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Abstract

This PhD thesis presents experimental studies of exciton-polariton condensates in GaAs-
based microcavities that have been patterned with different structures considering the fea-
sibility of their designs for polaritonic-based circuits. The strong light-matter coupling in
the cavities gives rise to fascinating new effects that make polaritons appropriate candidates
for nonlinear optical technologies: their bosonic nature, together with their light effective
mass, facilitates their condensation in a macroscopic coherent phase that presents high simi-
larities to Bose-Einstein condensates; their excitonic part leads to strong polariton-polariton
Coulomb interactions; thanks to their photonic content, polaritons can be easily created and
manipulated at will through optical excitation sources. Furthermore, the wavefunction of the
photons emitted from the cavity is an exact copy of the intracavity polariton wavefunction
and therefore, using simple optical techniques, it is possible to gain access to important
information, such as the phase, wave vector or the spin of these quasiparticles, to name just a
few.

In more detail, this thesis is organized as follows:

Chapter 1 presents the physics behind excitons-polaritons, with emphasis on the creation of
polariton condensates in semiconductor microcavities. The semiconductor quasiparticles
involved in the formation of polaritons, photons and excitons, are described individually.
A general description of the propagation of light in microcavities and its interaction with
excitons confined in the system is discussed. Special attention is also given to the concepts
behind the Bose-Einstein condensation. Finally, the theoretical description for interference
between condensates in momentum-space and the emergence of Josephson oscillations are
presented.

Chapter 2 describes the experimental techniques used during the thesis. The imaging tech-
niques for real- and momentum-space are presented, describing in detail the excitation and
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detection conditions. Additionally, the chapter gathers the description of the different samples
used in the experiments, all of them based on differently patterned GaAs microcavities.

In chapter 3 we present a study of the temperature effect on the coherence of traveling
polariton condensates. We obtain interference fringes in momentum-space as a result of the
interference between polariton condensates propagating with the same speed. In a similar
fashion, we obtain interference fringes in real-space when condensates, traveling in opposite
directions, meet. The fringes are analyzed through two different methods, obtaining the
visibility of the fringes with the first one and the fraction of condensed to un-condensed
polaritons with the second. Both methods evidence a gradual decay of the condensates’
coherence with increasing temperature, and allow to obtain the critical temperature for the
Bose-Einstein-like condensate phase transition. We compare our experimental findings with
theoretical models, developed for atomic condensates, to describe the condensates’ coherence
fading with temperature.

In chapter 4 we report a detailed study of several coupler devices consisting of two parallel
planar waveguides where a deviation of 45º at both ends of the structures has been introduced.
We have characterized the photonic landscape experienced by polaritons along the couplers,
which reveals that an additional discretization of the polaritons’ wave vectors is introduced
when the orientation of the waveguide is changed. As a consequence of the introduction of
the 45º deviation in the waveguide, we find a deceleration when polariton condensates turn
at the bends of the circuits where they propagate. We have found that, for certain coupler’s
parameters, the tunneling of polaritons between the two arms of the device is allowed, giving
rise to the direct observation of Josephson oscillations. Finally, we study the coupler’s
sensitivity to linear polarization to investigate the possibility of benefiting from the spin
degree of freedom. A peculiar oscillating behavior in the linear polarization at the output
terminal is found.

In chapter 5, we study a compact counter-directional polariton router which operates as a
polaritonic resonant tunnel diode. The device implements the means to control the propaga-
tion direction of polariton condensates making use of a photonic microdisk potential, which
couples two lithographically defined waveguides and reverses the condensate’s propagation
direction. The device can feasibly be scaled to larger logic architectures without the require-
ment for any active external control parameters. Additionally, we investigate the ultrafast
dynamics of the device via time-resolved photoluminescence measurements.

In chapter 6 we report the realization of a synthetic magnetic field for polaritons in a honey-
comb lattice made of coupled semiconductor micropillars. First, we describe theoretically
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how to implement a gauge field, engineering the lattice parameters. A strong synthetic field
is induced by introducing an uniaxial strain in the lattice, giving rise to the formation of
Landau levels at the Dirac points. We report direct evidences of polaritonic Landau levels in
samples with different strain gradients, observing also the localization of the n = 0 Landau
level wavefunction in one sublattice.
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Resumen

Esta tesis doctoral presenta estudios experimentales de condensados de polaritones ex-
citónicos en microcavidades basadas en GaAs, en las cuales han sido esculpidas diferentes
estructuras, considerando la viabilidad de sus diseños para circuitos basados en polaritones.
El acoplamiento fuerte de la luz con la materia en las cavidades da lugar a nuevos efectos
fascinantes, haciendo de los polaritones unos candidatos excelentes para las tecnologías
ópticas no lineales: su naturaleza bosónica, junto con su ligera masa efectiva, facilita su
condensación en una fase macrocópica coherente que presenta grandes similitudes con los
condensados de Bose-Einstein; su parte excitónica conduce a fuertes interacciones polaritón-
polaritón de Coulomb; gracias a su contenido fotónico, los polaritones se pueden crear y
manipular fácilmente a través de fuentes de excitación óptica. Además, la función de onda
de los fotones emitidos desde la cavidad es una copia exacta de la función de onda del
polaritón dentro de la cavidad y, por lo tanto, utilizando técnicas ópticas simples, es posible
obtener acceso a información importante como la fase, el vector de onda o el espín de estas
cuasipartículas, por nombrar solo algunas.

Esta tesis se organiza de la siguiente manera:

El capítulo 1 presenta la física subyacente a los polaritones excitónicos, con énfasis en la
creación de condensados de polaritones en microcavidades semiconductoras. Las cuasi-
partículas semiconductoras implicadas en la formación de polaritones, fotones y excitones,
se describen individualmente. Se analiza una descripción general de la propagación de la
luz en microcavidades y su interacción con los excitones confinados en dicho sistema. Tam-
bién se presta especial atención a los conceptos básicos de la condensación Bose-Einstein.
Finalmente, se presenta una descripción teórica de la interferencia entre condensados en el
espacio de momentos y la aparición de las oscilaciones de Josephson.

El capítulo 2 describe las técnicas experimentales utilizadas durante la tesis. Se muestran las
técnicas de imagen para el espacio real y el espacio de momentos, describiendo en detalle
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las condiciones de excitación y detección. Además, el capítulo reúne la descripción de las
diferentes muestras utilizadas en los experimentos, todas ellas basadas en microcavidades de
GaAs con diferentes estructuras.

El capítulo 3 presenta un estudio sobre el efecto de la temperatura en la coherencia de
condensados de polaritones que se propagan. Se obtienen franjas de interferencia en el espacio
de momentos debido a la interferencia entre condensados de polaritones propagándose con
la misma velocidad, es decir, el mismo vector de onda. De forma similar, se obtienen
franjas de interferencia en el espacio real cuando los condensados, viajando en direcciones
opuestas, coinciden en un punto de la muestra. Las franjas se analizan utilizando dos métodos
diferentes: con el primero se obteniene la visibilidad de las franjas en el primero y con el
segundo la proporción de polaritones condensados a no condensados. Ambos métodos
muestran una disminución gradual de la coherencia de los condensados con el aumento
de la temperatura, y permiten obtener la temperatura crítica para la transición de fase de
un condensado tipo Bose-Einstein. Finalmente, se comparan los resultados experimentales
con modelos teóricos, desarrollados para condensados atómicos, con el fin de describir el
desvanecimiento de la coherencia de los condensados con la temperatura.

El capítulo 4 describe un estudio detallado de varios dispositivos acopladores, los cuales
consisten en dos guías de ondas planas paralelas en las que se ha introducido una desviación
de 45º en ambos extremos de la estructura. Se ha caracterizado el escenario fotónico
experimentado por los polaritones, que revela una discretización adicional de los vectores de
onda de los polaritones al cambiar la orientación de la guía de ondas. Como consecuencia de
este cambio en la trayectoria, se encuentra una desaceleración en los condensados cuando
giran en las curvas de los circuitos donde se propagan. Además, se ha encontrado que,
para ciertos parámetros de los acopladores, se activa el acoplo de polaritones entre los dos
brazos del dispositivo, dando lugar a la observación directa de las oscilaciones de Josephson.
Por último, se estudia la sensibilidad del acoplador a la polarización lineal para investigar
la posibilidad de explotación del espín de los polaritones. Se observa un comportamiento
oscilante peculiar en análisis de la polarización lineal del terminal de salida.

El capítulo 5, muestra un enrutador contradireccional de polaritones que funciona como un
diodo de túnel resonante. El dispositivo implementa los medios para controlar la dirección
de propagación de los condensados mediante un potencial fotónico en forma de disco, al
cual se acoplan dos guías de ondas definidas litográficamente, invirtiendo así la dirección de
propagación del condensado. El dispositivo puede escalarse a arquitecturas lógicas mayores
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sin la necesidad de ningún parámetro de control externo. También se investiga la dinámica
ultrarrápida del dispositivo a través de mediciones de fotoluminiscencia resueltas en tiempo.

El capítulo 6 estudia la creación de un campo magnético artificial para polaritones en una red
de panal de abeja hecha de micropilares de semiconductores acoplados. En primer lugar, se
describe teóricamente cómo implementar un campo de gauge diseñando cuidadosamente la
red. Es posible inducir un fuerte campo magnético (artificial) al introducir una deformación
o tensión uniaxial en la red, dando lugar a la formación de los niveles de Landau en los
puntos de Dirac. Se muestra además, evidencias directas de la aparición de niveles de Landau
fotónicos en muestras con diferentes grados de deformación, observando también la función
de ondas del nivel de Landau n = 0 localizada en una sola subred.
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Chapter 1

Introduction to exciton-polaritons

In this introductory chapter to the exciton-polariton field, a few concepts about their phe-
nomenology are explained. In the first place, the structures where polaritons emerge are
described, paying special attention to microcavities (MC). The results presented in this thesis
are obtained in samples with this type of structures. Polaritons emerging from the strong
coupling regime between photons and excitons are bosonic quasiparticles that can be de-
scribed from a classical point of view. When the particle density increases or the temperature
of the ensemble decreases, a new type of coherent macroscopic state, called Bose-Einstein
condensate (BEC), can be achieved. The main properties of these condensates are explained
in detail here. In the final part of the chapter, two particular phenomena for BEC systems
are detailed: interference between two condensates and the appearance of the Josephson
tunneling between two interacting condensates.

1.1 Semiconductor crystals

In nature, the crystalline structure is one way in which atoms are arranged to create a
macroscopic solid. Atoms are repeated infinitely with a periodic pattern, called unit cell, so
that the solid can be fully described by studying only a small section with few atoms. In 1830,
Hessel classified for the first time the natural crystals based on their structure and crystalline
symmetry enumerating 32 different groups (point groups). In 1850 Bravais defined discrete
arrays of points that can form an infinite lattice by translation operations [1]. These sets of
arrays, known as Bravais lattices, are clasified in 14 groups. Although crystal surfaces are
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Introduction to exciton-polaritons

Figure 1.1. (a) The crystalline structure of GaAs with a zincblende unit cell. The lattice parameter is
defined by a = 5.63 Å [2]. (b) The reciprocal lattice of the face-centered cubic (fcc) lattice shown
with the 1st Brillouin zone. The lattice parameter is given by b = 2π/a = 1.12 Å−1 [2]. Special
high-symmetry points are indicated by Γ, X and L, while high-symmetry lines joining some of these
points are labeled as Λ and ∆. Adapted from [3].

visible and Bravais lattices are arrays of points not visible to the naked eye, they are used
nowadays to classify crystals.

In the following the crystalline structure of GaAs will be discussed, as all the structures
studied during this thesis are based on this material. The crystalline structure of GaAs, shown
in Fig. 1.1(a), is a zincblende structure formed by two atoms arranged in a cubic structure.
Its corresponding lattice is the face-centered cubic lattice (fcc) in the Bravais’ classification
since one of the atoms, in the case shown in the Fig. 1.1(a), Ga, is placed in every vertex and
centered on each face of the cube. In this type of lattice As atoms, located inside the cube,
are surrounded by four Ga atoms. The whole structure is contained in a cube with an arista
of 5.63 Å, which is defined as the lattice parameter a [2]. This cube is the unit cell for this
material and can reproduce the crystal structure by being periodically translated.

For any given lattice in real-space (also known as direct lattice) a reciprocal lattice can be
defined. The latter represents the Fourier transform of the direct lattice. Therefore, both
lattices can be described using the lattice parameter a. While the direct lattice only exists in
real-space, the reciprocal lattice only exists in momentum-space (k-space). The unit cell in
the reciprocal lattice is known as the 1st Brillouin zone. A scheme of the 1st Brillouin zone
corresponding to the fcc lattice is shown in Fig. 1.1(b). The structure is now contained in a
cube with a lattice parameter given by b = 2π/a. Note that the symmetry of the Brillouin
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1.1 Semiconductor crystals

Figure 1.2. Electronic band structure of GaAs calculated by the pseudopotential method. The energy
at the top of the valence bands have been taken to be zero. Egap indicates the minimum energy
difference between the valence and conduction bands. Adapted from [3].

zone is determined by the symmetry of the direct lattice. In this case, the symmetry of
the lattice makes possible to define points (Γ, X and L) and directions (Λ and ∆) of high
symmetry in Fig. 1.1(b).

In solid-state physics, the electronic band structure (band structure to simplify) of a crystal
describes the energy states of carriers as a function of the momentum k. The band structure of
GaAs is depicted in Fig. 1.2 and shows two kinds of energy bands: the valence (E < 0) and
the conduction (E > 0) bands. In semiconductors there is an energy difference between the
maximum of the valence band and the minimum of the conduction band, know as bandgap
or Egap. Depending on the value of the bandgap, a material can be defined as conductor,
semiconductor or insulator. In AlxGa1−xAs alloys, the Egap at room-temperature varies
between 1.43 eV (x = 0), which is a direct bandgap, and 2.14 eV (x = 1), corresponding to
an indirect bandgap [2]. At zero temperature and in the case of intrinsic (without impurities)
GaAs, electrons fill the valence band leaving the conduction band empty, however, as the
temperature is increased (or an optical excitation is performed), electrons can gain enough
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energy to overcome the bandgap and populate the conduction band. As shown in Fig. 1.2,
the band gap for GaAs is direct [it occurs between bands at the same wave vector (k = 0)].
Thanks to this feature, this compound is an ideal candidate for optical applications such
as light-emitting devices, since transitions between the conduction and the valence bands
(absorption or emission) are allowed and do not require a change in momentum.

1.2 Excitons

In the short introduction to the band structure of section 1.1, it has been discussed that at zero
temperature, the ground state of a semiconductor is characterized by a filled valence band
and an empty conduction band, which are separated by a gap. When an electron with charge
−e is excited from the valence band into the conduction band, the vacancy that remains in
the valence band can be described as a quasiparticle, called hole, with a positive charge e.
This description allows us to consider the valence band masses as positive despite the fact
that from the single electron picture they have negative curvature, i.e., negative mass [see Fig.
1.2]. Negatively charged electrons in the conduction band and positively charged holes in
the valence band are subject to Coulomb attraction. This interaction is responsible for the
fact that the fundamental excitation in semiconductors is a bound electron-hole pair, named
exciton. This quasiparticle is quantum mechanically analogous to a hydrogen atom, where
an electron is bound to a proton via Coulomb interaction. Both systems show similarities
such as their structure of the energy levels, which results in exciton levels 1s, 2s, 2p and so
on. In this thesis, we only discuss Wannier-Mott excitons in which the Coulomb interaction
is strongly screened by the valence electrons: the large dielectric constant results in weakly
bound electrons and holes. This results in an extension of the exciton over tens of atomic
sites in the crystal, a binding energy of the order of 10-100 meV and a Bohr radius of about
aB 100-10 Å[4]. The binding energy of the ground exciton state is given by [5],

EB =
}2

2µX a2
B

(1.1)

where µX is the electron-hole pair reduced effective mass. It is also worth mentioning that the
exciton, made of two fermionic quasiparticles, behaves as a boson for low particle density.

If an exciton is confined, its energy and spatial extension are changed. The confinement of
matter (electron, holes and excitons) can be easily attained in semiconductor heterostructures
made of layers of different materials. In general, excitons can be confined along 1D (Quantum
Well, QW), 2D (Quantum Wire) or 3D (Quantum Dot). In this thesis we will consider only
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1.3 Semiconductor microcavities

Figure 1.3. Exciton binding energy as a function of the QW width (scheme). The insets show the QW
potential Ve and Vh and ground state energies, Ee and Eh, and wave functions, φe and φh, of electron
(blue) and hole (red), respectively, for different QW widths (nm scale). Adapted from [5].

the case of 1D confinement, where the movement of excitons is restricted along the growth
direction (z), while they can freely move in the x− y plane. In these structures the quantum
confinement effects become important when the when the size of the excitonic wavefunction
is larger than (or comparable to) the confinement length. In our case, GaAs-based QWs, the
quantum well width required to observe quantum confinement is of the order of tens of nm
or less.

Fig. 1.3 shows the binding energy of excitons when they are confined in a QW. The potential
profiles of electrons (Ve) and holes (Vh), are plotted along the growth direction of the QWs.
Note that the size and depth of the QWs can be tuned just by changing the layer composition
or its thickness. The evolution of Eb shows the strong sensitivity of excitons to nanometer-
scale variations in the QW size.

1.3 Semiconductor microcavities

Devices based on optical microcavities are desirable for a wide range of applications since
they confine light to small volumes in the micrometer-scale. As an example, microcavities
made of III–V semiconductor materials are very useful to control the laser emission to enable
data transmission over long-distances in optical fibers [6, 7]. An ideal cavity would indefi-
nitely confine light without any loss and have resonant frequencies at specific wavelengths.
However, in the real case, they are leaky and therefore, non-conservative. To understand the
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Figure 1.4. Scheme of an electromagnetic wave impinging on the interface between two media with
refractive indexes n1 and n2. The arrows indicate the direction of the incident A+

1 , reflected A−
1 and

transmitted A+
2 waves in the z-direction. The interface is located at the plane z = 0. a is the length of

the medium n2.

behavior of light in these microcavities, a brief introduction to light propagation is explained
below.

1.3.1 Classical description of light propagating in semiconductors

In this section we briefly describe the propagation of electromagnetic-waves in semiconductor
(or dielectric) materials. We will consider two media with homogeneous refractive indexes
n1 and n2 in the x−y plane, across which a light wave travels. The light wave passes through
the first medium impinging on the interface between both materials (at z = 0), where part
of the wave is transmitted and a small fraction gets reflected. A schema of this scenario
is shown in Fig. 1.4 where A±

i are amplitudes of the waves. The superscript denotes the
direction of propagation +z or −z and the subscript i = 1,2 refers to the medium in which the
electromagnetic wave is traveling. The reflection (r) and transmission (t) coefficients of the
system, also known as the Fresnel coefficients, can be obtained by dividing these amplitudes
[3],

r =
A−

1
A+

1
=

n1 −n2

n1 +n2
(1.2a)

t =
A+

2
A+

1
=

2n1

n1 +n2
(1.2b)
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1.3 Semiconductor microcavities

The reflectivity R, which is defined as the ratio of the reflected to incident energy flux, and
the transmittance T , which is the ratio of the transmitted to incident energy flux, results

R = |r|2 (1.3a)

T =
n2

n1
|t|2 (1.3b)

If the absorption in the system is negligible, then, the relation R+T = 1 is satisfied. This
theoretical framework can be extended for the case of multilayered structures applying
appropriate boundary conditions at each interface. However, this would require solving a
remarkably large number of equations, depending on the number of interfaces. For example,
a structure of 25 layers, which approximately corresponds to one set of mirrors used in the
samples of this thesis, would provide a system of 50 equations. An alternative, method
known as the "transfer matrix method" allows to minimize the number of equations and to
simplify the problem. To briefly explain this method a vector Θ is defined as,

Θ(z) =
(

E(z)
cB(z)

)
=

(
E(z)

− i
k ∂zE(z))

)
(1.4)

which depends on the amplitudes of the electric (E(z)) and magnetic (B(z)) fields of any light
wave propagating in the z-direction. At the interface (z = 0) where the change of n occurs, Θ

is continuous. Assuming a wave traversing a layer extended from the interface to a distance
a (see Fig. 1.4), the problem can be defined with the transfer matrix Ta [5].

Θ(z = a) = TaΘ(z = 0) (1.5a)

Ta =

(
cos(ka) i

nsin(ka)
insin(ka) cos(ka)

)
(1.5b)

In the case of a system composed by a large number of layers (m), the matrix is simply
redefined as T = ∏

m
i=1 Ti. The reflection and transmission coefficients of a system composed

by m layers can be improved if the structure is sandwiched between two semi-infinite media
[5].

1.3.2 Fabry-Perot interferometer

The confinement and manipulation of light can be achieved with a large number of different
cavity designs [8]. However, the enhancement of light-matter interaction requires the use of
small volumes and structures with dimensions typically of the same order of magnitude than
the incident wavelength. Different confinement methods are used in the microcavities (MCs),
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Figure 1.5. Sketch of a FP interferometer composed by a medium acting as a cavity with thickness Lc

and refractive index nc surrounded by air (n = 1). A beam with wave vector k (black arrow) impinges
on the cavity at an angle θi with respect to the horizontal axis (marked with the dashed line). k∥ is the
in-plane component of the wave vector, which is parallel to the interface between air and cavity, and
k⊥ is the perpendicular component.

but, since in this thesis all the samples are Fabry-Perot style resonators (FP), we consider the
FP interferometer of Fig. 1.5: an active medium surrounded by air, in which light incides
from a slant angle θi, with k⊥ the perpendicular and k∥ the in-plane components of the wave
vector. Let us write the wave vector as k⃗ = k⃗⊥+ k⃗∥. The cavity exhibits a photon energy
dispersion given by [5]

Ec =
}c
nc

√
k2
⊥+ k2

∥ (1.6)

where k⊥ = 2π/λc = 2πnc/λ0. λc is the wavelength of the light in the cavity. This wave
vector can also be expressed as a function of the cavity parameters: the refractive index
nc and its thickness Lc as k⊥ = Nπ/Lc, where N is an integer number. This conversion
is possible since λc meets the condition Lc = Nλc/2. If one considers the approximation
k∥ ≪ k⊥, a direct correspondence is found between the incident angle and the in-plane wave
vector,

k∥ =
2π

λ0
sin(θi)≈

2π

λ0
θi (1.7)

Under this condition, the energy of the cavity photon in Eq. 1.6 can be approximated to

Ec ≈
}c
nc

k⊥

(
1+

k2
∥

2k2
⊥

)
= Ec

(
k∥ = 0

)
+

}2k2
∥

2mc
(1.8)
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1.3 Semiconductor microcavities

where the first term Ec
(
k∥ = 0

)
= }ck⊥/nc is the energy mode corresponding to a normal

incidence. Here, the cavity photon mass is

mc =
Ec(k∥ = 0)

c2/n2
c

(1.9)

The quality of the light confinement in a FP is determined through the Q-factor of the cavity,
which measures the efficiency at concentrating the electromagnetic energy, and it is defined
[5],

Q =
ωc

∆ωc
(1.10)

where ωc is the cavity frequency and ∆ωc, the linewidth (FWHM) of the cavity mode. The
Q-factor is used to express the fraction of energy that is lost in a single round-trip around
the cavity, which can be obtained by simply calculating Q−1. This parameter is also directly
related to the leakage of the cavity produced by the imperfection of real mirrors. It can
be employed to quantify the photon lifetime inside the cavity before it escapes from the
structure,

τ =
Q
ωc

(1.11)

The photon lifetime not only increases with Q but also with the reflectivity between the
interfaces of a FP construction. This can be deduced evaluating the Fabry-Perot finesse F ,
which is the ratio of the frequency separation between cavity modes and the linewidth of
those modes. One can rewrite this parameter in terms of the reflectivity coefficient of the FP
interfaces as [5],

F =
πr

1− r2 (1.12)

Therefore, higher reflective mirrors provide higher values of F , resulting in an improvement
of the light confinement in the cavity and thus, the photon lifetime.

1.3.3 Distributed Bragg Mirrors

To construct a cavity with a large quality factor, the use of highly reflecting mirrors is
essential. This can be achieved with distributed Bragg mirrors (DBRs), which are composed
of alternating layers with high and low refraction indexes (n) in which each layer is made
with an optical thickness (L) of λ/4, where λ is the incident wavelength in the medium. The
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Figure 1.6. SEM image of the lateral view of a typical GaAs-based MC formed by a cavity layer
sandwiched between two sets of DBRs. The cavity is grown in the z-direction on a substrate (left) and
surrounded by a medium such as air (right). Courtesy of S. Höfling from the University of Würzburg.

finesse of this mirror is determined by the reflectivity of each mirror, which depends on the
number of pair repetitions and the refractive index difference between the two semiconductors
employed. The final composition of this structure can provide a reflectivity coefficient close
to 1 in a restricted spectral region.

Analogously to the FP scheme, the incident radiation on the DBR will suffer multiple
reflections as it passes through each interface of the structure. The constructive interference
between the reflected light waves results in a high reflectivity for a certain spectral range.
This region is called a stop-band, as it hinders the transmission of light across the structure in
that spectral range. This is achieved by matching the optical length of each layer to λ0/4,
i.e., n1L1 = n2L2 = λ0/4 and repeating this pair multiple times. Note that λ0 is the desired
wavelength of the incident light at which the reflectivity is maximum.

If a spacer layer (cavity) is placed between two DBRs, a semiconductor MC is formed, which
can be considered as a 1D photonic crystal cavity with a central defect. Fig. 1.6 shows a
typical MC where the substrate upon which it has been grown is found on the left side, while
on the right end the MC is in contact with the medium in which it is placed, in our case,
air. Similarly to a FP interferometer, the thickness of the spacer layer, Lc, determines the
cavity mode wavelength λc through Lc = Nλc/2, where N is an integer number. A direct
consequence of the build-up of the cavity mode is a sharp increase in the transmission T at
λc, which is given by [5],

T =
(1−R1)(1−R2)[

1−
√

R1R2
]2
+4

√
R1R2sin2 (φ/2)

(1.13)

R1,2 are the reflectances of the two bottom and top DBRs, respectively, and φ is the cavity
phase shift of a photon at λc. This is evident in the reflectivity (R = 1−T ) of the MC on
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1.3 Semiconductor microcavities

Figure 1.7. (a) Reflection of a planar DBR microcavity consisting of a top and bottom mirror with
15 and 21 repeats of GaAs/AlAs. A 240 nm-thick bulk GaAs cavity is incorporated. (b, c) field
distributions corresponding to (a) at wavelengths of (b) 841 nm and (c) 787 nm. The dashed line
depicts the refractive index of the MC. Adapted from [5].

the wavelength shown in Fig. 1.7(a). R is calculated considering a GaAs cavity introduced
between 15 and 21 (top and bottom) DBRs of GaAs/AlAs pairs. A central flat band with
R ∼ 1 appears for a wide range of wavelengths above 800 nm. This plateau is known as the
stop-band and becomes broader the higher the refractive index difference between layers and
the larger the number of pair layers. As expected, R drops at the designed cavity wavelength
at λc = 841 nm. Furthermore, several modes called Bragg modes arise in the limits of the
stop-band.

To clarify the implications of the cavity and Bragg modes in the MC field distribution, the
electric field of the modes corresponding to 841 and 787 nm are depicted in Fig. 1.7(b) and
(c), respectively. The dashed line indicates the refraction index of the structure, indicating the
presence of the cavity layer with a constant maximum refractive index at a depth of ∼2300
nm. Fig. 1.7(b) shows that for the cavity mode (841 nm) the light is mainly confined in the
cavity, penetrating into the surrounding DBRs. The penetration depth of the electric field
in the DBRs can be evaluated through the refractive indexes of the different materials that
compose the MC as LDBR ≈ λcn1n2

2nc(n1−n2)
[9]. The different layers reflect the light with the same

phase, creating a constructive interference in the cavity. Therefore, the photons injected in
the MC remain in the structure for a significant long time, which is consistent with a high
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Q-factor. This factor can be also described with the reflectances of the two DBRs as [10]

Q =
ωc

∆ωc
≃ π (R1R2)

1/4

1− (R1R2)
1/2 (1.14)

where ∆ωc is the width of the cavity mode. If the cavity length is Lc = λc/2, Q is the
average number of round trips a photon travels inside the cavity before it escapes [10]. It
is worth mentioning that the maxima of the field amplitude inside the cavity in Fig. 1.7(b),
can be employed to enhance the coupling of excitons and photons, opening the way to the
achievement of strong light-matter coupling and the creation of polaritons in the MC. A
different behavior to that of the cavity mode is observed in the field distribution of the first
Bragg mode at 787 nm [see Fig. 1.7(c)]. Here, the electric field amplitude considerably
decays, resulting in an almost zero intensity inside the cavity.

