane, forwarding plane, car-

rier plane or bearer plane) is the part of a network that carries user traffic that

defines the part of the router architecture that decides what to do with packets ar-

riving on an inbound interface. The data plane, the control plane and the manage-

ment plane are the three basic components of a telecommunications architecture.

The control plane and management plane serve the data plane, which bears the

traffic that the network exists to carry. 2, 5–7, 33, 35, 36

FPGA Field ProgrammableGateArrays (FPGAs) are semiconductor devices that are based

around a matrix of configurable logic blocks (CLBs) connected via programmable

interconnects. FPGAs can be reprogrammed to desired application or functional-

ity requirements after manufacturing. This feature distinguishes FPGAs from Ap-

plication Specific Integrated Circuits (ASICs), which are custom manufactured for

specific design tasks. 1, 2, 4–8, 17, 20, 21, 33, 35

xvii

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

xviii Glossary

Acronyms

ASCII American Standard Code for Information Interchange. 24–26, 30, 31

CDF Cumulative Distribution Function. 29, 39, 40

COTS Commercial Off-The-Shelf. 20

CPU Central Processing Unit. 8, 35

DIY Do It Yourself. 6

DNS Domain Name System. 2, 10, 11, 13, 16–18, 31

DPI Deep Packet Inspection. 11, 23, 30, 31, 33, 35

ECDF Empirical Cumulative Distribution Function. 29, 39

FIB Forwarding Information Bases. 8

FIFO First In, First Out. 12, 19, 26, 30, 31, 34, 35

HDL Hardware Description Language. 2–4, 7, 9, 10, 12, 17, 19, 20, 31, 33, 35

HLS High-Level Synthesis. 2

IP Internet Protocol. 1, 2, 11, 18, 24

IPv4 Internet Protocol version 4. 2

IPv6 Internet Protocol version 6. 2, 11, 16

JTAG Joint Test Action Group. 10, 13

MLE Maximum Likelihood Estimation. 28, 29

xix

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

QoR Quality of Results. 2, 7, 8, 12

SNI Server Name Indication. 11, 23

TCP Transmission Control Protocol. 1, 24

TLS Transport Layer Security. 2, 10, 11, 13, 16, 17, 20, 23, 31

UDP User Datagram Protocol. 2, 11, 18, 24

VLAN Virtual Local Area Network. 2, 11, 16, 18, 24

xx Acronyms

1
Introduction

It is well known that programmable logic plays a prominent role in the field of high-

performancenetworking. FPGA-based solutions not only providehighprocessing speeds

but also offer small latencies, and what is more important, a deterministic operation.

However, in recent years, several software frameworks have been developed to over-

come theperformance shortcomings of conventional TransmissionControl Protocol (TCP)

/ Internet Protocol (IP) stacks. Among all these frameworks, DPDK is probably the one

most widely used [1]. DPDK performs very well in terms of raw networking speeds, be-

ing able to reach 100 Gbps on high-end servers. But the problem with software-based

solutions is latency and non-determinism. As packets go through a number of hardware

and software queues, latency is significantly increased. Moreover, the latency of these

queues is non-deterministic, and performance is obtained by splitting incoming traffic

into several processing threads, each running in a different processor core. As a conse-

quence, packet disorder might happen [2].

1

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

Nevertheless, although FPGA-based solutions for packet processing can obtain better

Quality of Results (QoR) than software (DPDK-based) ones, the fact is that software has

traditionally beaten FPGA in terms of development costs. To make FPGA competitive

in terms of development effort, several high-level synthesis tools have been introduced

over the last years, such as Vivado High-Level Synthesis (HLS) and the SDx family [3]

by Xilinx, or Intel HLS Compiler [4] by Intel. The goal of all these tools is to increase

the abstraction levels in order to make FPGA development much more productive. Not

all high-level synthesis tools are general purpose: There are application-specific tools

such as the one studied in this work, Xilinx SDNet, which is specifically tailored towards

network Data Plane (packet processing) applications.

Network traffic monitoring is certainly one of the fields that can benefit from FPGA-

based packet processing. The traditional approach was to capture all traffic for a later

analysis. However, this approach is losing validity as the network speeds increase: At

100Gbps, up to 45 terabytes of traffic can be collected each hour. Fortunately, not all traf-

fic is usually needed, only a small fraction of it is typically relevant for a given analysis.

Therefore, packet filtering can be a convenient approach to scale network monitoring

to 100+ Gbps speeds. However, this filtering needs to be done very carefully. Firstly,

no packet losses are allowed at any case, even in the presence of corner cases such as

minimal-size packets. Secondly, it is important that the solution is deterministic, espe-

cially in terms of packet order, but it is also important that the latency is bounded, to in-

crease the accuracy of packet timestamps. All these requirements call for a FPGA-based

solution.

The purpose of this work is to analyze the QoR obtained by Xilinx SDNet in the devel-

opment of FPGA-based solutions for packet filtering. As case-study, two different packet

filters have been evaluated: Transport Layer Security (TLS) Client Hello and Domain

Name System (DNS) Request/Reply. Both are complementary, oriented towards moni-

toring what are the sites visited by network users. The former needs to inspect the pay-

load of packets, while the latter just inspects the IP and User Datagram Protocol (UDP)

headers. But, in order to make the DNS filter more complex, it also supports Virtual Lo-

cal Area Network (VLAN) tags and both Internet Protocol version 4 (IPv4) and Internet

Protocol version 6 (IPv6) protocols.

Results obtained with the SDNet tool are compared with a conventional Hardware

Description Language (HDL) implementation made by an experienced FPGA designer.

As it will be shown later in the results and conclusion sections, while the resource usage

2 CHAPTER 1. INTRODUCTION

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

of the SDNet solution is not as good as the one of the HDL designs, the SDNet implemen-

tations guarantee 100 Gbps operation, and they feature a moderate latency of around

100 clock cycles. Nevertheless, themost interesting result from SDNet is that description

of filters only takes around 120 lines of high-level code. Compared to the approximate

650 lines of Verilog code that filters take for the reference designs, the benefits in terms

of productivity are remarkable.

1.1. Scope

The work described in this document is aimed towards hardware and software engi-

neers who are involved in the networking area, specifically those who research devel-

opment of hardware-accelerated packet filters but find HDL design tedious and coun-

terproductive, or those who simply prefer programming in higher-level languages. The

architecture designs, experimental runs, productivity results and successful deployment

scenario that follow this introduction will hopefully prove useful for individuals in such

field of research when facing similar situations.

The study carried out is also a promising starting point in SDNet development and its

underlying PX language. Developers interested in knowing about the capabilities and

performance details of this emerging solution, in contrast with similar P4 or traditional

HDL approaches to the networking paradigms that SDNet covers, can hence benefit from

the thorough analysis of the tool presented in this work.

Simpler routing use cases of SDNet and technical specifications of the PX language

remain out of the scope of this document and can be freely consulted in their respective

user guides (UG1012 and UG1016) under the SDNet section of Xilinx Design Tools [3].

CHAPTER 1. INTRODUCTION 3

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

1.2. Outline

The report is structured in six main sections related to the progress of the project:

Introduction Presentation andmotivation of the project carried out and general guide-

lines about the overall structure of this report document.

Technology Analysis of the state of the art scenario of packet filtering in very high-

speed networks, along with the most relevant available solutions and similar pub-

lishedworks, considering how they comparewith the SDNet approachunder study.

Design Exhaustive descriptions of the principal architectures, resources and metrics

developed and employed in order to perform the benchmarking of the filters.

Results Experimental results and comparisons between SDNet and HDL obtained from

the execution and evaluation of both design alternatives created for the analysis.

Analytical Model Further investigation and experiments about a model of increased

complexity, proposed in order to bypass the current limitations of SDNet, which

introduces stateful processing and grants access to more ambitious filtering tech-

niques.

Remarks Conclusions and final thoughts on the performed analysis of the SDNet tool

and several interesting results that it has brought to light.

Future Work Suggestion of additional studies that might follow the steps taken during

this project, such as tool improvements or extensions for even more productive

development environments when creating FPGA-based network applications.

4 CHAPTER 1. INTRODUCTION

2
Technology

2.1. Current Standard Proposals

Nowadays, the high-performance networking sector features a huge number of rel-

evant works, many of which put their effort into creating packet routing and filtering

standards, being the latter our main concern when studying SDNet.

The most successful and widely spread solutions are OpenFlow [5] and P4 [6]:

OpenFlow is a communications protocol that grants access to the Data Plane of a net-

work switch or router, enabling advanced packet routing and certain level of fil-

tering. OpenFlow is already supported by many hardware and software routers

and switches, representing a great tool for such purposes, but its level of optimiza-

tion and fine-grain tweaking remains far from what can be achieved by the direct

silicon mapping of hardware design in FPGA devices.

5

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

P4 conversely, was born as a complete programming language specialized in Data Plane

processing. Manufacturers of routing and switching solutions would then build

their own compilers that their customers could effortlessly run P4 programs on

the corresponding device. The idea behind P4 is very promising and some manu-

facturers are indeed providing P4 tools for their products, but its increasingly rich

grammar makes building P4 compilers a rather tedious task and, in fact, they of-

ten only support a small subset of the whole language –notice that not all software

coding structures are hardware-synthesizable (e.g. time-awareness)–.

Within this fashion, Xilinx decided to create their own language called PX [7] instead

of simply providing tools for P4 development. This decision involves technological de-

pendence, but greatly favors the integration and smooth design flow between the dif-

ferent tools and boards built by Xilinx, offering FPGA-based network applications with

very reduced time-to-market when using Xilinx technologies.

The following table presents the technical differences found between the PX and P4

languages, allowing for a fair more detailed comparison:

Table 2.1: Technical Comparison between the PX and P4 Languages

PX P4

Bundled compiler implementation Do It Yourself (DIY) compiler implementation

Simplified grammar Rich grammar (with subsets)

C++ inspired syntax Java inspired syntax

Does not support libraries Supports libraries

Designed for 100+ Gbps networks Contingent performance

It is worth mentioning that SDNet actually includes a supplementary P4 compiler,

which translates programs written in a P4 subset into their equivalent PX descriptions

that are then ready to be compiled by SDNet into synthesizable Verilog code. UG1252 in

the SDNet section of Xilinx Design Tools [3] refers to this P4-SDNet Translator.

