
UNIVERSIDAD AUTONOMA DE MADRID
ESCUELA POLITECNICA SUPERIOR

Design, development and evaluation
of a software architecture for
tracking multiple vehicles in

camera networks
Emilio Gómez García

Director: Jorge García Blázquez
Supervisor: Marcos Escudero Viñolo

-MASTER THESIS-

Electronics Technology and Communications Department
Escuela Politecnica Superior

Universidad Autonoma de Madrid
June 2019

Design, development and evaluation
of a software architecture for
tracking multiple vehicles in

camera networks

Emilio Gómez García

Director: Jorge García Blázquez
Supervisor: Marcos Escudero Viñolo

Indra Sistemas S.A.
San Fernando de Henares

Mar Egeo, 4 Poligono Industrial 1
June 2019

Resumen

El pórtico free-flow es un sistema de peaje automático que funciona gracias a
la información proporcionada por las diferentes cámaras del sistema y al uso de las
nuevas tecnologías. Este trabajo se centra en una parte esencial para la creación de
esta infraestructura, el desarrollo del software necesario para detectar, clasificar y
rastrear objetivos a través de una red de cámaras, así como el estudio del hardware
necesario para su despliegue.

En primer lugar, es estudiado el estado del arte para entender los diferentes méto-
dos que existen para el desarrollo de cada una de las tareas de este sistema. Posteri-
ormente, se estudiará la propuesta realizada para el diseño seleccionado. Este diseño
estará formado por tres cámaras situadas en el pórtico, que estarán conectadas a una
placa de procesamiento de imágenes y a un foco para proporcionar la iluminación
necesaria durante la noche. Además será necesario utilizar un sistema central que
realizará las tareas de comunicación entre las tres cámaras, con el fin de disponer de
un diseño compacto que almacene la información de cada vehículo que pasa por el
pórtico. Esta información contendrá el tipo de vehículo, su matrícula y el tipo de ejes
que utiliza. Posteriormente, se realizará el estudio de los sistemas de hardware que se
utilizarán para la composición de este sistema multicámara, así como algunas de las
secciones de software más destacadas.

Se propondrá un sistema experimental para el análisis de los resultados globales
del sistema, así como la comparación entre los diferentes algoritmos propuestos, con
el fin de analizar sus propiedades y determinar cuál de ellos es el mejor.

Este TFM forma parte de un proyecto real que actualmente se está desarrollando
en INDRA, para su implantación tanto en carreteras nacionales como internacionales.

Palabras Clave

Pórtico de transito libre, detección de objetos, clasificación de objetos, seguimiento de
objetos, reconocimiento óptico de caracteres, JetsonTX2, camara Daheng Imaging.

v

Abstract

The free-flow portico is an automatic toll system that works thanks to the infor-
mation provided by different system cameras and the use of new technologies. This
work is focused on an essential part for the creation of this infrastructure, the devel-
opment of the software needed to detect, classify and track targets across a network
of cameras, known as multi-target multi-camera tracking, as well as the study of the
hardware necessary for its deployment.

First of all is to study the state of the art to understand the different methods
that exist for the development of each of the tasks of this system. Afterwards, the
proposal made for the selected design will be studied. This design will be formed
by three cameras placed on the portico, which will be connected to a board of image
processing and a strobe to provide the necessary lighting at night time. In addition to
these systems it will be necessary to use a central system that will carry out the tasks
of communication between the three cameras, in order to have a compact design that
stores the information of each vehicle that goes through the portico. This information
will contain the type of registration vehicle and the type of axles that it used. Later,
the study of the hardware systems that will be used for the composition of this
multicamera system will be carried out, and some of the most prominent software
sections.

An experimental system will be proposed for the analysis of the overall results of
the system, as well as the comparison between the different proposed algorithms, in
order to analyze its operations and determine which one of them is the best.

This work is part of a real project that is currently being developed in INDRA,
for the implementation in Spanish and international highways.

Keywords

Free-flow portico, object detection, object classification, object tracking, optical char-
acter recognition, multi-camera system, Jetson TX2, Camera Daheng Imaging.

vii

Acknowledgements

I would like to start by thanking Marcos for his help, support and involvement
with me and my project during the entire development of it. Your contribution has
been essential to the realization of the same, helping me to solve the setbacks that
have occurred.

Afterwards, I would like to thank all my colleagues at INDRA for their support,
making my first experience in a company a very positive experience. In particular,
thank my tutor Jorge for his support and help whenever I have needed it.

The realization of this master has been very positive, both personally thanks to
the moments lived in Budapest and Bordeaux and professionally, opening the doors
to the business world. However, the most important thing I take away are friends,
but real friends, after a year of living together... you learn to love them... or not?.

Thanks to all my friends, especially Duna to perform the tasks of paparazzi, I
hope that one day you learn to use a camera, and those who have helped me with
language.

To conclude, of course, thank you for your support to my parents and sister, many
times supporting me more than necessary. They are my source of inspiration.

Many thanks to all the family! :)

ix

Contents

Resumen v

Abstract vii

Acknowledgements ix

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Document organization . 3

2 State of the Art 5
2.1 Introduction . 5
2.2 Convolutional Neuronal Networks (CNNs) 6

2.2.1 MobileNet V1 . 7
2.2.2 Single Shot Multibox Detection (SSD) 9
2.2.3 SSD MobileNet V1 . 10

2.3 Object detection . 11
2.4 Object classification . 12
2.5 Object tracking . 12

2.5.1 Kalman Filter . 13
2.5.2 Hungarian Algorithm . 14

2.6 Vehicle Re-identification (ReID) . 15
2.7 Multicamera tracking . 16

3 Proposed system 17
3.1 Introduction . 17
3.2 Object detection . 20

3.2.1 Vehicle detection . 20
3.2.2 Axle detection . 23
3.2.3 Post-processing steps . 24

3.3 Object tracking . 26
3.3.1 Data estimation . 26
3.3.2 Data Association . 27
3.3.3 Tracker Management . 28

xi

xii CONTENTS

3.4 Object classification . 29
3.4.1 Vehicle classification . 30
3.4.2 Axle classification . 30

3.5 Plate recognition . 31
3.5.1 Introduction . 31
3.5.2 Optical Character Recognition (OCR) system development . . 32

3.6 Central System . 33
3.6.1 Piston . 34
3.6.2 Database . 37
3.6.3 Vehicle Association . 38
3.6.4 Axle to Vehicle Association . 39

4 Development 41
4.1 Introduction . 41
4.2 Jetson TX2 . 43

4.2.1 Jetson TX2 SDK . 44
4.3 Camera FLIR BFS-U3-31S4M-C . 48

4.3.1 Camera Daheng Imaging MER-231-41U3M/C 48
4.3.2 KOMOTO C7S . 52

4.4 KMDA-3602 Computer . 53
4.5 Hardware system design . 53

4.5.1 Centralized System . 55
4.5.2 Distributed System . 56

5 Experimental evaluation 57
5.1 Introduction . 57
5.2 Setup framework . 58

5.2.1 Datasets . 58
5.2.2 Metrics . 59
5.2.3 Parameters review . 60

5.3 Performance evaluation of single camera Algorithms 60
5.3.1 Evaluation of front camera methods 60
5.3.2 Evaluation of back camera methods 64
5.3.3 Evaluation of lateral camera methods 66

5.4 Performance evaluation of vehicle association 68
5.5 Performance evaluation of axle to vehicle association 70

6 Conclusions and future work 73
6.1 Conclusions . 73
6.2 Future work . 73

Bibliography 75

List of Figures

2.1 Depthwise separable convolutions . 8
2.2 Mobilenet V1 scheme architecture. 8
2.3 ReLU6 scheme. 9
2.4 Single Shot Multibox Detection (SSD) architecture. 10
2.5 SSD MobileNet V1 scheme architecture. 11
2.6 Kalman Filter iterating equations. 14

3.1 Free-flow portico infrastructure. Where 1 represents the Back camera,
2 represents the Front camera, 3 represents the Lateral camera and SC
represents the centralization system. 17

3.2 Scheme of the base algorithm. Where green boxes correspond with the
algorithm process for the back camera of the vehicles, the blue boxes
with the process for the front camera of the vehicles and the orange
boxes with the process for the lateral camera, filming wheels. The
central system is composed of three blocks. 18

3.3 Scheme of the background subtraction method to vehicle detection.
Where M ′ indicates that the image M is resized. 20

3.4 SSD MobileNet V1 scheme architecture. 21
3.5 Example of the labeled image that contains the COCO dataset for car,

motorcycle, truck and bus classes (for further references see www.cocodataset.org) 22
3.6 Example of detections with CNN. The images correspond with different

frames of the same video using a score threshold of 0.2. 22
3.7 Example of frames of the video used to retrain the original CNN called

"ssd mobilenet v1 coco" with the manual location of the axles. 23
3.8 Subset of the axle images dataset. The first row corresponds with

different double axles. The second row corresponds with a different
point of view of the same simple axle. The third row corresponds with
different simple axles. 24

3.9 Example of filter detections by size with FGBG detection. The left
image corresponds with bad detections obtained with FGBG because
of a blur of the image in the capture process. Right image corresponds
to the detection output after the filter by size process. 25

3.10 Equation and graphic example of the IoU calculation between two
bounding boxes. 25

xiii

http://cocodataset.org/####explore

xiv LIST OF FIGURES

3.11 Example of how IoU works. The images in the left correspond to detec-
tions before the application of IoU. The images on the right correspond
to the detections output after IoU with a threshold of 0.5. 26

3.12 Scheme of the object tracking algorithm to the Back camera. Same
for axle tracking and vehicle tracking. Data estimation step is imple-
mented using the Kalman filter and data association step using the
Hungarian algorithm. 26

3.13 Example of position estimated by using the Kalman Filter for axle and
vehicle detection. The red bounding boxes correspond to detections
and the green bounding boxes with their trackers. 27

3.14 Example of the update of the scores matrix. Image number 1 corre-
sponds to the original score matrix between trackers and detections.
Image 2 is the threshold of the matrix. Image 3 is the matrix after ap-
plying the Hungarian Algorithm over it, where detection and trackers
in red have not been matched. 28

3.15 Example of position estimation for the front camera video. Starting on
the left, the first image corresponds with an unmatched detection, the
second one with a matched tracker-detection and the last one with an
unmatched tracker. 29

3.16 Example of classification algorithm output for different vehicles/axles
input images. 29

3.17 Example vehicles with the perspective of the front portico camera. The
vehicles represented from left to right are motorcycle, car, truck and bus. 30

3.18 Subset of the axle classification images dataset. The first row cor-
responds to different double axles. The second row corresponds to
different simple axles. 31

3.19 Example of image modification to calculate OCR. Starting from the
left, in the first image, we have a plate miss detection, and, in the
second one, we have a wrong detection in which it detects an another
chain of characters as the plate. 32

3.20 Scheme of the frontal device algorithm. When the buffer containing
the plates of each vehicle is filled (has Hocr plates), the optimization
stage is performed to obtain a single output result. 33

3.21 Example of pistons with different camera algorithms for the same ve-
hicle. Starting from the left, the first column corresponds to the front
camera, the second to the back camera and the third to the lateral cam-
era. The upper row corresponds to the vehicle before passing through
the piston and the lower row with the vehicle or their axles just at the
moment they pass through the piston (green color of the piston). . . . 34

3.22 Example of colocation of the pistons (red lines) along with the camera
system. the placement distance between the three pistons is similar. . 35

3.23 Example of vehicles crossing the piston line to established the class of
each of them. The image on the right, represents when the object cross
the piston line. 35

3.24 Scheme of the frontal video-processing algorithm. 36

LIST OF FIGURES xv

3.25 Scheme of the back video-processing algorithm. 37
3.26 Scheme of the lateral video-processing algorithm. 37
3.27 Example of the empty database. 38
3.28 Example of database refilled only with information from the front camera. 38
3.29 Example actualization data on the back camera algorithm due to the

association vehicle front-back using the database. A change in the ID
can be observed when crossing the piston due to the association process. 39

3.30 Example of the database Fig:3.28 after the vehicle association using
the information of the back camera. 39

3.31 Example of the database Fig:3.30 after the axle association for cars
and motorcycles. 40

3.32 Example of the database Fig:3.31 after the axle association for trucks
and buses. 40

4.1 KOMOTO C7S with the different objects that make up this device (1:
Jetson TX2, 2: Daheng Imaging Camera, 3: KOMOTO strobe). 41

4.2 Both figures represents a device with a Jetson TX2 processor (the scale
between them it is realistic). The device on the left corresponds to the
developer kit, with all the possible benefits. The device on the right
corresponds to a simpler board to integrate in the C7S KOMOTO
device. 43

4.3 The Jetson Software Stack (for further references see www.developer.nvidia.com).
. 44

4.4 Inference workflow in TensorFlow. 45
4.5 Inference workflow in TensorRT. 46
4.6 ResNet-50 performing comparative between the TensorFlow-TensorRT

integration and running TensorFlow only (for further references see
www.devblogs.nvidia.com). 47

4.7 Camera FLIR BFS-U3-31S4M-C. 48
4.8 Camera Daheng Imaging MER-231-41U3M/C. 48
4.9 Example of toy car images captured with the Daheng Imaging Camera

and with different parameters. Starting from the left, the first column
corresponds to two images with the same focus and different vehicle
positions, the second with two images with different aperture and the
third with images with different time of exposure. 51

4.10 Example of image capture with Daheng Camera from a portico posi-
tion. The image on the right is a zoom on the left image (the license
plate has been blocked because it can not be shown) 51

4.11 KOMOTO C7S. The left image represents the appearance and the right
image represent the different objects that make up this device (1:Jetson
TX2, 2:Daheng Imaging Camera, 3:KOMOTO strobe). 52

4.12 KMDA-3602 Computer. 53
4.13 Scheme of the hardware connection system where each C7S correspond

with one of the devices represented in Fig:4.11. 54

https://developer.nvidia.com/embedded/develop/software
https://devblogs.nvidia.com/tensorrt-integration-speeds-tensorflow-inference/

xvi LIST OF FIGURES

4.14 Example of how the DTS placed in the central system works for all the
video-processing algorithms. 55

4.15 Example of how the algorithm works without DTS (proposed system
see Section:3.1). 56

5.1 Subset of images from different Scenarios. Starting from above the
first row corresponds to different images of the Scenario1, the second
with Scenario2 and the third with the Scenario3. 59

5.2 Example of results obtained by the algorithms of detection and traking
in a change of illumination of the scene. The image on the left corre-
sponds to the CCN method and the image on the left to the FGBG
method. 63

5.3 Example of the algorithm of detection and tracking with a truck during
four frames of the video obtained of Scenario1. In the fourth frame
the tracker is lost without correctly following the truck. 63

5.4 Example of failures of FGBG and CNN detection and tracking algo-
rithms in the detection of motorcycles. The image on the left corre-
sponds to CNN and the right to FGBG. 64

5.5 Example of two trucks not detected before passing through the piston. 66
5.6 Example of two cars badly classified. The car in the image on the left

is classified as a truck and the one in the image on the right as a bus. . 66
5.7 Example of the axle detection algorithm. The image on the left con-

tains undetected axles and the image on the right contains detected
axles. 68

5.8 Example of the axle classification algorithm. The image on the left
corresponds to a correct classification of a double axle and the image
on the right corresponds to the error when classifying a double axle as
simple. 68

5.9 Example of correct re-identification. The two upper images correspond
with the result of the single back algorithm and the two lower images
with the result after the re-identification process. 70

5.10 Example of two undetected vehicles with the back camera algorithm
for the Scenario3 rear video. 72

List of Tables

5.1 Table with the results of detection and tracking algorithm with the
CNN method for the video of the Scenario1. 61

5.2 Table with the results of classification algorithm with the CNN method
for the video of the Scenario1. 61

5.3 Table with the results of OCR algorithm with the CNN method for the
video of the Scenario1. 61

5.4 Table with the results of detection and tracking algorithm with the
FGBG method for the video of the Scenario1. 62

5.5 Table with the results of classification algorithms with the FGBG
method for the video of the Scenario1. 62

5.6 Table with the results of OCR algorithm with the FGBG method for
the video of the Scenario1. 62

5.7 Table with the results of detection and tracking algorithm for the back
video of the Scenario2. 65

5.8 Table with the results of classification algorithm for the back video of
the Scenario2. 65

5.9 Table with the results of OCR algorithm for the back video of the
Scenario2. 65

5.10 Table with the results of detection and tracking algorithm for the lateral
video of the Scenario3. 67

5.11 Table with the results of classification algorithm for the lateral video
of the Scenario3. 67

5.12 Table with the results of vehicle association algorithm for the videos of
the Scenario2. 69

5.13 Table with the results of vehicle classification algorithm for the back
video of the Scenario2 after the re-identification process. 69

5.14 Table with the results of axle to vehicle association algorithm for the
videos of the Scenario3. 71

5.15 Table with the results of axle to vehicle association algorithm for the
videos of the Scenario2. 71

xvii

xviii LIST OF TABLES

Chapter 1

Introduction

1.1 Motivation

Tolls on highways have been used by the society for many years, but thanks to the de-
velopment of new technologies, automatization of toll infrastructures is now possible,
yielding simpler, cheaper and convenient mechanisms for drivers.