1.4 Polaritons: Light-matter coupling

Having discussed excitons and photons confined in a microcavity, we turn our attention to
the photon-exciton coupling. The light-matter interaction in a MC can occur in two different
regimes known as weak and strong coupling. In the weak coupling regime, the photon
emitted has a negligible probability of being reabsorbed by the same active medium. The
excitation of the medium is dissipated, therefore the weak coupling involves irreversible
processes. This regime is also called perturbative, since the electromagnetic field acts as a
perturbative term given by the Hamiltonian:

H ≈− e
m

A·p (1.15)

where A is the vector potential of the electromagnetic field, p the momentum operator, and m
the electron mass. The first order development in time-dependent perturbation theory gives
the spontaneous emission rate, described by the Fermi golden rule. In this regime, polaritons
have a finite radiative lifetime, resulting in an exponential decay of the population after a
pulsed excitation. Nonetheless, the weak coupling also shows advantages: by acting on the
electromagnetic density of states, it is possible to modify the transition probability, given
by the Fermi Golden rule, and obtain the Purcell effect, in which the emission probability is
enhanced or suppressed [11].

The strong coupling regime, also known as non-perturbative regime, occurs when a medium
is excited and the photon emitted in a given mode can be reabsorbed again. Photons are
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Figure 1.8. (a) Reflection of a planar DBR microcavity consisting of a top and bottom mirror with 15
and 21 repeats of GaAs/AlAs with 3 InGaAs QWs incorporated to the cavity [5]. (b) Anticrossing
of the LP and UP energy levels when the cavity energy Ecav cross the exciton energy Eexc. δ is the
energy difference between Ecav and Eexc. When Ecav=Eexc, the energy difference between the LP and
the UP is }ΩR. [10].

converted into excitons in a process in which the energy and the wave vector are conserved. If
photons and excitons are confined in a cavity, as those explained in section 1.3, they can live
longer than those created in a medium without confinement. If the energy exchange between
photons (cavity field) and excitons becomes much faster than their decay rates, they have
enough time to interact strongly giving rise to a new combined excitation. These elementary
excitations of the system are no longer excitons or photons but a new type of quasi-particles
known as exciton-polaritons, or polaritons to abbreviate. When the interaction between both
particles is strong enough and polaritons are formed, the energy spectrum of the medium
changes drastically. This is evidenced in Fig. 1.8(a), which shows the reflectivity of a MC
with InGaAs QWs as an active medium. In contrast to the case shown in Fig. 1.7(a) where
one dip with minimum reflectivity is observed in the stop-band, two dips with minimum
reflectivity are seen in the stop-band. These two dips are called "lower" (LP) and "upper"
(UP) polariton branches due to the analogy to two linearly-coupled harmonic oscillators. Due
to the difference between the exciton and photon energies, polaritons display an anticrossing
behavior [12] [see Fig. 1.8(b)]. At the resonance between the photon and exciton energy, a
minimum energy separation known as the Rabi splitting energy (}ΩR) is observed.

The first theoretical discussion of the strong coupling regime in solid state systems was
made by Hopfield in 1958 [13]. This kind of coupling was also explored in other systems
such as atoms (theoretically predicted by Jaymes and Cummings in 1963 [14]). However, it
was not until 1977 when Ulbrich and Weisbuch observed polaritons for the first time in a
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semiconductor (GaAs) [15]. Years later, polaritons were first reported in a semiconductor
microcavity by Weisbuch et al. [16]. Polaritons aroused great interest due to their numerous
characteristics and properties. They have a much lighter mass, of the order of 10−4me,
compared to other systems such as atoms 103me, which makes easier to create polariton
Bose-Einstein condensates than other kind of BECs in different systems (further information
in section 1.5.2) [10]. They also exhibit a distinctive short lifetime, typically of 10-100 ps,
which is of the order of that of photons [17]. Polariton-polariton interactions are inherited
from their excitonic component, which arise mainly from the Coulomb exchange effects
of the underlying fermionic species. This provides a typical mean field interaction of the
order of ∼meV[18]. Another advantage of these quasi-particles is that their momentum and
energy can be directly measured from the PL emerging from the MC. Polaritons decay by
leakage through the DBRs, emitting photons that carry the same energy and momentum
as the polaritons. This energy can be measured using spectroscopic techniques and the
momentum can be obtained from the angular-resolved emission.

1.4.1 Hopfield coefficients

To describe the elementary excitations of an optically excited microcavity containing QWs
in the strong coupling regime, we consider the coupling between two modes, the exciton
and the photon, with infinite lifetimes, in which interactions between excitons are negligible.
In a simple approximation, the system can be treated as two coupled harmonic oscillators
allowing to easily understand how polaritons are composed and what are their energies. The
Hamiltonian of the system is written in the second quantization formalism as,

Ĥp = ∑EC(k∥)â
†
k∥

âk∥ +∑EX(k∥)b̂
†
k∥

b̂k∥ +∑
}ΩR

2

(
â†

k∥
b̂k∥ + âk∥ b̂

†
k∥

)
(1.16)

The first, second and third terms describe the photons created in the cavity, the excitons
and their mutual coupling, respectively. EC and EX describe the energies corresponding to
photons and excitons, respectively. The coefficient ΩR is the Rabi splitting, which determines
the coupling energy between both particles. â†

k∥
(b̂†

k∥
) and âk∥ (b̂k∥) are the corresponding

creation and annihilation operators for a photon (exciton) with a wave vector k∥. In the
third term, two processes are considered: the simultaneous creation of a photon and the
annihilation of an exciton (emission) and the creation of an exciton and the annihilation of a
photon (absorption).

In the coupling process we only consider particles with the same in-plane wave vector k∥.
Therefore, to simplify the notation in the development of the equations, from now on we
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1.4 Polaritons: Light-matter coupling

redefine k ≡ k∥. The above Hamiltonian can be diagonalized using the transformation matrix
[5]: (

P̂k

Q̂k

)
=

(
Ck Xk

Xk −Ck

)(
âk

b̂k

)
(1.17)

where (P̂†
k , Q̂†

k) and (P̂k, Q̂k) correspond to the polariton creation and annihilation operators,
or, in other words, to the to the creation and annihilation operator of the new eigenstates of
the system. This matrix system leads the diagonalization from the basis of (âk, b̂k) to (P̂k, Q̂k).
In the new basis the Hamiltonian is redefined as,

Ĥp = ∑ELP(k)P̂
†
k P̂k +∑EUP(k)Q̂

†
kQ̂k (1.18)

As a result of the coupling between photons and excitons, the two new states called lower
polariton and upper polariton are obtained. ELP and EUP are the corresponding energies
or eigenvalues of each state. Therefore, the Hamiltonian defines polaritons with a given
momentum as the result of a linear combination of photons and excitons with the same in-
plane momentum k. Since polaritons are composed of excitons and photons it is reasonable
to quantify their excitonic and photonic content. This can be done using the Hopfield
coefficients, Ck and Xk, which define the photonic and excitonic content, respectively. Thus
polaritons can be mathematically defined as [13],

ψP(k) =CkψC(k)+XkψX(k) (1.19)

where ψC and ψX are the corresponding wave functions of photon and exciton. The combi-
nation of both wave functions, weighted with the Hopfield coefficients, provides the wave
function of the polariton ψP. The Hopfield coefficients satisfy the relation,

|Ck|2 + |Xk|2 = 1 (1.20)

By changing the ratio of Ck and Xk, one can interpolate between light and matter. This is
usually done changing the photon energy at k = 0 (δ ) by using a thickness wedge intentionally
introduced in the cavity or modifying the temperature and therefore, the exciton energy. The
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Introduction to exciton-polaritons

Hopfield coefficients can be expressed as [10],

|Ck|2 =
1
2

(
1− δ (k)√

δ (k)2 +(}ΩR)2

)
(1.21a)

|Xk|2 =
1
2

(
1+

δ (k)√
δ (k)2 +(}ΩR)2

)
(1.21b)

Note that at zero detuning (δ = 0), the lower and upper polaritons are composed by the same
photonic and excitonic fractions, |Ck|2 = |Xk|2 = 1/2.

Additional information such as the eigenvalues of the Hamiltonian (Eq. 1.18) can be obtained
from the diagonalization procedure [10].

EUP,LP (k) =
1
2

[
EX(k)+Ec(k)±

√
(}ΩR)

2 +δ (k)2
]

(1.22)

The dispersions of each polariton mode and the Hopfield coefficients for LPs are depicted
as solid lines in Fig. 1.9 left and right, respectively, for three detuning values: (a) δ = }ΩR,
(b) δ = 0, (c) δ = −}ΩR. The dispersions for the bare cavity photon and the exciton are
indicated by dashed lines. The exciton mass is considerably heavier than that of the photon,
therefore, EX seems to be a flat band while Ec exhibits a parabolic dispersion described by
Eq. 1.8. In the case of a positive detuning, Fig. 1.9(a), EUP and ELP resemble the photon
and exciton dispersions, respectively. This behavior is originated by the large photonic
fraction of the UPB while in the LPB there is a larger excitonic fraction. This is evidenced
in the representation of the Hopfield coefficients for the LPB in which its excitonic fraction
results in |X(k)|2 ≥ 0.8. At zero detuning, Fig. 1.9(b), a different behavior is found. In
this case, at k = 0 the photon and exciton are at resonance, Ec = EX . Therefore, following
Eq. 1.22, the separation between the energies of UP and LP obtains its minimum value,
EUP −ELP = }ΩR. As explained above, under these circumstances both bands display the
same photonic and excitonic fractions at k = 0. In the case of a negative detuning, Fig. 1.9(c),
the photon dispersion crosses EX . Therefore, the photon and exciton resonance is produced
symmetrically at high ±k values. Again, at these points the interaction between the photons
and the excitons results in a separation between the polariton branches equal to }ΩR: ELP

and EUP anticross when the cavity mode coincides with the exciton mode. The anticrossing
of LP and UP is a well-known signature of the strong coupling regime [12]. The Hopfield
coefficients show that the situation is inverted with respect to (a): now, the LPB shows a high
photonic fraction at small k. Note that as |δ | is increased, the effect of the coupling becomes
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1.5 Bose-Einstein Condensation

less relevant, reaching a point where the eigenstates of the system are the pure photon and
exciton modes.

In the proximity of k = 0 for δ ≤ 0, the polariton dispersions shows a clear parabolic
dispersion, thus polaritons can be approximated by free particles, moving with an effective
reduced mass dependent on their photonic and excitonic fractions.

1
mLP

=
|X0|2

mX
+

|C0|2

mc
(1.23a)

1
mUP

=
|C0|2

mX
+

|X0|2

mc
(1.23b)

where C0 and X0 are the coefficients given by Eq. 1.21 for k = 0. mX is the effective exciton
in-plane mass and mc is the effective cavity-photon mass given by Eq. 1.9. Since mc ≪ mX ,
the polariton mass can be estimated as

mLP
(
k∥ ∼ 0

)
≈ mc

|C0|2
∼ 10−4mX (1.24a)

mUP
(
k∥ ∼ 0

)
≈ mc

|X0|2
(1.24b)

1.5 Bose-Einstein Condensation

Matter can be observable commonly in nature in different states such as solid, liquid, gas and
plasma. However, under particular conditions, a new state arises as it is the case of Bose-
Einstein condensates (BECs), also known as the fifth state of matter. In 1924 Albert Einstein
and Satyendra Nath Bose predicted the existence of BEC systems in which bosons in a gas
occupy the same fundamental quantum state when the temperature is decreased close to zero
[19, 20]. Under these conditions a macroscopic state exhibiting spontaneous coherence is
formed. Although this discovery had great acceptance in the scientific community, it was not
until 1995 when Eric Cornell and Carl Wieman obtained the first experimental evidence of the
creation of a BEC that contained 2000 rubidium atoms [21]. Shortly after, Wolfgang Ketterle
created a BEC of sodium atoms [22]. "For the achievement of Bose-Einstein condensation
in dilute gases of alkali atoms, and for early fundamental studies of the properties of the
condensates” Cornell, Wieman and Ketterle shared the Nobel Prize in Physics in 2001 [23].
Since their discovery these systems have arisen much interest, which has led to the realization
of many different type of condensates using molecules, photons and quasi-particles. As a
curiosity one can mention that in 2018, for the first time a BEC was created in space, in the
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Introduction to exciton-polaritons

Figure 1.9. Left: Polariton dispersions (solid lines) at (a) δ = }ΩR, (b) δ = 0, (c) δ =−}ΩR. When
Ec = EX , the energy separation between EUP and ELP is }ΩR, as shown in (b). Right: corresponding
Hopfield coefficients of the LP branch shown in left. Adapted from [10].
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1.5 Bose-Einstein Condensation

International Space Station [24]. In the experiment, a cloud of rubidium atoms was cooled to
a temperature of 100 nK, holding the record for the coldest object created in space.

1.5.1 Ideal Bose gas

Due to the Pauli exclusion principle, only bosonic particles (integer spin) can form a Bose-
Einstein condensate. When such a state is intended to be created using fermions, a Fermi
liquid instead of a condensate is found. One interesting property of bosons is their natural
tendency to accumulate in unlimited quantity in a degenerate state. If a gas of N non-
interacting bosons in a volume V at a defined temperature T is considered, i.e., in thermal
equilibrium, then, the distribution of particles follow a Bose-Einstein distribution given by,

n j =
1

e
E j−µ

kBT −1
(1.25)

where µ and kB are the chemical potential and the Boltzmann constant, respectively. The
energy of the particles in a state j is given by E j. If one increases the number of particles in
the Bose gas, as in the condensation process, the energy exchange between the particles will
increase. Note that the chemical potential has to be smaller then the energy of particles so
that the occupation number in a state is always positive, i.e., E j −µ > 0. This case can be
described defining the particle number as,

n = n0 +nT =
1

e
E0−µ

kBT −1
+ ∑

j ̸=0
n j (1.26)

The number of particles in the fundamental state in the condensate is indicated as n0, while
those in any excited state outside of the condensate are nT . For µ < E0, n0 becomes massively
occupied. This process together with the reduction of nT , gives rise to the basis that leads
to the BECs, experimentally shown by Cornell, Wieman and Ketterle [21, 22]. In a 3D
gas, the particles are able to move in the volume, exhibiting a parabolic dispersion given
by E = E0 +

}2k2

2m . Taking into account that nT is proportional to the density of states, is it
possible to define the density of states in the case µ = E0 as [25],

nT

V
=
∫

∞

E0

mkBT
2π}2

3/2 √E −E0

e
E−E0
kBT −1

dE =
2.612

λ 3
B

(1.27)
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where the de Broglie wavelength is

λB =

√
2π}2

mkBT
(1.28)

When the inter-particle separation is of the order or smaller than λB, particles collapse to the
same fundamental state behaving as one macroscopic state. Moreover, it is possible to define
a critical temperature for the phase transition for condensation in the limit defined by Eq.
1.27, i.e., (nT/V )λ 3

B = 2.612, obtaining

Tc ≈ 3.3
}2(nT/V )2/3

mkB
(1.29)

Therefore, in the ideal case of a non-interacting bosonic gas in thermal equilibrium, the
condensation will occur below Tc. In addition, due to the dependence on the mass of Tc, it is
clear that the process will become easier for light particles since Tc will be larger than for
massive ones.

1.5.2 Exciton-polariton Bose-Einstein condensates

Bose-Einstein condensation can be expected to occur for any bosonic quasi-particle, such as
exciton-polaritons, which are investigated in this thesis. They have been largely considered
as promising candidates to study condensation at liquid-helium temperatures, easily reached
by standard cryogenic techniques. The properties displayed by polariton condensates differ
from those known for other BEC systems, such as atomic condensates. Polaritons have a
short lifetime, of the order of picoseconds, because of photons continuously leaking out of
the cavity, which makes them non-conservative systems. Rather than being an obstacle, this
fact allows to study the coherence properties of the condensates directly by measuring the
luminiscence of the emitted photons. Such a simple procedure is not available for other
BEC systems. As mentioned in section 1.4.1, the extremely pronounced dispersion of the
polariton modes, as a result of the photonic character of polaritons, leads to a polariton
effective mass of 10−4me. Hence, the temperature for condensation should be more easily
achievable, allowing the condensation process even at room temperature. Note that since the
lifetime of polaritons is comparable to or even smaller than the thermalization times, a precise
temperature cannot be defined, thus, they are inherently out-of-equilibrium BEC systems.
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1.5 Bose-Einstein Condensation

Some studies, including the ones in this thesis, overcome this conundrum by ascribing to the
condensate the temperature of the lattice where they reside.

The first theoretical proposal to consider polaritons for BEC systems was made by A.
Imamoglu et al. in 1996, in which they discussed the use of non-equilibrium condensates
to realize a polariton laser [26]. Later, P. G. Savvidis et al. and R. M. Stevenson et al.
demonstrated the bosonic character of polaritons through a stimulated scattering process in
pump-probe experiments [27, 28]. In 2006, Kasprzak et al. reported many properties that
would be observed in equilibrium condensates, confirming the formation of a polariton BEC
[29]; some of these properties are summarized in Fig. 1.10. The narrowing of the emission
in momentum-space is one of the first indicators of condensation as shown in Fig. 1.10(a).
Below threshold (left panels), the emission is widely distributed in momentum and energy,
whereas above threshold (right panels), an intense peak is formed in the center of the emission
at the fundamental state. Fig. 1.10(b) shows the polariton occupancy of this state, which for
low excitation densities increases linearly. However, when condensation takes place (aprox.
at 1 kW/cm2), the occupancy increases exponentially and, additionally, the emission shows a
sharp linewidth narrowing. Another evidence is the build up of linear polarization from a
depolarized state [see Fig. 1.10(c)]. When polaritons are created non-resonantly, the emission
is completely depolarized (blue diamonds) no matter what polarization state is selected for
the excitation light. By contrast, when the condensate is formed, a linearly polarized emission
spontaneously arises (green circles). The last feature of polariton condensates that we will
highlight in this section is shown in Fig. 1.10(d), which displays the density of polaritons
as a function of the energy for different power densities. Below excitation threshold (gray
circles) the polariton gas is not thermalized, however polaritons show fully thermalization
at threshold (red circles). This is revealed by the Boltzmann-like decay of the distribution.
The transition to a Bose-Einstein distribution arises when the threshold has been exceeded,
and the fundamental state is massively occupied. Finally, let us mention one of the key
properties that finally convinced the atomic physics community about the formation of a
Bose-Einstein-like condensate was the observation of spatial coherence. To unambiguously
demonstrate the creation of a true condensate it is required that the original coherence of
the excitation source used for the excitation is lost in the excitation process. This ensures
the existence of a phase transition and, therefore, that the creation of the condensate is due
to a spontaneous symmetry breaking and not to a phase inherited from the excitation. The
process to guarantee this condition is discussed in the next section 1.5.3.
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Introduction to exciton-polaritons

Figure 1.10. (a) Top: Pseudo-3D images of a polariton condensate far-field emission with the intensity
displayed on the vertical axis (in arbitrary units). Pthr is the power density threshold for condensation.
Bottom: Same data as in top: but resolved in energy. The horizontal axes display the emission angle
and the in-plane momentum; the vertical axis displays the emission energy. (b) Occupancy of the
k∥ = 0 ground state (black diamonds), its energy blue shift (green circles) and linewidth (red triangles)
versus the excitation power density. (c) The polar plot displays the intensity of the ground state
emission measured as a function of the angle of a linear analyzer below threshold (blue diamonds)
and above threshold (green circles). Open diamonds represent the intensity of the linearly polarized
emission above threshold, measured as a function of the linear polarization angle of the excitation
laser. (d) Occupancy in ground- and excited-state levels, plotted in a semi-logarithmic scale for
various excitation powers. For each excitation power, the zero of the energy scale corresponds to the
energy of the k∥ = 0 ground state. Taken from [29].

1.5.3 Excitation and relaxation process

The creation process of a polariton condensate strongly depends on the way in which the
microcavity is excited and, therefore, on how the driving field is injected. In the traditional
non-resonant pumping scheme, the coherence of polaritons is not inherited from the excitation
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1.5 Bose-Einstein Condensation

laser [30]. Fig. 1.11 displays the relaxation process in which particles release the excess
of energy by scattering events before creating the polariton condensate. This configuration
involves pumping with light well above the LPB, creating initially hot photogenerated
electron-hole pairs (gray spheres). Then, they relax into the exciton reservoir (blue spheres)
at EX very rapidly by emitting LO-phonons. After that, excitons in the reservoir undergo
a second relaxation process, to the bottom of the LPB (red spheres), by phonon-polariton
scattering. The relaxation process involves polaritons populating the lowest energy state,
which is usually a few tens of meV below the reservoir, which makes the acoustic phonon
scattering the most probable mechanism for the relaxation. Since the energy dispersion of
polaritons is very steep compared to that of acoustic phonons, the relaxation takes place by
small exchanges of energy and momentum. The process is schematically indicated with the
blue arrow in Fig. 1.11. It is very inefficient and gives rise to the relaxation bottleneck,which
has been theoretically and experimentally studied in detail using a Boltzmann description
of polaritons [31, 32]. When high excitation conditions are employed, the bottleneck can
be overcome in some cases by polariton-polariton scattering. In this way, the occupation
of the polariton lower energy state is high enough to unleash the bosonic stimulation of the
relaxation [33]. It is important to emphasize that due to the short lifetime of polaritons and the
slow exciton-phonon scattering rate, only a small fraction of the generated excitons become
cavity polaritons [34]. The polariton-polariton scattering can be also favored increasing the
polariton lifetime by selecting DBR mirrors with higher reflectivity. Furthermore, increasing
the number of QWs in the microcavity will reduce the carrier density in each QW allowing
to overcome the difficulties related with the existence of the Mott transition of the excitons
forming the polaritons [35].

Another excitation scheme can be considered for polariton condensates, in which they are
created by resonantly exciting the LPB at a small k value. Therefore, the relaxation mecha-
nisms explained above is no longer necessary. Under these conditions, polaritons emerge
with the same energy and momentum as the excitation laser. Note that a direct consequence
of this configuration is that the laser phase is directly imprinted in the polariton, hindering
the posibility to study the spontaneous coherence properties of polariton condensates.
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Introduction to exciton-polaritons

Figure 1.11. Non-resonant excitation scheme for microcavity polaritons. A laser excites the system
at high energy creating an electron-hole plasma (grey spheres). They suffer a relaxation process in
which they loose energy and accumulate at the excitonic level (EX ). This population accumulated at
high k values is known as the excitonic reservoir (blue spheres) that continues losing energy until they
arrive at the bottom of the LPB. At this point polaritons eventually form a macroscopic occupied state
(red spheres) and the emitted photons allow to study their properties.
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1.6 Interference between two condensates

1.6 Interference between two condensates

Bose-Einstein condensation is one example of collective coherence of a many particles, state.
Below a critical temperature particles spontaneously occupy the ground state, forming a
coherent condensate. This coherence has been intensely studied both in atomic BECs [36]
and polariton condensates [17, 37–53]. The coherence has been frequently investigated in
real-space, by studying interference patterns, either for static condensates [50, 54, 55] or for
moving ones when they meet in real-space [48, 56]. It is important to note that the interference
can also occur in momentum-space, when condensates move with the same velocity, i. e.,
same momentum [57–59]. The existence of interference fringes in momentum-space is a very
peculiar situation, which is characterized by the absence of contact between the condensates,
demonstrating the existence of remote coherence in these systems, as predicted by Pitaevskii
and Stringari [60].

To theoretically describe the appearance of these interference fringes, we consider the
situation that we will use in our experiments: a system of two polariton condensates in a
planar waveguide in which the movement is restricted to one dimension. A sketch of this
scenario is depicted in Fig. 1.12. Two laser beams (B1,2) separated by a distance d along the
x axis impinge on the structure creating two propagating condensates at each excitation spot.
The condensates are labeled as ψ

1,2
R,L where the superscript indicates the laser source by which

they are created and the subscript the direction of the propagation, right or left. Assuming
that condensates are created under the same conditions, they acquire the same value of the
momentum with a different sign depending on the direction of propagation: kx > 0 for those
going to the right and kx < 0 for those going to the left. This translates into the fact that
condensates moving in the same direction and created by different laser sources travel with a
fixed distance d between them along the waveguide. Thus, ψ1

R and ψ2
R (or ψ1

L and ψ2
L) are

never in contact.

BECs, which are macroscopic states can be described as classical waves, therefore the wave
function of condensates traveling towards the right is written as

ΨR(x) = ψ
1
R(x)+ eiϕR ψ

2
R(x) (1.30)

while for those traveling towards the left is

ΨL(x) = ψ
1
L(x)+ eiϕL ψ

2
L(x) (1.31)
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Figure 1.12. Sketch of polariton condensates propagating in a planar waveguide along the x direction.
Two identical laser beams, labeled as B1 and B2, impinge on the waveguide separated by a fixed
distance d. Two propagating condensates, illustrated as blue circles, are created by each laser beam.
Their direction of movement is indicated by the arrows and the name: those moving to the right (left)
are labeled with an R (L). The superscript 1 and 2 refers to the laser source.

The following steps are shown only for right propagation, however, a similar procedure
can be performed to show the existence of interferences for left propagation. As already
mentioned, the conditions to observe interference fringes in momentum-space require equal
momentum for ψ1

R and ψ2
R. The equal distance d/2 between the excitation beams and x = 0,

allows to write the wave functions as ψ1
R(x−d/2) = ψ2

R(x+d/2) = ψR(x). Using this result
on Eq. 1.30 and writing the wave function in momentum-space, one obtains,

ΨR(kx) = ψ
1
R(kx)+ eiϕ

ψ
2
R(kx) = e−ikx(d/2)

ψR(kx)+ ei[kx(d/2)+ϕ]
ψR(kx) (1.32)

where ψR(kx) represents the Fourier transform of ψR(x). The modulus squared of this result
provides the probability density of the momentum distribution:

|ΨR(kx)|2 = 2 [1+ cos(kxd +ϕ)] |ψR(kx)|2 (1.33)

Therefore, the fact that the two propagating condensates have a constant phase difference
between them, i.e. the existence of coherence between two condensates, yields to an
interference pattern with a period of

∆kx =
2π

d
(1.34)

The longer the distance between the beams (d), the shorter the period. The observation of
the fringes in momentum-space would not only confirm the existence of coherence between
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condensates that have never been in contact but would also provide information of the spatial
distribution of these condensates in real-space.

Following a similar procedure for the momentum-space, an analogous expression is found
for an interference pattern in real-space. In this case, the fringes are produced by the overlap
of condensates in real-space. In the proposed system of Fig. 1.12, only condensates traveling
to the center of the guide can meet (ψ1

R and ψ2
L), therefore, the final expression for the period

of the fringes in real-space is given by

ξ =
2π∣∣k1

R − k2
L

∣∣ (1.35)

which depends on the difference in momenta of the propagating condensates.

1.7 Boson Josephson effect for polaritons

The successful creation of exciton-polariton condensates in microcavities has opened the
path to use its macroscopic phase coherence for the study of quantum phenomena. One of the
most remarkable manifestations of this quantum collective nature is the Josephson tunneling
effect, in which a classically forbidden current can flow without dissipation. The Josephson
effect was initially predicted in 1962 [61] with its first experimental demonstration in 1963
[62]. Years later, it was discovered in superconductors [63] and its study was extended
to weakly coupled atomic BEC systems [64–67]. Due to the low temperature of atomic
BECs, one can consider the dynamical effects arising between two atomic condensates
confined in a potential using the mean field approach and more importantly, zero temperature
approximation. The Josephson effect with special attention to the occurrence of Josephson
oscillations and a population imbalance between traps has been reported in these systems
[68, 69]. Exciton-polariton condensates have attracted a lot of attention to theoretically
and experimentally study Josephson Junctions [44, 70, 71]. Due to the bosonic nature of
polaritons, we consider the bosonic Josephson junction (BJJ) in which two macroscopic
populations are trapped in a double QW. The Josephson effect results in an alternating current
for a constant potential difference, i.e., the presence of Josephson oscillations [25]. A scheme
of this model is shown in Fig. 1.13, in which the condensates are located in QWs (1 and
2) separated by a finite distance D. In the figure, the potential depth (V ) and size (L) of the
two wells are the same. We analyze below the consequences of the coupling between both
condensates.
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Figure 1.13. Two quantum well system in which a polariton condensate is located in each well, 1 and
2. V is the potential depth, L the length of the quantum wells and D the distance between them. The
tunneling of particles is indicated by J.