6 CHAPTER 2. TECHNOLOGY

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

2.2. Related Work

This section focuses on documenting similar existing proposals and how they partic-

ularly compare with the SDNet analysis introduced during this project.

2.2.1. Automated tool for generating packet filters

In a previous work done by the HPCN Lab [8], a tool that procedurally generates HDL

code for packet filters is presented. The tool is tailored towards the 100 Gbps Ethernet

interfaces of Xilinx UltraScale/UltraScale+ devices, and defines a simple grammar for

specifying filters. Starting from a description that follows said grammar, it generates

highly-optimized synthesizable SystemVerilog code. Actually, the very narrow scope of

the tool (packet filters) allows for a significantly better QoR than the one that could be

obtained from a general-purpose tool.

2.2.2. P4-to-VHDL

P4-to-VHDL [9] follows a similar methodology to the one used in this project: Using

a high-level language to describe a Data Plane application, with the aim of generating

HDL code that can be implemented in an FPGA device (though they respectively use

P4 and VHDL). This project actually performs an intermediate step, in which P4 code is

reinterpreted for HFE-M2 [10], a low-latencymodular packet header parser architecture

for FPGA. The final output of this tool is a P4-equivalent VHDL design than can later be

mapped to hardware. The workflow is able to reach full line-rate operation in 100 Gbps

Ethernet networks [11].

2.2.3. P4FPGA

Another akin approach is P4FPGA [12], in which a conventional P4 compiler pro-

duces mid-level code written in Bluespec BSV language [13]. This BSV specification is

afterwards ready to be converted into synthesizable Verilog code by means of the BSC

compiler.

2.2.4. Whippersnapper

Regarding tools analysis, Whippersnapper [14] is a recent proposal that describes a

benchmarking suite for P4 compilers, including P4FPGA and P4-SDNet. Whippersnap-

CHAPTER 2. TECHNOLOGY 7

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

per focuses mainly on implementation and runtime details of the compilers, while our

work aims at productivity and QoR of the hardware implementations.

2.2.5. HyPaFilter

HyPaFilter [15] is anhybridhardware-software system that includes aNetFPGAboard

and a Linux host. In this work efforts are aimed towards creating a high performance

firewall, by taking advantage of the fast routing capabilities of hardware designs. The

system handles different user-defined packet processing policies, and filters network

traffic using the hardware that has been implemented in the FPGA, though in the most

complex cases it has to be assisted by a general-purpose Central Processing Unit (CPU)

running Linux. While such scenario is inherently different from the one discussed in

this document, it highlights the positive impact of FPGA implementations for network

filtering applications, firewalls in this case.

2.2.6. “Matching circuits can be small”

Finally, [16] shows how Forwarding Information Bases (FIB) held by routers can be

highly optimized in hardware and therefore easily implemented in FPGA-based device

due to the nature of their circuitry. This work gives rise to the fact that hardware-

accelerated network packet routing is a matter of concern with several solutions al-

ready available in the market and even running in production. But once again, filtering

requires more complicated architectures than routing and are not solved that easily,

which brings to light the main reason behind this work.

2.2.7. NetFPGA SUME

On a more general FPGA-related line of work aimed towards networking, a commu-

nity hardware project [17] offers an FPGA-based PCI Express board with I/O capabilities

for 100 Gbps operation as a network interface card, multiport switch, firewall, or test

and measurement environment. These are some of the capabilities that SDNet aims for,

however, the final product does not feature an actual 100 Gbps interface, as opposed to

modern Xilinx boards like the one we will be using in this work. Therefore, this open

hardware approach remains one step behind the bleeding-edge network interfaces that

have already been available in the market for some time now.

8 CHAPTER 2. TECHNOLOGY

3
Design

3.1. Hardware Design

In order to evaluate results in an scenario as close as possible to an eventual produc-

tion environment, performance measurements have been performed in real hardware.

Such measurements required the development of a number of components, which are

following described. The block diagram of the design used in the experiments is shown

in figure 3.1.

SynthGen HDL implementation of a synthetic traffic generator that outputs a sustained

stream of similar packets of chosen size to an AXI4-Stream interface. Supports

runtime byte-level packet customization and can be eventually substituted by an

actual 100 Gbps Ethernet interface.

BWMeter HDL module that measures bandwidth by keeping track of the number of

bytes and packets that went through an AXI4-Stream interface and the number of

clock cycles that have elapsed.

9

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

LAT Meter HDLmodule thatmeasures latency by countinghowmany clock cycles elapse

from themoment that a parameterizable amount of packets enter an externalmod-

ule until they exit it.

Filter Module under test that contains the implementation of the packet filter and uses

AXI4-Stream interfaces.

Null Sink Terminal AXI4-Stream receiver that holds the TREADY signal continuously

high and discards all incoming data.

Metrics Monitor External element that gathers the statistics reported by the BW and

LAT Meters, allowing real-time reads through the Joint Test Action Group (JTAG)

port of the device (using Vivado Integrated Logic Analyzer).

M
et

ri
cs

 M
on

it
or

S
yn

th
G

en

N
ul

l S
in

k

Filter

BW
Meter

LAT
Meter

BW
Meter

S
D

N
et

E
di

to
r

P
ar

se
r

Re
fe

re
nc

e

pk
tc

ut
.v

de
te

ct
.v

Figure 3.1: Hardware Block Diagram.

As it can be seen in figure 3.1, both filter implementations (Reference –corresponding

to the conventional HDL approach– and SDNet) split functionality into two blocks that

are later explained: A first one for packet inspection and evaluation of the conditions,

followed by a second one for discarding the packets if necessary.

Clock frequencywas 322.265625 MHz, and thewidth ofAXI4-Streambuseswas 512-bit.

These parameters guarantee 100 Gbps line rate operation.

3.2. Implemented Filters

As itwas stated in the introduction, two case-studyfilterswere considered: TLS Client

Hello and DNS Request/Reply.

10 CHAPTER 3. DESIGN

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

The TLS Client Hello filter looks for packets containing the TLS “Client Hello” mes-

sage. This kind of packets is interesting because the Server Name Indication (SNI)

extension of the “Client Hello” message provides the name of the server to which

the client wants to establish a TLS session. The filter requires payload inspection to

look for TLS packets, and particularly, those containing the “Client Hello” message

The DNS Request/Reply filter identifies DNS requests and replies. UDP Packets

whose source or destination port is 53 are considered to be DNS messages. That

is, the filter only requires IP and UDP header inspection. In order to add some

complexity to the filter, it also supports up to two nested VLAN tags and IPv6.

These two filters provide information about the name of servers to which clients

are connecting. DNS information would in principle be enough, but it might happen

that DNS responses are cached in clients (especially if the value of the TTL field of DNS

Resource Records is high). In that case, there will be no DNS request, but the contents of

the SNI extension of the TLS “Client Hello” message can be very useful to find out which

is the site requested by the client.

An additional Deep Packet Inspection (DPI) filter, which is to be separately detailed

later in chapter 5 due to its singular complexity, was also implemented using SDNet.

Two variants of each filter were implemented: One obtained through synthesis of

the reference Verilog code, and the other using SDNet 2017.3 to compile the description

of the filterwritten in PX language. Table 3.1 details the number of effective lines of code

required to describe the filters in each of the mentioned languages 1.

Table 3.1: Lines of Code Required for Each Implementation

Filter Verilog Lines of Code PX Lines of Code

Client Hello 633 118

DNS 645 117

DPI 970 256

1With the intention of favoring the reproducibility of the results, the complete code of both Verilog and

SDNet (Appendix C) filter implementations is available at https://github.com/Serede/sdnet-filters

CHAPTER 3. DESIGN 11

https://github.com/Serede/sdnet-filters

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

3.2.1. Reference HDL Filter Architecture

In order to evaluate the QoR of SDNet designs, equivalent filters purely written in

Verilog HDL have been developed. These Verilog designs are composed by two main

modules: detect.v and pktcut.v. The former inspects both protocol headers and pay-

load of packets, eavesdropping for particular patterns. The latter drops thewhole packet

frame when the hardcoded conditions previously checked by detect.v are not satisfied.

This is depicted in Figure 3.2.

detect.v

pk
tc

ut
.v

Forward

Drop

Packet

Packet FIFO

Decision
FIFO

Protocols

Figure 3.2: Reference HDL Filter Scheme.

The implementation of the module detect.v is conceptually straightforward, though

it is unavoidably cumbersome to adapt it to new protocols and configurations. For every

packet, all filtering conditions are tested in parallel, to achieve both high performance

and low latency. A comparison between this approach and the one followed by SDNet

one is discussed in the subsequent section.

Once the contents of the relevant fields of the packet have been checked against the

filtering rules, detect.v generates a single-bit decision flag that indicates whether the

packet must be forwarded or dropped. At the same time, the packet is stored in a First

In, First Out (FIFO) structure, waiting for the outcome from detect.v to be available.

Once that detect.v has finished, pktcut.v forwards or drops the packet according to the

aforesaid decision flag.

The latency of the implemented solution is minimal, and most of the clock cycles are

spent in storing the packet before it is forwarded to the next component. Only 2 cycles

are required by the detect.v module, since it performs all checks in parallel.

12 CHAPTER 3. DESIGN

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

3.2.2. SDNet Filter Architecture

SDNet designs are essentially a collection of different specialized engines connected

in cascade. Each engine solves a certain problem (parsing, editing, etc.) and can be

extensively configured to fit the requirements of the network processing application

that is being implemented. In this way, packets and tuples (metadata) flow through the

datapath as they are being processed by the subsequent engines. This behavior allows

designers to easily create network filters.

In the scenario considered in this work, the course of action is to parse each packet

against a certain condition (TLS Client Hello and DNS) and discard those packets that

do not meet such condition. Translating that into SDNet architecture, an initial Parser

Engine tests the filter condition and delivers the result to an Editor Engine, which accord-

ingly forwards or discards the packet.

