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Abstract

Even under homogeneous environmental conditions, cells with identical genotypes can
display significant variations at the phenotypic level, that is, differences in size, mor-
phology and internal state. This is a result of the genetic and signaling circuits that
control cellular functions being subject to fluctuations in the levels of their components.
Cell-to-cell variability is regarded as an essential agent in many key cellular activities
such as development, differentiation, evolution, virus infection or cell death, and has
been shown to serve a biological function in many cases. Thus, tracing back its sources
is central to understand the behaviors of individual cells and ultimately act on them. In
this work we use a combination of experimental, mathematical and computational tools
to investigate the role of mitochondria (the main energy provider in eukaryotic cells) on
the generation of gene expression noise. Gene expression is highly energy demanding
and in turn determines phenotype, pointed as the cause of variable individual cellular
responses in several processes, notably apoptosis. Heterogeneity in apoptotic outcomes
is particularly relevant as it poses the main cause of tumor resistance to chemotherapy.
Our results highlight the importance of mitochondria as a global modulator of gene ex-
pression, but also reveal its role regulating complex, non-linear processes like alternative
splicing. We found that this control of gene expression is specially important in the apop-
totic signaling pathway: mitochondria exhibit the power to discriminate apoptotic fates
at the single cell level, making it a good candidate for a biomarker of the susceptibility
of cancer cells to death-inducing treatments.
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Resumen

Incluso en condiciones ambientales homogéneas, células con genotipos idénticos
pueden presentar variaciones significativas a nivel fenotı́pico, es decir, diferencias en
tamaño, morfologı́a y estado interno. Esto es el resultado de los circutos genéticos y
de señalización que controlan la función celular estando sometidos a fluctuaciones en
los niveles de sus componentes. La variabilidad de célula a célula es considerada un
agente esencial en multitud de actividades celulares como el desarrollo, diferenciación,
evolución, infección vı́rica o la muerte celular. Por tanto, identificar sus fuentes es cen-
tral para entender los comportamientos de células individuales y en última instancia
actuar sobre ellos. En este trabajo utilizamos una combinación de herramientas exper-
imentales, matemáticas y computacionales para investigar el papel de la mitocondria
(principal proveedor de energı́a en células eucariotas) en la generación de ruido en
expresión genética. La expresión genética es costosa energéticamente y determina el
fenotipo, señalado en muchos procesos como causa de la variabilidad en las respuestas
de células individuales, en particular en el de apoptosis. La heterogeneidad en los re-
sultados apoptóticos es particularmente relevante porque supone la principal causa de
resistencia de tumores a quimioterapia. Nuestros resultados resaltan la importancia de
la mitocondria como modulador global de la expresión génica, pero también revelan su
papel regulando procesos complejos y no lineales como el splicing alternativo. Encon-
tramos que este control de la expresión génica es especialmente importante en la ruta
de señalización apoptótica: la mitocondria muestra el potencial de discriminar destinos
apoptóticos a nivel de célula única, convirtiéndola en un buen candidato a biomarcador
de la susceptibilidad de células cancerı́genas frente a tratamientos inductores de apop-
tosis.

iii
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Introduction

There are several aspects that motivate this work. First, the emergence of high-
throughput technologies, along with the development of powerful statistical tools, has
allowed for the systematic assessment of large sets of molecules and made quantitative
information more accessible than ever for biologists. This has fueled a paradigm shift
in biological research. Second, it is becoming increasingly clear that cell-to-cell differ-
ences play a critical role in many biological processes, but the origins of this differences
are still not completely understood. Third, the realization that many of the factors that
cause cell-to-cell variability are affected by energetic constraints has put the focus in the
main source of energy for eukaryotic cells: mitochondria.

In this chapter, we will present the systems biology framework and discuss why
quantitative modeling is central to it, reviewing some of the most important mathemat-
ical tools used to build models. We will also introduce cell-to-cell variability and some
of its sources and implications. Finally, we will discuss how understanding and char-
acterizing mitochondrial variability can be key to trace back the origins of cell-to-cell
heterogeneity.

1.1 The Systems Biology approach
Biological networks

All biological entities have interactions with one another at many different scales, from
the molecules in a cell to the species in an ecosystem. Biological systems are often
represented as networks formed by nodes and links between them. The identity of these
nodes and interactions is variable: biological networks exist at the genetic, metabolic,
neurological or ecological levels to name a few.1 In the context of cellular biology,
networks are based on different biochemical processes serving a variety of purposes:
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Metabolic networks are defined by the enzymes converting substrates into products
and by the metabolites converted by such enzymes, as well as the interactions be-
tween them. Through metabolism, cells acquire the energy and materials needed
for survival and reproduction.

Transcriptional networks represent the regulation of genes by transcription factors
(TF). From a biochemical point of view, the structure of these networks is de-
termined by the TF binding sites. The operation of these networks shapes the
cell’s gene expression landscape.

Protein-protein interaction networks represent physical interactions such as binding
and complex formation, molecular modifications (mainly phosphorylation) and
activation or inhibition of biochemical reactions. These networks allow cells to
process information enabling, for example, rapid stress responses or intercellular
communication.

Despite cellular components being highly interconnected, reductionism has domi-
nated biological research for a long time. For many decades in the latter half of the 20th
century, studies in molecular and cellular biology were devoted to the generation of in-
formation about the chemical composition and functions of individual cell components,
that is, specific network nodes. The emergence and fast development of the -omics fields
(genomics, transcriptomics, proteomics, metabolomics...) in the 21st century has greatly
accelerated this process.

The rise of the -omics fields

The suffix -omics is used to designate many of the emerging fields of data-rich biology.
These terms refer to a global, un-targeted assessment of large sets of molecules, rather
than a study of each one of them individually. For instance, genomics (the first -omics
discipline to appear) focuses on whole genomes, as opposed to genetics which aims to
understand the role of single genes.

The increasing availability of quantitative data is due to the development of techno-
logical advances that enable fast and cheap analysis of large ensembles of molecules.
These so-called high-throughput technologies allow for the automation and paralleliza-
tion of classic cell biology methods (such as expression arrays, developed in the 90’s) by
incorporating techniques from chemistry, optics or image analysis among other fields.
Alongside these technological advances, rigorous statistical tools and computational
methods are being developed to facilitate data storage, classification, mining and analy-
sis.

Global gene expression assays have made it possible to monitor the transcription lev-
els of tens of thousands of genes simultaneously.2 Transcriptomics is the field devoted
to the examination of RNA levels genome-wide. Such examination can be qualitative
(to explore which RNAs are or are not present under certain conditions) or quantitative
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(how much of each transcript is expressed). RNA-seq experiments use sequencing tools
to determine the amount of each type of RNA in a biological sample. They facilitate
the study of, for instance, alternative splicing or changes in gene expression over time.
An interesting example of the power of RNA-seq are non-coding RNAs: while typically
less than 5% of a mammalian genome encodes proteins, ∼80% of it can be transcribed.
Modern RNA-seq studies have not just allowed for a better understanding of the com-
plexity of the protein-coding genome, but have also revealed several important roles of
non-coding RNAs.3

High-throughput technologies have given us the ability to produce detailed (and con-
stantly developing) lists of biological components and their properties. But as useful as
these lists can be, a more integrative approach is required to fully understand the com-
plex behaviors that arise when those individual components work in conjunction with
one another. This realization has forced a paradigm shift in biology.4–7

A new paradigm in biological research

Today’s research is focusing not only on the components themselves but on their inter-
actions and the states that emerge from the assembly of individual nodes into connected
networks.8–11 It is now clear that a biological function can rarely be attributed to a single
molecule, instead, biological properties typically result from complex interactions be-
tween constituents like proteins, DNA or RNA. These properties are sometimes called
emergent, since they arise from the whole despite not being associated to the individual
parts.

Such a global view can give us a general impression of the performance of biolog-
ical networks. Still, further progress requires that we descend in scale, since signaling
pathways are typically divided into smaller, more specialized modules (often located in
different regions of the cell). At the same time, the study of cells as systems provides
a framework where the vast amount of data available can be integrated and displayed,
and ultimately used to build computational models that bring together the many pieces
of information.

1.2 Modeling in Cellular Biology

1.2.1 Modeling: why and how?
The aim of models in cellular biology

A model can be defined as an abstract representation of a set of objects or processes that
explains some of their features and behaviors.† In a broad sense, models have a long

†In biology, the term model is also used to refer to a species that is suitable for experimentation, for
example mouse or zebrafish.
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history in biology. Our theories and hypotheses about biological systems are, in the end,
nothing but just models. The most common form of biological model is the word model:
many observations give rise to an abstract, wider picture that is simply stated in plain
language.12 The theory of evolution is an example of a word model.

Yet the use of quantitative mathematical models (which constitute an integral part of
systems biology) has lied outside mainstream biological research for many years. This
can be due to the mathematical approach tending to be biased toward simple, general
explanations that are not necessarily suitable to describe nature, where special cases
are abundant as evolution does not always select for simple solutions.13 This makes it
challenging to develop models that are faithful to biology while remaining settled on
clearly interpretable mathematical principles.

Systems biology models are fundamentally based on physical laws (such as the ther-
modynamics of biochemical reactions) that justify their general form. In addition, ex-
perimental evidence and biochemical knowledge is needed to specifically shape a com-
putational model. Many general biochemical first principles are well established. A
prominent example is the so-called central dogma of molecular biology, that can be
summarized as follows: genes code for mRNA, mRNA serves as template for proteins,
and proteins perform specific tasks in the cell. However, the biochemistry of individual
molecules and systems is usually unclear. Experiments can provide insight into these
individual processes, while models usually aim to combine sets of experimentally tested
hypotheses into a bigger coherent picture: the behavior of a complex system can rarely
be understood just from knowledge of its parts.

In the context of cellular biology, the modeling of biochemical reactions involving
cell components (genes, mRNAs, proteins...) can help to unveil their internal nature and
dynamics. But modeling a biological system is not only useful to understand it in depth:
mathematical modeling and computer simulations should reliably predict the behavior
of a network, or at least of those aspects that are supposed to be covered by the model.

Cells as biochemical reactors

Generally speaking, a cell is an integrated device made of several thousands of types of
interacting molecules. Out of those molecules, proteins are the nanometer-size machines
that carry out specific tasks with great precision. Cells require the action of different
proteins depending on the situation they encounter, for which they continuously monitor
their environment and calculate the amount at which each type of protein is needed.
This processing is done by signaling and transcriptional networks, the first ones eliciting
rapid responses and the second ones operating more slowly, on a timescale that can be as
long as the cell’s generation time.14 In both cases, networks are essentially collections
of biomolecular species coupled by chemical interactions, meaning that the cell can be
seen as a biochemical reactor.

Biochemical reactions are catalyzed by enzymes. These are specific proteins that
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have a catalytic center and remain unchanged by the reaction. They often function in
combination with cofactors and are typically very specific. Even complex biochemical
processes are usually described as a succession of simpler, reversible binding steps and
irreversible catalytic steps, each of them constituting an elementary reaction. Before the
emergence of mathematical modeling in network biology, chemical reactors were being
studied in different contexts. In vitro enzymatic reactions under controlled, well-mixed
conditions were already of interest more than a century ago, when Michaelis and Menten
developed a model for the rate of an irreversible one-substrate reaction.15 Their work is
now a fundamental part of biochemistry.

Model classification

Models are typically classified with respect to a set of criteria:

• Qualitative models specify the interactions among model elements, while a quan-
titative model assigns numerical values to the elements and their interactions.

• In deterministic models, the system evolution through all its states can be pre-
dicted from the knowledge of its current configuration. Stochastic models, in-
stead, provide a probability distribution for these successive states.

• Discrete models take values for time, speace and state from a discrete set. In
continuous models, values belong to a continuum.

Just like a biological object can be investigated with different experimental methods,
it can be described with different types of models. At the same time, a mathematical
formalism can be applied in more than one context: statistical network analysis, for ex-
ample, is used to study cellular signaling pathways, transcription networks, the circuitry
of nerve cells or food webs. The choice of a specific model or algorithm to describe a
biological process depends on the problem and the purpose. In general, modeling should
reflect the essential properties of the system studied. Different approaches provide in-
sights into different aspects of the same problem.

Some examples of model types are boolean networks,16 petri nets17 or models based
on ordinary differential equations (ODEs). The use of the last ones is constricted by the
(usually scarce) knowledge of mechanistic details and kinetic parameters. The precision
with which parameters can be identified is determined by two factors: the experimen-
tal error and the relationship between experimental observables and model parameters
(structural identifiability).18 However, modeling the kinetics of biochemical reactions
using quantitative, continuous models expressed in terms of ODEs is widely extended
because of the valuable information they provide about the network dynamics: equilib-
rium states and possible transitions between them, propagation of signals through time,
etc.
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1.2.2 Deterministic kinetic models
Networks in cellular biology are formed by many molecules that react with one an-
other. These molecules do not usually participate in just one reaction, which can confer
a high degree of complexity on these networks. To build models that represent biolog-
ical processes, we first need tools to transform complex networks into mathematically
tractable objects, e.g. sets of differential equations. Even though biochemical reactions
are discrete by nature (a finite number of reactants produce a finite number of products),
for large numbers of molecules it is justified to use averages and formulate continuous
processes based on rates.

The mass action law

To simulate the elementary reactions forming a network, it is common to use models
based on mass action kinetics. The mass action law was introduced in the 19th century
by Guldberg and Waage.19 It states that the rate of a given reaction (the speed at which
reactants are converted into products) is proportional to the product of the concentrations
of the reactants to the power of their molecularity, that is, the number in which they
enter the reaction. Microscopically, this means the reaction rate is proportional to the
probability of a collision of the reactants.

For example, for the following reaction involving three molecular species A, B and
C:

2A + B −−−→ C

the reaction rate would be proportional to [A]2 [B], where brackets indicate concen-
trations. The proportionality factor is called the kinetic constant and has units of
time−1· concentrationn, where n = 1, 0,−1, ... depends on the order of the reaction. If
we call this constant k, the reaction rate in our example would be equal to k [A]2 [B].
The value of the kinetic constant is reaction-specific and, in general, it also depends on
external parameters such as the temperature.

Let us now consider the corresponding reverse reaction as well, with a kinetic con-
stant kr:

2A + B
k
−−−⇀↽−−−

kr
C

Here, the rate for the reverse reaction would be kr [C]. The overall reaction rate is given
by the subtraction of the forward and backward rates, that is, k [A]2 [B] − kr [C]. If it
is positive, the reaction will move forward and vice-versa. The reaction rate quantifies
the speed at which species C is produced (consumed if negative), thus we can write the
following equation for the dynamics of [C]:
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Fig. 1.1. Simple reaction dynam-
ics modeled using mass action ki-
netics. Solution of equations 1.1
and 1.2, for k = 1mM−1h−1 and kr =

0.1h−1. Initial conditions: [A]0 =

1mM, [B]0 = 1mM and [C]0 = 0.
Equilibrium is reached when [A] =

0.25mM, [B] = 0.62mM and [C] =

0.38mM.

d
dt

[C] = k [A]2 [B] − kr [C] (1.1)

This is also the velocity at which A and B are being consumed when the reaction moves
forward, so the negative of the reaction rate will give us the dynamics of [A] and [B].
Note that one reaction requires two molecules of A, which introduces a factor of 2 in the
equation for [A].

d
dt

[A] = −2k [A]2 [B] + 2kr [C]

d
dt

[B] = −k [A]2 [B] + kr [C]
(1.2)

Equations 1.1 and 1.2 form a set that fully describes the dynamics of the system. At
equilibrium, concentrations stabilize and thus the expressions equal zero. This is inter-
preted as the rates of the forward and backward reactions becoming the same, making
the system reach a steady state when

k [A]2
eq [B]eq = kr [C]eq (1.3)

where the eq subindex indicates equilibrium. Figure 1.1 shows an example of the dy-
namics of this system for a specific choice of parameters and initial conditions.

Michaelis-Menten dynamics

Michaelis and Menten15 and Briggs and Haldane20 were the first to study enzymatic
reactions, which are particularly common in molecular biology. These reactions consist
of the transformation of a substrate (S) into a product (P) through the action of an enzyme
(E).
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S + E
k
−−−⇀↽−−−

kr
S : E

kc
−−−→ P + E

The transformation has a first binding step in which the enzyme and the substrate
form a complex (S:E) that can either dissociate back into the initial species or undergo
a second catalytic step to produce a molecule of the product, the enzyme remaining
unchanged. Using the mass action law, we can derive the following set of equations:

d
dt

[S ] = −k [S ] [E] + kr [S : E]

d
dt

[E] = −k [S ] [E] + kr [S : E] + kc [S : E]

d
dt

[S : E] = k [S ] [E] − kr [S : E] − kc [S : E]

d
dt

[P] = kc [S : E]

(1.4)

Even though the system in 1.4 has no analytical solution, there are some assumptions
that can be made to simplify it. If the binding/unbinding steps are much faster than the
catalytic one (in terms of the kinetic rates, this means k, kr � kc) there is a so-called
quasi-equilibrium state between the free enzyme and the enzyme-substrate complex. In
addition, [E]total ≡ [E] + [S : E] must remain constant (assuming no production of new
molecules or degradation of existing ones), which yields the following expression for
the P production rate:

d
dt

[P] = −
d
dt

[S ] = Vmax
[S ]

[S ] + Km
(1.5)

where Km ≡ (kr + kc) /k is called the Michaelis constant, and Vmax ≡ kc [E]total is the
maximum reaction rate, reached in the limit of [S ] � Km.

1.2.3 Probabilistic formulation of reaction kinetics
Biochemical reactions are triggered by random collisions between molecules. If these
events happen a large amount of times per generation, this intrinsic randomness (noise)
can be averaged out. Under these circumstances, deterministic kinetic models usually
provide a good description of the dynamics of the system. However, many key cellular
reactions occur infrequently enough for noise to become non-negligible. Additionally,
fluctuations arising from these infrequent events can affect the rates of other downstream
reactions, propagating through biological networks. From an experimental point of view,
this idea is supported by the fact that the practical totality of studies measuring single-
cell concentrations of proteins report significant variation from cell to cell: gene expres-
sion is stochastic by nature, as it depends on the random association and dissociation of
transcription factors to DNA.
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The master equation

In physics and other related fields, the concept of a master equation refers to a phe-
nomenological set of differential equations that describe the time evolution of the prob-
ability of a system to occupy one of all its possible states.21 Switching between states is
determined by a transition rate matrix.

The state of a network formed by a subset of cellular components and reactions is
determined by the abundances of said components. A molecular network consisting
of L interacting species (proteins in a signaling network, metabolites in a metabolic
network, etc.) can be in one of many mutually exclusive discrete states. The vector
n = (n1, n2, . . . , nL) characterizes these states, with ni being the number of molecules of
the i-th species. Transitions between states can occur through time: as new molecules are
produced, interact with each other and degrade, the values for ni change. The probability
of finding the system in a configuration n at time t is defined as

p (n, t) ≥ 0 (1.6)

Additionally, the conditional probability to find the system in the state n2 at time t2,
granted that its previous state was n1 at time t1 (with t2 > t1) is

p (n2, t2 | n1, t1) ≥ 0 (1.7)

Of course, one out of all the states is sure to be found at any time. Analogously,
given that the system was in a configuration n0 at time t0, it it is certain to have moved
to another one of its possible states n at time t > t0 (a valid particular case is n = n0,
meaning the system can remain in the same state during the interval [t0, t]). Thus the
normalization conditions ∑

n
p (n, t) = 1 (1.8)

∑
n

p (n, t | n0, t0) = 1 (1.9)

must be satisfied for every t, with n extending to all possible configurations.
The joint probability of finding the system in the state n1 at t1, followed by the state

n2 at t2, denoted by p (n2, t2; n1, t1), is

p (n2, t2; n1, t1) = p (n2, t2 | n1, t1) p (n1, t1) (1.10)

The so-called Markov assumption postulates that the conditional probability in equa-
tion 1.7 depends exclusively on the initial state n1, but not on states prior to it: the system
keeps no historic memory. The cases where the Markov assumption fails can become
very complicated, but fortunately it holds most of the times at least as a good approxi-
mation. Under the Markov assumption, equation 1.10 can be generalized to
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p (n2, t2) =
∑
n1

p (n2, t2 | n1, t1) p (n1, t1) (1.11)

for any given t1 and t2. Equation 1.11 shows that the probability p (n1, t1) is propagated
in the time interval [t1, t2] by the conditional probability p (n2, t2 | n1, t1), named the
propagator. Simply put, this means that knowing the conditional probability in equation
1.7 gives all the information about the whole dynamics of the system.

The master equation is a differential equation in time for the propagator. Let us
consider t1 = t and t2 = t + τ, being τ an infinitesimally short time step. Equation 1.11
then becomes

p (n2, t + τ) =
∑
n1

p (n2, t + τ | n1, t) p (n1, t) (1.12)

Expanding the propagator in a Taylor series† with respect to the variable t2 = t + τ at
t2 = t (which is equivalent to the limit of τ→ 0) yields

p (n2, t + τ | n1, t) = p (n2, t | n1, t)

+ τ
∂p (n2, t2 | n1, t)

∂t2

∣∣∣∣∣
t2=t

+ O
(
τ2

) (1.13)

where O
(
τ2

)
represents a sum of higher order terms that can be neglected for sufficiently

small values of τ. As for the term p (n2, t | n1, t) in the right side of equation 1.13, the
fact that the system’s states are mutually exclusive means that given the configuration n1
at time t, there is no chance (probability equals zero) to find a different configuration n2
at that same time t. Mathematically:

p (n2, t | n1, t) =

{
1 if n1 = n2
0 if n1 , n2

(1.14)

It is possible to define a probability transition rate from the state n1 to the state n2,
w(n2,n1), as

w(n2,n1) =
∂p (n2, t2 | n1, t)

∂t2

∣∣∣∣∣
t2=t
≥ 0 (1.15)

†The Taylor series of an infinitely differentiable function f (x) with respect to the variable x at a value x0
is

f (x)|x=x0
=

∞∑
k=0

1
k!

(x − x0)k ∂k f (x)
∂xk

∣∣∣∣∣∣
x=x0
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This is a rate with dimensions of time−1 (transitions per unit time) and must not be
confused with a probability.

If n2 , n1, equation 1.13 becomes

p (n2, t + τ | n1, t) = τw(n2,n1) (1.16)

while if n2 = n1 it reads

p (n2, t + τ | n1, t) = 1 − τ
∑

n1,n2

w(n2,n1) (1.17)

where the sum covers all possible states n1 with the exception of n1 = n2. To reach
expression 1.17, equation 1.9 must be differentiated with respect to t, then the rate
w (n2 = n1,n1) can be cleared and used in 1.13.

Let us take the limit τ→ 0. Considering that

d
dt

p (n, t) = lim
τ→0

p (n, t + τ) − p (n, t)
τ

(1.18)

and conveniently arranging the result of inserting expressions 1.16 and 1.17 in 1.12, the
most general form of the master equation is obtained:

d
dt

p (n, t) =
∑

m
w (n,m) p (m, t)

−
∑

m
w (m,n) p (n, t)

(1.19)

Even if the mathematical formulation can be obscure at first sight, the master equa-
tion has an intuitive interpretation. The change per unit time of the probability of the
state n is given by the sum of two terms with opposite effects (and thus opposite signs).
The first term on the right side of 1.19 quantifies the probability flux from all other states
m into the state n. On the other hand, there is a probability flux out of the state n into all
other states m, given by the second term in 1.19.

The master equation is the most detailed mathematical description about the time
dynamics of a system under conditions of restricted information. To obtain specific
solutions, knowledge about the system is required in the form of probability transition
rates (w). In the end, it is these rates that contain all the information about the process.

A simple case study

Consider a very simple biochemical system in which a molecule A is being produced at
a constant rate k (concentration per unit time) and broken down in a first-order process
with rate δ, for example a RNA being transcribed and degraded. This is known as a
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Poisson process. Let us also assume that the reactions take place inside a cell of volume
v. Schematically:

φ
k
−−−⇀↽−−−

δ
A

The configuration of the system is fully described by the number of molecules of A,
n. In this case, the vector n has a single component, n = (n), and will be treated as a
scalar in the ongoing section for simplicity. The probability of finding n molecules of A
at a time t is then p(n, t). Let us define fn and gn as the probabilities per unit time of a
molecule being produced or degraded, respectively, in a system with n molecules. The
state n can be achieved if a molecule is produced when the system has n−1 molecules, or
if it is degraded when it has n + 1. The probability fluxes can be represented as follows:

p(n − 1, t)
fn−1
−−−⇀↽−−−gn

p(n, t)
fn
−−−⇀↽−−−gn+1

p(n + 1, t)

Introducing these specific four fluxes in the general formulation of the master equation
(1.19), it ends up reading

d
dt

p (n, t) = fn−1 p(n − 1, t) + gn+1 p(n + 1, t)

− ( fn + gn) p(n, t)
(1.20)

It is possible to extract information from equation 1.20 without explicitly solving it.
For instance, the evolution of the mean 〈n〉 of the distribution p(n, t), given by

〈n〉 =
∑

n

n p(n, t) (1.21)

can be obtained multiplying both sides of 1.20 by n and summing over n:

d
dt
〈n〉 =

∑
n

n fn−1 p(n − 1, t) +
∑

n

n gn+1 p(n + 1, t)

−
∑

n

n ( fn + gn) p(n, t)
(1.22)

Because A is created at a constant rate k inside a cell of volume v, we have fn = k v.
Degradation is a first-order reaction with rate δ, so gn = δ n. Then equation 1.22 becomes

d
dt
〈n〉 = k v

∑
n

n p(n − 1, t) + δ
∑

n

n (n + 1) p(n + 1, t)

− k v
∑

n

n p(n, t) − δ
∑

n

n2 p(n, t)
(1.23)
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Finally, making use of the fact that∑
n

h(n) =
∑

n

h(n ± 1) (1.24)

for any function h(n) when the sum is carried over all n, we obtain

d
dt
〈n〉 = k v − δ 〈n〉 (1.25)

Equation 1.25 describes the dynamics of the average 〈n〉 of the probability p(n, t). At
equilibrium (d 〈n〉 /dt = 0), this average equals kv/δ. The same idea can be used for all
the moments of p(n, t),

〈
n2

〉
,
〈
n3

〉
, etc. (fig. 1.2).

