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Abstract

Resumen

En este trabajo se afronta el problema de aprender a partir de imagenes para realizar clasificación
y agrupamiento de formas. La idea principal consiste en codificar los ejemplos de aprendizaje
como datos direccionales que se utilizarán para identificar estas formas y realizar comparaciones
entre ellas. Los objetos a estudiar serán formas de 2 y 3 dimensiones, que serán caracterizadas
por la distribución de las direcciones de los vectores normales a los hiperplanos tangentes al
borde de la misma. Estos datos direccionales manipulados como datos funcionales se pueden
utilizar para codificar las formas en dos representaciones discretas: un histograma normalizado
y una estimación kernel de la densidad que serviran como estimaciones para la distribucion de
probabilidad de cada forma. Estas representaciones son utilizadas para extraer características
relevantes basadas en métricas sobre el espacio de distribuciones circulares y para categorizar y
comparar las formas codificadas. Estas técnicas de caracterización y comparación serán incluidas
en algoritmos de clustering y de clasificación, aplicándose en un problema de reconocimiewnto
de formas simples y en una aplicación al mundo real de clasificación de otolitos de peces.

Palabras Clave

Datos direccionales, distribución de Von Mises, agrupamiento de formas, clasificación de formas.
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Abstract

In this work the problem of learning from images to perform grouping and classification of shapes
is addressed. The key idea of the shape recognition approach is to encode the instances available
for learning in the form of directional data, that will be used to characterize those instances and
perform comparisons among them. The objects to study are thus 2 and 3 dimensional shapes,
that will be characterized by the distribution of the direction of the normal vectors to the tan-
gent hyperplanes at the boundary of the shape. In two dimensions, this boundary is a contour,
and these directional data will in fact form a curve, that manipulated as functional data can
be used to encode the shapes in two discrete representations: a normalized histogram and a
kernel density estimation for the probability function. These representations are used to extract
characteristics based on metrics defined in the space of circular distributions, categorize the en-
coded shapes and finally compare them. These characterization and comparison techniques will
be later embedded in some clustering and classification algorithms, applying them in a simple
shape recognition problem and a real world problem of clustering and classification with fish
otolith shapes.

Key words

Directional data, Von Mises distribution, shape clustering, shape classification.
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1
Introduction

In this work, the problem of identifying shapes of object is addressed. Basically, the problem
consists in given a set of figures (2-dimensional o 3-dimensional objects) with a recognizable
shape, develop a method to identify different shapes among the set of figures and classify each
figure with a particular shape. This problem of shape recognition has many real world applica-
tions in fields such as biology [1, 2, 3] or medicine [4]. In the approach proposed, a functional
data point of view is adopted to characterize the shape of a figure and encode this information
as a probability distribution [5, 6]. Different clustering and classification paradigms will later be
used to test the robustness of the characterizations, in two different problems of shape recogni-
tion.

In this document, the methodology proposed is explained, including definitions and conven-
tions adopted. Both shape recognition problems will serve to illustrate the basic lines of the
approach and detail each subprocess. In Chapter 3, the representation method for planar fig-
ures will be explained, with an application to one of the shape recognition problems with simple
planar figures. In this chapter the processes of retrieving, manipulating and evaluating data of
these planar figures will be explained, proving the effectiveness with the results of the shape
recognition problem.

A real world application in a otolith classification problem is performed in Chapter 4, ap-
plying similar methodology as in the simple figure problem in Chapter 3. In this chapter, the
methodology is adapted to the otolith problem. The results are competitive with the state of
art techniques [2, 7] proving the usefulness of the directional approach.

In Chapter 5, the software tool employed to simulate and perform the experiments is de-
scribed, including the project plan and methodology followed during the development of the
tool. This section will include requirements updated during the process and a description of
frameworks employed, as well as a depiction of the system design. And finally, in Chapter 6 a
conclusion is performed, pondering the process of development, the knowledge acquired during
this process and the results obtained with the approach with a brief mention of future work
proposals related with the issue, a few of them slightly explored during the development will be
performed at the end of the chapter.
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2
State of Art

Automatic induction from complex data that are characterized by functions, graphs, distribu-
tions or shapes is one of the important open problems in Machine Learning nowadays [5]. One of
the difficulties of this task is to provide an appropriate characterization of shape that is tractable
yet preserves sufficient amounts of information to allow grouping and discrimination while keep-
ing the robustness in the characterization. The problem is that in general these objects usually
can not be easily parameterized, and models can have a very complicated topology. Previous
shape matching methods have employed characterization of figures based on 2D contour, 3D
volumes and surfaces, structural models or statistics [8, 9, 10].

Among these approaches, a popular trend to shape analysis uses high-level representations
of shapes, decomposing 2D and 2D objects into features and computing dissimilarity measures
between objects according to these features. Examples of such representations are landmark
methods [5], skeleton representations [11], medial representations [12, 4], generalized cylinders
[13] or probability distributions over features of the figures [14, 15, 2, 7]. The main problem with
many of these approaches is the well definition of these high-level representations in general, for
instance identifying relevant and robust landmarks in objects for landmark representations, or
when objects are not simple connected in the case of skeleton representations [15].

In this work a functional approach is adopted [6] and shapes are characterized by the dis-
tribution of the normal vectors to the curve (in 2 dimensions) or surface (in 3 dimensions) that
delimits the figure [16]. This approach offers a statistical directional alternative to most meth-
ods in the current state of art based on distance measurements [2, 3]. These representations are
based on encoding shapes using the distribution of distances between points within [2] or at the
boundary of the object [3].

The representation employed in this work requires of the tools of directional statistics [17].
In particular, a very important phase in preprocessing is kernel density estimation with circular
data [18] that extends the theory of this non-parametric estimation method. Tools for automatic
kernel bandwidth selection [7, 19, 20] or parameter estimations [21, 17, 22] will be applied in
this project to process and analyze data.
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3
Figure Characterization

In this chapter, the approach proposed in this work is described. In Section 3.1, objects in the
scope of the studies will be described. as well as some basic definitions to employ. In section 3.2
and 3.3 features to extract from these objects and strategies to manipulate them are developed.
From these features, objects will be characterized, and finally in Section 3.4 various experiments
of clustering and classification are performed, in order to test the characterization validity.

3.1 Figures and Shapes

According to Kendall [23], "Shape is all the geometrical information that remains when loca-
tion, scale and rotational effects are filtered out from an object". In this definition are included
"good deformations", this is deformations within some limits, so when they are applied, the
information of the object is kept [2].

The objects to study in this paper are figures, that can be defined as compact manifolds
in general, and in this particular case, 2-dimensional (planar) figures. It will define informally
shape as a pattern that is shared among a set of figures that are obtained from a prototype figure
applying these "good transformations", it is, transformations that are "good deformations" or
isometries. This prototype must be understood as an ideal concept and difficult to define in
general. These "good deformations" could be defined more precisely, but it is not clear the lim-
its when a transformation is either good or bad, neither when the correspondence between the
prototype and the figure is not clear and the figure looses the original shape, since for instance
a square and a circle are even homotopic.

Shape also can be understood as a equivalence class in a set of figures, it is, given a set of
figures, and a given number of shapes to group these figures into, the figures can be grouped into
disjoint sets according to some geometrical or topological criteria. The subset in which a figure is
labeled is the shape of the figure and defines an equivalence relation in the set of planar figures.
If the division in shapes is not arbitrary, there must be a pattern among the figures inside each
shape understood as a set. With this definition, a bad transformation could be understood as

5
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one that makes a figure move to another shape, it is, change the subset in which is classified
before applying the transformation. See Figure 3.1 for a visual example of the ambiguity of the
concept of shape.

Figure 3.1: Different figures obtained applying isometries and deformations to basic templates.
The last column could be an example of a "bad transformation". The information about the
original template is very distorted. In green and red, two reasonable partitions according to two
interpretations of the shape of these figures, one by the original template easily identified and
other by the regularity of the boundary.

With this informal definition of shape, intuitively the goal is a method to obtain this infor-
mation from a given set of figures, thus identifying different patterns among to create subsets
of figures according to their shape. Figures must be encoded keeping that information of shape,
and the idea is to reduce the process of comparing two figures to the process of comparing two
simpler characterizations keeping the correspondence between this characterization and the orig-
inal figure. In [5] a brief summary of different alternatives to encode two and three dimensional
figures is developed.

6 CHAPTER 3. FIGURE CHARACTERIZATION



3.2 Directional Variable

Figures will be characterized by their directional variable, an aleatory variable encoding the
distribution of the normal unit vectors to the contour of the figure. These directional variables
can be identified by the probability distribution of the direction of these vectors, which are
periodic one dimensional probability distributions in the case of planar figures. These variables
will take values in the interval [−π, π] and in general are not continuous or discrete, these will
be a mixture. Examples of such probability density estimates are depicted in Figure 3.2.

0

2

2

(a) Square

0

2

2

(b) Circular sector

Figure 3.2: Empirical probability density for the directional variables in simple figures.

An estimation of the orientation distribution of a figure can be obtained by samplingN points
at regular intervals along the contour of the figure. The number of intervals to consider is crucial
for the characterizations, since bigger number of intervals will produce unstable estimations,
while smaller number of intervals will cause a significant loss of information. At each of these
points the direction of the normal to the contour is computed and store the corresponding angles
{θn}Nn=1. An empirical estimate of the probability density is given by the histogram of the data
using Nbins equally spaced bins in [−π, π]. The histogram is scaled so that the area under it is
one. Alternatively, a kernel estimator is used to provide a smooth approximation of the density

fKDE(θ; ν) =
1

N

N∑
n=1

K(θ − θn; ν), (3.1)

where K(θ; ν) is a periodic normalized kernel (i.e. its integral in [−π, π] is 1), whose charac-
teristic width is h = 1/ν. In this work, the Von Mises kernel is used

K(θ; ν) =
1

2πI0(ν)
eν cos(θ), (3.2)

where I0 is the modified Bessel function of the first kind of order 0. For higher dimensions
the von Mises-Fisher distribution can be used [24]. The quality of the kernel density estimate
depends strongly on the value of this parameter [25, 19, 7, 20]: On the one hand, if the kernel is
too narrow, the density estimate will lack stability and exhibit large variance. If, on the other
hand, the width is too large, relevant features of the probability density will be smoothed out.

As it will be shown in Section 3.4, the kernel density characterization will provide better
results in classification than histogram representation due to robustness of the data for this
particular problem, and also in the real world application (See Section 4.3). In Figure 3.3 the
function obtained for simple polyhedra using a kernel density estimator is depicted.
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For the bandwidth selection, a crucial parameter for the estimation, an analogous for circular
data to the rule of thumb adapted from [7] was studied, since this rule will provide robust
estimations against deviations from von Mises-Fisher densities. The formula to obtain this
optimal bandwidth is

h = 5

√
4
√
πI0(κ̂)2

κ̂[2I1(2κ̂) + 3κ̂I2(2κ̂)]n

where κ̂ is the estimation of the concentration parameter κ of the variable, the equivalent
to the inverse of the variance in normal distributions. The maximum likelihood estimate for
this values is obtained as the solution to a equation involving Bessel functions, and a numerical
approximation is proposed in [17]. See also [26] for even more information about estimation of
the concentration parameter of von Mises-Fisher distributions.