Knowing the geometry of the trap, the coupling parameter J can be estimated as [25]

J ≈ 4Ve−
√

2mV D/} (1.36)

which depends on the separation and potential depth of the QWs. This approximation
results from the assumption that the coupling is produced in the range of D ≫ L. V and J
are considered to be independent of the particle density, however, strictly speaking, this is
not exact since the repulsive interaction between polaritons leads to the blue shift and the
reduction of the trap’s effective potential.

To describe the Josephson effect one defines the dynamical oscillation of two weakly linked
BEC in the time dependent GP equations

Ψ(r, t) = ψ1(t)φ1(r)+ψ2(t)φ2(r) (1.37)

where φ1(r) and φ2(r) are the ground states of the condensates in the QWs 1 and 2, respec-
tively. The corresponding wavefunctions of each condensate are time dependent complex
numbers given by,

ψ1,2 =
√

N1,2(t)eiθ1,2(t) (1.38)
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where N(t) and θ(t) are the number of polaritons and their phase in each quantum well,
respectively. These wavefunctions obey the two mode dynamical equations defined as [65]

i}
dψ1

dt
=
(
E0

1 +U1|ψ1|2
)

ψ1 − Jψ2 (1.39a)

i}
dψ2

dt
=
(
E0

2 +U2|ψ2|2
)

ψ2 − Jψ1 (1.39b)

where E0
1,2 are the energies of the condensates’ ground state. In the case of two symmetric

potentials (V1 =V2), as it is the case shown in Fig. 1.13, the condition E0
1 = E0

2 is fulfilled.
The inter-particle interaction is indicated by the non-linear terms using the variable U1,2. The
last term in both equations describes the amplitude of the Josephson coupling J between both
populations. Note that to define this model the damping and finite temperature effects have
been ignored. Introducing now in the equations new variables for the population imbalance
(η) and the phase difference (θ )

η =
N1(t)−N2(t)
N1(t)+N2(t)

, θ = θ2(t)−θ1(t) (1.40)

Using the system of Eq. 1.39 and the definitions in Eq. 1.40 one can obtain the following set
of two equations:

dη(t ′)
dt ′

=−
√

1−η2(t ′)sin
(
θ(t ′)

)
blabalalabla (1.41a)

dθ(t ′)
dt ′

= ϒη(t ′)+
η(t ′)√

1−η2(t ′)
cos
(
θ(t ′)

)
+∆E (1.41b)

where a new constant has been introduced, ϒ = U(N1 +N2)/2J with U = U1 +U2/2. In
nondissipative systems, the total number of polaritons N1 +N2 = |ψ1|2 + |ψ2|2 is conserved.
To simplify the development of the equations, a renormalization of time has also been
introduced as t ′ = 2tJ/}. The last term in the second equation (∆E) characterizes the energy
gap between the condensates population in the case of a non-symmetric double-well potential.
In a Bosonic Josephson junction, created in an atomic system, this energy difference is
determined by both the geometry of the QWs (or traps, depending on the system) and the
nonlinearity of the atomic condensates [72]. By contrast, when polariton condensates are
considered, the energy difference ∆E not only depends on E0

1,2 but also on the interaction
U and tunneling J between the condensates. However, since in the experiments performed
in this thesis only symmetric confinements are considered, we focus on the case of ∆E = 0.
In our case, this confinement is created using multiple layers of materials with different
refraction indexes, creating microcavities that in essence behave as QWs. Therefore, the
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Hamiltonian of the system results [65],

H(η(t ′),θ(t ′)) = ϒ
η2(t ′)

2
−
√

1−η2(t ′)cos
(
θ(t ′)

)
(1.42)

Note that the total energy is fixed by the initial values of the parameters η(t ′) and θ(t ′), since
the rest of the parameters are constant with time. In the case of equal population in both
QWs, i.e., η = 0, the Hamiltonian is described only by the phase difference between the
condensates as H(0,θ(t ′)) =−cos(θ(t ′)). It is possible to establish a connection between
the system of equations of Eqs.1.41 to determine the polariton dynamics but also different
dynamical aspects of the Josephson system. In particular, the Josephson tunneling can be
evidenced through the presence of oscillations in the emission of polariton condensates. We
extract the current I for polaritons, which can be determined from the Eqs. 1.41a using the
relation I ∝ dη/dt ′,

I =−I0sin
(
θ(t ′)

)
=−I0sin

(
θ

(
2tJ
}

))
(1.43)

where I0 = (N1 +N2)J/} is the polariton current in the quantum wells. The Josephson
tunneling results in the appearance of an alternating current, evidenced by the harmonic
dependence of Eq. 1.43. On the right-hand side of the equation, the normalization of time has
been undone, revealing a phase difference directly proportional to the tunneling parameter
J. Therefore, one should expect the period of the harmonic function to be dependent with
J−1 ∝ e

√
2mV D/}, where the definition of Eq. 1.36 has been applied. If two QWs with equal V

are considered, then, the period of the oscillations will increase with the distance D between
both wells. If D becomes considerably large, the coupling will be suppressed and the current
along the cavity will become negligible.
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Chapter 2

Experimental techniques and samples

2.1 Experimental techniques

From an experimental point of view, polaritons created in a microcavity are the most ac-
cessible Bose Einstein Condensate systems, together with photon condensates [73]. There
is a direct correspondence between polaritons and photons leaking out of the cavity since
the latter, carry the same energy and momentum as polaritons in the QWs embedded in
the cavities. Therefore, by measuring the external photon field through conventional op-
tics, we obtain an insight of the basic properties of polaritons. Their photoluminescence
can be measured under resonant or non-resonant conditions using a laser source, allowing
to determine, for instance, the spatial distribution of the emission along the sample or to
differentiate among a strong or weak coupling between the cavity and the exciton modes.
Furthermore, by collecting the angle-resolved emission, the polariton dispersion is obtained,
providing the momentum distribution of the carriers in the QWs. Thus, the determination of
the experimental setup is a key factor when studying the spectral properties of polaritons in a
semiconductor microcavity.

A general scheme of the experimental setup used in this thesis is shown in Fig. 2.1. The
optical excitation is performed with a laser beam guided by optical elements before being
focused on the sample surface. The path of the laser before arriving to the sample is modified
accordingly to the purpose of the experiment. For example, to perform the experiments of
chapter 3 and, as depicted in Fig. 2.1, the laser beam is divided into two different paths
to achieve simultaneous excitation in two locations of the sample. Additionally, different
elements can be placed in this part of the setup, such as an optical chopper to avoid the
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Figure 2.1. General scheme of the experimental setup showing the path of two laser beams generated
from the same source. They are focused into the sample using an objective lens that also collects
the emission. The latter is guided to the detection devices using different optical elements and
finally, adding another lens, the emission is focalized in the entrance slit of the detectors. Different
elements such as 50%-50% beam splitters (BS), mirrors, polarization optics and power meters are
also employed.

sample heating or a polarizing filter to determine the direction of the electric field. Right
before impinging the sample, the light beam from a Ti:Al2O3 laser propagates through
a beam splitter with a 50:50 ratio, generating two identical signals that are directed into
different trajectories: one is focused on the sample using a microscope objective, while the
second is guided into a power meter, allowing the instantaneous monitoring of the pump
power while exciting the samples. After the excitation, the polariton PL is measured in a
reflection configuration using the same objective lens as that employed for the excitation.
The emission beam acquires a plane wavefront after crossing the objective, which propagates
parallel to the optical axis of the lens over a long distance. In order to analyze this emission,
it is directed to the detection equipment. Let us consider, for the sake of simplicity, the case
where only an objective is used in the setup and not additional optical elements are employed.
In this case, by adding a lens after the objective, the emission is focused on the detection
device and the setup acts as a simple optical microscope. However, in this part of the setup
corresponding to the detection of the signal, further optical elements can be placed. If another
lens is added, it is possible to obtain the angle-resolved emission and hence, to measure the
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momentum distribution of polaritons. The selection of different sets of lenses will determine
the magnification of the collected emission on the detection devices.

Complementarily to these optical elements, a spatial filter or pinholes can be placed in the
setup to select specific parts of the emission either in real- or momentum-space. This filtering
is done in some experiments to measure, for example, the emission from different spatial
parts of the same microstructure while polariton condensates propagate along it. Moreover,
additional bandpass filters are used to avoid any laser reflection that may hinder the collection
of the polariton emission when measuring energy-integrated images. They block the laser
wavelength and allow the rest of wavelengths of the emission spectrum to be collected. The
details about the detection techniques of the polariton emission are explained in section 2.1.2.

2.1.1 Excitation conditions

The experiments presented in this thesis were performed with a system of lasers composed
by a continuous wavelength (cw) laser and a tunable pulsed laser. The cw laser is a Millennia
Pro Spectra Physics model, containing a Nd:YVO4 and a LBO frequency-doubling crystal.
It operates with a fixed wavelength of 532 nm and a maximum output power of 20 W. The
cw laser pumps a pulsed laser cavity, which is a Tsunami Spectra Physics model based on a
Ti:Al2O3 crystal. Using different optics sets, the output wavelength of this laser can be tuned
between 700 nm and 1100 nm. For the experiments presented in this work, the excitation
wavelength is chosen between 740 nm and 810 nm with an output power of 1.5 - 2.0 W
obtained from the Tsunami.

The pulsed laser is mode-locked through an acousto-optical modulator operating in the
picosecond range. The configuration yields a pulse duration of ∼ 2 ps with a repetition rate
of 82 MHz (period of 12 ns). The pulse duration is measured using an autocorrelator (Spectra
Physics model 409), in which the laser is split into two beams with different paths: the path
is fixed in one of the beams while its copy is time-delayed. Both pulses overlap again in a
non-linear crystal generating a new up-converted signal; the measurement of the time delay
and the intensity provides the value of the temporal duration of the pulse.

In addition, the results presented in chapter 6 have been performed with a different system
of lasers. As in the previous case, a cw laser with a wavelength of 532 nm pumps a second
laser, which in this case is a cw, monomode, Ti:Al2O3 laser. The configuration of the laser
allows to tune the output wavelength in a wide range. In particular, for these experiments it
was set at 745 nm.
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In the experiments, different lenses and microscope objectives have been employed to focus
the laser on the samples. The details about the optical components of the setup are specified
below, describing what has been needed for the different samples used in the experiments.
We have used two different excitation schemes depending on the purpose of the experiment:
quasi-resonant and non-resonant excitation. We start describing those employed for the latter
case.

Non-resonant excitation

In this experimental scheme, the laser beam is tuned to high energies (∼ 1.65 eV), typically
100 meV above the bottom of the LPB, corresponding to the wavelength of the first reflectivity
minimum above the stop-band of the microcavity [see Fig. 1.7(a)]. Upon excitation, hot
excitons are created, which eventually relax into polariton states, loosing the phase of the
excitation laser. Therefore, the non-resonant excitation, allows studying the appearance of the
spontaneous coherence when polaritons are condensed at the bottom of their LP dispersion
[29]. This experimental scheme is used along this thesis to study the energy landscape
and propagation of polariton condensates in GaAs-based microcavities; particularly, in the
experiments described in chapters 4, 5 and 6.

Quasi-resonant excitation

In this case, the sample is pumped with the laser tuned to the energy of the excitonic reservoir.
The energy difference between the excitonic reservoir and the polaritons created after the
relaxation processes is usually 10 times smaller than in the case of non-resonant excitation.
This excitation scheme is advantageous for studying the polariton-polariton interaction [74].
Under pure resonant conditions, polaritons would be injected with a phase, as well as a
spatial and temporal coherence, directly imprinted by the laser source. However, under a
quasi-resonant excitation, polaritons are created with a non-reversible dressing of excitons
ensuring that they do not inherit any phase from the excitation laser. The experiments
described in chapter 3 are performed under quasi-resonant excitation.

2.1.2 Detection conditions

During the experiments, the samples are kept in a cold finger cryostat connected to a He
transfer line. A flow of He gas is pumped from an external dewar to the cryostat, decreasing
the temperature of the sample to cryogenic values (down to 4 K). The flow can be controlled
manually with different valves in the circuit making possible to determine a stable value of
the temperature. For a fine adjustment, a programmable controller is used to guarantee an
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Figure 2.2. Scheme of the experimental setup. The excitation is performed by a Ti:Al2O3 laser, which
is guided into a 50%-50% beam splitter (BS), and consequently to the sample. The latter is inside
a cold finger cryostat. The emission is directed to the region marked with a yellow rectangle, in
which different optical elements are located. Finally, the emission is driven into the detection devices
composed by a monochromator coupled to a CCD and a streak camera.

accuracy of the order 0.5 K. The temperature is measured by means of a thermocouple placed
on the sample holder, which is used to determine the actual temperature of the sample. For
this reason, an optimal thermal conduction is ensured using silver paint to glue the sample on
the sample holder in the cryostat. Additionally, the cryostat has a thermal shield consisting of
a vacuum chamber. The pressure in this chamber is controlled externally with a high vacuum
pump that maintains a pressure of the order of 10−7 mbar inside the cryostat. However, the
pump is turned off to avoid vibration problems during the measurements.

The optical properties of a semiconductor microcavity can be widely study through its PL. As
shown in Fig. 2.2, after exciting the sample with the laser source, the PL is collected with the
same microscope objective as that of the excitation, which provides a spatial resolution given
by R = λ/2NA (NA is the numerical aperture of the objective and λ is the wavelength of the
emission). The PL can be manipulated with different optical elements such as mirrors, lenses
or slits. The region where these elements are placed, is indicated by the yellow rectangle in
Fig. 2.2. The resulting emission is analyzed in a monochromator and detected using either a
CCD camera or a streak camera. The description of the different optical elements placed in
this part of the setup and the detection devices are explained below.

2.1.2.1 Energy-resolved photoluminescence

The experimental setup for energy-dependent measurements is shown in Fig. 2.3, where
two different schemes of imaging techniques are depicted. The objective lens with a focal
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Figure 2.3. Scheme of the imaging technique for (a) real- and (b) momentum-space. The sample is
placed in a cold finger cryostat. The PL of the sample is collected with an objective lens of focal
length fob. The yellow lines represent the optical path of the sample emission departing with a given
angle (θ ) from a point of the sample. The PL is focused in a monochromator and a CCD camera. In
(a), the PL is focused through the slit using the lens LR, placed at its focal distance, fR. The resulting
image in the CCD camera is an energy (E) vs. x map, where x is the coordinate along the sample. In
(b), an additional lens LK , with a focal length fK , is placed in the setup, focusing the Fourier plane
generated between the objective and LR. The resulting image is now an E vs. kx map, where kx is the
wavector of polaritons.

distance fob collects the PL of the sample. Using a second lens (LR) with longer focal distance
( fR), a spatially resolved spectrum is collected. In other words, the emission is resolved in
real-space. A scheme of this technique is indicated in Fig. 2.3(a). The combination of these
two lenses yields an optical magnification given by fR/ fob. When analyzing this emission
with a monochromator equipped with a CCD, an energy vs x map is obtained, where x is the
coordinate along the sample. Therefore, this experimental setup is equivalent to an optical
emission microscope.

A slightly different setup is used to obtain the momentum distribution of the PL, also referred
as k-space, in which another lens must be added to the setup. This configuration is described
in Fig. 2.3(b) where LK is placed between LR and the spectrometer. In this case, points with
different heights in the Fourier (momentum) plane, formed at the common focal plane of the
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objective and LR, are focused into the monochromator, thus, obtaining the angle-resolved
emission of polaritons. Note that this setup performs experimentally a Fourier transform
from a spatial coordinate to its conjugate momentum coordinate. As a result, an energy vs
kx map is obtained in the monochromator, where kx is the momentum (or wavevector) of
polaritons [as depicted at the right-hand side of Fig. 2.3(b)]. The specific position and focal
distance of the LK lens determines the momentum-space magnification, given by fK fob/ fR.
Note that this experimental set-up allows the simultaneous observation of real- and k-space,
since only one lens must be added or removed from the setup. The switching between both
configurations takes just a few seconds, keeping the excitation conditions constant.

The emission is directed and focused in the detection devices. The latter are formed by a
monochromator (Acton SpectraPro 2500i model), with 500 mm of focal length, coupled to a
CCD camera (Acton Pixis 1024 model) with a high resolution of 1024 x 1024 pixels. The
entrance slit of the monochromator is generally ∼ 100 µm wide. However, it is easily adjusted
with a micrometric screw to meet the required spectral resolution of each experiment. Since
the PL beam is wider than the entrance slit, only a thin slice of the emission is analyzed. More
advanced techniques, explained in section 2.1.2.3, allow to scan the full emission by analyzing
consecutive slices. When the selected emission reaches the diffraction grating inside the
monochromator, each energy component is diffracted at a different angle. Two different
diffraction gratings with 600 and 1200 lines/mm have been employed in the experiments. The
diffracted PL is directed towards the coupled CCD camera, resolving the emission intensity
in energy and providing also the spatial or momentum distribution at each energy. Therefore,
the image generated by the CCD contains the energy-dependent intensity map [Fig. 2.3(a)],
or the momentum-dependent intensity map [Fig. 2.3(b)] for each slice of the PL that enters
in the spectrometer. The energy resolution of these maps is determined by the width of the
entrance slit and the characteristics of the diffraction gratings, resulting in a range of 0.4-0.5
meV for the parameters used in this thesis.

Alternatively, there is the possibility of using the CCD camera as a standard camera capable
of recording real images of the sample. This allows to directly photograph the surface of the
sample as well as the image of the k-space, depending on the collection lenses employed.

2.1.2.2 Time-resolved photoluminescence

Additionally to the energy-resolved measurements, the PL can also be time-resolved by
means of a streak camera. This device is used to measure ultrafast light phenomena, such
as the dynamics and transport of polaritons. We use a Hamamatsu C5680 streak camera
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Figure 2.4. (a) Schematic representation of the operating principle of a streak camera. The incident
signal impinges on the system from the left, resulting in the image of the phosphor screen (colored
spots). The element MCP is a micro-channel plate. The inset, surrounded by a green dashed line,
depicts the operating timing of the streak camera. The trigger signal, synchronized to the excitation
pulse, indicates the beginning of the sweeping voltage, which deflects electrons on the phosphor
screen obtaining a time-dependent PL. The generated time axis is the vertical axis of the image, while
the horizontal axis is the position or energy of the PL. Adapted from Hamamatsu - guide to streak
cameras - www.hamamatsu.com.

coupled to a Hamamatsu C13440 CMOS digital camera. The streak camera can be used in
combination with the monochromator, obtaining the temporal dependence of the collected
light as a function of the positions (x) or energies. Our streak camera allows to measure
processes faster than 2 ns with a maximum resolution of 10 ps. Therefore, the use of a pulsed
excitation source (2 ps of duration in this thesis), allows not only the observation of the
relaxation process of the carriers (longer than the pulse duration) but also to monitor the rapid
dynamics of polaritons, which have typical lifetimes of the order of 1-100 ps [10, 75–77].

The operating principle of the camera is depicted in Fig. 2.4. The PL arriving to the camera,
drawn as colored spots, passes through a slit, where a set of lenses focus the emission onto
a photocathode. In this part, electrons in a layer of metal absorb the energy of the incident
photons, and accelerate due to the presence of an accelerating mesh. The electrons then pass
between a pair of sweep electrodes, where a high-speed voltage is applied. A trigger signal
synchronizes the voltage sweeping with the laser source, this process is shown in the inset
of Fig. 2.4. The accelerated flow of electrons, arriving at different times, are deflected at
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different angles in the vertical direction. After entering in the micro-channel plate (MCP) and
being multiplied several thousands of times, they impact against a phosphor screen where
they are converted again into photons. The first electron to arrive is placed in the higher-
most position on the phosphor screen and from there, the rest of the electrons are placed
sequentially from the top to the bottom of the screen. Therefore, the vertical component of the
screen can be translated into a time axis. Furthermore, the brightness of the phosphor images
is proportional to the intensity of the incident light. Depending on the optical elements
installed in the setup, the horizontal axis of the image corresponds either to real-space,
position or wavevector k. However, if the PL impinging on the streak camera does not come
from different spatial positions but is dispersed first in different energies/wavelengths in the
monochromator, the horizontal axis will provide the energy/wavelength of the emission.

The PL of a semiconductor microcavity cannot be time-resolved in a picosecond scale after
a single-shot measurement due to its weak signal. However, a multiple shot measurement
substantially improves the signal-to-noise ratio. If the setup is stable, each laser pulse
excites the polariton condensate under the same conditions and one can record the dynamics
repeatedly, once per pulse. Averaging over many acquisitions, a measurement with a high
signal-to-noise ratio is obtained. Typically, the acquisition times during the experiments are
of the order of 1 second. Taking into account the repetition rate of the pulsed excitation, 12
ps, a measurement of only 1 s is the result of averaging over ∼82 millions of pulses. This
can be performed if the sweeping voltage that deviates the electrons is synchronized very
precisely with the same repetition rate as that of the excitation, what is made in our setup
thanks to a fast photodiode which samples a small signal obtained from the pulsed laser
source.

2.1.2.3 Tomography

A more complete study of the polariton PL is obtained by reconstructing the 2D images,
obtained with the techniques explained above, while introducing a third variable. This is
achieved by sequentially translating the imaging lens (LR or LK) perpendicularly to the
entrance slit (of the monochromator), which is oriented in the x-direction. The lenses are
displaced with step-motors, which move the PL beam across the slit, allowing to record a
new spectrum for each line scan (y) of the image.

An example of an energy-resolved tomography is described in Fig. 2.5(a). The polariton PL
is measured with the monochromator, as explained in section 2.1.2.1, obtaining an E vs x
map. As the imaging lens is displaced, a new acquisition is made for a different y position,
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Figure 2.5. (a) Illustration of the spectral tomographic technique done in real-space. Each of the
slices on the left side corresponds to a specific y and have energy versus x information. After the
reconstruction, access to the real-space image for any energy is possible, as shown with the three
reconstructed layers at E1 −E3. (b) Temporal tomographic technique. On the left side an illustration
of the slicing of a momentum-space image is shown where each of the slices is an image taken at the
output of the streak camera (kx vs. time). Different slices correspond to subsequent ky momentum-
space positions. After the reconstruction, access to the full momentum-space image at any time t, is
accessible by looking at the layer that corresponds to the desired time. Here (on the right side) three
layers at three different times t1 − t3 are shown. Adapted from [78].

providing a second E-x map. This process is repeated until the full PL is recorded in slides.
Note that the number of slides will determine the resolution of the tomography. As indicated
by the red dashed squares in the figures, the measurements are reconstructed by taking the
same row of data to form an x-y image for a specific energy value. The same procedure is
used to energy resolve the momentum-space in which kx-ky maps are obtained.

As shown in Fig. 2.5(b), when the PL is time-resolved, the tomography technique allows to
follow the polariton dynamics, in this case, in k-space. The same method developed for the
energy-resolved tomography is followed for the time-resolved tomography technique. The
signal is sent to a streak camera that measures the polariton distribution along kx as a function
of time. The step-motors scan the PL obtaining time dependent emissions for different ky

values. A special care must be taken during these measurements: since it can take several
minutes to acquire the whole tomography, the pulsed laser needs to be extremely stable to
preserve the same excitation conditions for each acquisition. The experiment is stored in a
3D matrix whose time-slices correspond to the condensate image at a specific time. The same
procedure can be followed to time resolve the real-space in which x-y maps are obtained.

The step-motors and the image acquisition are controlled by software programs that allow to
determine the size and number of steps (therefore, number of images), the time acquisition
as well as other fundamental parameters, completely characterizing the tomography.
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Figure 2.6. Real and momentum-space filtering technique. The objective lens, LR and LK form
the regular setup used to image the momentum distribution. Their corresponding focal lengths are
fob, fR and fK . The filtering in real-space is performed removing LK and placing a slit in the common
focal plane of L1 and L2, whose focal lengths are f1 and f2, respectively. The filtering in k-space is
performed placing a slit between L2 and LR. As an example, the path of a emitted ray from the sample
is depicted with a blue solid (yellow dashed) line when collecting the real- (k-) space.

2.1.2.4 Spatial Filter

Real and momentum-space filtering is used to locally analyze the polariton emission. This
technique provides rich information about the dynamics and properties of the particles in
certain regions of the sample selected at will. Fig. 2.6 describes the lens distribution of the
filtering technique in real- and momentum-space. In this case, two lenses (L1 and L2) are
added to the regular setup described in Fig. 2.2. In the real-space configuration, removing LK

(marked in yellow), a focused image of the emission is obtained at the common focal plane
of L1 and L2, where the distances f1 and f2 coincide. We introduce a slit in this plane to filter
out the contributions from non-desired regions of the sample. In a similar way, now adding
LK to the setup, the momentum-space can be also filtered by focusing the Fourier plane
between L2 and LR, at the focal planes of both lenses. By placing another slit in this plane,
we can directly manipulate the emission, for example, removing only k < 0 values while
collecting the signal for k > 0. The filtering can be done individually, or simultaneously to
obtain a doubly filtered image (in real- and k-space).

The combination of both lenses introduces a new magnification factor, creating a telescope
system: in real-space is given by

fR f1

fob f2
, while for momentum-space the expression results

fob fK f2

fR f1
. This technique has been employed during the experiments of chapters 4, 5 and 6.
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2.2 Samples

Similarly to photonic architectures, the potential landscape of microcavities can be designed
at will by creating structures that introduce a change in the index of refraction and/or energy-
potential barriers. The samples are composed of semiconductor cavities that have been
patterned to create confinement along different dimensions, thus, it is possible to guide
polariton condensates through different paths. The samples presented in this chapter are
planar microcavities that allow the creation of 2D condensates. The cavities, as explained in
chapter 1, are formed by top and bottom DBRs consisting of parallel layers of AlxGa1−xAs
alloys of nanometric width, which surround several sets of QWs. Different concentrations (x)
of each component result in a nonidentical refractive index and therefore different reflectivity.
Thus, the design of a microcavity offers a large number of possibilities when one considers
the composition of the layers, their index of refraction and the number of layers.

The samples have been grown using a MBE reactor, allowing the creation of homogeneous
layers by adjusting the deposition rate of the chemical elements that compose the cavity.
The source elements (Al, Ga and As) are heated separately and directed at high velocity
towards the substrate. The materials, in gas state, condense while reacting with each other
to finally create the AlxGa1−xAs alloys. The composition of the generated layers can be
controlled during the growth process by shutters in the effusion cells and by modifying the
temperature of the sources. This technique allows to even obtain a single layer of atoms.
Once the microcavities are created, they are patterned through etching methods, removing
partially or totally the DBRs and QWs down to the substrate. This method allows to engineer
the desired geometry in the sample with a strong lateral confinement. The large difference
of refractive indexes, in this case the air and the semiconductor, produces a total internal
reflection of the light at the interface between these regions, forcing the particles to redirect
their trajectories along the structures.

In general, to achieve a homogeneous thickness of the different layers that compose the MC,
the substrate is rotated while the source elements are deposited. The stop of this rotation,
together with the spatial inhomogeneity of the molecular beams that reach the substrate,
make it possible to introduce a wedge into the cavity so that its thickness increases along
the radial direction. As a direct consequence, the cavity mode energy gradually shifts with
the position on the sample. The presence of the wedge allows to select the detuning (δ ),
defined as the energy difference between the cavity mode and the exciton level, throughout
the sample, from positive to negative values. Is it important to note that the effect of the
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wedge does not require significant changes in the excitation conditions; simple corrections
such as adjusting the laser focus is enough.

2.2.1 1D waveguides

In this section, we describe the sample discussed in the experiments of chapter 3. The sample
has been provided by the group of Prof. Pavlos Savvidis from the IESL-FORTH institution
at Heraklion (Greece). A scanning electron microscopy (SEM) image of the MC is shown
in Fig. 2.7. It consists of a 5λ /2 Al0.3Ga0.7As cavity with four sets of three 10 nm GaAs
QWs. These have been inserted at the antinodes of the electromagnetic field, resulting in 9.4
meV of Rabi splitting. The cavity is surrounded by two sets of DBRs: 32 pairs of λ /4 layers
of Al0.15Ga0.85As and AlAs are alternately placed on the top of the structure while 35 pairs
are located at the bottom. Low power measurements of the photonic structure reveal a high
Q-factor of 16 000.

Figure 2.7. SEM image of the MC structure showing the lateral view of a cavity composed by a
GaAs substrate, two sets of DBRs and the cavity. The orange arrows indicate the width of the cavity.
Courtesy of Prof. P. G. Savvidis’ group, IESL-FORTH, Greece.

