Repositorio Institucional de la Universidad Autónoma de Madrid https://repositorio.uam.es Material electrónico suplementario del artículo publicado en: This is the **Electronic Supplementary Material (ESM)** author version of a paper published in: Microchimica Acta 186.5 (2019): 293 DOI: https://doi.org/10.1007/s00604-019-3386-9 Copyright: © Springer-Verlag GmbH Austria, part of Springer Nature 2019 ## **Electronic Supplementary Material (ESM)** # Fluorescent C-NanoDots for rapid detection of BRCA1, CFTR and MRP3 gene mutations. Tania García-Mendiola^{a,b}, Cristina García Elosegui^a, Iria Bravo^{a,b}, Félix Pariente^{a,b}, Alejandra Jacobo-Martin^b, Cristina Navio^b, Isabel Rodriguez^b, Reinhold Wannemacher^b and Encarnación Lorenzo*^{a,b} ^a Departamento Química Analítica y Análisis Instrumental, Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid, 28049 Madrid, Spain. b Instituto Madrileño de Estudios Avanzados (IMDEA) Nanociencia, Faraday, 9, Campus UAM, 28049 Madrid, Spain. #### **Synthesis of Carbon NanoDots** CNDs have been synthetized by a hydrothermal method using citric acid andethylenediamine as precursors. 1.26 g citric acid (99.0% (Sigma-Aldrich) and 1608 µL ethylenediamine (99.5% (Sigma-Aldrich) and 30 mL Milli-Q water were placed on a Teflon-lined autoclave at 200 °C for 5 hours. After cooling down to room temperature, the obtained solution was filtered through a 0.22 µm membrane to remove bulk impurities. Subsequently, the solution was dialyzed against pure Milli-Q water through a dialysis membrane of 1 kD pore size (Spectra/Por® 6, Spectrum Laboratories Inc, http://spectrumlabs.com) for 3 days. This solution was kept in the fridge and used as stock solution of CNDs. #### **Procedures** For Elemental Analysis and Fourier Transform Infrared (FTIR) analysis, a dried sample of synthesized CNDs was directly used. From the Elemental Analysis % C value and taking account the size of the CNDs obtained by TEM, a CNDs concentration of 20 μ M was estimated for the stock solution. For Atomic Force Microscopy (AFM) and XPS analysis, a dried sample of synthesized CNDs on a Si substrate was directly used. UV-visible absorption and fluorescence emission spectra were performed using 0.1 M PB pH 7.0 in 1.0 cm quartz cells. Fluorescence titrations were carried out at 2.0 μ M of CNDs and varying the concentration of dsDNA or ssDNA from 0 to 30 μ M. The binding constant (K_b) was calculated from a plot of I_o/I vs [DNA], where I_o and I are the fluorescence intensity of free and bound-to-DNA CNDs, respectively using a Stern-Volmer model. DNA melting curves were acquired by monitoring DNA absorbance in 0.1 M PB pH 7.0 at 260 nm with temperature, over the range 30-100 °C at a heating rate of 1 °C min⁻¹. The melting temperature, T_m, was determined from the mid-point of the melting curve. dsDNA-CNDs or ssDNA-CNDs nanohybrid samples for fluorescence microscopy, FTIR, TEM, DLS and Zeta potential experiments, were prepared by incubating 3.0 mL of a 20 μ M CNDs solution with 2.0 mL of a 2.0 mM ds or ssDNA solution during 72 h at room temperature. The resulting solution was transferred to a filter unit (Amicon Ultracentrifugal 100K) and filled with 3.0 mL of water. Samples were centrifuged in a Hettich 320R centrifuge at 12000 rpm for 30 min. This centrifugation process was repeated 2 times to discard the CNDs which were not linked to the ds or ssDNA. Then, the supernatant was resuspended in 200 μ L of water. 50 μ L of this solution was drop casted and air-dried on a glass slide during 24 h. Finally, fluorescence images of these samples were obtained. The fluorescence quantum yield of CNDs was calculated relative to a well-known standard, quinine sulfate in 0.1 M sulfuric acid, with excitation at 340 nm using the following equation: $$\phi_{CNDS} = \phi_{quinine} \frac{I_{CNDS}}{I_{quinine}} \frac{A_{quinine}}{A_{CNDS}} \frac{\eta_{CNDS}^2}{\eta_{quinine}^2}$$ where Φ is the quantum yield, $\Phi_{quinine}$ = 54%, I is the integrated emission intensity, A is the absorbance and η is the refractive index [22]. To calculate the quantum yield of CNDs after interaction with DNA, a 5 μ M DNA concentration was used to keep the absorbance below 0.1 in order to avoid inner filter effects. The interaction strength of CNDs and dsDNA was quantified by the binding constant (K_b), using the following