Dividing both sides of equation 1.25 by v, we can arrive at the following expression
for the average concentration:

d
dt
〈[A]〉 = k − δ 〈[A]〉 (1.26)

being 〈[A]〉 ≡ 〈n〉 /v. If we had described the system from a deterministic point of
view using the mass action law, we would have obtained an ODE equivalent to equation
1.26. In general, the deterministic approach to a set of stochastic biochemical reactions
describes the behavior of the average abundances of the molecules involved in them.
However, averages alone do not always provide enough information about the system
dynamics.

1.2.4 Stochastic kinetic models
The master equation is a powerful tool, but the cases where its analytical solution is
tractable are very limited. In many scenarios an explicit solution for p(n, t) is not re-
quired and the behavior of stochastic systems can be studied through computational
simulations that implement the mathematics of the master equation into algorithms.

The Gillespie algorithm

In 1977, Gillespie introduced an algorithm capable of generating exact time trajectories
that describe the evolution of a system of coupled reactants.22 In this context, exact
means that the trajectories account for the inherent fluctuations in a way that complies
with the probabilities given in the master equation.

Consider a system with L molecular species coupled by M reactions. Given the
configuration n = (n1, n2, ..., nL) at a time t, the dynamic of the system will be given by:

• The time needed for the next reaction to take place.

• The type of reaction it will be.
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Fig. 1.2. Dynamics of a Pois-
son process. The master equa-
tion can be solved analytically in
a system where a single molecule
is being produced and degraded in
a first-order reaction. Here, the
solid red line represents the solu-
tion of equation 1.25 with k =

0.1molecules/µm3/h, δ = 0.8h−1

and v = 1000µm3 for the initial con-
dition n = 0. Dashed lines represent
the analytical solution for 〈n〉 + σn

and 〈n〉−σn, whereσ2
n =

〈
n2

〉
−〈n〉2.

The black line corresponds to a tra-
jectory simulated with the Gillespie
algorithm.
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The reaction probability density p (µ, τ) is defined such that

p (µ, τ) dτ ≥ 0 (1.27)

quantifies the probability of the next reaction being of type µ (µ = 1, 2, ...,M) and taking
place in the interval [t + τ, t + τ + dτ] with t being any given time. Assuming that the
system is well mixed and that a reaction happens only when the reactants collide with
each other in a certain manner, it is possible to use physical arguments to arrive at the
following explicit form of p (µ, τ):

p (µ, τ) =

aµexp (−a0τ) if τ ≥ 0
0 otherwise

(1.28)

where aµ is called the propensity for the µ-th reaction, and a0 ≡ a1 + a2 + ... + aM .
Propensities are defined such that aµdt quantifies the probability of a reaction of type µ
taking place in the interval [t, t + dt]. They depend on the configuration of the system
at time t and the kinetic constants. In some cases they are scaled by the system volume
plus additional factors if any reactant has a molecularity greater than 1.22

From the algorithm’s perspective, the dynamic can be seen as a reaction race: given
an arbitrary state of a system, each reaction has a certain probability to occur in the fol-
lowing time interval. It is possible to use the probability distribution in 1.28 to simulate
which reaction will “win the race” (and how long it will take for it to do so), thus taking
place in the system, changing its configuration and the propensities accordingly. The
“race” will then be restarted with updated values for the propensities. Trajectories can
be constructed in such iterative manner. An example is shown in figure 1.2.
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The chemical Langevin equations

Trajectories generated with the Gillespie algorithm provide valuable information about
the dynamics of stochastic biochemical systems without the need to explicitly solve the
master equation. Still, a major downside is the simulation time scaling with the sys-
tem complexity: the elapsed time between consecutive reactions decreases for growing
a0 (see equation 1.28), which in turn increases with the number of reactions and their
propensities. This means that systems with large numbers of molecules coupled by many
reactions will require a vast amount of iterations to cover a fixed time span.

The chemical Langevin equations provide an approximation in which molecule
numbers are represented by real-valued (rather than discrete) variables. Let n(t) =

(n1(t), n2(t), ..., nL(t)) describe the state of a system formed by L reacting molecules with
abundances given by ni(t) (i = 1, 2, ..., L) at time t. These species are coupled by a set
of M chemical reactions, with propensities a = (a1, a2, ..., aM). Propensities depend on
the state of the system at the time t, n(t), so in general a = a(t) = a (n(t)). The Langevin
equation for the i-th specie would take the form:

d
dt

ni(t) = fi (a (n(t))) + ωi (a (n(t))) (1.29)

Here fi represents a function analogous to the one that results from the deterministic
approach, and ωi is a noise term that depends on the propensities. Explicitly:

fi (a (n(t))) =
∑
µ

∆iµaµ(n (t))

ωi (a (n(t))) =
∑
µ

∆iµ

√
aµ (n (t)) ξµ(t)

(1.30)

where ∆iµ represents the change in the number of molecules of the i-th specie when a
reaction of the µ-th type takes place, and the term ξµ(t) is a Gaussian white noise.

The main advantage of these equations is that they can be solved numerically with
a custom dt that does not scale with the system complexity, as opposed to the Gillespie
algorithm. It is generally accepted that the Langevin equations are valid when the num-
bers of molecules are high, however, a more formal condition has to do with the choice
of dt: it has to be large enough for the number of reactions in any interval [t, t + dt]
to be much greater than one, but small enough for the propensities to remain relatively
unchanged during that time, that is, a(t) ≈ a(t + dt).23 If there is no dt that can satisfy
both conditions simultaneously, the approximation fails.

1.3 Cell-to-cell variability
Cells constantly process information regarding their enviroment (nutrient presence or
absence, signals from neighbor cells, etc.) and their own internal state. Much of our
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knowledge on how this processing is done is based on ensemble measurements. But
ensemble behaviors are not necessarily representative of any individual, as cell-to-cell
variability is always present in any population.24

1.3.1 Understanding cell-to-cell variability
Origins and classification

Genetic variability (often referred to as genetic polymorphism) is the variation in the
DNA sequence across individuals of the same species. Although its determinants are
not fully understood, genomics has provided a powerful tool to investigate the under-
lying evolutionary processes that give rise to this genetic diversity.25 It is known that
individuals of a polymorphic population can show significantly different responses to
environmental changes. This has implications in, for example, human health26 or the
spread of infectious diseases.27

But even genetically identical (isogenic or clonal) cells in a homogeneous environ-
ment can present large differences in size, morphology, molecular components and activ-
ity. Rather than being the result of DNA sequence variations, this non-genetic variability
is due to the circuits that regulate cellular functions being subject to stochastic fluctua-
tions, or noise, in the levels of their components. At the single cell level, it is common
to distinguish between intrinsic and extrinsic noise:

• Intrinsic noise is induced by the inherent stochasticity in the biochemical reactions
governing signaling and gene expression networks.

• Extrinsic noise arises from fluctuations in other cellular components.

Intrinsic and extrinsic noise are are actually not independent.28 Much of the variabil-
ity in the cellular components that induce the so-called extrinsic noise is, in turn, a result
of the intrinsic stochasticity of the biochemical processes in which said components are
produced or degraded. At the same time, the magnitude of intrinsic noise can depend
on extrinsic factors (e.g. cellular volume). Nonetheless, both contributions are typically
treated separately.

An illustrative experiment was carried out by Elowitz et al.,29 in which bacterial
strains of E. coli were built incorporating the sequences encoding for the cyan and yel-
low fluorescent proteins (cfp and yfp, respectively) in the chromosome. Both reporter
genes were controlled by identical promoters and their expression could be quantified
through fluorescence microscopy at a single cell resolution. Cells were cultured in the
presence or absence of a specific chemical (IPTG). With IPTG, the promoters behaved
as constitutive ones (i.e. reporter gene expression was permanently activated), while in
its absence the expression of the reporters was heavily reliant on the binding/unbinding
of a transcription factor (the LacI protein), thus maximizing intrinsic noise (fig. 1.3).
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Fig. 1.3. Intrinsic versus extrinsic
noise in engineered E. coli. In an
experiment by Elowitz et al., the ex-
pression of two reporters in E. coli
(yfp, yellow, and cfp, blue) is con-
trolled by identical promoters. In
this figure, the abundance of both
yfp and cfp is shown for a single cell
over time as measured with fluores-
cence microscopy. A. Under con-
ditions of low intrinsic noise, fluc-
tuations observed in the levels of
both reporters are highly correlated,
indicating that they are caused by
gene-unspecific (extrinsic) factors.
B. When the expression of each
reporter depends on the infrequent
binding/unbinding of a transcription
factor, intrinsic noise becomes im-
portant and expression of the two
genes becomes uncorrelated. Figure
adapted from Elowitz et al.29

Similar experiments have also been carried out in eukaryotes,30 demonstrating how low
molecular copy numbers fundamentally limit gene regulation predictability.

In general, using time lapse microscopy to measure expression correlations between
genes in single cells is a powerful tool to explore noise propagation through gene ex-
pression networks.31 Simple statistical measures of dispersion, such as the coefficient of
variation (CV, standard deviation relative to mean) or the Fano factor (F, variance rel-
ative to mean) are appropriate measures of variability.32 This provides a framework in
which noise at the single cell level can be quantified and modeled.

Noise in gene expression

Gene expression entails the assembly of basic molecular components (nucleotides and
aminoacids) into nucleic acids and proteins. This involves the coordinated action of
many different molecular steps regulated by a vast amount of enzymes and protein com-
plexes: chromatin remodeling factors, transcription factors, polymerases, ribosomes,
etc. Noise in gene expression is a result of both fluctuations in the number of these
molecular constituents (metabolites and gene expression machinery) and the stochastic-
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ity of the biochemical reactions in which they are involved.
Single-cell genomic and proteomic studies have shown that noise in protein abun-

dances is dominated by the stochastic production and degradation of messenger
RNAs.33, 34 Transcription depends on single molecule kinetics and often occurs in an
intermittent manner, which yields proteins not trickling at uniform rates but rather be-
ing produced in bursts. This is usually a consequence of genes’ promoters stochasti-
cally switching between long-lived active and inactive states, resulting in mRNA pro-
duction bursts that are amplified at the protein level. The frequency and size of tran-
scriptional bursts determine the activity of a gene and are affected by both gene-specific
and genome-wide factors.35 On the other hand, protein lifetimes are often longer than
times elapsed between consecutive transcriptional bursts. The accumulation (buffering)
of proteins tends to average out noise induced by bursting.

Significant variation in noise levels has been found across specific genes and path-
ways. This has been associated with their functional differences, suggesting that vari-
ability in gene expression can be either beneficial or deleterious (and thus evolutionarily
selected against) depending on the context.36, 37 Stress-response genes, for instance, are
particularly noisy,33 pointing at a potential benefit of stochasticity in this case.

For the most part, noise in gene expression comes from extrinsic sources,38 but the
identity and relative contributions of said sources is still unclear. Some examples that
have been characterized affect gene expression in a global manner (e.g. random parti-
tioning of proteins at cell division39 or cell cycle stage40), while others are limited to
specific pathways or collections of genes (e.g. fluctuations in the abundances of up-
stream transcription factors28).

Noise in signaling networks

Signaling networks have the purpose of transmitting information about the extracellular
region to downstream effectors, allowing cells to respond by adjusting their physiolog-
ical state. Although biochemical noise compromises the fidelity of signal transduction,
it seems to also be possible for cells to minimize fluctuations and achieve high levels of
information transmission at the single-cell level.41

Some authors hold that the suppression of molecular fluctuations, when necessary,
requires a “brute force” strategy (i.e. the dramatic increase of the number of molecules
involved in a signaling pathway),42 thus being a highly energy demanding process. An-
other proposed mechanism is the integration of information in time, which would com-
promise the rapidness of a response in favor of its reliability.43 In general, noise suppres-
sion appears to happen when the key biological output of a process is the behavior of
individual cells rather than that of a population (e.g. in chemotaxis). It has been pointed
that signaling networks could exploit single-cell level noise to increase population-level
information transfer.44 This suggests a trade-off between the information transmitted in
individual cells and the information effectively controlling population-level responses.
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From this perspective, low levels of information transfer (induced by biochemical noise)
would not be a physical limit.

Paulsson et al. even introduced the counter-intuitive concept of stochastic focusing.45

This refers to the idea of biochemical networks exploiting noise (rather than suppressing
it) in non-linear, multi-step processes to eventually enhance signal detection. Cai et al.
also reported that the yeast calcium-response system exploits noise to increase signal
transduction reliability, using the frequency of nuclear localization bursts of a transcrip-
tion factor to coordinate the expression of multiple target genes.46

1.3.2 Implications
Identifying and characterizing the sources of cell-to-cell variability is not a merely aca-
demic question. Although noise is an impediment for the design of deterministic bi-
ological circuits, it is becoming increasingly clear that heterogeneity plays important
functional roles in several key cellular processes.24, 34, 47, 48 In many cases, it provides
critical functions that would otherwise very difficult (if not impossible) to achieve.

Both the magnitude of stochastic fluctuations and their frequency determine the ex-
tent of their consequences. Small but persistent changes in protein abundance can have
significant functional implications, whereas the effect of large fluctuations may be neg-
ligible if they occur often enough.39 In general, the time scale of intrinsic fluctuations is
much shorter than that of extrinsic ones, which could explain why the latter are usually
more relevant for the cell’s functionality.

Noise in gene expression induces differences in gene activity that confer each cell a
unique “expression fingerprint”. Analogously, noise in signaling pathways can give rise
to different individual responses of identical cells. This creates phenotypic heterogeneity
even in isogenic populations. But to link phenotypic and molecular variability both
must be simultaneously quantified and causal relationships between them need to be
established.24 This has been done in many cases, where variation at the phenotypic level
has been connected to some sort of stochasticity in key proteins or genetic circuits.

Cellular decision making

Cells can acquire functionally different, heritable fates without environmental or genetic
changes. This idea is often associated to the Waddington’s landscape,49 a depiction
of cells’ decision making process in which each individual is represented as a rolling
ball in a fitness landscape where local minima correspond to stable states. However,
this deterministic view is being challenged by an increasing body of theoretical and
experimental evidence.50 Noise seems to play a key role such that even identical cells
released from the same “location” of Waddington’s landscape can end up in different
states due to random fluctuations.

An interesting example is found in the metabolism of E. coli. The lactose utilization
network of this bacteria displays an “all or nothing” behavior. The well-characterized
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lac promoter simultaneously controls the expression of three genes responsible for the
uptake, breakdown and processing of lactose molecules. The activity of this promoter
is regulated by a set of transcription factors, which results in cells being able to have
the lactose utilization machinery either activated or deactivated, i.e. individual bacteria
can be in one of two mutually exclusive metabolic states. Stochastic transitions between
states have been observed even in cells that were originally uninduced.51

Cell fate choice, development and differentiation

Noise can make cells switch between alternative metastable states. State-switching sys-
tems are often based on feedback loops: stochastic fluctuations alone are typically too
small to create binary switches between alternative cell fates.52 Additional mechanisms
are also needed to stabilize one specific fate choice.

It seems reasonable to assume that a precise, deterministic-like execution of the de-
velopmental program would be critical for the production of functional tissues and or-
gans. Yet researchers have found many scenarios in which cell differentiation during
development is linked to stochastic gene expression. A prominent example was reported
by Serizawa et al. in a study of the mouse olfactory system development.53 Neurons of
said system have a vast amount of odorant receptor (OR) genes that are expressed in a
mutually exclusive fashion, following a “one neuron-one receptor” logic. This structure
is established during the mouse developmental period, and has been shown to rely on
the stochastic activation of a specific OR gene (induced by intrinsic noise) followed by
a negative feedback stage that shuts down all the others.

Another analogous, well characterized example of noise in gene expression affect-
ing cell differentiation is found in hematopoietic stem cells. These express two mutually
repressing genes (PU.1 and GATA1). At a certain point, that can be either induced or
spontaneous (driven by intrinsic fluctuations only), one of the two takes over, repress-
ing the other’s expression and unleashing a signaling cascade that leads to the eventual
differentiation of stem cells into myeloid (PU.1) or erythroid (GATA1) cells.54

Evolution

A very straightforward way in which noise can play a role in evolution is by expanding
the phenotypic range associated with a given genotype. In this sense, increased noise can
be an advantage when facing fluctuating environments. Notably, the strength of selec-
tion determines the role of fluctuations: high levels of noise seem to be beneficial when
selection pressure is intense, whereas lighter pressure selects for reduced fluctuations.55

This is consistent with the idea of increased phenotypic variation during adaptation to
new, challenging conditions, followed by noise reduction when selection becomes stabi-
lizing.

Noise can also determine which specific gene expression network topologies get fa-
vored evolutionally. Even though different architectures for a genetic circuit are often
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able to perform one same task, each one can show a different distribution of stochastic
fluctuations, effectively causing functional differences. This has been proposed to ex-
plain why seemingly equivalent topologies are selected for or against to implement a
given cellular process.56

Virus infection

Virus infection is the result of the concerted action of many cellular processes, including
endocytosis (cell’s internalization of the viral genetic material). Significant cell-to-cell
variation has been shown in these processes even in isogenic populations. This variabil-
ity cannot be attributed to physical constraints on the accessibility to virus particles,57

which points at phenotypic state as a key determinant of individual cells’ responses.

Aging

The increase of noise in gene expression with age is a general observation. For instance,
it has been shown that the expression of both housekeeping and strain-specific genes
in murine cardiac monocytes becomes more stochastic as the organism ages.58 Interest-
ingly, the same effect was observed in cells isolated from young animals and treated with
hydrogen peroxide, suggesting oxidative stress could be a factor. Similar observations
were made in murine muscle tissue.59

Apoptosis

Apoptosis is a process by which cells of multicellular organisms die in response to ei-
ther external (extrinsic apoptosis) or internal (intrinsic apoptosis) stimuli. Unlike necro-
sis (a form of cell death that results from cellular injury), apoptosis is programmed.
This means that cells contain the biochemical circuits necessary to respond to apoptotic
signals by unleashing a cascade of events that include cell shrinkage, chromatin conden-
sation, nuclear fragmentation...

When a population of isogenic cells is presented with a pro-apoptotic signal, some
of the individuals die while others survive in a phenomenon known as fractional killing.
If the resistant fraction is left to grow and the reconstructed population is presented
with the apoptotic signal again, fractional killing is still observed. Additionally, both
the apoptotic fate (death/survival) and the time to death show significant correlation be-
tween sister cells. These findings constitute strong evidence for a non-genetic origin of
fractional killing, that has instead been linked to noise-induced phenotypic heterogene-
ity.60–65

21



Cancer

Cancer is a disease known to involve changes in the genome. These changes provide tu-
mor cells with functions such as apoptosis evasion, sustained angiogenesis, insensitivity
to anti-growth signals, etc.66 Even though the process is generally associated with DNA
sequence alterations in specific key genes (oncogenes), a more general approach sug-
gests that non-genetic variability could induce heritable state variants in cell populations
that would serve as a temporary substrate for cancer progression even before mutations
take place.67

1.4 Mitochondrial variability
The complexity of the molecular steps and machines involved in gene expression and
signaling introduces sources of noise at many levels, but a common constraint to these
processes is their energy dependence. Mitochondria provide most of this energy in eu-
karyotic cells. These cellular organelles occupy a significant fraction of the cytoplasm
and can show large variation in number and functionality across cells of a clonal pop-
ulation, as has been observed in HeLa cells,68, 69 hematopoietic stem cells70 and solid
tumors.71 Mitochondrial variability has been shown to induce cell-to-cell differences in
energy budget68 and pointed as an important source of extrinsic noise.68, 69, 72

1.4.1 Mitochondria and metabolism
ATP: the cellular fuel

ATP stands for adenosine triphosphate. It is an organic chemical found across all life
forms that serves as an energy carrier and can be used to power many processes in cells.73

Structurally, ATP consists of an adenine attached to a sugar (ribose), attached in turn to
a triphosphate group.

The energy carried by an ATP molecule can be utilized in many reactions through the
release of one or two of the phosphates in its triphospate group, while the adenine and
sugar groups remain unchanged. The release of one or two phosphate groups converts
ATP into ADP (adenosine diphosphate) or AMP (adenosine monophosphate) respec-
tively. On the other hand, the energy stored in nutrients or obtained through photosyn-
thesis can be used to restore the phosphate bonds, converting ADP and AMP back into
ATP. A typical cell contains ∼109 ATP molecules at any time, that get turned over (used
and replaced) every 1-2 minutes.

Anaerobic glycolysis versus oxidative phosphorylation

Before nutrients can be utilized by cells, the large polymeric molecules in food must be
broken down into their monomer subunits (proteins into amino acids, polysaccharides
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into sugars, and fats into fatty acids and glycerol). This step (digestion) is carried out
by specific enzymes either outside cells or in specialized organelles within them (lyso-
somes), so that only the small molecules derived from it enter the cytosol. In the cytosol,
a chain of metabolic reactions known as glycolysis converts a molecule of glucose into
two molecules of pyruvate, releasing two molecules of ATP in the process. This process
is anaerobic (i.e. the reactions involved require no oxygen) and very inefficient in the
sense that only ∼5% of the energy potential of the glucose (38 ATP molecules) is ex-
ploited.74 Sugars other than glucose, amino acids, fatty acids or glycerol follow similar
pathways converging on the pyruvate production stage.

For most eukaryotes, glycolysis is just the beginning of the food molecule break-
down process. Pyruvate molecules are transported into mitochondria, where each one
is converted into CO2 plus an acetyl group which becomes attached to the coenzyme
A (CoA) to form acetyl-CoA. In mitochondria, acetyl groups enter the citric acid cycle
where they are oxidized to CO2, producing large amounts of NADH, an electron car-
rier molecule. In the mitochondrial inner membrane (which is folded many times for
increased surface), the high-energy electrons of NADH are passed along an electron-
transport chain. The energy released by their transfer is used to eventually produce ATP
in a series of oxygen-consuming reactions known as oxidative phosphorilation. Most of
the cell’s ATP is produced in this final stage.

Many eukaryotes, prominently normal differentiated cells in metazoan organisms,
obtain the majority of their ATP through oxidative phosphorilation in mitochondria.75

The combination of the anaerobic glycolysis and oxidative phosphorilation pathways
is known as cellular respiration. It produces about 30 ATP molecules per glucose
molecule, making it a highly efficient process.

Mitochondria and the evolution of complex life

Eukaryotic cells are generally more structured than prokaryotes, with much larger
genomes and proteomes and thus a higher degree of complexity. All eukaryotes ei-
ther possess mitochondria or some kind of remnant of them,76 which makes it plausible
for mitochondria and eukaryotic life to have their origin in the same event,77 possibly
a symbiotic association between an aerobic and an anaerobic bacteria that took place
about 4 billion years ago. The fact that mitochondria contain their own genetic material
supports this hypothesis. This mitochondrial DNA (mtDNA) encodes proteins of the
respiratory electron transport chain. It consists of 37 genes in humans.

The acquisition of mitochondria, and specifically of mitochondrial genes, enabled
oxidative phosphorilation raising the energy power of the cell by several orders of mag-
nitude. This allowed cells to overcome energetic barriers and increase their genome size
by a factor of roughly 200,000-fold,78, 79 with the subsequent leap in complexity.
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1.4.2 The origins of mitochondrial variability
Mitochondria are variable from cell to cell in number, morphology and functional-
ity.68, 69, 80, 81 Fluorescence microscopy combined with specific markers has been used
to determine the abundance, size or even physical continuity of mitochondria, finding
significant variation from cell to cell in isogenic populations of several cellular strains.
The mitochondrial membrane potential is commonly used as a proxy for mitochondrial
functionality, showing significant variability as well.

Several studies have shown that the main source for cell-to-cell heterogeneity in
mitochondrial content is the asymmetric apportioning of individual mitochondria at cell
division.68, 80, 82 This idea is similar to the the random segregation of a given number of
elements into two subsets, known as binomial partitioning. Such mechanism is generally
accepted to explain how other cellular components (e.g. proteins or RNAs) are split
between daughter cells at mitosis, and has been shown to be consistent with experimental
data.83, 84

Johonston et al. developed a model capable of recapitulating the natural variability
in mitochondrial content observed in populations of clonal HeLa cells.80 The model is
formulated in terms of two coupled differential equations for the growth and segregation
at mitosis of both the mitochondrial mass and the total cellular volume of a single cell.
The three key variables are v, the cell’s volume, n, its mitochondrial mass and f , a
parameter that quantifies the efficiency of mitochondria within a cell. Specifically, f
is interpreted as a proportionality factor linking mitochondrial density (n/v) and ATP
concentration. The equations are:

dv
dt

= α f n

dn
dt

= β f n
(1.31)

where α and β are proportionality constants whose value was adjusted to match experi-
mental results.