The sample, grown by MBE, has been patterned through reactive ion etching to obtain planar
waveguides with dimensions 20 x 300 µm. The pattern, consisting of ridges and pillars of
several sizes, has been repeatedly printed over the sample, as shown in Fig. 2.8(a). However,
we focus only on the ridge structures located in a region of the sample with a small detuning
of δ = 0.6 meV.

The calculated dispersion relations of the lower polariton modes reveal significant differences
between the emission of polaritons in the direction along the ridge (kx) and perpendicular
to it (ky). The dispersions for both cases, under non-resonant excitation, are depicted at
the left and right panels of Fig. 2.8(b), respectively. The left panel, calculated for ky = 0,
shows a parabolic multiband dispersion between 1.5398 and 1.5420 eV, in which a large
population is observed at the LPB in the full range of kx. On the contrary, the dispersion
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Figure 2.8. Characterization of a sample containing of planar waveguides. (a) Microscopy image of
the sample displaying a series of vertical waveguides, 20 x 300 µm, and micropillars of different sizes.
Only the former structures are studied. The x axis is defined parallel to the long dimension of the
waveguides. (b) Calculated energy dispersion relations of lower polariton modes along kx (at ky = 0)
and ky (at kx = 0), respectively. Taken from [78]. (c) Excitation power dependence of the PL intensity
showing a non-linear increase above a condensation threshold Pth= 3.7 kW/cm2. The solid lines are
fits of the data indicating the threshold power at their intersection. The horizontal and vertical axis
are in logarithmic scale. (d) Time-resolved emission exhibiting a fast decay of the population. An
exponential decay fit of the data provides a polariton lifetime of 9 ps.

along ky, calculated for kx = 0, is completely discretized; the emission is split into several
sub-bands whose antinodes are clearly visible. In these structures, polaritons are confined in
the z-direction due to the presence of the DBRs, but an additional restriction appears along y
due to the finite size of the ridge, 20 µm. Therefore, we can assume that these ridges confine
polaritons in 1D. The lateral confinement in the etched microcavity yields to a discontinuity
in the refractive index, created by the difference between the cavity and air. As a result, a
quantization of the momentum is induced as ky = ( j+1)π/Ly, where Ly is the width of the
cavity and j is the quantization number (integer and positive) that identifies each sub-band of
the dispersion. Above these bands (not shown), a broad band originated from the excitonic
recombination is observed between 1.5420 to 1.5480 eV.
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The intensity emission in the excitation area of a ridge is depicted as a function of the
excitation power density in Fig. 2.8(c), in which initially the polariton population increases
linearly with the power density. However, a non-linearity is observed when polaritons
condense. The fits of the two regions are depicted by the solids lines, giving a power density
threshold for condensation of Pth ∼ 3.7 kW/cm2 at the intersection between both fits. The
time resolved emission of a propagating polariton condensate is analyzed in Fig. 2.8. For
this measurement the emission has been integrated in a region of 10 µm along the waveguide.
A maximum in the signal is observed at 20 ps however, the intensity strongly decays after
this time. Above 100 ps, the signal-to-noise ratio increases significantly. An exponential
decay fit of the experimental data provides a polariton lifetime of 9 ps, revealing the rapid
dynamics of polaritons in these samples.

2.2.2 1D directional couplers

In chapter 4, a sample consisting of numerous directional couplers with different size
parameters is used in the experiments. The sample has been grown by MBE by the group
of Prof. Sven Höfling at the University of Würzburg (Germany). A SEM image showing
the different parts that compose the MC is displayed in Fig. 2.9. The cavity is embedded in
two sets of DBRs consisting of 23 and 27 pairs of alternating layers of Al0.2Ga0.8As/AlAs in
the upper and lower mirrors, respectively. The inset of the figure shows a cavity composed
by three sets of 4 GaAs QWs (7 nm of nominal width) with AlAs barriers (4 nm width). A
Q-factor of at least 5 000 has been determined experimentally by low power measurements.

Figure 2.9. SEM image of the MC structure showing the lateral view of a cavity composed by a
GaAs substrate, two sets of DBRs and the cavity. The orange arrows indicate the width of the cavity,
this region is zoomed in the inset. Courtesy from Prof. S. Höfling’s group, University of Würzburg,
Germany.
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Figure 2.10. Microscopy image of the pattern formed by 20 couplers with different size parameters.
The red inset shows an enlarged image of one structure with 50 µm of coupling length and 0.5 µm of
separation distance between the waveguides. A small area indicated by the green square is zoomed to
show in more detail the gap and the sharpness of the bent between the terminals and the coupling
region.

The sample, with dimensions 11 x 4 mm, has been repeatedly patterned throughout the
surface. Fig. 2.10 shows the pattern composed by 20 couplers with different dimensions. The
couplers are formed by two parallel planar waveguides, similar to those of section 2.2.1, with
2 µm width and, in- and out-put terminals oriented at 45 º. To define the structures the cavity
has been etched beyond the QWs. However, in the central region, it has been etched just
down to the QWs, removing only the upper DBRs, to provide high confinement and, at the
same time, allow photons to couple from one arm of the coupler to the other by evanescence.
The strength of the coupling, is controlled by the distance between both waveguides, which
ranges from 0.2 µm (row 1) up to 0.5 µm (row 4). The coupling length, i.e. the central
region, is varied from < 2 µm (column A) up to 100 µm (column E). Additionally, the same
pattern has been made for couplers with 6 µm width in which the gap size has been increased,
ranging from 0.6 up to 1.5 µm. Such increase of the gap size results in the inefficiency of
coupling polaritons between the two arms. During the design of the pattern, the length of the
terminals has been fixed to 42 µm for all couplers as shown in Fig. 2.10.

It is important to mention that the experiments have been carried out in several regions of the
sample. During the growth of the cavity a wedge was introduced, and, as a consequence, a
spatial dependence on the energy of the cavity mode appears, providing different detunings
at different locations. Fig. 2.11 shows the dispersion curves for three of these detunings,
(a) -2.9 meV, (b) -7.5 meV and (c) -13.5 meV. Only negative detuning values are found in
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Figure 2.11. Dispersion relation of a GaAs microcavity at different detunings (a) -2.9 meV, (b) -7.5
meV and (c) -13.5 meV. The fits, indicated by the dashed lines, show the upper, middle and lower
polariton modes (UPB, MPB and LPB) exhibiting a parabolic dispersion. The fit of the excitonic level
(X) is indicated by the horizontal line. The emissions have been measured at 5 K. The experimental
data has been provided by the group of Prof. S. Höfling from the Univ. of Würzburg.

this sample revealing the high photonic weight of the LPB. The fit of these dispersion bands
(dashed lines) shows two additional polariton modes, MPB and UPB, however, they are not
experimentally seen. The fit yields to a Rabi splitting between the UPB and LPB of 13.9
meV. In the most negative detuning case, (c), an emission linewidth of 0.3 meV is obtained,
corresponding to an experimental Q factor of ∼5000. These results lead to a cavity-mode
lifetime of the order of 2 ps, which is in accordance with the experimental value of the
polariton lifetime, 4 ps.

In addition, the PL of one coupler at a detuning of δ =−19 meV is studied for two excitation
densities in Fig. 2.12. In this case, a structure with 6 µm width and 100 µm of coupling length,
is pumped in the central region (x=0). The emission in real-space for a low power density
(0.6 kW/cm2), panel (a), shows the presence of excitons (∼ 1.604 eV) and a small population
of polaritons (∼ 1.580 eV) created only at the excitation area. Outside this area, the emission
contribution is negligible. The corresponding momentum-space is shown in panel (b) in which

47



Experimental techniques and samples

Figure 2.12. Time-integrated PL filtered at the coupling region of a coupler structure. The sample
is excited non-resonantly at 1.664 eV. Panels (a) and (c) exhibit the emission along the waveguide
(x) for excitation power densities of 0.6 kW/cm2 (below threshold for propagation) and 24 kW/cm2

(above threshold), respectively. Panels (b) and (d) compile the corresponding dispersion relations for
the same excitation powers. To highlight the propagation in (c) the emission is shown in a logarithmic
scale; the rest of the emissions are depicted in linear scales. (e) Power density dependence of the
emission intensity showing a non-linear increase above the condensation threshold indicated by the
dashed line at Pth = 12 kW/cm2. Both axis are in logarithmic scale.
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a broad excitonic band is observed between 1.608 and 1.600 eV. Below this energy, several
polariton bands arising from the 1D confinement of the waveguide are clearly distinguished.
By contrast, when the excitation density is increased up to 24 kW/cm2, polaritons propagate
along the structure, as evidenced from the blue-shifted emission (∼ 1.583 eV) arising in the
interval −50 < x < 50 µm in panel (c). This change in the polariton dynamics is also shown
in the dispersion depicted in panel (d). The emission becomes narrower and contrary to the
previous case, it is not formed by a complete band along kx, but is composed of one mode
propagating at two equal k-values with opposite signs. Since the movement is restricted in
1D, polaritons are only allowed to move away from x = 0 towards right (left) displaying a
positive (negative) wavevector. The power dependent intensity of the emission is shown in
panel (e), in which a linear regime is distinguished at values below 12 kW/cm2 (dashed line).
Above this power density threshold, the polariton condensate is formed and propagates along
the structure, as evidenced in panel (c).

2.2.3 Polariton router

The sample used in the experiment described in chapter 5 has been grown by MBE by the
group of Prof. Sven Höfling at the University of Würzburg (Germany). The microcavity
consists of 36 AlAs/AlGaAs mirror pairs at the bottom and 32 pairs at the top. Between the
DBRs, three stacks of four 13 nm GaAs compose the QWs in an AlGaAs 3/2 λ -width cavity.
According to the low power measurements of the photonic structure, the sample exhibits a
Q-factor of 12 000. A Rabi splitting of 9.4 meV has been determined between the upper
and lower polariton branches by white light reflection measurements. The polariton router is
located in a region of the sample with a detuning of -16 meV.

The device, which is composed by two parallel waveguides coupled to a microdisk, has been
sculpted on the top of the sample. This geometry is depicted in Fig. 2.13(a), where a top view
of the device, obtained by SEM, is shown. The microdisk device is deeply etched through the
QWs layer to provide high photonic confinement. Several of these devices were produced
with different waveguide widths ranging from 2 up to 4 µm. In the case of the microdisk,
two diameters were also selected, 10 and 40 µm.

As a first step, we have characterized optically one of the waveguides coupled to the microdisk,
in which polaritons are either injected or ejected from the router device. The emission
intensity of the waveguide at different excitation power densities is depicted in Fig. 2.13(b)
(left axis, black dots). A characteristic strong non-linearity is observed when a power
density threshold of 12.7 kW/cm2 is exceeded. Simultaneously, a drop in the emission
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Figure 2.13. (a) SEM image of the microdisk device coupling two waveguides. (b) Input-output
analysis of such a device extracted from the parameters of a Lorentzian fit of the emission at
k ≈ 1.7 µm−1. An intensity nonlinearity (left axis, circles) and a coherence buildup, evidenced by a
linewidth drop (right axis, diamonds), are observed at the excitation threshold (12.7 kW/cm2). (c)
Dispersion relation in the linear regime with the subbands originating in the one-dimensional photonic
confinement of the waveguides at an excitation power density of 7 kW/cm2. (d) Momentum resolved
condensate emission showing propagation along both directions of the waveguide, indicated by the
selective population of distinct non-zero wavevectors at an input power density of 21 kW/cm2.
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linewidth (right axis, red diamonds) is also observed, revealing the coherence buildup and
therefore, the creation of polariton condensates. At lower power densities, below threshold
for condensation, the dispersion relation is composed by several bands arising from the
quasi-1D confinement. This is evidenced in Fig. 2.13(c), in which the angle-resolved PL in
the direction along the guide is measured for a power density of 7 kW/cm2. Similar results
are found to those of section 2.2.1 when comparing the dispersion of the waveguides: the
movement of polaritons is not restricted along the waveguide (x), however, particles are
confined in the transverse direction. The white lines show a fit of the bands for a square well
photonic potential, yielding a waveguide width of 4.5 µm, that is in good agreement with
the width directly measured in Fig. 2.13(a). Additionally, the dispersion has been measured
above the threshold, 21 kW/cm2 [see Fig. 2.13(d)]: the emission reveals the presence of
moving polariton condensates exhibiting wave vectors at k ≈±1.7 µm−1.

2.2.4 Photonic honeycomb lattices

The sample, used in the experiments of chapter 6, has been provided by the group of Dr.
Alberto Amo from the Laboratory of Physics of Lasers, Atoms and Molecules (PhLAM,
France). It consists of a Ga0.80Al0.20As semiconductor microcavity embedded in two sets of
DBRs. The top (bottom) Bragg mirrors are composed by 28 (40) pairs of λ/4 alternating
layers of Ga0.05Al0.95As/Ga0.80Al0.20As. Between both DBRs, 12 QWs 7 nm wide, have
been grown at the three central maxima of the electromagnetic field confined in the cavity,
yielding a Rabi splitting of 15 meV. All the experiments shown in chapter 6 have been
performed at a temperature of 10 K and a detuning of δ ≈−7 meV.

The planar microcavity grown by MBE, has been subjected to e-beam litography and
inductively-coupled plasma etching down to the GaAs substrate; with this technique, hon-
eycomb lattices made of overlapping micropillars have been created. The contrast between
the refractive index of the semiconductor and the air is responsible of the additional lateral
confinement in the microcavity. Thus, these micropillars generate quasi-3D confinement of
polaritons, acting as artificial photonic atoms. In this experimental study, the micropillars
forming the lattice have a diameter of 2.75 µm as evidenced in the SEM image of a single
structure in Fig. 2.14(a). Its PL, depicted in Fig. 2.14(b), is composed by a series of discrete
energy modes labeled as s, p and d bands. The fundamental s state shows a cylindrical
distribution with a maximum intensity at x = 0. By contrast, the first excited state p, shows
two spatial distributions originated from px and py orbitals. In both cases, the emission is
located close to the edges, therefore, no emission is observed at x ∼ 0 [see Fig. 2.14(b)]. A
similar distribution is found for the d band.
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Figure 2.14. (a) Scanning electron microscopy image of a single micropillar. (b) PL of a micropillar
evidencing s, p and d discrete modes. (c) Strained honeycomb lattice with a positive gradient (τ)
along the x direction. The center-to-center pillar distance is marked as d’ along x direction and d for
the rest of them. (d) Dispersion relation of a honeycomb lattice with τ = 0 at kx = 4π/3

√
3d. The

white lines mark the crossing of the two s bands, where a linear dispersion is expected and observed.

By coupling several micropillars, different systems such as honeycomb lattices can be
obtained. In these type of configurations, the energy modes of the cavities overlap allowing
photons to tunnel from one pillar to the next one. The strength of this coupling can be tuned
by changing the interpillar distance. A honeycomb lattice made of these photonic resonators
is shown in Fig. 2.14(c). The lithographic mask is designed to ensure an overlap of adjacent
micropillars varying continuously the center-to-center distance (d’) between 2.7 (left side)
and 1.9 µm (right side). This effect is created only along the x direction, keeping constant
d = 2.40 µm for the perpendicular direction, simulating a uniaxially strained lattice. The
dispersion relation of a honeycomb lattice is depicted in Fig. 2.14(d) along the ky direction
for kx = 4π/3

√
3d (at kx = 0 interference does not allow to observe the complete s band).

Several groups of bands labelled as in Fig. 2.14(b), s, p and d, are separated by energy
gaps. The coupling between the fundamental modes of the micropillars give rise to two s
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bands similar to the π and π∗ bands of graphene [79]. At the crossing between these bands,
ky(2π/9d) =±2, linear dispersions similar to Dirac cones are observed.
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Chapter 3

Temperature dependence of the
coherence in polariton condensates

3.1 Introduction

A well known signature of Bose-Einstein condensation is the macroscopic occupation of the
fundamental energy state in bosonic systems. When this macroscopic state is formed, below
a critical temperature, it exhibits distinctive properties such as spatial and temporal coherence.
This property has been extensively investigated in different systems, such as atomic BECs
[80–82] or polariton condensates [17, 37–53, 83]. One of the most useful tools to analyze
the coherence is through the study of the interference patterns, since it allows to observe
fringes for either static [50, 54, 55] or propagating condensates [48, 56]. This phenomenon
has been generally studied when two condensates meet in real-space. Nonetheless, recent
experimental studies have focused on the interference in momentum-space arising from two
condensates that propagate with the same velocity, circumventing the need of an encounter
in real-space [57–59]. Particularly, Antón et al. reported for the first time the observation
of interference fringes produced between two condensates that were spatially separated,
revealing the existence of coherence in spite of never being in contact with one another [57].

The transition to a BEC state is strongly temperature dependent, as explained in section
1.5.1. The temperature dependence of the spatial coherence in trapped atomic condensates
has been studied thoroughly, see for example the works of Bloch et al. [84] and Gati et al.
[85, 86]. However, these studies are much more scarce in the field of polariton condensates,
to the best of our knowledge only the work of Oullet-Plamondon et al. has investigated
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the critical temperature (TC) for condensation [87]. They reported on the dependence of
polariton bistability with temperature, proposing that an increase in the latter leads to a
significant incoherent excitonic population growth in the reservoir that interacts with the
polariton population.

Therefore, to fill this gap, in this chapter, a time-resolved experimental study of the impact
of the lattice temperature on the coherence of traveling polariton condensates is presented.
As a result of the interference between spatially separated condensates, fringes are obtained
in momentum-space for condensates traveling with the same velocity. Our experiments
also reveal an additional set of fringes in real-space emerging from the crossing of two
condensates moving in opposite directions in the structure. A gradual decay of the visibility
with increasing temperature is observed in both spaces. A TC for the BEC-like phase transition
is inferred when the visibility of these fringes vanishes. Furthermore, since unfortunately,
theoretical models to characterize the coherence fading with temperature do not exist for
polariton condensates, our results are compared with available theoretical models for atomic
condensates.

In section 3.2, the details of the experiment and the consecutive detection of the emission
in real- and momentum-space are described. A detailed Fourier analysis of the interference
fringes is performed in section 3.3. The critical temperature for the phase transition is
obtained using two different methods presented in section 3.4: in the first one we study the
visibility of the fringes as a function of the temperature and in the second one, we evaluate
the fraction of condensed to uncondensed polariton populations. The latter method allows
us to compare our findings with theories developed for atomic condensates. Finally, the
conclusions are summarized in section 3.5.

3.2 Observing interference fringes in real- and momentum-
space

To study the coherence of polariton condensates, we employ one of the simplest optical
architectures: planar waveguides. The dimensions of a waveguide are 20 x 300 µm, which
allows to obtain a quasi 1D-confinement of the condensates that propagate along its long
dimension (x). Further details of this sample can be found in section 2.2.1. We pump the
waveguide under quasi-resonant conditions with two pulsed laser beams at 1.5459 eV. They
are focused on the sample surface with the same power density above the threshold for
condensation using a microscope objective with NA= 0.4 and f = 10 mm. The time delay
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Figure 3.1. Top: Real-space map of a waveguide pumped by two laser beams separated by 70 µm. The
excitation spots can be identified as the two blue circles. The emission is energy-integrated. Bottom:
Energy relaxation process of polaritons along the structure. The emission is time-integrated. The
laser is set at 1.5459 eV, well above the range of energies considered in the plot. Polaritons travel
throughout the ridge when they achieve the minimum energy state, 1.5404 eV, marked with a white
dashed line. Below this energy, two localized states are observed at both edges of the ridge. The
emissions have been measured at 14 K with a power density of 10 kW/cm2.

and the distance between the beams are controlled in order to excite simultaneously the
structure with a fixed separation of d = 70 ± 1 µm. To achieve this separation, the beams
are deviated from the optical axis of the objective, impinging the latter at different points
but reaching the sample surface with the same angle of incidence. We adjust the angle of
incidence so that polaritons are initially created, at t = 0, with zero momentum k∥ ∼ 0. These
conditions are considered in the upper panel of Fig. 3.1 where a top view of the system shows
the real-space map of the waveguide emission at a power density of 10 kW/cm2. The position
of both laser beams can be deduced from the two blue circles separated by 70 µm. The
waveguide is entirely illuminated due to the emission of traveling polaritons. An additional
maximum of intensity observed at x ∼ 0 arises from different condensates confined between
the excitation beams, producing the enhancement in the signal, as explained in detail below.
It should also be noted that two localized states are observed at each edge of the waveguide
(∼ ±150 µm). Due to the sample geometry, a potential trap is induced close to the edges,
trapping a small polariton population in a reduced area of the waveguide. As a result, two
localized states are found with a slightly higher emission intensity than the condensates
traveling in the same region. The appearance of these localized states in a planar waveguide
have been also observed in previous works of our group [88, 89].
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Figure 3.2. (a) Time-resolved PL emission along the ridge in real-space (x) as a function of time
for T = 14 K. B1,2, separated by 70 µm, mark the positions where the two laser beams impinge on
the sample. Li(Ri) denote the WPs moving to the left (right), with the subscript, i, referring to the
excitation beam. The intensity is in a linear false-color scale. (b) The corresponding emission in
momentum-space (k) as a function of time. The intensity is in a logarithmic false-color scale. Both
PL emissions have been measured with a power density of 6 kW/cm2.

The energy relaxation process of polaritons along the structure is shown in the lower panel of
Fig. 3.1 where it can be observed how the polariton populations, created by each laser beam,
gradually decrease their energy as they move out of the excitation spots. When the power
density of the laser beams is above the threshold for condensation, as in this case, condensates
start traveling along the waveguide. The condensates propagate along the entire structure at
1.5404 eV, marked with the white dashed line. Beneath this energy, two localized states are
found at each edge of the structure with an energy ∼ 1 meV lower than that of propagating
condensates. They correspond to the trapped states observed at the same positions in Fig. 3.1
Top. Further details about the relaxation process of polaritons can be found in Appendix A.

Understanding the dynamics of the system is crucial to analyze in detail their emission.
For this reason, we show the real (x) and momentum (k) distributions of the polariton
condensates versus time in Fig. 3.2 for a fixed temperature of 14 K. We collect the time-
resolved photoluminescence filtered at the energy of the propagating condensates, 1.5404 eV.
In the real-space image, each excitation beam B1,2, located at -35 µm and 35 µm respectively
in Fig. 3.2(a), gives rise to two polariton wave packets (WPs) propagating in opposite
directions. They are labeled as Li(Ri) referring to the direction in which they move, left(right),
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and the excitation spot where they originate (i = 1,2). Their trajectory is indicated with
dashed(solid) lines as a guide to the eye. A constant speed of 1.5 µm/ps is achieved by the
four WPs and their emission can be followed up to ∼ 100 ps. Due to the optical configuration
of the experiment and the size of the detection area, the PL of the WPs L1 and R2 can be
monitored only during the first 45 ps. The numerical aperture of the microscope objective
considerably limits the spatial region that can be monitored, resulting in a limitation of 150
µm out of the 300 µm long waveguide. The inner WPs, R1 and L2, move toward each other
and interfere when meeting in the center of the structure, x ∼ 0 at 35 ps. Far from being
deviated, they continue traveling until they reach the vicinity of the excitation spots, B2 and
B1 at 55 ps, where the WPs cannot overcome the potential barriers created by the excitonic
reservoirs [90, 91]. Since they cannot go over the maxima of these barriers, the separation
between R1 and L2 is slightly smaller than the distance between the laser beams by which
they are initially created, 70 µm. Thus, they suffer a soft reflection: they decrease their speed
until halting in the vicinity of the reservoirs and, eventually, they reverse their trajectory. As
a consequence, R1 (L2) becomes ℓ1 (r2).

As seen in Fig. 3.2(a), apart from the actual interference between the inner WPs at 35 ps,
the entire PL emission of the WPs shows weak fringes. The disorder present in the ridge
originates back-scattered polaritons that interfere with those still traveling throughout the
sample [92]. Nevertheless, we can distinguish between these two kinds of fringes, since those
arising from disorder have a slightly larger periodicity as compared with those that occur
when two condensates meet in real-space, i. e., back-scattered polaritons show a reduction of
the wavevector kx. The origin of these fringes is discussed in detail in Appendix D of Ref
[78].

The corresponding time evolution of the WPs in momentum-space is displayed in Fig. 3.2(b).
Condensates are initially created at t = 0 with k ∼ 0 and, in few picoseconds, they evolve
towards two states corresponding to WPs traveling towards the left or right directions of
the ridge. Note that although two states are found in k-space, the emission corresponds to
four WPs: L1,2 propagate away from the excitation spots with momenta k = −1.3 µm−1

whereas R1,2 propagate with k =+1.3 µm−1. From the first moments, the emission shows
weak interference fringes even when they have not yet reached this maximum momenta.
The fringes emerge because, since their creation, condensates moving in the same direction
evolve with the same acceleration. Once the WPs have acquired k =±1.3 µm−1, each trace
shows a set of fringes caused by condensates propagating with exactly the same velocity and
direction, i. e., occupying the same state in momentum-space. It is worthy to emphasize
that in this particular case, coherence arises between polaritons that are spatially separated
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Figure 3.3. Schema of four polariton WPs propagating in a planar waveguide at three different times:
(a) t = 5, (b) t = 35 and (c) t = 55 ps. The positions of the two laser beams impinging on the sample
are indicated by B1,2, separated by a distance d. The WPs moving to the left (white-blue circles) are
labeled as Li & ℓi, while those moving to the right (blue circles) are labeled as Ri & ri. The subscript i
refers to the excitation beam.

in the sample and have never been in contact before t = 35 ps [57]. During the first 40 ps,
the WPs maintain a constant wave vector value showing that the crossing at the center of
the structure in real-space does not affect them by any means, neither a deviation from the
trajectory nor a decrease of their speed is observed. As already seen in Fig. 3.2(a), at ∼55 ps
the inner WPs, L2 and R1 are located nearby the reservoirs. This is reflected in k-space as a
reduction in the wave vector of both WPs. Due to the presence of the potential barriers they
decelerate, losing gradually their momenta, until they coincide at k ∼ 0, where another set of
interference fringes, with different period, is obtained. Afterwards, both WPs reverse their
trajectories and accelerate until they recover the same maximum wave vector as R2 and L1.
Therefore, we re-label now L2 and R1 as r2 and ℓ1, respectively. In the meantime, the outer
WPs, L1 and R2, propagate straight towards the edge of the waveguide with a constant speed.

At longer times, the intensity of the emission decays considerably with time due to the finite
lifetime of polaritons and hence, after 75 ps, the PL can not be accurately analyzed. Despite
this, an evidence of interference fringes is still observed for condensates moving towards left,
now L1 & ℓ1, and right, now R2 & r2.
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To clearly illustrate the polariton propagation explained in Fig. 3.2, a schema of the four
polariton WPs propagating along the planar waveguide is shown in Fig. 3.3 for three time
delays after their creation. Fig. 3.3(a) shows the initial conditions of the experiment (t = 5 ps)
in which the same situation is found at the position of each laser beam, B1,2; two WPs are
created and accelerated in opposite directions along the x-axis, i. e., left (Li) and right (Ri).
As the WPs evolve with the same acceleration, interference fringes are expected to be found
in the k-space emission between R1 & R2 and L1 & L2. At t = 35 ps [see Fig. 3.3(b)], the
crossing between R1 and L2 occurs in the region [−d/2,d/2]. The overlap of their emissions
produces interferences in real-space. Moreover, since the velocities of the four WPs remain
constant, the interferences in k-space are still present. Finally, at t = 55 ps, R1 and L2

encounter the excitonic reservoirs at B2 and B1, respectively. The WPs momentarily halt
in the presence of the reservoirs, which act as potential barriers, and reverse their direction
of propagation. Since these WPs do not coincide in real-space, no fringes in the real-space
emission are expected, by contrast, in k-space, R1 and L2 exhibit velocities close to zero,
thus, fringes are expected to appear at k ∼ 0 but with a sightly larger period, as mentioned
before, because the distance in real-space between the condensates decreases. This process
of bouncing back and forth in the range [−d/2,d/2] is repeated until polaritons reach the
end of their lifetime. L1 and R2 have exited from our detection area due to the long traveled
distance, therefore, their emission can no longer be followed.