As a final remark, these two implementations (Verilog and SDNet) are entirely equiv-

alent and have similar port interfaces. Therefore, they can be perfectly swapped with

each other in the final design.

3.3. Sample Packets

The synthetic traffic generator from Figure 3.1 uses TLS Client Hello and DNS Re-

quest/Reply packets obtained from a real network trace. This generator has the capa-

bility of altering certain key bytes of the packet at runtime, to enforce that packets are

eventually filtered out or not. As it will explained in section 4.7, the synthetic traffic

generator is used to measure the throughput and latency of filters, but in the produc-

tion designs it will be substituted by the actual 100 Gbps Ethernet network interface.

3.4. Target Board and Experiments

Designs were synthesized and implemented using the Xilinx Vivado 2017.4 Design

Suite, targeting the Xilinx Virtex UltraScale VCU108 Evaluation Kit [18] seen in figure

3.3. Once the whole setup was verified and completely functional, measurements were

ready to be gathered from the design, using Vivado Logic Analyzer and the JTAG port

of the device. Live tests with synthetic traffic at a sustained 100+ Gbps data rate were

performed. The duration of each test was 1minute; several tests were launched, varying

the percentage of filtered-out packets in each test from 10% to 90%.

CHAPTER 3. DESIGN 13

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

Figure 3.3: Xilinx Virtex UltraScale FPGA VCU108 Evaluation Kit.

14 CHAPTER 3. DESIGN

4
Results

Results obtained from the experiments show that SDNet designs are capable of op-

erating at 100 Gbps, revealing at the same time some drawbacks when compared to the

reference designs written in Verilog.

4.1. Bitrate

The first metric analyzed was the maximum bitrate attainable for each design, for

the worst case (0% packets filtered). It is worth noting that both the reference and the

SDNet designs achieved the same value (see Table 4.1).

Table 4.1: Filter Bandwidth and Latency Comparison

Filter
Bandwidth in Gbps Latency in Cycles

Reference SDNet Reference SDNet

Client Hello 150.305 150.305 34 93

DNS 99.258 99.258 18 101

15

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

Actually, a more detailed analysis indicates that these values correspond to filters

always accepting new data each clock cycle (that is, the AXI4-Stream TREADY signal of

their input interfaces never goes low): Firstly, the raw bandwidth of the 322.265625

MHz, 512-bit wide AXI4-Stream interfaces is 165 Gbps. Secondly, packets are always

aligned with the start of an AXI4-Stream 512-bit (64-byte) word. That is, if a packet

does not completely fill the last word, this word cannot be used for the following packet.

Hence, for a 583-byte long TLS ClientHello packet, ten 64-byte AXI4-Streamwordswill be

needed (that is, 640 bytes). Similarly, for a 77-byte long DNS packet, two 64-byte AXI4-

Stream words will be needed (i.e. 128 bytes). As a result, the maximum theoretical

bandwidth for each kind of packet is:

165 Gbps × 583/640 Effective Bytes = 150.3046875 Gbps

165 Gbps × 77/128 Effective Bytes = 99.2578125 Gbps

Which matches the empirical results presented in Table 4.1. The conclusion is that

bitrate is limited by the AXI4-Stream bus and the packet alignment requirement, not by

the filters themselves. Finally, it is worth noting that these bandwidth values are higher

than those present in real 100 Gbps Ethernet links. The benefit of testingwith a synthetic

traffic generator is being able to stress circuits above real operation conditions.

4.2. Latency

Latency results in Table 4.1, despite being satisfactory for both the reference and

SDNet designs, demonstrate the inherent architectural differences between both solu-

tions. We have observed that latency remains constant over the varying percentage of

filtered-out packets, a behavior caused by the strictly pipelined architectures used by

both solutions. However, SDNet leads to increased latencies –93 and 101 versus 39 and

24, respectively–. We believe that this circumstance is mainly due to the compilable na-

ture of the PX language. The reason why latency is specially increased in the DNS filter,

even though the filtering condition itself is simpler, is that additional nested VLAN and

IPv6 protocols force the SDNet compiler to add extra layers to the final architecture.

16 CHAPTER 4. RESULTS

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

4.3. Hardware Utilization

Figure 4.1 shows a detailed view of the resource utilization of the two alternative so-

lutions, reference (purple) and SDNet (green). The number of FPGA resources displayed

is the mean between the two implemented filters (TLS Client Hello and DNS). As differ-

ences in resource occupation between the two filters were small, we preferred to show

the mean in order to increase the readability of the figure. The main conclusion here is

that the number of resources used by the SDNet implementations is typically one order

of magnitude bigger than the one for the reference implementation.

CLB
 LU

Ts

CLB
 Reg

iste
rs

CARRY8

F7
 Mux

es

F8
 Mux

es CLB

LU
T a

s L
og

ic

LU
T a

s M
em

ory

LU
T F

lip
Flo

p P
air

s

Bloc
k R

AM Ti
le

0

1

10

100

1000

10000

100000 detect.v
pktcut.v
SDNet

Figure 4.1: Hardware Utilization Comparison (Mean for Both Filters).

4.4. Productivity

As opposed to resource utilization, Table 3.1 shows that SDNet descriptions of filters

need 5 times less lines of codes than their Verilog counterparts. Therefore, it can be said

that SDNet significantly increases productivity when compared to a traditional HDL-

based methodology. Additonally, SDNet automatically creates software C++ testbenches

for its modules, making debugging easier.

CHAPTER 4. RESULTS 17

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

4.5. Abstraction

Moreover, the much higher level of abstraction that SDNet provides leads to code-

bases with improved readability and easier to understand at first sight. For example,

take the following code fragment from the reference Verilog implementation of the DNS

filter:

Listing 4.1: Verilog Code Excerpt for DNS Filter
assign ipv6_port53_nested_vlan =

data[OFFSET_UDP_IPV6+2*VLAN_LEN+:16] == 16'h3500 ||

data[OFFSET_UDP_IPV6+2*VLAN_LEN+16+:16] == 16'h3500;

...

rule <= (ipv4 & udp_ipv4 & ipv4_port53)

| (vlan & ipv4_vlan & udp_ipv4_vlan & ipv4_port53_vlan)

| (vlan & nested_vlan & ipv4_nested_vlan & udp_ipv4_nested_vlan &

ipv4_port53_nested_vlan)

| (ipv6 & udp_ipv6 & ipv6_port53)

| (vlan & ipv6_vlan & udp_ipv6_vlan & ipv6_port53_vlan)

| (vlan & nested_vlan & ipv6_nested_vlan & udp_ipv6_nested_vlan &

ipv6_port53_nested_vlan);

The first assignment stores whether the destination or source port of the UDP packet

is 53. Together with preceding similar assignments in which fields of VLAN, IP and

UDP headers are checked, a final reduction of all these conditions is computed and sent

through the output rule, which reflects the filter result. Particular attentionmust be paid

about the endianness of literals (16'h3500 for port 53). This code is perfectly functional

and performance-wise optimal, but it is undeniably far from being easily readable and

comprehensible.

Now take the analogous code excerpt from the SDNet implementation of the same

DNS filter, in this case written in the high-level PX language:

Listing 4.2: SDNet Code Excerpt for DNS Filter
// DNS_Parser

class ETH :: Section(1) {

// ETH can be followed by VLAN, IPV4 or IPV6

map types {

(VLAN_TYPE , VLAN), // const VLAN_TYPE = 0x8100

(IPV4_TYPE , IPV4), // const IPV4_TYPE = 0x0800

(IPV6_TYPE , IPV6), // const IPV6_TYPE = 0x86dd

done(SUCCESS)

18 CHAPTER 4. RESULTS

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

}

...

} // ETH Header

class VLAN :: Section(2:3) { ... } // VLAN Header

class IPV4 :: Section(2:4) { ... } // IPV4 Header

class IPV6 :: Section(2:4) { ... } // IPV6 Header

class UDP :: Section(3:5) {

...

method update = {

tuple_out.is_dns = (srcport == 53) ||

(dstport == 53)

}

} // UDP header

Another code example is that of the packet discarder. The following piece of code

belongs to the Editor Engine that has been included in the PX implementations of both

filters as an SDNet system builtin:

Listing 4.3: SDNet Code Excerpt for Packet Discarder
class FETCH :: Section(1) {

// Drop only non-DNS packets

method move_to_section =

if (tuple_in.is_dns == 0) DROP

else done(SUCCESS);

} // FETCH

class DROP :: Section(2) {

// Remove whole packet

method remove = drop();

} // DROP

The equivalent HDL code needed to discard packets from an AXI4-Stream interface

(pktcut.v from Figures 3.1 and 3.2) requiresmanually instantiating different FIFO struc-

tures for packets and decision flags and writing several HDL processes in order to per-

form the very same action of dropping certain packets.

4.6. Limitations

While developing filters in PX, intrinsic limitations were brought to light when try-

ing to process complex payloads. The way state machines are internally instantiated in

SDNet renders it impossible to travel more than 64 different states throughout the ma-

CHAPTER 4. RESULTS 19

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

chine. Hence, when recurrently parsing protocols based on the thorough repetition of

small structures (like TLS records), the standard engines are tied to this limitation and

coding an HDL User Engine becomes necessary in order to circumvent the issue.

4.7. Interoperability Testbed

Up to this point, we have focused on the feasibility of FPGA network filters and how

Xilinx SDNet may help hardware engineers towards tackling the problem. However,

during the development of state-of-the-art network accelerators, one of the main con-

cerns is the portability of the solution. Not only the standalone capabilities of the filters

have been evaluated but also its integration with third party network interface cards.

Both reference and SDNet designs of the filters were additionally ran in a physical

testbed featuring a Xilinx VCU108 board and a Commercial Off-The-Shelf (COTS) server.

The server equips two Intel Xeon E5-2630 processors running at 2.20GHz and a total of

128GB of main memory. The 100 Gbps endpoint is provided by a Mellanox ConnectX-5

card from the MT27800 family. Figure 4.2 displays the complete testbed. The host op-

erating system used for the experiments was a CentOS 7 Linux distribution thoroughly

configured with the set of libraries supplied by DPDK 17.05 [1].

Figure 4.2: Interoperability Hardware Testbed Equipment.