In the model, growth is deterministic (equations 1.31 are so), but randomness is
introduced at cell division. When a cell reaches a threshold volume (vmax), mitosis takes
place. Both the mitochondrial mass and the cellular volume are split between daughter
cells. If we let (v, n) characterize the parent cell, and (v1, n1) one of the two daughters
chosen arbitrarily, at cell division:

v1 = Φ

(vmax

2
, σv

)
n1 = Φ

(
n
2
,

√
n
4

) (1.32)

where Φ (µ, σ) represents a normal distribution with mean µ and variance σ2. The vari-
ance of the volume distribution (σ2

v) is chosen to match experimental data on volume
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Fig. 1.4. Origins of mitochondrial variability. Mitochondrial content and functionality are vari-
able from cell to cell. A. An isogenic population of HeLa cells was stained with the MitoTracker
green reporter and imaged using fluorescence microscopy. MitoTracker binds to the mitochondrial
membrane, thus being a good reporter of mitochondrial mass. Despite all cells being genetically
identical, differences in the fluorescence intensity are appreciated. B. Fluorescence intensity was
quantified for ∼3500 cells. The distribution of mitochondrial mass (gray), in arbitrary units, was
obtained from this quantification after normalizing by the population average, showing a coeffi-
cient of variation (CV) of about 0.4. The green line represents a fit to a log-normal distribution. C.
The mathematical model developed by Johnston et al.80 (equations 1.31 to 1.33) assumes deter-
ministic cell growth and binomial partitioning of mitochondria between daughter cells at mitosis.
We used it to reconstruct a population starting from a single cell and allowing several rounds of
division until equilibrium was reached (no significant change found in the distributions of cell
and mitochondrial volumes). Gray lines represent time trajectories of the cells in the simulated
population. One arbitrarily chosen cell has been highlighted in black. The right panel shows
the distribution of mitochondrial volumes of the population, which is well fitted by a log-normal
(green line) and has a CV of 0.4, consistent with experimental findings.
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partitioning. The variance of the mitochondrial distribution (n/4) is chosen to represent
a binomial distribution in the limit of large n. Naturally, the other daughter cell would
inherit a volume v2 = v − v1 and a mitochondrial mass n2 = n − n1.

Both daughter cells inherit the same mitochondrial functionality fD, wich is resam-
pled each time a new mitosis takes place and relates to the parent’s functionality fP

according to:

fD =
1 + fP

2
+ Φ

(
0, σ f

)
(1.33)

where σ f is chosen through optimization with constrains regarding experimental mea-
sures of cell cycle length variability in HeLa cells. The scenario of fD < 0 makes no
physical sense but can happen when sampling from equation 1.33. To exclude this pos-
sibility, fD is resampled if its value falls under a small (but greater than zero) threshold.

The model is able to quantitatively reproduce the distribution of mitochondrial con-
tent found in an isogenic population of HeLa cells through fluorescence microscopy,
as shown in figure 1.4. It does so by introducing noise only in the form of asymmet-
ric (binomial) partitioning of mitochondria at cell division. Indeed, quantification of
mitochondrial content after mitosis shows that the ratio of mitochondrial mass among
daughter cells follows a skewed distribution, pointing towards such a mechanism of
asymmetric segregation.68, 80

Mitochondrial biogenesis is characterized by continuous cycles of fusion and fission
that are faster than the cell cycle period: each mitochondrion undergoes an average of ∼5
fusion/fission events per hour,85 which likely yields a steady population of mitochondria
inside the cell.85, 86 Interestingly, mitochondrial fission is enhanced during mitosis,87

possibly facilitating passive and stochastic partitioning to daughter cells. Recent work
has showed that, in yeast, mitochondria are segregated between daughter cells to achieve
similar concentrations, that is, in proportion to the available cytoplasmic volume as it
happens with RNAs and proteins.88 Another study showed that mammalian epithelial
stem-like cells follow asymmetric apportioning of aged mitochondria, with cells that
inherit fewer old mitochondria maintaining stemness.89

However, other factors can make the dynamics of organelle biosynthesis vary from
cell to cell, adding more potential sources for mitochondrial heterogeneity. For instance,
cell cycle stage seems to act as a modulator for mitochondrial mass.69 Some authors
have described active mechanisms based on actin filament control90 through which cells
are able to undertake asymmetric segregation of mitochondria. This can be understood
as a sort of “quality control”.

1.4.3 Mitochondrial variability and gene expression
Energy is a common link connecting many of the factors that are variable from cell to
cell and impose global constraints on gene expression.91–93 Examples are cell’s growth
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Fig. 1.5. Mitochondrial contribu-
tion to protein variability. Mi-
tochondrial levels co-vary with the
amount of total protein in HeLa
cells (black dots). The contribu-
tion of mitochondria to total pro-
tein variability (gray distribution)
can be quantified by de-trending the
data (blue dots and distribution, see
equations 1.34 to 1.36). In this case,
CVp = 0.37 and CVo f f = 0.15,
which yields MCV = 0.6. This
is interpreted as mitochondria ac-
counting for roughly 60% of the
variability observed at the protein
level.

state94 or the availability of metabolites and enzymes.95 The molecular machinery
needed for transcription and translation (most importantly ribosomes96) also requires
energy to be synthesized. In addition, many of the steps of the gene expression cycle
depend upon the overcome of free energy barriers.97

All of this makes gene expression a highly energy demanding process, taking up
to ∼80% of the cellular ATP.78, 79 Mitochondria, being the main provider of energy in
eukaryotes, plays important roles in several steps of the gene expression cycle. Other
global factors that affect gene expression also undergo fluctuations that are, to some
extent, modulated by mitochondrial content.

Quantifying mitochondrial and gene expression variability

To investigate the relationship between mitochondrial variability and cell-to-cell differ-
ences in gene expression, one can simultaneously measure the amount of mitochondria
and proteins, RNAs or different markers of transcription and translation activities at the
single cell level (e.g. using fluorescent antibodies, see figure 1.4).69 The protein distri-
bution for a whole population can have a large width (i.e. a high coefficient of variation),
but much of this variability comes from cell-to-cell differences in mitochondrial content.
The co-variation of mitochondria and protein abundances is a result of this dependence
(fig. 1.5).

Given that variability in protein abundance is produced by a combination of sources,
one of them being mitochondria, we have:

σ2
p = σ2

m +
∑

i

σ2
i (1.34)
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where σ2
p represents the total variance at the protein level and σ2

m is the part of that
variance that comes from mitochondrial heterogeneity. The sum over i corresponds to
every other source of variability (including intrinsic noise and other extrinsic sources
independent of mitochondria). The relative contribution of mitochondria to the total
variability at the protein level can be quantified by representing protein abundance as a
function of mitochondria abundance and measuring the correlation and the off-diagonal
dispersion of the data. This is equivalent to removing the co-variation across the diagonal
in figure 1.5. Such off-diagonal dispersion can be attributed to sources of noise that do
not depend on mitochondrial mass, that is, it corresponds to the summation in equation
1.34. Thus, if we call

σ2
o f f =

∑
i

σ2
i (1.35)

we can obtain the variance associated to mitochondrial variability (σ2
m = σ2

p + σ2
o f f )

and also to all other sources (σ2
o f f ). The coefficients of variation, CVp, CVm and CVo f f

can be extracted by simply dividing by the respective means. It is useful to define the
Mitochondrial Contribution to Variability (MCV) as:

MCV ≡ 1 −
CVo f f

CVp
(1.36)

The MCV quantifies the fraction of the variability observed at the protein level that
can be attributed to cell-to-cell differences in mitochondrial content. This parameter pro-
vides a simple, intuitive way of separating the contribution of mitochondria to protein
variability from other sources of noise, in a way that is somehow analogous to the de-
composition of total variability into its intrinsic and extrinsic components (fig. 1.3).29

Using specific antibodies, it is possible to obtain MCVs for individual proteins. Values
found span between ∼25% and ∼75%, changing across groups of proteins involved in
different cellular processes.69

Chromatin organization

Nucleosomes are the basic repeating units of DNA packaging, consisting of a segment
of DNA in sequence around eight histone protein cores. They compete for DNA binding
with many transcription factors, such that these must induce nucleosome reorganization
in order to interact with genomic regulatory elements. There is a variety of models for
how this arrangement is done, but the general view is that it is a dynamic, ATP-dependent
process.98 According to the assisted loading mechanism, short-lived chromatin confor-
mations would be induced by the action of remodeling complexes, allowing transient
“windows of access” for secondary transcription factors to access their binding sites.99

These transient windows would operate within periods spanning minutes to hours,68, 100

while many secondary DNA binding proteins have binding/unbindig times of the order
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of seconds. The relatively slow time scale for nucleosome rearrangement produces long
periods of gene activation and silencing, which results in transcriptional bursting30, 101

and noise in gene expression.102 While the size of these bursts seems to be characteristic
of each promoter,103 their frequency appears to be determined by nucleosome position-
ing alone.104, 105

Many molecular machines consume ATP to change nucleosome configuration. Fur-
thermore, acetyl-CoA is an essential cofactor for histone modifications that is produced
in large amounts in mitochondrial respiration. At the same time, the NAD+ coenzyme
(the oxidated form of NADH, also an essential part of the cytric acid cycle) catalyzes
histone deacetylation.106 These are all mechanisms through which mitochondria could
affect chromatin remodeling and thus transcriptional bursting. Indeed, mitochondrial
levels have been shown to largely co-vary with chromatin modification marks related to
transcriptional activation such as the histone methylation mark H3K4me3.69

Transcription

The transcription process consists of a first stage in which large protein complexes as-
semble at a gene’s promoter (initiation), and a second one in which said machinery
starts moving along the DNA while polymerizing the transcribed RNA strand (elonga-
tion). The cycle is completed when transcription is finished and the polymerase, together
with the rest of the molecular elements, is released from the DNA.

Polymerasefree + DNA (Polymerase:DNA)initiating (Polymerase:DNA)elongating

k1

k2

k3

k4

The rate constants for each of these processes (k1 to k4) can be extracted from the
fluorescence loss in photobleaching experiments† that use polymerase fluorescent re-
porters.107 Many studies have made experimental observations of initiation and elonga-
tion events in different cellular strains. They found fast turnover rates of the transcription
machinery, which typically assembles and dissembles at the promoter every few seconds
to minutes. Multiple incomplete rounds of initiation can take place before elongation
starts, each one of them keeping no memory of previous history.107, 108 Transcription
initiation is thus an inefficient, stochastic process. Elongation, on the other hand, seems
to be more deterministic and energy dependent, with a speed that can change as much as
3-fold from cell to cell.107

†Photobleaching refers to the photochemical alteration of a fluorophore molecule to permanently prevent
it from fluorescing.
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Measuring cellular levels of BrU‡ and mitochondrial content simultaneously in pop-
ulations of HeLa cells shows that both co-vary. Moreover, the same experiment in cells
with depleted ATP demonstrates that the elongating fraction of RNA Polymerase II and
the elongation rate are highly dependent on cellular energy budget, while the rates of
binding/unbinding of the polymerase complex to DNA (i.e. the fraction of initiating
polymerase and the initiation rate) are relatively ATP-independent.69 The transcription
machinery stochastically binds and releases promoters, but requires energy to start and
sustain the elongation phase. This is consistent with a picture where cells with increased
mitochondrial content have a higher number of both genes actively transcribed and RNA
polymerases engaged in elongation.

Variability in mitochondrial mass would thus induce transcriptional noise. Addition-
ally, intercellular differences in the abundance of RNA polymerases have been shown to
be an extrinsic source of noise in gene expression,109 and could potentially be linked to
mitochondrial heterogeneity as well. Further work is needed to elucidate the molecular
mechanisms linking mitochondria to transcription initiation/elongation.

Alternative splicing

We have discussed the ability of mitochondria to amplify or decrease gene activity
through the modulation of energy-dependent rate parameters of the gene expression cy-
cle, notably transcription. But mitochondria are not just a biological “volume knob” that
tunes gene expression up or down: this modulation can be heavily non-linear. A drastic
example is alternative splicing.

Most eukaryotic protein-coding genes contain amino acid coding sequences known
as exons separated by segments called introns. Transcripts of such genes are called
pre-mRNAs (precursor messenger RNAs). Newly synthesized pre-mRNAs are typically
processed in the nucleus to remove introns and splice the exons together into a mature
mRNA that can be translated in the cytoplasm. Alternative splicing (AS) is the process
through which particular exons of a gene may be included or excluded from the final
processed mRNA. Studies using high-throughput technologies show that the vast major-
ity (95-100%) of human pre-mRNAs that contain more than one exon can be transcribed
into multiple alternatively spliced mRNAs (isoforms).110 This explains why eukaryotic
organisms can mantain proteome sizes much larger than their corresponding genome
size. AS allows for genes to encode more than one protein: alternatively spliced mR-
NAs of the same gene yield different protein products when translated. AS appears to be
driven by fluctuations in the splicing machinery in humans.111, 112 It is a major source of
proteome diversity113 and has important consequences in processes like development114

and disease.115

The number and relative abundances of mRNA isoforms is highly variable116 as

‡Bromouridine (BrU) is an immediate transcription precursor. When added to a cell culture it incorporates
to newly synthesized RNA, thus serving as a proxy of cells’ average transcriptional activity.
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shown, for instance, in immune cells by single-cell transcriptomics.117 Transcriptomic
analysis of HeLa cell subpopulations with high and low mitochondrial content also re-
veals dramatic alterations in isoform abundance.69 The mediation of mitochondria in
AS is likely to be due to a combination of factors. Chromatin remodeling (for which
energy is critical as we discussed) influences the outcome of AS by both distinguishing
exon and intron recognition and regulating the recruitment of specific splcing factors.118

Elongation speed, higly variable from cell to cell, is also linked to mitochondrial content
and impacts the secondary structure of pre-mRNA, a key determinant of AS.119

Cell cycle and growth

The eukaryotic cell cycle is composed of four phases, out of which the first three (G1, S
and G2) are collectively known as the interphase and the fourth one (M) corresponds to
cell division.

• G1 phase: cells synthesize RNA and proteins, increasing in size in preparation for
subsequent steps of the cycle.

• S phase: DNA is replicated.

• G2 phase: a period of rapid growth and protein synthesis preceding mitosis. G2
phase is present in most, but not all, forms of eukaryotic life.

• M phase: cell growth stops and cellular energy is devoted to the division into two
daughter cells (mitosis).

Gene expression is coupled to cell growth and division,40, 120, 121 notably transcrip-
tional activity is increased during the S/G2/M phase. Such coupling can make it so
protein and RNA concentrations (not copy numbers) remain relatively invariant along
the cell cycle.40, 122 On the other hand, asymmetric partition of molecular components at
cell division (see section 1.4.2 of this text) generates a “noise floor” for extrinsic noise.28

Cell cycle also determines the timescale at which variability becomes relevant: intrin-
sic noise is typically faster than cell cycle periods and can be averaged out in many
scenarios, while extrinsic sources often induce fluctuations that persist for time spans
comparable to one cell cycle.39

The size of mammalian cells is coupled to cell cycle in normal tissues, so control
mechanisms are required to limit variability in cell size.123 Mitochondria may estab-
lish such control in mouse liver cells by regulating the balance between cell size and
proliferation.124 In addition, mitochondrial levels impact the cell’s biosynthetic power
(through modulation of transcription and translation) which determines cell growth and
division.96 These mechanisms could explain the observed relationship between mito-
chondrial mass and cell cycle length.68, 125
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Both mitochondria and cell cycle shape variability at the protein level. To assess
these contributions simultaneously, they must be quantified along with protein abun-
dance in single cells and the effect of each factor on the other should be studied with
independence of the third one. Such analysis shows that the contribution of cell cycle to
noise in gene expression is low (around 5-17% in different cell lines) compared to that
of mitochondria.69, 126

1.4.4 Implications
The current understanding is that metabolic alterations entail genome-wide changes in
transcriptional activity. There is, however, evidence that the opposite scenario is also
possible: any process that involves a shift of cellular energy is likely to result in a global
gene expression change. Mitochondrial variability can thus play a role in cell individ-
uality through its impact on many of the steps of gene expression due to variable ATP
availability.

The immune response is a paradigmatic example of this. Metabolic reprogramming
is needed before individual immune cells can achieve the correct physiological function
in reaction to antigen exposure.127, 128 Hydrogen peroxide and superoxide anion, possi-
bly originated at activated mitochondria,129 have been shown to be produced shortly af-
ter T cell receptor antigen cross-linking.130 Additionally, the increase in biomass needed
for cellular expansion depends highly on ATP.131 These evidences point at metabolic
reprogramming preceding shifts in the gene expression program, rather than being a
consequence of it.

It is not intuitive how a general system (such as metabolism) can drive changes in
the highly specific genetic programs expressed by individual cells. A possible way is
through chromating remodeling: when metabolic reprogramming takes place, chromatin
opens allowing for the access of transcription factors to DNA. These transcription factors
are expressed heterogeneously in individual cells, so their relative abundances would
determine the transcription program that gets executed. There is evidence sporting the
plausibility of this mechanism: studies have shown that the use of molecules affecting
the epigenetic machinery that controls chromatin dynamics can increase the efficiency
of somatic cell reprogramming (which requires dramatic changes in the gene expression
program) by up to 100 times.132

There are many examples of signaling pathways that involve mitochondria and con-
trol gene expression and cell function. One of them is glucocorticoid signaling, that
involves the translocation of the glucocorticoid/receptor complex to mitochondria to
modulate its function.133 Another one is the Notch pathway that regulates cell prolif-
eration, differentiation and death in metazoans and is specially relevant in cancer stem
cells.134 Notch proteins interact with a kinase (PINK1) to modulate mitochondrial func-
tion and possibly raise ATP levels. A third example are thyroid hormones, signaling
molecules that stimulate mitochondrial respiration on a timescale that comprises a few

32



minutes/hours. Several days after this fast response, changes in the expression of target
genes lead to sustained mitochondrial biogenesis and an induction of ATP increase.135

Mitochondria and pathology

Mitochondria has regulatory effects on gene expression. It is then straightforward to
derive that its malfunction will result in aberrant gene expression, potentially manifest-
ing in the form of disease. Indeed, the pathophysiology of many conditions has been
associated with dysfunctional mitochondria.136

We have previously discussed the role of mitochondria in alternative splicing. AS
is critically implicated in genetic diseases (in humans, ∼50% of them arise from mu-
tations affecting AS137) and heart diseases like hypertrophic cardiomyopathy or sudden
death.138, 139 This is consistent with the idea of aberrant AS being related to mitochon-
drial dysfunction, as cardiac tissues have a high dependence on ATP. In fact, the pro-
gression of cardiopathies to heart failure (HF) is always associated with a decrease in
ATP (up to 40%)140 and mitochondrial malfunction.141 Furthermore, therapies aimed to
improve mitochondrial functionality have been shown to be effective at increasing the
long-term survival rates of patients with chronic HF.142 Other contexts where aberrant
AS has been reported are neurodegenerative (Alzheimer, Parkinson...) and neurodevel-
opmental (autism...) diseases.143

In cancer, the interplay between metabolism and gene expression is critical. Nutri-
ent uptake in animal cells requires growth factors whose concentration can be limiting in
the environment. In such cases, differentiated cells adopt a metabolic strategy based on
oxidative phosphorilation in mitochondria to maximize the efficiency in the production
of ATP. On the other hand, under abundance of growth factors cells can switch to an
anabolic strategy, increasing nutrient uptake and biomass production. In cancer, growth
factor signaling is permanently activated and metabolism is reprogrammed to a gly-
colytic phenotype.66, 75 In many cancer types, mitochondria seem to be reprogrammed
for macromolecular synthetic activity.144 It is generally accepted that these metabolic
changes are originated by aberrant gene expression.145, 146 However, it has been ar-
gued that non-genetic heterogeneity can contribute to the somatic evolution of tumors.67

Hence, it is possible that metabolic reprogramming precedes some of the genetic muta-
tions associated with the disease, instead of simply resulting from them. Furthermore,
aberrant AS is also a hallmark of tumor cells,147 adding another potential link between
mitochondrial function and cancer.
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2

Mitochondrial control of gene
expression

Gene expression is heterogeneous from cell to cell. As we have seen, this has many
important functional implications, so identifying its sources and quantifying their con-
tributions is a relevant problem. In this chapter we will explore some of the mechanistic
aspects through which mitochondria modulate variability in gene expression, a highly
energy demanding process. We will do so with a combination of mathematical models
and statistical analysis of experimental data, notably RNA sequencing (RNA-seq) data.
The advantage of RNA-seq is that it provides straightforward information about changes
in the activity of specific genes. In addition, we have seen that a great fraction of the
noise in protein abundance is generated at the mRNA level through transcriptional burst-
ing. This justifies the study of the transcriptome to understand the connections between
mitochondrial and phenotypic variability.

2.1 Global and specific constraints on gene expression
Global scaling

In response to changes in the external conditions, cells can alter the expression of thou-
sands of genes.148 This response can be gene-specific in some cases, but there is evidence
that, for the most part, it is the consequence of changes in cellular factors affecting sev-
eral genes. For instance, genome-wide measurements in yeast and E. coli revealed that
promoter activities across different growth conditions are shifted by a global scaling
factor for 60-90% of promoters.149

As for eukaryotes, we have discussed that cells with more mitochondrial mass have
increased biosynthetic capabilities. It is then likely that differences in mitochondrial
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Fig. 2.1. Effect of mitochondria on gene expression variability in a central dogma model.
Mitochondrial levels correlate with the amounts of: A. the histone methylation mark H3K4me3,
a proxy for chromatin activation, B. nascent RNA as reported by BrU, related to transcriptional
activity, and C. nascent protein quantified by the precursor AHA, an indicator of translational
activity. Each dot represents a cell and solid lines are linear fits. Coefficients of variation:
CVH3K4me3 = 0.29, CVBrU = 0.54 and CVAHA = 0.32. D. Basic central dogma model used
for stochastic simulations. Parameter dependencies are color-coded in reference to panels A-C:
promoter activation rate (kon), transcription rate (km) and translation rate (kp) change from cell to
cell with mitochondria according to experimental measurements of variability in H3K4me3, BrU
and AHA marks respectively. Parameter values: 〈kon〉 = 0.4h−1, ko f f = 10h−1, 〈km〉 = 35h−1,
〈kp〉 = 15h−1, δm = 0.08h−1, δp = 0.03h−1. E. We analyzed two subpopulations of simulated
cells, with low (m within the 30% bottom values, purple) and high (m within the 30% top values,
orange) mitochondrial content respectively. Fixing the values for km and kp to their population
averages (〈km〉 and 〈kp〉) for all cells but maintaining the co-variation of kon with mitochondria, we
can study the marginal effect of this dependency on gene expression: cells with higher mitochon-
drial content have increased transcriptional bursting frequency. F. Analogously, fixing kon and kp

but maintaining the mitochondrial dependency of km reveals increased transcriptional burst sizes
in the subpopulation with higher mitochondrial content. G. Last, fixing kon and km and allowing
cell-to-cell differences in kp induced by mitochondria results in increased protein production in
the subpopulation with higher mitochondrial levels. H-I. Trajectories for the mRNA and protein
abundances of several cells (gray), out of which two have been highlighted (low mitochondria,
purple; high mitochondria, orange). Distributions were obtained from mRNA and protein levels
of the whole population (gray) or the “low”/“high” subpopulations (purple/orange). Coefficients of
variation for mRNA abundance distributions: CVmRNA = 0.89, CV(low)

mRNA = 0.83, CV(high)
mRNA = 0.37,

and for protein abundance distributions: CVProtein = 1.09, CV(low)
Protein = 0.37, CV(high)

Protein = 0.21.

content can cause changes in the expression of many genes. Indeed, it has been observed
that the transcriptional activity of HeLa cells scales by a global factor across normal
and ATP-depleted populations. Similar experiments also showed an analogous scaling
across subpopulations of cells sorted by their mitochondrial content.69 Interestingly, not
only the average transcriptional activity but also its variability seems to be maintained
across subpopulations with different mitochondrial content, and even in ATP-depleted
cells. This suggests that an increased energy budget simultaneously boosts the average
amount of RNA/protein and the deviations around this average at the population level.

To investigate the mechanistic aspects of this global scaling, we developed a model
for the expression of a single gene based on the central dogma of molecular biol-
ogy, which can be phrased as a series of biochemical reactions involving gene activa-
tion/inactivation, transcription initiation/elongation to synthesize mRNA strands, and
translation initiation/elongation to synthesize proteins. Some of these processes are
highly dependent on ATP and thus on mitochondrial content: immunofluorescence ex-
periments where HeLa cells were tagged with MitoTracker green (for mitochondrial
mass quantification) and marks for histone methylation, transcriptional activity or trans-
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lational activity evidence a strong correlation of all said marks with mitochondrial levels,
as shown in figure 2.1A-C.

In our model, outlined in figure 2.1D, we account for these correlations by introduc-
ing dependencies of several kinetic rates with mitochondria. Specifically, if we denote
the mitochondrial content of a cell (in arbitrary units) as m, we have:

kon = 〈kon〉 · f1 (m)

km = 〈km〉 · f2 (m)

kp = 〈kp〉 · f3 (m)
(2.1)

where kon is the gene activation rate, km the transcription rate and kp the translation rate
of that cell. Angle brackets indicate population averages of the rates, which are fixed
to values within biological ranges107, 150 (see caption of figure 2.1). The values of f1, f2
and f3 are log-normally co-sampled† with m, with mean equal to 1 and standard devia-
tion that complies with the variability observed experimentally for histone methylation,
transcriptional activity and translational activity respectively (fig. 2.1A-C). This choice
is justified because the distributions of mitochondria as well as of the marks used for
the mentioned processes are well fitted by log-normal distributions (χ2-test for good-
ness of fit agreed with a log-normal to a < 5% significance in all cases). Other kinetic
rates (gene inactivation rate ko f f and degradation rates, δm and δp for mRNA and protein
respectively) are assumed to be independent of mitochondria.

A deterministic approach can be used to formulate the dynamics of the species’
average copy numbers in terms of a set of ODEs:

d
dt

DNAon = kon (m) ·
(
1 − DNAon

)
− ko f f · DNAon

d
dt

mRNA = km (m) · DNAon − δm · mRNA

d
dt

Protein = kp (m) · mRNA − δp · Protein

(2.2)

where overlines indicate time averages of species’ abundances within an individual cell
with mitochondrial mass m.

We simulated a population of cells by first assigning each one of them a mitochon-
drial content sampled from a log-normal distribution of mean 1 and dispersion equal to
the experimental distribution of MitoTracker green (CVm = 0.4, see figure 1.4). Each
cell was then given individual values for kon, km and kp according to expression 2.1,
thus accounting for the extrinsic cell-to-cell fluctuations induced by mitochondria. The
dynamics of the gene expression cycle were simulated using the Gillespie algorithm to
account for intrinsic noise as well. Sources of variability other than mitochondria and

†Log-normal co-sampling is the term we use to describe the sampling of a variable y that correlates with
another variable x whose value is set beforehand, when both are log-normally distributed. See appendix B for
more information.
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intrinsic fluctuations are indirectly included in the model: rate values are sampled ac-
cording to the cell-to-cell differences observed experimentally (equations 2.1 and figure
2.1A-C), where off-diagonal deviations are presumably caused by a non-characterized
combination of factors.