This work is focused on the setup of a new infrastructure: the free-flow portico.
The free-flow portico proposes an electronic toll collection system, which eliminates
barriers and charging routes, allowing the free movement of vehicles and avoiding the
congestion generated by traditional toll collection processes.

The multitracking of vehicles and their classification in a camera system is an
essential aspect in the creation of the free-flow portico. However, it is not the only
one since the global free-flow system includes lasers as an additional method of clas-
sification, or antennas for the electronic collection system.

The continuous improvement and constant innovation of the state of the art
technologies, positions the free-flow gantry at the forefront of toll collection solu-
tions. The ’free flow’ system is present on the most modern highways in countries
such as Australia, Chile, Singapore or the United States (for further references see
www.lavanguardia.com).

The objective of the deployment of the toll highways is to improve movement on
their roads. Nevertheless, traditional systems of toll with cabins are prone to cause
long queues of waiting, a counterproductive factor that hinders their utility. Carlos
Frugoni, president of AUSA, told Infobae that traditional tolls had 200 cars per hour,
while with the new system, 800 could pass. In addition, he estimates that accidents
and pollution will be reduced thanks to the elimination of the stops and waiting times
(for further references see www.infobae.com).

1

https://www.lavanguardia.com/vida/20170426/422021217456/sistema-free-flow-primer-peaje-sin-barreras-autopista-ap7-brl.html
https://www.infobae.com/sociedad/2019/03/27/como-es-el-nuevo-sistema-de-peajes-con-camaras-inteligentes-que-reemplazara-a-las-tradicionales-cabinas-con-barreras/

2 CHAPTER 1. INTRODUCTION

On toll highways, the taxes imposed on each vehicle depends on the weight of the
vehicle, imposing a higher rate on heavier vehicles because the deterioration of the
road is greater in its path. The weight of the vehicles depends on the type of wheel
used, vehicles of greater tonnage will use double wheels to support their weight.

The weight of the vehicles and therefore the rate they must pay, depends on the
type of axle they use. In Spain, according to the Ministry of Development (for further
references see www.fomento.gob.es), the tariff groups are:

• Light (L). This type of vehicle does not contain axles of double type. It includes
motorcycles with or without sidecar, vehicles with or without a trailer, vans with
two axles (four wheels) and minibuses with two axes (four wheels).

• Heavy 1 (H1). Vehicles in this category may contain double axles. It includes
trucks of two or three axles, vans and minibuses with two axles and with one
double axle trailer.

• Heavy 2 (H2). This type of vehicles usually contains double axles. This group
encompasses trucks of at least four axles with or without a trailer, cars, vans or
minibuses of two axles, with a trailer of one or more axles with at least one of
them double.

1.2 Objectives

The objective of this project is the design, development and evaluation of a software
solution to detect, track and re-identify vehicles in a free-flow portico toll collection
system by analysing video captured by cameras placed on the porticoes and on the
sides of the road.

This objective is divided into the following partial objectives:

1. Study of the state of the art to become familiar with the techniques of detecting,
classifying, identifying and tracking objects.

2. The development of software algorithms, implementation of the software neces-
sary for vehicles and axles on a PC and a Jetson board (for further references
see www.nvidia.com).

3. The development of a centralization system, to carry out vehicle tracking and
to manage communication between the cameras of the system.

4. Study of the hardware systems used to design the portico.

http://www.fomento.gob.es/AZ.BBMF.Web/documentacion/pdf/M-520_2010.pdf
https://www.nvidia.com/es-es/autonomous-machines/embedded-systems/jetson-tx2/

1.3. DOCUMENT ORGANIZATION 3

5. Experimental evaluation discussion, and comparison of the results obtained by
the different algorithms integrated.

1.3 Document organization

The rest of the document is arranged into 8 sections

1. Introduction. Work motivation and objectives.

2. State of the Art. State of the art about convolutional neuronal networks
(CNNs), object detection, object classification, object tracking, re-identification
(ReID) and multi-camera tracking (MTMC) intended for use in vehicles field.

3. Proposed System. Description of the general design of the device and each of
the blocks that compose it. The design developed both for each of the cameras
and for the central system will be explained.

4. Development. Description of the hardware used for the system, and of the
communication between the different devices and with the central system from
which the entire network is to be monitored. This chapter also deals with some
important features of the software.

5. Experimental evaluation. Evaluation of the results obtained with the proposed
system comparing the results obtained with the different algorithms developed
or integrated.

6. Conclusions and future work. Overall summary, personal reasoning and poten-
tial improvements that could be introduced in this system.

7. Bibliography.

4 CHAPTER 1. INTRODUCTION

Chapter 2

State of the Art

2.1 Introduction

The opportunity of highway tolls to use traffic cameras to track vehicles over large
areas that span multiple cameras and the increasing interest in deep learning tech-
niques, such as Convolutional Neuronal Networks (CNNs), brings great advantages
over traditional toll methods.

This goal has to address three different but closely related research problems:

• Detection, classification and tracking of targets within a single camera, known
as multi-target single-camera (MTSC) tracking.

• Re-identification of targets across multiple cameras, hereinafter ReID.

• Detection and tracking of targets across a network of cameras, known as multi-
target multi-camera (MTMC) tracking. MTMC tracking can be regarded as
the combination of MTSC tracking within cameras and image-based ReID with
spatiotemporal information to connect target trajectories between cameras [1].
Much attention has been paid in recent years to the problem of vehicle-based
re-identification and MTMC tracking.

Object detection and classification play an important role in the computer vision
field. To achieve good results, both object detection and classification needs pre-
processing steps, such as eliminate noise, adjusting contrast, re-sizing, and background
subtraction. Different algorithms such as Scale-Invariant Feature Transform (SIFT)
[2], Speeded-Up Robust Features (SURF) [3] or Histogram of Oriented Gradients
(HOG) [4] are used to extract features and points of interest from images. For a long
time, object detection and classification depended on these hand-crafted features.
Consequently, selecting good features is crucial to achieving high accuracy [5].

5

6 CHAPTER 2. STATE OF THE ART

However, lately, interest in deep learning techniques, such as Convolutional Neu-
ronal Networks (CNNs), has increased, although the first CNN dates back to the
1990s [6]. Overall, CNNs have achieved outstanding results not only within the com-
puter vision field but also within the audio field. The advantages of these networks,
come from needing no extensive pre-processing [7] and hand-crafted features.

Sermanet et al. [8] development of a network that can be used both to detect
and to classify. Initially, the CNNs were only used to classify, but here is proposed
some modifications on the AlexNet layers to be able to classify, like including non-
overlapping pooling, in the first two layers. The detection model is trained to generate
the bounding boxes that represent the position of the detected objects. Detection and
classification CNNs are ran at the same time, and the final result will be the union
of both outputs.

Vehicle tracking systems obtains position information from a vehicle detected
over time. Tracking is needed when analyzing traffic flow and behavior or identifying
traffic accidents [9]. There are various factors that may turn the recognition process
needed to track more difficult, such as: variation of lighting and weather conditions,
the number of different vehicle types or the distance between the vehicles and the
capture device.

The fields of detection [10], classification [11] and tracking [12] of vehicles have
been exhaustively studied, whereas research on ReID has been scarcer. The objective
of ReID is to find in a database the images of the same vehicle captured by different
cameras. This task is essential in different fields of the artificial vision including:
video intelligent transportation [9], surveillance [13] and urban computing [14]. The
most precise way to perform this ReID is by registration of the car’s license code.

2.2 Convolutional Neuronal Networks (CNNs)

It is not the objective of this master’s degree project to detail the operation of the
CNNs, we here use the CNNs under a black-box paradigm, i.e. we understand the
CNNs as a type of neural networks able to detect and classify an entry data providing
an exit, after a training previous made from a large amount of data. They are formed
by neurons interconnected which in turn form layers, the number of these layers
being the depth of the network. These neurons have as input neurons of the layer
before and its output feeds one or more neurons of the next layer. Each of these
neurons has an associated weight that is obtained from the training of the network.
In short, a trained network is defined by its architecture (organization of neurons
and their connections) and by the weights learned or adjusted during the training.

2.2. CONVOLUTIONAL NEURONAL NETWORKS (CNNS) 7

The particularity of convolutional networks is that these weights are organized in
multi-dimensional filters (kernels) that are applied locally on multi-dimensional data
at the entrance of each convolutional layer. In addition to the convolutional layers,
there are additional layers within the CNN architectures, in particular, some types of
additional layers that use the networks analyzed in this work are:

• Fully-connected, where all the neurons of a layer are connected to those of the
adjoining layer.

• Pooling layers to reduce the size of the input data and enlarge the receptive
field of deeper layers.

• Rectified Linear Unit or ReLU to increase the non-linearity of the data, making
the output equal to the input if it is positive and 0 otherwise.

• Softmax, last layer that adapts the result to convey probability-like information.

In the following sections, we study some interesting CNNs for the development of
the proposed system.

2.2.1 MobileNet V1

The main objective of MobileNet Version 1 (V1) [15] is to replace the convolutional
layers needed for this type of networks with others that have a smaller computa-
tional expense and that obtain similar results. These layers are known as depthwise
separable convolution blocks.

These layers are arranged in two sub-layers. First, the input filter with a depthwise
convolution layer, and then, the combination of these filtered values with a pointwise
convolution layer creating the final result of the depthwise separable convolution block
(see Fig:2.1).

This depthwise separable convolution block formed by pointwise and depthwise
layers, performs the same function as the convolutional layers in less time.

8 CHAPTER 2. STATE OF THE ART

Figure 2.1: Depthwise separable convolutions

The MobileNet V1 architecture [15], is formed by a 3x3 convolutional network
layer as the first step, followed by 13 depthwise separable convolution block layers as
seen above.

Reduction in size in some of these depthwise separable convolution block, is not
due to the use of pooling layers, but to the use of 4 depthwise layers with a stride
of 2. The introduction of this stride, causes the size reduction of the next data layer
and increment the output channels. If the input image has a size of 300x300x3 then
the output of the last depthwise separable convolution block will be a 10x10x1024
feature map (see Fig:2.2).

Figure 2.2: Mobilenet V1 scheme architecture.

Convolution layers of this architecture are followed by normalization. Specifically,

2.2. CONVOLUTIONAL NEURONAL NETWORKS (CNNS) 9

this network uses as activation function a rectified linear unit (ReLU). Particularly,
ReLU6 is used, which is a more robust variation of ReLU and its shape is similar to
a sigmoid (see Fig:2.3).

y = min(max(0, x), 6) (2.1)

Figure 2.3: ReLU6 scheme.

When this structure is used to classify, an average pooling layer is introduced at
the end, followed by a fully-connected classification layer and a softmax.

This network achieves a speed 9 times higher than other networks with the same
accuracy. This is due to the use of new depthwise layers replacing the convolutional
ones.

2.2.2 Single Shot Multibox Detection (SSD)

To know the meaning of SSD, let’s first see the meaning of each one of the words that
give them the name:

• Single Shot, implies that both the detection and the classification tasks are
carried out within a single forward pass over the network.

• MultiBox, it is a technique implemented by Szegedy et al. [16] for bounding
box regression.

• Detector, cause the network is focused on detect objects.

10 CHAPTER 2. STATE OF THE ART

Figure 2.4: Single Shot Multibox Detection (SSD) architecture.

The SSD method (see Fig:2.4) is a feed-forward CNN which output is the position
of the detected objects (represented by bounding boxes) and the scores showing the
belongingness to particular classes of objects. This method uses a non-maximum
suppression step to obtain the definitive results.

The SSD object detection architecture is composed of two parts. A feature maps
extraction part using VGG-16 [17] or MobileNet, and an object detection part on top
of it.

Output bounding boxes are restricted to a set of scales per feature map location
in the image. On the detections of interest adjustments are made to the boxes to
match better the object’s shape, combining predictions of multiple feature maps with
different resolutions to handle objects of different sizes.

2.2.3 SSD MobileNet V1

Single Shot Multibox Detection architecture (see Fig:2.4) builds on top of other archi-
tectures, typically on MobileNet architecture (see Fig:3.4), discarding fully connected
layers [4]. The choice of these architectures as the basis on which the SSD architec-
ture is introduced, is due to its great precision in the task of classifying high-quality
images.

Instead of the fully connected layers that make up the end of the MobileNet
V1 architecture, some convolutional layers are added with the objective of extract
features at multiple scales, decreasing the size of the input in each of those layers.

2.3. OBJECT DETECTION 11

Figure 2.5: SSD MobileNet V1 scheme architecture.

2.3 Object detection

Object detection refers to the ability to locate objects in an image by identifying each
object.

Detecting vehicles from videos is one of the bases for systems of intelligent traffic
management [18]. In recent years many efforts have been put into the development
of algorithms in this field [19] [20], and creating benchmark for evaluation [21]. In
addition, the advance of CNN has provoked incredible results in the task of vehicle
detection and in other detection tasks [22] [23].

In 2013 Girshick et al. [24] introduced a region CNN proposal denominated R-
CNN. This method uses selective search to find possible regions in which the object is
located, where the objects of interest will be found in several of those regions. Later
will be obtained 4096 feature vectors with AlexNet in each proposed region. Finally,
each vector will be classified using SVMs, where each SVM has been trained for a
class, getting better results than many algorithms using low-level features, as shown
on the ILSVRC2013 detection dataset.