Stability of the fringes

The symmetry of the excitation conditions between condensates generated at both excitation
spots are a key ingredient to observe the interference fringes. To reach the necessary
conditions for interference, the power density of B1 and B2 must be adjusted so that the
blue-shift of the emission (in our case, 0.6 meV) is the same in both polariton populations
created from each excitation spot. As a result, the condensates move with equal momentum
(k) in the same direction, i.e., equal kinetics. Since the period of the fringes in k-space
(κ0 ≡ ∆k) is directly related to the separation between the condensates (d) by κ0 = 2π/d
(section 1.6), special care must be taken with the spatial stability of B1 and B2. A fluctuation
in the position of one of the laser beams will generate an interference pattern with a changing
value of κ0, blurring the fringes during the measurements. An example of the dependence
between d and κ0 is shown in Fig. 3.4(a). We have measured the emission profile in k-space
at t ∼ 5 ps for three selected distances between the laser beams, d = 60,80 and 100 µm. The
interference fringes are observed during the full range of the wave vector since the WPs move
from the rest (k = 0) to |k| ∼ 1.2 µm−1 with the same acceleration. As one should expect
from the inversely proportional relation of κ0 with d, the periodicity of the fringes decreases
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Figure 3.4. (a) PL intensity along k for a time delay of t ∼ 5 ps. The PL is depicted for a three different
distances between B1 and B2, d = 60,80 and 100 µm. κ0 denotes the periodicity of the interference
pattern. (b) PL intensity along k for a time delay of t ∼ 35 ps. The PL is measured when the structure
is pumped at B1, at B2 or at both locations, B1 +B2.

as the distance is increased. The analysis of the data yields a value of κ0 ≈ 0.105 µm−1

for the shortest distance, corresponding to d ≈ 59 µm, which agrees with the experimental
observation of d = 60 µm. Similarly, for the case of d = 80 µm we obtain κ0 ≈ 0.080 µm−1

(that would give a distance in real-space of ≈ 79 µm) and finally for the larger distance
d = 100 µm, the smallest value of κ0 ≈ 0.065 µm−1 is found (distance in real-space ≈ 97
µm).

We now turn our attention to the cases when we block one of the lasers. Since the interference
in k-space occurs between two spatially separated WPs, created with different excitation
beams, by eliminating one of the WPs the fringes should disappear. This is the case depicted
in Fig. 3.4(b), in which the emission profile has been measured at t ∼ 35 ps when exciting the
structure with a) both laser beams (B1 +B2), b) just with B1, blocking B2, and c) vice versa.
When only one laser beam pumps the structure, one WP travels to the left (k < 0) and the
other one to the right (k > 0). Note that regardless of the laser beam used, B1 or B2, the value
of the maximum momentum of the WPs results the same, ensuring the conditions for the
interference. Only when both beams pump the sample, the fringes appear on the emission.

3.3 Analysis of the interference patterns

In this section we will concentrate on the analysis of the interference patterns at three different
time intervals of interest: t1, t2 and t3. The intervals t1 and t3 are selected from the analysis
of the interference in momentum-space while t2 is selected from the real-space analysis of
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the fringes. The size of the time window is adjusted to guarantee that the amplitude of the
fringes is constant. In momentun-space, we define t1 from 13 ps to 39 ps, when L1,2 (R1,2)
move with a negative (positive) constant maximum momentum, and t3 from 42 ps to 57 ps,
when L1 and R2 reach the vicinity of the excitonic reservoir, so they decelerate, coinciding at
k ∼ 0.

In real-space, we analyze the fringes appearing from 22 ps to 37 ps that correspond to the
interval t2; in this case, the fringes originate from the coexistence of R1 and L2 at the center
of the ridge (x ∼ 0). The WPs not only exhibit temporal and spatial coherence since their
creation, as shown in the next section, but they evolve with the same kinetics, therefore, the
required conditions to interfere and observe a pattern are met during all their lifetime.

We perform a detailed Fourier analysis of the interference patterns obtained from the emis-
sions at the three time intervals. As an example, Fig. 3.5(a) depicts the PL emission profile
integrated in the time range t1 at the lowest temperature we have measured, 10 K. The
emission we collect originates from two different contributions in the WPs: the condensed
and the thermal, non-condensed polaritons. The former one shows a series of fringes due
to the coherence between different WPs. The non-condensed contribution is apparent in
the data as a background on top of which the fringes are observed, i.e., at the same k range.
The baseline encompassing this contribution is shown by a red dashed line in Fig. 3.5(a).
Since the non-condensed contribution cannot be approximated to a typical Gaussian or
Lorentzian peak, due to the asymmetry of the emission, the baseline has been adjusted by
hand. To obtain a clearer pattern, we remove the non-condensed part of the emission by
subtracting this baseline from the data. The resulting profile is shown in Fig. 3.5(b), where
two sets of fringes around k =± 1.6 µm−1 are noticeable. Although in Fig. 3.5(a) only 2
fringes are visible to the naked eye in the region 1.2 < |k|< 2.1 µm−1, the simple process of
subtracting the baseline reveals the presence of additional fringes in the same range of k. The
Fourier analysis of the oscillations enclosed in this region is depicted in Fig. 3.5(c), which
obtains the amplitudes of the different periods present in the interference pattern, κ ≡ ∆k.
The predominant peak reveals the period of the pattern in momentum-space, κ0 = 0.089
µm−1, which is related to the separation (d) between both excitation beams, B1 and B2,
by κ0 = 2π/d. Additionally, the Fourier analysis provides the average amplitude of the
oscillations in the interferograms for each period. This amplitude can be directly related to
the visibility of the fringes, which defines the degree of coherence, in this case, between two
polariton condensates. To relate both the visibility and the amplitude, first the visibility of
the oscillations shown in Fig. 3.5(b) is determined for a given temperature. We compute it,
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Figure 3.5. (a) Time-integrated PL emission in momentum-space for interval t1 ∈ [13,39] ps at
10 K. The baseline of the emission is indicated by a red dashed line. (b) PL profile showing a clean
interference pattern after a baseline subtraction of the trace shown in (a). (c) Fourier analysis of the
oscillations depicted in (b). The amplitude of the different contributions to the interferogram as a
function of their period gives the main period of the fringes (κ0) and the corresponding visibility (υ),
as explained in the text. The dashed line shows a Bézier interpolation of the points. A 10 kW/cm2

excitation laser was used for the measurements.

either in real- or momentum-space, as

υ =
1
n

n

∑
i=1

Imax − Imin

Imax − Imin
(3.1)

where Imax(Imin) is the maximum (minimum) intensity of the interference oscillation i of the
n oscillations observed in the full range of momenta. This value is used to scale the amplitude
given by the Fourier analysis as depicted in Fig 3.5(c). We perform a similar Fourier analysis
of the interferograms obtained for different temperatures and for different time intervals;
note that since the shape of the emission depends on both, a slightly different baseline will
be defined for each emission.

3.4 Determination of condensates’ critical temperature

Polariton condensates are out of equilibrium systems. Furthermore, the population distribu-
tion consists, at very low temperatures, of a condensed, and therefore coherent population,
and a non-condensed part. Comparing these systems with an ideal Bose-Einstein distribution
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is not appropriate since it is not possible to define certain parameters such as the number of
polaritons in the condensate or its temperature. Therefore, it is not evident how to determine
a critical temperature for the phase transition of a polariton population to form a condensate,
precisely because a temperature cannot be defined. Nonetheless, we can have some insight on
the thermal robustness of the polariton condensate coherence, and therefore of a temperature
at which the condensates emerge or dissapear, by studying the evolution of the interference
fringes’ visibility with the lattice temperature. In this section we study the temperature
dependence of the mutual coherence between traveling polariton condensates through the
visibility of interference fringes at different lattice temperatures.

We obtain the interference patterns in real- and k-space at temperatures ranging from 10 K
up to 35 K, in steps of 2.5 K. As an example, Fig. 3.6 compiles the interferograms, after
the baseline subtraction, for the interval t1 for a power density of 10 kW/cm2. At very low
temperature, the fringes are clearly distinguished for positive and negative values of the
wave vector. As the temperature is increased, the amplitude of the fringes shows a strong
decay, resulting in a progressive worsening of the signal-to-noise ratio. The polaritons’ life
span drastically reduces with increasing temperature, hindering the polariton propagation
as demonstrated by the strong drop in the PL intensity at large |k| values. Consequently,
the interference fringes vanish for temperatures above ∼ 32.5 K. The condensates acquire
a maximum momentum of k = 1.70(2) µm−1, which is slightly higher than that observed
in Fig. 3.2. The excitation power is directly related to the blueshift of the emission and
therefore, to the polariton’s momentum. Thus, an increase of the power density will result in
a populated state with higher energy in the LPB, resulting in this increase of k.

The analysis of the interferences in Fig. 3.6 yields to a temperature-independent period of
the fringes κ0 = 0.089(6) µm−1, which gives a distance in real-space of 71(5) µm. This
behavior is expected since, for all temperatures, the separation between the two excitation
laser beams is kept constant at d = 70(1) µm.

The temperature dependence of the visibility of the fringes for the three time intervals is
displayed in Fig. 3.7. An overview of the experimental data shows a clear decay of the
visibility with increasing temperature, i.e., a progressive loss of coherence with increasing
temperature. We identify this process as a signature of the BEC-like transition, thus, the
critical temperature for BEC can be determined when the visibility drops to zero. In the case
of t1, Fig. 3.7(a), a critical temperature of 32(2) K is obtained.

The visibility in the interval t3, defined when R1 and L2 meet at k ∼ 0, shows a similar
tendency with temperature to that obtained in the interval t1. However, as seen in Fig. 3.7(c),
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Figure 3.6 . PL profiles at the interval t1 in momentum-space. The temperature is varied from
10 K (top) up to 35 K (bottom) in steps of 2.5 K. The blue arrow indicates the direction of increasing
temperature.

a shorter range of temperature has to be considered in this case. The visibility decays
considerably faster than at the other time intervals, providing a critical temperature of 21(4)
K for this set of fringes. Furthermore, for a given temperature, the value of the visibility
at t3 is significantly smaller than that obtained at t1, revealing that the coherence gradually
decreases with time as the polaritons travel along the sample. For instance, at 15 K, the
value of the visibility corresponds to 0.39 at t1, whereas at t3 is 0.06. The origin of this
effect relies in the proximity of the WPs to the excitonic reservoirs; the enhancement of the
exciton-polariton scattering accelerates the decoherence process [33, 93, 94].

The Fourier analysis obtains a slightly larger period for these interference fringes, κ0 =

0.106(2) µm−1, corresponding in real-space to 59(1) µm, a shorter distance than the experi-
mental separation between B1 and B2. When the WPs R1 and L2 are not able to overcome the
potential barriers created by the reservoirs, they halt before reaching the positions ±35 µm.
In Fig. 3.2(a) this distance can be directly measured at t ∼ 50 ps, giving a result of 60(1) µm
between the WPs, in good agreement with the distance obtained from the Fourier analysis.

66



3.4 Determination of condensates’ critical temperature

Figure 3.7. Visibility of the interference fringes as a function of temperature for time intervals (a) t1
and (c) t3 in k-space. The interval t2 for real-space is plotted in (b). Two fits of the experimental data
are made using Eq. 3.3: the dashed line corresponds to β = 1 and the solid line to β = 3.

When analyzing the interference fringes in real-space, we observe a decay of the visibility,
shown in Fig. 3.7(b), comparable to those of the k-space. In this case only temperatures below
30 K are shown since the lifetime of the condensates limits the temperature range that can be
considered in this sample. Since the time interval t1 encompasses t2, the general behavior of
the coherence with increasing temperature is similar to that observed in momentum-space, as
expected from the connection between real- and k-space. The visibility of the interference
fringes, resulting from the crossing of R1 and L2 at x ∼ 0, yields TC = 32(3)K for the
BEC-like phase transition.

To fully analyze the real-space case, we finally consider the period of the interferences,
as already shown in section 1.6. The real-space periodicity (ξ ) is directly related to the
separation of the momentum between the WPs R1 and L2 by,

ξ =
2π∣∣∣⃗kR1 − k⃗L2

∣∣∣ (3.2)

From the Fourier analysis, we obtain for these fringes ξ = 1.8(1) µm, that provides a
separation between the wave vectors of

∣∣∣⃗kR1 − k⃗L2

∣∣∣ = 3.4(2) µm−1. As observed in the
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experiment, WPs moving in opposite directions have the same speed during t2,
∣∣∣⃗kR1

∣∣∣ =∣∣∣⃗kL2

∣∣∣. Thus, we obtain a maximum momentum of 1.7(1) µm−1, which agrees with the

experimentally measured 1.70(2) µm−1.

The Bose-Einstein transition can be characterized by a critical temperature that determines the
condensate’s formation, as observed by our results when the visibility decays to zero. Apart
from the ideal Bose gas, the critical temperature for the BEC transition has been theoretically
calculated in the literature for an homogeneous dilute gas using the renormalization-group
theory, in which Bijlsma et al. obtained a critical temperature higher than that of the ideal
Bose gas [95]. Furthermore, similar results have been also obtained using Monte Carlo
simulations [96]. However, these theoretical models do not consider the out-of-equilibrium
nature of polariton condensates, nor the existence of a non-condensed fraction. For this
reason, we consider two situations that have been proposed in the literature for atomic
systems composed of condensed and uncondensed fractions. The first model describes a
mean field approach to a purely 2D weakly interacting atom Bose gas [97] while the second
one considers a 3D gas of interacting cold atoms confined in a cigar-like trap [98]. Both
models describe the temperature dependence of the fraction of condensed atoms (nC) as,

nC (T ) = n0

[
1−
(

T
TC

)β
]

(3.3)

where n0 is the number of particles at T = 0. The index β acquires a value of 1 in the former
model and 3 in the latter one. We consider both models and compare our results for the
visibility of the patterns at the three time delays with their models.

In the experiment performed in this chapter, the appearance of the fringes is the result of the
interference between two coherent, condensed, polariton populations. In the ideal case of
purely condensed populations, the visibility of these fringes would result 1, however, the
obtained values are lower and decrease with the temperature due to the presence of non-
condensed polaritons. Therefore, the visibility provides a direct estimation of the evolution
of the condensed population in a WP, allowing the comparison between our data and both
theoretical models. The fits using Eq. 3.3 are represented in Fig. 3.7 for β = 1 and 3 with
a dashed line and a solid line, respectively. At zero T , the models predict a condensed
fraction of 1 while, as expected, our results for the visibility are far from this value due to
the non-equilibrium nature of our condensates and the high contribution of non-condensed
polaritons even at extremely low T [30].
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We obtain from the fits critical temperatures comparable with those observed experimentally
when the visibility decays to zero in every time interval. It should be noted that there is not
a noticeable difference when determining TC with β = 1 or β = 3. Moreover, the models
provide an accurate value of TC with a maximum deviation from the experiments of a 7 %. As
seen in Fig. 3.7, both theories fit properly the results, implying that we cannot give a definite
conclusion about which model is more adequate to describe the temperature dependence of
the visibility, bringing forward the need for the development of a new theoretical model for
an out of equilibrium condensate.

For the sake of completeness, we have obtained the fraction of condensed to uncondensed
polariton population fC. As explained above, the non-equilibrium nature of our polariton
condensates hinders the determination of the number of particles. Although we are far
from the BEC ideal case, we can address this problem by estimating the fraction of the
condensed and the uncondensed population of the condensates. As already explained in
section 3.3, we can distinguish the contribution of both populations to the PL: the background
intensity arising below the fringes has its origin in the thermal, non-condensed population,
whereas the fringes emerging on top of this background have their origin in the condensed
population. Therefore, we can compute the area enclosed beneath the fringes and the baseline
as the condensed population fraction and the area beneath the baseline as the uncondensed
population fraction. The ratio between both contributions, fC, is shown in Fig. 3.8.

The fraction fC shows a similar decay to that observed in the visibility, revealing an increase
of the non-condensed contribution with increasing T . Due to the signal-to-noise limitation
at high temperatures, the maximum T considered is 30 K. At interval t1 [Fig. 3.8(a)], only
a 10 % of the WP is formed by condensed polaritons at very low temperatures (10 K). The
coherent population vanishes when this fraction drops to zero at 34(3) K. Since t1 and t2 are
comparable intervals, the data reveal a similar fraction of condensed polaritons in Fig. 3.8(b)
at low T . A critical temperature of 33(2) K for condensation is obtained in this case, which
is in good agreement with that of interval t1. The interval t3, is compiled in Fig. 3.8(c). In
this case, the WPs show a reduction of the condensed fraction, now fC ∼ 8% at 10 K. This
reduction is consistent with the nearness of the excitonic reservoirs, yielding TC = 25(4) K.
The temperature that defines the phase transition for condensation obtained either through the
visibility of the fringes or the fraction of condensed polaritons are compatible, demonstrating
that both methods are equally valid.

Both theoretical models we have considered describe appropriately the decay of the ex-
perimental data with T . These fits, are represented in Fig. 3.8 as the dashed line for the
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Figure 3.8. Fraction of the condensed to uncondensed polariton population as a function of the
temperature. The fraction is calculated at three different times: (a) t1 in k-space, (b) t2 in real-space
and (c) t3 in k-space. The dashed and solid lines are fits with the form of Eq.3.3 for the cases β = 1
and β = 3 respectively.

linear tendency (β = 1) and the solid line for the cubic one (β = 3). A similar discussion
to that made previously for the visibility can be made in this case. While the theoretical
models assume a fraction of 1 at T = 0 for full condensate populations, a maximum fraction
of ∼ 0.15 is obtained at the lowest temperatures in our experiments. The origin of this
discrepancy lies in the omnipresence of thermal, non-condensed polaritons. Furthermore,
this fact implies that, even at extremely low temperature, there are significant effects arising
from the out-of-equilibrium noise.

When the visibility is analyzed using both theoretical models [see Fig. 3.7], a similar TC

is obtained independently of the value of β . The same conclusion is obtained when the
condensed to uncondesed fraction is analyzed [see Fig. 3.8]. Therefore, our experimental
data do not allow to determine which model is more appropriate to describe the temperature
dependence of the degree of coherence in non-equilibrium condensates, which demands a
more adequate model that takes into account this non-equilibrium nature.
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3.5 Conclusions

In this chapter, we have investigated the thermal robustness of the mutual coherence of
polariton condensates in real- and momentum- space. The presence of interference fringes
along the full polariton propagation reveals a time- and space-preserved phase correlation.
Its temperature dependence has been evaluated at three time delays through two different
methods: analyzing the interference pattern to obtain their visibility (υ) and calculating the
fraction of condensed to uncondensed polariton population (fC). A similar decrease of the
coherence with increasing temperature has been found, both in real- and momentum-space
that is correlated with the BEC-like transition. Moreover, a similar critical temperature for
this transition has been obtained in both cases, when υ or fC decay to zero. Our findings
demonstrate the direct connection between real- and momentum-space although in the first
case, the analyzed fringes arise from condensates overlapping in space and in the second
case, from condensates spatially separated.

In addition, a faster decrease of the coherence is found when the emission is analyzed at longer
times after the condensate’s formation. At such times, the lifetime constraints of polaritons
and the exciton-polariton scattering produce a decoherent effect, resulting in a weaker thermal
robustness of the condensates. The results have been compared with two theoretical models
available in the literature and developed for equilibrium atomic condensates. Since our
condensates are out of the equilibrium systems and therefore, the temperature cannot be
well-defined, these models do not provide a real temperature dependence of the condensed
fraction. However, both theoretical models allow us to determine a critical temperature for
the BEC transition.
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Chapter 4

Polariton propagation in 1D - directional
couplers

4.1 Introduction

In the last decades, the interest in increasing the speed and performance of conventional
processors has led to the creation of photon-based devices [99–101]. The reason is the
increase in processors’ operation speed and the benefits of transferring and processing fully
optical information [99, 102]. The development of these devices relies on the efficiency
in confining and manipulating the light within a selected spatial region. In an attempt to
address this need, several all-optical architectures based on microcavity polaritons have been
realized [76, 77, 89, 103–108]. The design and construction of the fundamental parts of
every integrated optical architecture to guide polaritons to different spatial regions of the
sample involves the creation of a 1D planar straight waveguide. These systems have been
frequently discussed in the literature and considered in polaritonic devices [58, 109–111].
Under high excitation power densities, polaritons in waveguides acquire a large wavevector
value predominantly in one component, consequently, they are able to propagate large
distances during their lifetime. However, real devices require more elaborated structures
than straight waveguides. A precisely introduced defect or a modification in the shape of a
straight waveguide enables the guiding of the polaritons through new curved trajectories. The
overall losses in a bent waveguide determine the optical efficiency and therefore, the viability
of large-scale optical devices. An important difference between conventional waveguides,
used for light propagation, and polariton waveguides, is the possibility of switching from
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single-mode to multi-mode operation, in which different propagating modes can be found.
The inter-modal mixing does not usually happen for multi-mode propagation in a perfectly
straight waveguide, nonetheless, when a perturbation such as a bend is introduced, it is
possible to find mixing between the modes [112, 113]. Therefore, in the case of propagation
of polariton condensates in waveguides, it is also expected that the deviation from a straight
into a curved trajectory will result in the appearance of inter-modal mixing. Although many
complex optical devices based on polaritons contain bent waveguides, the effects related
to the presence of a curvature have not been practically studied [114, 115]. Here we shall
address these effects and we investigate planar waveguides where a deviation of 45º at both
ends of the structure has been introduced. Two of these waveguides, symmetrically placed at
a short distance, compose the device dubbed as coupler that is investigated in this chapter.

Another attractive feature of polaritons is the feasibility to control their spin through the
polarization state of the excitation light. This property opens the possibility of developing
a new class of integrated spin-based devices, useful for applications such as polariton
switches, logic gates and quantum computing, with efficient ultrafast operation [116–118].
Experimental works have shown that a spin-dependent polariton-polariton interaction allows
the creation of these devices with an output spin state controlled by the polarization of the
excitation light [29, 119–121]. As a starting point to study the possibility of exploiting the
spin degree of freedom in a coupler device, in this chapter, we explore its response to a linear
polarization.

This chapter is distributed as follows. In section 4.2, we characterize the coupler device
considering the feasibility of its design for polaritonic-based circuits. We report a detailed
study of the effect of introducing a 45º deviation in the polariton propagation. In section 4.3,
we study the coupling of polaritons between two parallel waveguides that constitute the arm
of the couplers. The selection of different size parameters in the couplers grants access to a
wide variety of responses of the device under the same excitation conditions. For the sake
of completeness, in section 4.4, the coupler’s reaction to a linear polarization is analyzed.
Finally, the conclusions of this chapter are summarized in section 4.5.

4.2 Characterization of the arms of the couplers

The coupler devices used in this chapter are described in detail in section 2.2.2. As shown
in Fig. 4.1, they are composed by two double bent waveguides, referred as arms from now
on. The size parameters that describe the dimensions of this device are indicated by Lc,dc

and w, which label the coupling length in the central region, the separation between the arms
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Figure 4.1. Sketch of a coupler device composed by two double bent waveguides. The dimensions of
the device are defined through the coupling length Lc, the separation between the arms dc and their
width w. The positions 1, 2 and 3 mark the excitation points at which the emission has been measured.
Input and output denote the terminals. As an illustration, the emission of polariton condensates
propagating along the waveguide is depicted when the laser excites the structure in one arm.

and their width, respectively. The x and y axis are defined always in the same manner: x is
parallel to the coupling region of the coupler and y is perpendicular to it. Three different
positions labeled as 1, 2 and 3 are considered when exciting the device. Position 2 is located
in the coupling region while 1 and 3 are placed in the input and output terminals, respectively.

The characterization of the couplers is performed under non-resonant excitation at 1.664 eV
with a pulsed laser source. The excitation beam is focused onto the sample surface through
a microscope objective with NA= 0.40 and f = 10 mm. The size of the spot is adjusted to
fit, as accurately as possible, inside the waveguides that form the couplers. To modify the
spot diameter, a combination of beam expanders with different magnifications are placed
before the objective. Thus, for w = 6 µm, the diameter of the laser beam is set to ∼3.0
µm, measured at FWHM. During the experiments of this chapter, the temperature has been
adjusted between 5 and 15 K. A spatial care has been taken when decreasing the temperature
below 10 K, since the high flow of He introduces vibrations that may affect the resolution of
the measurements.
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4.2.1 Asymmetric band dispersion along the coupler

A characterization of the photonic landscape experienced by polariton condensates in their
movement is necessary to fully understand their propagation and to improve the design of
polaritonic circuits. For this purpose, the structure has been pumped at several locations
in both arms, collecting the PL along the x- and y-directions from a total area of 60 µm2

around the excitation spot. The PL emerging from the rest of the device has been removed
from the emission by means of a spatial filter. Since the results obtained for both arms are
completely equivalent, we will concentrate on the results acquired in just one of them and
on the selected positions 1, 2 and 3 that summarize the results obtained along the whole
structure. The dispersion relations at these positions are depicted in Fig. 4.2. Panels (a)-(c)
show the momentum distribution for kx at a low excitation power density, 0.6 kW/cm2, for
positions 1-3. These measurements are made for ky = 0. Note that for position 2, the kx and
ky directions are oriented along the longitudinal and transversal directions of the waveguide,
respectively, while the terminals are rotated ±45º with respect to these axes. Let us start
by analyzing the emission at position 2. In the case shown in panel (b), the dispersion
is produced entirely by the contribution of polaritons distributed along the longitudinal
direction of the waveguide, which coincides with the direction of detection. Polaritons can
freely expand along the longitudinal direction of the guide so that no restriction is observed
in the angular detection. When polaritons annihilate, photons are emitted at all possible
angles along the x axis. Thus, the entire lower polariton branch (LPB) and the rest of the
sub-bands are observed, displaying continuous energy bands in the full range of kx. By
contrast, the discontinuity in the refractive index in the transverse direction, created by the
difference between the cavity and air, yields to a complete lateral confinement and hence to a
full quantization of the transverse momentum. The allowed values of this wavevector are
given by k = ( j+1)/w, where w is the waveguide’s width and j is the quantization number,
integer and positive, that identifies each sub-band in the dispersion. Panel (e) demonstrates
a completely discretized dispersion along ky, due to the high confinement produced by the
narrowness of the waveguide. The emission is split into several sub-bands whose antinodes
are clearly visible. The superposition of the dispersions in panels (b) and (e) is responsible
for the dispersion measured in the terminals of the waveguides, as it will be shown below.

Now, we analyze the dispersions along kx at the terminals. Conversely to the symmetry
discussed for the dispersions at the coupling region, the multiband structure between 1.584
and 1.598 eV, observed in the emission at the input terminal, position 1 [panel (a)], exhibits
a peculiar asymmetry between negative and positive values of kx, with a larger population
observed in the former one. This dispersion relation, since the waveguide is rotated 45º with
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Figure 4.2. Polariton dispersion curves obtained along kx (ky = 0) at locations 1 (a), 2 (b) and 3
(c). The corresponding emissions along ky (kx = 0) are depicted in (d), (e) and (f), respectively. The
emissions have been measured at a power density of 0.6 kW/cm2.

respect to the detection axes, can be understood as a linear combination of those associated
to the longitudinal and transversal wave vectors of the waveguide [122]. Furthermore, the
position of the laser beam near the waveguide edge plays an important role as it introduces
a strong asymmetry in the dispersion. An additional wave vector discretization along the
longitudinal direction emerges due to the finite distance to the edge of the waveguide,
resulting in an accentuated energy discontinuity at negative values of the momentum, kx < 0.
The quasi-confinement of polaritons between the edge of the waveguide and the exciton
reservoir potential barrier at the excitation spot is responsible for the larger intensity obtained
at negative values of kx in the dispersion. For positive values there is no obstacle to the
polariton expansion since they can travel at ease along the waveguide, so a more continuous
band for kx > 0 is found. Additional experimental evidences (not shown) reveal that the
closer to the waveguide’s edge the excitation, the more pronounced the asymmetry of the
emission. This is due to the fact that the allowed values of the discretized longitudinal
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wavevector are further separated because of the increasing proximity of the edge and also
to the polariton population getting trapped in a smaller area of the waveguide (smaller the
closer to the edge of the structure). The excitation at position 3 [panel (c)] obtains a similar
dispersion relation to that shown in panel (a). However, in this case, the waveguide is rotated
- 45º, and therefore, the emission shows quasi-discrete energy states at positive values of kx.

The corresponding dispersions relations along ky (kx = 0) for positions 1 and 3 are shown
in panels (d) and (f), respectively. Panel (d) exhibits a similar distribution to that of panel
(a) due to the additional confinement created by the edge of the structure, which in this case
also results on discretization at negative values of ky. Due to the opposite angle of rotation,
with respect to x, of the output terminal to that of the input one, panel (f) shows the reverse
behavior to that of panel (d) with discrete values predominantly for ky > 0. The superposition
of both longitudinal and transverse wave vectors on kx and ky, together with the additional
confinement at the end of the input and output terminals, provides a full understanding of the
polariton dispersion relations, explaining also the smoother discretization of the energies at
the terminals as compared to that observed in panel (e).