20 CHAPTER 4. RESULTS

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

Reception and transmission of packets were verified:

First, the setup was tested using the synthetic generator in the FPGA platform, able

to saturate the 100 Gbps interface. Packets were received flawlessly at the server

during the experiments with sustained full line rate.

Then, the synthetic generator was replaced by the UltraScale Integrated 100G Eth-

ernet Subsystem. Since at the timeofwriting, open source solutions able to saturate

100 Gbps links with the aforementioned server configuration do not exist, network

traffic replay speeds were in this case limited by DPDK (to approximately 70 Gbps).

The filters kept operating at the served line rate without issue.

CHAPTER 4. RESULTS 21

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

22 CHAPTER 4. RESULTS

5
Analytical Model

5.1. Motivation

Given the limitations of SDNet aired during chapter 4, the design of more complex

packet filters becomes non-trivial when approached from the PX language paradigm.

One of the most interesting scenarios in network traffic filtering is DPI, which re-

quires the packet processor to traverse the whole stack of packet headers down to the

payload, where a certain condition is checked. Such process has proven to be noticeably

intensive for the processing unit and consequently poses a challenge to the implemen-

tations of state of the art deep packet processors.

More specifically, classifying packets between encrypted data and plain data can be

of enormous utility when handling very high-speed network traffic. Internet users are

becoming more and more concerned about security and the mean percentage of en-

crypted data in all kinds of networks is steadily increasing. As a consequence, while

encrypted traffic analysis is very limited to techniques similar to the previously men-

tioned TLS Client Hello SNI field, plain text traffic can be thoroughly examined using

DPI to look for certain keywords, patterns or even regular expressions.

23

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

5.2. Filter Design

For such purpose, based on a previous work from this laboratory [19], a simple yet

powerful estimation of whether a packet is encrypted or not can be achieved by check-

ing if each byte of the payload is within the range of printable American Standard Code

for Information Interchange (ASCII) characters (i.e. decimal values from32 to 126), look-

ing for either bursts of consecutive ASCII characters or an overall proportion of ASCII

characters in the payload larger than defined thresholds.

In order to implement the aforementioned filter in SDNet, an initial approach was

implemented using three cascaded engines as displayed in figure 5.1.

Inspector DPI Decision

Packet (forward)
Packet (drop)
Tuple

Figure 5.1: DPI Filter Diagram.

Inspector Afirst Parser Engine in charge of locating the payload in the packet anddeter-

mining its precise length by going through the different headers (Ethernet, VLAN,

IP and TCP/UDP), codifying this information into an output tuple.

DPI A second Parser Engine responsible of jumping to the payload using an input tuple

with the information gathered by the previous engine and then performing the

bytewise logic described above in order to find ASCII burst and proportion values.

These values are also stored in a tuple and forwarded to the last engine.

Decision A final Editor Engine that ultimately drops all packets with ASCII burst and

proportion values below the specified thresholds. Notice that this engine could be

triggered as soon as either value exceeds its threshold and this may happen at an

arbitrary point along the total payload length.

At first glance, this model represents a possible architecture that would perform the

desired filter using the programming constructs provided by the PX language and there-

fore should be able to be compiled into Verilog by the SDNet compiler. However, as it

was already mentioned in the Limitations section of the preceding chapter, SDNet cod-

ifies its programs as limited state machines that only support transitioning between up

to 64 states during their execution flow.

24 CHAPTER 5. ANALYTICAL MODEL

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

Due to this limitation, the bitwise verification of the printable ASCII range performed

by the DPI Parser Engine is only executed for the first 63 bytes of the payload (1 state is

used for payload positioning) and then the SDNet module simply terminates and throws

an error through the control port.

To circumvent such behavior, several modifications were included in the model:

The three different pieces of logic corresponding to the Inspector, DPI and Decision

engines were split and individually implemented.

The DPI module now internally handles graceful termination when it reaches the

limit of 64 states and specifically parses no more than 63 bytes of each packet it

processes.

Tuple interfaces were homogenized between the different modules and now in-

clude fields for retaining payload information from the Inspector engine and keep-

ing track of local counters when computing ASCII burst and proportion values.

Recirculation was enabled for packets and their respective tuples in the DPI en-

gine. Every time a packet enters the DPI module, it updates the ASCII burst and

proportion values from the next 63 bytes at the current packet offset and increases

such offset with the number of bytes processed.

The Decision engine recieves packets with their respective tuples from the DPI en-

gine and makes the pertinent decision from the current values in the tuple:

• If the ASCII burst or proportion values are above their respective thresholds,

the packet is marked as plain traffic and forwarded out of the system.

• If the values are below the thresholds and the end of the packet was reached,

the packet is marked as encrypted traffic and dropped from the system.

• In any other case, the packet is marked for recirculation so that the next 63

bytes are processed when it is fed to the DPI engine again.

These tweaks in the architecture allow us to bypass the internal limitations of SDNet

by extracting the critical part of the intra-module routing logic to a higher level of the

design, controlled now in the Vivado Design Flow. The newmodel is shown in figure 5.2.

CHAPTER 5. ANALYTICAL MODEL 25

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

5.3. Stochastic Queuing Model

Inspector DPI Decision

Packet (forward)
Packet (drop)
Tuple

Recirculation

Figure 5.2: DPI Filter with Recirculation Diagram.

This new architecture of the system, however, introduces a key factor into themodel:

the former deterministic latencies found as a consequence of the linear cascaded struc-

ture of SDNet are no longer valid. The recirculation logic is now an stochastic process

since it depends on the characteristics of each packet that influence the number of passes

through the DPI engine it needs (payload size, location of the ASCII burst).

Due to this lack of determinisim, the necessity of an input FIFObefore theDPImodule

to store recirculating packets and tuples becomes a cause of concern since it must be

correctly dimensioned so that the optimization level of the final system does not get

degraded while it remains able to guarantee line rate operation without saturating and

discarding packets.

Fortunately, Queuing Theory exists as themathematical field specialized inmodeling

this particular type of stochastic processes that involve queuing the elements that flow

within the system (in this case, packets and their corresponding tuples of metadata).

Moreover, the cornerstone of Queuing Theory, Little’s Law (John Little, 1961), states

the proved relationship between the number of elements L in a stationary system and

the effective values of arrival λ and service µ rates of such system. A modern formal

proof of Little’s Law can be found later in appendix A.

The main objective of this analytical model, which is finding the correct dimension-

ing value for the input FIFO, can therefore be easily estimated from theLvalue outputted

by Little’s Law in the proposed system. Nevertheless, directly using L as the FIFO length

would cause packets losses in peak periods where the queue becomes full, but dividing

Little’s result by an overdimensioning tolerance factor α is enough to ensure average

reduced FIFO occupancy (e.g. FIFO length = L/α, with α = 60% of average occupancy).

26 CHAPTER 5. ANALYTICAL MODEL

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

5.3.1. Model identification

Before choosing themodel, weneed to specify the different stochastic variables present

in the queuing system and the notation for their mean values. Following the most com-

mon convention employed in Queuing Theory, these variables are:

Table 5.1: Variables and Mean Values for the Queuing Model

A := time between arrivals. E(A) = Ta = 1
λ

S := service time. E(S) = Ts =
1
µ

Tq := time spent in the queue E(Tq) = Wq

T := time spent in the system E(T) = W = Wq + Ts

Nq := number of items in the queue E(Nq) = Lq

N := number of items in the system E(N) = L

Furthermore, Kendall’s notation is the standard system used to describe and classify

a queueing node. The short three-factor form of Kendall’s notation that we will be using

was proposed by D. G. Kendall in 1953 and utilizes the following construction:

A︸︷︷︸
Stochastic process

followed by

item arrival.

/ S︸︷︷︸
Stochastic process

followed by

service time.

/ c︸︷︷︸
Number of

service channels

in the model.

First approach: Feedback model

Since the proposed model includes output feedback (recirculation of packets and tu-

ples), a first possible approach would be to find the overall mean possibility of recircu-

lating each packet and including this feedback in the queuing model as shown in figure

5.2. Additionally, the most interesting and reliable tool to study queuing models with

feedback, Jackson’s Theorem, requires the arrival process to be a Poisson process as one

of its hypothesis. The corresponding Kendall’s notation in this ideal model would be:

M/D/1

CHAPTER 5. ANALYTICAL MODEL 27

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

Where:

M represents a Poisson arrival process (i.e. exponential inter-arrival times).

D represents a degenerate distribution of the service time. This is an aftermath of the

deterministic latency of a single pass through the pipelined SDNet filter.

1 represents the single service channel present in our system: the DPI module.

In order to evaluate the validity of this first model, we measured the arrival process

under different common scenarios of network traffic, like intranets of big technology

companies or the teaching laboratories of the university.

Such task involves gathering timestampdifference samples fromavery large amount

of packets and feeding them to an statistical toolwhich corroborateswhether they follow

a Poisson process or not. In this case, we opted for a Kolmogorov-Smirnov test (appendix

B) against the hypothesized exponential distribution of arrivals. More formally:

A1, . . . , An := independent samples of the stochastic variable A (time between arrivals).

Null Hypothesis H0 : A ∼ Exp(λ̂)

Notice that here λ̂ = 1/Ā is the Maximum Likelihood Estimation (MLE) for the λ

parameter of the exponential distribution (i.e. the inverse of the sample mean).

The following results conform the output for the Kolmogorov-Smirnov test executed

in one of the largest traffic scenarios described above:

Figure 5.3: Kolmogorov-Smirnov Test for the Distribution of Time Between Arrivals.

28 CHAPTER 5. ANALYTICAL MODEL

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

From figure 5.3 we can see how, even though the Empirical Cumulative Distribution

Function (ECDF) of the variable A is sitting rather close to the Theoretical Cumulative

Distribution Function (CDF) of an exponential stochastic variable with the correspond-

ing λ̂ value obtained fromMLE, the maximum difference between both functions found

by the Kolmogorov-Smirnov method (the black dashed line) reaches a significant mag-

nitude –roughly 0.1–.