Ming Liang and Xiaolin Hu [25] propose a recurrent CNN. This solution is in-
spired by recurrent connections in recurrent neural networks. The authors develop a
recurrent convolutional layer that is used instead of regular convolutional layers in the
proposed model. Only the first convolutional layer of the network is not recurrent.
The base network and training process were adjusted from AlexNet. The depth of
the network is increased by adding recurrent connections.

YOLO [26] and SSD MultiBox (Single Shot Detector) [27] are two of the most
recent object detection approaches. Some previous works use classifiers to perform ob-
ject detection. In contrast, YOLO predicts bounding box coordinates along with the

12 CHAPTER 2. STATE OF THE ART

class score within the same neural network. Unlike region proposal-based networks
YOLO uses the whole image instead of separated regions to make decisions. The net-
work architecture is based on GoogleLeNet [28] where inception modules are replaced
by reduction layers. Twenty convolutional layers are pre-trained and then another
four convolutional and two fully-connected layers are added to the model. Each input
image is divided into a grid. Each grid cell predicts bounding box coordinates, the
bounding box confidence and a class probability.

2.4 Object classification

Object classification algorithms detect the class that corresponds to an input object,
CNNs have been a great step forward in this task.

The algorithm proposed by Krizhevsky et al. [29] in 2012, was a breakthrough in
the treatment of this task with a long dataset thanks to the use of AlexNet. With
this algorithm it was shown that CNNs are able to work with large amounts of images
getting good results, thanks to the depth of them. Without any pre-processing step
of the images, the network is formed by 5 convolutional, 3 fully-connected layers that
use ReLU as activation function and a final softmax layer with 1000 units. To avoid
overfitting during training they propose data augmentation and dropout.

A new VGGNet architecture [30] was introduced in 2014, which remained in first
and second position in the 2014 ILSVRC Competition for classification and localiza-
tion of objects respectively. This network is based on AlexNet, using smaller kernels
of size 3x3 in all the convolutional layers. In addition, successive convolutional layers
are used without any pooling between them. The authors tested different configura-
tions, but the best results were obtained with the architectures composed of 16 and
19 layers.

The CNN-RNN is obtained by combining a recurrent neural network with a convo-
lutional neural network [11]. The recurrent neural network is used to classify multiple
objects from the same image. While adding RNN to the original network gives better
results. Authors proposed a CNN based on VGGNet, where the RNN provides the
relation between the images and their classes.

2.5 Object tracking

Object tracking systems obtains the position information from an object detected
over the time that is present at the scene.

The first algorithms focused on solving multiple object tracking (MOT) tasks, was

2.5. OBJECT TRACKING 13

based on Multiple Hypothesis Tracking (MHT) [31] or in the use of Joint Probabilistic
Data Association (JPDA) filters [32][33]. The main problem of these algorithms lies
on their inability to track multiple objects in real time. Later, other proposals were
made for this task, such as those made by Rezatofighi et al. [33] based on the JPDA
method [32], or by Kim et al. [34]. However, these methods are also not able to solve
the real time problem.

All tracking algorithms need to detect objects at some point. They keep track of
the detected objects by correlating them during the time that they are on the scene.
For this, features such as location or appearance are used. Models can be based on
the appearance of each detected object [35] or the global appearance [12]. Some of
these models also add the movement feature, with the aim of associating detections
and trackers [12]. This connection between detections and trackers can also be made
through other methods as with the Hungarian algorithm [36].

Our approach is based on two classical and extremely efficient methods. One
is the Kalman filter [37], which predicts the position of the vehicles depending on
their movement. The second one is the Hungarian method [36], which makes the
association between detections and trackers. This tracking method provides great
performance and reliability to carry out real-time tracking (online tracking).

2.5.1 Kalman Filter

The Kalman Filter [38][37] is a recursive optimal estimation algorithm that predicts
the parameter of interest given a set of measurements.

The first step of the Kalman Filter is to obtain the model of the system. The
physical system is modeled by a state vector x (see first Eq:2.2), simply called the
state, and a set of equations called system model. The system model z (see second
Eq:2.2) is an equation of vectors that describes the evolution of the state over time.

xk = Fxk−1 +Buk + wk−1 (2.2)

zk = Hxk + vk (2.3)

The first equation tells that any xk is a linear combination of its previous value
xk−1 adding a control signal uk (usually this signal is equal to 0) and wk−1 a Gaussian
vector to model the noise associated with the system model. Where usually the
transition matrix of states F and the matrix B are constant matrices that define the
model.

The second equation tells that in every instant k we have a noisy observation of the
state vector. Where H is the called measurement matrix and vk is a random vector

14 CHAPTER 2. STATE OF THE ART

modelling the uncertainty associated with the measurements, typically a Gaussian
signal.

Once we have that the model is fit into the Kalman Filter model, the next step
would be to obtain the initialization of the previous parameters. Also, to start the
process it is necessary to estimate x̂0 and P0 of the prediction and update equations.

Kalman filter consists of two steps [38]: prediction and update. The first step
obtains the current state from previous states and the second step is used to correct
the state. The system iterates between these two steps until calculating the best
system estimator x̂−k [38] (see Fig:2.6).

Figure 2.6: Kalman Filter iterating equations.

Where in prediction phase equations, x̂−k is the state mean, P−k is the state covari-
ance, F is the state transition matrix, Q is the process covariance, B is the control
function matrix and uk is the control input.

In correction equations x̂k is the estimate of x at time k. Also, Pk which is
necessary for the future estimate with x̂k. H is the measurement function matrix, z
is the measurement, R is the measurement noise covariance, K is the Kalman gain
and I is the identity matrix.

2.5.2 Hungarian Algorithm

The Hungarian algorithm is an optimization algorithm which solves the problem of
assigning different types of data over time, such as detections and trackers [36]. This

2.6. VEHICLE RE-IDENTIFICATION (REID) 15

algorithm has four steps, where the first two run only once and the last two until they
find the desired optimal result. The entry of this algorithm is a positive matrix (cost
matrix) of size nxn that relates the two data sets.

1. Subtract row minima. Identify the minimum of each column in the obtained
matrix, and subtract it from all the elements

2. Subtract column minima. In the obtained matrix the minimum of each column
is identified, and all the elements of the column are subtracted.

3. Cover all zeros with a minimum number of lines. The idea of this step is
to cover all zeros in the previous matrix using the minimum number of lines
possible (only vertical and horizontal lines). If all zeros can be covered with n

lines, the optimal assignment will have been found and the algorithm ends.

4. Create additional zeros. Look for the smallest element in the previous matrix
that has not been covered by a line. Then subtract this number from the
elements that have not been covered and added to the elements covered by
more than one line.

2.6 Vehicle Re-identification (ReID)

Currently, this task is still under development, with many proposed works. The first of
them, based their models on the classification of vehicles by appearance, categorizing
them by type and colour in a database as in the method proposed by Feris et al.
[10]. Alternatively, additional information such as texture and semantic attributes
has been used, as in the algorithm porposed by Liu et al. [39]. However, algorithms
based on appearance are not able to re-identify the same vehicle, due to problems
such as changes in illumination, occlusions or points of view. Therefore, methods
capable to identify a vehicle with a unique ID have been proposed, where the license
plate will be this only ID per vehicle.

The easiest way to identify a vehicle is by reading the license plate [40], as every
vehicle has a different one. Automatic License Plate Recognition (ALPR) [41] are
the algorithms used to recognize the plates in an image, divided into four tasks: the
detection of the vehicle, the detection of the plate, character segmentation and the
recognition of these characters. The Optical Character Recognition (OCR), is known
as the union of the last two tasks. Actually, the OCR is one of the best processes that
aims to digitize texts, these are identified automatically from symbols or characters
of a given alphabet, to later be stored in the form of data.

16 CHAPTER 2. STATE OF THE ART

These ALPR algorithms are widely used to identify vehicles [40] especially in con-
trolled environments such as parking, as these methods may fail due to environmental
conditions [10].

The use of convolutional neural networks also meant supposed an improvement in
these algorithms. The use of siamese neuronal networks (SNN) is known for signature
recognition [42], face recognition [43] or person identification [44], but currently also
used in registry recognition algorithms for accurate vehicle ReID.

2.7 Multicamera tracking

Using multiple cameras with different points of view for tracking reduces the ambi-
guity you have with the use of a single camera, using algorithms to map the positions
of an object in the different cameras to a ground plane, and later making the asso-
ciation of that object along the system of cameras. The different scenarios proposed
by each of the cameras can be: not overlapping [45], be partially overlapping [46] or
fully overlapping [47]. Our system is employed in an environment without camera
overlapping.

This type of algorithms can be divided into three steps, after the definition of an
operational area.

1. Object detection on each camera. Detection is obtained in the initially defined
operational areas [48], where the algorithm is evaluated. With the use of these
areas a controlled working environment is achieved, looking for the maximum
overlap between the different cameras of the system.

2. Projection of the detections onto the operational plane. Semantic strategies are
used to assign a single object to each pixel of the images.

3. Combination of detections and using back-projections to obtain the detections
of the same object in the different cameras. These fusion algorithms are divided
into three groups. The first method uses geometric intersections between detec-
tions to combine them. The second method is based on probabilistic algorithms,
using statistical modelling for the union of detections. The last method is based
on CNN, achieving good performance even with the presence of occlusions [49].

Post-processing algorithms are often used on the obtained results to improve de-
tection localization [49].

Chapter 3

Proposed system

3.1 Introduction

This work is focused on the multitracking system for the free-flow portico. Initially,
the system poses the use of three cameras in each free-flow portico (see Fig:3.1).

Figure 3.1: Free-flow portico infrastructure. Where 1 represents the Back camera, 2
represents the Front camera, 3 represents the Lateral camera and SC represents the
centralization system.

1. Front camera to monitore and acquire front registration of vehicles.

2. Back camera to monitore and acquire rear registration of vehicles.

3. Lateral camera to axle detection of registered vehicles, differentiating between

17

18 CHAPTER 3. PROPOSED SYSTEM

single and double axles. Necessary because of the type of axle (simple or double)
indicates if the vehicles is heavier and has to pay a higher rate [50].

The base algorithm is formed by three parallel processes to track, classify and
identify vehicles and axles, merging these informations by a central system (SC)
equipped with software solutions for multi-camera tracking, vehicle re-identification
and camera-network management (see Fig:3.2).

Figure 3.2: Scheme of the base algorithm. Where green boxes correspond with the
algorithm process for the back camera of the vehicles, the blue boxes with the process
for the front camera of the vehicles and the orange boxes with the process for the
lateral camera, filming wheels. The central system is composed of three blocks.

Below is a brief explanation of each step, which are explained further in detail in
each section of the chapter.

• Video processing algorithms.

1. Input. The input for each of the three algorithms (IkB, I
k
F , I

k
L) that are

developed in parallel (back, front and lateral) is a video frame image from
the different cameras.

2. Detection. Software to locate vehicles for camera 1 and 2, or axles for cam-
era 3. The output is the coordinates that correspond with the bounding
boxes of the detected objects ([D]kB, [D]kF , [D]kL). Where [D]kB is a set that

3.1. INTRODUCTION 19

contains the n detections obtained by the algorithm of the back camera in
the frame k, [D]kB = [dkB,1, d

k
B,2...d

k
B,n].

3. Tracking. Software to keep real-time tabs on the position of each object of
interest, assign to each vehicle/axle an identification number or ID to each
vehicle/axle. The outputs are the tackers ([T]kB, [T]

k
F , [T]

k
L) that contain

the position information and a representative ID of each tracker. Where
[T]kB is a set that contains the n trackers (position and ID) obtained by
the algorithm of the back camera in the frame k, [T]kB = [tkB,1, t

k
B,2...t

k
B,n].

4. Classification. Software to detect the type of class that corresponds to
each input object identified by its bounding box ; car, motorcycle, truck or
bus for vehicle classification, and simple or double for axle classification.
The outputs have the class information for each input object ([C]kB, [C]kF ,
[C]kL). Where [C]kB is a set that contains the n classes obtained by the
algorithm of the back camera in the frame k for the n input trackers,
[C]kB = [ckB,1, c

k
B,2...c

k
B,n].

5. Plate recognition with OCR. Software for license identification. The out-
puts have the plate information for each tracker ([O]kB, [O]kF , [O]kL). Where
[O]kB is a set that contains the n plates obtained by the algorithm of the
back camera in the frame k for the n input trackers, [O]kB = [okB,1, o

k
B,2...o

k
B,n].

6. The final outputs ([V]kB,[V]kF ,[V]kL), contain the information of time, ID,
position and class for axle algorithm, adding the number of plate for the
vehicles algorithms: V k

L = [[T]kL, [C]kL, t], V
k
F = [[T]kF , [C]kF , [O]kF , t] and

V k
B = [[T]kB, [C]kB, [O]kB, t].

• Central System.

1. Vehicle association. The input for each frame ([V]kB,[V]kF) contains the
time, ID, class and plate values of the front camera vehicle’s trackers V k

F .
Comparing the number of plate of the vehicles in the back camera with the
plates of the vehicles in the front camera, they are assigned the ID and the
appropriate class to the vehicle matched. The time information when the
vehicle goes out of the front camera and it is matched in the back camera
is saved in the output with the ID, class and plate [V]kB,F .

2. Axle to vehicle association. Assign the axle type [V]kL to the vehicle infor-
mation [V]kB,F (ID, class and plate) using the time information, obtaining
the final output [V]kB,F,L a set with the information of ID, class, plate and
number and type of axles, of all the vehicles detected in the time k.

20 CHAPTER 3. PROPOSED SYSTEM

In the following sections the camera algorithms are analyzed by blocks (detection,
classification, tracking and OCR). Then, the central system is studied.

3.2 Object detection

Object detection refers to the ability to locate objects in an image by identifying each
object, in this case, two algorithms have been implemented, one to detect vehicles
and the other to detect axles.

3.2.1 Vehicle detection

Vehicle detection takes a captured image as input and produces the bounding boxes
of the vehicles detected as the output. This step was implemented using two differ-
ent methods, background subtraction (FGBG) and convolutional neuronal networks
(CNN).

1.- Background Subtraction

The subtraction process is divided into different steps (see Fig:3.3).

Figure 3.3: Scheme of the background subtraction method to vehicle detection. Where
M ′ indicates that the image M is resized.

The input in the frame k of the video is the original frame in this time Ik.
To obtain the vehicles detections it is proposed the Gaussian Mixture-based Back-

ground/Foreground Segmentation Algorithm. The oriented gradient histogram is a
method to detect people based on a model of shape and appearance characteristics
defined by the intensity gradients and their edge distributions.

First, using the method based on [51][52] a background subtract object its cre-
ated Mk applying an algorithm using Gaussian mixture probability density, where

3.2. OBJECT DETECTION 21

parameters of the Gaussian model are updated by using recursive equations, selecting
the number of Gaussian distributions for each pixel. This method detects objects of
interest as well as their shadows, and it provides good adaptability to varying scenes
due to illumination changes etc.

After obtaining the foreground mask of a frame, there are some image processing
steps implemented to improve the detections.

First of all, the maskMk is resizedM ′kin order to obtain a higher processing speed,
since for the next steps high quality is not necessary to obtain good performance. The
value of the ratio between this new image and the original one is saved to return the
results to their original size afterwards.