Increasing the excitation power density up to 24 kW/cm2, well above the condensation
threshold (12 kW/cm2), the polariton condensates injected in the waveguide propagate all
along the device. Fig. 4.3 presents the corresponding dispersion relations obtained for the
same three excitation positions discussed earlier. The dashed lines mark the bottom of the
LPB band when a low pump power is employed. The emission energy is blueshifted ∼ 5
meV due to polariton-polariton interactions. Above threshold, two drops of condensates are
created, propagating away from the excitation spot towards opposite longitudinal directions.
We discuss again, for the sake of clarity, the case of excitation at the center of the coupling
region, position 2. In this case, along the longitudinal direction of the waveguide, apart
from some polaritons that stay at rest (kx ≈ 0), condensates propagate with |kx| ≈ 2 µm−1

at ∼1.588 eV [Fig. 4.3(b)]. In the transverse direction, condensates propagate mainly at an
excited state with slightly higher energy, 1.589 eV, and lower momentum, |ky| ≈ 1.5 µm−1,
[Fig. 4.3(e)].

A more complicated situation arises at the input and output terminals. Additional to the
frequent presence of polaritons halted at the excitation area by the potential created by the
excitation beam, massive populations at positive and negative values of the momentum are
observed in the interval 2.0 < |kx| < 3.5 µm−1 between the energies 1.589 eV and 1.596
eV. At the input terminal, some condensates travel from position 1 towards the center of the
structure (position 2) exhibiting positive momenta while most of the condensed population
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4.2 Characterization of the arms of the couplers

Figure 4.3. Polariton dispersion curves obtained for a high power density of 24 kW/cm2, along kx

(ky = 0) at locations 1 (a), 2 (b) and 3 (c). The corresponding emissions along ky (kx = 0) are depicted
in (d), (e) and (f), respectively. The white dashed lines mark the bottom of the LPB.

travels towards the edge of the structure, and it is trapped, with negative values of the
momenta, as demonstrated by the emission depicted in Fig. 4.3(a). The situation is inverted
at the output terminal [panel (c)] due to the presence of the edge of the structure affecting now
those polaritons travelling with kx > 0. In contrast to the findings at the center of the coupler
[panel (b)], where condensates travel mostly with a well-defined single mode, peculiar
multi-mode dispersions characterize the polariton propagation at the terminals. A similar
comment pertains when analyzing the behavior along ky: panels (d) and (f), corresponding to
the input and output terminals, respectively, exhibit the presence of up to 4 modes similarly
populated at different energies, while panel (e) shows that at the coupling region polaritons
propagate mostly at a single mode. Therefore, the 45º rotation of the waveguide not only
reveals the appearance of new modes, but the transition from a single-mode to a multi-mode
propagation.
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4.2.2 Influence of the bend on polariton propagation

Polariton condensation in 1D-waveguides has been frequently reported under non-resonant
excitation showing the formation of condensates propagating out of the excitation spot
[91, 118, 123]. However, a locally induced variation in the trajectory of these condensates
has important effects for their implementation in polariton circuits, as we will show here. An
essential element example for integrated optics is a bent waveguide, as it is one of the key
components of many potential devices. To our knowledge, the condensate’s response under
these conditions has been scarcely studied in the literature, with none of the works paying
attention to the momenta distribution of propagating condensates [103, 107, 114, 115]. Here
we address this issue by investigating the condensates’ trajectory after excitation of the device
in position 1 and analyzing the effect of the bend between the terminal and the coupling
region on the condensate’s wavevector.

Fig. 4.4(a) shows the time-integrated real-space map of two condensates propagating along
the device in opposite directions. One of the drops, ejected to the left (x < 0), gets trapped
between the edge of the waveguide and the excitation spot, bouncing repeatedly between
these positions. The condensate ejected towards the right (x > 0) shows a remarkable decay
of the emission intensity when reaching the bend of the structure. A similar decay has
been observed by Liran et al., who reported a more pronounced drop in the intensity when
the condensates travel through a bent waveguide instead of a straight one [114]. However,
as shown in the figure, beyond x > 15 µm the propagation is visible up to 80 µm (note
that the intensity has been multiplied by a factor 3). The emission evidences a peculiar
propagation along the device: condensates travel along two meandering parallel paths in
the input terminal, mostly at the edges of the waveguide, while in the coupling region they
merge and exhibit a zig-zag path. The fact that both, the intensity and the trajectory of the
condensates, exhibit such a change in their behavior clearly evidences the impact of a bend
on the polariton propagation.

To quantify the impact of bending the polariton trajectory by 45º, we measure the modulus
of the polaritons’ momentum at different propagation distances from the excitation spot.
To do this, we spatially filter the condensates’ PL at different locations along the device
and collect the angle-resolved PL of the selected region. The evolution of the momentum
for the condensate propagating along x > 0 is depicted in Fig. 4.4(b). The condensates
traveling to the coupling region of the waveguide are initially injected with a momentum of
2.9 µm−1. This value can be tuned through the power density of the excitation beam. Once
they propagate a short distance from the excitation area, the momentum, and therefore the
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4.2 Characterization of the arms of the couplers

Figure 4.4. (a) Time-integrated real-space map of polariton condensates traveling along the waveguide
while pumping on position 1. After passing the bend, polaritons follow a zig-zag trajectory. The
intensity is scaled by a factor of 3 for x > 15 µm. (b) Decay of the condensate’s momentum while
propagating from the excitation spot at x = 0 µm. A maximum decay is observed at the bend of the
waveguide, marked with the gray rectangle at ∼ 20 µm.

velocity, suffers a significant decay (∼ 25%). A minimum value of 2.2 µm−1 is obtained
at the bend of the waveguide, marked with a gray rectangle in the figure. Nonetheless, as
the condensate crosses this region, the momentum levels up and remains constant while
propagating along the center of the device. The sharpness of the bend acts as an obstacle in
the propagation of condensates, slowing down their movement. As mentioned above, the
initial conditions are easily established, however, the control over the propagation is lost
once the bend has been crossed. These results evidence the need for further investigation to
improve propagation along more complex polariton circuits.
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Figure 4.5. (a) Real-space map of polariton condensates propagating in one arm of the coupler device.
The coupling region is pumped with two laser beams, B1 and B2, indicated by white circles. (b)
Temporal evolution of the condensates momentum along kx (ky = 0) when the laser beams B1 and
B2 are synchronized to arrive simultaneously to the arm of the coupler (∆t = 0). (c) Same as (b)
for ∆t = 18 ps. The upper (lower) emission arises from B1 (B2). (d) Time-integrated emission in
momentum-space in an interval of 14 ps for ∆t = 0 ps. (e), (f) and (g) depict the same emissions
as in (d) for ∆t = 9,18, and 24 ps, respectively. The blue (red) profile corresponds to the blue (red)
rectangle in (c), arising from B1 (B2). The arrow at (f) indicates the fringes appearing first at the
emission from B2. All the emissions are filtered at an energy of 1.5881 eV.
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4.2.3 Demonstration of the condensed character of the polariton wave
packets: coherence build-up

For the sake of completeness, we briefly discuss the coherence build-up of condensed
polaritons. The coherence exhibited by these systems has been investigated by the observation
of the interference between traveling condensates [48, 56, 58, 59]. As demonstrated in chapter
3, it is expected that with increasing temperature both the spatial and temporal coherence do
vanish at a critical temperature. However, other factors also need to be precisely controlled:
an important parameter to consider is the time delay between the emissions arising from
different condensates. To study this effect, we excite the coupling region of one arm of the
device with two pulsed laser beams (B1 and B2) separated by d = 33±1 µm. Fig. 4.5(a)
shows the real-space map of the condensates propagating along the structure (at 1.5881 eV)
while pumping in the coupling region. Two condensates are created from each laser source,
traveling towards negatives and positives values of x. Condensates propagate in the coupling
region following an approximately straight trajectory, however, after passing through the
bend the path varies dramatically. A more complex trajectory is observed in the terminals,
where condensates follow a zig zag path that can be distinguished by the presence of maxima
and minima in the emission. The temporal coherence of these condensates is analyzed in
the coupling region along the x-direction, where they travel with a similar momentum. The
emission intensity along kx is depicted in Fig. 4.5(b), which shows interference fringes in the
full range of the emission, revealing that condensates move with a similar acceleration. An
exponential decay fit of the intensity as a function of time yields an average polariton lifetime
of just 5 ps in the couplers (not shown), establishing the synchronization between the beams as
an essential parameter to control the communication between the condensates. When a time
delay (∆t) of 18 ps is introduced between B1 and B2, the emission drastically changes [see Fig.
4.5(c)]. While the conditions for B1 remain the same, B2 is temporarily shifted by increasing
the laser path in the experiment before the corresponding beam impinges on the sample.
Consequently, the polariton emission arising as a result of each excitation beam suffers the
same delay. In this case, the time delay is longer than the lifetime of particles, therefore,
no interference fringes are observed in the condensates created by B1 (upper emission). In
contrast, small fringes are present at kx > 0 for those created by B2 (lower emission); despite
being created at later times, they still can interfere with the residual polariton population from
the earlier emission. To investigate this phenomena, the emissions are time-integrated in an
interval of 14 ps, indicated by the colored rectangles in Fig. 4.5(c). The resulting profiles are
compared in Fig. 4.5(d)-(g) for different time delays. Panel (d) shows the case when the time
delay is negligible [same case as in panel (b)]. In this case, condensates are created at the
same time from each laser source, allowing to observe fringes at the maximum momentum
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value that condensates acquire, i.e., ∼ ±2 µm−1. A Fourier analysis of these fringes, as
already described in Chapter 3, provides a period of 0.196±0.003 µm−1, which corresponds
to a separation between the condensates in real-space of 32.0±0.5 µm (see Eq. 1.34). This
result agrees with the separation between the laser beams d set in the experiment. When the
delay between the laser beams is increased to ∆t = 9 ps, see panel (e), both emissions still
overlap in time. As a result of the coherence between the condensates created in the structure,
a clear set of fringes emerges in the emission originated from B1. In the emission arising in
B2, fringes are only observed in the range kx > 0. Note that in both emissions, the fringes
are only visible in the interval 0 < |kx|= 1.7 µm−1, which corresponds to the acceleration
process of condensates before acquiring a maximum constant momentum. As already seen
for ∆t = 18, [panel (f)], small fringes emerge only in the emission corresponding to B2

(marked with an arrow), since polaritons of B1 have nearly reach the end of their life span
before interacting with those at B2. Panel (g) shows the case for ∆t = 24 ps: under these
conditions, neither the emission arising from B1 (blue) nor that from B2 (red) show any sign
of interference effects. The different condensate populations are not able to interact due to
the large time delay between them: polaritons initially created by B1 have vanished before
the second pulse excites the coupler.

4.3 Control of the output signal by engineering the size pa-
rameters of the couplers

Following the successful demonstration of polariton condensation in the coupler devices
and the implication of a 45º bend in a waveguide, we focus now on the phenomena that can
be accessed when the size of the couplers is reduced. In this section, we study couplers
with narrower waveguides, w = 2 µm, in which, the separation between the guides has
been varied from dc = 0.2 up to 0.5 µm. These new conditions open the possibility of
transferring condensates between the arms of the coupler, allowing the observation of
Josephson oscillations.

4.3.1 Requirements for polariton coupling

To study these narrower structures, the diameter of the laser beam has been reduced to ∼1.5
µm. From now on, the couplers are pumped in position 1 in the experiments, at the input
terminal. An important new aspect of the narrow couplers is that while one of the arms is
excited by a laser beam generating condensates that travel along the device, the other arm
becomes populated by the evanescent wave associated to these condensates. To ensure the
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Figure 4.6. (a) Scheme of the filtered parts of a coupler in real-space. The red spot indicates the
location of the laser beam. (b) Power-dependence of the normalized PL intensity in the pumped
(black) and the coupled (red) arm.

coupling of polaritons, the energy states in each arm must be resonant and present a similar
condensation threshold.

To study the fulfillment of these conditions in the couplers, we use a spatial filter in real-space
to obtain a clean emission from the different parts of the coupler. A scheme of the filtering
technique is shown in Fig. 4.6(a), where three different regions are selected: the input
terminals, the coupling region and the output terminals. The laser beam (red spot) impinges
on the lower input terminal generating a signal that propagates along the coupling region
of the coupler. Finally, the signal arrives to the output terminals, in which the emission is
observed either in one of the terminals or in both of them. This filtering technique allows
the blocking of one or two of these regions. The signal intensity considerably decreases as
polaritons propagate along the structure, therefore, emissions with different intensities are
found at each part of the coupler. Blocking the region with the most intense emission allows
the detection of weaker signals in other regions such as the output terminals, where signals
95% less intense than the signal initially injected have been found.

Using the spatial filter explained in Fig. 4.6(a) we study the response of a directional coupler
device when condensates are coupled from the lower to the upper arm. For this experiment a
coupler with Lc = 100 µm has been selected. The coupler is excited at position 1 at different
power densities. Since the purpose of this experiment is to study the response of the device
when polaritons couple, we measure the emission intensity in the coupling region while the
emission from the input and output terminals is blocked using the spatial filter. We integrate
the emission along the coupling region, distinguishing between the signal arising in the
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pumped arm and the signal coupled to the other arm. Fig. 4.6(b) depicts the normalized
intensity emission in the pumped lower arm (black) and the corresponding coupled emission
in the upper arm (red). Up to ∼ 11 kW/cm2, the emission is negligible in both arms since a
power density threshold needs to be exceeded to form polariton condensates that propagate
along the structure. This threshold (Pth) is obtained for both emissions at a similar value,
Pth ≈ 12 kW/cm2. The fact that the same threshold is found on both arms gives the idea
that as soon as the condensates enter in the coupling region, they couple to the upper arm.
Additionally, the signal at the coupled arm shows lower intensity emission than that at the
pumped one. Note that condensates are coupled by evanescence, therefore, a lower intensity
of the emission should be expected in the coupled signal. However, other factors can strongly
influence this behavior, such as the presence of oscillations in the polariton emission, as will
be shown below.

Using the same setup, we block the emission from the input terminal of different couplers
with the same size parameters but different dc. The real-space maps of these couplers are
depicted in Fig. 4.7(a), from left to right: dc = 0.2,0.3,0.4 and 0.5 µm. They are pumped
on the filtered-out region of the top-left terminal of the structure, so that x = 0 marks the
beginning of the coupling region. One clearly sees an exchange of particles between the
two arms. This transfer is characterized by a strong oscillating signal between the two arms
when they are sufficiently close to each other, with the contrast of the oscillations vanishing
progressively as the separation dc increases. The oscillating signal vanishes completely when
dc reaches 0.5 µm. We identify the oscillations in the microcavity emission as Josephson
oscillations. The transfer of particles from one waveguide to the other one gives rise to a
dynamical renormalization of the energy in each of them, resulting in harmonic oscillations.
Therefore, the application of a laser beam gives rise to an oscillating flow of particles [44, 71].
When the periodicity of the Josephson oscillations appearing in one arm is analyzed for the
cases shown in Fig. 4.7(a), a dependence with dc is found: Fig. 4.7(b) shows the evolution of
this period as a function of the separation between the waveguides; a linear dependence is
observed. As stated in section 1.7, the Josephson current exhibits a harmonic dependence
with an oscillation period proportional to e

√
dc . Therefore, one should expect an increasing

period with larger distances between the waveguides following an exponential law. However,
an exponential function in a reduced range may become indistinguishable from a linear
function if the number of points is limited. Thus, the experimental data in Fig. 4.7(b) can
be directly related to the interaction and coupling of polaritons giving rise to the Josephson
effect.
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Figure 4.7. (a) Real-space maps of the coupling section of directional couplers with different separation
between the arms; from left to right: 0.2,0.3,0.4 and 0.5 µm. The pumped terminal is filtered out
from the emission using a spatial filter. The intensity is in logarithmic false color scale. (b) Periodicity
of the oscillations observed in the coupling region as a function of the separation between the arms.
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4.3.2 Polariton propagation in directional couplers

As exposed along this chapter, the directional couplers exhibit interesting effects such as the
appearance of Josephson oscillations when polaritons travel along these devices. Moreover,
the high photonic character of the sample ejects polaritons from the excitation spot with a
remarkable high velocity, and therefore, a large k value. In this section, we focus on the
time-resolved PL of polariton condensates traveling in a coupler device.

We select a device with Lc = 100 µm, w = 2 µm, and the smallest separation between the
two arms to ensure coupling during a long distance, dc = 0.2 µm. We use the excitation
scheme depicted in Fig. 4.6(a). In this case, we analyze the PL at three different parts
of the coupler: input terminal, coupling region and output terminals. Each part has been
measured using the temporal tomography technique, described in 2.1.2.3, either for real-
and momentum-space while filtering out the remaining two other parts. Time-resolved PL
snapshots of the condensates traveling in the input terminal are shown in Fig. 4.8(a.1). The
laser impinges on the center of the input terminal at x = y = 0 creating two condensates that
travel in diagonal direction, one propagates downwards, towards the edge on the waveguide,
and the other upwards, to the coupling region. At 28 ps after the pulsed laser beam impinges
on the sample, the condensates have propagated through the terminal, exhibiting a larger
population traveling upwards. This behavior is inverted at 43 ps, in which the predominant
population appears traveling downhill. At such long times, the polariton population traveling
upwards has passed the bent part of the device and continues propagating through the device.
However, those traveling downwards are trapped between the edge of the waveguide and
the excitation spot. Thus, a persistent emission is observed at the bottom of the terminal.
This behavior is confirmed by the corresponding measurements in momentum-space in Fig.
4.8(a.2). Since condensates travel in diagonal directions with respect to the definition of the
x,y axes, one expects positive values of the momentum, kx > 0 and ky > 0, if the condensate
propagates in the positive direction of x and y, i.e., upwards. On the contrary, one expects
kx < 0 and ky < 0 for a condensate traveling downwards. This is what is observed both at 28
ps when the condensate travels with a positive value of the momentum and at 43 ps, when the
predominant population acquires a negative momentum, respectively. In the latter case, an
important contribution to the emission is also observed for positive values of the momentum.
As already mentioned, part of the polariton population is trapped between the edge of
the waveguide and the excitation beam, bouncing repeatedly between these two positions.
Therefore, one should expect the simultaneous observation of positive and negative k values.
It is worth emphasizing that the measurement of the emission in momentum-space gives
access to important information not accessible by real-space measurements. As explained in
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section 4.2.2, when polaritons propagate in the couplers, the movement is not only allowed
in the longitudinal direction of the guides, but there is also a transversal movement from side
to side following a meandering trajectory [see Fig. 4.4(a)]. As a consequence of this motion,
the momentum is not restricted to a certain value, but it acquires values in a wide range, both
for kx and ky.

Condensates pass through the bend and enter in the coupling region at 28 ps, as shown in
Fig. 4.8(b.1). As a guide for the eye, the shape of the coupler in the coupling region and
in the output terminals is drawn with white lines superimposed on the emission maps. The
lines differentiate the lower arm of the coupler, which is pumped with the laser beam, and
the upper arm, where part of the signal is coupled. At 43 ps, condensates are propagating
along the coupling region now both in the lower and the upper arm. The path in this part
is characterized by an alternating propagation in which local maxima and minima in both
arms are visible. These oscillations are the Josephson oscillations, which have already been
described in section 4.3.1. Additional information is found when the momentum-space is
analyzed, as shown in Fig. 4.8(b.2). A spot with coordinates (kx,ky) = (2,1.6) µm−1 at 28
ps reflects the condensate located at the bend of the waveguide while entering in the coupling
region. Since the terminal is oriented at 45º, one should expect kx = ky, nonetheless, a larger
component is found along x due to the change from a diagonal path to a horizontal one.
Interestingly, when at 43 ps condensates propagate throughout the coupling region there is
not only propagation along the coupler, our results show three movements. A priori, one
would think that the motion in this region would be completely horizontal along x. This
horizontal motion is actually corroborated by a spot with ky = 0 arising in the emission
with a pure horizontal component in kx = 2.4 µm−1. However, the additional two spots with
components (2,±1) reveal a simultaneous transfer from the lower to the upper arm and
vice versa. This transfer is produced continuously along the device each time an oscillation
appears.

Finally, we focus our attention on the output terminals. Depending on the details of the
structure, this peculiar propagation yields a predominant population at one of the output
terminals, either the lower or the upper one. In this specific case explained here, the population
is guided to the upper arm, as shown at 57 ps in Fig. 4.8(c.1). Note that only ∼ 4% of the
injected polariton population [see panel (a.1)] is found on the output terminal [see panel
(c.1)], revealing the large decay of the polariton population when they propagate along the
device. At 78 ps the signal has vanished almost completely. Since the trajectory of the
condensate is going upwards in the output terminal, only positive values of the momentum
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Figure 4.8. Time-resolved PL of polariton condensates traveling along the (a) input terminal (b) cou-
pling region and (c) output terminals. The index 1 and 2 indicate the real-space and the corresponding
momentum-space, respectively. The emissions are shown at 28 and 43 ps in the first two cases and
57 and 78 ps in the latter one. As a guide to the eye, the shape of the coupler is drawn in (b) with
white lines. The emission intensities are comparable in all three regions, however, the color-scales are
modified to visualize the decreasing polariton population along the device.
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are observed in Fig. 4.8(c.2) at 57 ps. As expected, no emission is observed at 78 ps in
k-space.

4.3.3 Splitted signal at the output terminals

The possibility of controlling the directionality of the signal towards the output terminals in a
coupler opens a new way to design more complex polaritonic circuits. Following this idea,
we investigate how the signal can be led to a certain terminal through the selection of specific
size parameters of the coupler. We consider four devices with w = 2 µm and dc = 0.2 µm, in
which the coupling length Lc varies from < 2 to 50 µm. Real-space maps of the emission of
different devices with varying coupling lengths are shown in Fig. 4.9(a), in which the results
obtained in the shorter/longer device are displayed from left to right. All are pumped on the
top-left terminal, creating condensates that travel throughout the coupler until they reach the
left (L) or right (R) output terminals. In the case of Lc < 2 µm, the condensates are not able
to couple to the other arm due to its short length, thus, the signal is mainly guided towards
the L output terminal. When Lc is increased up to 10 µm, part of the signal is coupled to
the neighboring arm, which results in the appearance of one Josephson oscillation on each
arm. Since the coupling length is shorter than the period of the oscillations, the system is not
able to transfer again polaritons to the pumped arm, thus, the signal is driven towards the
R terminal. In the case of Lc = 20 µm, the signal is driven mostly towards the L terminal:
due to the rise of a second oscillation in the pumped arm, the coupled polaritons are guided
back to the pumped waveguide. Finally, in the case of 50 µm a new ratio in the distribution
of the signal is found: the emission is comparable in both terminals, obtaining a population
splitting of ∼ 50%.

For a further analysis, we calculate the ratio of the signal that is guided into the L terminal
to the total intensity at the output terminals. To do this, the PL intensity is integrated in the
output terminals, allowing to calculate the fraction IL/(IL + IR), where IL (IR) is the intensity
of the signal in the left (right) output terminal. This quotient is plotted as a function of the
coupling length in Fig. 4.9(b): the experimental points are obtained from the analysis of the
emissions shown in Fig. 4.9(a). A dramatic change in the direction of the output signal can be
clearly observed in the first three cases in which the signal on the L terminal varies from 85%
to 15% with a change of the coupling length of just 10 µm. In the largest coupler, a more
balanced distribution is obtained between both terminals, 55%. The directionality of the
signal depends essentially on the Josephson oscillations, therefore, knowing their periodicity
we can estimate the ratio of the splitted signal for any coupling length by predicting a simple
oscillatory function. This harmonic function is represented as the blue line in Fig. 4.9(b).
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Figure 4.9. (a) Real-space maps of directional couplers with different coupling lengths; from left
to right: < 2,10,20 and 50 µm. L and R label the left and right output terminals, respectively. (b)
PL intensity integrated in the output left terminal (IL) divided by the total intensity in both terminals
(IL + IR) as a function of the coupling length. The horizontal dashed line marks the ratio 0.5 in which
the same signal is found in both terminals. As a guide to the eye, the blue line depicts a simple
oscillatory function.
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Furthermore, these results demonstrate the functionality of the couplers as light-matter
splitters, enabling a wide range of signal ratios just by changing one parameter.

4.4 Analysis of the linear polarization of the emission

The massive occupation of a single state and the exhibition of coherence, among others,
are well-known properties of BEC systems. As stated in the last sections, these properties
can be experimentally demonstrated by analyzing the PL from the microcavity since the
emitted photons are actually part of the polariton wave function. This wave function can
be described as a matter wave, so one should expect a well-defined polarization and phase
across the condensate. Since the polarization of the emitted light is directly related to the spin
of polaritons, the study and control of the polarization opens new possibilities of designing
spin-based devices. Whatever the polarization of the excitation, several works confirmed,
theoretically and experimentally, the buildup of a linear polarization in the PL spectra of
microcavities due to the formation of polariton BECs [119–121]. In this chapter, we have
already presented the formation, propagation and coherence of BECs, however, the analysis
of the polarization of the emission has not yet been considered. In this section we analyze
the linear polarization of the PL of a condensate propagating along a coupler device.

The experiment has been carried out in a coupler device located in a region of the sample
with δ ≈ −17 meV. It is formed by waveguides of w = 2 µm width and separated by the
minimum gap available, dc = 0.2 µm. In addition, the coupling length has been selected to be
Lc = 10 µm. To perform this investigation we pump non-resonantly only one terminal of the
coupler with a power density of 26 kW/cm2, well above the threshold for condensation. The
selection of these conditions allows a large part of the polaritons generated in the pumped
arm to couple to the neighboring arm, as shown in section 4.3. A single Josephson oscillation
appears in the coupling region of each arm so that a transfer of polaritons is created from the
pumped arm to the other one [as seen in Fig. 4.9(a)].

To study the linear polarization properties of the PL, the excitation beam is horizontally
polarized along y (θi = 90º), i.e., perpendicularly to the coupling region of the device. The
linear polarization of the PL of the coupler is analyzed with a linear polarizer whose axis is
varied from θd = 0º to 180º in steps of 10º. The PLs for several of these polarizations are
depicted in Fig. 4.10. In this case, the coupler is pumped on the top-left terminal and its
emission has been removed using a spatial filter to measure in detail the less intense emission
from the rest of the structure. The emission from the polariton condensates arriving to the
coupling part, after being generated in the terminal, is visible in the 50 < x < 60 µm range.
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Figure 4.10. PL spectra of a coupler analyzed at different linear polarizations: θd =0º, 30º, 50º, 90º,
110º, 130º, 160º and 180º. The emission from the top terminals (at x > 60 µm) has been removed
using a spatial filter. The horizontal polarization, θi =90º, of the excitation beam, is indicated in the
first image with a yellow arrow. The white rectangle indicates the bottom-right terminal in which
polarization-dependent oscillations are visible. The axis along this terminal is defined as x′. The PL is
coded in a logarithmic false-color scale. 94



4.4 Analysis of the linear polarization of the emission

Its intensity decays considerably when analyzing the linear polarizations between 30º an
50º, however, as the angle of the polarization of the detection is further rotated, the intensity
of the emission increases, reaching a maximum at ∼130º. When the polariton condensate
is created in the input terminal, it propagates ballistically along the structure. Despite the
fact that terminal is excited with θi = 90º, the condensates’ polarization is determined by
the longitudinal direction of the input terminal, i.e., the propagation along x′ [see Fig. 4.10].
Therefore, when the polarization is analyzed at an angle different to that corresponding to the
x′ one should expect a low intensity emission, as borne out by our experiments for the cases
θd = 30º and 50º. By contrast, a maximum in the intensity of the emission appears when the
angle for the analysis of the polarization is aligned with this direction, as in ∼130º.

After the condensate enters the coupling region, in which a polarization-dependent intensity
is also observed, part of the condensate is coupled to the right arm and continues propagating
through the structure. Interestingly, a new effect appears in the bottom-right terminal, in
which not only intensity changes are present, but also a set of oscillations arise along the
terminal. At 0º, two local maxima are clearly distinguished at (x,y) = (30,5) and (20,20)
µm. This is in stark contrast with the emission observed at 90º, in which local minima appear
at the same positions. In the intermediate polarizations, see for example 30º and 160º in
Fig. 4.10, the oscillations vanish and only a progressive decay of the emission is visible.
The same experiment has been performed for the incident polarizations θi = 0º and 135º.
However, no correlation has been found between the linear polarization orientation of the
excitation beam and the PL polarizations beyond the observation of a small optimization in
the injection of polaritons for θi = 135º. Therefore, it is clear that the geometry of the device
plays an important role in the polarization of the PL and other factors such as a polarization
inherited from the excitation, can be clearly discarded.