In general, since figures are very heterogeneous and in most cases, the rules applied to select
the bandwidth produce a significant loss of information with oversmoothed estimations, since
these distributions of the orientations of shapes are in general far from von Mises-Fisher distri-
butions , and the methods used suppose the sample to be originated from a von Mises-Fisher
distribution mixture [7, 25]. In some cases, could be needed and easier to set by inspection the
bandwidth parameter for the estimation, according to the problem and the shape of data. Good
results in the problems have been obtained with bandwidths in the range between 2π/16 and
2π/64, being 2π/64 a good value in most cases.
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Figure 3.3: Characterization of simple planar geometrical figures (top row) using a scaled his-
togram (middle row) and kernel density (bottom row) empirical estimates of the probability
density of the direction of the normal vectors along the contour of the figure.
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3.3 Metrics

Once the object representations have been characterized by the corresponding probability den-
sity estimates, their shapes can be compared using different metrics. To define these metrics,
discretized versions of the probability densities f(θ) and g(θ) in the circle (θ ∈ [−π, π]), at
the sampling points {θn}Nn=1 are considered; namely, f = {fn}Nn=1, and g = {gn}Nn=1, with
fn ≡ f(θn) and gn ≡ g(θn), respectively. In terms of these discrete versions of the densities, the
metrics in Table 3.1 have been considered.

Distance Expression

Manhattan L1(f ,g) =
∑N

n=1 |fn − gn|

Euclidean L2(f ,g) =
∑N

n=1 |fn − gn|
2

Total Variation L∞(f ,g) = maxn=1,2,...,N |fn − gn|

χ2 χ2(f ,g) =
∑N

n=1
|fn−gn|2
fn+gn

Hellinger H(f ,g) = 1√
2

√∑N
n=1

(√
fn −

√
gn
)2

Earth Mover’s EMD(f ,g) = inf E [|θ − θ′|]

where the infimum is taken over all possible joint distributions θ

and θ′, random variables whose marginals are f and g, respectively.

Table 3.1: Distance functions between the discrete versions of the distributions f = {fn}Nn=1,
and g = {gn}Nn=1.

Let F and G be two figures, characterized by f and g, respectively. The relative orientations
of F and G could be different, therefore, a distance between these figures can be defined as the
minimum value of the metric between a rotation of the first density and the second density

D̂ (F,G) = min
n=1,2,...,N

D
(
f [n],g

)
(3.3)

where D is one of the metrics considered and f [n] = {fn, fn+1, . . . , fN , f1, . . . , fn−1} is a
rotation of the density f .

The distance function given by Eq. (3.3) requires the evaluation of the specified metric for
all N sampling points, which is a costly computation. An alternative is to approximate those
distances by a aligning solution, where before computing the distances, discrete versions are
aligned according to the mode of their samples. They are rotated in order to situate this mode
in the first position.

Even a more effective way to account for rotations is to measure distances with respect to C,
the uniform circular distribution in two dimensions (or the uniform distribution on a n-sphere
in higher dimensions), which is invariant by rotations:

D̃ (F,G) = |D (F,C)−D (G,C)| . (3.4)

As will be illustrated in the section on empirical evaluation this two alternatives retain
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Figure 3.4: Rotated representations due to different orientations of the original figure (top row)
using a scaled histogram (middle row) and kernel density (bottom row) empirical estimates of
the probability density of the direction of the normal vectors along the contour of the figure.

sufficient information to provide reasonably good characterizations of shape at a reduced com-
putational cost.
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3.4 Clustering and Classification

To test the characterization, an easy problem of classification is faced creating a data set of 300
simple planar figures with recognizable shape. The shapes selected are triangular, rectangular
and circular. 100 figures of each shape from a respective template are generated, by applying
small deformations to the original template. Once the figures are generated, for each figure the
histogram and the kernel density estimations are computed, including distances characteriza-
tions defined in Subsection 3.3. So in summary, the problem consists in classifying 300 simple
figures, employing the characterizations previously defined.

To obtain the characterizations of these figures, the parameters mentioned of number of bins
for the histogram representation and number of points of the discrete version of the kernel den-
sity are both 64 in all experiments performed in this section. Usually powers of two have been
chosen for these parameters. In Figure 3.5 a caption of the data set is displayed, while in Figure
3.6 some examples of histogram and kernel density representations are displayed.

Figure 3.5: Caption of simple shapes used to test directional characterization

A K-Means model will be used to test the characterization as a unsupervised model, while a
K Nearest Neighbors (K-NN) approach will be employed to test characterizations in supervised
learning.

3.4.1 Clustering

For clustering, a K-means algorithm to generate three clusters is employed, corresponding to
each shape in the data set (triangular, rectangular and circular). Two different models are pro-
posed, with two alternatives obtained from the concepts developed in Section 3.3.
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Figure 3.6: In the top row of this figure the contours of simple figures of different shapes are
shown: triangular (left), rectangular (middle), and circular (right). The histogram and kernel
density estimates of the direction variables for these figures are displayed in the middle and
bottom rows, respectively.

Clustering with Aligning Approximation

In the first models, the attributes to employ are the mode aligned version defined in Section
3.3 of the histogram and the kernel density characterizations of figures in the data set. So the
data set has 300 64-dimensional vectors for each characterization. The results of the clustering
process are displayed in Table 3.2.
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Clustering: Aligned
Histogram Kernel Density

C1 C2 C3 C1 C2 C3
t 44 56 0 99 1 0
r 48 52 0 0 71 29
c 0 0 100 0 0 100
Err 0.35 0.10

Table 3.2: Matrices of the result of the clustering process with histogram and kernel density
representations. Labels in rows t, r, c, respectively correspond to labels triangle rectangle and
circle while labels in columns correspond to different resulting clusters C1, C2, C3 .

Clustering with Distances Approximation

In second models, data used consist on the different distance characterizations of figures defined
in Section 3.3, so there are 300 instances of 6-dimensional vectors, each 6-dimensional vector
encoding one figure in the data set, for the histogram and kernel density characterizations re-
spectively. The result of the clustering experiment is shown in Table 3.3.

Clustering: Distances
Histogram Kernel Density

C1 C2 C3 C1 C2 C3
t 0 100 0 100 0 0
r 0 100 0 0 100 0
c 45 0 55 0 0 100
Err 0.48 0.00

Table 3.3: Matrices of the result of the clustering process for histogram and kernel density
representations of simple figures. Labels in rows t, r, c, respectively correspond to labels triangle
rectangle and circle while labels in columns correspond to different resulting clusters C1, C2,
C3 .

Note that figures are being characterized with 6-dimensional vectors when these distance
characterizations are used as attributes, which is a significant reduction of the information, and
still the figures are distinguishable. In this particular problem of clustering, the solution when
aligned data is employed provides bad results in all cases, due to the regularity of the figures in
the data set. This regularity causes the mode of the distribution to weaken.

3.4.2 Classification

The attributes employed in this classification experiment are exactly the same as used in the
previous experiments on clustering. A K-NN approach is mainly used, while several models have
been tested such as Gaussian Naive-Bayes or Random Forest classifiers, all of them providing
good results, but not included in this paper. The number of neighbors is automatically selected
during the training phase among values between 1 and 13, by 3-fold cross validation over the
training set, with minimal variations in the results whit different values of this parameter. To
obtain an estimation of the generalization error, 10-fold cross validation is performed over each

CHAPTER 3. FIGURE CHARACTERIZATION 13
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data set in all cases. Three different approaches employing different the three alternatives as
distances explained in Section 3.3 will be explained in this three next subsections.

Classification with Periodic Metrics

In this first set of experiments, the K-NN classifiers will employ different periodic metrics de-
fined in Section 3.3. The attributes are the discrete versions of the histogram and the kernel
density representations. In Table 3.4 confusion matrices and generalization error estimates for
each model are shown.

Classification: Periodic Distances
Histogram Kernel Density Histogram Kernel Density
t r c t r c t r c t r c

t

L 1

93 7 0 100 0 0

E
M
D

96 4 0 100 0 0
r 5 87 8 0 100 0 2 89 9 0 100 0
c 0 0 100 0 0 100 0 0 100 0 0 100
Err 0.07 ± 0.04 0.00 ± 0.00 0.05 ± 0.02 0.00 ± 0.00
t

L 2

92 8 0 100 0 0
H

91 8 1 100 0 0
r 2 81 17 0 100 0 7 77 16 0 100 0
c 0 0 100 0 0 100 0 0 100 0 0 100
Err 0.09 ± 0.04 0.00 ± 0.00 0.11 ± 0.07 0.00 ± 0.00
t

L ∞

94 6 0 100 0 0

χ
2

88 11 1 100 0 0
r 2 87 11 0 100 0 6 71 23 0 100 0
c 0 0 100 0 0 100 0 0 100 0 0 100
Err 0.06 ± 0.06 0.00 ± 0.00 0.14 ± 0.06 0.00 ± 0.00

Table 3.4: 10-fold cross-validation estimates of the confusion matrices for simple figures classifi-
cation with periodic metrics. The instances, which are characterized by either the histogram or
a kernel estimate of the probability density function of the normal vectors along the contour of
the figure, are categorized as triangular (t), rectangular (r), and circular (c) using K-NN. The
error indicates the proportion of incorrectly grouped instances.

Classification with Aligning Approximation

In this second set of experiments, the K-NN classifiers will employ the aligned approximation
to the periodic distances defined in Section 3.3. The attributes are the discrete versions of the
histogram and the kernel density representations. In Table 3.5 confusion matrices and general-
ization error estimates for each model are displayed.

Classification with Distances

In this last set of experiments, the K-NN classifiers will employ the distances defined in Section
3.3 based on the comparison against a uniform circular distribution. The characterization are
the discrete versions of the histogram and the kernel density representations. In Table 3.6 con-
fusion matrices and generalization error estimates for this approach are displayed.
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Classification: Aligning Distances
Histogram Kernel Density Histogram Kernel Density
t r c t r c t r c t r c

t

L 1

90 8 2 100 0 0

E
M
D

94 6 0 100 0 0
r 12 40 48 0 100 0 3 84 13 0 100 0
c 0 0 100 0 0 100 0 0 100 0 0 100
Err 0.23 ± 0.06 0.00 ± 0.00 0.07 ± 0.04 0.00 ± 0.00
t

L 2
95 5 0 100 0 0

H

90 7 3 100 0 0
r 3 86 11 0 100 0 14 43 43 0 100 0
c 0 0 100 0 0 100 0 0 100 0 0 100
Err 0.06 ± 0.03 0.00 ± 0.00 0.22 ± 0.05 0.00 ± 0.00
t

L ∞

95 5 0 100 0 0

χ
2

90 7 3 100 0 0
r 3 85 12 0 100 0 13 44 43 0 100 0
c 0 0 100 0 0 100 0 0 100 0 0 100
Err 0.07 ± 0.05 0.00 ± 0.00 0.22 ± 0.06 0.00 ± 0.00

Table 3.5: 10-fold cross-validation estimates of the confusion matrices for simple figures classifi-
cation with the aligned representation method. The instances, which are characterized by either
the histogram or a kernel estimate of the probability density function of the normal vectors
along the contour of the figure, are categorized as triangular (t), rectangular (r), and circular
(c) using K-NN. The error indicates the proportion of incorrectly grouped instances.