An image blurring or smoothing step over the mask M ′s
k is implemented, to make

the positive values larger and more compact, and eliminate image noise like the Salt
and Pepper Noise produced by the acquisition methods.

Then a thresholding step M ′b
k is used to classify pixel either as foreground or

background, using a threshold value of 128. Note that pixel values are in the range
[0,255]. Only pixels values greater than this threshold are classified as foreground.
Over this thresholded image, the contours of each object detected are obtained BBk.

2.- Convolutional Neuronal Networks (CNN)

The name of the CNN used for vehicle detection is "ssd mobilenet v1 coco". It is
an Object Detection API which contains detection models of objects trained in the
COCO dataset.

The architecture of this network is a MobileNet V1. Specifically, this network used
a lightweight model by introducing a Single Shot Multibox Detection (see Fig:3.4).

Figure 3.4: SSD MobileNet V1 scheme architecture.

This network was trained with the COCO dataset (see Fig:3.5), which is formed

22 CHAPTER 3. PROPOSED SYSTEM

by images belonging to 90 different classes, of which the majority are not interesting
for this project. Though this is a general-purpose detection model (not specifically
optimized for vehicle detection), this model offers a good trade-off between bounding
box accuracy and inference time.

In this algorithm, only the next four categories are selected to filter the detections
of interest:

• Class number 3 which corresponds to Car.

• Class number 4 which corresponds to Motorcycle.

• Class number 6 which corresponds to Bus.

• Class number 8 which corresponds to Truck.

Figure 3.5: Example of the labeled image that contains the COCO dataset for car,
motorcycle, truck and bus classes (for further references see www.cocodataset.org)

First, CNN runs over a frame of the image to get the detections and its scores,
deleting detections that do not correspond with one of the four previous classes.
Once the detections are obtained, a post processing detection step is needed, where
detections are filtered by the score of each of them. A new system parameter is
created ’THscore’, a threshold to stipulate the necessary reliability for a detection to
exist, detections with a lower score are deleted.

Figure 3.6: Example of detections with CNN. The images correspond with different
frames of the same video using a score threshold of 0.2.

http://cocodataset.org/##explore

3.2. OBJECT DETECTION 23

3.2.2 Axle detection

For axle detection, only the convolutional neuronal network solution works. The back-
ground subtraction algorithm obtains the foreground objects over the background, in
the previous case this works because in this type of traffic videos the foreground are
the vehicles and the background is the road. But when detecting axles, the objects
of interest are the axles, and these are only a part of moving vehicles, therefore they
can not be isolated from them by background subtraction solutions.

For the axle detection network, the original vehicle detection CNN called "ssd
mobilenet v1 coco" was retrained on a dataset that collected the axels obtained from
a video (see Fig:3.7).

Figure 3.7: Example of frames of the video used to retrain the original CNN called
"ssd mobilenet v1 coco" with the manual location of the axles.

To reduce training time without sacrificing accuracy, this CNN retraining used
Transfer Learning, which is a method that allows us to use networks that have been
pre-trained in a large data set, like "ssd mobilenet v1 coco". By keeping the first layers
and only training the newly added layers, one can take advantage of the knowledge
acquired by the pre-trained algorithm and use it for a different application.

This retraining process is divided into different steps:

1. Creating the dataset. The axle dataset was obtained from the previous video
(see Fig:3.7) with the manual location of the axles in all the video frames. The
final dataset is formed by different axle types (double and simple) from different
vehicles and with different points of view of each vehicle axle (see Fig:3.8). This
axle dataset is composed of a total of 1.145 axle images.

2. Training the model with the dataset obtained.

3. Exporting the model so it can be run in the video processing algorithm codes.
This model has the bounding box detection output with its scores.

24 CHAPTER 3. PROPOSED SYSTEM

Figure 3.8: Subset of the axle images dataset. The first row corresponds with different
double axles. The second row corresponds with a different point of view of the same
simple axle. The third row corresponds with different simple axles.

3.2.3 Post-processing steps

After obtaining the detection of vehicles and axles through their bounding boxes
localizations, two post-processing stages to refine detection are performed, regardless
of the type of detection implemented.

1.- Filtering detections by the size

As the environment of implementation of these algorithms is known, a road where
the vehicles/axles of interest never have a very high or very small size, filtering the
detections by their size is performed (see Fig:3.9) to eliminate possible detection errors
that never could be a vehicle/axle.

First, all the detections with size higher than the half of the image size, are
eliminated. Then, all the ’small detections’ (detections with a size lower than a new
system parameter ’minArea’), in the image are eliminated because these detections
correspond with objects that are not vehicles or axles, or objects of interest away
from the camera that are out of the scope of the detection method.

3.2. OBJECT DETECTION 25

Figure 3.9: Example of filter detections by size with FGBG detection. The left image
corresponds with bad detections obtained with FGBG because of a blur of the image
in the capture process. Right image corresponds to the detection output after the
filter by size process.

2.- Non maximum suppression

This step is implemented to prevent that there is more than one detection per
vehicle. Redundant detections are eliminated by applying an intersection over the
union between two detection boxes to determine if they correspond to the same de-
tection or not. This algorithm obtains a score called intersection over union (IoU),
comparing the overlap area of two detections and the area of union between them
(see Fig:3.10).

Figure 3.10: Equation and graphic example of the IoU calculation between two bound-
ing boxes.

For this step, a new system parameter ’THiou’ is created to determine the degree
of overlapping to consider the detections. If the IoU score is higher than the threshold,
it means that detections are a overlapped, so these detections are replaced by one that
is a box over the union of both (see Fig:3.11).

26 CHAPTER 3. PROPOSED SYSTEM

Figure 3.11: Example of how IoU works. The images in the left correspond to de-
tections before the application of IoU. The images on the right correspond to the
detections output after IoU with a threshold of 0.5.

3.3 Object tracking

The object tracking algorithm is the same in the three different video processing paths
(front, back and lateral cameras), and therefore, it is independent of the object to
track, axle or vehicle.

Vehicle or axle tracking is done using the Kalman filter to create the trackers and
the Hungarian algorithm to assign detections and trackers. Then a tracker manage-
ment module is used to initialize or remove tracks (see Fig:3.12).

Figure 3.12: Scheme of the object tracking algorithm to the Back camera. Same for
axle tracking and vehicle tracking. Data estimation step is implemented using the
Kalman filter and data association step using the Hungarian algorithm.

3.3.1 Data estimation

The Kalman filter is used to create the trackers by estimating the position of the
input object in the frame k at the next frame k + 1. It is a recursive optimization
algorithm that predicts the parameter of interest given a set of measurements (in this

3.3. OBJECT TRACKING 27

case the axle/vehicle location). For linear systems, like the highway scenario with
vehicles and white Gaussian errors, Kalman filter is a good estimator.

A Kalman model assuming the constant velocity (thus no acceleration), is used to
predict the position of the detected object. This position estimation of the bounding
box of the detected analysis object D̂k =(dup, dleft, ddown, dright) is called tracker
T̂ ′k+1 =(tup, tleft, tdown, tright) (see Fig:3.13).

Figure 3.13: Example of position estimated by using the Kalman Filter for axle and
vehicle detection. The red bounding boxes correspond to detections and the green
bounding boxes with their trackers.

3.3.2 Data Association

The Hungarian algorithm is an optimization to solve the problem of assigning different
types of data over time (in this case, detections and trackers).

Both detections and trackers are vectors that contain the position of an object of
interest (axle or vehicle) X̂ =(Xup, Xleft, Xdown, Xright). The Hungarian algorithm
works with a matrix of numbers as input to make the assignment, we propose to use
the intersection over union of a tracker and detection bounding boxes. This matrix
IOUmat is composed by the overlap scores between detections and trackers, obtaining
them in the same way as in Section:3.2.3. These values are used as an indicator of
the similarity between detections and trackers.

A new IOU overlap threshold (thiou2) is employed to filter the score that is used
to join trackers and detections.

The assignment problem is solved using the Hungarian algorithm to maximize the
sum of IOUmat after the thresholding.

Once this algorithm is finished, the IOUmat indicates which pair of bounding
detection-tracker boxes are matched, and which detections and trackers have not
been assigned to each other (see Fig:3.14).

28 CHAPTER 3. PROPOSED SYSTEM

Figure 3.14: Example of the update of the scores matrix. Image number 1 corresponds
to the original score matrix between trackers and detections. Image 2 is the threshold
of the matrix. Image 3 is the matrix after applying the Hungarian Algorithm over it,
where detection and trackers in red have not been matched.

3.3.3 Tracker Management

To perform the tracking management, there are two new parameters to work with
(Hmax, Hmin). One of them establish the number of consecutive times Hmin that a
tracker has to be matched with a detection to create a tracker and assign it an ID.
The other one establish the number of consecutive times Hmax that the tracker has
not been assigned to any detection to eliminate it.

Based on the data association results, there are three scenarios for the trackers,
after the data association process (see Fig:3.15).

1. Unmatched detection. When an object of interest (axle/vehicle depending on
the algorithm) enters a frame and is first detected, it is not matched with any
existing trackers. Thus, this detection is referred as an unmatched detection.

2. Unmatched tracker. A matching tracker with an overlap less than thiou2 signifies
the existence of an untracked object. Also, when an object of interest leaves the
frame, the previously established track has no detection to be associated with,

3.4. OBJECT CLASSIFICATION 29

and the tracker is referred as unmatched tracker. If this occurs more than Hmax

consecutive times, the track is deleted.

3. Matched tracker-detection. When the same tracker is matched with a detection
more than Hmin consecutive times with an overlap higher than thiou2, this
tracker (T k

B, T
k
F or T k

L) is established as a tracker of interest and is stored in its
T̂ k
∗ set being sent to the next stage of the algorithm for processing (see Fig:3.12).

If there is no tracker that meets these conditions, the algorithm stops here.

Figure 3.15: Example of position estimation for the front camera video. Starting on
the left, the first image corresponds with an unmatched detection, the second one
with a matched tracker-detection and the last one with an unmatched tracker.

3.4 Object classification

Object classification algorithm detects the type of class that corresponds to each input
object. This algorithm takes an object previously detected as input and the outputs
a class label: car, motorcycle, truck or bus for vehicle classification, and simple or
double for axle classification (see in Fig:3.16). It is based on the use of Convolutional
neuronal networks (CNNs), applying different training’sponer the differences of the
objects that it needs to classify.

Figure 3.16: Example of classification algorithm output for different vehicles/axles
input images.

30 CHAPTER 3. PROPOSED SYSTEM

3.4.1 Vehicle classification

The vehicle classification algorithm implemented using the "ssd mobilenet v1 coco"
CNN as indicates in section 3.2.1, could be also used to classify with the generated
scores for each of the four classes selected (see Fig:3.17).

As in the previous step, the classes of interest are only four, and the detections
that correspond to other classes are eliminated.

• Class number 3 which corresponds to Car.

• Class number 4 which corresponds to Motorcycle.

• Class number 6 which corresponds to Bus.

• Class number 8 which corresponds to Truck.

Figure 3.17: Example vehicles with the perspective of the front portico camera. The
vehicles represented from left to right are motorcycle, car, truck and bus.

In this case, the classification is obtained directly in the detection stage, using the
class score of its detection. The output class for each object detected corresponds to
the class with the highest score.

3.4.2 Axle classification

The original vehicle detection CNN called "ssd mobilenet v1 coco" was retrained
again on a wheel dataset (see Fig:3.7).

The retraining process is similar to the one described in Section:3.2.2, the CNN
was retrained using Transfer Learning, keeping the first layers and only training the
last layers.

3.5. PLATE RECOGNITION 31

Figure 3.18: Subset of the axle classification images dataset. The first row corresponds
to different double axles. The second row corresponds to different simple axles.

This retraining process is divided into different steps:

• Creating the dataset. The axle dataset was obtained (see Fig:3.7) by manually
annotating the axles in all the video frames, like in Section:3.2.2. The difference
with the previous dataset is that now the axles are labelled according to whether
they are simple or double. This dataset is formed by 1.145 images, where 1.030
images correspond to simple axles and 115 correspond to double axles (see
Fig:3.18).

• Training the model with the obtained dataset.

• Exporting the model so it can be run in the video processing algorithm codes.
This model has two different output classes with their scores.

3.5 Plate recognition

3.5.1 Introduction

The used plate recognition software (for further references see www.arhungary.hu),
has been bought by INDRA from the company ARH. Specifically, the algorithm
purchased and used in this thesis is called ’CARMEN ANPR-Freeflow’ which works
with a neural network in order to obtain the license plates of a vehicle by using its
image as an input.

This algorithm was selected for the implementation of this project since it provides
many benefits, making it perfect for free-flow toll collection and traffic management
systems. It was designed to recognize the plate license of a vehicle from any country
in the world. It is able to detect the plate of vehicles that circulate at a speed of 250

http://www.arhungary.hu/contleft/1011/content.html

32 CHAPTER 3. PROPOSED SYSTEM

km/h and, moreover, it works well in almost any scenario obtaining an accuracy of
98 percent in the evaluation carried out by that company.

First, this software searches the license plate in an input image and, then, it read
its characters. The input image shall be a high-quality one, and the characters must
be well appreciated. The processing time is not greater than a few hundredths of a
second; hence, it is able to process multiple plates per second. Therefore, it is ideal
to work in any kind of situation, even with a lot of traffic.

3.5.2 Optical Character Recognition (OCR) system development

For the same vehicle, T k
∗ (T k

F or T k
B), the image used for the calculation of the OCR

presents some differences with the one indicated by the bounding box of the tracker.
These differences are due to the application of the following pre-processing steps:

1. The size of the image is augmented to help the car number plate detection.

2. The upper half of the image is eliminated assuming that the license won’t be
placed there. This step allows to avoid errors caused by reading wrong charac-
ters. A clear example of this problem are the driving school cars, which usually
have character strings on the roof (see Fig:3.19). With this procedure we get
that only the plate is detected as OCR.

Figure 3.19: Example of image modification to calculate OCR. Starting from the left,
in the first image, we have a plate miss detection, and, in the second one, we have a
wrong detection in which it detects an another chain of characters as the plate.

To make the algorithm robust to errors, either caused by noise in the video capture
step or by an OCR software error, the plate number is obtained several times. If in
any case the registration is not detected, then, no result is saved. Thus, a new global
system parameter Hocr is considered which indicates how many times the OCR is
calculated for each vehicle in each camera.

3.6. CENTRAL SYSTEM 33

The final OCR output Ok
∗ is the combination of the different OCRs obtained. So,

this algorithm is divided into two steps (see Fig:3.20):

Figure 3.20: Scheme of the frontal device algorithm. When the buffer containing the
plates of each vehicle is filled (has Hocr plates), the optimization stage is performed
to obtain a single output result.

1. OCR computation. The algorithm takes as input an image defined by the T k
B or

T k
F (T k

∗) bounding boxes of a vehicle after the pre-processing steps, and obtains
as output the OCR of the registration plate. These values are saved in the
buffer for the Hocr input images of the vehicle.

2. OCR optimization. Once the OCR has been calculated Hocr times (the design
condition is met, see Fig:3.20) for the same vehicle, the objective is to reduce
the Hocr number plates of this vehicle to only one. For this, the next steps are
followed:

• It is sought which of the others is the one that most resembles it. Each
one of the registrations of the database it is compared with the rest, using
a temporary filtering that finds the most common string given a series of
noisy samples of that string. The initial plates of the buffer are changed
by these new ones calculated.