The model reveals increased frequency and size of transcriptional bursts with mi-
tochondrial levels through the modulation of the promoter activation and transcription
rates respectively. Analogously, mitochondrial control of the translation rate leads to
higher proteins produced per mRNA strand under conditions of high mitochondrial con-
tent. The combined effect of all three parameters yields increased mRNA and protein
copy numbers in cells with high mitochondrial content, consistent with experimental
findings of gene expression globally scaling with energy budget.68, 69

Non-linearities and gene-specific regulation

The central dogma model we described is able to recapitulate some of the effects of mi-
tochondria on gene expression, namely the global scaling of mRNA and protein abun-
dances, but some features of the model are not in agreement with experimental findings:

• Experiments show a roughly linear co-variation of the per-cell protein abundance
with mitochondria68, 69 (fig. 1.5), but simulations of the central dogma model yield
a high degree of non-linearity (fig. 2.2C).

• The overall cell-to-cell variability in protein abundance is not quantitatively con-
sistent with experimental data. The coefficient of variation of experimental protein
distributions is much smaller (CV ∼ 0.4, figure 1.5) than the one obtained through
simulations (CV ∼ 1.1, figure 2.1I).

• In the model, variability in protein levels does not scale accordingly to empirical
observations: experiments simultaneously measuring mitochondrial and protein
abundances in single cells show that the CV of the protein and mRNA distribu-
tions varies only slightly across subpopulations with different mitochondrial con-
tent.68, 69 But the model yields significant differences in the CV of the mRNA and
protein distributions of such subpopulations.

These discrepancies are likely due to an oversimplification of the model. Gene ex-
pression is complex, and by describing transcription or translation with a single reaction
rate (km and kp) we have gathered together a collection of steps with many potential
limiting factors. To investigate this, we developed a new model for the expression of
a single gene, this time accounting for the intermediate steps of polymerase and ribo-
some binding and unbinding to DNA and mRNA respectively (fig. 2.2A). We assume
that this binding/unbinding is a relatively energy-independent process, so we include no
cell-to cell variation in the kinetic rates that characterize it (α, αr, β and βr). On the
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Fig. 2.2. Non-linearities and constraints on the gene expression cycle. A. Multi-step model
explicitly including binding/unbinding of polyerases and ribosomes. Some parameters are taken
as mitochondria-dependent (kon, km and kp, color coded according to figure 2.1A-C), while
others are assumed to be independent of it (degradation rates and polymerase/ribosome bind-
ing/unbinding rates). Parameter values: 〈kon〉 = 40h−1, ko f f = 1h−1, α = 1000µm3h−1molecules−1,
αr = 3500h−1, 〈km〉 = 35h−1, β = 15µm3h−1molecules−1, βr = 0.15h−1, 〈kp〉 = 15h−1,
δm = 0.08h−1, δp = 0.01h−1, Pol = 50, Ribo = 1000, v = 1000µm3 (cellular vol-
ume). B. Including these intermediate steps is analogous to having “effective” transcription
and translation rates that vary non-linearly with mitochondrial mass. Light blue represents
a linear co-variation of the translation rate kp according to the scenario in the basic cen-
tral dogma model. Dark blue represents a non-linear co-variation of the analogous effec-
tive rate in the multi-step model. C. The basic central dogma model yields a non-linear co-
variation of mitochondria and protein (light blue dots), as opposed to experimental measurements
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(gray dots). Simulated cells were split into “bins” according to their mitochondrial content. The
average mitochondria and protein levels of each bin are represented in red (bar indicate standard
deviation within bins). D. On the other hand, the multi-step model (dark blue dots) reproduces the
experimental trend. E. For both the basic (light blue) and multi-step (dark blue) models, as well as
for experimental data (gray), cells were binned and the variability within each bin was quantified
as the CV.

other hand, elongation rates (km and kp) are co-sampled with each cell’s mitochondrial
content, analogously to what was done in the simplified central dogma model.

Again, we can use mass action kinetics to derive equations for the average number of
molecules of the species involved. A quasi-steady state approximation for the complexes
DNAon:Polymerase and mRNA:Ribosome is appropriate if α, αr � km and β, βr � kp,
i.e. if the binding/unbinding of polymerases and ribosomes is much faster than the elon-
gation step, which seems to be the case in real cells.107, 108 Additionally, since we are not
including explicit polymerase and ribosome production/degradation, their number must
be conserved: Pol + DNAon:Pol = const. and Ribo + mRNA:Ribo = const. Assuming
that most polymerases and ribosomes are free in the cell (not engaged to DNA/mRNA),
which is coherent with the current understanding,151 we can finally write:

d
dt

DNAon = kon (m) ·
(
1 − DNAon

)
− ko f f · DNAon

d
dt

mRNA = α
km (m) /αr

1 + km (m) /αr
· Pol · DNAon − δm · mRNA

d
dt

Protein = β
kp (m) /βr

1 + km (m) /βr
· Ribo · mRNA − δp · Protein

(2.3)

and defining effective transcription and translation rates as

k(e f f )
m ≡ α

km (m) /αr

1 + km (m) /αr
· Pol

k(e f f )
p ≡ β

kp (m) /βr

1 + km (m) /βr
· Ribo

(2.4)

we can cast the equations in a form that is analogous to 2.2:

d
dt

DNAon = kon (m) ·
(
1 − DNAon

)
− ko f f · DNAon

d
dt

mRNA = k(e f f )
m (m) · DNAon − δm · mRNA

d
dt

Protein = k(e f f )
p (m) · mRNA − δp · Protein

(2.5)
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The effective transcription and translation rates of the new model, k(e f f )
m and k(e f f )

p ,
are dependent on mitochondrial content but in a non-linear way, as shown in figure 2.2B.
This is interpreted as the binding/unbinding steps being potentially limiting: even if a
cell has enough energy to increase elongation rates, transcription and translation initia-
tion rely on the random (not or weakly ATP-dependent) attachment of polymerases and
ribosomes to DNA and mRNA. This can result in overall transcription and translation
rates saturating and thus remaining relatively low even under conditions of ATP excess.

Running Gillespie simulations of this model we reconstructed an in-silico population
of cells and quantified protein abundances and variability levels. We also sorted the cells
into 5 smaller subpopulations according to their mitochondrial content, and measured
the CV of the protein distributions within each subpopulation. First, we found that this
new, multi-step model can recapitulate the linear co-variation of protein and mitochon-
dria abundances (fig. 2.2D), as opposed to the basic central dogma model (fig. 2.2C).
Furthermore, the variability at the protein level within the sorted subpopulations is better
captured by the new model, especially at low mitochondrial content (fig. 2.2E). These
results indicate that the effect of mitochondria on the gene expression cycle goes beyond
a simple, linear modulation of the kinetic rates. Even though such linear modulation can
explain some observations (e.g. the increase of gene products with mitochondrial mass),
the complexity of gene expression and the many layers of regulation that it entails intro-
duce a set of energetic dependencies and limiting factors. The interplay between them
determines the level of expression of individual genes.

Our model suggests that the availability of polymerases and ribosomes can be a
factor modulating the effect of energy budget, but many other potentially limiting el-
ements could be taking part. For instance, the model does not account for a possible
role of mitochondria on transcript or protein degradation rates, neither it includes the
post-transcriptional modifications stage between mRNA production and protein synthe-
sis. Even though the effect of alternative splicing is neglected here, it has been shown
to be critical. Guantes et al. proposed a simple two-step process in which a mRNA was
produced at a constant rate km, and then spliced into its N mature forms with rates k1, k2,
..., kN . They showed that in order to explain the variability observed in transcript relative
abundances across populations with different mitochondrial content, both the pre-mRNA
production rate and the maturation rates had to be modulated by mitochondria.69

pre-mRNA

mRNA1

mRNA2

. .
 .

mRNAN

km

k1

k2

kN
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2.2 Connecting mitochondrial and transcriptional vari-
ability

Since we ultimately want to understand the connections between energy budget, gene
expression and phenotypic variability, it would make sense to analyze the changes in
protein abundances in cells with different mitochondrial mass. Proteins are the molecu-
lar machines that carry out specific tasks, and thus their dynamics determine each cell’s
phenotype. The correlation between the transcriptome and the proteome of individ-
ual cells has been shown to be relatively weak,150 likely due to the abundance of post-
transcriptional control mechanisms. However, it is generally accepted that the initiation
of transcription (primary mRNA production) is the predominant form of gene expres-
sion regulation,28–39, 94, 98, 152 and transcriptomic analyses are still widely used to study
changes in gene expression. In our case, analyzing the variability the levels of RNA
expression through sequencing is justified since they represent a direct proxy of gene
activity and the most relevant form of noise generation.30–34, 101, 102

2.2.1 RNA-seq and data processing
Cells stained with MitoTracker green were sorted into two subpopulations with high and
low mitochondrial content respectively. The difference in mitochondrial mass across
subpopulations was about 5-fold. From each population, RNA was extracted, purified
and sequenced. This procedure was repeated for three cell lines: HeLa (3 biological
replicates), Jurkat (3 biological replicates) and MRC-5 (2 biological replicates). More
information on experimental methods such as cell culture, sorting, RNA extraction, etc.
can be found in appendix A.

HeLa is the most commonly used human cell line in biological research. It is derived
from cervical cancer.

Jurkat is a strain of human T lymphocytes originally obtained from the blood of a
patient with T cell leukemia.

MRC-5 are fibroblasts derived from lung tissue of a human fetus.

Sequenced reads were first passed to FastQC v0.11.8153 for quality check, finding no
significant presence of adapter sequences in any sample. From sequenced reads, tran-
script abundance was quantified using the quasi-mapping mode of Salmon v0.12.0154

with default settings, and mappings were validated using the alignment-based mode.
The Salmon index was built using the cDNA file of the Homo sapiens genome, version
GRCh38 from Ensembl.155 Downstream analyses were performed using R v3.5.2.156

Additional data was retrieved from the Ensembl BioMart tool with the aid of the biomaRt
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v2.38.0 package.157, 158 Transcript counts were aggregated at the gene level using the tx-
import v1.10.1 package.159 Differential expression analyses were done with the DESeq2
v1.22.2 package.160

Expression levels were obtained in units of TPM (transcripts per million). TPM
values in the “low” mitochondria condition were corrected by a strain-specific factor
to account for the global differences in per-cell RNA abundance across subpopulations
with high and low mitochondrial mass. To obtain this factor, cells were stained with Mi-
toTracker green and the mRNA content per cell was checked by poly(T) mRNA FISH.
Fluorescence images were analyzed with the ImageJ software.161 Cells with high and
low mitochondrial content were selected and the average poly(T) intensity of both sub-
populations was quantified. The ratio (“low”/“high”) between said intensities (equal to
0.37 in HeLa) was used to scale TPM values in the “low” condition.

Transcripts and genes expressed under a threshold were discarded. This threshold
(detection limit, DL) was estimated as follows:162 all features (transcripts and genes)
with at least one zero and one non-zero expression value in any condition were selected.
All non-zero values of this subset were listed, and the DL was taken as the median of
their distribution (0.5TPM).

A note on units of expression

Understanding the units of transcript expression is key to perform consistent downstream
analyses. In general, RNA-seq experiments do not provide a quantification of the RNA
copy numbers per cell. The sequenced RNA is typically obtained from populations of
cells (although modern single-cell sequencing techniques also exist), with a fixed library
size (i.e. number of reads to be sequenced). Thus, when quantifying the expression of
a given transcript from RNA-seq data, we are usually studying what fraction of the se-
quenced reads comes from each type of transcript in the sample, but obtaining absolute
copy number requires additional steps. One example is the inclusion of spike-ins, tran-
scripts of known length and well characterized quantity used to calibrate measurements
in RNA-seq and other similar assays.

The most straightforward way to report the expression of a transcript is to simply give
the raw number of reads that were aligned to it, that is, that came from the processing of
a transcript of that type. Some common bioinformatic tools use this as input. However,
there are important problems when attempting to relate these raw counts to the true level
of expression of a transcript (namely the per-cell copy number):

• RNA-seq entails the breakdown of transcripts into fragments for sequencing, so
longer transcripts produce increased raw fragment counts. This bias is particularly
important when comparing the level of expression of two transcripts within a same
sample.

• Raw fragment counts scale with library size.
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To enable comparisons across different transcripts in a sample and across samples
with different library sizes, these effects need to be taken into account. If we denote the
number of counts of the transcript i as xi, a straightforward way to remove the effect of
the library size is to use counts per million (CPM):

CPMi =
xi

X
· 106 (2.6)

being X the total number of reads. CPMs are still biased for the transcript length. In fact,
the magnitude of the bias for the i-th transcript is determined by the so-called effective
length l̃i, computed as:

l̃i = li + 1 − µ (2.7)

where li is the true length of the transcript and µ is the mean of the fragment length dis-
tribution of the library. The effective length is interpreted as the number of possible start
sites at which a transcript could have generated a fragment of that length. Normalizing
the raw counts by this effective length as well as for the total number of reads gives
fragments per kilobase of exon per million reads (FPKM):

FPKMi =
xi

X · l̃i
· 109 (2.8)

Finally, if the normalization by the library size is done using counts scaled by their
effective length (instead of raw counts), transcripts per million (TPM) are obtained:

T PMi =
xi

l̃i
·

 1∑
j x j/l̃ j

 · 106 =
FPKMi∑
j FPKM j

· 106 (2.9)

TPMs are, in principle, unbiased with respect to transcript length and library size.163

They simply represent the fraction of transcripts of each type within a pool of RNAs
(times a factor 106). TPMs are still not equivalent to transcript copy numbers, but in-
dependent experiments quantifying total RNA per cell can be used to make the conver-
sion.150, 164

A note on global scaling

When performing bulk RNA-seq, RNA is extracted from cell populations. This in-
evitably implies a loss of information on the states of single individuals. In our case,
we know that each cell’s mitochondrial content determines the abundances of RNA (as
well as protein and other components), but these differences are not captured by bulk
RNA-seq data. To minimize this effect, we scaled TPM values in the “low” condition
by a factor extracted from independent experiments quantifying total RNA per cell. By
doing so, we are neglecting the cell-to-cell differences within our subpopulations (with
“high” or “low” mitochondrial content). We assume that the introduction of this global
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scaling factor will yield a good estimation of the per-cell content of individual tran-
scripts, but this is not always necessarily the case: potential sources of variability that
are independent of mitochondria could induce significant cell-to-cell differences in the
copy numbers of specific RNAs. For them, averaging over the whole subpopulation
would provide an inaccurate description of individual cells.

In summary, even though RNA-seq is a powerful tool to investigate the effect of a
variable on the gene expression landscape, we need to be aware of the bias introduced by
assuming that all cells within an ensemble are identical. On the other hand, single-cell
transcriptomics (which in principle bypasses this issue) has a high degree of experimen-
tal variability because of the need to sequence very small amounts of genetic material,
that then has to be amplified in inherently noisy protocols.

2.2.2 Expression changes at the gene level
We performed a principal component analysis (PCA) on the expression data using sam-
ples as variables and genes as observations. We plotted the coordinates of each sample
in the space of principal components, restricted to the plane formed by the first two (PC1
and PC2). For the cellular strains with three biological replicates (HeLa and Jurkat),
the one with the highest average distance to the other two in the PC1-PC2 plane was
discarded, and downstream analyses were carried out with two replicates per strain.

After this, a new PCA was performed with the 12 remaining samples (3 cell lines, 2
conditions —“high” and “low” mitochondria— and 2 biological replicates each, figure
2.3A). We computed the average distance across data points of different strains, find-
ing higher values for the MRC-5 samples. This is consistent with the fact that MRC-5
cells are fibroblasts, as opposed to HeLa and Jurkat which are cancer strains. Thus,
it is reasonable to expect more similarities between the last two in terms of their gene
expression program. We then proceeded to identify individual genes with significant
changes in their expression levels, and we checked whether such genes were conserved
across strains. We selected those genes that were significantly up- or down- regulated
on each strain, i.e. with an adjusted p-value < 0.05 (obtained from DESeq2 differential
expression analyses) and a fold-change (FC) either greater or smaller than the global
scaling factor given by the poly(T) RNA FISH experiments, as shown in figure 2.3B for
HeLa cells. For this analysis, the p-value was computed using the raw TPM data, that
is, before correcting values by the factor accounting for the per-cell total RNA differ-
ences. Doing this, we identify the genes that are significantly expressed above or below
the global scaling. Formally speaking many more genes have their expression signif-
icantly changed across conditions due to the difference in total expression induced by
mitochondrial levels variation.

Figure 2.3C evidences a small degree of overlap across differentially expressed genes
in distinct strains: in HeLa cells, 117 genes matched our criteria for up-/down-regulation;
171 did so in Jurkat and 87 in MRC-5. Out of them, only 4 genes were common to HeLa
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Fig. 2.3. Global effect of mitochondria on gene activity across cellular strains. A. Principal
Component Analysis of the gene expression data in three cell lines: HeLa (red), Jurkat (green) and
MRC-5 (blue). Two biological replicates per strain are shown. Up-pointing triangles correspond to
samples with high mitochondrial content and vice-versa. Numbers in parenthesis on the axes indi-
cate the percentage of variability explained by the first and second principal components (PC1 and
PC2 respectively). B. Gene levels of expression in HeLa cells in “high” versus “low” mitochondria
conditions. Values for the “low” condition have been scaled by the global factor obtained from
poly(T) RNA FISH experiments, which results in the best-fit line (solid) being above the identity
line (dashed). Red dots represent genes that were differentially up- or down-regulated between
conditions. C. Overlap across the three strains in the lists of genes differentially expressed. D.
Significance of the change in expression between the “high” and “low” conditions of a collection
of genes. Each row represents a gene. Only genes that were significantly up- (upper block) or
down-regulated (lower block) in at least one cellular strain are shown. Blank cells indicate that the
level of expression of the gene was below detectable limits in that specific strain. Genes differen-
tially expressed in each strain were grouped and passed to GeneCoDis3 for annotation enrichment
analysis. Groups and annotations most significantly over-represented within each are shown on
the left side.
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and MRC-5, 2 were common to HeLa and Jurkat and there was no overlap between the
Jurkat and MRC-5 gene sets. Furthermore, many of the genes with significant changes
in expression in one strain were not expressed at detectable levels in the other two, and
even those that were showed strictly non-significant changes between the “high” and
“low” conditions as indicated in figure 2.3D.

Even if there is little conservation in the specific up- and down-regulated gene sets
across strains, there could still be pathways or functions commonly affected in all of
them. To explore this, we passed the lists of genes differentially expressed in each
cell line to the GeneCoDis3 tool.165 GeneCoDis3 extracts annotations from a number
of databases such as Gene Ontology (GO),166 KEGG pathways167 or PANTHER path-
ways168 and computes which ones are over-represented in a list of genes. It also groups
annotations based on their co-occurrence within the provided gene list, which facilitates
the interpretation of the results.

Notably, even though the HeLa and Jurkat strains share only a small fraction of
up-regulated genes, the “ATP binding” annotation was found to be over-represented for
both of them. This term is associated to genes whose products directly interact with
ATP, for example DNA helicases (responsible for gene unpacking), RNA polymerases
or enzymes involved in energy utilization such as kinases, which catalyze the transfer of
phosphate groups from high-energy molecules to other substrates. It specifically applies
to ATPases, enzymes that mediate the decomposition of ATP into ADP for energy re-
lease. This could indicate that increased mitochondrial content does not only rise the rate
of ATP production, but also boosts the expression of proteins required for its utilization.

The “protein binding” annotation is also common to the HeLa and Jurkat up-
regulated gene lists. Interestingly, it is also over-represented in the set of down-regulated
genes of MRC-5, which could be associated with the fact that this last one is a normal
cell line while the other two are cancer strains. It is plausible that this results from mi-
tochondrial regulation of a large subset of proteins taking part in several pathways and
whose expression is aberrant in cancer cells. This is, however, a very broad statement:
“protein binding” is a generic term that could be associated to many genes participating
on a plethora of different processes. To know which of those processes are indeed altered
in cancer, and whether abnormal mitochondrial regulation of gene expression could be
attributed to such alterations, more detailed mechanistic information would be required.

Other interesting annotations that were found are “cell cycle and division” in the
Jurkat up-regulated gene list (many works have indeed characterized the relationship
between mitochondrial content and cell cycle68, 69, 96, 125) or “membrane transport” and
“plasma membrane” in the down-regulated genes of HeLa and MRC-5 respectively.
These last terms could refer to the electron transport chain in the mitochondrial inner
membrane that results in ATP production during oxidative phosphorilation, or more gen-
erally to the regulation of the expression of membrane transport proteins, transmembrane
polypeptides that facilitate the movement of charged and polar molecules in and out of
the cell’s lipid bilayers (including the mitochondrial membrane but not limited to it).
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Only 6 genes were found to be significantly up-regulated in MRC-5 cells, with no
statistically relevant over-representation of any function. It is worth noting that one
of those genes is CDIP1, a target for p53 which is a widely studied tumor suppressor.
CDIP1 is involved in the cellular response response to TNF, a ligand that induces ex-
trinsic apoptosis. The role of mitochondria on the regulation of the expression of genes
involved in extrinsic apoptosis will be further studied in the last chapter of this work.

2.2.3 Alternative splicing
As we have discussed, mitochondrial levels regulate many steps of the gene expression
cycle. This means that its role goes beyond that of a global modulator, instead, there
are many potential effects that could modulate transcript expression individually. Our
RNA-seq data allows us to quantify the expression in “high” and “low” mitochondria
conditions on a transcript-by-transcript basis, so we investigated the effect of mitochon-
dria on their relative abundances in HeLa, Jurkat and MRC-5 cells.

First, we noticed significant variation at the gene and transcript levels as evidenced in
figure 2.4A. We found a fraction of genes (15%-20% depending on the strain) for which
at least one transcript had a fold-change significantly different from the gene’s fold-
change (meaning

∣∣∣ log2 FCt − log2 FCg

∣∣∣ > 1, with FCt and FCg the transcript and gene’s
fold-changes respectively). This means that, for many genes, mitochondria does not
just scale the overall expression but it also changes the relative transcript abundances:
regardless of whether the total expression of a gene scales according to the expected
global trend, each of its transcripts individually can behave in a unique way. For some
genes, the expression pattern remains unaltered and all transcripts maintain their relative
abundances in the “high” and “low” conditions (fig. 2.4B). In other cases, one or more
transcripts does not obey the global scaling (fig. 2.4C).

To investigate the mechanisms of this non-linear scaling, we studied each gene’s
transcript expression pattern (TEP). We classified a transcript as non-linearly scal-
ing if it satisfied (a) adjusted p-value < 0.1 and (b) fold-change such that∣∣∣ log2 FCt − log2 FCglobal

∣∣∣ > 1 between the “high” and “low” conditions. FCglobal refers
to the global scaling and is given by the independent poly(T) RNA FISH experiment as
the inverse of the factor used to correct TPM values in the “low” condition.

Transcription start site

One of the determinants of TEP variation could be transcription start site (TSS)
choice:169 we have discussed that chromatin organization is highly ATP-dependent,
which can lead to mitochondrial content modulating the availability of different poly-
merase binding sites.

To test this hypothesis, we selected those genes with at least one linearly and one
non-linearly scaling transcript. We then looped through those genes, randomly selecting
two transcripts per each (one linearly and one non-linearly scaling) and comparing their
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Fig. 2.4. Non-linear mitochondrial regulation of gene expression. A. Fold-change of the
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there is an prominent fraction (∼18%) of genes for which at least one transcript with a FC that
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across transcripts of the same gene with different regulation (gray) and for a null ensemble of
transcripts chosen arbitrarily (white). Error bars represent standard deviations computed by boot-
strapping.
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TSS. We considered that the TSS were the same if they fell within 100bp of each other
and vice-versa. As a control, we repeated this process but this time looping through all
genes and selecting transcripts randomly, creating a “null” ensemble of TSS distances.
We did this 20 times per strain for statistically meaningful results.

We found that for all three strains, roughly 50% of the transcripts of the same gene
share their TSS, but this percentage goes down to ∼30% when comparing transcripts
with linear and non-linear scaling (fig. 2.4C). This shows that indeed TSS choice is, to
a large extent, determining the mitochondrial control of TEPs. However, the fact that
there is still a fraction of transcripts with different scaling that share the same TSS (or at
least their TSS lie very close to each other) means that there must be additional layers of
regulation.

Secondary structure... and transcript length?

One mechanism that has been proposed for mitochondrial control of aternative splic-
ing is the variation of elongation speed leading to different precursor mRNA secondary
structures69, 72 (fig. 2.5A-B). Secondary structure has been long regarded as a key deter-
minant of splicing form choice.170, 171

Addressing whether such a mechanism is plausible requires the systematic computa-
tion of pre-mRNAs secondary structures. There are many tools that aim to predict RNA
folding based on nucleotide sequence.172 In general, they work under the premise that
the spatial configuration of a RNA molecule should minimize the free energy, although
newer methods with different approaches and increased accuracy also exist.173 Formally
speaking, genes coding for pre-mRNAs with at least two possible secondary structures
with similar free energies should be more prone to regulation through elongation speed
variation. If the changes in the kinetic energy of elongating polymerases induced by
mitochondrial variability are comparable to the differences in free energy between alter-
native pre-mRNA folding configurations, the mechanism would be consistent.

Yet addressing this question on a genome-wide scale would require an immense
amount of computational resources. Additionally, the tools for secondary structure pre-
diction generally have limited precision. A more convenient way to study this matter is
by looking at transcript lengths. The number of possible secondary structures that a RNA
can adopt grows exponentially with its length,174, 175 so we expect longer pre-mRNAs
to have a higher chance of undergoing conformational changes induced by elongation
speed variation.