Classification: Distances
Histogram Kernel Density
t r c t r c

t 100 0 0 100 0 0
r 0 100 0 0 100 0
c 0 0 100 0 0 100
Err 0.00 ± 0.00 0.00 ± 0.00

Table 3.6: 10-fold cross-validation estimates of the confusion matrices for simple figures classi-
fication with the distances representation. The instances, which are characterized by either the
histogram or a kernel estimate of the probability density function of the normal vectors along
the contour of the figure, are categorized as triangular (t), rectangular (r), and circular (c) using
K-NN. The error indicates the proportion of incorrectly grouped instances.

Best results are achieved when the kernel density representation is used, in fact, in all cases
for all metrics the classification is perfect. The histogram representation offers weaker results
due to variability. These results clarify the importance of the smoothing during the preprocess-
ing of the inputs. See Annex A for a deeper exploration of these distance representations of
simple figures.
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4
Real world application: Otolith Classification

In this section, a real world problem is faced to test the usefulness of the methodology: the
problem of classification of fish otoliths. In Section 4.1, the otolith data set will be described
and in Section 4.2 also the preprocessing performed to each instance. Metrics and distance
characterizations defined in Section 3.3 will be employed to encode the fish otoliths available
in Section 4.2. Finally, in Section 4.3 various experiments of clustering and classification are
performed, to measure the accuracy of the characterizations.

4.1 Otolith Data Set

In this section the categorization of otoliths for grouping and identification of fish species is
considered. Otoliths are concretions of calcium carbonate and other inorganic salts that are
formed by aggregation on a protein matrix in the inner ear of vertebrates [27]. The data set
studied consists of 240 high-contrast images of otoliths for three different families of fish: labri-
dae (125 images), soleidae (70 images), and scombridae (45 images). The images are centered
and oriented so the to the frontal part of the otolith appears to the right of the image. This
set has been retrieved from the AFORO database (http://www.icm.csic.es/aforo/), which is a
an extensive open online repository of data for different fish species. Otoliths in labridae family
are cuneiform, oval, bullet-shaped, or rectangular. They present a cleavage in the frontal zone,
which, in general, is more prominent than in the other fish families. Soleidae otoliths are mainly
discoidal and elliptic. Their shapes are in general more regular and smooth than in other two
families. Finally, otoliths of the scombridae family have serrate contours and generally are more
elongated [28]. Examples of these otoliths are displayed in Figure 4.1. Labridae and soleidae
otolithds present higher shape variability than scombridae otoliths, which are typically more
regular.
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Labridae Scombridae Soleidae

Figure 4.1: Examples of labridae, soleidae, and scombridae otoliths. The frontal part of the
otolith, which corresponds to the head of the fish, appears on the right of the image.

4.2 Otolith Data Preprocessing

In each of the images, the contour of the otolith is retrieved using the marching squares algo-
rithm [29]. The contour is rectified so that all figures have the same number of vertices. In the
experiments, a maximum of 64 vertices is considered. This quantization of the contour reduces
the variability in the representation and allows to preserve a sufficient amount of detail for an
accurate characterization of the shape of the object [10]. An illustration of this preprocessing
step is given in figure 4.2.

The figure is then characterized by sampling a total of Nsample = 1000 points at regularly
spaced intervals along the contour. For each of these sampling points the directional variable is
computed. As discussed earlier, this variable is the direction of the normal vector at the point
considered. For planar figures, it can be represented as the angle that specifies the direction of
the normal vector. The probability density of these direction values is then approximated using
either a scaled histogram with 64 bins or a KDE estimate that utilizes Von Mises kernels of
width h = 2π

64 . In both cases, the probability density estimates are discretized at N = 64 points
located at the center of the histogram bins.

From the probability density estimates, two different characterizations will be used. In a
first characterization, the figures are aligned at the maximum of the corresponding density es-
timates. The vector of attributes in this aligned representation consists in the N = 64 values
of the corresponding histogram or KDE. A second characterization (labeled distances) is by a
vector composed of the 6 distances between the corresponding density estimation and the uni-
form distribution, according to Eq. (3.4). See Annex B for a deeper exploration of this distance
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Figure 4.2: Visualization of the smoothing process applied to the contour of a otolith by reducing
the number of vertices to 64.

representations for the otolith data set.

4.3 Otolith Clustering and Classification

Both unsupervised (clustering) and supervised (classification) learning tasks are considered.

4.3.1 Otolith Clustering

In this section the K-means algorithm is used to group the otoliths into K = 3 clusters. Two
alternatives will be tested, one where the aligned orientation data will be used as attributes and
a second one where the distances defined in Section 3.3 are employed.

Otolith Clustering with Aligned Data

In this first alternative, the data used as input for the algorithm are the 64 different values of
the histogram and the kernel density discrete versions of the figure. In Table 4.1 the results of
the clustering process is shown.
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Figure 4.3: In the top row of this figure the contours of otoliths of different fish families are
shown: labridae (left), soleidae (middle), and scombridae (right). The histogram and kernel
density estimates of the direction variables for these figures are displayed in the middle and
bottom rows, respectively.

Otolith Clustering with distances

In this second alternative, the input for the clustering process are different distances defined in
Section 3.3. The results of this unsupervised learning task are displayed in Table 4.2.

Several conclusions can be drawn from these results. The first one is that the clusters identi-
fied when the characterization based on distances to the uniform circular distribution are rather
impure. The results are significantly better when the representation based on alignment is used,
especially when the kernel density estimates (KDE) are employed. The reason why alignment
is useful in these data is because otoliths typically have an oblong shape, with clearly defined
axis. As illustrated by results of the experiments with simple geometrical shapes (Section 3.4),
if the data do not exhibit a clear direction, alignment can actually have a detrimental effect.
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Otolith Clustering: Aligned
Histogram Kernel Density

C1 C2 C3 C1 C2 C3
lab 113 7 5 113 6 6
sol 3 67 0 0 70 0
sco 4 0 41 3 0 42
Err 0.08 0.06

Table 4.1: Number of otoliths from the labridae (lab), soleidae (sol), and scombridae (sco)
assigned to each of the 3 clusters identified using K-means. The results on the left-hand side
correspond to the 6-dimensional distances representations. The results obtained when the 64-
dimensional aligned representations are used are displayed on the right-hand side. The error
indicates the proportion of incorrectly grouped instances.

Otolith Clustering: Distances
Histogram Kernel Density

C1 C2 C3 C1 C2 C3
lab 86 20 19 93 11 21
sol 7 63 0 4 66 0
sco 6 0 39 4 0 41
Err 0.22 0.17

Table 4.2: Number of otoliths from the labridae (lab), soleidae (sol), and scombridae (sco)
assigned to each of the 3 clusters identified using K-means. The results on the left-hand side
correspond to the 6-dimensional distances representations. The results obtained when the 64-
dimensional aligned representations are used are displayed on the right-hand side. The error
indicates the proportion of incorrectly grouped instances.

4.3.2 Otolith Classification

In this section, is explained the k-nearest neighbors (K-NN) used to predict the shape of the fig-
ure based on various characterizations proposed. The number of neighbors is determined using
3-fold cross-validation within the training data. The range of values explored is k = 3, 5, . . . , 13.
In most cases the values selected are either k = 3 or k = 5. The results are not particularly
sensitive to the choice of this parameter. The generalization error is estimated using 10-fold
cross-validation over the complete data set.

Otolith Classification with Periodic Distances

In this first alternative, the attributes to input are the discrete versions of the histogram and the
kernel density estimations. The number of points in each representation is 64. Several models
will be tested, each of them using one of the periodic metrics defined in Section 3.3. In Table
4.3 the results of the generalization error estimation is displayed.
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Otolith Classification: Periodic Distances
Histogram KDE Histogram KDE

lab sol sco lab sol sco lab sol sco lab sol sco
lab

L 1

119 0 6 123 0 2

E
M
D

120 1 4 124 0 1
sol 2 68 0 0 70 0 3 67 0 0 70 0
sco 8 0 37 5 0 40 7 0 38 4 0 41
Err 0.05 ± 0.04 0.05 ± 0.04 0.11 ± 0.06 0.10 ± 0.06
lab

L 2
121 0 4 124 0 1

H

119 0 6 123 1 1
sol 3 67 0 0 70 0 2 68 0 0 70 0
sco 9 0 36 5 0 40 7 0 38 5 0 40
Err 0.05 ± 0.04 0.04 ± 0.04 0.06 ± 0.05 0.06 ± 0.05
lab

L ∞

119 0 6 123 0 2

χ
2

118 1 6 121 2 2
sol 2 68 0 0 70 0 2 68 0 0 70 0
sco 6 0 39 5 0 40 7 0 38 6 0 39
Err 0.05 ± 0.04 0.05 ± 0.04 0.06 ± 0.04 0.06 ± 0.04

Table 4.3: 10-fold cross-validation estimates of the confusion matrices for otolith classification.
The instances, which are characterized by either the histogram or a kernel estimate (KDE) of the
probability density function of the normal vectors along the contour of the figure, are categorized
as labridae (lab), soleidae (sol), and scombridae (sco) using K-NN. The error indicates the
proportion of incorrectly grouped instances.

Otolith Classification with Aligning Approximation

In this second alternative, the attributes to input are again the discrete versions of the histogram
and the kernel density estimations, but models will employ the aligned approximation to the
metrics defined in Section 3.3. In Table 4.4 the results of the generalization error estimation is
displayed.

Otolith Classification with Distances Approximation

In this last experiment, the figures are characterized by the distances defined in Section 3.3.
Confusion matrices for each representation are displayed in Table 4.5.

A final set of experiments is carried out using the rotationally invariant distance between
shapes given by Eq. (3.3) in the nearest-neighbors algorithm. The distances are computed using
one of the six different metrics described in Section 3.3. The results of these experiments are
summarized in Table 4.3. As in the previous set of experiments, the number of neighbors is
estimated on the training data using 3-fold cross-validation. The generalization error is esti-
mated using 10-fold cross-validation on the complete data set. In all cases, the predictions are
very accurate for all metrics, specially when the smoother kernel density estimation is used.
However, because of the minimization step required in computing the distances Eq. (3.3), the
computational cost of this algorithm is high. As in the previous experiments, the scombridae and
soleidae otoliths are well separated. For some of the metrics the soleidae otoliths, which tend to
present smoother shapes than the other classes, are correctly identified in all the cases considered.