To be more precise, this particular Kolmogorov-Smirnov test returned a p-value of

2.2 · 10−16, meaning that our null hypothesis H0 : A ∼ Exp(λ̂) can be rejected with an

accuracy level over 99.99%. Thus, there is statistical evidence against the time between

arrivals A following an exponential distribution in our cases of study.

This outcome is in fact not surprising since it iswell known that arrival times between

network packets in a production environment is a longway frombeing a Poisson process

[20]. Actually, the literature on this particular question is enormously rich and diverse,

to the point of using fine-grain tweaked Lèvy alpha-stable distributions to model the

aforementioned phenomenon in some of the most recent researchs.

Alternative approach: General model

As a consequence of the previously discussed issues of the M/D/1 model, a more

reasonable suggestion for the queuing model developed in Kendall’s notation is:

G/G/1

Where:

G represents a general distribution of inter-arrival times. This enables shaping the in-

coming traffic simply from its mean and standard deviation values, without incur-

ring in mistakes caused by assuming a particular known distribution.

G represents a general distribution of service time. Similarly, using this setting includes

the feedback effect in the model using its mean and standard deviation values

which take into account the mean probability and number of recirculations, in-

stead of delegating this task to Jackson’s Theorem.

1 still represents the single service channel present in our system: the DPI module.

CHAPTER 5. ANALYTICAL MODEL 29

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

5.3.2. FIFO length estimation

Back to the original problem, the main concern here is to find Lq in order to deter-

mine themean number of items in the queue and dimension the input FIFO accordingly.

Using the queue version of the already mentioned Little’s Law makes it possible:

Lq = λWq = λ(W − Ts)

Now, introducing α as the guaranteed mean FIFO occupancy rate as it was suggested

earlier, we obtain a closed formula for the new variable F (FIFO length):

F := FIFO length =
Lq

α
=

λWq

α
=

λ(W − Ts)

α

This expression provides dimensioning values for the input FIFO of the designed DPI

system from the empirical values of λ,W and Ts –given by theG/G/1model–, which are

contingent upon thenetwork trafficbeing processed due to the presence of recirculation.

5.4. Hardware Implementation

The final hardware-specific design proposed for the developed DPI filter and all its

associated digression follows the component scheme displayed in figure 5.4.

Inspector AXIS
Attach

AXIS
Interconnect

AXIS
Attach

Packet (forward)
Packet (drop)
Tuple
Compacted Data

DPIAXIS
Detach

DPI FIFO

Figure 5.4: DPI Filter Hardware Implementation Scheme.

The flow of packets and tuples among the components is fully implemented using

AXI4-Stream interfaces.

Inspector Compiled SDNetmodule that identifies the packet payload location and length,

forwarding packets and their corresponding metadata tuple through two different

AXI4-Stream interfaces (due to SDNet behavior).

DPI Compiled SDNet module that updates the ASCII burst and proportion values from

the input tuple and computes the decision for the associated packet: “plain”, “en-

crypted” or “needs further recirculation”.

30 CHAPTER 5. ANALYTICAL MODEL

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

AXIS Attach HDL module that attaches a tuple as the TUSER signal and a decision flag

as the TDEST signal of the corresponding packet, producing a single AXI4-Stream

output port which carries all the compacted data: packet, tuple and decision.

AXIS Detach HDLmodule that conversely dettaches the TUSER and TDEST signals from

its input port into separate tuple and decision AXI4-Stream interfaces.

AXIS Interconnect AXI4-Stream routing module in charge of handling the compacted

packets it receives to the appropriate output according to the TDEST (decision) sig-

nal, namely: forward data to the DPI module, forward data to the system output

port, or discard data (using an unrouted value of TDEST).

DPI FIFO Hardware FIFO holding packets that the AXIS Interconnect has forwarded to

the DPI module, a convenient length can be determined from traffic analysis by

the statistical methods exposed during the previous section.

This architecture was implemented using Vivado and experiments with similar con-

text to the TLS Client Hello and DNS filters discussed in previous sections were run.

5.5. Results

In order to evaluate the proper functioning of the filter with realistic network traffic,

the system was tested under different networks, including that of the teaching labora-

tories of the university –wired using Gigabit Ethernet–.

Several conclusions are worth mentioning from the outcome of the experiments:

TheDPIfilter eventually classified all packets correctly betweenplain and encrypted.

The output packets (plain traffic) were compared to those of the original HDL filter

implementation [19] and the results were identical. The thresholds provided for

testing were ASCII bursts of 12 consecutive characters and a minimum of 50% of

the payload bytes within printable ASCII range.

Packet order was altered since the feedback policies cause small packets to spend

much less time in the system than larger packets that need a huge number of re-

circulations. Hence, small packets are quickly forwarded while large ones suffer

considerable delay as they go through the processing and queuing units.

Latency metrics were noticeably increased due to the recursion strategy of the

DPI SDNet module implementation. Sequentially parsing each byte up to 63 times

CHAPTER 5. ANALYTICAL MODEL 31

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

causes comparators from the tuple updation logic and internal control structures

of SDNet as well as their respective signal paths to trigger too often. As a conse-

quence, a single pass of the DPI module takes 784 clock cycles to complete, which

then gets multiplied by the number of recirculations required, causing really large

latencies for very large packets (e.g.: 1 KB packets take over 10,000 cycles).

All in all, we observe that SDNet solutions struggle slightly when executing the most

complex filters. But at the same time, we prove that it is still possible and relatively

simple to get them working using PX with a few tweaks in the design architecture.

32 CHAPTER 5. ANALYTICAL MODEL

6
Remarks

The goal of this project has been analyzing the benefits of application-specific high-

level languages for the development of Data Plane networking applications, especially

focusing on packet filters for network traffic monitoring. The main question to answer

is whether the non-recurring expenses could be drastically reduced by the productivity

and efficiency boosts provided by state-of-the-art software suites.

More specifically, the study compares Xilinx SDNet against highly-optimized HDL

code. Results obtained with SDNet are positive: the total number of lines of code has

been divided by a factor of 5 in the worst case, whilst latency is merely increased by

no more than 270 ns (83 clock cycles). Moreover, the SDNet solution is perfectly able to

cope with a fully saturated link at 100 Gbps. Although the main drawback of the SDNet

solutions is the relatively high resource usage, it actually does not surpass 2.5% of the

total capacity of the FPGA available in the Xilinx VCU108 Evaluation Kit.

Additionally, a more complex DPI filter was also implemented using SDNet. Some

limitations currently present in the PX language were aired when developing the sys-

tem, but they could be circumvented by increasing the complexity level in the main

architecture. While these changes allow for a correct hardware implementation of the

33

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

filter, the resulting solution inevitably incurs into issues like unrealistic latencies and

the introduction of an input FIFO that must be properly dimensioned using stochastic

mechanisms like queuingmodels. This ismerely a symptomof the original idea of SDNet

as a network routing –and not filtering– development environment, although we have

clearly seen the productivity and potential this tool can bring to the latter scenario. In

any case, SDNet is still in a rather early stage of its life cycle, so such potential could

greatly improve during the upcoming years, even to the point of surpassing said limita-

tions and turning into an utterly powerful packet processor.

Our last conclusion is that Xilinx SDNet can be a very valuable tool for the develop-

ment of network packet filters. Though we found certain restraints and disadvantages

in terms of resource utilization and latency, the benefits in terms of productivity, code

maintainability and time-to-market, as well as the ability of designs to operate at line

rate at 100 Gbps, might overshadow these disadvantages.

34 CHAPTER 6. REMARKS

7
Future Work

Throughout the development of this project, several thoughts have emerged about

further investigation with the different tools and designs that have been discussed, ex-

ploring ideas in terms of improvability and extensibility:

Export the abstraction level that SDNet brings to the whole Vivado Design Flow.

Ideally, the end user would only have to choose the target board and interfaces

involved, and then write a PX program describing the desired behavior of the Data

Plane, leaving all the HDL translation, synthesis, implementation, routing, opti-

mization, constraining and FPGA programming work to the automated engine of

the development environment. That way PX could turn into the the perfect time-

to-market solution that P4 originally wanted manufacturers to create.

Study hybrid software-hardware designs that connect SDNet filters with a CPU that

makes simple estimations of certain parameters of the filter –like the one for the

input FIFO of theDPI filter–, which could then be fed back to the filter enabling real-

time adaptability. This is specially interesting if we employ a ping-pong technique

for partial reconfiguration of the filter element that needs to be updated.

35

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

The performance benchmarks that were ran during this work are only a propor-

tion of the myriad test scenarios where SDNet could prove useful. Many of the cur-

rent hardware problems from the different fields of network computing could be

easily implemented using PX and compared against the state of the art alternatives

in order to evaluate the quality of the different solutions against the development

time. For example, creating a high-performance hardware firewall application us-

ing SDNet could pose an interesting challenge and end up rising promising results.

As already stated earlier in this document, some design decisions relative to the

SDNet compiler are also a matter of concern for the future of the tool, since they

restrict the capabilities of the PX language formodelingmore complex packet flows

in the Data Plane. As it happens, the way state machines are inferred and instanti-

ated could be reworked to allow deeper protocol recursivity and greatly improve

the flexibility of SDNet.

In other words, this work marks an investigation line in packet filtering for SDNet,

but countless applications and solutions are yet to be discoveredwith themain objective

of relieving the pressure on the actual coding process of a project, so that the focus can

be set on new and creative ideaswhich then can become real with relatively little effort.

36 CHAPTER 7. FUTURE WORK

A
Formal Proof of Little’s Law

Little’s Law states that the long-term average number L of items in a stationary sys-

tem is equal to the long-term average effective arrival rate λ multiplied by the average

timeW that an item spends in the system. That is:

L = λW

The following straightforward proof approach is inspired by an utterly recent work

that was published in 2011 on the ocassion of the 50th Anniversary of Little’s Law [21].

A.1. Proof of Little’s Law for a System Empty at 0 and T

First, consider an scenario of a queuing process over a time interval [0, T]. Let:

n(t) := number of items in the system at time t.

λ := average arrival rate in [0, T] (items/time unit).

N := number of items arriving in [0, T].

L := average number of items in the system during [0, T].

W := average waiting time of an item during [0, T] (time units).