We selected two subgroups of protein-coding genes with lengths within the top or
bottom 10% of the complete set (fig. 2.5C). We then compared the fraction of genes
within each subgroup that showed alterations in their transcript relative abundances (i.e.
altered TEP) between the “high” and “low” mitochondria conditions (fig. 2.5D). We
found no variation across subgroups in HeLa and Jurkat cells. This does not imply that
there is no role of secondary structure in these strains but rather that, if there is, it is not
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Fig. 2.5. Effect of gene length on mitochondrial modulation of expression. A-B. Mitochondrial
content modulates elongation speed of polymerases (gray) through DNA strands (red), which is
a determinant of mRNA (green) seconday structure. C. Distribution of expressed protein-coding
gene lengths in HeLa. 10% shortest and longest genes are indicated in dark and light red respec-
tively. D. Among the shortest (dark red) and longest (light red) genes, similar fractions have their
TEPs altered by mitochondria in HeLa and Jurkat. Strikingly, in MRC-5 there is a higher fraction
of genes with altered TEPs among the shortest ones, as opposed to our expectation based on the
secondary structure hypothesis. Error bars were computed by bootstrapping.

prominent enough to be noticeable by just looking at precursor RNA lengths.
Surprisingly, MRC-5 cells behaved differently: non-linear mitochondrial regulation

of transcript abundances was more prominent in genes with shorter lengths. It is likely
that our assumption of pre-mRNA size being connected to secondary structure was too
generic in this case: many other layers of energy-dependent regulation could be taking
place, such as expression cost increasing with length, and neglecting them may be too
rough of an approximation. In any case, the sole finding of the relationship between
pre-mRNA length and mitochondrial regulation being strain-specific is remarkable and
hints towards a mechanism that is less general than elongation speed variation. Further
experimental work (e.g. including more cell lines or measuring the relative abundances
of well-characterized, alternatively folded forms of specific pre-mRNAs) is required to
characterize the effect, if any, of elongation speed on secondary structure.
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2.3 Transcript-specific regulation of production and
degradation rates

A possible mechanism for mitochondrial control of RNA abundance is the modulation
of degradation rates. To study decay dynamics on a transcript-by-transcript basis, we
performed RNA-seq on cell populations with different mitochondrial content at various
times after transcription inhibition.

2.3.1 Time series RNA-seq and data processing
Cells stained with MitoTracker and sorted with respect to their mitochondrial content
were treated with DRB for transcription blockage. DRB is an adenosine analogue that
inhibits RNA polymerase II elongation176 (see details in appendix A). After DRB treat-
ment, RNA was extracted and sequenced every 2h (at 0, 2, 4 and 6h). Quantification and
downstream analyses were performed according to section 2.2.1 of this chapter.

2.3.2 Quantification of transcript degradation rates
Consider a cell belonging to a subpopulation with either high or low mitochondrial con-
tent. That cell will be expressing a number of transcripts at different levels. Let ni (t)
represent the number of transcripts of type i at a given time t. If transcription is blocked
at t = 0, the abundances ni for t > 0 will be determined by each transcript’s degradation
dynamics. Assuming all transcripts decay following an exponential law:

ni (t) = ni,0 exp (−δit) (2.10)

where ni,0 represents the abundance of the i-th transcript at t = 0, and δi its degradation
rate. Note that δi is transcript-specific and can, in principle, vary under conditions of
high and low mitochondrial content.

The total RNA in the cell, N, will be given by the sum of the abundances of all
transcripts:

N (t) =
∑

i

ni (t) (2.11)

The sum is carried over all transcript types expressed in the cell. Let us assume that N (t)
also decays exponentially when transcription is blocked:

N (t) = N0 exp (−Ωt) (2.12)

We have defined N0 as the total RNA at time t = 0, and Ω as the bulk degradation
rate describing the decay of the whole RNA pool. Just like the degradation rates for
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individual transcripts, Ω can also be different across subpopulations with high or low
mitochondrial content.

Equations 2.10 to 2.12 yield∑
i

ni,0 exp (−δit) ≈ N0 exp (−Ωt) (2.13)

Both sides of equation 2.13 are not strictly equal, since a sum of exponentials is not
necessarily an exponential itself. Yet it can serve as a good approximation under certain
conditions, i.e. if the differences between the degradation rates of individual transcripts
(δi) and the bulk degradation rate (Ω) are relatively small.

When working with RNA-seq data, we do not usually have direct information about
the per-cell copy numbers of individual transcripts (namely the values of ni). Instead,
TPMs quantify the fraction of transcripts of a given type within a sample (scaled by a
factor of 106). For the i-th transcript:

T PMi (t) = fi
ni (t)
N (t)

(2.14)

where fi represents a scaling factor that is, in principle, simply equal to 106. However,
our reasoning will hold even if fi is different for every transcript, as long as it is time-
independent. For t = 0, equation 2.14 becomes:

T PMi (0) = fi
ni,0

N0
≡ T PMi,0 (2.15)

Combining equations 2.10 to 2.15 we can arrive at:

T PMi (t) = T PMi,0 exp [− (δi −Ω) t] (2.16)

It is useful to define a relative degradation rate for the i-th transcript, αi, as

αi ≡ δi −Ω (2.17)

The relative degradation rates can be positive or negative. The first case (αi > 0) implies
that the i-th transcript degrades faster than the bulk and vice-versa. Equation 2.16 can
be expressed as:

log
T PMi,0

T PMi (t)
= αit (2.18)

Finally, calling

yi (t) ≡ log
T PMi,0

T PMi (t)
(2.19)

turns equation 2.18 into the simple form:
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Fig. 2.6. Quantification of tran-
script relative degradation rates.
Two transcripts have been arbitrar-
ily chosen from our dataset out of
all RNA types expressed in HeLa
cells with low mitochondrial con-
tent. Dots represent the values
for yi (here, i = 1, 2 correspond
to red and blue respectively) ob-
tained from TPM values accord-
ing to equation 2.19. Lines are
fits, slopes being an estimate of
each transcript’s relative degrada-
tion rate (eq. 2.21). The distri-
bution on the right panel (whose
width σy is used to scale the RMSE
of the fit, eq. 2.22) was obtained
from all yi non-zero values in the
full dataset.

yi (t) = αit (2.20)

Sequencing at different times after transcription blockage (DRB treatment), we can
sample TPMi (t) and thus yi (t). From the sequencing experiments we have four TPM
values per transcript at times t = 0h, 2h, 4h, 6h, i.e. for the i-th transcript we can define
a vector of observations yi =

(
y(0h)

i , y(2h)
i , y(4h)

i , y(6h)
i

)
. Note that in all cases y(0h)

i = 0
because of the definition in equation 2.19. Fitting yi versus t to a straight line that crosses
the origin of coordinates, it is possible to get estimates for the relative degradation rates
transcript-wise. The slope of this fit is given by†

α̃i =
yi · t
t · t

(2.21)

where the vector of times is defined as t = (0h, 2h, 4h, 6h) and the dot (·) represents
a scalar product. Figure 2.6 shows two examples of linear fits to the yi versus t data
obtained from RNA-seq of HeLa cells with high mitochondrial content.

Evaluation of the goodness of the fit

The model we have developed (equation 2.20) is based on many assumptions. Addition-
ally, there are potential experimental, sequencing and quantification errors in our dataset.

†The expression for α̃i, the estimation of the i-th transcript’s relative degradation rate, results from a least
squares linear regression of yi versus t imposing the intercept equal to zero.
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We thus need a method to evaluate how consistent the data are with the model, that is,
how well the fit works.

A straightforward way to do it is by calculating the root-mean-square error (RMSE)
of the fit. The RMSE quantifies the average distance of the data points (in our case, the
experimental values of yi) to the predictions of the linear model in equation 2.20. But the
RMSE can be hard to interpret when one does not have an intuitive sense of the natural
scale of the dependent variable, here yi. To bypass this issue, we will define the relative
root-mean-square error (rRMSE) as:

rRMS E =
RMS E
σy

(2.22)

Where σy is the standard deviation of the distribution of yi across all transcripts, for
those values that satisfy yi > 0 (that is, excluding the data points at t = 0). The rRMSE
is simply interpreted as the error of the fit relative to the dispersion of the whole data set,
quantified by σy. The magnitude of the rRMSE will be our proxy for the goodness of the
linear fit: in order to consider a fit acceptable, we will impose the condition that it has a
rRMSE < 0.5 in all biological replicates. Transcripts that do not satisfy this condition
will be left out from further analyses. Figure 2.6 shows an example of an accepted (red)
and a rejected (blue) fit in one of the samples of HeLa cells with low mitochondrial
content.

There are many factors that can make the model fail, yielding an rRMSE lower than
our threshold in one or both biological replicates. Some of these factors are:

• Experimental noise or errors coming from the quantification: these errors should
be less prominent for transcripts expressed at high copy numbers, since the quan-
tification is more accurate for them.177 However, analyzing the transcripts with
expression lower than the first quartile and higher than the fourth we found no dif-
ference in the fraction of accepted fits (50%-60% depending on the strain), which
in principle rules out this possibility.

• Degradation not being well described by an exponential: equation 2.18 is only
valid for the i-th transcript under the assumption that it degrades in a first order
process, and thus its abundance decreases according to 2.10. Although this is
assumed to be the case for most transcripts, it is possible that some of the failed
fits result from more complex degradation dynamics.178

• The experimental method used for transcription blockage being non-ideal: we
have developed a mathematical framework assuming that DRB blocks transcrip-
tion completely, instantaneously and homogeneously through the whole genome
when it is added to the cell culture, without interfering with any other cellular
process. But it is possible that this is not the case, for instance some “leaky”
transcription could be still taking place (either globally of for some specific tran-
scripts).
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Fig. 2.7. Quantification of bulk RNA degradation rates. A poly(T) RNA FISH assay was
performed on cells stained with MitoTracker green at t = 0, 2, 4 and 6h after DRB treatment.
A. Microscopy images of HeLa cells through the process (green: MitoTracker and blue: poly(T)
fluorescence intensities). B-C. After background correction, the average per-cell poly(T) intensity
was fitted to an exponential curve for cells with “low” (purple) and “high” (orange) mitochondrial
content. Bulk half-lives were obtained from the fits.

Yet, out model seems to work reasonably well. Roughly 50-65% (depending on the
strain) of the transcripts are well fit (rRMSE < 0.5) by equation 2.20 in both replicates
in at least one condition (“high” or “low”).

Bulk degradation rates

The method we have described allows us to compute transcript-wise relative degradation
rates. Still, to achieve true values we need the bulk degradation rate Ω (equation 2.17).
This bulk rate can vary across subpopulations with different mitochondrial content (ΩH

in the “high” and ΩL in the “low” conditions). To quantify it, we performed poly(T)
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RNA FISH on cells stained with MitoTracker green and treated with DRB (see appendix
A for extended experimental methods). The population was imaged every 2h. At the
image processing stage, cells were classified according to their mitochondrial levels and
the average per-cell RNA content was measured as the integrated poly(T) fluorescence
signal. The fluorescence background was substracted and the values were scaled to
the intensities at t = 0. Data were then fitted to an exponential curve of the type y =

exp (−Ωt). Half-lives (computed as t1/2 = log (2)/Ω) were found to be 48min and 53min
in the “high” and “low” mitochondria conditions respectively (fig. 2.7).

Mitochondrial control of RNA decay

Once we have the bulk degradation rates (Ω) as well as the relative degradation rates (αi)
for each transcript in the “high” and “low” mitochondria conditions, we can quantify the
absolute degradation rates according to equation 2.17. For the i-th transcript:

δi,H = αi,H + ΩH

δi,L = αi,L + ΩL
(2.23)

where the H and L indexes indicate conditions of “high” and “low” mitochondrial con-
tent respectively.

We found a high degree of correlation between the transcript’s half-lives in the “high”
and “low” conditions (Pearson’s correlation coefficient was between 0.7 and 0.9 depend-
ing on the strain, see figure 2.8B). Despite this correlation, we explored the possibility of
individual transcripts’ rates showing enough variation to explain the difference in abun-
dances observed across subpopulations of cells with different mitochondrial content.

Similar to what we did for the TSS analysis, we filtered out all linearly scaling tran-
scripts. We then selected one transcript per gene and computed the relative change in its
degradation rate as

∆δi =
δi,H − δi,L

δi,L
(2.24)

According to this definition, the relative change will be positive if the transcript degrades
faster in the “high” condition and vice-versa, which is the behavior that we expect for
most of them (fig. 2.8A-B). As a control, we followed the same steps but without filtering
out any gene and simply selecting transcripts randomly. This was repeated 20 times for
statistical significance.

For HeLa and Jurkat cells, even though Welch t-tests yielded significant p-values
(below 10−10 in both cases), the difference in the means of the ∆δ values of the group of
non-linearly scaling transcripts (fig. 2.8C, gray) and the control (fig. 2.8C, white) was
below 2%. However, MRC-5 cells posed an exception again. For them, the difference
in means was ∼15%. Interestingly, the average ∆δ within the non-linearly scaling tran-
scripts group was negative, meaning that many transcripts degrade faster in the “low”
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Fig. 2.8. Mitochondria-induced variation
of transcript degradation rates. A. Distri-
bution of transcript half-lives in HeLa cells
with low (purple) and high (orange) mito-
chondrial content. The difference in averages
is given by the poly(T) RNA FISH experi-
ments after transcription inhibition (see fig-
ure 2.7). Coefficients of variation: CVlow =

0.11 and CVhigh = 0.09. B. Correlation be-
tween transcript half-lives in HeLa cells with
different mitochondrial content. Dashed line
is the identity line, solid line is the best fit.
C. We quantified the contribution of degra-
dation rates variation to alternative splicing
by selecting a subset of genes with altered
TEPs (gray) and comparing the rates of the
transcripts that scaled non-linearly and those
of the transcripts scaling accordingly to the
global factor between the “low” and “high”
mitochondria subpopulations. As a control,
we repeated the same procedure but selecting
transcripts from all genes randomly (white).
Only 50 data points per group have been
plotted for clarity.

condition than they do in “high”. This behavior is opposite to what we found in other
strains, or in the control for MRC-5 themselves. This could indicate the existence of
some mechanism acting on some specific genes and slowing down the degradation of
their RNA products under conditions of increased energy budget. This modulation of
the degradation rates being uneven (meaning different transcripts of the same gene scal-
ing their degradation rates differently) can indeed give rise to alterations in the TEPs.

Although further work is required to establish causal relationships between the vari-
ation in degradation rates and transcript relative abundances, our results point towards a
potential mechanism by which mitochondrial alterations of TEPs would be, to some ex-
tent, induced by an asymmetric modulation of isoform-wise degradation dynamics. The
fact that this behavior doesn’t seem to be present in HeLa nor Jurkat cells could mean
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that the control mechanism is lost in cancer, although experiments on a wider variety of
strains should be carried out before conclusions can be drawn.

2.3.3 Asymmetric scaling of transcription and degradation
Let us consider a simple Poisson process representing the production and degradation
of a RNA molecule. The number of molecules at any time t is given by ni(t), and the
production and degradation rates are defined as ki and δi respectively. The index i covers
all possible species expressed in a cell.

φ
ki
−−−⇀↽−−−
δi

RNAi

As we have seen, equilibrium is reached when neq
i = ki/δi. From our time series

RNA-seq experiments we have quantified a collection of δi values. Transcript-wise pro-
duction rates can be obtained as:

ki = δi · n
eq
i (2.25)

Formally we do not know each transcript’s per cell copy number, instead, TPMs repre-
sent relative abundances. If we assume that in our data at t = 0 (before transcription
inhibition) all species within a cell are at equilibrium, we can define

k′i = δi · T PMeq
i = δi · T PMi,0 (2.26)

In principle k and k′ values can’t be compared (they do not even have the same dimen-
sions), as they differ by the cell’s total RNA content. However, we have quantified the
per cell RNA ratio between the “high” and “low” mitochondria subpopulations. Having
scaled TPM values by this ratio ensures that

k′i,H
k′i,L

=
ki,H

ki,L
(2.27)

where the H and L tags represent “high” and “low” mitochondria respectively.
From equations 2.25 to 2.27 we can derive:

ki,H/ki,L

δi,H/δi,L
=

neq
i,H

neq
i,L

= FCi (2.28)

where FCi represents the fold-change (“high”/“low”) in expression for the i-th transcript.
Computing production rates according to 2.26, we can represent the ratio ki,H/ki,L as
a function of the ratio δi,H/δi,L. If all transcripts scaled linearly, from equation 2.28
we would expect all data points to fall onto a straight line with a slope determined by
FCglobal, being FCglobal the average ratio of per cell RNA content across “high” and
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Fig. 2.9. Scaling of RNA tran-
scription and degradation rates.
Ratios (“high”/“low”) of degrada-
tion and transcription rates (com-
puted from equations 2.25 to 2.28)
of individual transcripts in HeLa
cells. Each dot is color coded
according to the transcript’s fold-
change. The dashed line corre-
sponds to y = FCglobal · x, and even
though it represents the best possi-
ble linear fit, the data display a non-
linear behavior. The solid line is the
best fit of the type y = xn (fitted
n = 3).

“low” conditions (experimentally quantified by the poly(T) RNA FISH experiments).
Since we know that some transcripts scale non-linearly, we also expect a certain degree
of dispersion around such line. However, we found that the data do not even display a
linear trend for any of our three strains (fig. 2.9).

In principle, there is an infinite number of possibilities for k and δ that could produce
a given level of expression of an RNA, both in “high” and “low” mitochondria condi-
tions. Energetic arguments can be used to justify that, in practice, certain combinations
appear selected against in nature.179 A similar reasoning can be made to explain the
different scaling of transcription and degradation rates. Under conditions of increased
energy budget (i.e. “high” mitochondrial content), if the energy excess was devoted to
increasing transcription and degradation rates symmetrically, the average RNA per cell
would remain constant but the turnover would be faster, meaning that noise would be
reduced.28–39 But figure 2.9 shows that the scaling of the rates is in fact asymmetric,
consistent with experimental evidence indicating that relative noise levels are roughly
the same across cells with different mitochondrial mass, but the amount of RNA is corre-
lated with mitochondria.69 Combinations of parameters that imply reduced fluctuations
at the cost of lower expression levels in conditions of ATP excess seem to be selected
against.

Suppose that both k and δ scale with mitochondrial content (m) following a power
law:

k = k0

(
m
m0

)α
δ = δ0

(
m
m0

)β (2.29)

61



where k0 and m0 are the values of the rates at an arbitrary given mitochondrial content
m0, and the scaling is determined by the exponents α and β. From equations 2.29 we can
derive: (

k
k0

)
=

(
δ

δ0

)α/β
(2.30)

From the polynomial fit in figure 2.9 we infer α/β ≈ 3. In addition, transcription
rates have been found to depend roughly linearly with mitochondrial mass69 (fig. 2.1B),
which yields:

k ∼ m

δ ∼ m1/3 (2.31)

This means that RNA abundance scaling with mitochondrial mass is dominated by tran-
scriptional rate variation. This result had already been qualitatively reported, but our
findings quantify the relative contributions of both parameters.

2.4 Discussion and perspectives
Gene expression is heterogeneous from cell to cell, which represents an important source
of phenotypic variation. Mitochondria is the main provider of ATP in eukaryotes, and
most of this energy is invested into RNA and protein synthesis. Understanding the com-
plexity of the gene expression cycle requires an in-depth study of the energy dependence
of its many steps, and more work is needed to elucidate the molecular mechanisms con-
necting mitochondrial variability to processes such as chromatin remodeling or alterna-
tive splicing.

Our findings are consistent with a picture where many stages of gene expression are
highly reliant on ATP availability, e.g. gene activation or transcription elongation. This
leads to mitochondrial mass co-varying with the levels of RNA and protein in individual
cells. Yet, gene expression entails several layers of regulation with many potential lim-
iting factors, so this global scaling may not be representative of many individual genes.
Indeed, we have found important variation across cellular strains in the specific genes
subject to significant mitochondrial regulation, even though some processes seemed to
be conserved. This supports the idea of mitochondria not being just a “global volume
knob” amplifying the output of gene expression, but rather acting as a non-linear device
yielding unique outcomes in individual genes and cell lines.

A paradigmatic example of this is alternative splicing. We have noticed an impor-
tant fraction of genes for which the relative abundances of their transcripts were altered
across subpopulations of cells with different mitochondrial content. This points towards
a structure through which increased energy budget would favor some isoforms above
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others. We have seen that transcription start site choice has an effect in this sense, pos-
sibly relating to chromatin remodeling being an ATP demanding process. Another hy-
pothesis involves precursor mRNA secondary structure being determined by polymerase
elongation speed, in turn modulated by ATP abundance. To elucidate whether this mech-
anism is plausible, more experimental work (possibly assessing specific mRNAs rather
than the whole transcriptome) is required. Degradation rates are also affected by mito-
chondrial mass, both globally and for individual transcripts. We found that, in MRC-5
cells, degradation rates variation explains transcript relative abundance changes to some
extent. To quantify the true relevance of this mechanism, and to check whether its preva-
lence in a non-cancer strain as opposed to HeLa and Jurkat is a mere artifact or is indeed
related to disease, further work is necessary.

Through this chapter we have focused on a single parameter, mitochondrial mass,
and its influence on gene expression through ATP budget. But structural, morphological
and functional variability may also be important. In addition, mitochondrial respiration
generates byproducts such as ROS and NAD+, known signaling molecules with potential
roles at gene expression modulation. Understanding the contribution of mitochondria to
the interplay between genotype and phenotype will require that all these factors are taken
into account.
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3

Mitochondrial control of
extrinsic apoptosis

Mitochondrial modulation of gene expression can have important functional conse-
quences. Several cellular processes are variable across isogenic individuals, and in many
cases this variability has been attributed to differences in cells’ phenotypic states. A
relevant example is apoptosis. Understanding the molecular mechanisms controlling
programmed cell death and dissecting the sources of variation in the apoptotic outcome
has important therapeutic implications, most notably in cancer: tumor cells are able to
evade apoptosis, and a common line of treatment consists in selectively triggering cell
death. Through this chapter we will discuss how cell-to-cell variability in the response
to death-inducing stimuli can be linked to heterogeneity in the expression of a collection
of genes involved in apoptotic signaling. This expression is ultimately modulated by mi-
tochondria, which makes it so mitochondrial content determines the apoptotic outcome
in terms of cell fate and death time.

3.1 Variability in the apoptotic response
Even in genetically identical cancer cells growing in homogeneous microenvironments,
fractional killing is observed under treatment with apoptosis-inducing chemicals. Frac-
tional killing refers to the observation that a defined concentration of an apoptosis-
inducing drug applied for a certain time span will kill a constant fraction (generally
< 1) of the cells in a population regardless of the total number of cells.180–182 This has
particularly important implications in cancer,183, 184 as it poses the main cause of tumor
resistance to chemotherapy.

This variability in tumor cell resistance has been traditionally associated with ge-
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netic intra-tumoral heterogeneity, but it is becoming increasingly clear that non-genetic
differences also play a prominent role.67, 185, 186 Some context-dependent factors such
as the cellular shape and the microenvironment have been pointed as key determinants
of this non-genetic heterogeneity.187–189 But minimizing this context dependence by
growing isogenic cells in a homogeneous medium still shows highly variable responses
to apoptosis-inducing drugs:62 intrinsic cell-to-cell differences can elicit heterogeneous
responses by themselves. Differences in the internal states of individual cells (i.e. phe-
notypes) also originate cell-to-cell response variation.190 The relative contribution of
external and internal sources of variability depends on the nature of each tumor and is,
in general, poorly characterized.

It is then important to identify the determinants of phenotipic state heterogeneity
and to study how they affect individual outcomes when identical cells are exposed to
the same apoptotic stimulus. Mitochondria, controlling the cellular gene expression pro-
gram in a non-linear manner, represents a good candidate for a source of phenotypic
variation. In addition, these organelles are central nodes in the apoptotic signaling path-
way as we will next see. Together, these observations justify the study of mitochondria
as a source of variation in the cellular states and apoptotic responses.

The apoptotic signaling pathway

Anti-cancer apoptotic therapy results in the activation of two major mechanisms: the
intrinsic and extrinsic pathways. The first one is triggered by signals not mediated by
receptors, such as those caused by viral infection, toxins, free radicals or radiation. These
stimuli induce mitochondrial outer membrane permeabilization (MOMP), considered
the point of no return of the apoptotic process, and lead to the release of pro-apoptotic
proteins from the mitochondrial inner space into the cytoplasm. The extrinsic route
(fig. 3.1) begins with the binding of specific ligands (FAS ligand, tumor necrosis factor
TNF or TNF-related apoptosis inducing ligand TRAIL) to the death receptors located
on the plasma membrane. This triggers Caspase-8 activation, which in turn activates
other effector caspases (responsible for chromatin condensation, DNA fragmentation
and eventually cell death) but also cleaves the Bid protein inducing MOMP.