As in the clustering experiment, the accuracy is better when the aligned histograms are
used to characterize the instances. The best overall accuracy is obtained when kernel density
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Otolith Classification: Aligned Approximation
Histogram KDE Histogram KDE

lab sol sco lab sol sco lab sol sco lab sol sco
lab

L 1

116 7 2 121 4 0

E
M
D

113 10 2 122 3 0
sol 7 62 1 2 68 0 9 61 0 3 67 0
sco 7 0 38 8 0 37 6 0 39 8 0 37
Err 0.10 ± 0.04 0.06 ± 0.05 0.11 ± 0.06 0.06 ± 0.03
lab

L 2
117 6 2 122 3 0

H

116 6 3 120 5 0
sol 10 59 1 4 66 0 10 60 0 2 68 0
sco 10 0 35 7 0 38 9 0 36 7 0 38
Err 0.12 ± 0.06 0.06 ± 0.04 0.12 ± 0.06 0.06 ± 0.07
lab

L ∞

116 7 2 121 3 1

χ
2

114 8 3 120 5 0
sol 8 62 0 3 67 0 10 59 1 3 67 0
sco 11 0 34 7 0 38 10 0 35 8 0 37
Err 0.12 ± 0.05 0.06 ± 0.05 0.13 ± 0.06 0.07 ± 0.04

Table 4.4: 10-fold cross-validation estimates of the confusion matrices for otolith classification.
The instances, which are characterized by either the histogram or a kernel estimate (KDE) of the
probability density function of the normal vectors along the contour of the figure, are categorized
as labridae (lab), soleidae (sol), and scombridae (sco) using K-NN. The error indicates the
proportion of incorrectly grouped instances.

Otolith Classification: Distances
Histogram KDE

lab sol sco lab sol sco
lab 98 5 22 110 7 8
sol 18 52 0 10 60 0
sco 11 0 34 15 0 30
Err 0.27 ± 0.06 0.15 ± 0.06

Table 4.5: Confusion matrices and 10-fold cross-validation errors for the classification of labridae
(lab), soleidae (sol), and scombridae (sco) otoliths using a characterization based on distances
to the uniform circular distribution.

estimates are used, also when instances are characterized by the distances of the corresponding
density estimates to the uniform circular distribution.

It is apparent from Figure 4.3, that the shapes of soleidae and scombridae otoliths are
markedly different from each other. As a result, the discrimination between items from these
classes is fairly easy. If fact, they are well separated in all the representations considered. This
is not the case for the labridae otoliths. Some otoliths from this class present elongated shapes,
which are more characteristic of scombridae. Others present a circular, more regular shapes,
and can be mistaken for instances from the soleidae class.
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5
Project Development

In this next Chapter the complete project and its development process will be detailed. Main
objectives and features as well as scope of the project will be first depicted in Sections 5.1 while
in Section 5.2, a complete set of functional and non-functional requirements captured for this
system to implement during the development will be listed. In Section 5.3 the main software
tool implemented and used in the project MLS will be briefly described. Finally, in Section 5.4
the development process for the complete project is pictured.

5.1 Project objectives

The main objective of the project is to provide a directional high-level characterization method
for figures as an alternative to other state of art characterization techniques. One important
objective that will prove the usefulness of the methodology is its application to shape matching
problems with positive results. In particular, results in the real world problem of fish otoliths
shape classification and matching could offer relevant information to compare with different
techniques applied in the same problem in the past [2, 7]. To perform all simulations and exper-
iments needed for this objectives, a software tool has been developed, and will be described in
Section 5.3. Among the project objectives, the quality of both this software tool and the process
of its development are included.

The software tool developed will need functionality to load a data set of images and apply
the methods described in Chapter 3 to obtain kernel density and histogram representations of
these images, and the rest of computations defined in Sections 3.2 and 3.3 to obtain the data set
of different representations proposed. The system should allow tunning hyperparameters such
as sampling size, bin anchor or kernel bandwidth, among others specified in Sections 3.2 and
3.3 to adjust these representation acquirement process. The system should also allow storing
these computations and perform the experiments defined in Section 3.4 to the data set obtained,
displaying relevant information about these results. The scope of the project is restricted to 2d
figures, and 3D figures methods will not be treated.
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To sum up, the system described will provide the tools to run the simulations required to
evaluate the results of the proposal described in this project, while also allow performing the
experiments required to develop the methodology described.

5.2 Requirements

In this section, requirements captured for the project are explained. In Sections 5.2.1 and 5.2.2
functional and non-functional requirements are listed. These sets of requirements have been
updated during the entire project to add or correct specifications.

5.2.1 Functional Requirements

Next list includes all functional requirements captured for the MLS system.

FR-1. Loading a figure from an image.

The system should be able to load an image and compute a contour from it. This contour will
be stored as a list of coordinates, each element corresponding to a point in this contour. The
system should allow applying a reduction on the number of vertices of the contour, so contours
are computed to obtain a result with a fixed number of vertices.

Input: The path to the image and optionally a given number of vertices. The image can be in
png,jpg, jpeg or in tif format.
Process: The system stores the contour obtained with the bigger number of vertices, among
the contours detected in the image. The contour is processed so the final results has the number
of vertices specified.
Output: The system stores the contour as a figure, using as id for the figure its file name.

FR-2. Generating a figure from a deformation of a regular template.

The system should allow creating a figure from a deformation of a regular template.

Input: The number of vertices, the radius of the regular template and a noise value.
Process: The system generates a random deformation, from a regular polygon with the given
number of vertices. To apply this deformation, the angles of the regular template are expressed
in their polar coordinates and the angle and radius of each vertex is randomly altered.
Output: The system stores the resulting set of vertices as a figure.

FR-3. Loading a complete data set of figures from a data set of images.

The system should allow loading a data set of images, to obtain a data set of figures. For each
image, the process described in FR-1. will be applied. The resulting set of figures should be
stored as a data set of figures.

26 CHAPTER 5. PROJECT DEVELOPMENT



Machine Learning from Shapes

Input: A list with the folders where each population of images is stored and a given number of
vertices for the contour reduction computation.
Process: The system tries to obtain sequentially the figures as in FR-1 for each file in the path
provided. The process will fail if it fails at processing at least one of the files.
Output: A data set with the loaded images is stored as a data set of figures.

FR-4. Generating a complete dataset of figures from regular templates.

The system should allow generating a data set of figures from deformation of simple templates.
For each template given, the process described in FR-2. should be applied to generate a popu-
lation of deformations. The resulting set of figures should be stored as a data set of figures.

Input: The process takes as input a population size,a list of number of vertices and a radius
and noise parameters.
Process: Ths system generates one population per number of vertices provided in the list, whit
a number of instances in each population equal to the population size provided. These figures are
generated each of them as in FR-2, all of them in the data set with the equal noise parameter
and radius. Each figure generated is labeled with a unique identifier inside the data set.
Output: The system stores the generated data set of figures.

FR-6. Obtaining the directional variables of a data set of figures.

The system should be able to compute a data set of samples of the directional variables for a
given data set of figures.

Input: This process will take as input a data set of figures, and a sample size, that will be the
size of the sample to obtain for each figure in the data set.
Process: First a set of points in the contour of the images are selected, where the number of
points in the set is equal to this sample size given. Then, for each of these points, the angles of
the normal unitary vectors to the contour of the figures are computed and stored.
Output: A data set with one sample for the directional variable of each figure in the data set
provided is stored.

FR-7. Computing histogram characterizations of a data set of directional samples.

The system should be able to compute normalized histogram characterizations from a given data
set of directional samples.

Input: A number of bins for the histogram representation and a data set of directional samples
must be provided.
Process: From each of the directional samples in the data set provided, the system computes
a normalized histogram.
Output: The computed normalized histograms are stored as a data set.
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FR-8. Computing kernel density characterizations of a data set of directional sam-
ples.

The system should be able to compute kernel density characterizations from a given data set of
directional samples.

Input: A number of points for the discrete representation of the kernel density estimation to
compute and a data set of directional samples must be provided. Also, a kernel anchor can be
provided for the process, or this kernel anchor can be automatically selected following the "rule
of thumb" for circular kernel density estimation [7].
Process: From each of the directional samples in the data set provided, the system computes
a kernel density estimation, following the methodology explained in Section 3.2.
Output: Resulting kernel densities estimations are stored as a data set.

FR-9. Computing distances characterizations

The system should be able to compute distance characterizations from a given data set of his-
togram or kernel density representations, and a given list of metrics to employ.

Input: The process will need as input a data set of discrete versions of histogram or kernel
density representations and a list of metrics to employ.
Process: For each representation in the data set provided, the distances between the repre-
sentation and a uniform distribution is computed using different metrics provided. For each
representation, the result is a list of distances, one per metric provided, that will be stored as
the distance characterization of the discrete representation.
Output: Ths system stores the data set of distances characterizations computed.

FR-10. Perform classification of shapes with directional characterizations.

The system should be able to perform classification with the characterizations described in
Chapter 3, using a K-NN algorithm. This will include performing cross validation to obtain an
estimation of the generalization error and cross validation during the train phase, in order to
tune the K parameter of the algorithm.

Input: It should be provided a data set of representations (normalized histogram, kernel den-
sity or distance representations) with the corresponding data set of labels, a metric to employ
in the K-NN algorithm, a number of folds for the generalization error, a number of folds for K
hyperparameter selection and a feasible list of orders of neighborhoods.
Process: The system will perform cross validation with the given number of folds to estimate
the generalization error of a K-NN algorithm using the metric provided and the data provided
as attributes. During each train phase, cross validation with the specified number of folds will
be performed to select the K hyperparameter that obtained best results. The folds are stratified
in the process.
Output: The system will display information of the data set (data dimensions), the cross valida-
tion processes (fold count) and the results (execution time, error estimated and confusion matrix)
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FR-11. Perform clustering of shapes with directional characterizations.

The system should be able to perform clustering with aligned or distances representations, using
a K-Means algorithm.

Input: It should be provided a data set of representations (normalized histogram, kernel density
or distance representations) with the corresponding data set of labels, and a number of clusters
to compute.
Process: The system executes the K-NN algorithm for data provided.
Output: The information of the execution time, the instances distribution among computed
clusters and a estimation of a error measure for the result is displayed.

5.2.2 Non-functional Requirements

In this list other non-functional requirements defined for the system are displayed.

Performance

The system does not have strong constraints in this performance aspect. Even though some
computations such as performing classification with periodic distances are complex, there are
not real time constraints and data dimensions are small.