A =
∫ T
0 n(t) dt := area under n(t) over [0, T] (time units).

37

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

Theorem A.1 (Little’s Law). For a queuing system observed over [0, T] that is empty at 0

and T and has 0 < T < ∞, the formula L = λW holds.

Proof. Using the notation in the left-hand column above, we see that:

L = A
T

λ = N
T

W = A
N

Whence:

L =
A

T
=

A

T
· N
N

=
N

T
· A
N

= λW

A.2. Proof of Little’s Law with Permissible Initial and Final

Queues in [0, T]

Wecannowestablish amore general result by supressing the restriction of the empty

queues at times 0 and T .

Theorem A.2 (Little’s Law over [0, T]). For a queuing system observed over [0, T] that has

0 < T < ∞, the formula L = λW holds.

Proof. In Theorem A.1 we defined N as the total arrivals in [0, T]. Here we introduce:

S(t) := cumulative number of items in the system over [0, t].

This includes not only the cumulative arrivals up to t, but also any items that were

in the system at t = 0. This permits S(0) = n(0) > 0 and n(T) > 0, in contrast to A.1.

The definition of A continues the same as before. Otherwise, paralleling the argu-

ments used to prove Theorem A.1 above, we obtain:

L = A
T

λ = S(T)
T

W = A
S(T)

Whence:

L =
A

T
=

A

T
· S(t)
S(t)

=
S(t)

T
· A

S(t)
= λW

38 APPENDIX A. FORMAL PROOF OF LITTLE’S LAW

B
Kolmogorov-Smirnov Test

The following explanation of the Kolmogorov-Smirnov test is based in the lecture

notes of the Statistics II course conducted by Amparo Baíllo Moreno in 2017.

Let X1, . . . , Xn be a random sample of an stochastic variable X ∼ F .

We state the contrast:

Null Hypothesis H0 : F = F0

Where F0 ∈ C0 is a continuous CDF completely specified.

For such purpose, we define the ECDF as follows:

Fn(x) =
1

n

n∑
i=1

1{Xi≤x}

Here, 1A represents the characteristic function of the set A:

1A(x) =

1 if x ∈ A

0 otherwise

Theorem B.1 (Glivenko-Cantelli).

Dn = ∥Fn − F∥∞ = sup
x∈R

|Fn(x)− F (x)| C.S.−−−→
n→∞

0

39

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

The idea behind the contrast of the Kolmogorov-Smirnov test is to reject H0 inside

the rejection region given by R = {Dn > Cα} for an appropriate critical value of Cα.

Lemma B.1. If a stochastic variable X has a continuous CDF F , then F (X) has uniform

distribution in (0, 1).

Theorem B.2. Under the null hypothesis H0, the distribution of Dn is identical for any

possible continuous CDF F0.

Proof. Using the properties of F as a CDF, with a probability equal to 1:

Dn = sup
x∈R

∣∣∣∣∣ 1n
n∑

i=1

1{F (Xi)≤F (x)} − F (x)

∣∣∣∣∣ = sup
u∈[0,1]

∣∣∣∣∣ 1n
n∑

i=1

1{Ui≤u} − u

∣∣∣∣∣
Where:

Ui = F (Xi) ∼ Unif [0, 1]

Or alternatively:

Dn = max{D+
n , D

−
n }

Where:
D+

n := sup
x∈R

[Fn(x)− F (x)] = max
1≤i≤n

[
i
n − F (Xi)

]
D−

n := sup
x∈R

[F (x)− Fn(x)] = max
1≤i≤n

[
F (Xi)− i−1

n

]

As a consequence, the value of Cα for the rejection region R = {Dn > Cα} is the same

for any continuous CDF F0.

The CDF of Dn itself has a clossed expression and can also be easily simulated with

arbitrary precision for later tabulation.

40 APPENDIX B. KOLMOGOROV-SMIRNOV TEST

C
PX Source Code of Implemented SDNet Filters

C.1. TLS Client Hello Filter

Listing C.1: PX Source Code for ClientHello Module
// Interface subclasses

class PktIn :: Packet(in) {}

class PktOut :: Packet(out) {}

class MetadataIn :: Tuple(in) {

struct {

payload_exists : 1, // Whether payload is present

payload_length : 32, // Payload length in bits

payload_offset : 32, // Payload offset in bits

is_client_hello : 1 // Whether packet is client hello

}

}

class MetadataOut :: Tuple(out) {

struct {

payload_exists : 1, // Whether payload is present

payload_length : 32, // Payload length in bits

payload_offset : 32, // Payload offset in bits

41

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

is_client_hello : 1 // Whether packet is client hello

}

}

class ClientHello :: System {

PktIn instream;

PktOut outstream;

ClientHello_Parser parser;

ClientHello_Editor editor;

method connect = {

parser.packet_in = instream ,

editor.packet_in = parser.packet_out ,

editor.tuple_in = parser.tuple_out ,

outstream = editor.packet_out

}

} // ClientHello

class ClientHello_Parser :: ParsingEngine(12000, 4, ETH) {

// Constants

// const VLAN_TYPE = 0x8100;

const IPV4_TYPE = 0x0800;

// const IPV6_TYPE = 0x86dd;

const TCP_TYPE = 0x06;

// const UDP_TYPE = 0x11;

const SUCCESS = 0;

const FAILURE = 1;

MetadataOut tuple_out;

// Ethernet MAC header

class ETH :: Section(1) {

struct {

skip : 96, // Skip fields

type : 16 // Tag Protocol Identifier

}

// ETH can be followed by VLAN, IPV4 or IPV6

map types {

// (VLAN_TYPE , VLAN),

(IPV4_TYPE , IPV4),

// (IPV6_TYPE , IPV6),

done(SUCCESS)

}

42 APPENDIX C. PX SOURCE CODE OF IMPLEMENTED SDNET FILTERS

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

// Initialise tuple

method update = {

tuple_out.payload_exists = 0,

tuple_out.payload_length = 0,

tuple_out.payload_offset = sizeof(ETH),

tuple_out.is_client_hello = 0

}

// Identify following protocol

method move_to_section = types(type);

// Move to following protocol

method increment_offset = sizeof(ETH);

} // ETH

// IPV4 header

class IPV4 :: Section(2) {

struct {

version : 4, // Version (4)

hdrlen : 4, // Header Length

tos : 8, // Type of Service

length : 16, // Total Length

skip : 40, // Skip fields

proto : 8 // Next Protocol

}

method update = {

// Save payload length

tuple_out.payload_length = (8 * length) - (32 * hdrlen),

// Update payload offset

tuple_out.payload_offset = tuple_out.payload_offset + (32 * hdrlen)

}

// IPV4 can be followed by TCP

map types {

(TCP_TYPE , TCP),

// (UDP_TYPE, UDP),

done(SUCCESS)

}

// Identify following protocol

method move_to_section = types(proto);

// Move to following protocol

method increment_offset = hdrlen * 32;

} // IPV4

// TCP header

APPENDIX C. PX SOURCE CODE OF IMPLEMENTED SDNET FILTERS 43

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

class TCP :: Section(3) {

struct {

skip : 96, // Skip fields

dataoff : 4 // Data Offset

}

method update = {

// Mark payload as present

tuple_out.payload_exists = 1,

// Update payload length

tuple_out.payload_length = tuple_out.payload_length - (32 * dataoff),

// Update payload offset

tuple_out.payload_offset = tuple_out.payload_offset + (32 * dataoff)

}

// Identify following protocol

method move_to_section =

if(tuple_out.payload_length - (32 * dataoff) >= sizeof(SSL_CLIENT_HELLO

)) SSL_CLIENT_HELLO

else done(SUCCESS);

// Move to following protocol

method increment_offset = dataoff * 32;

} // TCP

// SSL Client Hello

class SSL_CLIENT_HELLO :: Section (4) {

struct {

rectype : 8, // Record Content Type

skip : 32, // Skip fields

hstype : 8 // Handshake Type

}

// Flag as Client Hello

method update = {

tuple_out.is_client_hello = (rectype == 0x16) && (hstype == 0x01)

}

// Identify following protocol

method move_to_section = done(SUCCESS);

// Move to following protocol

method increment_offset = 0;

} // SSL_CLIENT_HELLO

} // ClientHello_Parser

class ClientHello_Editor :: EditingEngine(12000, 2, FETCH) {

44 APPENDIX C. PX SOURCE CODE OF IMPLEMENTED SDNET FILTERS

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

// Constants

const SUCCESS = 0;

const FAILURE = 1;

MetadataIn tuple_in;

class FETCH :: Section(1) {

// Drop only non-ClientHello packets

method move_to_section =

if (tuple_in.is_client_hello == 0) DROP

else done(SUCCESS);

method increment_offset = 0;

} // FETCH

class DROP :: Section(2) {

// Remove whole packet

method remove = rop();

// Finish engine

method move_to_section = done(SUCCESS);

method increment_offset = 0;

} // DROP

} // ClientHello_Editor

C.2. DNS Filter

Listing C.2: PX Source Code for DNS Module
// Interface subclasses

class PktIn :: Packet(in) {}

class PktOut :: Packet(out) {}

class MetadataIn :: Tuple(in) {

struct {

is_dns : 1 // Whether packet is DNS

}

}

class MetadataOut :: Tuple(out) {

struct {

is_dns : 1 // Whether packet is DNS

}

}

APPENDIX C. PX SOURCE CODE OF IMPLEMENTED SDNET FILTERS 45

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

class DNS :: System {

PktIn instream;

PktOut outstream;

DNS_Parser parser;

DNS_Editor editor;

method connect = {

parser.packet_in = instream ,

editor.packet_in = parser.packet_out ,

editor.tuple_in = parser.tuple_out ,

outstream = editor.packet_out

}

} // DNS

class DNS_Parser :: ParsingEngine(12000, 5, ETH) {

// Constants

const VLAN_TYPE = 0x8100;

const IPV4_TYPE = 0x0800;

const IPV6_TYPE = 0x86dd;

// const TCP_TYPE = 0x06;

const UDP_TYPE = 0x11;

const SUCCESS = 0;

const FAILURE = 1;

MetadataOut tuple_out;