To fully understand the polarization effects, we focus on two main features: the dependence
of the coupling of polaritons from the left to the right arm of the device and the evolution of
the oscillations at the output terminal with the orientation of the detected polarization. To
perform this analysis, the PL has been integrated along the coupling region, 40 < x < 50
µm, in order to obtain the intensity distribution in both arms, which is depicted in Fig.
4.11 for four selected polarizations: θd =0º, 50º, 90º and 130º. Note that the y-direction is
defined identically as in Fig. 4.10, and y = 0 marks the gap between both arms of the device.
Thus, y < 0 coincides with the pumped terminal and y > 0 with the coupled one. The same
dependence with θd is observed in both arms. A maximum intensity is obtained when the
polarization is aligned with the longitudinal directions of either the coupling region or the
pumped terminal, i.e. 0º or 130º, respectively. As explained for the results compiled in Fig.
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Figure 4.11. Emission spectra in the coupling region of a coupler device analyzed at four linear
polarizations: θd =0º, 50º, 90º and 130º. The position y = 0 marks the center of the gap between
the two arms of the device. Independently of the analyzed polarization the 65% of the emission is
coupled to the right arm (y > 0).

4.10, the condensates’ polarization is determined by the longitudinal direction of the input
terminal (x′-direction). However, as polaritons continue their path and enter in the coupling
region, their direction of propagation is rotated to the vertical axis. We find a maximum in
the emission when the analyzed polarization corresponds to the vertical axis, i.e., θd =0º.
The case of θd =130º shows a similar intensity emission than that observed for 0º, since
polaritons enter in the coupling region with a polarization oriented in the x′-direction. By
contrast, a minimum intensity is observed for 50º and 90º, which correspond to polarizations
oriented in a different direction to that of the propagation of the condensates. The state of the
polarization does not affect the proportion of the signal that couples to the right arm (y > 0):
independently of the analyzed polarization, 35% of the population remains in the pumped
terminal whereas the 65% of the population is coupled. These results reveal a preserved
polarization of polaritons when they couple to the right waveguide.

We focus now on the analysis of the output terminals. We extract the profiles of the PL
along the x′ direction in the region marked with a white rectangle in Fig. 4.10. The resulting
profiles for each analyzed polarization between 0º and 180º are compiled in Fig. 4.12(a).
The zero position marks the beginning of the output terminal whereas the end of the structure
is located at x′ ∼ 45 µm, as clearly evidenced by the decrease in the PL intensity signal. Two
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Figure 4.12. (a) Emission spectra integrated along the output terminal of a coupler device for a
incident horizontal polarization. The analyzed polarization has been varied from θd = 0º (top) to 180º
(bottom) in steps of 10º. As a guide to the eye, five of these values are indicated: 0º, 50º, 90º, 130º and
180º. (b) Normalized intensity (to the emission at θd = 0º) of the oscillations observed in (a) centered
at three positions: 4, 16 and 28 µm. The intensity has been averaged in a range of 5 µm around these
values.

opposite oscillating behaviors are visible at different polarizations. For angles close to 0º
(and equivalently 180º), the most intense signals are seen at the beginning of the terminal
(x′ ∼ 4 µm). However, a remarkable decay of the intensity at this location is observed at
angles close to 90º while, at once, a new maximum arises at x′ ∼ 16 µm.

A full characterization of the oscillating behavior observed in the emission spectra of Fig.
4.12(a) is shown in Fig. 4.12(b), where the emission intensities at three different x′ are
depicted for each θd . The intensity has been averaged in an interval of 5 µm in width around
the center of three oscillations located at x′ ∼ 4,16 and 28 µm. A similar evolution is observed
for the first and third case, x′ ∼ 4 and 28 µm, revealing the same origin for both maxima of
the oscillation. In the latter case, the intensity is reduced by a factor of 10, thus, it is not
easily discernible in Fig. 4.12(a). In contrast to these cases, the intensity of the maximum
oscillation observed at x′ ∼ 16 is clearly out of phase by 90º. In all three cases, the emission
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intensity shows a progressive evolution with θd , in which minima and maxima are found for
the different analyzed polarizations.

This pattern in the output terminal can be explained by the presence of coherent counter-
propagating condensates and the interference between their corresponding WPs: one of the
condensates propagates towards the end of the terminal while the counter-propagating one
arises from the reflection at the edge of the waveguide. Since the coherence is maintained
during the propagation and at the reflection, it is possible to observe interferences between
both condensates [77]. Since BECs can be described as matter waves, we consider two waves
with opposite propagation directions along the terminal (±x′).

ψ1(x′) = ψ0
1 e−

x′
α e−i(kx′+ωt)

ψ2(x′) = ψ0
2 e−

x′
α e−i(−kx′+ωt)e−iφ

(4.1)

where ψ1 describes the condensate propagating along +x′ and ψ2 the one propagating
backwards −x′. The initial amplitude at x′ = 0 is indicated by ψ0

1,2. The exponential decay

of the polariton population with the traveled distance is considered in the term e−
x′
α where α

is an attenuation constant. The wavevector and the angular frequency are introduced as k and
ω , respectively. Additionally, a phase difference term φ is considered when the condensate
is reflected at the edge of the structure. The total intensity is obtained by the superposition of
both waves, which exhibits oscillations due to their interference and can be expressed as

|ψT (x′)|2 = |ψ1(x′)+ψ2(x′)|2 = 2ψ
0
1 ψ

0
2 e−

2x′
α

[
1+ cos(2kx′+φ)

]
(4.2)

This model is quantitatively evaluated in Fig. 4.13(a), where it is compared with the profiles
of the emissions analyzed at θd = 0º and 90º. The fits of both sets of data using Eq. 4.2
are depicted by the gray and light blue lines, respectively. A similar attenuation constant is
obtained in the fits, α= 10.6 µm−1. Furthermore, the wavevector of the condensates given by
k = 2π/λ , provides the same oscillating period for both interference patterns, λ = 24 µm.
The variation of a single parameter is responsible for the difference between both patterns:
the phase shift between the condensates. As indicated in Fig. 4.13(a), a value of φ = 0 is
obtained for θd = 0º while for θd = 90º the fit yields to φ = π . This result implies that the
analysis of the linear polarization selects a specific phase in the back-propagating condensate.
Moreover, the profiles of the emission obtained for angles between θd = 0º and θd = 90º can
be described as linear combination of these two states.
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4.4 Analysis of the linear polarization of the emission

Figure 4.13. (a) Comparison of the normalized emission spectra at the orthogonal polarizations 0º and
90º. The data are fitted using the interference model described in Eq. 4.2. A phase difference φ of 0
and π are obtained for 0º and 90º, respectively. The parameters α = 10.6 µm−1 and k = 0.262 µm−1

are common to both fits. (b) Spatial evolution of the polarization degree (P). This parameter has been
calculated using Eq. 4.3 and the traces shown in (a). The green lines are a guide to the eye showing
the gradual decay of the oscillating amplitude.

For the sake of completeness, the difference in the intensity of the oscillations in the emission
is also investigated. To quantitatively describe the striking change observed in the polarized
PL, we calculate the degree of polarization (P), which is given by,

P =
I∥− I⊥
I∥+ I⊥

(4.3)

where I∥ / I⊥ is the intensity of the emission when the polarization of excitation and detection
are parallel (θd = 90º) / perpendicular (θd = 0º). Using the emissions of Fig. 4.12(a) as
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input data in Eq. 4.3, the polarization degree as a function of the position x′ is depicted in
Fig. 4.13(b). Clear oscillations in the degree of polarization of the emission are observed
along the terminal. In the first 10 µm, the emission is dominated by the 0º PL, resulting
in a polarized state of −80%. As the second oscillation appears at x′ ∼ 16 µm, P rapidly
increases obtaining a degree of polarization of +75%. The sign inversion arises from the
presence of the polarization-dependent oscillations. Furthermore, the oscillating amplitude
of the degree of polarization gradually decays along the output terminal. Note that many
factors influence the behavior of P, such as the presence of a counter-propagating condensate
along the terminal. Determining the cause of this behavior requires a deeper analysis where
all the parameters that characterize the state of polarization are considered, i.e, a complete
analysis of the Stokes parameters.
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4.5 Conclusions

We have evidenced the functionalities of the optical couplers under non-resonant excitation.
The condensation in macroscopic states capable of traveling large distances, the coherence,
the appearance of Josephson oscillations in polaritonic devices and of a defined polarization
state have been successfully demonstrated in this chapter. We have investigated in detail
the implications of using bent waveguides for the development of optical circuits based on
polaritons. Our findings show the coexistence of multi- and single-mode propagation in
these devices. In addition, we have revealed a significant decay of the polaritons’ momentum
as a consequence of the abrupt variation in the condensates trajectory. Furthermore, our
results open the way to routing and splitting of the condensates towards different output
terminals by the proper choice of the parameters defining the routers. We also reveal that
counter-propagating condensates give rise to polarization-dependent interference patterns
observed in the PL at the output terminals.
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Chapter 5

Counter-directional polariton router

5.1 Introduction

In recent years, the interest in replacing conventional transistors with photon-based ones has
increased considerably [99–101, 108, 124]. The operation frequency and power consumption
of classical on-chip circuits is limited by the response of charged carriers to externally applied
electric fields. By contrast, optical transistors exhibit significant benefits such as higher
density of information in long connections and an important reduction of the energy required
in communication networks [125]. Thus, photonic on-chip technologies for information
processing, promise ultrafast operation speed and low power consumption thanks to a low
loss rate.

Using nonlinear effects to design these devices is critical for a wide variety of optoelectronic
applications such as signal processing for optical computing. In the literature, different
approaches to optical-based transistors have been proposed. Some of these systems use
laser gain [126], atoms [127] or quantum dots [128] to optically control light switching.
These proposals require photons to interact and modify each others behavior, however,
when two photons collide in vacuum, they do not interact, they simply pass through each
other, highlighting the need of an operating medium to mediate interactions. Despite being
excellent carriers of quantum information, when photons are created in a material medium,
they interact weakly with themselves or their environment, thus, hindering the possibility of
creating efficient photon-based logic devices [99].
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Strong interactions among photons can be induced using exciton-polaritons in semiconductor
microcavities [12], offering a versatile platform to realize nonlinear optical technologies.
Strong nonlinear properties are observed when polaritons condense, revealing their potential
application in integrated optical elements [102, 129]. This fact can be used to implement
high-speed photonic building blocks for information processing. Furthermore, the continuous
development of high quality microcavities has enabled polaritons to travel macroscopic
distances (> 100 µm) due to their effective ultralight mass, which is 4 orders of magnitude
smaller than that of excitons [12, 130].

Several works have proposed the use of polariton condensates systems to realize spin-
switches [116], transistors [76, 77, 106, 108], amplifiers [90, 131] and logic gates [110].
More advanced on-chip logic architectures based on the ultra-fast switching dynamics have
been proposed for polaritonic circuits [103, 117]. Basic routing effects have been predicted
and achieved for polaritons, which show some functionalities, but are mainly based on an
active optical control via a tunable auxiliary exciton reservoir [75, 105, 132].

In this chapter, we report on an on-chip device for counter-directional propagation of polariton
condensates that operates as a polaritonic resonant tunnel diode. We investigate the ultrafast
dynamics of this device, consisting of two lithographically defined waveguides coupled to
a microdisk, to implement polariton signal control by a photonic potential. Since it can
be easily scaled to larger logic architectures without the requirement for external control
parameters, we study the response when the size parameters are modified [107].

The chapter is organized as follows. In section 5.2, we present the operation of the polariton
counter-directional router device with a detailed explanation of the condensates’ propaga-
tion. In the following section, 5.3, we provide a theoretical model based on the stochastic
Gross–Pitaevskii partial differential equation. We consider gain and loss coefficients to
simulate a real Bose-Einstein condensate propagating though the device. Additionally, the
effect of the size parameters in the polariton propagation is analyzed in section 5.4. We study
in detail the emission of the device’s exit waveguide, which exhibits a peculiar propagation
when the size parameters are reduced. The conclusions of the experiment are outlined in
section 5.5.
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5.2 Polariton propagation in a counter-directional router

To date, we have witnessed a variety of demonstrator experiments for on-chip steering and
manipulation of the movement of coherent polariton condensates, including condensates
propagating along waveguides [54, 77, 89]. In our case, to implement a routing functionality,
a symmetric design of the device is proposed: two planar waveguides are attached to opposite
sides of a microdisk. By determining the photonic potential of these elements, the propagation
direction of a polariton flow can be reversed. In this section, we describe the propagation
along this device, acting as a counter-directional optical router: condensates are confined in
1D in the waveguides, while in the microdisk they are allowed to move in 2D.

The device has been sculpted in a GaAs-based microcavity. The investigation in this section
focuses on the functionalities of a router with size parameters corresponding to 4.5 µm for
the waveguide width and 40 µm for the disk diameter. Further details about the sample
can be found in section 2.2.3. We focus the excitation laser beam on the sample using a
microscope objective with NA= 0.42 and f = 10 mm. As a result, a diameter of 3 µm
(FWHM) is obtained. We pump non-resonantly the input waveguide at an energy tuned to the
first reflectivity minimum of the microcavity, 1.543 eV, and at a distance of 30 µm from the
microdisk center, so that condensates are accelerated in the waveguide before they enter the
central disk. In order to study the dynamics in the router, the excitation has been performed
using a laser beam with a pulse duration of 2 ps and a power density above threshold for
condensation, 18.4 kW/cm2. To reduce the sample heating produced by such high excitation
power, the laser beam is mechanically chopped with a ratio of 1:12 (bright:dark) and a
frequency of rotation of 8000 rpm. The experimental measurements have been carried out at
a fixed temperature of 12 K.

A real-space map of the polariton flow along the device is shown in Fig. 5.1(a). To improve
the visibility of the propagating mode, the image is resolved at the energy of the traveling
condensates, E = 1.5316 eV. The intensity of the top part of the image (y > 45 µm) is reduced
by a factor of 10 by means of a neutral density filter. The white circle indicates the position of
the excitation spot at x ∼ 45 µm in the input waveguide. A similar process to that described
in chapter 3 is observed when polariton condensates are created: due to the confinement
along the y-direction in the waveguide, as soon as the condensates are formed, they are driven
simultaneously towards the positive (right) and negative (left) x-direction. Two horizontal
trails can be observed along the input waveguide. They originate from the coexistence of two
propagating modes, with parallel paths, allowed by the width of the guide. When the flow
generated by the excitation beam reaches the junction with the microdisk, it experiences a
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Figure 5.1. (a) Real-space image of the condensate propagating through the microdisk device. A
neutral density filter (factor of 10) was present for the region y > 45 µm. The white circle indicates
the position of the excitation spot. The emission is filtered at an energy of 1.5316 eV. (b) PL profile at
the input waveguide integrated in the range 58 < y < 62 µm. The oscillations observed in the profile
show a period of 1.4 µm. (c) Decay curve of the emission measured at the excitation point of the input
waveguide. The orange line shows an exponential decay fit to the data from which a lifetime of 39±5
ps has been obtained.

deviation of its trajectory. The ingoing flow is transmitted to the microdisk since its energy is
resonant with an allowed energy state in the 2D structure. As a result, close to 70% of the
flow is guided by the photonic potential created by the disk structure. Polaritons rotate inside
the disk due to internal reflections and reach the junction with the output waveguide at y ≈ 20
µm. At this point, the flow is divided between those that continue the circular path within
the disk and those that are redirected to the output waveguide. In the latter, the condensates
propagate along the opposite direction to those injected at the input port, evidencing the
routing capability of the structure. Note that due to the symmetry of the device, no matter
which is the chosen injection port, polaritons will be guided to the output waveguide with
reversed propagation momentum. We obtain a coupling efficiency of the device of ∼ 11.5%,
defining it as the ratio between the emission just before the polaritons entrance into the
microdisk and that just after their exit from the disk.
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Figure 5.2. (a) PL profile of the modes 1 and 2 extracted at the position of the black and blue arrows,
respectively, in Fig. 5.1(a). (b) Energy vs. real space-resolved signal extracted at the position of the
mode 1. A clear tilt of the fringes is observed.

A clear interference pattern can be observed throughout the two waveguides. The profile of
the emission taken along the input guide is shown in Fig. 5.1(b), which has been integrated
in the interval [58, 62] µm along the y-direction. This pattern is caused by the interference
between the forward propagating polaritons and those propagating backwards [91, 133, 134],
after being reflected at the end of the guide at x ≈ 0. To study these fringes, a Fourier
analysis of the pattern has been performed, revealing a periodicity of 1.4± 0.1 µm and a
constant amplitude of the stationary pattern along x. The high contrast of the interferences
compared to the gradually attenuating background emission as one approaches to the end
of the guide suggests a large reflection coefficient. On the right side of the structure similar
fringes with lower amplitude are also observed. To produce the interference shown in
Fig. 5.1(b), polaritons need to traverse the length of the guide from the excitation spot
where they are generated (∼ 50 µm), and return to observe interference in the full range of
the structure.Time-resolved measurements reveal a condensate velocity of 6 µm/ps in the
structure. As a consequence, polaritons need to survive a minimum time of the order of 17 ps.
We can estimate the polariton lifetime from the temporal decay of the emission integrated in
the excitation area. Fig. 5.1(c) depicts the PL at the input waveguide as a function of time. At
∼ 30 ps after the laser pulse excites the device, a maximum in the emission is observed. The
signal rapidly decays, vanishing at ∼ 125 ps. Beyond this time, the intensity of the signal
is comparable to the background noise, evidencing the finite life of the condensates. An
exponential decay fit to the data, indicated by the orange line, provides a polariton lifetime of
39±5 ps. This value is comparable to those reported in the literature for etched waveguide
structures, where lifetimes of 17±1 ps have been found [75–77], with propagation lengths
of the order of 100 µm.
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Interestingly, at the output waveguide, a clear mode beating pattern is observed. This effect
is created by the disk resonantly feeding a superposition of two different modes in the
outcoupling region. In order to investigate these states in more detail, we select a cut through
mode 1, at y = 15 µm, and mode 2, at y = 13 µm, indicated by the black and blue arrows in
Fig. 5.1(a), respectively. Both profiles are plotted in Fig. 5.2(a). The analysis of the intensity
distribution reveals a similar long oscillation period for both modes, Tm = 18±1 µm, with a
π phase shift between them. Furthermore, a similar interference pattern, with a much shorter
period, as the one shown in Fig. 5.1(b) is superimposed to the emission of the modes. The
interference pattern is distorted in both modes above 30 µm. After crossing the entire device,
the condensate is close to the end of its life span and experiences a significant loss of the
coherent condensed population, which is responsible for the disappearance of the fringes.
This has been already seen in chapter 3 where a maximum of 10% of condensed population
has been observed. In the output guide, the condensate travels from x = 60 µm, where it
couples in the disk, to x ∼ 0 µm, where the edge is located, and bounces back, making a
total path of ∼ 120 µm in the output waveguide. Note that the total distance traveled by the
condensate is much larger, since it has traversed the entire device. The coherent population
is not able to survive the large distance traveled in the output waveguide, so the fringes begin
to fade when they exceed 90 µm of the path, that is, x > 30 µm.

The energy-resolved emission as a function of x in the outcoupling region is shown in Fig.
5.2(b) for mode 1. The emission displays a tilted pattern evidencing a change of the oscillation
period with the propagation energy. For an energy of 1.5316 eV, a period Tm = 17±1 µm is
obtained, which is in agreement to that obtained from Fig. 5.2(a). However, larger (smaller)
periods are observed at higher (lower) energies, obtaining for example Tm = 15±1 µm at
1.5305 eV. A total variation of 25% is measured in the full range of the propagation energies.
This behavior is a direct consequence of the change in the wavevectors of the competing
modes along their dispersion. A similar effect was reported in 1D waveguides by Antón et
al., where a series of oscillations in the Stokes parameters Sy and Sz were observed across
the PL energy revealing that polaritons with higher energies traveled at higher speeds [118].

We focus now on the propagation dynamics along the device. As we have mentioned, exciton-
polaritons exhibit interesting characteristics due to their light-matter nature; a core property is
their ultrafast dynamics while still possessing matter characteristics. To analyze the polariton
dynamics, we obtain the real-space maps at given time delays. Fig. 5.3 summarizes a series
of such measurements for a time window of 140 ps. Initially, polaritons are selectively
injected in the waveguide and approximately 20 ps after the arrival of the excitation pulse,
see Fig. 5.3(a), the condensates propagate along the waveguide. At t = 30 ps [panel (b)], the
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Figure 5.3. Time-resolved series of the polariton propagation along a microdisk device for an energy of
1.5314 eV. y = 0 indicates a change in gain of the streak camera, for negative values of y the emission
is multiplied by a factor of 3. The spatial emission distribution at t= 20− 30 ps shows polaritons
starting to propagate along the input waveguide. At 40 ps, the emission reveals that polaritons have
arrived at and crossed through the microdisk to the other adjacent waveguide. At 60 ps, the disk
shows a circulating mode pattern and oscillations become visible at the exit waveguide. At 80 ps,
the oscillations are apparent at the exit port. At 140 ps, most of the polaritons have decayed and the
dynamics has ended.
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polariton flow reaches the junction with the disk; while 30% of the flow continues traveling
along the guide, 70% of the signal couples to the microdisk. The splitting of the population
is in accordance to that observed in Fig. 5.1(a). A remarkable difference is observed in
the distance traveled by both populations: the coupled signal shows a shorter trail due to
a possible reduction of the condensates’ momentum during this process. After the flow
completes half a turn on the disk structure, it couples into the exit waveguide at t = 40 ps
[panel (c)]. As shown in panel (d), most part of the flow remains in the central structure,
completing an entire lap, while a small fraction of the population (< 10%) travels throughout
the exit guide. The direction of propagation of polariton condensates has been reversed by
the action of the microdisk, confirming the router functionality of the device. The modes
1 and 2 are apparent between 60 and 80 ps [see panel (e)]. The visibility of this oscillation
is lower than in Fig. 5.1(a) due to the time-resolved character of the image. Finally, at 140
ps, panel (d), the polariton dynamics inside the device has ceased due to polariton’s finite
lifetime of the order of 39 ps outside of the reservoir.

Note that up to 60 ps, a set of small fringes with a periodicity of 1.3±0.4 µm is clearly visible
in the input waveguide. These fringes arise even when polaritons have not reach the end of
the waveguide, as evidenced at 20 ps. Thus, at short times, the interference originates from
the backscattering produced by polaritons colliding near the coupling junction, at x ∼ 55 µm
in Fig. 5.3.

5.3 2D Ginzburg-Landau model

When a laser beam impinges on a semiconductor microcavity with a very low power density,
the polariton relaxation from the excitonic reservoir to the fundamental state in the LPB is
inefficient due to low cross-section of polariton-phonon scattering. Thus, polaritons are not
thermalized. By contrast, when the power is considerably increased, a massive occupation of
the fundamental state to which polaritons have relaxed takes place, creating a Bose-Einstein
condensate. Ideally, under these circumstances, polaritons should exhibit a well-defined
temperature and phase transition obeying a Bose-Einstein distribution [17]. However, in a
real system, the exciton-polariton scattering becomes dominant in the relaxation process from
the reservoir to the LPB [31]. A direct consequence of this scattering is the simultaneous
occupation of several states with different k-vectors. Therefore, polariton condensates are
defined as non-equilibrium systems. If the excitation power is increased well above the
condensation threshold, a balance is created between the losses in the condensates and the
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gain caused by the continuous feeding from the reservoir, establishing a direct analogy
between a BEC system and laser emission.

The k vectors at which polariton condensation occurs are determined by the photonic potential
of the microcavity. The design of this potential allows the formation of several discrete
polariton levels, in which condensation can be produced simultaneously at different levels.
This results in a multimode polariton emission. The theoretical model described in this
section ignores the different polariton levels and focuses on single mode propagation. Driven-
dissipative Bose-Einstein condensation in exciton-polariton systems can be modeled at a
mean-field level by introducing the effect of pumping and losses in the Gross-Pitaevskii model.
This results in the time-dependent complex Ginzburg-Landau (GL) equation, which is one of
the most-studied nonlinear equations in the field of physics. It typically describes phenomena
from nonlinear waves to second-order phase transitions, superconductivity, superfluidity and
BEC [135]. Indeed, it has been specifically employed to describe the momentum distribution
and propagation of non-equilibrium systems such as the one considered in this chapter. Thus,
the theoretical approach to this equation considering the gain and losses in the macroscopic
polariton field ψ is given by,

(i−η)}∂tψ =− }2

2m
∆ψ +U (x)ψ + iχψ +

(
αs −

i}
2

Γ

)
|ψ|2ψ (5.1)

The equation shows different linear and nonlinear (|ψ|2) terms contributing to the polariton
condensate’s propagation. On the left-hand side of the equation, a phenomenological energy
relaxation rate that models the inelastic phonon scattering characteristic of nonresonant
excitation is defined as η = 10−2γ . The first term on the right-hand side of the equation
determines the kinetic energy of the condensate. U(x) defines the potential landscape
originating in the photonic confinement of the etched structures. Note that due to the peculiar
shape of the device, this confinement is different in the waveguides (1D) and in the microdisk
(2D). αs is the polariton scattering strength. The complex coefficients in the equation have
important physical meanings in the dynamics of BEC systems; χ = }(P− γ)/2 is the net
gain and is represented by the balance between the nonresonant optical excitation (P) and
the polariton loss rate of a single condensate (γ). The modes with γ > P experience loss,
while the ones with P > γ are amplified. Another important nonlinear contribution is the
gain saturation magnitude, defined by the Γ parameter. If a system with physical stability is
considered, the parameters m,η ,α,Γ should be positive. The effect of the critical temperature
is also present in Eq. 5.1. Near TC the formation of the condensate becomes unstable and
vanishes, thus, the pump rate equals the losses of the system and the net gain results zero.
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Figure 5.4. (a) Simulated plot of the intensity distribution and pattern mode. The excitation point is
located at a similar position than in the experiment: 30 µm of distance from the center of the microdisk.
(b) Theoretical oscillation frequency (black) and period Tm (red) dependent on propagation energy.

Consequently, the interaction strength drops to zero, resulting in the disappearance of the
complex terms in the equation.

We, in collaboration with Dr. H. Flayac, from the École Polytechnique Fédérale de Lausanne
(EPFL), who made the actual calculations [107], use this model to simulate the propagation
of the polariton condensates along the device. The same conditions as in the experiment
are emulated: the upper waveguide is initially excited at a distance of ∼ 30 µm from the
microdisk above threshold for propagation. The result of this model is depicted in Fig. 5.4(a)
for a simulation of the whole device. The realistic values for the parameters used in the
simulations are: αs = 10−3 meV µm and loss rate γ = 5×10−2 ps−1. We define the energy
relaxation rate and the gain saturation magnitude proportional to γ , η = 10−2γ and Γ = 0.1γ .
In this case, the potential U(x) has been taken as the nominal layout of the etched structure
where the waveguide width is 4 µm and the disk width is 40 µm. The laser source used in the
experiment exhibits a gaussian intensity distribution, which we introduce in the simulation as
an excitation profile of

P(x) = 50γ e
−(x−x0)

2

dy2dx2 e
−(y−y0)

2

dy2 (5.2)

with dx = dy = 2.5 µm. The confinement in the waveguides is higher in the y-direction than
along the x-direction, where the condensates move without restriction. Therefore, when
polaritons are selectively injected at the top guide, two flows can be distinguished from the
excitation spot, one moving towards the left and one towards the right. The latter one is
guided into the microdisk and rotates inside due to internal reflections. When polaritons reach
the bottom part of the microdisk, the population is divided between those who are redirected
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to the bottom guide and those who continue the circular path within the structure. Note that
the presence of the microdisk reverses the propagation of the condensates, therefore, the flow
at the bottom waveguide is directed to the left.

The slight discrepancies between the simulation [Fig. 5.4(a)] and the experimental results
[Fig. 5.1(a)], stem from the dominance of the first excited state in the experiment and its
faster decay rate. However, we note that the simulated intensity distribution at the microdisk
and the bottom waveguide, which is the focus of this study, match well with the experimental
one.