Scalability

This requirement is crucial, since there are already several future work proposals, and several
techniques to be added to the methodology, and therefore potential functionalities to be added
to the system. The system should be clear and well documented, to ease applying changes and
corrections, since future implementations could recycle functionality from this system.

Documentation and Software Quality

The code must be well documented. Each class and method must be well described in the doc-
umentation with each attribute or parameter. Closely related with the scalability requirement,
it is crucial that functionalities are clear and well documented, since there are some complex
concepts and processes are developed. Also, the code must follow naming conventions to ease
readability adn usability.

5.3 System characteristics

The MLS system is compounded of multiple tools to provide the material needed during the
investigation. The requirements and the design of MLS have been redefined during the devel-
opment, adding or correcting functionality when needed. The final design, described in this
Chapter, includes functionality to extract contours from labeled images and store these contours
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as a polygonal figure. Also, includes functionality to compute from these figures histograms and
kernel density estimations of their directional variable (See section 3). Finally MLS includes the
functionality needed to perform from these representations the validation methods defined in
Section 3.4 of clustering and classification.

The MLS system is composed of multiple Python modules that provide the functionality
required. The implementation is written in Python version 3.6, and several Jupyter notebooks
have been developed to perform the unitary validation test of functionalities and the validation
of the methodology proposed in this work. This has dependecies on numpy, scipy and sklearn
Python libraries.

This system allows processing a data set of images to obtain a data set of figures form their
contours. No preprocessing is applied to these images, since it was not needed in the problem
applied (See Section 4.2). Also, a data set of figures can be generated from a set of regular
templates, with the application of small deformations. These data set of figures are stored as a
list of vectors with the coordinates of each point obtained in the contour.

From these data sets of figures, the system MLS can be used to generate data sets of orienta-
tion variables, where each orientation variable corresponds to a unique figure. These orientation
variables will mainly be characterized by three attributes: the directional variable sample, the
discrete representations of the normalized histogram and the kernel density estimations. The di-
rectional sample, from which these discrete representations are computed, is generated sampling
the directions of the normal vectors across the contour of these figures. The normalized his-
togram and kernel density estimations are obtained applying directional statistics tools [17, 17].

The metrics defined in Section 3.3 are implemented in the system MLS. Both periodic dis-
tances and each aligned approximation can be used to quantitatively compare discrete represen-
tations of figures. These metrics can also be used as metrics in the classification models used
in the project. Mention that the complexity of these periodic distances is quadratic, while the
complexity of the aligned approximations is linear.

The system also contains functionality required to perform clustering and classification exper-
iments as defined in Sections 3.4 and 4.3, using the implementations of the sklearn library. Used
classes are in particular sklearn.cluster.KMeans and sklearn.neighbors.KNeighborsClassifier
as implementations of each algorithm.

In Figure 5.1 a class diagram for the design of the project is displayed, and in Figure 5.2 a
diagram for the python packages compounding the project is depicted.

5.4 Project Management

In this section the development process of the project is presented, with the description of the
methodology and the project plan performed. In Subsection 5.4.1 this project plan followed will
be described exhaustively. These subsections will focus on the development of the software tool
MLS, while also the process to generate all documentation will be described.
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DataSet

data_type : str
complete_ids
complete_labels
complete_epdf_dataset
complete_kde_dataset
complete_aligned_epdf_dataset
complete_aligned_kde_dataset
complete_distance_epdf_dataset
complete_distance_kde_dataset

 

OtolithDataSet

 

 

PolygonDataSet

 

 

OrientationVariable

variable_id : str
orientation_sample
number_of_bins : int
bins
epdf
number_of_points_kde : int
nu : float
points_kde
values_kde

compute_estimations()
eval_kde()
obtain_sample()

   *   

Polygon

polygon_id : str
number_of_vertices : int
cartesian_vertices
polar_vertices

get_data_plot()
get_orientation_function()
plot()
rotate()

   *      *   

Figure

 

 

RegularPolygon

noise : float
offset : float
radius : float

 

Figure 5.1: Class diagram for MLS design

Initially the scope of the project was undefined, so the methodology used during the devel-
opment it has been agile, with increments of one week usually. At the end of each increment,
a tutorial with the tutor took place to evaluate progress performed, and increments for next
increment were defined. During the development, it has been necessary to parallel research and
development, usually being necessary to perform corrections after the increment review. To
maintain a robust version control, the software tool git was used during the develop to create
and maintain a git repository to keep track of code and documentation. Time devoted to this
project is 3 hours per week in average, so about a total of 120 hours have been invested in the
development of the project.
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2D/

polygons/

aleatoryvariables/

distances/

populations/

figures.py

polygons.py

regularpolygons.py

orientationvariable.py

vonmisses.py

imagesampler.py

functiondistances.py

functionmeasures.py

periodicfunctiondistances.py

otolithpopulations.py

polygonpopulations.py

populations.py

estimations.py

Figure 5.2: Package diagram for MLS implementation

5.4.1 Project Plan

During the development four phases can be identified: during first three parts the main software
tool was developed, and in final part all the methodology documentation, an article describing
the proposal and this document were written. This three first phases can be matched with each
one of the problems studied, where different increments were necessary to complete and different
solutions were achieved. Next list summarizes different solutions and problems, grouping close
related milestones by increments. In Figure 5.3, a Gantt diagram for the development of the
software system MLS is displayed.

32 CHAPTER 5. PROJECT DEVELOPMENT



Machine Learning from Shapes

2017 2018

Sep Oct Nov Dec Jan Feb Mar

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 1 2 3 4 5 6 7 8 9 10

Simple Figures
Fruits

Otoliths
Incr. 1

Incr. 2
Incr. 3

Incr. 4
Incr. 5

Incr. 6
Incr. 7

Figure 5.3: Gantt diagram for the software project MLS development. Increments are coloured
as the studied problem their compounding tasks are motivated by

Increment 1: Obtaining histogram representations of simple figures

In this first increment, the functionality needed to generate a set of polygons from deforma-
tions of regular templates was implemented. Also, was developed the functionality to compute
histogram representations of the directional variables of these figures. Initially the directional
variable sample would be obtained computing the direction of points sampled taking uniformly
distributed directions from a central point and checking the collision with the contour of the
figure. The problem in the definition of a robust landmark for this central point, and problems
in this strategy with non convex figures fostered the redefinition of this sampling process.

Increment 2: Classification with simple figures

During this increment, functionality to transform these sets of histogram representations into
attributes usable for classification was developed, and the functionality required to test these rep-
resentations in simple classification models (K-NN, Random Forest and Gaussian Naive-Bayes).
K-NN will be the only model used in classification experiments after this phase.

Increment 3: Obtaining histogram representations of fruits

A real world problem is faced during this increment of fruit classification. Images of apples,
bananas and pears were retrieved to test the methodology. As a result, functionality to load
a contour from an image was develop using the numpy implementation of matching squares
algorithm [29]. Also, preprocessing and cleaning these fruit images was mandatory to obtain
representative contours. Functionality was develop to achieve this goal, but the images could not
be processed in a satisfactory way, due to lack of homogeneity in the images. Therefore, many
instances where not usable in the methodology and the data set did not have enough instances
to obtain relevant results.
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Increment 4: Clustering and Classification with fruit images

In this increment, the processed images of fruits were employed to test the methodology, us-
ing them in some experiments of classification with several models. In this phase functionality
adde covered new features such as the aligned histogram representation, as well as the k-Means
clustering algorithm experiment described in Section 3.4. Results obtained from this phase are
weak, due to the quality of the data set obtained.

Increment 5: Smoothing: Vertices reduction, splines, kernel density representations

Several techniques to pre-process data were developed during this phase. First, while the fruit
problem was still being explored, two techniques were proposed to be tested: using cubic splines
to interpolate of the contour of figures [30] and computing kernel density representation of the
directional variable [31]. The lack of a easy fitting implementation in Python, and the good
results obtained while testing kernel density representations in the simple figure problem caused
the development of this splines process to be postponed as future work. While exploring the
fish otolith images data set, functionality was develop to uniform the number of vertices of the
contours retrieved from images [29].

Increment 6: Obtaining histogram and kernel density representations of fish otoliths

During this phase the methodology is adapted and tested in the real world application of otolith
classification. The available functionality is adopted in order to load the data set of fish otolith
images. Functionality to automatically select the bandwidth of kernel density estimators is
added [2, 16, 25, 7].

Increment 7: Clustering and classification of fish otoliths

The real world problem of fish otolith shape classification is faced in this final phase of develop-
ment. Functionality to perform cross validation for generalization error estimation and for order
of neighborhood selection during train phase is added to the system.
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6
Conclussions and Future Work

In this work a characterization of shapes of objects based on directional data is proposed. The
ultimate goal is to categorize these objects according to their shapes. Intuitively, shape can be
defined as the geometrical property shared by different objects that is invariant to a loosely-
defined family of transformations, which includes translations, scaling, rotations, and small de-
formations. In the method proposed, shape is encoded by the distribution of unit vectors along
the normal direction at the boundaries of the object. In this manner, information on scale and
absolute distances is eliminated while preserving directional information, which is expected to
encode shape. This representation is obtained by first locating these boundaries with standard
image processing algorithms [29]. Then, normal unit vectors are computed at a set of points
located on this boundary. These vectors can be seen as realizations of a directional random
variable. This random variable can be characterized by its distribution, and in two dimensions,
the boundary is a curve, so the distribution of normal vectors is defined on the circle. Empirical
estimates of the probability density function can be computed using a scaled histogram, or a
smoother kernel density estimation using, for instance, Von Mises kernels [19, 17, 22]. In this
work both options are explored. For three-dimensional representations, the boundary of the
object is a surface. The distribution of three-dimensional unit normal vectors are defined on
a sphere. In this case Von Mises-Fisher kernels can be used [24]. Since the representation is
functional (and therefore, infinite dimensional), further reductions of information are needed
so that it can be used in practice. In particular, for two-dimensional data, representations are
discretized at regularly N = 64 spaced points along the circle. Since shape should be invari-
ant with respect to rotations, computationally expensive shape-alignment operations are needed
when this representations are used for clustering or classification, but low complexity opera-
tions can be used as approximations to these expensive alignments with the with an acceptable
error. A further dimensionality reduction, which is rotationally invariant, can be made using
as features the distances of the discretized densities and the uniform circular distribution. The
usefulness of these representations for clustering and classification of images of objects according
to their shapes is illustrated with otolith data. From these experiments it can be concluded that
smoothing is crucial when the features considered are distances to the uniform circular distri-
bution. This representation is computationally efficient and is reasonably accurate. Techniques
based on alignment, while being computationally costly, are very accurate and provide the best
overall results, especially when kernel estimates of the density of normal unit vectors are used.
This empirical investigation illustrates the effectiveness of the directional data representation
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proposed to encode shapes.