equation, $F_0/F=1+K_b[DNA]$. From a plot of F_0/F versus [DNA] the binding constant was calculated. Figure S1. Reaction Scheme for CNDs synthesis. TEM images of the synthesized CNDs (A), magnification of a CND (B) and FFT analysis of the image (C). Figure S2. A,B) AFM image of a Si plate modified with the synthesized CNDs. C) Size distribution histogram of the CNDs in the red square of image B). D) Magnification and scan of the red square of B image. E) High profile of the scan of D image. Figure S3. XPS spectra of the synthesized CNDs. Figure S4. Absorbance (A) and Fluorescence emission (B) spectra of a 2.0 μ M solution of the CNDs in 0.04 M Britton-Robinson buffer at different pHs: (a) 2.0, (b) 5.0, (c) 7.1, (d) 9.6, (e) 11.7 and (f) 13.2. Inset: emission intensity at 440 nm vs. pH. Figure S5. Melting curves of dsDNA (100 μ M) in the absence (blue line) and in presence of 2.0 μ M of CNDs (black line) in 0.1 M PB pH 7.0 solution. Figure S6. TEM image (A) and EDX (B) of the dsDNA-CNDs nanohybrid sample. Figure S7. FTIR spectra of dried suspension of the synthesized CNDs (blue line), dsDNA (red line) and dsDNA-CNDs nanohybrid (black line). Figure S8. Fluorescence spectra of CNDs (black line) and of CNDs in the presence of 5 mM KI (red line) and in the presence of 300 μ M DNA and 5 mM KI (blue line). ## DNA SEQUENCES TCTCAGTTTTCCTGGATTATGCCTGGCACCATTAAAGAAAATATCATCT TTGGTGTTTCCTATGATGAATATAGATACAGAAGCGTCATCAAAGCAT PROBE CETR GCC GGCATGCTTTGATGACGCTTCTGTATCTATATTCATCATAGGAAACACC AAAGATGATATTTTCTTTAATGGTGCCAGGCATAATCCAGGAAAACTG WT CFTR GGCATGCTTTGATGACGCTTCTGTATCTATATTCATCATAGGAAACACC ATGATATTTCTTTAATGGTGCCAGGCATAATCCAGGAAAACTGA MUT CETR ACAGAAGGGTGCGCGAGTTTCATTAACTCGAAAATTGTTAGAACTTTC TAAGCAGTGTGGTTCT AGTTCTGAGTGTTATGGTTAGTGCTTTTAGACT NC CFTR **GCT** ${\tt CTCAGATGGGGAGGGACAGGGTCGGCCTGTACCCCGGAGGCACCTGG}$ GTCCATCAGAGAAGGTGCAGGTGACAGAGGCGAAGGCAGATGGGGCA WT MRP3 **CTGACC** ${\tt CTCAGATGGGGAGGGACAGGGTCGGCCTGTACCCC}{\color{blue}{\bf A}{\tt GAGGCACCTGG}}$ ${\tt GTCCATCAGAGAAGGTGCAGGTGACAGAGGCGAAGGCAGATGGGGCA}$ MUT MRP3 **CTGACC** ACAGTGCTTTTGTTTGAGTTTCATTAACTCGAAAATTGTTAGAACTTTC AAGCAGTGTGGTTCT AGTTCTGAGTGTTATGGTTAGTGCTTTTAGACT NC MRP3 **GAA** CTAAATAGGAAAATACCAGCTTCATAGACAAAGGTTCTCTTTGACTCA CCTGCAATAAGTTGCCTTATTAACGGTATCTTCAGAAGAATCAGATCCT PROBE BRCA1 AAA GGGGAAATTTTTTAGGATCTGATTCTTCTGAAGATACCGTTAATAAGGC AACTTATTGCAGGTGAGTCAAAGAGAACCTTTGTCTATGAAGCTGGTA WT BRCA1 GGGGAAATTTTTTAGGATCTGATTCTTCTGAAGATACCGTTAATAAGGC AACTTATTG**T**AGGTGAGTCAAAGAGAACCTTTGTCTATGAAGCTGGTA MUT BRCA1 TTT CCCCTTTAAAAAATCCTAGACTAAGAAGACTTCTATGGCAATTATTCCG TTGAATAACATCCACTCAGTTTCTCTTGGAAACAGATACTTCGACCATA $NC_{\,BRCA1}$ AA Table S2. Nanomaterial-based optical methods for determination of gene mutations. | Method
used | Reagent used | Linear
range | LOD | Gene | Reference | |----------------|---------------------------------------|-------------------------------|---------|---------------|-----------------| | Luminescence | Cyclometallated Iridium (III) complex | 0-0.5 μΜ | 0.05 μΜ | BRCA1 | [1] | | Fluorescence | Perylene-
labeled
DNA probes | - | 100 nM | BRCA1 | [2] | | Fluorescence | DNA silver nanoclusters | 1x10 ⁻⁴ -2.4
μM | 64 pM | BRCA1 | [3] | | Fluorescence | Gold nanoparticles | 1-150 nM | 1nM | CFTR | [4] | | Luminescence | DNA silver nanoclusters | 1 | 53 nM | LMP1 and CCR5 | [5] | | Fluorescence | Carbon
nanodots | up to 200
nM | 270 pM | BRCA1 | Present
work | #### References - 1. He H, Chan DS, Leung C, Ma D (2012) A highly selective G-quadruplex-based luminescent switch-on probe for the detection of gene deletion. Chem Commun 48:9462-9464 - 2. Kashida H, Kondo N, Sekiguchi K, Asanuma H (2011) Detection of three-base deletion by exciplex formation with perylene derivatives. Chem Commun 47:6404–6406 - 3. Borghei Y, Hosseini M, Ganjali MR (2017) Detection of large deletion in human BRCA1 gene in human breast carcinoma MCF-7 cells by using DNA-Silver Nanoclusters. Methods Appl Fluoresc 6:015001 - 4. Beni V, Hayes K, Mairal Lerga T, K. O'Sullivan C (2010) Development of a gold nano-particle-based fluorescent molecular beacon for detection of cystic fibrosis associated mutation. Biosensors and Bioelectronics 26: 307–313 - 5. Wang M, Wang W, Liu C, Liu J, Kang T, Leung C and Dik-Lung M (2017) Luminescence switch-on assay for the detection of specific gene deletion using G-quadruplex DNA and silver nanoclusters. Mater. Chem. Front 1: 128-131