// Ethernet MAC header

class ETH :: Section(1) {

struct {

skip : 96, // Skip fields

type : 16 // Tag Protocol Identifier

}

// ETH can be followed by VLAN, IPV4 or IPV6

map types {

(VLAN_TYPE , VLAN),

(IPV4_TYPE , IPV4),

(IPV6_TYPE , IPV6),

done(SUCCESS)

}

// Initialise tuple

method update = {

tuple_out.is_dns = 0

46 APPENDIX C. PX SOURCE CODE OF IMPLEMENTED SDNET FILTERS

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

}

// Identify following protocol

method move_to_section = types(type);

// Move to following protocol

method increment_offset = sizeof(ETH);

} // ETH

// VLAN header

class VLAN :: Section(2:3) {

struct {

skip : 16, // Skip fields

tpid : 16 // Tag Protocol Identifier

}

// VLAN can be followed by VLAN, IPV4 or IPV6

map types {

(VLAN_TYPE , VLAN),

(IPV4_TYPE , IPV4),

(IPV6_TYPE , IPV6),

done(SUCCESS)

}

// Identify following protocol

method move_to_section = types(tpid);

// Move to following protocol

method increment_offset = sizeof(VLAN);

} // VLAN

// IPV4 header

class IPV4 :: Section(2:4) {

struct {

version : 4, // Version (4)

hdrlen : 4, // Header Length

skip : 64, // Skip fields

proto : 8 // Next Protocol

}

// IPV4 can be followed by TCP

map types {

(UDP_TYPE , UDP),

done(SUCCESS)

}

// Identify following protocol

method move_to_section = types(proto);

// Move to following protocol

APPENDIX C. PX SOURCE CODE OF IMPLEMENTED SDNET FILTERS 47

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

method increment_offset = hdrlen * 32;

} // IPV4

// IPV6 header

class IPV6 :: Section(2:4) {

struct {

skip : 48, // Skip fields

nexthdr : 8 // Next Header

}

// IPV4 can be followed by TCP

map types {

(UDP_TYPE , UDP),

done(SUCCESS)

}

// Identify following protocol

method move_to_section = types(nexthdr);

// Move to following protocol

method increment_offset = 320;

}

// UDP header

class UDP :: Section(3:5) {

struct {

srcport : 16, // Source Port

dstport : 16 // Destination Port

}

// Flag as DNS

method update = {

tuple_out.is_dns = (srcport == 53) || (dstport == 53)

}

// Identify following protocol

method move_to_section = done(SUCCESS);

// Move to following protocol

method increment_offset = 0;

} // UDP

} // DNS_Parser

class DNS_Editor :: EditingEngine(12000, 2, FETCH) {

// Constants

const SUCCESS = 0;

48 APPENDIX C. PX SOURCE CODE OF IMPLEMENTED SDNET FILTERS

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

const FAILURE = 1;

MetadataIn tuple_in;

class FETCH :: Section(1) {

// Drop only non-DNS packets

method move_to_section =

if (tuple_in.is_dns == 0) DROP

else done(SUCCESS);

method increment_offset = 0;

} // FETCH

class DROP :: Section(2) {

// Remove whole packet

method remove = rop();

// Finish engine

method move_to_section = done(SUCCESS);

method increment_offset = 0;

} // DROP

} // DNS_Editor

C.3. DPI Filter

Listing C.3: PX Source Code for Inspector Module
// Interface subclasses

class PktIn :: Packet(in) {}

class PktOut :: Packet(out) {}

class TplOut :: Tuple(out) {

struct {

payload_offset : 32, // Payload offset in bits

payload_length : 32 // Payload length in bits

}

}

class Inspector :: System {

PktIn instream;

PktOut outstream;

TplOut tuple_out;

Inspector_Parser parser;

method connect = {

APPENDIX C. PX SOURCE CODE OF IMPLEMENTED SDNET FILTERS 49

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

parser.packet_in = instream ,

outstream = parser.packet_out ,

tuple_out = parser.tuple_out

}

} // Inspector

class Inspector_Parser :: ParsingEngine(12000, 64, ETH) {

// Constants

const MPLS_UNI_TYPE = 0x8847;

const MPLS_MUL_TYPE = 0x8848;

const VLAN_TYPE = 0x8100;

const IPV4_TYPE = 0x0800;

const IPV6_TYPE = 0x86dd;

const TCP_TYPE = 0x06;

const UDP_TYPE = 0x11;

const SUCCESS = 0;

const FAILURE = 1;

TplOut tuple_out;

// Ethernet header

class ETH :: Section(1) {

struct {

skip : 96, // Skip fields

type : 16 // Tag Protocol Identifier

}

// Mapping for next headers

map types {

(MPLS_UNI_TYPE , MPLS),

(MPLS_MUL_TYPE , MPLS),

(VLAN_TYPE , VLAN),

(IPV4_TYPE , IPV4),

(IPV6_TYPE , IPV6),

done(SUCCESS)

}

// Update output tuple

method update = {

tuple_out.payload_offset = sizeof(ETH),

tuple_out.payload_length = 0

}

// Next header lookup

method move_to_section = types(type);

50 APPENDIX C. PX SOURCE CODE OF IMPLEMENTED SDNET FILTERS

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

// Current header skip

method increment_offset = sizeof(ETH);

} // ETH

// MPLS header

class MPLS :: Section(2:64) {

struct {

skip : 23, // Skip fields

bos : 1 // Bottom Of Stack

}

// Mapping for next headers

map types {

(0, MPLS),

(1, IPVX),

done(SUCCESS)

}

// Update output tuple

method update = {

tuple_out.payload_offset = tuple_out.payload_offset + 32

}

// Next header lookup

method move_to_section = types(bos);

// Current header skip

method increment_offset = 32;

} // MPLS

// VLAN header

class VLAN :: Section(2:64) {

struct {

skip : 16, // Skip fields

tpid : 16 // Tag Protocol Identifier

}

// Mapping for next headers

map types {

(MPLS_UNI_TYPE , MPLS),

(MPLS_MUL_TYPE , MPLS),

(VLAN_TYPE , VLAN),

(IPV4_TYPE , IPV4),

(IPV6_TYPE , IPV6),

done(SUCCESS)

}

// Update output tuple

APPENDIX C. PX SOURCE CODE OF IMPLEMENTED SDNET FILTERS 51

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

method update = {

tuple_out.payload_offset = tuple_out.payload_offset + sizeof(VLAN)

}

// Next header lookup

method move_to_section = types(tpid);

// Current header skip

method increment_offset = sizeof(VLAN);

} // VLAN

// IPV4/IPV6 discriminating header

class IPVX :: Section(2:64) {

struct {

version : 4 // Version

}

// Mapping for next headers

map types {

(0x4, IPV4),

(0x6, IPV6),

done(SUCCESS)

}

// Next header lookup

method move_to_section = types(version);

// Current header skip

method increment_offset = 0;

} // IPVX

// IPV4 header

class IPV4 :: Section(2:64) {

struct {

version : 4, // Version (4)

hdrlen : 4, // Header Length

tos : 8, // Type of Service

length : 16, // Total Length

skip : 40, // Skip fields

proto : 8 // Next Protocol

}

// Mapping for next headers

map types {

(TCP_TYPE , TCP),

(UDP_TYPE , UDP),

done(SUCCESS)

}

52 APPENDIX C. PX SOURCE CODE OF IMPLEMENTED SDNET FILTERS

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

// Update output tuple

method update = {

tuple_out.payload_offset = tuple_out.payload_offset + (32 * hdrlen),

tuple_out.payload_length = (8 * length) - (32 * hdrlen)

}

// Next header lookup

method move_to_section = types(proto);

// Current header skip

method increment_offset = 32 * hdrlen;

} // IPV4

// IPV6 header

class IPV6 :: Section(1:64) {

struct {

skip : 32, // Skip fields

length : 16, // Payload Length

nexthdr : 8 // Next Header

}

// Mapping for next headers

map types {

(TCP_TYPE , TCP),

(UDP_TYPE , UDP),

done(SUCCESS)

}

// Update output tuple

method update = {

tuple_out.payload_offset = tuple_out.payload_offset + 320,

tuple_out.payload_length = 8 * length

}

// Next header lookup

method move_to_section = types(nexthdr);

// Current header skip

method increment_offset = 320;

} // IPV6

// TCP header

class TCP :: Section(1:64) {

struct {

skip : 96, // Skip fields

dataoff : 4 // Data Offset

}

// Update output tuple

APPENDIX C. PX SOURCE CODE OF IMPLEMENTED SDNET FILTERS 53

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

method update = {

tuple_out.payload_offset = tuple_out.payload_offset + (32 * dataoff),

tuple_out.payload_length = tuple_out.payload_length - (32 * dataoff)

}

// Next header lookup

method move_to_section = done(SUCCESS);

// Current header skip

method increment_offset = 0;

} // TCP

// UDP header

class UDP :: Section(1:64) {

// Update output tuple

method update = {

tuple_out.payload_offset = tuple_out.payload_offset + 64,

tuple_out.payload_length = tuple_out.payload_length - 64

}

// Next header lookup

method move_to_section = done(SUCCESS);

// Current header skip

method increment_offset = 0;

} // UDP

} // Inspector_Editor

Listing C.4: PX Source Code for DPI Module
// Interface subclasses

class PktIn :: Packet(in) {}

class PktOut :: Packet(out) {}

class TplInt :: Tuple {

struct {

count : 6, // Current parsed byte count

burst : 6 // Current consecutive ASCII bytes

}

}

class TplIn :: Tuple(in) {

struct {

payload_offset : 32, // Payload offset in bits

payload_length : 32, // Payload length in bits

payload_parsed : 32, // Parsed payload in bits

ascii_count : 16, // ASCII byte count

ascii_burst : 16 // Maximum consecutive ASCII bytes

54 APPENDIX C. PX SOURCE CODE OF IMPLEMENTED SDNET FILTERS

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

}

}

class TplOut :: Tuple(out) {

struct {

payload_offset : 32, // Payload offset in bits

payload_length : 32, // Payload length in bits

payload_parsed : 32, // Parsed payload in bits

ascii_count : 16, // ASCII byte count

ascii_burst : 16 // Maximum consecutive ASCII bytes

}

}

class Decision :: Tuple(out) {

struct {

decision : 8 // Decision: 00 -> Not ASCII

// 01 -> ASCII

// 11 -> Recirculate

}

}

class DPI :: System {

PktIn instream;