As a product of this project, a software tool MLS has been developed to perform experi-
ments and test the approach. This software tool can be used to generate and store histogram
and kernel density representations of figures, allowing the configuration of hyperparameters so
the process can be adapted to each data set, while also computing distance characterizations
of figures 3.3. This tool also includes functionality to perform clustering and classification of
figures using the methodology described in Chapter 3.

Some procedures were proposed during the development and remain as future work pro-
posal. Most of them are related with the data preprocessing, since there exist many alternatives
to apply in different phases of the process. For instance, a more sophisticated process to smooth
the contour of figures, with periodic cubic spline interpolation [32], or different techniques to
realize the directional variables, applying smoothing processes when sampling the contour of
the figures, such as a simple moving average strategy. Also, in the future is intended to test
the methodology in the MNIST database (http://yann.lecun.com/exdb/mnist/), a set of 70.000
instances of images of handwritten digits. This database has a well defined format and needs
minimum effort to preprocess. Finally, different models such as a vote based classifier, combin-
ing different metrics and distances defined in Section 3.3, or a clustering algorithm applying the
same metrics are proposed to explore in the future.
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Glossary

• Fish Otolith:: Calcium carbonate structure in the the inner ear of fishes sensitive to
accelerations.

• Concentration parameter:: Measure of dispersion analogous to the variance for circular
aleatory variables.

• Directional Variable:: Aleatory variable identified by the directions of the normal unit
vectors to the tangent hyperplanes at the boundary of a figure.

• Histogram representation: Representation of a figure in which the figure is encoded in
a discrete version of a normalized histogram as a estimation of the probability distribution
of the directional variable.

• Kernel density representation: Representation of a figure in which the figure is encoded
in a discrete version of a kernel density estimation of the probability distribution of the
directional variable.

• Aligned representation: Representation of a figure in which the figure is encoded with
a discrete representation, and this representation is rotated according to a landmark.

• Distance representation: Representation of a figure in which the figure is encoded with
the distance from its histogram representation or kernel density representation to a uniform
circular distribution.

• EPD: Empirical Probability Distribution. Estimation of the probability density function
of an aleatory variable obtained from a normalized histogram.

• KDE: Kernel Density Estimator. Non-parametric method to estimate the probability
density function of a random variable.

• K-NN: K Nearest Neighbors. Non-parametric method used for classification and regres-
sion.

• K-Means: Non-parametric method used for clustering and data mining.

• MLS: Software project developed to test the methodology proposed.

• Jupyter notebook: Document produced by the Jupyter Notebook App, which contain
both computer code (e.g. python) and rich text elements (paragraph, equations, figures,
links, etc ).

• Jupyter notebook App: server-client application that allows editing and running note-
book documents via a web browser

• von Mises distribution: Continuous probability distribution on the circle, that is a close
approximation to the wrapped normal distribution, which is the circular analogue of the
normal distribution.
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A
Exploratory Analysis: Polygon Metrics

In this annex a brief study of the metrics selected 3.3 applied to the categorization of polygons
problem is performed. A complete data set of histogram and kernel density representations
are obtained from three basic templates of triangular, rectangular and circular shapes. In total
300 instances are generated, with noisy variations. In Figure 3.5 a caption of the data set is
displayed. Different distances as defined in Section 3.3 are studied when applied to figures in
the data set. In Figures A.1 and A.2 the results are shown for the histogram and the kernel
density representation.

In these Figures is clear that labels can easily be differentiated using this characterization
whit multiple distances. From the image it is clear that in most cases each cases labels lay in well
distinguishable regions. In Section 3.4.2 using a K-NN model this feature is exploded. In Figure
A.3 the relation between the evaluation of the distances in both characterizations, histogram
and kernel density is displayed.
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L1 vs L1 L1 vs L2 L1 vs L L1 vs EMD L1 vs Hellinger L1 vs 2

L2 vs L1 L2 vs L2 L2 vs L L2 vs EMD L2 vs Hellinger L2 vs 2

L  vs L1 L  vs L2 L  vs L L  vs EMD L  vs Hellinger L  vs 2

EMD vs L1 EMD vs L2 EMD vs L EMD vs EMD EMD vs Hellinger EMD vs 2

Hellinger vs L1 Hellinger vs L2 Hellinger vs L Hellinger vs EMD Hellinger vs Hellinger Hellinger vs 2

2 vs L1 2 vs L2 2 vs L 2 vs EMD 2 vs Hellinger 2 vs 2

Figure A.1: Visualization of the correlation between different metrics applied to the histogram
representation of the polygons data set. Shapes circular, rectangular, and triangular in green
dots, blue squares and red triangles respectively.
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L1 vs L1 L1 vs L2 L1 vs L L1 vs EMD L1 vs Hellinger L1 vs 2

L2 vs L1 L2 vs L2 L2 vs L L2 vs EMD L2 vs Hellinger L2 vs 2

L  vs L1 L  vs L2 L  vs L L  vs EMD L  vs Hellinger L  vs 2

EMD vs L1 EMD vs L2 EMD vs L EMD vs EMD EMD vs Hellinger EMD vs 2

Hellinger vs L1 Hellinger vs L2 Hellinger vs L Hellinger vs EMD Hellinger vs Hellinger Hellinger vs 2

2 vs L1 2 vs L2 2 vs L 2 vs EMD 2 vs Hellinger 2 vs 2

Figure A.2: Visualization of the correlation between different metrics applied to the kernel
density representation of the polygons data set. Shapes circular, rectangular, and triangular in
green dots, blue squares and red triangles respectively.

L1 L2 L EMD Hellinger 2

Figure A.3: Visualization of the correlation between different metrics when applied to the his-
togram or the kernel density representation of the polygons in the data set. Shapes circular,
rectangular, and triangular in green dots, blue squares and red triangles respectively.
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B
Exploratory Analysis: Otolith Metrics

In this annex a brief study of the metrics selected 3.3 applied to the otolith classification problem
is performed. A complete data set of histogram and kernel density representations are obtained
from the figures of the otoliths. Both representations will be encoded in 64 dimensional vectors,
and obtained from a sample of 1000 points sampled across the contour of the otoliths. In Figure
B.1 the correlation between distances when applied to the otolith data set is displayed. In Fig-
ure B.2 the same information is visualized, but when distances are applied to the kernel density
representation.

In Figures B.1 and B.2, it can be observed that there seem to exist in most cases a region
occupied mainly by a family. Also, note that soleidae family, the most regular family, obtains
smaller values, while scombridae, the most elongated family, tends to obtain biggest values.

In Figures B.3 and B.4, the most irregular family, labridae is removed from the visualization.
When this label is removed from the data sat, the problem eases significantly, turning into a
linear separable problem for many representations.

In this last Figure B.5 the relation between two characterizations, histogram and kernel den-
sity is displayed.
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L1 vs L1 L1 vs L2 L1 vs L L1 vs EMD L1 vs Hellinger L1 vs 2

L2 vs L1 L2 vs L2 L2 vs L L2 vs EMD L2 vs Hellinger L2 vs 2

L  vs L1 L  vs L2 L  vs L L  vs EMD L  vs Hellinger L  vs 2

EMD vs L1 EMD vs L2 EMD vs L EMD vs EMD EMD vs Hellinger EMD vs 2

Hellinger vs L1 Hellinger vs L2 Hellinger vs L Hellinger vs EMD Hellinger vs Hellinger Hellinger vs 2

2 vs L1 2 vs L2 2 vs L 2 vs EMD 2 vs Hellinger 2 vs 2

Figure B.1: Visualization of the correlation between different metrics applied to the histogram
representation of the otolith data set. Families labridae, soleidae, and scombridae in red dots,
blue crosses and green triangles respectively.
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L1 vs L1 L1 vs L2 L1 vs L L1 vs EMD L1 vs Hellinger L1 vs 2

L2 vs L1 L2 vs L2 L2 vs L L2 vs EMD L2 vs Hellinger L2 vs 2

L  vs L1 L  vs L2 L  vs L L  vs EMD L  vs Hellinger L  vs 2

EMD vs L1 EMD vs L2 EMD vs L EMD vs EMD EMD vs Hellinger EMD vs 2

Hellinger vs L1 Hellinger vs L2 Hellinger vs L Hellinger vs EMD Hellinger vs Hellinger Hellinger vs 2

2 vs L1 2 vs L2 2 vs L 2 vs EMD 2 vs Hellinger 2 vs 2

Figure B.2: Visualization of the correlation between different metrics applied to the kernel
density representation of the otolith data set. Families labridae, soleidae, and scombridae in red
dots, blue crosses and green triangles respectively.
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L1 vs L1 L1 vs L2 L1 vs L L1 vs EMD L1 vs Hellinger L1 vs 2

L2 vs L1 L2 vs L2 L2 vs L L2 vs EMD L2 vs Hellinger L2 vs 2

L  vs L1 L  vs L2 L  vs L L  vs EMD L  vs Hellinger L  vs 2

EMD vs L1 EMD vs L2 EMD vs L EMD vs EMD EMD vs Hellinger EMD vs 2

Hellinger vs L1 Hellinger vs L2 Hellinger vs L Hellinger vs EMD Hellinger vs Hellinger Hellinger vs 2

2 vs L1 2 vs L2 2 vs L 2 vs EMD 2 vs Hellinger 2 vs 2

Figure B.3: Visualization of the correlation between different metrics applied to the histogram
representation of the otolith data set. Families soleidae, and scombridae in blue crosses and
green triangles respectively.
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L1 vs L1 L1 vs L2 L1 vs L L1 vs EMD L1 vs Hellinger L1 vs 2

L2 vs L1 L2 vs L2 L2 vs L L2 vs EMD L2 vs Hellinger L2 vs 2

L  vs L1 L  vs L2 L  vs L L  vs EMD L  vs Hellinger L  vs 2

EMD vs L1 EMD vs L2 EMD vs L EMD vs EMD EMD vs Hellinger EMD vs 2

Hellinger vs L1 Hellinger vs L2 Hellinger vs L Hellinger vs EMD Hellinger vs Hellinger Hellinger vs 2

2 vs L1 2 vs L2 2 vs L 2 vs EMD 2 vs Hellinger 2 vs 2

Figure B.4: Visualization of the correlation between different metrics applied to the kernel
density representation of the otolith data set. Families soleidae, and scombridae in blue crosses
and green triangles respectively.

L1 L2 L EMD Hellinger 2

Figure B.5: Visualization of the correlation between different metrics when applied to the his-
togram or the kernel density representation of the otolith data set. Families labridae, soleidae,
and scombridae in red dots, blue crosses and green triangles respectively.
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C
Examples of Jupyter notebooks

In this chapter some examples of Jupyter notebooks developed to test the Python implemen-
tation are displayed. In these notebooks, examples of executions of experiments described in
Sections 3.4 and 4.3, will be displayed in Sections C.2 and C.1 respectively.