Both pathways converge at the MOMP stage, i.e. there is a crosstalk between them
in which mitochondria play a central role in effector caspase activation.191 The pro-
apoptotic proteins Smac and cytochrome C are released to the cytoplasm within a few
minutes after MOMP,61, 192, 193 activating caspases 3 and 9. Despite the rapidness of
this release, individual cells display large variability in the times elapsed between the
apoptotic stimulus and MOMP, spanning a range of 4-20h depending on the stimulus
type and strength.62, 194, 195

66



0.4

0

0.1

0.2

0.3

TRAIL (ng ml-1)

A
po

p.
 fr

ac
tio

n

125
6332168420 250 0

10
2012

5
633216 8 4

25
0

TRAIL
(ng ml-1) Time to

death (h)

Fr
eq

ue
nc

y

TRAIL (ng ml-1)

125
633216842 500

250

0.5Va
ria

bi
lit

y 
in

tim
e 

to
 d

ea
th

1.7

1.4

1.1

0.8

0.2

CV
Mean-scaled IQR

b c d

a

Bid

Mcl-1

Caspase-8Flip

Caspase-3

Caspase-6Bar

TRAIL

Receptor

Bax Bax2 Bax4

Bcl-2 PorePore
Pore

Smac CytoCXIAP

Apoptosome
Caspase-9

mitochondria

cytosol

Apaf1

Fig. 3.1. Protein signaling network of the extrinsic apoptosis pathway. TRAIL binds to specific
membrane receptors, unleashing a signaling cascade that finishes when the apoptosome complex
is formed, ultimately leading to cell death. Apoptosome formation requires the release of cy-
tochrome C (CytoC) from the mitochondria, which happens after mitochondrial outer membrane
permeabilization (MOMP). Bax enters the mitochondria after the Bid protein is cleaved, where it
forms tetramers that bind the mitochondrial membrane to form pores that permeabilize it. Several
anti-apoptotic proteins (Flip, Bar, Mcl-1, Bcl-2, XIAP) participate in the process, slowing it down
or even blocking it completely by preventing the action of their pro-apoptotic targets.

Variability in TRAIL-induced apoptosis

TRAIL is a TNF family ligand that binds specific death receptors (DR4 and DR5) on
the cell surface and triggers extrinsic apoptosis. It is selective against tumor cells which
makes it a promising chemotherapeutic agent, but many tumors display high rates of
resistance to it severely limiting its therapeutic efficiency.196 To identify the basis of
this resistance, we used clonal populations of HeLa cells treated with variable doses of
TRAIL. The fraction of dead cells after 24h of treatment was measured through visual
inspection of phase contrast images (fig. 3.2A, gray bars) and by FACS using Annexin
V (FITC)-PI double staining (fig. 3.2A, black dots). Both methods yield very similar
response curves, with a sensitive region between ∼4 and ∼60ng/ml of TRAIL. Lower
doses have no effect, with an outcome comparable to the control, while for larger doses
the effect of TRAIL saturated at an approximately constant fraction (∼35%) of dead
cells, leaving a high rate of survival to treatment.

Next, we focused on the variability in death times using time-lapse microscopy of
HeLa cells treated with increasing TRAIL doses. At low concentrations, a large spread
with similar probabilities for long and short death times is observed, but as dose is in-
creased average and spread of the distribution decreases as shown in figure 3.2B, even
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Fig. 3.2. Apoptotic variability in HeLa
cells under TRAIL treatment. The re-
sponse of individual HeLa cells to TRAIL
is heterogeneous and dose-dependent. A.
Apoptotic fraction of cells after 24h of treat-
ment (0, 2, 4, 8, 16, 32, 63, 125 and 250
ng/ml). Morphological changes in apoptotic
cells were identified by visual inspection of
phase contrast images (grey bars). FACS
using Annexin V (FITC)-PI double staining
was also performed to determine apoptotic
fate (black dots). Around 300 cells for each
TRAIL dose were inspected. Error bars are
standard deviation of three independent ex-
periments. B. Distributions of death times
after TRAIL treatment. Times were obtained
through cell tracking in 24h time-lapse mi-
croscopy experiments. C. Variability in time
to death at different TRAIL doses quantified
as the coefficient of variation (CV, blue) and
the mean-scaled inter-quartile range (IQR,
red). Error bars were computed by boot-
strapping.

though some cells still display long times to death. To quantify the variability in death
times we used the CV (fig. 3.2C, blue) and the inter-quartile range (IQR) scaled by the
mean (fig. 3.2C, red), defined as

t(Q3)
d − t(Q1)

d

〈td〉
(3.1)

where td is the time to death, Q1 and Q3 represent the first and third quartiles respectively
and angle brackets indicate a population average. Both statistics show that the variability
is dose-dependent: the CV increases at large doses as a consequence of a few outliers
with high apoptosis times. On the other hand, IQR (which removes the effect of outliers)
is larger at low doses due to a higher degree of “flatness” in the distributions.
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The observed variability has been attributed to pre-existing heterogeneity in the
amounts of the proteins involved in the apoptotic pathway.62, 63 As we have discussed,
variability at the protein level can be attributed to intrinsic (gene specific) or extrinsic
(global) sources. Recently born sister cells (with presumably similar phenotypes con-
ditioned by the mother’s) show a high degree of correlation between their death times
after being exposed to TRAIL62, 194 (fig. 3.4A), which suggests that the variability in
extrinsic apoptosis must be caused, for the most part, by cellular factors that affect gene
expression globally.190

3.2 Mitochondrial and apoptotic variability
In principle, mitochondria could play two major roles in apoptotic signaling:

• As a modulator of apoptotic gene expression: we have seen that mitochondrial
content accounts for ∼50% of the variability observed in cellular protein levels69, 72

(fig. 1.5), including those involved in apoptotic signaling.

• As an explicit node of the signaling network: figure 3.1 shows that the cascade of
events leading to cell death involves the formation of pores in the mitochondrial
membrane to allow for the release of signaling proteins from the mitochondrial
matrix into the cytoplasm.

In addition, the molecular events driving apoptosis are energy-dependent.197 Thus, the
amount and/or functionality of mitochondria in individual cells could be an important
factor accounting for cell-to-cell differences in death times and resistance to apoptotic
signals.

3.2.1 Mitochondrial discrimination of cell fate and death time
Apoptotic fate

To study the influence of mitochondrial content on the probability of cell death, we
stained HeLa cells with MitoTracker green FM (MG) and then treated them with dif-
ferent TRAIL doses for 24h, imaging at 15min intervals. For each cell, mitochondrial
content was quantified in the initial image (at t = 0) and apoptotic fate was determined
by manual tracking. We found clear differences in mitochondrial content across survivor
and apoptotic cells, with increased mitochondria leading to higher chances of dying (fig.
3.3A). This indicates that mitochondrial mass alone can be a good marker of apoptotic
cell fate.

The performance of mitochondrial content as a classifier of cell fate (death/survival)
was calculated using Receiver Operator Characteristic (ROC) curves (fig. 3.3B). ROC
curves, widely used in clinical trials, illustrate the diagnostic ability of a parameter (here
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mitochondrial levels) as its discrimination threshold is changed. To create them, we set
a threshold in mitochondrial content and predicted that cells below it would survive the
24h TRAIL treatment and vice-versa. We then compared the predictions with the exper-
imental results, and counted the true positives (cases where cells predicted to die ended
up dying) and the false positives (cells predicted to die surviving treatment). For each
threshold we got a pair of values for the true positive rate (TPR) and the false positive
rate (FPR). The ROC curve was reconstructed obtaining sets of TPR and FPR values
when varying the threshold. The area under a ROC curve (AUC) summarizes the trade-
off between the probability of correct and incorrect classification, and varies between
0.5 (random guessing) and 1 (perfect classifier). The AUCs we calculated indicate that
mitochondrial content is a good predictor of cell fate at all TRAIL doses analyzed (fig.
3.3B).

Similar results were found for other extrinsic apoptosis inducers like TNF-α, and
also for cycloheximide (CHX) and DRB, which block translation and transcription re-
spectively causing cell damage and triggering the intrinsic apoptosis route.198

Death time

Next, we analyzed whether there is an influence of mitochondrial mass on death times.
Such an effect was difficult to see because, on one hand, mitochondrial levels of cells
committed to apoptosis are already biased towards large values (fig. 3.3A). On the other
hand, death times have relatively small variability at high TRAIL doses (fig. 3.2B-C)
making it challenging to identify any trend, while at low doses differences in receptor
levels and activity may constitute an important source of variability in apoptosis times.
In addition, low TRAIL doses result in small apoptotic fractions (fig. 3.2A), so the num-
ber of cells that would have to be analyzed to unveil any effect in death times with an
acceptable degree of statistical significance is immense. To bypass these constraints,
we focused on an intermediate TRAIL dose (32ng/ml) in the sensitive region of the
dose-response curve (fig. 3.2A). As shown in figure 3.3C, there is a small but notice-
able correlation between mitochondrial content and death times (Spearman correlation
coefficient = −0.47). Apoptotic cells with mitochondrial levels below the first quartile
(“low”) or above the fourth (“high”) exhibit significant differences in their death times
(fig. 3.3D, Wilcoxon test yielded p = 10−6). Cells with high mitochondrial content died
roughly 2-5h after TRAIL addition, while cells with low mitochondrial levels displayed
a wider range of times with an average of ∼6h.

Ruling out other variability sources

Variability in the apoptotic outcomes of individual cells can be associated with sev-
eral factors: genetic polymorphism, spatial or temporal variation in the efficiency of the
apoptosis-inducing ligand, etc. Extrinsic noise sources relatively independent of mito-
chondria have also been pointed as regulators of the process, most notably cell cycle.199

70



4  16 32 125

TRAIL (ng/ml)

0

2

4

M
ito

ch
on

dr
ia

 (
a.

u.
)

A

Apoptotic
Survivors

0 0.5 1

False Positive Rate

0

0.5

1

T
ru

e 
P

os
iti

ve
 R

at
e

4 16 32 125

TRAIL (ng/ml)

0.85 0.79 0.80 0.72

AUC

B

Experiment - 32ng/ml TRAIL

Spearman corr. = - 0.47

C

0 1 2 3 4

Mitochondria (a.u.)

0

5

10

15

20

D
ea

th
 ti

m
e 

(h
)

Low mito. High mito.

5

10

15

D
ea

th
 ti

m
e 

(h
)

Experiment - 32ng/ml TRAIL
D

Fig. 3.3. Influence of mitochondrial content on apoptotic cell fate and death times. HeLa
cells stained with MG for mitochondrial mass quantification were treated with different doses of
TRAIL. After TRAIL addition, populations were imaged every 15min for 24h. For each dose,
we randomly selected cells from different images, quantified their initial mitochondrial mass by
integrating MG intensity at t = 0 and manually tracked their fate. We gathered ensembles of 200-
300 cells. A. Mitochondrial levels of surviving (green) and dying (red) cells after 24h of treatment.
Mitochondrial values are scaled by the population averages (gray line). Data are representative of
six independent experiments. Boxes cover the range from the lower to the upper quartile of the
data. Whiskers indicate maximum and minimum values once outliers are excluded. Horizontal
lines inside the boxes represent median values, and notches indicate 95% confidence intervals for
the median. B. Analysis of mitochondrial content as a binary classifier (death/survival) of cell fate.
To quantify the performance of mitochondria as a classifier, the Receiver Operator Characteristic
(ROC) curves and the area under the curves (AUC) are represented for different TRAIL doses.
C. At 32ng/ml of TRAIL, a negative correlation between mitochondrial levels and death times
in apoptotic single cells is observed. Red line is an exponential fit, for which the shaded area
indicates the confidence region. D. Death times of HeLa cells with mitochondrial content within
the first (low mito., purple) and fourth quartiles (high mito., orange).
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Fig. 3.4. Ruling out genetic and contextual effects on apoptotic variability. A. Correlation be-
tween apoptosis times of sister cell pairs (cells that divided after addition of 32ng/ml of TRAIL).
For 16ng/ml and 125ng/ml Pearson’s correlation coefficient between apoptosis times of sibling
pairs were 0.84 and 0.88 respectively. B. Stability of TRAIL during the experimental procedure.
HeLa cells stained with MG were not treated (control) or treated with fresh TRAIL at 63ng/ml,
with TRAIL that had been previously incubated at 37ºC for 24h, and with the medium collected
after a previous 24h experiment of TRAIL induced apoptosis. Cells were imaged for 24h every
15min and the fraction of apoptotic cells was calculated by visual inspection of phase contrast
images. Error bars are standard deviations obtained by bootstrapping from different images of
two biological replicates. C. Phototoxicity induced by MitoTracker green (MG) dye. Cells were
stained with MG and then treated with 32ng/ml or 63ng/ml of TRAIL (gray), or directly treated
with TRAIL without previous MG staining (white). After 24h, apoptotic fractions were deter-
mined by visual inspection of phase contrast images. D. Probability of dying for individual cells
under TRAIL treatment. HeLa cells stained with MG were exposed to 32ng/ml of TRAIL for 24h.
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Mitochondrial content was determined at t = 0 and cell fates were tracked manually. Then, cells
were divided into bins according to their mitochondrial levels and the fraction of apoptotic cells
was determined for each bin (black dots). Gray line corresponds to a sigmoidal fit. E. In a control
experiment (with no TRAIL addition), mitochondrial mass and division times were determined
for individual HeLa cells stained with MG and tracked for 24h. We then built a virtual ensem-
ble of cells based on the null assumption of apoptotic and cell cycle programs being uncoupled.
To do so, we assigned each cell in the control experiment an hypothetical apoptotic fate (green:
survivors, red: apoptotic) based on their mitochondrial level and the probability given in panel D.
F. Effect of cell cycle and division on apoptosis times. In our experiments, we noticed that cells
dividing before undergoing apoptosis (red) displayed significantly longer death times than those
not dividing (blue). We compared this observation with our “null” ensemble of cells (see panels
D and E), finding quantitatively similar results. G. Correlation between death and division times
for cells treated with 32ng/ml of TRAIL that divided before dying. In most sibling cells both
sisters died within the observation time of 24h (70% of apoptotic dividing cells at a TRAIL dose
of 16ng/ml, 75% at 32ng/ml and 86% at 125ng/ml). To correlate with division time, we took as
death time the average apoptosis time of both sister cells, since they are highly correlated (panel
A). H. Correlation between death and division times in the virtual “null” ensemble at 32ng/ml of
TRAIL.

To rule out the possibility of any of these factors being behind the observed variability
in our experiments, we performed a series of tests.

i. Genetic heterogeneity. Genetic heterogeneity has been traditionally attributed to
variability in cancer cells response to chemotherapy, but it is now clear that non-genetic
factors also play a role. Strong evidence comes from the correlation observed in the
death times of recently divided sister cells62, 195, 198 (fig. 3.4A), pointing towards a par-
tially inheritable phenotype as the determinant of apoptotic fate even in isogenic cells.
Further proof in this direction is provided by the fact that even a population reconstructed
from the survivors of a first TRAIL assay will display fractional killing if presented with
the same apoptotic stimulus for a second time,62, 195 which rules out the possibility of a
genetic adaptation.

ii. TRAIL degradation. To exclude the possibility that fractional killing happened
due to TRAIL degradation or inactivation, the supernatants of different experiments were
collected and tested for apoptotic activity. Analogously, experiments were performed
with TRAIL that had been previously pre-incubated at 37◦C for 24h in the absence of
cells. No significant differences were found in killing efficiency in any of the cases (fig.
3.4B), meaning that cell-to-cell differences in the apoptotic response cannot be due to
TRAIL being consumed or degraded through the course of the assays.
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iii. Phototoxicity of the dye. For our experiments, cells were stained with Mito-
Tracker green for mitochondrial content quantification prior to TRAIL treatment (see
experimental methods in appendix A) and tracked through fluorescence microscopy,
which in principle could induce killing by phototoxicity of the dye. Even though MG
seems to slightly increase in sensitivity to TRAIL at doses of 32 and 63ng/ml (fig. 3.4C),
the effect is minor and it is unlikely to be mediating the observed bias in mitochondrial
content in apoptotic/survivor cells.

iv. Cell cycle. Another potential source for variability in the apoptotic outcome is cell
cycle.199 We observed that cells seemed to grow normally, many of them (both survivors
and apoptotic) undergoing division after TRAIL addition. Practically all survivor cells
divided within the 24h post-treatment (85-100% in the range of doses analyzed), but only
a fraction of the apoptotic cells did. Furthermore, cells that divided before dying had
longer death times than non-dividing apoptotic cells, and division times were correlated
with death times. These observations may reflect an influence of cell division on the
apoptotic outcome (e.g. delaying death times), or simply be a consequence of cells with
fast commitment to death after TRAIL addition not having enough time to divide before
dying. To distinguish between these two possibilities, we created a virtual ensemble of
cells based on the null hypothesis of division and apoptosis being independent.

We analyzed a control experiment with no TRAIL addition, obtaining mitochondrial
content and division times for all the cells in the population. Then, we manually assigned
each cell a simulated apoptotic fate (death or survival, figure 3.4E) according to its mito-
chondrial content and based on the probability given in figure 3.4D. We gave each of the
cells classified as apoptotic a hypothetical death time determined solely by its mitochon-
drial content (fig. 3.3C), that is, death and division times were sampled independently
with mitochondrial mass as the only common nexus. Finally, we simply classify those
cells with dividing times longer than the assigned death times as “non-dividing” and
vice-versa.

First, we checked that the distribution of division times of the cells in the “null”
ensemble classified as surviving (fig. 3.4E, green) was the same as the one observed in
experiments with TRAIL addition (p-value > 0.5 in a two-sample Kolmogorov-Smirnov
test). Next, comparing the death times of the dividing and non-dividing apoptotic cells
of this “null” ensemble, we found the same quantitative results as in the experiment
with TRAIL addition, that is, longer death times among dividing cells (fig. 3.4F) and a
correlation between death and division times (fig. 3.4G-H). This indicates that apoptotic
and cell cycle programs are not coupled in our system.

3.2.2 Mitochondria and apoptotic gene expression
Heterogeneity in mitochondrial content accounts for roughly 50% of total protein vari-
ability69 (fig. 1.5). We evaluated the influence of mitochondrial mass on the amounts

74



D
R

5 
F

lip
 

B
ax

 
B

cl
-2

 
B

id
 

M
cl

-1
 

S
m

ac
 

X
IA

P
 

C
as

-8
B

ar
 

C
as

-9
A

pa
f 

C
as

-3
C

yt
oC

 
C

as
-6

0

1

2

R
N

A
 fo

ld
-c

ha
ng

e 
(lo

g
2)

A

0 1 2 3 4 5

 
 

0

1

2

3

4

B
id

 (
a.

u.
)

Mitochondria (a.u.) Freq.

B

CV = 0.43
CV = 0.15

0 1 2 3

 
 

0

1

2

M
cl

-1
 (

a.
u.

)

Mitochondria (a.u.) Freq.

C

CV = 0.35
CV = 0.26

D

D
R

5 
F

lip
 

B
ax

 
B

cl
-2

 
B

id
 

M
cl

-1
 

S
m

ac
 

X
IA

P
 

C
as

-8
 

B
ar

 
C

as
-9

 
 
 

0

20

40

60

80

100

M
C

V
 (

%
)

Fig. 3.5. Mitochondrial modulation of apoptotic mRNA and protein abundances. A. Loga-
rithmic fold-change in mRNA expression of pro- (red) and anti-apoptotic (green) genes between
subpopulations of cells with low and high mitochondrial content. HeLa cells labeled with MG
were sorted into two subpopulations according to their mitochondrial levels. RNA was extracted
and sequenced (three independent sorting experiments were performed). The solid horizontal line
corresponds to the average fold-change of the whole genome (∼10 000 genes). The shaded re-
gion indicates the standard deviation in the fold-change across the whole genome. Error bars are
standard deviations across biological replicates. B-C. Scatter plots of mitochondrial mass and pro-
tein levels in single HeLa cells (black dots). Corresponding distributions of protein abundances
are shown in gray. The pro-apoptotic protein Bid displays a large correlation with mitochondrial
content, while the anti-apoptotic Mcl-1 has a smaller one. Co-variation with mitochondria was
removed (blue dots) to estimate the protein variance not due to mitochondria (blue distributions)
and calculate the mitochondrial contribution to variability (MCV, equation 1.36). D. Mitochondrial
contribution to global variability in protein levels of several apoptotic genes. Pairs of antagonistic
pro- (red) and anti-apoptotic (green) proteins are shown next to each other. Ensembles of 200-300
cells for each protein were used to estimate the MCV.
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of transcripts and proteins involved in the extrinsic apoptosis pathway. To assess the
impact of mitochondrial levels on transcripts, HeLa cells were sorted in two fractions
with high and low levels of mitochondria, and total RNA was deep sequenced. As previ-
ously described69, 72 (see chapter 2), quantification of the per-cell average RNA content
within the “high” and “low” subpopulations (see appendix A for experimental methods)
revealed a global scaling, cells in the fraction with high mitochondrial levels containing
around three times more RNA than cells in the low fraction. The apoptotic genes were
no exception, all of them following the general trend with fold-changes in expression
around the average value of the whole transcriptome (fig. 3.5A).

Transcriptome variation has a variable impact at the protein level.150, 162 We used
immunolabeling to quantify the correlation between mitochondrial and protein amounts
in single HeLa cells, staining untreated cells with a reporter for mitochondrial mass (Mi-
toTracker red CMXRos)69 and different apoptotic protein antibodies (see appendix A for
extended methods). Some proteins of the route were found to be strongly correlated with
mitochondria while other had weaker co-variations (fig. 3.5B-C). The mitochondrial
contribution to variability (MCV) was calculated according to equation 1.36. Similarly
to other protein families,69 mitochondrial content contributed with around 50% to the to-
tal variability in the levels of apoptotic proteins (fig. 3.5D). Yet strong differences were
detected in mitochondria-protein correlations between the two counterparts of of some
pairs of pro- and anti-apoptotic proteins, notably the Bax/Bcl-2 and Bid/Mcl-1 pairs.
These data indicate that a large fraction of the variability observed at the protein level
in the apoptotic route is a consequence of cell-to-cell heterogeneity in mitochondrial
content.

Mitochondria-protein correlations constrain protein-protein correlations

Given the mitochondrial mass (m) and the abundances of any two protein species P1 and
P2 (represented by n1 and n2 respectively) for a cell within a population, it is possible to
quantify the correlation that arises between both proteins due to each one’s co-variation
with mitochondria. Since mitochondrial and proteins levels are log-normally distributed,
let us start by defining the transformed variables

x ≡ log m

y ≡ log n1

z ≡ log n2

(3.2)

The new variables will follow normal distributions with respective means µx, µy and µz.
We can define a vector of variables and a vector of means as

x ≡ (x, y, z)

µ ≡
(
µx, µy, µz

) (3.3)
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and the following covariance matrix:

Σ ≡

σ
2
x σxy σxz

σxy σ2
y σyz

σxz σyz σ2
z

 (3.4)

where σi j denotes the covariance of variables i and j (with i = x, y, z and j = x, y, z).
Since the variables are normally distributed:

σi j = ρi j σi σ j (3.5)

being ρi j the Pearson correlation coefficient between i and j. The multi-variate nor-
mal probability density function (PDF) describing the distribution of any number N of
variables is given by

P (x) =
1

(2π)N/2 (det Σ)1/2 exp
[
−

1
2

(x − µ)T Σ−1 (x − µ)
]

(3.6)

where the superindex T indicates a transposition, det Σ is the determinant of the covari-
ance matrix and Σ−1 its inverse.

In the general case, x and µ are N-dimensional vectors and Σ is a N×N matrix, but
here we have N = 3. In order for 3.6 to exist, the covariance matrix must be positive
definite, that is, all of its first minors must be positive. For its 2×2 minors, using 3.5
yields ∣∣∣∣∣∣σ2

i σi j

σi j σ2
j

∣∣∣∣∣∣ = σ2
i σ

2
j − σ

2
i j = σ2

i σ
2
j

(
1 − ρ2

i j

)
(3.7)

Expression 3.7 is always positive except in the trivial case of ρi j = 1. As for the 3×3
determinant, again using 3.5 yields

det Σ =
(
σx σy σz

)2
+ 2σxy σxz σyz − σ

2
x σ

2
yz − σ

2
y σ

2
xz − σ

2
z σ

2
xy

= σ2
x σ

2
y σ

2
z

[
1 + 2 ρxy ρxz ρyz −

(
ρ2

xy + ρ2
xz + ρ2

yz

)] (3.8)

The zeros of 3.8 are at

ρ(0+)
yz = ρxy ρxz +

√(
1 + ρxy ρxz

)2
−

(
ρxy + ρxz

)2

ρ(0−)
yz = ρxy ρxz −

√(
1 + ρxy ρxz

)2
−

(
ρxy + ρxz

)2
(3.9)

It can be shown that any value for ρxy such that

ρ(0−)
yz < ρyz < ρ

(0+)
yz (3.10)
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will cause det Σ to be positive, while all other values will make it negative. The maxi-
mum value for ρyz is reached in the middle of this interval and equals to

ρ(1/2)
yz = ρxy ρxz (3.11)

We have defined y and z as the log-transformed abundances of proteins P1 and P2 (eq.
3.2), so ρyz is the log-correlation between them, i.e. the correlation of their associated
log-transformed variables. This log-correlation is constrained between to values (ρ(0−)

yz

and ρ(0+)
yz ) that depend on the log-correlation of each respective protein with mitochon-

dria, namely ρxy and ρxz, as expressed in equation 3.9.
Simply put, mitochondria-protein correlations restrict the available range for the cor-

responding protein-protein correlations. If there are no extra layers of co-regulation be-
tween the two proteins, their expected “basal” log-correlation will be given by equation
3.11. Additional co-regulation can bring this value up or down, however always within
the allowed range (eq. 3.10). Table 3.1 shows some examples of log-correlation range
constrains across proteins in the apoptotic signaling pathway.

Protein 1
(P1)

Protein 2
(P2) ρxy ρxz ρ(0−)

yz ρ(0+)
yz ρ(1/2)

yz

Receptor Flip 0.79 0.87 0.39 0.99 0.69
Receptor Caspase-8 0.79 0.86 0.37 0.99 0.58
Caspase-8 Bar 0.86 0.96 0.68 0.97 0.83
Caspase-8 Bid 0.86 0.90 0.55 0.99 0.77
Bid Mcl-1 0.90 0.60 0.19 0.89 0.54
Bid Bax 0.90 0.86 0.55 0.99 0.77
Bax Bcl-2 0.86 0.51 0.00 0.88 0.44
XIAP Smac 0.90 0.58 0.17 0.88 0.52
XIAP Caspase-9 0.90 0.59 0.18 0.88 0.53

Table 3.1. Constraints on protein pair correlations due to global mitochondrial modulation.
Legend: ρxy, ρxz log-correlations of proteins 1 and 2, respectively, with mitochondria; ρ(0−)

yz , ρ(0+)
yz

lower and upper bounds, respectively, for the log-correlation between proteins 1 and 2; ρ(1/2)
yz

expected log-correlation between proteins 1 and 2.