PktOut outstream;

TplIn tuple_in;

TplOut tuple_out;

Decision decision;

DPI_Parser parser;

method connect = {

parser.packet_in = instream ,

parser.tuple_in = tuple_in ,

outstream = parser.packet_out ,

tuple_out = parser.tuple_out ,

decision = parser.decision

}

} // DPI

class DPI_Parser :: ParsingEngine(12000, 64, SEEK) {

// Constants

const SHIFT_TRIGGER = 1;

const BURST_TRIGGER = 12;

const SUCCESS = 0;

const FAILURE = 1;

APPENDIX C. PX SOURCE CODE OF IMPLEMENTED SDNET FILTERS 55

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

TplInt tuple_int;

TplIn tuple_in;

TplOut tuple_out;

Decision decision;

// SEEK already parsed data

class SEEK :: Section(1) {

// Initialise tuples

method update = {

tuple_out.payload_offset = tuple_in.payload_offset ,

tuple_out.payload_length = tuple_in.payload_length ,

tuple_out.payload_parsed = tuple_in.payload_parsed ,

tuple_out.ascii_count = tuple_in.ascii_count ,

tuple_out.ascii_burst = tuple_in.ascii_burst ,

decision.decision =

// Mark as ASCII if parameterizable conditions are met

if ((tuple_in.payload_length > 0)

&& (((tuple_in.ascii_count << 3) >= (tuple_in.payload_length >>

SHIFT_TRIGGER))

|| (tuple_in.ascii_burst >= BURST_TRIGGER))) 1

// Otherwise , mark as not ASCII if completely parsed

else if (tuple_in.payload_parsed >= tuple_in.payload_length) 0

// In any other case, mark for recirculation

else 3,

tuple_int.count = 0,

tuple_int.burst = 0

}

// Identify following protocol

method move_to_section =

// Terminate the engine if decision already taken

if (((tuple_in.ascii_count << 3) >= (tuple_in.payload_length >>

SHIFT_TRIGGER))

|| (tuple_in.ascii_burst >= BURST_TRIGGER)

|| (tuple_in.payload_parsed >= tuple_in.payload_length)) done(

SUCCESS)

// Continue to byte parser if marked for recirculation

else BYTE;

// Move to following protocol

method increment_offset = tuple_in.payload_offset + tuple_in.payload_parsed

;

} // SEEK

56 APPENDIX C. PX SOURCE CODE OF IMPLEMENTED SDNET FILTERS

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

// Payload byte

class BYTE :: Section(2:64) {

struct {

byte : 8 // Isolated payload byte

}

method update = {

// Update parsed payload count

tuple_out.payload_parsed = tuple_out.payload_parsed + 8,

// Update ASCII byte count

tuple_out.ascii_count = tuple_out.ascii_count + ((byte >= 32) && (byte

<= 126)),

// Update current burst count

tuple_int.burst =

if ((byte >= 32) && (byte <= 126)) tuple_int.burst + 1

else 0,

// Update global burst count

tuple_out.ascii_burst =

if ((byte >= 32) && (byte <= 126) && ((tuple_int.burst + 1) >

tuple_out.ascii_burst)) tuple_int.burst + 1

else tuple_out.ascii_burst ,

// Update byte count

tuple_int.count = tuple_int.count + 1

}

// Identify following protocol

method move_to_section =

if (((tuple_int.count + 1) < 63) && (tuple_out.payload_parsed + 8 <

tuple_in.payload_length)) BYTE

else done(SUCCESS);

// Move to following protocol

method increment_offset = sizeof(BYTE);

} // BYTE

} // DPI_Parser

APPENDIX C. PX SOURCE CODE OF IMPLEMENTED SDNET FILTERS 57

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

58 APPENDIX C. PX SOURCE CODE OF IMPLEMENTED SDNET FILTERS

Bibliography

[1] DPDK. Data Plane Development Kit. https://dpdk.org/.

[2] W. Wu, P. DeMar, and M. Crawford. Why Can Some Advanced Ethernet NICs Cause Packet

Reordering? IEEE Communications Letters, 15(2):253–255, February 2011.

[3] Xilinx. Developer Zone: Design Tools. https://www.xilinx.com/products/design-tools.html.

[4] Intel. Intel® HLS Compiler. https://www.altera.com/products/design-software/high-level-

design/intel-hls-compiler/overview.html.

[5] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker,

and J. Turner. OpenFlow: Enabling Innovation in CampusNetworks. ACMSIGCOMM, 38:69–

74, April 2008.

[6] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D. Talayco,

A. Vahdat, G. Varghese, and D. Walker. P4: programming protocol-independent packet pro-

cessors. ACM SIGCOMM, 44:87–95, July 2014.

[7] G. Brebner. Programmable hardware for software defined networks. In 2015 European

Conference on Optical Communication (ECOC), Valencia, Spain, 27 September – 1 October

2015.

[8] J. F. Zazo and S. López-Buedo and G. Sutter and J. Aracil. Automated synthesis of FPGA-

based packet filters for 100 Gbps network monitoring applications. In 2016 International

Conference on ReConFigurable Computing and FPGAs (ReConFig), Cancun, Mexico, 30 Nov. –

2 Dec. 2016.

[9] P. Benácek, V. Pu, and H. Kubátová. P4-to-VHDL: Automatic Generation of 100 Gbps Packet

Parsers. In 2016 IEEE 24th Annual International Symposium on Field-Programmable Custom

Computing Machines (FCCM), Washington, DC, USA, 1 – 2 May 2016.

[10] V. Puš, L. Kekely, and J. Kořenek. Low-latency modular packet header parser for FPGA. In

2012 ACM/IEEE Symposium on Architectures for Networking and Communications Systems

(ANCS), Austin, TX, USA, 29 – 30 October 2012.

59

Analysis of Xilinx SDNet tool for Packet Filtering in 100 Gbps Network Monitoring Applications

[11] P. Benáček, V. Puš, J. Kořenek, and M. Kekely. Line rate programmable packet processing in

100Gb networks. In 2017 27th International Conference on Field Programmable Logic and

Applications (FPL), Ghent, Belgium, 4 – 8 September 2017.

[12] H. Wang, R. Soulé, H. Tu Dang, K. Suh Lee, V. Shrivastav, N. Foster, and H. Weatherspoon.

P4FPGA: A Rapid Prototyping Framework for P4. In 2017 ACM Symposium on SDN Research

(SOSR), Santa Clara, CA, USA, 3 – 4 April 2017.

[13] Bluespec. BSV High-Level HDL. http://bluespec.com/54621-2/.

[14] H. Tu Dang, H. Wang, T. Jepsen, G. Brebner, C. Kim, J. Rexford, R. Soulé, and H. Weather-

spoon. Whippersnapper: A P4 Language Benchmark Suite. In 2017 ACM Symposium on

SDN Research (SOSR), Santa Clara, CA, USA, 3 – 4 April 2017.

[15] A. Fiessler, S. Hager, B. Scheuermann, and A. W. Moore. HyPaFilter – A versatile hybrid

FPGA packet filter. In 2016 ACM/IEEE Symposium on Architectures for Networking and Com-

munications Systems (ANCS), Santa Clara, CA, USA, 17 – 18 March 2016.

[16] S. Hager, D. Bendyk, andB. Scheuermann. Matching circuits can be small: Partial evaluation

and reconfiguration for FPGA-based packet processing. Journal of Parallel and Distributed

Computing (JPDC), 109:42–49, November 2017.

[17] N. Zilberman, Y. Audzevich, G. Adam Covington, and A. W. Moore. NetFPGA SUME: Toward

100 Gbps as Research Commodity. IEEE Micro, 34:32–41, September – October 2014.

[18] Xilinx. Xilinx Virtex UltraScale FPGA VCU108 Evaluation Board.

https://www.xilinx.com/products/boards-and-kits/ek-u1-vcu108-g.html.

[19] M. Ruiz, G. Sutter, S. López-Buedo, and J. E. López de Vergara. FPGA-based encrypted net-

work traffic identification at 100 Gbit/s. In 2016 International Conference on ReConFigurable

Computing and FPGAs (ReConFig), Cancun, Mexico, 30 November – 2 December 2016.

[20] V. Paxson and S. Floyd. Wide area traffic: the failure of Poisson modeling. IEEE/ACM Trans-

actions on Networking, 3:226–244, June 1995.

[21] D. Simchi-Levi and M. A. Trick. Little’s Law as Viewed on Its 50th Anniversary. Operations

Research, 59:535, May 2011.

60 BIBLIOGRAPHY

	List of Tables
	List of Figures
	Glossary
	Acronyms
	Introduction
	Scope
	Outline

	Technology
	Current Standard Proposals
	Related Work
	Automated tool for generating packet filters
	P4-to-VHDL
	P4FPGA
	Whippersnapper
	HyPaFilter
	``Matching circuits can be small''
	NetFPGA SUME

	Design
	Hardware Design
	Implemented Filters
	Reference HDL Filter Architecture
	SDNet Filter Architecture

	Sample Packets
	Target Board and Experiments

	Results
	Bitrate
	Latency
	Hardware Utilization
	Productivity
	Abstraction
	Limitations
	Interoperability Testbed

	Analytical Model
	Motivation
	Filter Design
	Stochastic Queuing Model
	Model identification
	FIFO length estimation

	Hardware Implementation
	Results

	Remarks
	Future Work
	Formal Proof of Little's Law
	Proof of Little’s Law for a System Empty at bold0mu mumu 00section0000 and bold0mu mumu TTsectionTTTT
	Proof of Little’s Law with Permissible Initial and Final Queues in bold0mu mumu [0, T][0, T]section[0, T][0, T][0, T][0, T]

	Kolmogorov-Smirnov Test
	PX Source Code of Implemented SDNet Filters
	TLS Client Hello Filter
	DNS Filter
	DPI Filter