C.1 Example of Jupyter notebook for Simple Figures Clustering
and Classification

In this notebook experiments related to the simple figures classification and clustering problem
are executed. Relevant information about the procedure such as results and execution time
will be displayed. The parameters are diferent to the ones used in Section 3.4 to save time and
space in the document.

Modules involved

In [1]: %load_ext autoreload
%autoreload 2
%reload_ext autoreload
import populations.polygonpopulations as pp
import distances.functionmeasures as fn
import distances.functiondistances as fd
import distances.periodicfunctiondistances as pfd
import estimations
import time

Data set generation

In [2]: number_of_vertices = 16
number_of_bins = 16
sampling_size=1000
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number_of_points= 16
h = 1/16
# Metrics for distance characterization
distances = [fn.distance_L_2, fn.distance_emd]
# Metrics to test in the classification algorithm
metrics = [fd.distance_L_2, fd.distance_emd]
# Periodic Metrics to test in the classification algorithm
pmetrics = [pfd.distance_L_2, pfd.distance_emd]
# Polygon population configuration
numbers_of_vertices=[3,4,32]
shape_names=["Triangle","Rectangle","Circle"]
max_noise=0.7
population_size = 100
# Metric for the sklearn KNN call below
metric = ’minkowski’
# Cross validation configuration
# Number of folds for generalization score estimates
N_folds = 10
# Number of folds for selecting K in training
n_folds = 3
# Feasible neighbor orders
l_neigh = [3,5,7]
start = time.clock()
dataset = pp.PolygonDataSet(shape_names,max_noise, population_size,

numbers_of_vertices, sampling_size, number_of_bins,
distances=distances, h=h)

print("Exec time:",time.clock() - start)

Exec time: 6.031575

Classification with periodic metrics

Histogram representation

In [3]: for pmetric in pmetrics:
estimations.cross_validate(dataset.complete_histogram_dataset,

dataset.complete_labels, l_neigh,
N_folds,n_folds, pmetric,
dataset.different_classes)

################################################################################
------Cross Validation------
Metric: distance_L_2
Instances: 300
Attributes dimensions: 16
Error estimation number of folds: 10
Error estimation train size: 270

K estimation number of folds: 3
K estimation train size: 180
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K estimation test size: 90
Error estimation test size: 30
K’s Selected: {3: 8, 5: 2, 7: 0}
Top K: 3 (8 times selected)
Time elapsed: 508.84
Error Estimate: 0.1600 ∓ 0.0904
Confusion Matrix:

Circle Rectangle Triangle
Circle 100.0 0.0 0.0
Rectangle 12.0 74.0 14.0
Triangle 1.0 21.0 78.0
********************************************************************************
################################################################################
------Cross Validation------
Metric: distance_emd
Instances: 300
Attributes dimensions: 16
Error estimation number of folds: 10
Error estimation train size: 270

K estimation number of folds: 3
K estimation train size: 180
K estimation test size: 90

Error estimation test size: 30
K’s Selected: {3: 6, 5: 4, 7: 0}
Top K: 3 (6 times selected)
Time elapsed: 1109.70
Error Estimate: 0.1567 ∓ 0.0517
Confusion Matrix:

Circle Rectangle Triangle
Circle 100.0 0.0 0.0
Rectangle 13.0 74.0 13.0
Triangle 1.0 20.0 79.0
********************************************************************************

Kernel density representation

In [4]: for pmetric in pmetrics:
estimations.cross_validate(dataset.complete_kde_dataset,

dataset.complete_labels, l_neigh,
N_folds,n_folds, pmetric,
dataset.different_classes)

################################################################################
------Cross Validation------
Metric: distance_L_2
Instances: 300
Attributes dimensions: 16
Error estimation number of folds: 10
Error estimation train size: 270

K estimation number of folds: 3
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K estimation train size: 180
K estimation test size: 90

Error estimation test size: 30
K’s Selected: {3: 9, 5: 1, 7: 0}
Top K: 3 (9 times selected)
Time elapsed: 560.02
Error Estimate: 0.0333 ∓ 0.0333
Confusion Matrix:

Circle Rectangle Triangle
Circle 100.0 0.0 0.0
Rectangle 4.0 91.0 5.0
Triangle 0.0 1.0 99.0
********************************************************************************
################################################################################
------Cross Validation------
Metric: distance_emd
Instances: 300
Attributes dimensions: 16
Error estimation number of folds: 10
Error estimation train size: 270

K estimation number of folds: 3
K estimation train size: 180
K estimation test size: 90

Error estimation test size: 30
K’s Selected: {3: 9, 5: 1, 7: 0}
Top K: 3 (9 times selected)
Time elapsed: 1176.41
Error Estimate: 0.0233 ∓ 0.0335
Confusion Matrix:

Circle Rectangle Triangle
Circle 100.0 0.0 0.0
Rectangle 1.0 94.0 5.0
Triangle 0.0 1.0 99.0
********************************************************************************

Classification with aligned representation

Histogram representation

In [5]: for metric in metrics:
estimations.cross_validate(dataset.complete_histogram_dataset,

dataset.complete_labels, l_neigh,
N_folds,n_folds, metric,
dataset.different_classes)

################################################################################
------Cross Validation------
Metric: distance_L_2
Instances: 300
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Attributes dimensions: 16
Error estimation number of folds: 10
Error estimation train size: 270

K estimation number of folds: 3
K estimation train size: 180
K estimation test size: 90

Error estimation test size: 30
K’s Selected: {3: 9, 5: 1, 7: 0}
Top K: 3 (9 times selected)
Time elapsed: 5.86
Error Estimate: 0.1533 ∓ 0.0521
Confusion Matrix:

Circle Rectangle Triangle
Circle 100.0 0.0 0.0
Rectangle 14.0 73.0 13.0
Triangle 2.0 17.0 81.0
********************************************************************************
################################################################################
------Cross Validation------
Metric: distance_emd
Instances: 300
Attributes dimensions: 16
Error estimation number of folds: 10
Error estimation train size: 270

K estimation number of folds: 3
K estimation train size: 180
K estimation test size: 90

Error estimation test size: 30
K’s Selected: {3: 10, 5: 0, 7: 0}
Top K: 3 (10 times selected)
Time elapsed: 36.17
Error Estimate: 0.1633 ∓ 0.0526
Confusion Matrix:

Circle Rectangle Triangle
Circle 100.0 0.0 0.0
Rectangle 10.0 73.0 17.0
Triangle 2.0 20.0 78.0
********************************************************************************

Kernel density representation

In [6]: for metric in metrics:
estimations.cross_validate(dataset.complete_kde_dataset,

dataset.complete_labels, l_neigh,
N_folds,n_folds, metric,
dataset.different_classes)

################################################################################
------Cross Validation------
Metric: distance_L_2
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Instances: 300
Attributes dimensions: 16
Error estimation number of folds: 10
Error estimation train size: 270

K estimation number of folds: 3
K estimation train size: 180
K estimation test size: 90

Error estimation test size: 30
K’s Selected: {3: 8, 5: 2, 7: 0}
Top K: 3 (8 times selected)
Time elapsed: 5.89
Error Estimate: 0.0233 ∓ 0.0335
Confusion Matrix:

Circle Rectangle Triangle
Circle 100.0 0.0 0.0
Rectangle 1.0 94.0 5.0
Triangle 0.0 1.0 99.0
********************************************************************************
################################################################################
------Cross Validation------
Metric: distance_emd
Instances: 300
Attributes dimensions: 16
Error estimation number of folds: 10
Error estimation train size: 270

K estimation number of folds: 3
K estimation train size: 180
K estimation test size: 90

Error estimation test size: 30
K’s Selected: {3: 10, 5: 0, 7: 0}
Top K: 3 (10 times selected)
Time elapsed: 36.22
Error Estimate: 0.0267 ∓ 0.0200
Confusion Matrix:

Circle Rectangle Triangle
Circle 100.0 0.0 0.0
Rectangle 3.0 93.0 4.0
Triangle 0.0 1.0 99.0
********************************************************************************

Classification with distances representation

Histogram representation

In [7]: estimations.cross_validate(dataset.complete_distance_histogram_dataset,
dataset.complete_labels, l_neigh,
N_folds,n_folds,’minkowski’,
dataset.different_classes)
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################################################################################
------Cross Validation------
Metric: minkowski
Instances: 300
Attributes dimensions: 16
Error estimation number of folds: 10
Error estimation train size: 270

K estimation number of folds: 3
K estimation train size: 180
K estimation test size: 90

Error estimation test size: 30
K’s Selected: {3: 10, 5: 0, 7: 0}
Top K: 3 (10 times selected)
Time elapsed: 0.08
Error Estimate: 0.0000 ∓ 0.0000
Confusion Matrix:

Circle Rectangle Triangle
Circle 100.0 0.0 0.0
Rectangle 0.0 100.0 0.0
Triangle 0.0 0.0 100.0
********************************************************************************

Kernel density representation

In [8]: estimations.cross_validate(dataset.complete_distance_kde_dataset,
dataset.complete_labels, l_neigh,
N_folds,n_folds, ’minkowski’,
dataset.different_classes)

################################################################################
------Cross Validation------
Metric: minkowski
Instances: 300
Attributes dimensions: 16
Error estimation number of folds: 10
Error estimation train size: 270

K estimation number of folds: 3
K estimation train size: 180
K estimation test size: 90

Error estimation test size: 30
K’s Selected: {3: 10, 5: 0, 7: 0}
Top K: 3 (10 times selected)
Time elapsed: 0.08
Error Estimate: 0.0033 ∓ 0.0100
Confusion Matrix:

Circle Rectangle Triangle
Circle 100.0 0.0 0.0
Rectangle 0.0 99.0 1.0
Triangle 0.0 0.0 100.0
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********************************************************************************

Clustering with aligned representation

Histogram representation

In [9]: estimations.cluster(attributes=dataset.complete_aligned_histogram_dataset,
k=3, real_labels=dataset.complete_labels)

C1 C2 C3
Circle 0 100 0
Rectangle 24 65 11
Triangle 38 5 57
Error: 0.5933333333333334

Kernel density representation

In [10]: estimations.cluster(attributes=dataset.complete_aligned_kde_dataset,
k=3, real_labels=dataset.complete_labels)

C1 C2 C3
Circle 100 0 0
Rectangle 16 79 5
Triangle 0 5 95
Error: 0.08666666666666667

Clustering with distances representation

Histogram representation

In [11]: estimations.cluster(attributes=dataset.complete_distance_histogram_dataset,
k=3, real_labels=dataset.complete_labels)

C1 C2 C3
Circle 100 0 0
Rectangle 0 100 0
Triangle 0 0 100
Error: 0.0

Kernel density representation

In [12]: estimations.cluster(attributes=dataset.complete_distance_kde_dataset,
k=3, real_labels=dataset.complete_labels)
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C1 C2 C3
Circle 100 0 0
Rectangle 0 100 0
Triangle 0 0 100
Error: 0.0

C.2 Example of Jupyter notebook for Otolith Clustering and
Classification

In this notebook experiments related to the fish otoliths classification and clustering problem
are executed. Relevant information about the procedure such as results and execution time will
be displayed. The parameters are different to the ones used in Section 4.3 to save time and space
in the document.