3.3 Modeling apoptosis

3.3.1 The Extrinsic Apoptosis Reaction Model
The Extrinsic Apoptosis Reaction Model (EARM) is a mathematical model based on
mass action representation of the well characterized extrinsic apoptotic pathway (fig.
3.1), originally built to understand the quantitative aspects of the apoptotic machinery
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operation.60 After training the EARM against experimental data, it was able to ac-
curately reproduce the behavior of HeLa cells exposed to TRAIL. Model analysis, in
agreement with experimental data, showed that the apoptotic fate as well as the elapsed
time between TRAIL addition and MOMP is determined by the abundances, activities
and complex interplay between the pro- and anti-apoptotic proteins participating in the
signaling pathway.60–64 Further efforts have been made to expand the EARM, for in-
stance accounting for protein and mRNA turnover or noise induced by slow promoter
dynamics.65

The EARM contains a total of 58 molecular species, corresponding to 18 gene
products (with non-zero initial conditions) plus 40 additional species representing com-
plexed, cleaved or differently localized forms of them. All these species react via a series
of 29 biochemical reactions (listed in table 3.2) following standard Michaelis-Menten
structures, with kinetic rates k(µ) (forward), k(µ)

r (reverse) and k(µ)
c (catalytic) for the µ-th

one:

A + B
k(µ)

−−−⇀↽−−−
k(µ)

r

C
k(µ)

c
−−−→ D + E

In addition, the model includes synthesis and degradation of the molecules involved. For
each cell, the synthesis rate (ks) of the i-th molecular specie is set to

k(µ)
s = δ(i) ni,0 (3.12)

being ni,0 the initial number of molecules of the i-th specie and δ(i) its degradation rate.
The dynamics of all species can be expressed in terms of ordinary differential equations
(ODEs) applying the mass action law. These equations can be numerically solved using
standard computational methods.

In its original formulation, the model input is the concentration of TRAIL ligand as
well as the per-cell initial levels of key proteins of the apoptotic route. Natural variabil-
ity in apoptotic fate and death times arises from the random sampling of these initial
protein abundances from experimental distributions.62 Including correlations between
protein pairs along the apoptotic pathway was shown to improve the predictive power
of the EARM.64 These correlations may be due to direct or indirect interactions, co-
regulation by common transcription factors or other common sources of gene expression
modulation such as mitochondrial content.68, 69, 72

3.3.2 Including mitochondrial regulation: the mitoEARM
We extended and modified the previous version of the EARM kinetic model60–65 with the
goal of understanding how mitochondrial variability influences apoptosis. We explicitly
introduced the effect of the initial amount of mitochondrial mass into the EARM. Pre-
vious work had shown that variability in death times is a consequence of differences
in the abundances of specific proteins involved in the apoptotic pathway.62, 64 On the
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1. Ligand + Receptor −−−⇀↽−−− Ligand : Receptor −−−→ Ligand + Receptor*
2. Receptor* + Flip −−−⇀↽−−− Receptor* : Flip
3. Receptor* + Cas-8 −−−⇀↽−−− Receptor* : Cas-8 −−−→ Receptor* + Cas-8*
4. Cas-8* + Bar −−−⇀↽−−− Cas-8* : Bar
5. Cas-8* + Cas-3 −−−⇀↽−−− Cas-8* : Cas-3 −−−→ Cas-8* + Cas-3*
6. Cas-3* + Cas-6 −−−⇀↽−−− Cas-3* : Cas-6 −−−→ Cas-3* + Cas-6*
7. Cas-6* + Cas-8 −−−⇀↽−−− Cas-6* : Cas-8 −−−→ Cas-6* + Cas-8*
8. Cas-3* + XIAP −−−⇀↽−−− Cas-3* : XIAP −−−→ Cas-3*Ub + XIAP
9. Cas-3* + PARP −−−⇀↽−−− Cas-3* : PARP −−−→ Cas-3* + cPARP

10. Cas-8* + Bid −−−⇀↽−−− Cas-8* : Bid −−−→ Cas-8* + tBid
11. tBid + Mcl-1 −−−⇀↽−−− tBid : Mcl-1
12. tBid + Bax −−−⇀↽−−− tBid : Bax −−−→ tBid + Bax*
13. Bax* −−−⇀↽−−− Bax*m
14. Bax*m + Bcl-2 −−−⇀↽−−− Bax*m : Bcl-2
15. Bax*m + Bax*m −−−⇀↽−−− Bax*2m
16. Bax*2m + Bcl-2 −−−⇀↽−−− Bax*2m : Bcl-2
17. Bax*2m + Bax*2m −−−⇀↽−−− Bax*4m
18. Bax*4m + Bcl-2 −−−⇀↽−−− Bax*4m : Bcl-2
19. Bax*4m + Pore −−−⇀↽−−− Bax*4m : Pore −−−→ Pore*
20. Pore* + CytoCm −−−⇀↽−−− Pore* : CytoCm −−−→ Pore* + CytoCr
21. Pore* + Smacm −−−⇀↽−−− Pore* : Smacm −−−→ Pore* + Smacr
22. CytoCr −−−⇀↽−−− CytoC
23. CytoC + Apaf1 −−−⇀↽−−− CytoC : Apaf1 −−−→ CytoC + Apaf1*
24. Apaf1* + Cas-9 −−−⇀↽−−− Apoptosome
25. Apoptosome + Cas-3 −−−⇀↽−−− Apoptosome : Cas-3 −−−→ Apoptosome + Cas-3*
26. Smacr −−−⇀↽−−− Smac
27. Apoptosome + XIAP −−−⇀↽−−− Apoptosome : XIAP
28. Smac + XIAP −−−⇀↽−−− Smac : XIAP
29. Receptor* −−−⇀↽−−− Ligand + Receptor

Table 3.2. Biochemical reactions of the EARM model. Species in bold font indicate HeLa
native gene products. Asterisks represent activated species. PARP is a member of the poly-
ADP-ribose polymerase protein family whose cleavage product (cPARP) can be used as a proxy
for caspase activity. “Pore” is a pseudo-molecular specie representing all potential binding sites
for Bax tetramers in the mitochondrial membrane (such binding produces an active “Pore*”).
Subindex meanings: Ub, protein ubiquitinated (committed to degradation); m, protein localized in
the mitochondrial matrix; 2 and 4, Bax dimers and tetramers respectively; r, protein just released
to the cytoplasm from mitochondrial matrix but not yet diffused away.
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k
(h−1 molec−1)

kr

(h−1)
kc

(h−1)
1. 1.30 × 10−4 2.16 × 10−2 2.16 × 102

2. 2.16 × 10−2 2.16 × 101

3. 2.16 × 10−3 2.16 × 101 2.16 × 104

4. 2.16 × 10−2 2.16 × 101

5. 2.16 × 10−3 2.16 × 101 2.16 × 104

6. 2.16 × 10−3 2.16 × 101 2.16 × 104

7. 2.16 × 10−3 2.16 × 101 2.16 × 104

8. 4.32 × 10−2 2.16 × 101 2.16 × 103

9. 2.16 × 10−2 2.16 × 101 4.32 × 105

10. 2.16 × 10−3 2.16 × 101 2.16 × 104

11. 2.16 × 10−2 2.16 × 101

12. 2.16 × 10−3 2.16 × 101 2.16 × 104

13. 2.16 × 102 2.16 × 104

14. 3.09 × 10−1 2.16 × 101

15. 3.09 × 10−1 2.16 × 101

16. 3.09 × 10−1 2.16 × 101

17. 3.09 × 10−1 2.16 × 101

18. 3.09 × 10−1 2.16 × 101

19. 3.09 × 10−1 2.16 × 101 2.16 × 104

20. 6.17 × 10−1 2.16 × 101 2.16 × 105

21. 6.17 × 10−1 2.16 × 101 2.16 × 105

22. 2.16 × 104 2.16 × 102

23. 1.08 × 10−2 2.16 × 101 2.16 × 104

24. 1.08 × 10−3 2.16 × 101

25. 1.08 × 10−4 2.16 × 101 2.16 × 104

26. 2.16 × 104 2.16 × 102

27. 4.32 × 10−2 2.16 × 101

28. 1.51 × 10−1 2.16 × 101

29. 2.16 × 101 0

Table 3.3. mitoEARM parameters (I). Row numbers correspond to reactions in table 3.2. Leg-
end: k forward reaction rate; kr reverse reaction rate; kc catalytic reaction rate.
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〈n0〉

(molecules)
CVp ρ

δ
(h−1)

1. Ligand 50 × TRAIL (a) 0.462
2. Receptor 500 0.36 0.79 0.139
3. Ligand : Receptor 0 0.832
4. Receptor* 0 0.832
5. Flip 2 000 0.29 0.87 0.139
6. Flip : Receptor* 0 0.832
7. Cas-8 1 000 0.37 0.86 0.139
8. Cas-8 : Receptor* 0 0.832
9. Cas-8* 0 0.832

10. Bar 1 000 0.36 0.96 0.139
11. Cas-8* : Bar 0 0.832
12. Cas-3 10 000 0.40 (b) 0.77 (b) 0.139
13. Cas-8* : Cas-3 0 0.832
14. Cas-3* 0 0.832
15. Cas-6 10 000 0.40 (b) 0.77 (b) 0.139
16. Cas-3* : Cas-6 0 0.832
17. Cas-6* 0 0.832
18. Cas-6* : Cas-8 0 0.832
19. XIAP 100 000 0.44 0.90 0.139
20. XIAP : Cas-3* 0 0.832
21. PARP 100 000 0.40 (b) 0.77 (b) 0.139
22. Cas-3* : PARP 0 0.832
23. cPARP 0 0.832
24. Bid 60 000 0.43 0.90 0.139
25. Cas-8* : Bid 0 0.832
26. tBid 0 0.832
27. Mcl-1 20 000 0.42 0.60 0.139
28. tBid : Mcl-1 0 0.832
29. Bax 80 000 0.29 0.86 0.139
30. tBid : Bax 0 0.832
31. Bax* 0 0.832
32. Bax*m 0 0.832
33. Bcl-2 30 000 0.40 0.51 0.139
34. Bax*m : Bcl-2 0 0.832
35. Bax*2m 0 0.832
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〈n0〉

(molecules)
CVp ρ

δ
(h−1)

36. Bax*2m : Bcl-2 0 0.832
37. Bax*4m 0 0.832
38. Bax*4m : Bcl-2 0 0.832
39. Pore 500 000 0.40 (c) 1.00 (c) 0.139
40. Bax*4m : Pore 0 0.832
41. Pore* 0 2.189
42. CytoCm 500 000 0.40 (b) 0.77 (b) 0.139
43. Pore* : CytoCm 0 0.832
44. CytoCr 0 0.832
45. Smacm 100 000 0.35 0.58 0.139
46. Pore* : Smacm 0 0.832
47. Smacr 0 0.832
48. CytoC 0 0.832
49. Apaf 100 000 0.40 (b) 0.77 (b) 0.139
50. Apaf : CytoC 0 0.832
51. Apaf* 0 0.832
52. Cas-9 100 000 0.41 0.59 0.139
53. Apoptosome 0 0.832
54. Apoptosome : Cas-3 0 0.832
55. Smac 0 0.832
56. Apoptosome : XIAP 0 0.832
57. Smac : XIAP 0 0.832
58. Cas-3*Ub 0 0

Table 3.4. mitoEARM parameters (II). Legend: 〈n0〉 population averages of initial protein copy
numbers; CVp coefficient of variation of the protein distributions; ρ logarithmic mitochondria-
protein correlation coefficient; δ degradation rate. (a) In the original EARM, a dose of 50ng/ml of
TRAIL was mimicked setting the initial Ligand copy number to 3000 molecules, i.e. 60 molecules
per cell and per ng/ml of TRAIL. In the mitoEARM, we use 50 Ligand molecules per cell per each
ng/ml of TRAIL. (b) The proteins for which we lack experimental data have been assumed to have
CVp = 0.4 and ρ = 0.77. These are averaged values among the proteins for which experiments are
available. (c) The variable “Pore” is a pseudo-molecular specie representing all potential binding
sites in the mitochondrial membrane where a pore could be formed. It relates to the mitochondrial
mass in a straightforward way, which is why it has ρ = 1. Its coefficient of variation is given by
the experimental distribution of per-cell mitochondrial content.
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other hand, our experiments show that cell-to-cell variability in those proteins correlates
with heterogeneity in mitochondrial levels (fig. 3.5). We thus included the effect of
mitochondria-protein correlations198 by constraining the sampling of the initial protein
copy numbers used as input for the EARM. The mitoEARM does not require the explicit
incorporation of protein-protein correlations, as they arise naturally from mitochondrial
global modulation (see section 3.2.2).

Cell-to-cell variation in mitochondrial mass is also used to sample the variable
“Pore” (see table 3.4) according to the experimental distribution of single cells mito-
chondrial content in HeLa68, 69, 72 (fig. 1.4). In the EARM, this variable represents the
number of potential binding sites for tetramers of the Bax protein in the mitochondrial
membrane. When such binding happens, the variable “Pore” turns into its activated
form, denoted as “Pore*” (reaction 19 in table 3.2), that represents an actual mitochon-
drial opening through which cytochrome C and Smac can be released into the cytosol
(reactions 20 and 21 in table 3.2).

The workflow of the expanded model, which we will refer to as mitoEARM, can be
summarized as follows (fig. 3.6A):

1. A population of cells is initialized. Each one is assigned a mitochondrial content
(m) sampled from a log-normal distribution with mean and width complying with
experimental data (fig. 1.4B).

2. For each cell, we log-normally co-sample (see appendix B) the abundances of
all proteins involved in the apoptotic route with the assigned value of m, using
individual experimental values of mitochondria-protein correlations.

3. With the sampled protein abundances as input, the mitoEARM equations are nu-
merically solved.

4. The apoptotic fate and death times are determined from the dynamics of the
species in the apoptotic signaling network (see below).

Determination of apoptotic fate. MOMP, the point of no return of the apoptotic sig-
naling pathway, is an all-or-nothing process that takes place when a cellular threshold
is overcome.63, 200 The height and rate of approach to this threshold depend on both
the levels of active receptors and the cell’s internal state. Recent experimental results
have demonstrated that the activation speed of Caspase-8 (Cas-8) defines a threshold
separating apoptotic and survivor sub-populations of HeLa cells201 that is independent
of TRAIL dose. In the mitoEARM, we fit this threshold to reproduce the probability
of dying/surviving at a sensitive TRAIL dose (32ng/ml), and use the same value for all
other doses tested. Cells with a maximum Cas-8 activation rate above the threshold are
considered apoptotic (fig. 3.6B, red) and vice-versa (fig. 3.6B, green). Numerical sim-
ulations showed that cells assigned with larger mitochondrial levels had higher Cas-8
activity rates (fig. 3.6C).
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Fig. 3.6. Computational workflow and key aspects of the mitoEARM model. A. Computa-
tional model workflow. 1: Each cell is assigned a mitochondrial mass m sampled from the experi-
mental distribution for HeLa (inset). 2: Apoptotic protein levels are co-sampled with mitochondria
according to their co-variation (inset). Blue dots represent proteins. 3: The mitoEARM equations
are numerically solved with the initial protein levels obtained in the previous step. Apoptotic
fate and death times are determined from the dynamics of the proteins involved in the signaling
pathway. Apoptotic cells are colored in gray. B. Caspase-8 activation rate through time for sev-
eral runs of the mitoEARM (i.e. several simulated cells). The decision about the apoptotic fate
(death/survival) is defined by a threshold (horizontal dashed line) in the rate of Cas-8 activation.
Cells that overcome it at any time during the 24h experiment are considered apoptotic (red) and
vice-versa (green). C. The maximum activation rate of Cas-8 depends on mitochondrial content.
Each dot is a simulated cell (only cells undergoing MOMP before 24h are shown). Black line is a
linear fit. D. The saturated levels of cytosolic Smac and its temporal dynamics are variable from
cell to cell (each trajectory is a different simulated apoptotic cell). E. Time to death is defined in
terms of the fraction of Smac released from the mitochondrial matrix to the cytosol, which reaches
vales very close to 1 in all cells undergoing MOMP. Death time is quantified as the time needed
for Smac to reach a cytosolic fraction of 0.9 (dashed line).
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Determination of death time. The other readout of the model to be compared with ex-
perimental data is the death time of apoptotic cells. In the original EARM, time elapsed
between TRAIL treatment and MOMP was taken as the time at which Smac protein
reached 50% of its saturated cytosolic levels. Consistent with experimental observa-
tions, Smac release is fast in the model.60 In the mitoEARM, we took death times as the
time needed for cytosolic Smac to reach 90% of its maximum (fig. 3.6D), which agrees
with the fact that most heterogeneity in death times comes from cells reaching MOMP
at variable times, while the time span between MOMP and death is less variable.60–64

Parameter estimation and model calibration

We started the calibration of the mitoEARM with the same parameter set (population
averages of protein copy numbers and kinetic rates of biochemical reactions) as the
EARM version 1.3.64 For the degradation rates, we used the values provided in Bertaux
et al.65 To reproduce the range of experimental death times, we rescaled all kinetic
parameters by a common factor: since all kinetic rates appear as linear terms in the
model equations,60, 64 this is equivalent to rescaling time.

To adjust the threshold in Cas-8 activation rate, we used the experimental fraction
of surviving cells at 32ng/ml of TRAIL as a reference. We then adjusted the binding
constant of TRAIL ligand to the death receptor DR5 (k of the first reaction in table
3.2) as well as the average Cas-8 and receptor levels. We also adjusted the number of
TRAIL molecules per cell corresponding to a reference dose (table 3.4). Manual calibra-
tion of these few parameters was enough to qualitatively reproduce all our experimental
observations: dose-response curve, variability in apoptosis times and mitochondrial dis-
crimination of cell fate and death times (figures 3.3 and 3.7).

Mitochondrial and apoptotic variability in the mitoEARM

Once mitochondria-protein correlations are accounted for, the model quantitatively re-
produces all of our experimental findings:

• The simulated dose-response curve follows the trend of the experimental one in
the whole range of TRAIL doses , including the sensitive region between 8 and
63ng/ml of TRAIL (figs. 3.7A and 3.2A).

• The distributions of simulated death times show a large spread for low TRAIL
doses, while for high ones the majority of cells die within the first ∼4h after treat-
ment (figs. 3.7B and 3.2B).

• In the mitoEARM, mitochondrial levels are able to discriminate apoptotic cell
fate. Quantifying the predictive power of mitochondria as the area under the ROC
curve (AUC) yields values similar to those found experimentally (figs. 3.7C and
3.3B).
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Fig. 3.7. Coupling protein and mitochondrial variability explains apoptotic outcomes. A.
Fraction of simulated apoptotic cells after 24h of TRAIL treatment at the indicated doses. Er-
ror bars were computed by bootstrapping. B. Distributions of death times at different TRAIL
doses from mitoEARM simulations. C. Analysis of mitochondrial content as a binary classifier
(death/survival) of cell fate from model simulations. D. Death times of simulated apoptotic cells
with mitochondrial levels within the first (high mito., orange) or the fourth quartile (low mito.,
purple). We simulated ensembles of 104 cells per dose and calculated the median, inter-quartile
range and the minimum/maximum values with the whole ensembles, but only 200 data points are
shown for clarity.

• In agreement with experimental data, simulated cells with low mitochondrial con-
tent display systematically longer death times than those with high mitochondrial
mass (figs. 3.7D and 3.3D).

3.4 Keys to the mitochondrial regulation of apoptosis
The mitoEARM recapitulates our experimental findings regarding variability in the
apoptotic response and its connection to cell-to-cell differences in mitochondrial con-
tent. It achieves this by just introducing protein and mitochondrial levels co-variations
across all species involved in the apoptosis signaling pathway, indicating that the opera-
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tion of said pathway is determined by the abundances of the apoptotic proteins, in turn
modulated by mitochondria. To gain insight into the mechanisms through which global
mitochondrial modulation induces qualitatively different apoptotic outcomes, we ran a
series in-silico experiments with the mitoEARM model.

To explore the effect of mitochondria-protein correlations on death times, we simu-
lated two extreme scenarios. First, we set all correlations in the mitoEARM to ρ = 1,
i.e. we made it so protein abundance was deterministically regulated by mitochondrial
content. Second, we set correlations to ρ = 0 for all proteins, making their abun-
dances fully independent of mitochondria. Simulating apoptotic dynamics with perfect
mitochondria-protein correlations shows that death times follow an inverse non-linear
trend with mitochondrial mass, with longer death times corresponding to cells with the
lowest mitochondrial levels (fig. 3.8A, red dots). Including mitochondria-protein cor-
relations measured experimentally in the mitoEARM scatters death times with large
deviations around the deterministic trend (fig. 3.8A, black dots), suggesting that they
are very sensitive to small changes in protein variation. Therefore, any additional source
of protein variability may have a noticeable impact on death times.

To understand the role of mitochondria-protein co-variation on cell fate, we studied
whether the levels of individual proteins of the apoptotic route could discriminate fate
with comparable accuracy as mitochondrial mass. We calculated the performance of
each one of them as a classifier of death/survival by representing ROC curves obtained
setting thresholds in specific protein abundances and quantifying the area under them
(fig. 3.8B, filled bars). With the only exception of Caspase-8, whose activation rate is
used as a death/survival discrimination threshold (see section 3.3.2), the performance of
all other proteins in the pathway is worse than that of mitochondria, but the pro-apoptotic
Bid and Bax are close to it. It is possible that the levels of these two proteins are key
determinants of cell death, and that the observed good classification performance of mi-
tochondrial mass is simply an effect of its high degree of co-variation with Bid and Bax
abundances (fig. 3.5C). To investigate this possibility, we repeated the discrimination
analysis but this time sampling protein levels independently of mitochondrial mass (fig.
3.8B, hollow bars). Under this circumstances, no single protein is a proper classifier by
itself (AUC < 0.7 in all cases), which reinforces the view that apoptotic fate is not solely
determined by a specific protein in the signaling route, but rather by the complex inter-
play of all of them. Mitochondrial mass is an underlying variable that globally affects
all of said proteins, making it a good predictor of apoptotic fate.

Notably, the predictive power of mitochondria is lost when the correlations with the
apoptotic proteins are removed (fig. 3.8B, black). Even though the mitochondrial mem-
brane appears explicitly as a node of the apoptotic signaling pathway (MOMP is required
for apoptosis completion as indicated in figure 3.1), the mitochondrial content of a cell
has no effect in apoptotic fate if the co-regulation of all other proteins is not accounted
for. Similarly, the absence of correlations produces a total lack of co-variation between
death times and mitochondrial content (fig. 3.8A, gray dots). This is a consequence of
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Fig. 3.8. Determinants of mitochondrial performance at apoptosis outcome prediction in the
mitoEARM. We ran model simulations of populations (104 cells) treated with 32ng/ml of TRAIL
to unveil the effect of mitochondria-protein correlations in the apoptotic outcome. A. Effect of
global modulation of mitochondria-protein correlations on death times. Red dots: perfect correla-
tion (ρ = 1) between mitochondria and protein abundances. Black dots: experimental correlation
values (ρ = ρexp), Spearman correlation = −0.49. Gray dots: no correlation (ρ = 0), Spearman
correlation coefficient = −0.49. B. Performance of the pro- (red) and anti-apoptotic (green) pro-
teins as discriminators of apoptotic fate, quantified as the area under the ROC curves (AUC). Filled
bars: including experimental mitochondria-protein correlations. Hollow bars: protein abundances
sampled independently of mitochondrial levels. The horizontal line represents the discrimina-
tory power of mitochondria as a reference. C. Discriminatory power of mitochondrial content
(quantified as the AUC) as a function of the log-correlation (ρ) between mitochondria and the
levels of Bax protein (vertical gray line indicates the experimental value for this log-correlation),
with correlations of all other proteins set to their experimental values. D. Sensitivity of AUC to
changes in individual mitochondria-protein correlations (eq. 3.13). Negative values correspond to
situations where increasing correlation decreases discrimination performance. E. Discrimination
performance (AUC) as a function of the mitochondrial contribution to protein variability (MCV,
eq. 1.36) for the two pre-MOMP pairs of antagonistic pro- and anti-apoptotic proteins Bax/Bcl-
2 (left panel) and Bid/Mcl-1 (right panel). Black crosses indicate experimental values of both
MCVs.
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Fig. 3.9. Performance of death
receptor levels as a predictor of
apoptotic fate. Discriminatory
power of death receptor (DR5) lev-
els in the mitoEARM, quantified
as the area under the ROC curve
(AUC) for different TRAIL doses.
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an excess of potential Bax binding sites, making the step of pore formation not limiting.
Therefore, mitochondrial regulation of apoptotic fate seems to happen mainly through
the modulation of apoptotic gene expression, with its role as a node of the network being
less meaningful.

At very low TRAIL doses (4ng/ml), where death receptors are far from saturation
by the ligand, the discriminatory capacity of mitochondria seems to improve (figs. 3.3B
and 3.7C). Since levels of the DR5 are correlated with mitochondrial mass (fig. 3.5C),
it is possible that receptor abundance plays a major role at these low doses. To test this
possibility, we we repeated the discrimination analysis explained previously (fig. 3.8B)
at different TRAIL doses and calculated the area under the ROC curve obtained using
receptor abundance as a death/survival classifier. As shown in figure 3.9, at sensitive and
saturating doses receptor levels have little discriminatory power (AUC < 0.7 for 16, 32,
63, 125 and 250ng/ml), but at low doses (4 and 8ng/ml) they are good predictors of cell
fate. This indicates that, while in general the apoptotic outcome is determined by the
internal state of the cell, under conditions of low ligand concentration the role of death
receptors may become particularly relevant.