• The most repeated plate as the result of the previous operation is the final
detection Ok

∗ .

3.6 Central System

This system is the one that carry out the unification of the three cameras, with the
objective of having a unique information of ID, type, number/type of wheels, and the
license number for each vehicle that crosses the portico.

34 CHAPTER 3. PROPOSED SYSTEM

The operation of the central system, requires the definition of two new elements,
the database and the control signals for database updating called pistons. After,
introducing both elements, we are going to analyze the updates that are made in
the database by studying the algorithms of vehicle association and axle to vehicle
association.

3.6.1 Piston

In a system of fixed cameras as the one posed, one can use a piston to interconnect
and align camera processing. This piston is represented as a line in video processing
algorithms (see Fig:3.21) and it is used to update the system database, helping to
establish the class and the license plate assigned to each vehicle, as well as to compare
times of the same vehicle along with the system of cameras.

Figure 3.21: Example of pistons with different camera algorithms for the same vehicle.
Starting from the left, the first column corresponds to the front camera, the second
to the back camera and the third to the lateral camera. The upper row corresponds
to the vehicle before passing through the piston and the lower row with the vehicle
or their axles just at the moment they pass through the piston (green color of the
piston).

The placement of the piston (see Fig:3.22) is in the place where the video is
focused and close to the point of observation of the camera, the point of the image
of the highest quality. The system is composed of three different pistons, one in each
camera and its placement vary with each video processing algorithm.

3.6. CENTRAL SYSTEM 35

Figure 3.22: Example of colocation of the pistons (red lines) along with the camera
system. the placement distance between the three pistons is similar.

The use of the piston in video processing algorithms is shown below. In each frame
of the video, the class of each detected object (vehicle or axle) is calculated using one
of the previous classification algorithms and assigned to a tracker in each time k. The
class can vary a lot of times during its appearance on the screen (see Fig:3.23). To
ensure that this class does not vary and there is only one class per object, the use of
an auxiliary piston is employed.

Figure 3.23: Example of vehicles crossing the piston line to established the class of
each of them. The image on the right, represents when the object cross the piston
line.

Once the object crosses the piston, the class that has been assigned a greater
number of times to this tracker, is established as the class of the tracker that represent
the object of interest (vehicle or axle) [C]k∗, and the classification algorithm on that
object is not run again.

In the front and back algorithms, the piston is also used to establish the regis-
tration of each vehicle. As seen in Section:, the OCR is calculated Hocr times over
each vehicle. Therefore, when a vehicle crosses the piston it gets its registration Hocr

36 CHAPTER 3. PROPOSED SYSTEM

times, but only one enrollment result is obtained [O]kF , [O]kB as explained in Section
3.6.1, with this you could avoid mistakes in obtaining it.

Apart from these reasons, the piston is essential to store the time in which each
vehicle crosses each one of them, essential for the association algorithms.

Finally, all the results obtained (ID, class, plate and time of crossing by the piston
of the vehicle) are established as the output [V]k∗ that is sent to the central system.

Below are detailed schemes of the video processing algorithms studied above with
the introduction of their respective pistons.

1. Frontal camera (see Fig:3.24). Obtain the data of each vehicle detected with the
frontal camera [V]kF (ID, class, plate number, and time in which it has passed
through the piston P k

F).

Figure 3.24: Scheme of the frontal video-processing algorithm.

2. Back camera (see Fig:3.25). Obtain the data of each vehicle detected with the
back camera [V]kB (ID, class, plate number, and time in which it has passed
through the piston P k

B).

3.6. CENTRAL SYSTEM 37

Figure 3.25: Scheme of the back video-processing algorithm.

3. Lateral camera (see Fig:3.26). Obtain the data of each axle detected with the
lateral camera [V]kL (ID, class, and time in which they passed through the piston
P k
L).

Figure 3.26: Scheme of the lateral video-processing algorithm.

3.6.2 Database

The central system is responsible for generating a database formed by objects of
vehicle type. These objects have the next variables: ID, Time information (frame in
which the object crosses the front and back pistons), number of plate, vehicle class
and number of axles of each type for this vehicle (see Fig:3.27).

38 CHAPTER 3. PROPOSED SYSTEM

Figure 3.27: Example of the empty database.

The update of the database is done with the information provided by the video
processing algorithms [V]k∗, once the objects of interest cross the piston.

3.6.3 Vehicle Association

The central system receives vehicle information from the front [V]kF and back [V]kB
cameras. Data from the front camera is used to generate a new vehicle in the database
of the central system (see Fig:3.28).

Figure 3.28: Example of database refilled only with information from the front camera.

The association process consists of searching the database of a plate that matches
the one provided by the back camera [O]kB.

In the event that a registration with these characteristics is found in the database,
the information of the frame passing through the piston in the back camera is saved
in the database (see Fig:3.29).

3.6. CENTRAL SYSTEM 39

Figure 3.29: Example actualization data on the back camera algorithm due to the
association vehicle front-back using the database. A change in the ID can be observed
when crossing the piston due to the association process.

There is a case of special analysis, motorcycles. These do not have a front license
plate, so the plate kept in the database by the front camera is ’0’. To update the
license plate correctly, if the back camera detects that the vehicle is a motorcycle, it
is not searched by the plate in the database, it is searched by class. The last vehicle
of the motorcycle class is searched in the database, obtaining the ID and modifying
the plate to the one detected with the back camera (see Fig:3.30).

Figure 3.30: Example of the database Fig:3.28 after the vehicle association using the
information of the back camera.

3.6.4 Axle to Vehicle Association

This algorithm performs the association of the vehicles with their axles, relying on
the information of crossing time by the pistons P k

∗ provided by the three algorithms
of video processing.

To carry out this assignment two different methods are followed, depending on
the class of the vehicle detected:

• Car and motorcycle. By definition, these vehicles always have two simple axes,

40 CHAPTER 3. PROPOSED SYSTEM

cars with two wheels and motorcycles of one. So to the vehicles previously
stored in the data with these characteristics are automatically assigned these
values (see Fig:3.31). Completing the information of these vehicles [V]kF,B,L.

Figure 3.31: Example of the database Fig:3.30 after the axle association for cars and
motorcycles.

• Truck and bus. Using time information, we assign to the vehicle detected all
the axles (differentiating between classes) that have been detected between the
time that the vehicle has passed from the front camera to the back one (see
Fig:3.32). That is if the detected axles meet the following equation are assigned
to these vehicles (see Eq:3.1):

P k
B > P k

L > P k
F (3.1)

Where P k
∗ represents the frames in the objects of interest cross the respective

pistons. This time information P k
∗ is contained within the database [V]kF,B

and in the information provided by the lateral camera [V]kL. To perform this
assignment it is necessary that all three videos are temporarily adjusted. This
completes the information of these vehicles in the database, obtaining [V]kF,B,L.

Figure 3.32: Example of the database Fig:3.31 after the axle association for trucks
and buses.

Chapter 4

Development

4.1 Introduction

The hardware devices used to implement the portico are analyze in this chapter, as
well as some of the most important features of the implemented software.

Free-flowing tracking infrastructures consist on a system with three KOMOTO
C7S devices (see Fig:4.1) (see Section:4.3.2) used to perform the video-processing
algorithms for each one of the cameras shown in Section 3.1. It is formed by:

Figure 4.1: KOMOTO C7S with the different objects that make up this device (1:
Jetson TX2, 2: Daheng Imaging Camera, 3: KOMOTO strobe).

• An embedded AI computing device Jetson TX2 (see . Section:4.2). It consist in
some hardware provided with image processing software capable of detecting,
classifying, identifying and tracking vehicles and axles on highways and in real-
time. Also it contains the software necessary to extract the video input from
the camera.

• A MERCURY USB3.0 series (MER-U3) camera (see Section:4.3.1) is DAHENG
IMAGING’s mature area scan industrial digital camera, featuring megapixels
resolution, high definition, extremely low noise, perfect color conversion and

41

42 CHAPTER 4. DEVELOPMENT

compact design.

• An integrated LED Strobe, which is used to illuminate the scene, allowing the
operation during the night.

The central system runs in a KMDA-3602 computer (see Section:4.4). It is more
powerful than Jetson TX2 boards, with better GPU to run CNNs. It is located in
the portico.

Different Jetson TX2 boards are used in each portico to perform each video-
processing algorithm, because of this hardware provides high speed working with
CNNs when running them on the graphic processing unit (GPU) of the board, ob-
taining quick results although smaller than those obtained with a powerful computer.
The low cost and the small size of this board compared with a traditional computer,
make it a good choice for processing the frames of the different cameras of the system.

The algorithm designed on the JetsonTX2 board, is develop in Ubuntu with the
programming languages python, C++ and Cython. The base of the algorithm is
made in python and Cython is only used to include some functionalities programmed
in C++.

Cython is a language used to generate CPython modules. The code is compiled
in C or C++, and later via Cython interfaces, functions are generated that can be
imported into python maintaining the same functionality and not involving a high
computational cost.

Attending to the requests from the company in charge of this thesis, no further
information about the software or the code developed to run the system will be
included.

4.2. JETSON TX2 43

4.2 Jetson TX2

Figure 4.2: Both figures represents a device with a Jetson TX2 processor (the scale
between them it is realistic). The device on the left corresponds to the developer kit,
with all the possible benefits. The device on the right corresponds to a simpler board
to integrate in the C7S KOMOTO device.

Jetson TX2 (for further references see www.nvidia.com) (see Fig:4.2) is the fastest
and most powerful embedded AI device. It is possible to obtain real-time artificial
intelligence (AI) performance thanks to this supercomputer with NVIDIA Pascal tech-
nology in one module. With a Denver 2/2 MB L2 dual-core HMP CPU, in addition
to the quad-core ARM A57 / 2 MB L2 CPU, 4K x 2K 60Hz video encoding and
decoding and 128-bit and 8GB LPDDR4 memory, Jetson TX2 is ideal for intelligent
peripheral devices such as robots, drones, business collaboration, smart cameras and
more.

• Size. It is possible to achieve exceptionally high calculation, accuracy and energy
efficiency in a module the size of a credit card. Its small size of 50 mm x 87 mm
allows real applications of deep learning in small format products, such as, for
example, drones

• Performance. Due to the NVIDIA Pascal architecture of 256 cores and the
memory of 8 GB of Jetson TX2, twice the performance and the energy efficiency
of Jetson TX1 is achieve.

• Power. With Jetson TX2, it is possible to run large deep neural networks in
order to achieve maximum accuracy in perimeter devices. With only 7.5 watts,
it offers 25 times more energy efficient than a next-generation desktop CPU.
This makes it the perfect choice for real-time processing in applications where
bandwidth and latency can be a problem. These applications include factory

https://www.nvidia.com/es-es/autonomous-machines/embedded-systems/jetson-tx2/

44 CHAPTER 4. DEVELOPMENT

robots, commercial drones, business collaboration devices and smart cameras
for smart cities.

4.2.1 Jetson TX2 SDK

The implementation of the design software has been carried out on both boards, first
the installation was performed in the Developer Kit, and later on, in the board that
was chosen to be a part of the C7S system (see Fig:4.2). This Jetson TX2 boards has
its own software requirements, which is explained below (see Fig:4.3).

Figure 4.3: The Jetson Software Stack (for further references see
www.developer.nvidia.com).

The Jetson platform software is based on the Jetpack SDK, which includes the
Linux operating system, in our case Ubuntu 16.04, the board support package (BSP)
and the NVIDIA CUDA. The used of DeepStream allows working efficiently with
video analytics pipelines.

The best solution to build artificial intelligence (AI) applications on Jetson boards
is the NVDIA Jetpack SDK. This software includes a lot of computer vision libraries
like OpenCV, TensorRT, CUDA Toolkit, cuDNN or VisionWorks, making it easy to
work with high-performance neural networks. In these boards has been installed Jet-
pack 3.3 version has been installed, which has the following important characteristics:

• OpenCV 4.0.

• TensorRT 4.0.

https://developer.nvidia.com/embedded/develop/software

4.2. JETSON TX2 45

• CUDA 9.0.

To carry out the installation of the Jetpack 3.3, the steps followed are proposed
in www.docs.nvidia.com, flashing the board with a computer host with the Ubuntu
Linux x64 v16.04 operating system. All software must be compatible with the Jetson
SDK.

The installation of TensorFlow 1.13.1 (with TensorRT support) has been done
following the steps from www.docs.nvidia.com. This version has been chosen for its
greater compatibility with the installed SDK.

For the implementation of the neural networks "ssd mobilenet v1 coco" introduced
earlier (see Section:3.2.1) on this board, two models have been used, both programmed
in python.

1.- TensorFlow

It remains the most popular deep learning framework today, based on the use of
TensorFlow Object Detection API. This API is an open source framework built on top
of TensorFlow in order to build, train and deploy object classification and detection
models. The workflow that represents the used of TensorFlow on this algorithm is
represented in (see Fig:4.4).

Figure 4.4: Inference workflow in TensorFlow.

First, the training of the network is done on TensorFlow, then the trained frozen−graph

of the original network is generated. Finally, this graph is the one used to run CNNs
on the software implemented in python.

2.- TensorRT

The change to the TensorRT model in Jetson TX2 devices was implemented to
achieve an improvement in the performance of the CNNs. TensorRT speeds up Tensor-
Flows deep learning inference through optimizations and high-performance runtimes
for GPU-based platforms.

During the TensorFlow with TensorRT (TF-TRT) optimization, TensorRT per-
forms different modifications to the original CNN graph:

https://docs.nvidia.com/jetson/archives/jetpack-archived/jetpack-33/index.html#jetpack/3.3/
https://docs.nvidia.com/deeplearning/frameworks/install-tf-jetsontx2/index.html

46 CHAPTER 4. DEVELOPMENT

• Layers whose result are not used are removed, to avoid unnecessary convolu-
tional cost.

• Where possible, the convolutional, bias and ReLU layers shall be unified as a
single layer whenever is possible.

The workflow that represents the used of TensorRT with TensorFlow is represented
in (see Fig:4.5).

Figure 4.5: Inference workflow in TensorRT.

The difference with the previous method, is that with this method once you get
the graph of TensorFlow you introduce some simplifications and optimizations to
transform it to TensorRT, generating the TensorRT frozen−graph. This is the graph
that is finally used to run CNNs.

The implementation of the TensorRT model can be done from the checkpoints and
the config points of the original TensorFlow model, or from the frozen−graph created
with this TensorFlow. Its implementation in python is based on the next algorithm
www.github.com, and on the use of the function provided by the TensorRT library
trt.create−inference−graph() generating the final graph with tf.import−graph−def().

The new integration use TensorRT from within TensorFlow, providing a simple
and powerful API with different precision implementations FP32, FP16 or INT8. Use
of half arithmetic precision or FP32, reduces the use of CNN memory compared to
FP16 allowing the deployment of larger networks. As an example of this improvement
in run time, we can look at the ResNet-50 network, where TensorRT with TensorFlow
performs processing 8 times faster than only TensorFlow (see Fig:4.6).

https://github.com/NVIDIA-AI-IOT/tf_trt_models

4.2. JETSON TX2 47

Figure 4.6: ResNet-50 performing comparative between the TensorFlow-
TensorRT integration and running TensorFlow only (for further references see
www.devblogs.nvidia.com).