Modules involved

In [1]: %load_ext autoreload
%autoreload 2
%reload_ext autoreload
import compileall
compileall.compile_dir(".",force=True,quiet=True)
import populations.otolithpopulations as op
import distances.functionmeasures as fn
import distances.functiondistances as fd
import distances.periodicfunctiondistances as pfd
import estimations
import time

Data set generation

In [2]: number_of_vertices = 16
number_of_bins = 16
sampling_size=1000
number_of_points=16
# Metrics for distance characterization
distances = [fn.distance_L_2, fn.distance_emd]
# Metrics to test in the classification algorithm
metrics = [fd.distance_L_2, fd.distance_emd]
# Periodic Metrics to test in the classification algorithm
pmetrics = [pfd.distance_L_2, pfd.distance_emd]
# Folders of data sets of images
folder_names=["./data/families/labridaeFILLED/",

"./data/families/soleidaeFILLED/",
"./data/families/scombridaeFILLED/"]

# Cross validation configuration
# Number of folds for generalization score estimates
N_folds = 5
# Number of folds for selecting K in training
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n_folds = 3
# Feasible neighbor orders
l_neigh = [3,5,7]
start = time.clock()
dataset = op.OtolithDataSet(folder_names, number_of_vertices, sampling_size,

number_of_bins, distances)
print("Exec time:",time.clock() - start)

Exec time: 5.352024

Classification with periodic metrics

Histogram representation

In [3]: for pmetric in pmetrics:
estimations.cross_validate(dataset.complete_histogram_dataset,

dataset.complete_labels, l_neigh,
N_folds,n_folds, pmetric,
dataset.different_classes)

################################################################################
------Cross Validation------
Metric: distance_L_2
Instances: 240
Attributes dimensions: 16
Error estimation number of folds: 5
Error estimation train size: 192

K estimation number of folds: 3
K estimation train size: 128
K estimation test size: 64

Error estimation test size: 48
K’s Selected: {3: 0, 5: 3, 7: 2}
Top K: 5 (3 times selected)
Time elapsed: 144.08
Error Estimate: 0.0500 ∓ 0.0283
Confusion Matrix:

labridae soleidae scombridae
labridae 121.0 2.0 2.0
soleidae 0.0 70.0 0.0
scombridae 8.0 0.0 37.0
********************************************************************************
################################################################################
------Cross Validation------
Metric: distance_emd
Instances: 240
Attributes dimensions: 16
Error estimation number of folds: 5
Error estimation train size: 192

K estimation number of folds: 3
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K estimation train size: 128
K estimation test size: 64

Error estimation test size: 48
K’s Selected: {3: 2, 5: 1, 7: 2}
Top K: 3 (2 times selected)
Time elapsed: 304.13
Error Estimate: 0.0833 ∓ 0.0295
Confusion Matrix:

labridae soleidae scombridae
labridae 118.0 5.0 2.0
soleidae 2.0 68.0 0.0
scombridae 11.0 0.0 34.0
********************************************************************************

Kernel density representation

In [4]: for pmetric in pmetrics:
estimations.cross_validate(dataset.complete_kde_dataset,

dataset.complete_labels, l_neigh,
N_folds,n_folds, pmetric,
dataset.different_classes)

################################################################################
------Cross Validation------
Metric: distance_L_2
Instances: 240
Attributes dimensions: 16
Error estimation number of folds: 5
Error estimation train size: 192

K estimation number of folds: 3
K estimation train size: 128
K estimation test size: 64

Error estimation test size: 48
K’s Selected: {3: 1, 5: 3, 7: 1}
Top K: 5 (3 times selected)
Time elapsed: 142.67
Error Estimate: 0.0375 ∓ 0.0243
Confusion Matrix:

labridae soleidae scombridae
labridae 122.0 1.0 2.0
soleidae 0.0 70.0 0.0
scombridae 6.0 0.0 39.0
********************************************************************************
################################################################################
------Cross Validation------
Metric: distance_emd
Instances: 240
Attributes dimensions: 16
Error estimation number of folds: 5
Error estimation train size: 192
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K estimation number of folds: 3
K estimation train size: 128
K estimation test size: 64

Error estimation test size: 48
K’s Selected: {3: 2, 5: 2, 7: 1}
Top K: 3 (2 times selected)
Time elapsed: 298.89
Error Estimate: 0.0250 ∓ 0.0243
Confusion Matrix:

labridae soleidae scombridae
labridae 124.0 0.0 1.0
soleidae 0.0 70.0 0.0
scombridae 5.0 0.0 40.0
********************************************************************************

Classification with aligned representation

Histogram representation

In [5]: for metric in metrics:
estimations.cross_validate(dataset.complete_histogram_dataset,

dataset.complete_labels, l_neigh,
N_folds,n_folds, metric,
dataset.different_classes)

################################################################################
------Cross Validation------
Metric: distance_L_2
Instances: 240
Attributes dimensions: 16
Error estimation number of folds: 5
Error estimation train size: 192

K estimation number of folds: 3
K estimation train size: 128
K estimation test size: 64

Error estimation test size: 48
K’s Selected: {3: 0, 5: 1, 7: 4}
Top K: 7 (4 times selected)
Time elapsed: 1.53
Error Estimate: 0.0667 ∓ 0.0306
Confusion Matrix:

labridae soleidae scombridae
labridae 119.0 5.0 1.0
soleidae 0.0 70.0 0.0
scombridae 10.0 0.0 35.0
********************************************************************************
################################################################################
------Cross Validation------
Metric: distance_emd
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Instances: 240
Attributes dimensions: 16
Error estimation number of folds: 5
Error estimation train size: 192

K estimation number of folds: 3
K estimation train size: 128
K estimation test size: 64

Error estimation test size: 48
K’s Selected: {3: 1, 5: 2, 7: 2}
Top K: 5 (2 times selected)
Time elapsed: 9.02
Error Estimate: 0.0708 ∓ 0.0250
Confusion Matrix:

labridae soleidae scombridae
labridae 118.0 4.0 3.0
soleidae 1.0 69.0 0.0
scombridae 9.0 0.0 36.0
********************************************************************************

Kernel density representation

In [6]: for metric in metrics:
estimations.cross_validate(dataset.complete_kde_dataset,

dataset.complete_labels, l_neigh,
N_folds,n_folds, metric,
dataset.different_classes)

################################################################################
------Cross Validation------
Metric: distance_L_2
Instances: 240
Attributes dimensions: 16
Error estimation number of folds: 5
Error estimation train size: 192

K estimation number of folds: 3
K estimation train size: 128
K estimation test size: 64

Error estimation test size: 48
K’s Selected: {3: 4, 5: 1, 7: 0}
Top K: 3 (4 times selected)
Time elapsed: 1.49
Error Estimate: 0.0208 ∓ 0.0132
Confusion Matrix:

labridae soleidae scombridae
labridae 123.0 0.0 2.0
soleidae 0.0 70.0 0.0
scombridae 3.0 0.0 42.0
********************************************************************************
################################################################################
------Cross Validation------
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Metric: distance_emd
Instances: 240
Attributes dimensions: 16
Error estimation number of folds: 5
Error estimation train size: 192

K estimation number of folds: 3
K estimation train size: 128
K estimation test size: 64

Error estimation test size: 48
K’s Selected: {3: 4, 5: 1, 7: 0}
Top K: 3 (4 times selected)
Time elapsed: 9.03
Error Estimate: 0.0292 ∓ 0.0167
Confusion Matrix:

labridae soleidae scombridae
labridae 123.0 1.0 1.0
soleidae 0.0 70.0 0.0
scombridae 5.0 0.0 40.0
********************************************************************************

Classification with distances representation

Histogram representation

In [7]: estimations.cross_validate(dataset.complete_distance_histogram_dataset,
dataset.complete_labels, l_neigh,
N_folds,n_folds,’minkowski’,
dataset.different_classes)

################################################################################
------Cross Validation------
Metric: minkowski
Instances: 240
Attributes dimensions: 16
Error estimation number of folds: 5
Error estimation train size: 192

K estimation number of folds: 3
K estimation train size: 128
K estimation test size: 64

Error estimation test size: 48
K’s Selected: {3: 2, 5: 2, 7: 1}
Top K: 3 (2 times selected)
Time elapsed: 0.04
Error Estimate: 0.2125 ∓ 0.0306
Confusion Matrix:

labridae soleidae scombridae
labridae 105.0 10.0 10.0
soleidae 17.0 53.0 0.0
scombridae 14.0 0.0 31.0
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********************************************************************************

Kernel density representation

In [8]: estimations.cross_validate(dataset.complete_distance_kde_dataset,
dataset.complete_labels, l_neigh,
N_folds,n_folds, ’minkowski’,
dataset.different_classes)

################################################################################
------Cross Validation------
Metric: minkowski
Instances: 240
Attributes dimensions: 16
Error estimation number of folds: 5
Error estimation train size: 192

K estimation number of folds: 3
K estimation train size: 128
K estimation test size: 64

Error estimation test size: 48
K’s Selected: {3: 1, 5: 2, 7: 2}
Top K: 5 (2 times selected)
Time elapsed: 0.04
Error Estimate: 0.1125 ∓ 0.0468
Confusion Matrix:

labridae soleidae scombridae
labridae 120.0 0.0 5.0
soleidae 10.0 60.0 0.0
scombridae 12.0 0.0 33.0
********************************************************************************

Clustering with aligned representation

Histogram representation

In [9]: estimations.cluster(attributes=dataset.complete_aligned_histogram_dataset,
k=3, real_labels=dataset.complete_labels)

C1 C2 C3
labridae 99 20 6
scombridae 2 68 0
soleidae 7 6 32
Error: 0.17
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Kernel density representation

In [10]: estimations.cluster(attributes=dataset.complete_aligned_kde_dataset,
k=3, real_labels=dataset.complete_labels)

C1 C2 C3
labridae 109 9 7
scombridae 1 69 0
soleidae 3 0 42
Error: 0.08

Clustering with distances representation

Histogram representation

In [11]: estimations.cluster(attributes=dataset.complete_distance_histogram_dataset,
k=3, real_labels=dataset.complete_labels)

C1 C2 C3
labridae 92 21 12
scombridae 6 64 0
soleidae 11 0 34
Error: 0.21

Kernel density representation

In [12]: estimations.cluster(attributes=dataset.complete_distance_kde_dataset,
k=3, real_labels=dataset.complete_labels)

C1 C2 C3
labridae 95 8 22
scombridae 7 63 0
soleidae 4 0 41
Error: 0.17
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