Finally, we investigated whether cellular fate is more sensitive to co-variation of spe-
cific proteins with mitochondrial levels. We carried out a sensitivity analysis of discrimi-
nation performance (quantified as the AUC) for each protein in the pathway, changing its
correlation with mitochondria. By analogy with the local sensitivity analysis of kinetic
models with respect to parameter variations,202 we define the local sensitivity coefficient
for the i-th protein as

si =
ρ

(exp)
i

AUC(exp)

∂AUC
∂ρi

∣∣∣∣
ρi=ρ

(exp)
i

(3.13)

where ρi is the logarithmic correlation of mitochondria with protein i, and the (exp) su-
perindex indicates magnitudes at their experimentally measured values. To numerically
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compute the partial derivative, we changed the correlation ρi (leaving all others ρ j,i at
their experimental values), simulated a population of cells and calculated the resulting
AUC (see fig. 3.8C for an example).

Not surprisingly, the highest sensitivity corresponds to Caspase-8, whose activity
sets the threshold for cell fate discrimination in the mitoEARM (see section 3.3.2).
Changes in the correlation of the pro-apoptotic proteins Bid and Bax also affects cell
fate discrimination to a large extent (fig. 3.8D): tighter mitochondrial control of these
proteins’ expression levels improves classification performance. Interestingly, their anti-
apoptotic counterparts Bcl-2 and Mcl-1 (as well as other anit-apoptotic proteins) show
the opposite behavior: classification performance is decreased at higher mitochondrial-
protein correlation. This indicates, on one hand, that mitochondrial control of protein
abundance is especially important for Caspase-8 and the pre-MOMP pairs of pro-/anti-
apoptotic proteins Bid/Mcl-1 and Bax/Bcl-2, while its influence on other nodes of the
pathway may not be so relevant. On the other hand, it seems that mitochondrial control
of gene expression should be more rigid for pro-apoptotic proteins than for anti-apoptotic
ones (which should be freed from mitochondrial regulation) in order for mitochondrial
levels to be a determinant of apoptotic fate.

An optimal cell fate discrimination by mitochondria may occur in a regime where
the anti-apoptotic proteins Mcl-1 and Bcl-2 are de-correlated from mitochondrial mass,
while the co-variation of mitochondria with their anti-apoptotic targets, Bid and Bax
respectively, is maximal. We therefore computed the performance of mitochondria as
a predictor of apoptotic fate as a function of the MCV (mitochondrial contribution to
variability at the protein level, eq. 1.36). We did so by sweeping different combinations
of mitochondria-protein correlations for the Bax/Bcl-2 or Bid/Mcl-1 pairs while keeping
the rest of the correlations at their experimental values, and then obtaining the ROC curve
and the AUC using mitochondria as a death/survival classifier. We found that optimal
fate discrimination takes place at a high MCV of the pro-apoptotic protein and low MCV
of its corresponding anti-apoptotic partner (fig. 3.8E). In contrast, discriminatory power
substantially decreases for high MCV of the anti-apoptotic proteins. The experimental
values for the MCVs are in a regime close to optimality (fig. 3.8E, black crosses).

Mitochondrial mass correlates with apoptotic protein abundances in solid tumors

With a combination of experimental results and model simulations, we have showed that
mitochondrial content can predict apoptotic fate due to its influence on the expression
of apoptotic proteins. We have used clonal populations of HeLa cells, which elimi-
nates potentially important genetic heterogeneity, and homogeneous culture conditions
to minimize contextual effects. In solid tumors, however, all these factors may substan-
tially contribute to apoptotic drug resistance. Yet we tested whether the same sources of
non-genetic variability as we have described in cultured HeLa cells could be found in
individual cells within solid tumors.
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The same immunolabeling strategy was followed to simultaneously quantify mito-
chondrial and protein content, their levels of cell-to-cell variability and their correlation.
We stained paraffin sections from colon cancer biopsies of three individuals with anti-
bodies against Aconitase 2 as a reporter of mitochondrial mass as well as against one of
the proteins Bax, Bcl-2, Bid, Mcl-1, Smac, XIAP, Caspase-8 and Bar (fig. 3.10A). These
proteins were selected because they constitute pairs of pro- and anti-apoptotic proteins
that displayed high sensitivities to mitochondrial correlation in HeLa cells (fig 3.8D).

Similar to clonal HeLa cell populations, tumoral cells from colon cancer samples ex-
hibit variability in both mitochondria and apoptotic protein levels (3.10B). We also ob-
serve a large correlation of mitochondrial mass with the abundance of specific proteins
(i.e. high MCVs, figure 3.10C). Moreover, for the protein pairs Bax/Bcl-2, Mid/Mcl-
1 and Smax/XIAP the pro-apoptotic protein shows a higher degree of correlation with
mitochondria than its anti-apoptotic counterpart. This result suggests that the mitochon-
drial content may also determine variability in resistance and apoptotic fate of cells in
solid tumors, and constitutes a first step towards the assessment of mitochondrial mass
as a biomarker for diagnosis and prognosis in cancer.

3.5 Discussion and perspectives
Fractional killing by anti-cancer, apoptosis-inducing therapies is a major source of dis-
ease recurrence. Failure to eliminate even a small, innately drug-resistant portion of a
tumor results in sustained growth and cancer relapse. This variability in the apoptotic
response is, to a large extent, due to heterogeneity in the molecular signatures of cancer
cells that can be caused by both genetic and non-genetic factors.185, 186, 203–206 Increas-
ing evidence points towards variability at the transcript and protein levels being strongly
influenced by phenotypic state and population context.24, 34, 47, 48, 190

The apoptotic pathway is a complex protein network that involves non-sequential
organization and the competition of molecular signals ultimately leading to a binary
decision (death/survival) for each individual cell.62, 63 To address this complexity, we
adopted a systems level approach combining single-cell experiments and computational
modeling. Our results reveal that mitochondrial content discriminates apoptotic cell fate
of single cells. To account for the role of mitochondrial content on protein variability, we
modified a pre-existing model of the extrinsic apoptotic pathway.60–64 Constraining the
possible copy numbers of the apoptotic proteins by introducing their correlations with
mitochondrial levels, the model reproduces all our experimental observations.

Mitochondria modulate the abundance of all proteins of the apoptotic route, but in
different ways: control over the abundances of specific pro-apoptotic species that are
key for MOMP triggering is tighter than that exerted over their anti-apoptotic counter-
parts. Our simulations indicate that the power of mitochondrial mass as a death/survival
discriminator relies on these dependencies. Interestingly, these differences are also ob-
served in cells from colon cancer tumors. In line with this finding, other works have
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Fig. 3.10. Variability in mitochondrial and apoptotic protein levels in colon cancer samples.
A. Colon cancer section stained with Aconitase 2, Bid and DAPI illustrating the variability in the
expression of Bid and Aconitase 2. Scale bar (white): 50µm. B. Coefficient of variation (CV) of
several proteins involved in the apoptotic pathway. C. Mitochondrial contribution to variability
(MCV) in the levels of several apoptotic proteins. Data are representative of four independent
biopsies. Statistical parameters were calculated from ensembles of 500 to 1000 cells for each
protein antibody.
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found that apoptotic susceptibility can be determined by the levels of pre-MOMP pro-
apoptotic proteins of the BH3 family,207 while the levels of anti-apoptotic proteins ac-
tas some kind of “buffer” to protect cells against basal levels of death-inducing signals
present under normal physiological conditions.208

In cultured HeLa cells, mitochondria-protein correlations seem to be close to the
point of optimal discrimination of apoptotic fate, suggesting that mitochondrial content
being a predictor of the apoptotic outcome is not an spurious effect. There are biolog-
ical reasons to single out mitochondrial mass, and possibly functionality, as a cellular
determinant of programmed cell death. Apoptosis is a physiological process aimed to
eliminate damaged or abnormal cells, maintaining tissue homeostasis. There is a chance
that increased mitochondrial mass can induce more DNA damage, as mitochondria are
the main cellular source of reactive oxygen species (ROS). Indeed, ROS levels scale
with mitochondrial content in HeLa cells,198 although experiments where cells were ex-
posed to pro- and anti-oxidant agents prior to testing for apoptotic resistance strongly
suggest that increased death rates are not due to higher ROS exposure.198 Alterna-
tively, mitochondria also modulate the ratios of many metabolites such as ATP/ADP,
acetyl-CoA/CoA, NAD+/NADH and NADP+/NADPH, which could act as metabolic
checkpoints for cell death.209 Cells with high mitochondrial mass may be more prone
to imbalances in metabolite ratios, placing them in a metabolic state that could prime
them for death after a severe stress. In light of our results, this would mean that global
metabolic control of programmed cell death would be achieved “indirectly”, by exploit-
ing the mitochondrial modulation of apoptotic gene expression.

There are examples in the literature connecting mitochondrial content and/or func-
tionality to apoptotic fate and chemotherapy resistance. For instance, leukemia cells
have been found to have larger mitochondrial mass, a greater mitochondrial DNA copy
number and a higher rate of oxygen consumption than normal hematopoietic cells, and
were selectively killed by drugs inhibiting mitochondrial protein synthesis.210 On the
other hand, down-regulating mitochondrial function by retrograde signaling promotes
endothelial-mesenchymal transition (EMT),211 which is linked to metastasis.212 Re-
cently, the transcriptomic analysis of 20 different types of cancers (8161 cancer and nor-
mal samples) showed that the down-regulation of mitochondrial genes was associated
with the worst clinical outcome and correlated with the expression of genes promoting
metastasis across many cancer types.213

In summary, our results suggest that mitochondrial content can be a good biomarker
for the prediction of apoptotic susceptibility. Despite an overwhelming amount of stud-
ies, no optimal biomarkers have been described for some cancer types such as colorectal
tumors.214 To address this, some authors have proposed the use of the whole apoptotic
profile of a tumor (rather than the expression of single markers) in order to improve the
prognosis and treatment of cancer patients.214 The reported changes in the expression
of pro-apoptotic genes with mitochondrial levels in colon cancer samples raise the pos-
sibility to establish mitochondrial content as a unique biomarker, representing a readout
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for the outcome of the whole apoptotic pathway. The validation of this hypothesis will
require an extensive analysis of different cancer samples and their clinical response to a
variety of chemotherapeutic agents.
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4

Conclusions

Noise in gene expression is a key determinant of phenotypic variation and has relevant
functional implications in many cellular processes. It is thus important to identify and
characterize the sources of this cell-to-cell variability, which requires an in-depth un-
derstanding of the complex molecular steps of the gene expression cycle. A common
constraint to many of these steps is energy dependence. In eukaryotes, most of this en-
ergy is provided by mitochondria, cellular organelles that are variable from cell to cell
in number, size, morphology and functionality. Through a combination of experimental
work, statistical analysis, mathematical modeling and computer simulations, we have
investigated the effect of mitochondrial variability on gene expression and how it deter-
mines the heterogeneous response of individual cells to apoptosis-inducing stimuli, an
essential challenge for the design of reliable chemotherapeutic strategies.

Mitochondria and gene expression
• Many stages of the gene expression cycle are energy-dependent, such as chromatin

remodeling for gene activation, transcription elongation or translation elongation.
These are general mechanisms that affect gene expression globally and make it so
RNA and protein levels co-vary with mitochondrial mass in single cells.

• The expression of each individual gene entails many layers of regulation, includ-
ing the complex interplay of specific transcription factors and molecular machines.
There are many potential limiting elements (e.g. the availability of polymerases
and ribosomes) that can yield a non-linear scaling of the expression of specific
genes with mitochondrial content.

• Despite sharing the global trend of increased biosynthetic activity under condi-
tions of high mitochondrial content, different cellular strains display important
disparities in the modulation of individual genes.
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• Mitochondria does not just work as a “global volume knob” amplifying the out-
put of gene expression, but also as a non-linear device selectively altering the
expression of individual genes. A paradigmatic example is alternative splicing:
the relative abundances of the transcripts of the same gene can vary significantly
across cells with different mitochondrial content.

• Mitochondrial modulation of alternative splicing is, to a large extent, driven by
transcription start site choice, likely due to chromatin remodeling being an energy
demanding process. Other potential mechanisms are RNA secondary structure be-
ing determined by polymerase elongation speed, or degradation rates of different
splicing variants having different energy dependencies.

• mRNA production and degradation rates scale asymmetrically with mitochondrial
mass. For the most part, transcript expression scaling is dominated by the first
one.

Mitochondria and apoptosis
• Mitochondrial content discriminates apoptotic fate of individual cells (higher mi-

tochondrial mass making cells more prone to death), and also has an effect on
death times (cells with increased mitochondrial levels tending to die faster).

• Mitochondria modulate the abundances of the proteins participating in the apop-
totic signaling pathway. This is the main determinant of its predictive power for
the apoptotic outcome in single cells. The role of mitochondria as a node of the
apoptotic signaling route seems to be minor in comparison.

• Optimal prediction of cell fate by mitochondrial levels happens when mitochon-
drial control over the abundances of pro-apoptotic proteins is tighter than control
over anti-apoptotic ones, especially for the species in the pre-MOMP part of the
pathway. This situation is indeed observed in cultured HeLa cells as well as in
solid tumor samples.

• In colon cancer samples, pro-apoptotic proteins strongly co-vary with mitochon-
dria, and anti-apoptotic ones display more modest correlations. These observa-
tions make mitochondrial mass a good candidate for a unique biomarker serving
as a proxy for the apoptotic sensitivity of cancer cells.
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Conclusiones

El ruido en expresión genética es un determinante clave de la variabilidad fenotı́pica y
posee implicaciones funcionales relevantes en muchos procesos biológicos. Por tanto,
es importante identificar y caracterizar las fuentes de esta variabilidad, lo que requiere
un entendimiento profundo de las complejas etapas del ciclo de expresión génica. Una
restricción común a muchas de estas etapas es su dependencia energética. En eucario-
tas, la mayor parte de esta energı́a proviene de las mitocondrias, orgánulos celulares
variables de célula a célula en número, tamaño, morfologı́a y funcionalidad. A través de
una combinación de trabajo experimental, análisis estadı́stico, modelado matemático y
simulaciones computacionales, hemos investigado el efecto de la variabilidad mitocon-
drial en la expresión genética y cómo determina la heterogénea respuesta de células
individuales a estı́mulos inductores de apoptosis, un reto esencial para el diseño de
terapias quimioterapéuticas fiables.

Mitocondria y expresión genética
• Muchos pasos del ciclo de expresión genética son dependientes de energı́a, como

la remodelación de la cromatina para la activación de genes, la elongación tran-
scripcional o la elongación traslacional. Éstos son mecanismos generales que
afectan globalmente a la expresión genética y hacen que los niveles de ARN y
proteı́na co-varı́en con la masa mitocondrial en células individuales.

• La expresión de genes individuales implica muchas capas de regulación, in-
cluyendo la interacción compleja de factores de transcripción especı́ficos y
máquinas moleculares. Existen muchos elementos potencialmente limitantes (por
ejemplo la disponibilidad de polimerasas y ribosomas) que pueden producir un
escalado no lineal de la expresión de genes especı́ficos con el contenido mitocon-
drial.

• Pese a compartir la tendencia global del incremento de la actividad biosintética
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bajo condiciones de alto contenido mitocondrial, diferentes lı́neas celulares pre-
sentan disparidades importantes en la modulación de genes individuales.

• La mitocondria no funciona únicamente como un “controlador de volumen” que
amplifica la producción de la expresión genética, sino también como un disposi-
tivo no lineal capaz de alterar selectivamente la expresión de genes individuales.
Un ejemplo paradigmático es el splicing alternativo: las abundancias relativas
de los transcritos de un mismo gen pueden variar significativamente entre células
con diferente contenido mitocondrial.

• La modulación mitocondrial del splicing alternativo está, en gran medida, dada
por la elección del sitio de iniciación de la transcripción, probablemente debido
a la dependencia energética del proceso de remodelación de la cromatina. Otros
mecanismos potenciales son la velocidad de elongación de la polimerasa determi-
nando la estructura secundaria del ARN, o las tasas de degradación de distintas
variantes de splicing siendo dependientes de energı́a de forma diferente.

• Las tasas de producción y degradación del ARNm escalan con la masa mitocon-
drial de manera asimétrica. El escalado en la expresión de transcritos está may-
oritariamente dominado por la primera.

Mitocondria y apoptosis
• El contenido mitocondrial discrimina el destino apoptótico de células individuales

(a mayor masa mitocondrial, mayor probabilidad de muerte), y también afecta a
los tiempos de muerte (células con más contenido mitocondrial tienden a morir
más rápido).

• La mitocondria modula las abundancias de las proteı́nas que participan en la
ruta de señalización de apoptosis. Este es el principal determinante de su poder
predictivo de la respuesta apoptótica de células individuales. El papel de la mi-
tocondria como nodo de la red de señalización de apoptosis parece ser menor en
comparación.

• La predicción del destino apoptótico por parte de los niveles mitocondriales es
óptima cuando el control mitocondrial sobre las anundancias de las proteı́nas
pro-apoptóticas es más estricto que sobre las anti-apoptóticas, particularmente
para aquellas especies en la parte de la ruta apoptótica anterior al MOMP. Esta
situación, en efecto, se observa en células HeLa en cultivo ası́ como en muestras
sólidas de tumores.

• En muestras de cáncer de colon, las proteı́nas pro-apoptóticas co-varı́an fuerte-
mente con el contenido mitocondrial, y las anti-apoptóticas presentan correla-
ciones más modestas. Estas observaciones hacen de la masa mitocondrial un
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buen candidato a biomarcador único como predictor de la sensibilidad a apopto-
sis de células cancerı́genas.
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Appendix A

Experimental methods

Cell culture and mitochondrial mass quantification

HeLa (ATCC CCL-2) cells were grown in DMEM (Gibco)–GlutaMAX-I supplemented
with 10% fetal bovine serum (FBS, Hyclone) and penicillin–streptomycin (Sigma) in a
37◦C humidified incubator with ∼5% CO2. Mitochondrial mass for in vivo experiments
was measured as the integrated signal of MitoTracker green FM (MG, Molecular Probes)
incorporated by individual cells. In fixed cells, mitochondrial mass was measured using
MitoTracker red CMXRos (CMXRos, Molecular Probes).

Transcription and translation activities

Transcriptional activity was monitored in CMXRos stained cells by BrU incorporation
after 30min as described in das Neves et al., 2010.68 Controls were performed by in-
cubation for 1h with 100µM DRB or for 1h with 1µg/mL actinomycin D prior to BrU
incubation, abolishing BrU incorporation completely.

Translational activity in CMXRos-stained cells was monitored after 30min of incor-
poration of the methionine analogous L-homopropargylglycine (AHA) and the Click-iT
HPG Alexa Fluor 488 Protein Synthesis Assay Kit, following manufacturer guidelines.
Controls were performed by incubation for 30min with 1mM cycloheximide, which
abolished AHA incorporation into nascent proteins (data not shown).

Cell sorting

HeLa cells were stained with MitoTracker green for 40min in DMEM. After staining,
cells were washed twice with PBS, trypsinized and resuspended in PBS with 5mM
EDTA. Then, cells were sorted on a fluorescence-activated cell sorter MoFlo XDP
(Beckman Coulter) into two populations of 106 cells each, with high and low mitochon-
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drial content respectively. The difference in mitochondrial mass across subpopulations
was around 5-fold.

RNA extraction and sequencing

Total RNA was extracted using RNeasy Mini Kit (QIAGEN) according to the manufac-
turer guidelines. The quality of the extracted was measured by RNA Integrity Number
(RIN) value from Bioanalyzer, being higher than 8 for all samples. 3µg of purified RNA
were sequenced at the SNP&SEQ facility (Science for Life laboratory, Uppsala sequenc-
ing node). Total RNA was depleted from rRNA prior to library construction. One lane
per sample was used in a 60bp paired-end run on an Illumina HiSeq 2500 sequencer. For
each sample, over 50 million paired-end reads were sequenced.

RNA scaling factor determination

RNA FISH was performed as described in Brown et al., 2006 and 2008.215, 216 Per-
cell RNA content was quantified as the integrated signal of poly(T) intensity. After
quantification, cells were classified according to their mitochondrial content (as reported
by MitoTracker green) and the ratio between RNA levels in the subpopulations with
“high” and “low” mitochondria was obtained.

TRAIL apoptosis assays

HeLa cells were seeded in 24-well plates (Nunc) and incubated with increasing doses
from 2 to 250 ng/ml of human recombinant TRAIL (Milipore) for 24h. After the treat-
ment, both the dead-suspended cells and the live-adherent cells were collected. Then,
the cells were washed twice with PBS and stained with Annexin V-FITC/PI (Propidium
Iodide). Apoptotic analysis was performed using a FACSCalibur flow cytometer.

Live cell microscopy

HeLa cells were seeded in 24-well plates (Falcon) 1 day before the experiments. Prior
to addition of apoptotic inducers, the cells were stained for 40min with MG and washed
twice with DMEM. 15-30 min prior to the start of the movie, cells were added to the
culture medium: TRAIL (at the indicated dilution), or 63ng/ml of DRB, or 2.5µg/ml of
CHX, or a combination of 2.5µg/ml of CHX plus TNF at 20ng/ml. Treated cells were
imaged at 15min intervals for 24h in a 37◦C humidified chamber in ∼5% CO2. The
cells were imaged at 20x magnification (0.4 NA HCX PL FL) on a Leica DMi6000b
microscope (Leica MicroSystem) equipped with a Hamamatsu Orca-R2 digital CCD
Camera, and the images were acquired using the LAS AF 2.7 software (Leica MicroSys-
tem). Time to death was monitored by morphological changes associated with apoptosis.
The images were analyzed using Fiji 2.0.0-rc-43 software.217 Mitochondrial levels were
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quantified from the first fluorescence image, and cell fates at the end of the experiment
were determined by morphological changes associated with apoptosis.

Immunostaining using wide confocal cytometry

HeLa cells growing on coverslips were fixed and proteins indirectly immunolabeled us-
ing the corresponding primary antibodies. Secondary antibodies were Alexa Fluor 488,
546 or 647 donkey anti-mouse, goat or rabbit IgG (H+L) (Invitrogen). The coverslips
or slides were mounted in Vectashield (Vector Laboratories). The images of the labeled
cells were collected in a Leica TCS Sp5 multispectral confocal system (Leica MicroSys-
tem), with a 20x 0.7 HCX PL APO CS, with the pinhole completely opened in order to
collect the maximum amount of light emitted by the specimen. Hundreds of cells in
different fields of the slide were collected. These images were exported to and analysed
with MetaMorph 7.8.0.0 software (Molecular Devices).

For colon cancer immuno-histochemistry, tumour biopsies were formalin fixed and
paraffin embedded. Tissue sections (5µm) were treated with EnVision FLEX Target
retrieval solution low pH (DAKO) (95◦C, 2min) in order to unmask the antigens. The
immunolabeling was performed in the same way as that for the cultured cells.

The protein antibodies were used at dilution 1:1000 and were purchased from Ab-
cam: Flip (ab167409), XIAP (ab137392), Aconitase 2 (ab110321 and ab99467), Bar
(ab106547) and DR5 (ab8416); Santa Cruz Biotechnology: Bak (sc832) and Bax
(sc493); Cell Signaling Technology: Smac/Diablo (15,108); Cusabio Biotech: Bcl-10
(CSB-PA002608ESR2HU); and from Sigma Prestige Antibodies: Casp8 (HPA005688),
Casp9 (HPA001473), Bcl-2 (B3170) and Mcl-1 (HPA008455).

Human colorectal samples

Human colorectal tumor biopsies from de-identified patients were obtained with signed
patient-informed consent and approval from the Human Ethics Review Committee of
the Torrevieja and Vinalopó Hospitals.
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Appendix B

Log-normal co-sampling

Consider two variables a and b that are log-normally distributed and correlated. If we
want to sample one of them once the other is known, we need to account for this correla-
tion. This can be done as follows: let us begin by defining a set of transformed variables
as

x ≡ log a

y ≡ log b
(B.1)

Since a and b are log-normally distributed, both x and y follow a normal distribution.
Given the means of x and y (µx and µy), their standard deviations (σx and σy) and their
Pearson’s correlation coefficient (ρ), the probability of finding a pair of values (x, y) is
given by the bivariate normal distribution P(x, y):

P (x, y) =
1

2πσxσy
√

1 − ρ2
exp

[
−z

2 (1 − ρ)

]
(B.2)

with

z ≡
(

x − µx

σx

)2

+

(
y − µy

σy

)2

− 2ρ
(

x − µx

σx

) (
y − µy

σy

)
(B.3)

The expression for P(x, y) can be expressed as

P (x, y) =
1

√
2πσx

exp
[
−(x − µx)2

2σ2
x

]
︸                           ︷︷                           ︸ ×

1
√

2πσyi
exp

−(y − µyi)2

2σ2
yi

︸                            ︷︷                            ︸
P (x) P (y | x)

(B.4)

where we have defined

127



Fig. B.1. Log-normal co-
sampling. Both variables a and
b are log-normally distributed
(gray distributions) and corre-
lated (ρ = 0.8 in this example).
Fixing the value of a (blue line)
constrains the probability density
function (blue distribution) for the
subsequent sampling of b.
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V
ar

ia
bl

e 
 b

µyi ≡ µy + ρ
σy

σx
(x − µx)

σyi ≡ σy

√
1 − ρ2

(B.5)

Expression B.4 is the product of two probabilities. The first one is identified as the
the probability of obtaining a value x when sampling from a univariate normal distribu-
tion P(x). The second one represents the conditional probability of obtaining a value y
once that x has been fixed (P(y|x)). P(y|x) is just a normal distribution with new mean µyi

and standard deviation σyi that depend on the value of x set and the correlation between
x and y.

Log-normally co-sampling a and b is just interpreted as first sampling a value for x
from P(x), then doing the same for y from P(y|x) and finally reverting the logarithmic
transformation defined in equation B.1. The mean and standard deviation of P(y|x) are
constrained by the initially sampled value of x, (with the constraint being tighter the
higher the correlation ρ, figure B.1).
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