Once the neural networks have been developed in the system, it is also necessary
to talk about how OCR has been used and its implementation with Cython.

OCR software has been provided by Indra in the C++ language, which in turn
obtained it from the company ARH. To make use of said software in the proposed
design, a small program has been developed in C++ which receives an image as input
and returns a char with the obtained number plate or ’0’ in case of not finding any.

This algorithm works with a key (pen-drive) provided by the manufacturer ARH,
which must be connected to the hardware in order to obtain the OCR result of the
registration.

To access this function of obtaining OCR created in C++ from the main program
developed in python, Cython has been used. This language generates a function in
python from the C++ function of obtaining of the plate, which can be called during
the execution of the main program in python.

Cython has been used for obtaining the OCR created in C++ from the main
program, developed in python. This language takes the OCR function in C++ and
creates a similar one in python, which can be called during the execution of the main
program.

https://devblogs.nvidia.com/tensorrt-integration-speeds-tensorflow-inference/

48 CHAPTER 4. DEVELOPMENT

4.3 Camera FLIR BFS-U3-31S4M-C

Figure 4.7: Camera FLIR BFS-U3-31S4M-C.

This model (for further references see www.flir.com) (see Fig:4.7) leverages Sony’s
Pregius global shutter CMOS technology. The Blackfly S combines the newest CMOS
image sensors with the spinnaker software development kit. The characteristics of this
camera can be summarized in:

• Flexibility and powerful auto-exposure controls with robust colour transforma-
tion tools thanks to the use of new on-camera image processing features and
the latest CMOS sensors.

• Improvement of time per cycle compared to its predecessors using programmable
logic and camera controls.

• Allow access to their GenICam3 API and GUI API library.

4.3.1 Camera Daheng Imaging MER-231-41U3M/C

Figure 4.8: Camera Daheng Imaging MER-231-41U3M/C.

The MERCURY USB3.0 series(MER-U3) camera is DAHENG IMAGING’s mature
area scan industrial digital camera (for further references see www.daheng-imaging.com)
(see Fig:4.8), featuring outstanding performance, compact design, extremely low noise
and perfect color conversion.

https://www.flir.com/products/blackfly-s-usb3/?model=BFS-U3-31S4M-C
http://www.daheng-imaging.com/en/products/ProductDetails.aspx?current=123&productid=2822

4.3. CAMERA FLIR BFS-U3-31S4M-C 49

The MER-231-41U3M/C camera is a monochrome/color USB3 Vision camera
with the Sony IMX249 CMOS sensor. Thanks to the extremely compact (29mm x
29mm x 29mm), robust metal housings and locking screw connectors, the MERCURY
cameras can secure the reliability of cameras deployed in harsh environments.

The MER-231-41U3M/C camera is powered over the USB interface. The MER-
231-41U3M/C camera has opto-isolated I/Os. The GPIOs give MER-U3 maximum
flexibility to adapt to specific needs. The camera has an outstanding price/perfor-
mance ratio.

The MERCURY family cameras are especially suitable for machine vision appli-
cations such as industrial inspection, medical, scientific research, education, security
and so on.

• Ultra small, light, robust with a very attractive price.

• 1/1.2" Global Shutter CMOS sensor.

• USB3.0 Interface, compatible with GenICam and USB3 Vision.

• 2.3 Megapixels

• 2 Programmable GPIOs

4.3.1.1 Camera Daheng Imaging SDK

This has been the camera chosen to be introduced into the C7S system, taking care
of the video capture. The camera SDK provide by the manufacturers is compatible
with the SDK provided by the Jetpack 3.3 to the board and with the Linux ArmV8
installed in it.

Using the functions provided by the SDK of the camera, a program was created
in C++ able to obtain the images captured with the same. This program receives as
an argument a file of the configuration of the camera where the film parameters can
be chosen manually or automatically, as indicated in said file, and saves the images
obtained in a chosen folder of the system.

The configuration file has the following parameters: exposure time, frame rate
and gain. Apart from them, the focus and aperture parameters are adjusted directly
from the lens of the camera.

• Exposure time or shutter speed. Is the period of time that the camera sensor
is receiving light when we are taking the photo. This is important because
depending on the ambient light we have to choose its value. In our case, we
need short exposure times, which means that the photo is taken very quickly

50 CHAPTER 4. DEVELOPMENT

and the focused objects appear focused. It is necessary in the case of the axles,
to avoid that these appear blurred due to their high speed.

• Frame rate. Images that capture the camera per second. Due to the high speed
of the recorded objects, especially the axles, we need a high frame rate so that
the tracker does not lose the detected objects.

• Gain, directly related to the ISO. Represents the sensitivity and modify it allows
us to tell the sensor what sensitivity should have when collecting light. However,
the higher the ISO, the easier it is for noise to appear in the photographs. In
our case we do not have to alter it, the necessary luminosity that bring us the
strobe is enough.

• Focus. The highest quality point of the recorded image, to focus is to make
clear what is at a specific distance. In our case, it should be a wide area near
the piston where the plates are read.

• Aperture. This parameter refers to the amount of light that aims to stop working
until the sensor when taking a picture. The greater is, higher is the illumination
of the filmed scene. Another aspect that serves the opening is to control the
depth of field, which is the area of the image that appears focused where the
larger the diaphragm aperture, the lower the depth of field.

Therefore, the correct selection of said parameters when recording the videos is
crucial for the algorithms to work correctly. In (see Fig:4.9) we can observe different
configurations of the camera parameters under analysis using the axles detection
algorithm, observing how in some cases they are detected and in others not.

4.3. CAMERA FLIR BFS-U3-31S4M-C 51

Figure 4.9: Example of toy car images captured with the Daheng Imaging Camera
and with different parameters. Starting from the left, the first column corresponds
to two images with the same focus and different vehicle positions, the second with
two images with different aperture and the third with images with different time of
exposure.

The camera is capable of capturing a maximum amount of 40 frames per second
with good quality (see Fig:4.10). In this image we can see how the quality of the
registration is high and therefore the possibility of obtaining a perfect OCR reading
is also. Interest to have a reduced exposure time to catch vehicles in speed and a frame
time as high as possible, depending on the processing speed of the image algorithms.

Figure 4.10: Example of image capture with Daheng Camera from a portico position.
The image on the right is a zoom on the left image (the license plate has been blocked
because it can not be shown)

52 CHAPTER 4. DEVELOPMENT

4.3.2 KOMOTO C7S

Figure 4.11: KOMOTO C7S. The left image represents the appearance and the right
image represent the different objects that make up this device (1:Jetson TX2, 2:Da-
heng Imaging Camera, 3:KOMOTO strobe).

The building in Integrated Control Module (for further references see www.komoto.com)
(see Fig:4.11), that holds the camera and the JetsonTX2 of the system, has the next
specifications:

• Integrate Strobe with the latest High Power Led Technology. Light driver power
up to 600W in pulse mode, with a wavelength of NIR 850nm.

• Trigger Mode (Flashes upon input pulse). 30us timing repetition rate for high
frame rates. The trigger input could be from DC3.3V to 24V opto-isolated.

• Pulse width to 1.6ms at fully strobe.

• Overheat protection. The operating temperature supported is from -20 to +60
grades centigrade. Wide temperature detect range.

• Power requirement of DC24V and 2A.

• RS485 Interface.

• Support Device Holder and Weatherproof IP66.

• Dimensions (mm) of (L)239 x (W)352 x (H)232, and weight of 5kg.

http://www.komoto.com/JP/products.php?page=product&productID=126&pageTypeIDFlag=2

4.4. KMDA-3602 COMPUTER 53

4.4 KMDA-3602 Computer

Figure 4.12: KMDA-3602 Computer.

KMDA-3602 (for further references see www.armortec.net) (see Fig:4.12) is a high-
performance In-vehicle computer from JHCTECH, with newest cooling design. It is
powered by Skylake-S/Kabylake-S CPU, and Dual DDR4 2133MHz SODIMM mem-
ory.

It features NVIDIA or AMD MXM3.1 GPU module, 1*DP and 1*HDMI(Intel
HD 4K), 3*DP and 1*HDMI (GPU 4K), 2*LAN, 4*POE,6*USB3.0, 2*Mini PCIe
and 1*M.2 which support 4G,Wifi/BT and GPS communication, 1*mSATA and
1*2.5”SATA bay. DC6-48V wide power input, ITPS delay power on/off function.
With CPU+GPU dual processor, multi LAN, multi-display, multi-wireless communi-
cation and anti-vibration design, it is suitable for mobile law enforcement vehicle and
special engineering vehicle.

Between its characteristics highlight its GPU, MXM3.1 NVIDIA GTX/AMD RX
series GPU module, support 3*DP1.2/1.3 and 1*HDMI 1.4b/2.0 4K/5K display.
Which makes it perfect for working with convolutional neuronal networks.

4.5 Hardware system design

Once they have been studied the hardware systems and its software peculiarities that
make up the system, it appears the global hardware design that conform the free-flow
portico proposed in this thesis (see Fig:4.13).

http://www.armortec.net/products/Industrial_Computer/Fanless_Embedded_Box_/2018/0807/178.html

54 CHAPTER 4. DEVELOPMENT

Figure 4.13: Scheme of the hardware connection system where each C7S correspond
with one of the devices represented in Fig:4.11.

The communication that is made between each of the C7S is as follows. The
Jetson TX2 gets the input images to be processed from the Daheng Imaging Camera,
which are connected to the boards by using their USB 3.0 port. When there is little
lighting the Jetson TX2 send a signal to the KOMOTO strobe to be lit.

The previous design shows two possible implementations of the system. One gen-
erated only by the continuous lines, which would correspond to a centralized software
development in the central system, and another one that includes the striped lines
that would compose a distributed software system. Therefore the central system is
communicate with each of the cameras to receive information and send depending on
the selected software design.

For the study of these proposals it is essential to know the meaning of a Data
Transformation Services (DTS), which consists of a set of utilities and objects, which
automate extract, transform and load operations to or from databases. This system
can be equipped with all software capable of detect and classify, axles and vehicles
from an input frame image. Initially, the system haves the CNNs explained above to
detect and classify, based on the "ssd mobilenet v1 coco" network. The DTS would
be located in the central system, receiving requests from the different Jetsons TX2
by a http petition and returning the results obtained.

4.5. HARDWARE SYSTEM DESIGN 55

These two proposals differ in the place where the neural networks of classification
and detection developed in the three algorithms of the cameras are executed. There-
fore the quality results obtained with both is the same, the difference between them
is the computational cost.

4.5.1 Centralized System

The development of the detection and classification CNNs is developed in the central
system, where the DTS is located. This DTS server is provided with the software to
detect and classify, vehicle and axles.

The camera algorithms sent the input image to the DTS by a http petition, and
the DTS returns the location of the interest objects in the image if there are. In
addition to this information, the class information of said object also is returned,
executing the classification CNNs (see Fig:4.14).

Figure 4.14: Example of how the DTS placed in the central system works for all the
video-processing algorithms.

The central system has more power than the boards for the development of CNNs
algorithms. But with a centralized system should be developing 6 CNNs in real
time, in addition to making the communication between the different devices. This
reason, along with the fact that getting implemented TensorRT in the Jetsons for the
development of the CNN could get real-time processing, make the idea of making a

56 CHAPTER 4. DEVELOPMENT

distributed system more attractive.
In addition, the centralized system has the disadvantage that if the central sys-

tem fails, the algorithm completely fails. While in a distributed system the image
processing tasks are performed entirely in Jetsons, which could continue to obtain a
portion of the results without the central system.

For those reasons, the system that has been chosen for the implementation is
distributed.

4.5.2 Distributed System

In this system the central system do not have any DTS and therefore it do not take
care of the tasks of detection and classification, only of the communication or between
the different cameras to fill the database. This is the proposed system (see Fig:4.15).

Figure 4.15: Example of how the algorithm works without DTS (proposed system see
Section:3.1).

Chapter 5

Experimental evaluation

5.1 Introduction

First, an evaluation of the algorithms will be performed separately: detection and
tracking, classification and reading of plates. Subsequently, an analysis of the results
obtained for the association of vehicles and the association of them with their axles
is also developed. The evaluation will be carried out on the data that save these
algorithms in the database, i.e. their characteristics after crossing the piston.

It is an experimental evaluation based on video recorded with different cameras
for two reasons:

1. The structure of the free-flow portico has not been designed in time, and there-
fore it has not been possible to have access to videos of the three Daheng Imaging
cameras that would make up the system.

2. The lack of datasets focused on this structure, where the cameras are placed in
the three positions fixed in the design and synchronized in time.

In the same way, the development of the entire algorithm is executed from a single
plate Jetson TX2, the chosen one to introduce inside the structure C7S. Models of
convolutional networks based on TensorRT have been generated, but these models
have not been correctly introduced into the design. So the CNNs algorithms run over
TensorFlow.

57

58 CHAPTER 5. EXPERIMENTAL EVALUATION

5.2 Setup framework

5.2.1 Datasets

The evaluation of the developed algorithms use three different datasets that aim to
evaluate different parts of the system designed. The videos that form the dataset have
been recorded with different cameras: Daheng Imaging, NIKKON D3500, NIKKON
D5300 and CANNON 600D developing the function that would perform the cameras
Daheng in the system of the original free-flow portico. The following sets of videos
are proposed for evaluation:

• Scenario1 (see Fig:5.1). A single video recorded from the front position of the
portico with a Daheng Imaging camera. With this video the objective is to
check if the algorithm could work with the proposed camera. This has been
the only video obtained so far with these cameras. This video of 7:22 minutes
contains 238 vehicles, of which 225 are cars, 2 are buses, 4 are motorcycles and
7 are trucks.

• Scenario2 (see Fig:5.1). Consisting of two videos recorded simultaneously at
60 fps with NIKKON D3500 and NIKKON D5300 cameras, one located in the
front position of portico and the other in the rear position. With this dataset
the vehicles association and the back camera algorithms are evaluated. These
videos of 4:39 minutes contains 89 vehicles, of which 87 are cars and 2 are trucks.

• Scenario3 (see Fig:5.1). Consisting of three videos that would simulate the
placement of all the portico cameras. For the recording of this system the two
previous cameras have been used at 60 fps in addition to a CANNON 600D, used
to record the back at 25 fps. The recording characteristics of these cameras are
different, without having the possibility of recording them with non-automatic
capture parameters. The video of the back is of poor quality. The goal of this
dataset is to show the overall performance of the algorithm. This videos of
10:00 minutes contains 163 vehicles, of which 158 are cars, 2 are buses, 2 are
motorcycles and 1 is a truck.

5.2. SETUP FRAMEWORK 59

Figure 5.1: Subset of images from different Scenarios. Starting from above the first
row corresponds to different images of the Scenario1, the second with Scenario2 and
the third with the Scenario3.

In addition, ground truth (GT) files have been manually generated for each of
these scenarios.

5.2.2 Metrics

The metrics used to evaluate classification, detection and tracking algorithms are
recall and precision, its meaning can be seen in the following equations (see Eqs:5.1).

Precision =
TP

TP + FP
(5.1)

Recall =
TP

TP + FN
(5.2)

Where TP, TN, FP and FN means the number of true positives, true negatives,
false positives and false negatives respectively.

To evaluate the percentage of success in reading plate license we measure the
percentage of similarity between two character strings. This measure is obtained via
python function difflib−get.close.matches() which have a parameter cutoff that
indicates the percentage of similarity between them. A percentage of 100% indicates
that plates are identical, a percentage of 0% indicates that the strings do not have

60 CHAPTER 5. EXPERIMENTAL EVALUATION

any common character.

5.2.3 Parameters review

As mentioned through the document, the following parameters need to be set for each
scenario:

• THscore. Threshold to remove detections that do not refer to objects of interest.

• THiou. Threshold to remove overlap between detections

• THiou2. Threshold to remove possible misassignments from trackers to detec-
tions.

• minArea. Parameter to remove detections with a lower area.

• Hmin. Parameter to create trackers. If a tracker is assigned during Hmin con-
secutive times to a detection, it is created.

• Hmax. Parameter to remove trackers. If a tracker is not assigned to any detec-
tion during Hmax consecutive times, it is removed.

• Hocr. Number of times the OCR is calculated for each vehicle.

• P1 and P2. Points to determine the line that forms the piston. The piston is
placed in the highest quality area of each of the videos, with the aim of obtaining
the best results.

5.3 Performance evaluation of single camera Algorithms

5.3.1 Evaluation of front camera methods

1.- Experimental setup

For the evaluation of this algorithm the front video of Scenario1 has been chosen.
The metrics used to study its operation are those introduced previously. The same
parameters have been chosen for the two methods: THscore = 0.2, THiou = 0.3,
THiou2 = 0.1, minArea = 400, Hmin = 3, Hmax = 6 and Hocr = 5.

2.- Experimental results

The evaluation of the detection and tracking algorithm using the CNN method
is shown in Table:5.1. The detection and tracking algorithm refers to the vehicle

5.3. PERFORMANCE EVALUATION OF SINGLE CAMERA ALGORITHMS 61

detections obtained after trackers cross the piston. Where #V ehicles is the number
of vehicles that are in the video and #Detections is the number of them that are
detected as it passes through the piston.

Vehicle detection and tracking
#Vehicles #Detections Recall Precision

238 226 0.9741 1

Table 5.1: Table with the results of detection and tracking algorithm with the CNN
method for the video of the Scenario1.

The evaluation of the classification algorithm using the CNN method is shown in
Table:5.2.

Vehicle classification
Class #Vehicles #Detections Recall Precision

Car 225 204 0.9741 1
Bus 2 15 0.9375 0.5172

Motorcycle 4 0 0 0
Truck 7 6 0.5444 0.5

Table 5.2: Table with the results of classification algorithm with the CNN method
for the video of the Scenario1.

The evaluation of the OCR method using the CNN method is shown in Table:5.3.
WhereDistance(%) indicates the similarity between the ground truth with the correct
license plate value and the obtained license plate. Distance = 100% indicates that
the chains are identical. #Hits indicates the number of plates correctly matched,
#Misses indicates the number of plates not matched and Success indicates the hit
percentage.

Optical character recognition
Distance (%) #Hits #Misses Success (%)

100 201 25 88.94
90 210 16 92.92
80 217 9 96.02
70 221 5 97.79

Table 5.3: Table with the results of OCR algorithm with the CNN method for the
video of the Scenario1.

62 CHAPTER 5. EXPERIMENTAL EVALUATION

The evaluation of the detection and tracking algorithm using the FGBG method
is shown in Table:5.4.

Vehicle detection and tracking
#Vehicles #Detections Recall Precision

238 255 0.9586 0.8793

Table 5.4: Table with the results of detection and tracking algorithm with the FGBG
method for the video of the Scenario1.

The evaluation of the classification algorithm using the FGBG method is shown
in Table:5.5.

Vehicle classification
Class #Vehicles #Detections Recall Precision

Car 225 210 0.8714 95.02
Bus 2 11 0.5 64.71

Motorcycle 4 0 0 0
Truck 7 11 0.61 52.38

Table 5.5: Table with the results of classification algorithms with the FGBG method
for the video of the Scenario1.

The evaluation of the OCR method using the FGBG method is shown in Table:5.6.

Optical character recognition
Distance (%) #Hits #Misses Success (%)

100 221 34 86.66
90 232 23 90.98
80 241 14 94.51
70 247 8 96.86

Table 5.6: Table with the results of OCR algorithm with the FGBG method for the
video of the Scenario1.

3.- Experimental discussion

Analyzing the results of detection and tracking, it is observed how the accuracy
of the CNN algorithm is superior to that of FGBG. This is because while FGBG is
an algorithm sensitive to changes in the scene, where any of them make bad vehicle

5.3. PERFORMANCE EVALUATION OF SINGLE CAMERA ALGORITHMS 63

detections, the CNN method is being used only to locate vehicles. The changes in
lighting and focus that occur during the video generate many false positives in the
FGBG method, making a bad performance (see Fig:5.2).

Figure 5.2: Example of results obtained by the algorithms of detection and traking in
a change of illumination of the scene. The image on the left corresponds to the CCN
method and the image on the left to the FGBG method.

Figure 5.3: Example of the algorithm of detection and tracking with a truck during
four frames of the video obtained of Scenario1. In the fourth frame the tracker is
lost without correctly following the truck.

The failures produced in the detection with CNN, are due to occlusions or errors
of the algorithm working with large detections (buses and trucks). Errors with buses
and trucks, occurs because when only the tops of trucks and buses are visible, they
are not detected and therefore the trackers are lost before it passes through the piston

64 CHAPTER 5. EXPERIMENTAL EVALUATION

(see Fig:5.3). These errors also occur in the FGBG algorithm. To solve this problem
a CNN retraining should be done with images of these parts of trucks and buses.

Both algorithms fail with motorcycles. The FGBGmethod fails because detections
on motorcycles are eliminated due to their small size. The error of the CNN method
is based on its training, since vehicles catalogued as motorcycles are mostly trained
with images of lateral motorcycles, to solve this problem it would be necessary to
re-train the CNN with new front and rear images of these vehicles (see Fig:5.4).

Figure 5.4: Example of failures of FGBG and CNN detection and tracking algorithms
in the detection of motorcycles. The image on the left corresponds to CNN and the
right to FGBG.

A large number of errors occur in the classification algorithm. This is due to the
fact that the network used is not centered in the traffic area, since of the 90 classes
that it detects only 4 are useful. There are a great number of mistakes in assigning bus
and truck classes to cars. To solve this error, the ideal would be to make a training
with a vehicle dataset that contains more vehicles with different positions.

The OCR algorithm works correctly because for 88.94% of vehicles in the case
of CNN and for 86.66% of vehicles in the case of FGBG gets a perfect license plate
reading, due to the high quality of the camera used for the video. Most are small
errors in the estimation of some character. There are also four occlusion failures.

5.3.2 Evaluation of back camera methods

1.- Experimental setup

For the evaluation of this algorithm the rear video of Scenario2 has been chosen.
The metrics used to study its operation are those introduced previously. Next the
choice of the parameters is shown: THscore = 0.15, THiou = 0.3, THiou2 = 0.1,
minArea = 400, Hmin = 3, Hmax = 8 and Hocr = 5.

5.3. PERFORMANCE EVALUATION OF SINGLE CAMERA ALGORITHMS 65

2.- Experimental results

The evaluation of the detection and tracking algorithm is shown in Table:5.7.

Vehicle detection and tracking
#Vehicles #Detections Recall Precision

89 85 0.9659 1

Table 5.7: Table with the results of detection and tracking algorithm for the back
video of the Scenario2.

The evaluation of the classification algorithm is shown in Table:5.8.

Vehicle classification
Class #Vehicles #Detections Recall Precision

Car 87 66 0.767 1
Bus 0 2 1 0.5

Motorcycle 0 0 0 0
Truck 2 17 1 0.5

Table 5.8: Table with the results of classification algorithm for the back video of the
Scenario2.

The evaluation of the OCR method is shown in Table:5.9.

Optical character recognition
Distance (%) #Hits #Misses Success (%)

100 67 18 78.82
90 70 15 82.35
80 79 6 92.94
70 84 1 98.88

Table 5.9: Table with the results of OCR algorithm for the back video of the
Scenario2.

3.- Experimental discussion

Analyzing the results of the detection and tracking algorithm it is observed that
the algorithm works well for the detection of rear parts of cars, hitting 95.5% as it
is shown in Table:5.7. It is important to note that the two trucks in the video have
not been detected until they pass the piston (see Fig:5.5). To solve this problem I

66 CHAPTER 5. EXPERIMENTAL EVALUATION

propose two options, to move the piston away from the portico, which would also
cause worse results of obtaining OCR, or to perform a re-training of the CNN with
images of these characteristics, as I have commented before.

Figure 5.5: Example of two trucks not detected before passing through the piston.

As for the result of the classification, bad results are obtained. The problem is
that cars are classified as trucks or buses a lot of times (see Fig:5.6), due to CNN’s
poverty in this regard. Re-training is proposed for improvement.

Figure 5.6: Example of two cars badly classified. The car in the image on the left is
classified as a truck and the one in the image on the right as a bus.

The OCR algorithm works worse than in the previous case because only for 78.82%
of vehicles are obtained the perfect plate, due to the lower quality of the camera used
for the video.

5.3.3 Evaluation of lateral camera methods

1.- Experimental setup

For the evaluation of this algorithm the lateral video of Scenario3 has been chosen.

5.3. PERFORMANCE EVALUATION OF SINGLE CAMERA ALGORITHMS 67

The metrics used to study its operation are those introduced previously. Next the
choice of the parameters is shown: THscore = 0.1, THiou = 0.2, THiou2 = 0.8,
minArea = 100, Hmin = 2, Hmax = 3 and Hocr = 5.

2.- Experimental results

The evaluation of the detection and tracking algorithm is shown in Table:5.10.

Axle detection and tracking
#Axles #Detections Recall Precision

333 276 0.828 1

Table 5.10: Table with the results of detection and tracking algorithm for the lateral
video of the Scenario3.

The evaluation of the classification algorithm is shown in Table:5.11).

Axle classification
Class #Axles #Detections Recall Precision

Simple 329 273 0.9964 1
Double 4 3 1 0.75

Table 5.11: Table with the results of classification algorithm for the lateral video of
the Scenario3.

3.- Experimental discussion

The negative part of this axle detection algorithm, is that it will always fail that
there are occlusions of the same with other cars. However, in the video under study
there are not axle occlusions; hence, missing axles are only due to detection errors.
The algorithm performs with around 2% failure in axles detection, due to the reduced
dataset used for creating the axle detection CNN, so some types of axles are never
detected (see Fig:5.7) .

68 CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.7: Example of the axle detection algorithm. The image on the left contains
undetected axles and the image on the right contains detected axles.

As for the classification section, the results obtained are good, having only one
mistake when classifying a double axle as simple. But also, it would be advisable to
retrain the network with more training data (see Fig:5.8).

Figure 5.8: Example of the axle classification algorithm. The image on the left
corresponds to a correct classification of a double axle and the image on the right
corresponds to the error when classifying a double axle as simple.

5.4 Performance evaluation of vehicle association

1.- Experimental setup

The results shown, are obtained through the execution of the front and rear camera
algorithms at the same time, and the use of the database introduced in previous
sections. For the evaluation of this algorithm the videos of Scenario2 have been
chosen. The metrics used to study its operation are those introduced previously. The
same parameters have been chosen for back and front camera algorithms: THscore =

0.2, THiou = 0.3, THiou2 = 0.1, minArea = 400, Hmin = 3, Hmax = 6 and Hocr = 5.

5.4. PERFORMANCE EVALUATION OF VEHICLE ASSOCIATION 69

2.- Experimental results

The evaluation of the vehicle association is shown in Table:5.12. Where #ReID is
the number of vehicles that have been correctly re-identified, #NOTReID the ones
that have not been re-identified and #MisReID the failures that have occurred when
re-identifying.

Vehicle association
Distance (%) # ReID # NOT ReID # Mis ReID Success (%)

100 65 20 0 76.47
90 69 16 0 81.18
80 75 10 1 87.06
70 79 6 2 90.59

Table 5.12: Table with the results of vehicle association algorithm for the videos of
the Scenario2.

The evaluation of the re-classification of the vehicles due to the algorithm of vehicle
association using Distance = 90% is shown in Table:5.13.

Vehicle re-classification
Class #Vehicles #Detections #ReID Recall Precision

Car 87 79 69 0.9294 1
Bus 0 0 0 0 0

Motorcycle 0 0 0 0 0
Truck 2 6 0 1 0.5

Table 5.13: Table with the results of vehicle classification algorithm for the back video
of the Scenario2 after the re-identification process.

3.- Experimental discussion

A re-identification algorithm based on the license plate must have a very high
percentage of Distance, to not make mistakes when re-identifying. As you can see
in Table:5.12, the perfect re-identification (Distance = 100%) of license plate get a
76% success rate, due to errors in the reading of the license plate. These errors could
be solved using the recording cameras with the appropriate configuration.

Using a percentage lower than 90% will never be a possibility of implantation
in the algorithm. In this particular case, the percentage of 90% has been chosen to
perform the algorithm because no failures have been made #MisReID = 0.

70 CHAPTER 5. EXPERIMENTAL EVALUATION

Table:5.12 shows the classification of the rear camera after the re-identification
process. To measure its performance, a comparison is made with the results obtained
for the same video with the algorithm of the back camera previously analyzed (see
Table:5.8). Through this process, 14 classifications have been corrected, changing 12
classes from truck and 2 classes from bus, to car (see Fig:5.9).

Figure 5.9: Example of correct re-identification. The two upper images correspond
with the result of the single back algorithm and the two lower images with the result
after the re-identification process.

5.5 Performance evaluation of axle to vehicle association

1.- Experimental setup

The results shown, are obtained through the execution of the front, back and
lateral cameras at the same time and the use of the database introduced in previous
sections. For the evaluation of this algorithm the videos of Scenario2 and Scenario3

has been chosen. The metrics used to study its operation are those introduced previ-
ously. The same parameters have been chosen for back and front camera algorithms:
THscore = 0.2, THiou = 0.3, THiou2 = 0.1, minArea = 400, Hmin = 3, Hmax = 6 and
Hocr = 5. The following parameters are used for the axles algorithm: THscore = 0.1,
THiou = 0.2, THiou2 = 0.8, minArea = 100, Hmin = 2, Hmax = 3 and Hocr = 5.

5.5. PERFORMANCE EVALUATION OF AXLE TO VEHICLE ASSOCIATION71

2.- Experimental results

The evaluation of the axle to vehicle association in the Scenario3 is shown in Ta-
ble:5.14. Where #A.Simples is the number of simple axles detected and #A.Double

is the number of double axles detected. Success (%) is the the percentage of success
in the axles assignment to the correspond detected vehicles.

Axle to vehicle association
Class # Vehicles # ReID # A.Simples # A.Doubles Success (%)

Car 158 15 30 0 100
Bus 1 0 0 0 0

Motorcycle 2 0 0 0 0
Truck 2 0 0 0 0

Table 5.14: Table with the results of axle to vehicle association algorithm for the
videos of the Scenario3.

The evaluation of the axle to vehicle association in the Scenario2 is shown in
Table:5.15.

Axle to vehicle association
Class # Vehicles # ReID # A.Simples # A.Doubles Success (%)

Car 87 69 138 0 100
Bus 0 0 0 0 0

Motorcycle 0 0 0 0 0
Truck 2 0 0 0 0

Table 5.15: Table with the results of axle to vehicle association algorithm for the
videos of the Scenario2.

3.- Experimental discussion

Two processes are used to assign axles to vehicles: in one hand two simple axles
are assigned to each car and re-identified motorbike, on the other hand, trucks, and
buses are assigned axles that have been detected during the time it takes for the
vehicle to move from the front camera piston to the rear camera piston.

For the allocation of axes to cars and motorcycles, 100% accuracy will always be
achieved, however, in the case of trucks and buses, there may be errors. These errors
will generally be due to the capture of axles of other vehicles, during the time in
which the truck or bus is between the front and rear camera.

72 CHAPTER 5. EXPERIMENTAL EVALUATION

In this case, the axles have been assigned to the re-identified cars. However, it has
not been possible to carry out the complete system because there are no examples
recorded with three good quality cameras containing trucks or buses.

The Scenario3 is made up of three videos recorded synchronously, but the quality
of the rear video is poor due to the illumination and the automatic focus of the camera
used. It only detects 42 vehicles of the 163 that contains the video, and only 15 of
them are re-identified (see Fig:5.10). The Scenario2 has no side camera video.

Figure 5.10: Example of two undetected vehicles with the back camera algorithm for
the Scenario3 rear video.

Chapter 6

Conclusions and future work

6.1 Conclusions

This project describes a system to control traffic using a multi-camera system. The
scope of application is a free-flow portico scenario. The system integrates software
solutions for the detection, classification, tracking and re-identification of vehicles
in highways. These methods are integrated on a hardware setup using Jetson TX2
boards and Daheng Imaging cameras. Finally, a set of initial strategies to combine
information among the cameras are proposed.

The project starts by reviewing state-of-the art solutions on the involved tech-
niques and follows by describing the processing pipeline and the hardware technol-
ogy. Finally, a simulated experimental evaluation of the individual methods and of
the combination strategies is carried out.

Experimental results indicate that the processing pipeline of each camera achieves
decent performance and is able to handle capture challenges as illumination changes
and occlusions. However, the deep learning solutions used along the project should
be retrained before their use on the real scenario. On the other hand, the combina-
tion schemes performed on the central system are highly dependent of the individual
pipelines. Their current version lacks of the robustness to be used on the free-flow
portico scenario.

6.2 Future work

Software multi-camera design implementation still has a long way to go. The first step
will be to obtain real videos, properly recorded with the cameras Daheng Imaging,
with which to evaluate the algorithm correctly.

73

74 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

It will be necessary to improve the performance of all the neuronal networks used,
both to detect and to classify. For its improvement is proposed a retrain of these
networks, creating a large dataset with images of all categories of vehicles and axles,
chosen from the different portico positions from which these objects will be visible.
In addition, these images should be taken at different times of the day, with the aim
of obtaining a robust CNN to lighting or weather changes.

It proposes an improvement, studying new procedures of re-identification for the
association of vehicles, and multi-camera systems for the association of axles to vehi-
cles.

It will be necessary for real-time processing. For this purpose, among other things,
the TensorRT models of the CNNs used must be correctly implemented, in order to
exploit the characteristics of the Jetson TX2 boards.

We will continue in the development of this algorithm with the objective of being
implemented in real porticoes in which INDRA is working.

Bibliography

[1] Z. Tang, M. Naphade, M. Liu, X. Yang, S. Birchfield, S. Wang, R. Kumar, D. C.
Anastasiu, and J. Hwang, “Cityflow: A city-scale benchmark for multi-target
multi-camera vehicle tracking and re-identification,” CoRR, vol. abs/1903.09254,
2019.

[2] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Inter-
national Journal of Computer Vision, vol. 60, pp. 91–110, Nov 2004.

[3] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features
(surf),” Comput. Vis. Image Underst., vol. 110, pp. 346–359, June 2008.

[4] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,”
in Proceedings of the 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05) - Volume 1 - Volume 01, CVPR ’05,
(Washington, DC, USA), pp. 886–893, IEEE Computer Society, 2005.

[5] W. Rawat and Z. Wang, “Deep convolutional neural networks for image classifi-
cation: A comprehensive review,” Neural Computation, vol. 29, no. 9, pp. 2352–
2449, 2017. PMID: 28599112.

[6] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E. Hub-
bard, and L. D. Jackel, “Handwritten digit recognition with a back-propagation
network,” in Advances in Neural Information Processing Systems 2 (D. S. Touret-
zky, ed.), pp. 396–404, Morgan-Kaufmann, 1990.

[7] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86, pp. 2278–2324, Nov
1998.

[8] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. Lecun, “Over-
feat: Integrated recognition, localization and detection using convolutional net-

75

76 BIBLIOGRAPHY

works,” in International Conference on Learning Representations (ICLR2014),
CBLS, April 2014, 2014.

[9] J. Zhang, F. Wang, K. Wang, W. Lin, X. Xu, and C. Chen, “Data-driven in-
telligent transportation systems: A survey,” IEEE Transactions on Intelligent
Transportation Systems, vol. 12, pp. 1624–1639, 12 2011.

[10] H. Van Pham and B.-R. Lee, “Front-view car detection and counting with oc-
clusion in dense traffic flow,” International Journal of Control, Automation and
Systems, vol. 13, pp. 1150–1160, Oct 2015.

[11] J. Wang, Y. Yang, J. Mao, Z. Huang, C. Huang, and W. Xu, “CNN-RNN: A uni-
fied framework for multi-label image classification,” CoRR, vol. abs/1604.04573,
2016.

[12] W. Choi, “Near-online multi-target tracking with aggregated local flow descrip-
tor,” CoRR, vol. abs/1504.02340, 2015.

[13] M. Valera and S. Velastin, “Intelligent distributed surveillance systems: A re-
view,” Vision, Image and Signal Processing, IEE Proceedings -, vol. 152, pp. 192
– 204, 05 2005.

[14] Y. Zheng, L. Capra, O. Wolfson, and H. Yang, “Urban computing: Concepts,
methodologies, and applications,” ACM Trans. Intell. Syst. Technol., vol. 5,
pp. 38:1–38:55, Sept. 2014.

[15] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for
mobile vision applications,” CoRR, vol. abs/1704.04861, 2017.

[16] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov, “Scalable object detection
using deep neural networks,” CoRR, vol. abs/1312.2249, 2013.

[17] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” in International Conference on Learning Representations,
2015.

[18] X. Hu, X. Xu, Y. Xiao, H. Chen, S. He, J. Qin, and P. Heng, “Sinet: A
scale-insensitive convolutional neural network for fast vehicle detection,” CoRR,
vol. abs/1804.00433, 2018.

[19] B. Li, T. Wu, and S.-C. Zhu, “Integrating context and occlusion for car detection
by hierarchical and-or model,” in Computer Vision – ECCV 2014 (D. Fleet,

BIBLIOGRAPHY 77

T. Pajdla, B. Schiele, and T. Tuytelaars, eds.), (Cham), pp. 652–667, Springer
International Publishing, 2014.

[20] M. Vargas, J. M. Milla, S. L. Toral, and F. Barrero, “An enhanced background
estimation algorithm for vehicle detection in urban traffic scenes,” IEEE Trans-
actions on Vehicular Technology, vol. 59, pp. 3694–3709, Oct 2010.

[21] A. Geiger, “Are we ready for autonomous driving? the kitti vision benchmark
suite,” in Proceedings of the 2012 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), CVPR ’12, (Washington, DC, USA), pp. 3354–
3361, IEEE Computer Society, 2012.

[22] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hi-
erarchies for accurate object detection and semantic segmentation,” CoRR,
vol. abs/1311.2524, 2013.

[23] Z. Cai, Q. Fan, R. S. Feris, and N. Vasconcelos, “A unified multi-scale deep con-
volutional neural network for fast object detection,” CoRR, vol. abs/1607.07155,
2016.

[24] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hi-
erarchies for accurate object detection and semantic segmentation,” CoRR,
vol. abs/1311.2524, 2013.

[25] M. Shaker and M. ElHelw, “Optical character recognition using deep recurrent at-
tention model,” in Proceedings of the 2Nd International Conference on Robotics,
Control and Automation, ICRCA ’17, (New York, NY, USA), pp. 56–59, ACM,
2017.

[26] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” CoRR, vol. abs/1506.02640, 2015.

[27] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg,
“SSD: Single Shot MultiBox Detector,” arXiv e-prints, p. arXiv:1512.02325, Dec
2015.

[28] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” CoRR,
vol. abs/1409.4842, 2014.

[29] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Proceedings of the 25th International Confer-

78 BIBLIOGRAPHY

ence on Neural Information Processing Systems - Volume 1, NIPS’12, (USA),
pp. 1097–1105, Curran Associates Inc., 2012.

[30] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” CoRR, vol. abs/1409.1556, 2015.

[31] D. Reid, “An algorithm for tracking multiple targets,” IEEE Transactions on
Automatic Control, vol. 24, pp. 843–854, December 1979.

[32] Y. Bar-Shalom, Tracking and Data Association. San Diego, CA, USA: Academic
Press Professional, Inc., 1987.

[33] S. Rezatofighi, A. Milan, Z. Zhang, Q. Shi, A. Dick, and I. Reid, “Joint prob-
abilistic data association revisited,” in 2015 IEEE International Conference on
Computer Vision (ICCV), (Los Alamitos, CA, USA), pp. 3047–3055, IEEE Com-
puter Society, dec 2015.

[34] F. Heymann, J. Hoth, P. Banys, and G. Siegert, “Validation of radar image
tracking algorithms with simulated data,” TransNav, the International Journal
on Marine Navigation and Safety of Sea Transportation, vol. 11, no. 3, pp. 511–
518, 2017.

[35] M. A. Naiel, M. O. Ahmad, M. Swamy, J. Lim, and M.-H. Yang, “Online multi-
object tracking via robust collaborative model and sample selection,” Comput.
Vis. Image Underst., vol. 154, pp. 94–107, Jan. 2017.

[36] H. W. Kuhn, “The hungarian method for the assignment problem,” in 50 Years
of Integer Programming, 2010.

[37] B. Sahbani and W. Adiprawita, “Kalman filter and iterative-hungarian algorithm
implementation for low complexity point tracking as part of fast multiple object
tracking system,” 10 2016.

[38] R. E. Kalman, “A new approach to linear filtering and prediction problems,”
Transactions of the ASME–Journal of Basic Engineering, vol. 82, no. Series D,
pp. 35–45, 1960.

[39] X. Liu, W. Liu, H. Ma, and H. Fu, “Large-scale vehicle re-identification in urban
surveillance videos,” 2016 IEEE International Conference on Multimedia and
Expo (ICME), pp. 1–6, 2016.

BIBLIOGRAPHY 79

[40] S. Du, M. Ibrahim, M. Shehata, and W. Badawy, “Automatic license plate recog-
nition (alpr): A state-of-the-art review,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 23, pp. 311–325, Feb 2013.

[41] S. M. Silva and C. R. Jung, “License plate detection and recognition in uncon-
strained scenarios,” in 2018 European Conference on Computer Vision (ECCV),
Sep 2018.

[42] J. Bromley, J. Bentz, L. Bottou, I. Guyon, Y. Lecun, C. Moore, E. Sackinger,
and R. Shah, “Signature verification using a siamese time delay neural network,”
International Journal of Pattern Recognition and Artificial Intelligence, vol. 7, 8
1993.

[43] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric discrimi-
natively, with application to face verification,” in 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1,
pp. 539–546 vol. 1, June 2005.

[44] C. Zhang, W. Liu, H. Ma, and H. Fu, “Siamese neural network based gait recogni-
tion for human identification,” 2016 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 2832–2836, 2016.

[45] O. Javed, K. Shafique, Z. Rasheed, and M. Shah, “Modeling inter-camera space-
time and appearance relationships for tracking across non-overlapping views,”
Comput. Vis. Image Underst., vol. 109, pp. 146–162, Feb. 2008.

[46] G. Kayumbi, P. L. Mazzeo, P. Spagnolo, M. Taj, and A. Cavallaro, “Distributed
visual sensing for virtual top-view trajectory generation in football videos,” in
Proceedings of the 2008 International Conference on Content-based Image and
Video Retrieval, CIVR ’08, (New York, NY, USA), pp. 535–542, ACM, 2008.

[47] R. Eshel and Y. Moses, “Tracking in a dense crowd using multiple cameras,”
International Journal of Computer Vision, vol. 88, pp. 129–143, May 2010.

[48] P. Peng, Y. Tian, Y. Wang, J. Li, and T. Huang, “Robust multiple cameras
pedestrian detection with multi-view bayesian network,” Pattern Recogn., vol. 48,
pp. 1760–1772, May 2015.

[49] A. Lopez-Cifuentes, M. Escudero-Viñolo, J. Bescós, and P. Carballeira, “Semantic
driven multi-camera pedestrian detection,” CoRR, vol. abs/1812.10779, 2018.

80 BIBLIOGRAPHY

[50] “El tráfico en las autopistas de peaje,” Dirección general de carreteras, Ministerio
de fomento, Gobierno de España, 2010.

[51] Z. Zivkovic, “Improved adaptive gaussian mixture model for background subtrac-
tion,” vol. 2, pp. 28 – 31 Vol.2, 09 2004.

[52] Z. Zivkovic and F. van der Heijden, “Efficient adaptive density estimation per im-
age pixel for the task of background subtraction,” Pattern Recogn. Lett., vol. 27,
pp. 773–780, May 2006.

	Resumen
	Abstract
	Acknowledgements
	Introduction
	Motivation
	Objectives
	Document organization

	State of the Art
	Introduction
	Convolutional Neuronal Networks (CNNs)
	MobileNet V1
	Single Shot Multibox Detection (SSD)
	SSD MobileNet V1

	Object detection
	Object classification
	Object tracking
	Kalman Filter
	Hungarian Algorithm

	Vehicle Re-identification (ReID)
	Multicamera tracking

	Proposed system
	Introduction
	Object detection
	Vehicle detection
	Axle detection
	Post-processing steps

	Object tracking
	Data estimation
	Data Association
	Tracker Management

	Object classification
	Vehicle classification
	Axle classification

	Plate recognition
	Introduction
	Optical Character Recognition (OCR) system development

	Central System
	Piston
	Database
	Vehicle Association
	Axle to Vehicle Association

	Development
	Introduction
	Jetson TX2
	Jetson TX2 SDK

	Camera FLIR BFS-U3-31S4M-C
	Camera Daheng Imaging MER-231-41U3M/C
	KOMOTO C7S

	KMDA-3602 Computer
	Hardware system design
	Centralized System
	Distributed System

	Experimental evaluation
	Introduction
	Setup framework
	Datasets
	Metrics
	Parameters review

	Performance evaluation of single camera Algorithms
	Evaluation of front camera methods
	Evaluation of back camera methods
	Evaluation of lateral camera methods

	Performance evaluation of vehicle association
	Performance evaluation of axle to vehicle association

	Conclusions and future work
	Conclusions
	Future work

	Bibliography