The oscillations observed at the output guide are also studied in detailed. The theoretical
oscillation frequency (∆k) and its period as a function of the propagation energy are shown
Fig. 5.4(b). They have been extracted from a fit of the two polariton branches of modes 1
and 2. The plot evidences the tilt of the oscillation period at different energies, as expected
from the oscillations observed in Fig. 5.2(b). A period of Tm = 16.2 µm is theoretically
predicted at 1.5316 eV, which is in good qualitative agreement with the measurements of
modes 1 and 2 (Tm = 17±1 µm). We must emphasize that the observed effect is only visible
for a waveguide wide enough such that the energy of a second transverse mode inside the
waveguide overlaps with the energy resonant in the microdisk.

5.4 Engineering size parameters

The engineering of the structural size allows to additionally evidence the use of the counter-
directional router as a polaritonic resonant diode. To demonstrate this application, in this
section, we investigate the effect of higher confinement on the device through the variation of
certain parameters such as the microdisk diameter and the waveguide width. By decreasing
these parameters and using specific propagating modes, the router can be used as an energy
filter obtaining a monochromatic signal at the output guide. Polaritons are only guided
through the device if the energy levels at the waveguide are resonant with an allowed band of
the microdisk, therefore, this layout allows tunneling or blocking the signal at the junction
between both structures. For that reason, the disk diameter is chosen such that a high
degree of discretization is observed in the mode structure to achieve a fine selection of the
propagation energy.

As seen in this chapter, the analysis of the polariton dynamics in real-space provides an
insight of the propagation and the origin of the interference fringes along the device. However,
an analysis of the momentum-space obtains detailed information about the device operation.
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Figure 5.5. (a) Angle-resolved emission under low power excitation of microdisks with a diameter
of 10 µm and 40 µm. To summarize and compare the results, only negative (positive) k values are
shown for the 10 µm (40 µm) microdisk. (b) Energy-resolved emission in real-space of the condensate
exiting at the junction of the microdisk and the exit waveguide. Both spectra are normalized.

A typical comparison of the dispersion bands displaying the polariton modes for two different
microdisk structures is depicted in Fig. 5.5(a). The emission is obtained at very low power
density, below the threshold for condensation. Since it is well-known that the dispersion
band is symmetric in k, for a diameter of 10 µm (40 µm) only negative (positive) k values
are shown. In etched cavities, photons are confined vertically by the DBRs and laterally
by the index of refraction contrast between the air and the semiconductor. In the case of
the waveguides, the lateral confinement is performed only along one direction (y) while
keeping one degree of freedom along which polariton can move (x). In microdisks, the lateral
confinement occurs in both dimensions, acting as a 2D trap. Therefore, the number of modes
is restricted by the confinement in the microdisk. As expected, a stronger discretization of
the photonic modes is clearly visible for the smaller diameter case (10 µm) in Fig. 5.5(a). For
larger diameters, i.e. lower confinement, the frontier between isolated states and a continuum
in the dispersion is not evident.

For the sake of comparison, we study the real-space emission when the power density is
increased moderately above the threshold, so polariton condensates propagate along the
device. We measure the energy-resolved PL, analyzed at the exit port inside the microdisk.
The normalized PL intensity as a function of the energy is depicted in Fig. 5.5(b) for both
diameters (10 and 40 µm). An evident change in the shape of the PL is observed for the two
diameters: while for 40 µm the spectrum displays a nearly continuous band, a discretized
emission is apparent for the smaller disk. Thus, significant differences in the polariton
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propagation can be found when the microdisk diameter is reduced. The 40 µm disk does not
exhibit a predominant energy, it reveals a broad energy spectrum. This spectrum is generated
by several modes close in energy, eventually overlapping, coalescing into a broad energy
mode. By contrast, in the 10 µm spectrum, two prominent peaks can be distinguished at
1.5307 eV and 1.5315 eV with intensities of 0.8 and 1, respectively. Between these maxima,
the transmission rapidly decays by ∼ 75%, evidencing the presence of isolated energy levels
as a result of the high confinement in the microdisk. An overall energy shift between both
emissions is observed due to a slightly different detuning between the devices.

Now, we analyze in detail the discretized emission observed in the smallest microdisk. In this
case, a counter-directional router with 10 µm diameter is coupled to 2 µm wide waveguides.
In order to compare the isolated modes observed in the emission, we filter two different
energies with high and low transmissions, from the disk to the exit waveguide, at 1.5307 eV
and 1.5310 eV, respectively. The real-space maps under these conditions are summarized
in Fig. 5.6(a), in which the top and bottom panels correspond to each energy, respectively.
In both cases, interference fringes similar to those observed in Fig. 5.1(a), appear along the
input waveguide. In the first case, when 1.5307 eV is selected (top panel), a propagating
mode is observed through the microdisk, which couples to the exit waveguide. However,
when 1.5310 eV is selected (bottom panel), no propagating modes are found, resulting in
a lack of signal at the exit waveguide. Note that, even though in the two cases polaritons
condense and propagate when a high excitation power is applied, the device does not exhibit
the same behavior: when the condensate reaches the junction with the disk (x ≈ 43 µm),
no splitting of the population is observed between the input guide and the disk for 1.5310
eV. As a consequence, the entire generated population travels to the end of the input guide,
showing higher intensity in the emission at this point: a remarkable difference in the emission
intensity of this guide is observed between both energies at x ∼ 50 µm. Hence, this device
demonstrates the possibility to control the polariton propagation by selecting the appropriate
energy, so there can be either propagation (top) or blockade (bottom).

We have proved that the propagation can only be observed in specific modes, while others
are blocked due to the mode structure imposed by the photonic potential of the microdisk.
To further illustrate this point, we collect the real-space PL at the exit guide in Fig. 5.6(b).
The dashed black arrows indicate the energies shown in Fig. 5.6(a). A maximum in the
emission is observed at the position of the disk junction. Propagation appears at two particular
energies corresponding to maximum transmission peaks. For 1.5307 eV emission arising
from polaritons coupled to the exit waveguide is observed. Moreover, another mode can be
identified at 1.5316 eV, which corresponds to the case shown in Fig. 5.1(a). However, in the
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Figure 5.6. Real-space emission of the device with a 10 µm microdisk. (a) Top: Real-space map filtered
at 1.5307 eV depicting the propagation of one mode through the disk into the bottom waveguide. The
device layout is indicated by the green dashed lines. Bottom: Condensate propagation out of resonance
with the microdisk mode, 1.5310 eV. In this case, no counter-directional coupling is observed. (b)
Energy-resolved emission along the exit waveguide. The dashed black arrows mark the energies
shown in (a).

case of 1.5310 eV, no signal is present along the exit guide, which evidences the potential of
the device as an energy filter. This structure therefore enables mode selection in combination
with flow direction manipulation for a polariton condensate, all without any external control
parameter.
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5.5 Conclusions

In this chapter we have demonstrated the possibility of creating an ultra-fast polariton counter-
directional router. The device, based on an arrangement of 1D and 2D photonic confinements,
allows polariton condensates to be coupled and guided through the circuit, reversing the
propagation direction. This has been evidenced by a series of PL measurements involving
energy- and time-resolved techniques, laying out the device capabilities. Additionally, a
theoretical model that considers a driven-dissipative BEC system has been proposed to
support our findings. It emulates successfully the propagation along the device and the
presence of the oscillations arising at the exit waveguide. Furthermore, the design of the
waveguide width and the microdisk diameter along with specific propagation modes allows
the selection of discrete energies. As a result, for small size parameters, the router device
operates as a polaritonic resonant tunnel diode, obtaining a monochromatic output signal.

As we have seen in this chapter, the configuration of these type of devices is easily scalable
and integrable into polariton based logic networks. The study of these quantum fluids of light
paves the way for harnessing their non-linearity in next generation photonics, for example, in
the implementation of topologically non-trivial polariton networks based on coupled disks
and waveguides [136].
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Chapter 6

Landau levels in strained honeycomb
lattices of photonic resonators

6.1 Introduction

In 2004, A. Geim and K. Novoselov reported for the first time the isolation of a single
layer of graphene consisting of carbon atoms arranged in a 2D hexagonal lattice [137]. This
exceptional feat along with their groundbreaking experiments led them to win the Nobel
prize in physics in 2010. A great interest in this material rapidly arose and the observation
of exceptional properties such as a high electron mobility, zero gap energy or a width
thinner than a traditional 2D electron gas made graphene a rising star in material science.
Consequently, a plethora of studies focused on the electronic and transport properties can
be found in the literature (here some reviews are mentioned [79, 138–140]). While the
electronic bands in semiconductors tend to show a quadratic dispersion, graphene exhibits a
linear dispersion in the conduction and valence bands touching at the so-called Dirac points.
This remarkable feature implies that electrons behave as relativistic particles with zero rest
mass in the vicinity of the Dirac points. A similar singularity can arise in many other 2D
materials, however, they are typically anisotropic and require a careful tuning of the lattice
parameters to obtain symmetric and defect-free conditions. These conditions are easier to
find in materials with triangular symmetry like honeycomb lattices. Hence, the search for
graphene emulators in systems with a larger degree of control of the lattice geometry has
attracted a lot of attention.
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Polariton honeycomb lattices formed by semiconductor micropillars offer an interesting
platform to emulate the transport and topological properties of graphene. They allow to
control of the onsite energies, the nearest-neighbours coupling and grant direct access to
the dispersion and wave functions by simple PL experiments due to the photonic nature of
polaritons [141, 142]. Moreover, these systems offer the possibility of designing the lattice
parameters and studying the Dirac physics in momentum-space in regimes that can not be
easily reached in natural graphene. For instance, an aspect of particular interest in graphene
consists of an observable integer quantum Hall effect (QHE) even at room temperature
[79, 138, 143]. A proposal by Guinea et al. suggests that a specific distribution of strain
results in a strong artificial magnetic field (B⃗) leading to the QHE [144, 145]. Different
studies have attempted to reproduce this effect, however, the inability to achieve the highly
anisotropic B⃗ distribution required to do so has hindered the observation of significant
changes in graphene’s bands [146, 147].

In an individual micropillar, polaritons are confined in the three directions in space, resulting
in a discrete spectrum. However, when extending the micropillars to periodic structures,
polaritons are able to tunnel from one micropillar to the other, which allows to engineer
the polariton energy bands. The first two-dimensional polariton structure fabricated in fully
etched microcavities was the honeycomb lattice [148], which shares the same geometry as
graphene and therefore, the same dispersion. Thus, these quantum emulators of graphene
brings the Dirac physics to photonic systems. Even though photons are barely sensitive to
a real B⃗, it has been shown that the strain engineering creates an artificial valley dependent
field [149]. We explore the implementation of a gauge field in polariton honeycomb lattices
since the modulation of the hopping amplitude between two sites of the lattice permits the
creation of uni-directional strain.

In this chapter, we investigate the emergence of discrete Landau levels in the band structure
of a honeycomb lattice under the effect of a gauge field. We first comment the basis of
the quantum Hall effect in section 6.2. Following the proposal of Guinea et al. on how to
implement a gauge field engineering the lattice parameters [144], we describe a theoretical
prediction of the experiments in section 6.3. The experimental observation of Landau
levels in a polariton honeycomb lattice by modulating the hopping amplitude, together with a
comparison between different strains, constitutes the main topic of the chapter and is adressed
in section 6.4. Finally, in section 6.5, we summarize the main conclusions of the experiment.

120



6.2 Quantum Hall effect in a 2D gas

6.2 Quantum Hall effect in a 2D gas

The quantum Hall effect is one of the most outstanding condensed-matter effects discovered
in the 20th century. When 2D systems are subjected to strong magnetic fields and low
temperatures, the Hall conductivity (σH) ceases to depend linearly on the magnetic field. At
high magnetic fields, a quantization of the Hall conductivity emerges which is given only by
fundamental physical constants,

σH = n
e2

h
(6.1)

The filling factor n takes an integer (1,2,3...) or a fractional (1
2 ,

1
3 ,

2
3 ...) value corresponding to

the integer and fractional quantum Hall effect, respectively. In 1980, Klitzing et al. reported
the first experimental demonstration of the QHE in an electron gas at the interfaces of a
silicon-based MOSFET (metal-oxide-semiconductor field-effect transistor). They proved
that the Hall conductivity was indeed exactly quantized, evidencing the integer QHE [150].
The recording of the measurements in the MOSFET device at a fixed magnetic field of 18 T
and a temperature of 1.5 K is shown in Fig. 6.1 as a function of the gate voltage Vg. Note that
the electron density is proportional to Vg. The inset illustrates a scheme of the device with
several contacts, however, the sake of simplicity, we focus only on the Hall and potential
probes. The voltage UPP, measured between the potential probes, is directly proportional to
the longitudinal resistivity of the device and shows an oscillating tendency with its amplitude
gradually decaying with increasing Vg. At different electron densities, a counter-intuitive
vanishing of the resistivity is observed. This decay isolates different working regions of the
MOSFET device, defined by n in Fig. 6.1. Additional local minima due to the spin and
valley degeneracy are clearly seen. At the same points where the resistivity drops to zero, the
Hall voltage UH , proportional to the Hall resistance RH = 1/σH , exhibits different plateau
regions, where it remains constant with Vg. The value of RH in the plateaus is given by h/e2

divided by an integer n. Another peculiarity of this effect is that the height of the plateaus
depend on the quanta of conductance e2/h. The QHE represents a highly accurate method
for determining this constant of vital importance in quantum electrodynamics. Therefore,
Klitzing et al. observed a quantized Hall conductivity, corresponding to Eq. 6.1. Furthermore,
the magnetic field produces quantized energy levels known as Landau levels. The number
of states, NL, within each Landau level is given by NL = eB/h. In the case of a 3D gas, the
electron energy form k-dependent bands. However, in a 2D gas, the allowed energy states
become discrete flat bands with equal energy gap between the different Landau levels. This
particular case is shown in detail below.

121



Landau levels in strained honeycomb lattices of photonic resonators

Figure 6.1. Hall voltage (UH) and the voltage drop between the potential probes (UPP) as a function
of the gate voltage (Vg) in a MOSFET device (shown in the inset). The device is under a constant
magnetic field of 18 T at T = 1.5K. Taken from [150].

In order to understand the properties of this quantized levels we describe how free electrons
move under the influence of B⃗. We assume, as a first approximation, a 2D particle gas
confined in the x-y plane, where the electronic movement is restricted. We consider a constant
magnetic field applied in the z-direction. The vector potential arising as a consequence of
B⃗z has, therefore, only components in the x-y plane, i.e., A⃗ = ∇× B⃗z. The Hamiltonian that
describes this system is simply given by the momentum of the particle (p) and the vector
potential (A⃗).

Ĥ =
1

2m
(p̂+ eÂ)2 (6.2)

where m is the free electron mass and, p̂ and Â, are quantum operators corresponding to
the momentum and vector potential, respectively. To solve this Hamiltonian and obtain the
eigenvalues of the system we rewrite Eq. 6.2. We redefine first the quantum operators as
π = p̂+ eÂ. Since particles move freely along x and y direction, we can distinguish between
πx and πy. These new variables follow the commutation relation [πx,πy] = −i}eBz. We
introduce now the ladder operators as a function of π . These operators are analogous to the
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ones corresponding to the quantum harmonic oscillator.

a† =
1√

2}eBz
(πx − iπy) a =

1√
2}eBz

(πx + iπy) (6.3)

Recalculating the commutation relation for these operators yields to
[
a,a†]= 1. This result

is precisely the same as the one obtained for the 1D harmonic oscillator, therefore, it is
expected to obtain a Hamiltonian with the same form.

Ĥ =
1

2m
ππ

† = }ω

(
aa† +

1
2

)
(6.4)

where ω = eBz/m is the cyclotron frequency. We introduce now the ground state |0⟩ which
obeys the rule a |0⟩= 0. The rest of the levels are calculated following the ladder operators
of the quantum harmonic oscillator: the creation operator a† increases a quantum state by
one and the annihilation operator a lowers it by one. They are defined as follows,

a† |n⟩=
√

n+1 |n+1⟩ a |n⟩=
√

n |n−1⟩ (6.5)

As a result, the eigenvalues of this system can be easily determined by H |n⟩= En |n⟩. Thus,
an arbitrary state n has an energy equal to

En = }ω

(
n+

1
2

)
(6.6)

In the presence of Bz, the particles show only discrete energy values proportional to n.
These quantized levels are the so-called Landau levels. The energy difference between two
arbitrary levels is linearly dependent on the intensity of Bz due to the dependence on the
cyclotron frequency. Note that all levels, even if we consider an infinite number of them,
are always equally spaced. Moreover, the ground state of this system, n = 0, obtains an
energy corresponding to }ω/2 and not zero, as a consequence of quantum mechanics. Even
at absolute zero temperature, the particle is not completely at rest. This effect is responsible
for preventing liquid helium (4He) from freezing at atmospheric pressure. In Fig. 6.1, several
Landau levels are clearly identified.

After the first successful discovery of the integer QHE in Si, a great interest aroused in
other low-dimensional materials such as a 2D semiconductor heterostructure like the GaAs-
AlGaAs heterojunction [151]. Hence, it is not surprising that when a single lattice of
graphene was isolated, its transport and magneto properties were quickly measured [140].
The unusual nature of the charge carriers behaving like massless particles make graphene a
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Figure 6.2. (a) Regular honeycomb lattice composed by two triangular sublattices: A (blue points) and
B (yellow points). t1,2,3 define the nearest neighbor hoppings and R1,2,3 their corresponding positions.
The position of the unit cells formed by the two lattice points (A and B) is labeled with an index i
that varies its value by 1 from cell to cell. (b) Reciprocal-space lattice of the Bravais lattice shown
in (a). The upper panel shows a sketch of the Brillouin zone. The vertices, marked by K and K′, are
known as Dirac points. The lower panel illustrates the electronic dispersion in the honeycomb lattice.
A zoom of the energy bands around one of the Dirac points is displayed in which a linear dispersion
is observed (Taken from [79]).

perfect candidate to observe the QHE even at room temperature [143]. The consequences
of this linearity in the dispersion relation are numerous, however, we will concentrate in
the particular behavior of electrons in the presence of a magnetic field. While in a 2D gas
subjected to a magnetic field the same spectrum is observed as the one of the harmonic
oscillator (linear dependence on n), in the case of zero mass particles, Landau levels depend
on |n|1/2, as we will discuss below.

Graphene is a single 2D layer of carbon atoms arranged in a hexagonal or honeycomb
lattice. The hybridization between the orbitals S and P (sp2), leads to the formation of strong
chemical bonds and defines the 120º angle between the atoms. Fig. 6.2(a) illustrates the
hexagonal lattice composed by two interpenetrating triangular sublattices, A and B, displayed
in blue and yellow, respectively. The lattice shows two of the most common terminations in
graphene, the so-called zig-zag (left and right edges) and armchair (top and bottom). Only the
former one exhibits localized states characterized by a flat dispersion linking the Dirac points
(K and K’) [152–154]. Taking into account that two adjacent points of each sublattice have a
separation of a = 1.42 Å[79], we can define the position vectors of the nearest neighbors as
R⃗1 = (−a,0), R⃗2 =

(
a/2,−

√
3a/2

)
and R⃗3 =

(
a/2,

√
3a/2

)
. The strength of the coupling

between two atoms is given by the hopping coefficient ti. In the case of a regular lattice of
graphene the condition t1 = t2 = t3 is fulfilled.
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A sketch of the reciprocal-space lattice of graphene is shown in Fig. 6.2(b). The lower
panel shows its band structure composed by the top and bottom parts of the S-band. The
points where both parts touch are the so-called Dirac points (K and K′). At the energy
of the Dirac points (E = 0), the momentum-space map exhibits a hexagonal Brillouin
zone (see upper panel) that limits with these Dirac points, K and K′. They are located at
K =

(
±2π/3a,2π/3

√
3a
)
,
(
0,−4π/3

√
3a
)

and K′ =
(
±2π/3a,−2π/3

√
3a
)
,
(
0,4π/3

√
3a
)
.

Around these points special properties, such as a linear dispersion, are observed.

When a magnetic field is applied perpendicularly to the graphene lattice, electrons move in
cyclotron trajectories and Landau levels are filled. The presence of B⃗ changes the mirror
symmetry so that K and K′ points become distinguishable [155]. Therefore, two kinds of
electrons with opposite charge sign are observed: the sign is introduced in the equations by
the valley index ε =±1. Since graphene is composed by two sublattices, we write the 2D
Hamiltonian in the A and B basis in momentum-space at each Dirac valley, taking the simple
form of an anti-diagonal matrix [79].

Ĥ =

(
0 U ′

ε

U ′
ε 0

)
=Uε (6.7)

where Uε is an operator defined as

Uε = vF

(
0 επx − iπy

επx + iπy 0

)
(6.8)

Since charge carriers in graphene behave like relativistic particles, they travel with an effective
speed of light given by the Fermi velocity (vF ). Following a similar procedure as in the
classical QHE, Uε can be redefined considering the ladder operators described in Eq. 6.3.
Different operators are obtained for each Dirac valley.

U+ = }ω

(
0 a†

a 0

)
U− = }ω

(
0 a
a† 0

)
(6.9)

where ω = vF
√

2eBz/}. To find the eigenvalues of this system and the corresponding wave
functions ψA,B of the different Landau states in the A and B basis, we solve the Hamiltonian
around one Dirac valley.

Ĥ
(

ψA

ψB

)
= }ω

(
0 a
a† 0

)(
ψA

ψB

)
= En

(
ψA

ψB

)
(6.10)
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Redefining the equations, we can obtain the wave functions separately for each sublattice as

(}ω)2 aa†ψA = En
2ψA

(}ω)2 a†aψB = En
2ψB

(6.11)

The solution obtained for graphene is similar to that of a conventional 2D gas; both depend
directly on the ladder operators, however, in this case the dependency is not linear. This
significant change yields to a description of Landau levels around Dirac points given by
[156],

En =±}ω
√

n =±vF
√

2e}Bz |n| (6.12)

where the integer obeys n ≥ 0. The energy of the dispersion bands reveals an important
difference with the conventional case, the ground Landau level (n = 0) possesses zero-
energy. Moreover, the distribution of the Landau levels changes drastically with a square-root
dependence: while in a 2D gas they are equally separated, in graphene, the distance between
two consecutive levels decreases with n. This is a direct consequence of the existence of
Dirac cones and has been experimentally observed by different measurements with magnetic
fields [157–159].

On the other hand, knowing that a†a |n⟩= n |n⟩, it is immediate to find that the wave function
ψB is defined as the 1D harmonic oscillator function with frequency ω and is directly related
to |n⟩. Thus, there is a contribution of the sublattice B to the ground Landau state |0⟩. The
equation for the eigenstate ψA can be resolved using the solution for ψB and the ladder
operators in Eq. 6.10.

ψA =
}ω

En
a |n⟩= }ω

±}ω
√

n
√

n |n−1⟩=±|n−1⟩ (6.13)

For the ground state, a single state equal to |−1⟩= 0 is found, thus, the sublattice A does
not contribute to the emission, therefore, the fundamental Landau level is localized only in
sublattice B. This fact is a key ingredient to experimentally identify this level.

6.3 Synthetic gauge field in a photonic honeycomb lattice

The optical properties of a single layer of graphene are limited primarily due to its negligible
bandgap, which results in an absence of PL. However, its electronic properties can be
controlled by applying a gate voltage. It has been shown that these properties can be modified
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by elastic deformations as they can induce a gauge field [160]. Recent studies suggest that
the engineering of strain, for instance, by applying a mechanical force, would result in the
Landau quantization opening a bandgap between the levels [79]. Guinea et al. analyze
explicitly this possibility, in which a particular uniaxial strain geometry could lead to a
uniform pseudo-magnetic field [144].

Real graphene presents a particular high flexibility that allows the direct manipulation of
the lattice; thus typical geometries such as nanotubes, nanoribbons or other deformations in
2D can be obtained. A general deformation can be induced, for example, by mechanically
applying an external force so the atoms of the lattice are moved closer or farther away to each
other. Nevertheless, graphene is not immune to disorder; defects are commonly found in
different forms such as vacancies, cracks that act like localized edge states, or charges on top
of the layer or the substrate where the graphene has been grown. The effect of the disorder
can modify the graphene’s band structure since it can locally change the on-site energy
and the distance and the angle between the orbitals. As a consequence of the deformation
introduced in the lattice, an artificial magnetic field (B⃗) is induced, which shows a highly
anisotropic distribution that hinders the observation of Landau levels in the dispersion relation
[146, 147, 161]. Therefore, to avoid the anisotropy of B⃗ and a significant back scattering
due to the presence of defects, a system with a substantial degree of control in the lattice
geometry needs to be considered.

Taking advantage of the light-matter nature of polaritons, honeycomb lattices made of coupled
micropillars provide a new platform to explore the localization of photons with engineered
dispersions [141]. Their topological properties make them particularly robust to deformations
of the lattice[162, 163]. They exhibit Dirac cones that appear in pairs, as in real graphene.
In the presence of time-reversal and inversion symmetries, they can only be annihilated by
merging with Dirac cones of opposite charge. Furthermore, different designs of honeycomb
terminations can be accurately obtained, e.g., the zig-zag, the armchair or even the bearded
edge, which is not stable in real graphene. Thanks to the photonic content of polaritons, it is
possible to induce a pseudo-magnetic field at optical frequencies, observing the characteristic
Dirac dispersion through its PL. In order to understand how this magnetic field arises, first
we take a theoretical overview.

We consider an arbitrary strained honeycomb lattice in which different hoppings, ti, are
considered in the direction of each nearest neighbor, i = 1,2,3. We start describing the
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Hamiltonian in momentum-space, which takes the form of an anti-diagonal matrix [149]:

Ĥ =

 0 U∗
(⃗

k
)

U
(⃗

k
)

0

 (6.14)

where the anti-diagonal components are defined by

U (⃗k) =
3

∑
1

tiei⃗ kR⃗i (6.15)

We continue expanding the potential around the nonequivalent Dirac points. Further details
about the mathematical procedure can be found in ref. [149].

U (⃗k)≈−iv x
D (}kx + eAx)+v y

D (}ky + eAy) (6.16)

As a consequence, the Hamiltonian now depends on both, the Dirac velocity
(
v x,y

D
)

and the
magnetic vector potential (Ax,y). These terms are strongly dependent to the hopping strength,
so that the former ones are written as:

v x
D =

a
4}
[
(4t1 + t2 + t3)+ iε

√
3(t2 − t3)

]
v y

D =
a

4}
[
3(t2 + t3)− iε

√
3(t2 − t3)

] (6.17)

The parameter ε =±1 indicates the valley index for the two Dirac points. Note that when a
strain is applied to the lattice, the velocities show an anisotropic distribution. The existence
of the vector potential (A⃗) is also linked to the presence of strain and it is written as follows:

eAx =

√
3

2
ε

v x
D
(t2 − t3)

eAy =
1
2

ε

v y
D
(2t1 − t2 − t3)

(6.18)

Regardless of the value of v x,y
D , a lattice with equal hoppings yields a zero magnetic vector

potential. Therefore, no B⃗ is observed in perfect honeycomb lattices. When the condition
t1 = t2 = t3 is broken, A⃗ arises, and as a result, the band dispersions are modified. The energy
of the Dirac cones can be shifted allowing to merge or to separate the different bands of the
dispersion by changing the lattice anisotropy [164].

The spatial distribution of the strain is a key ingredient to determine the direction and
amplitude of the artificial magnetic field (B⃗). As the vector potential emerges in the in-plane
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6.3 Synthetic gauge field in a photonic honeycomb lattice

lattice, the resulting magnetic field, given by the curl of A⃗, will appear in the z-direction.

Bz = ∂xAy −∂yAx (6.19)

This strain-induced artificial field does not break time reversal symmetry, therefore, both
fields, A⃗ and B⃗, exhibit opposite signs in the two Dirac valleys K and K’. This variation
constitutes the main difference with a real magnetic field, which always points in the same
direction along the lattice.

In the experiment described in section 6.4 (below), we consider a finite size lattice along the
x axis and an infinite y dimension. We focus on the case of a honeycomb lattice with uniaxial
strain along the x-direction: we assume equal hopping coefficients along i = 2 and i = 3, so
that t = t2 = t3, and a non-uniform deformation t1. The hopping that describes the form of
the strain along x is defined as

t1 (xi) = t
(

1+
xi

3a
τ

)
(6.20)

where the minimum (maximum) value of the hopping is located at the left (right) side of the
sample. The index i denotes the position of the unit cells formed by the two lattice points (A
and B). As shown in Fig. 6.2(a), the left column of hexagons in the lattice is assigned the
index i−1, which is translated into a position xi−1 =−1. The adjacent column of hexagons
on the right correspond to a position of xi = 0, etc. At xi = 0, the condition t1 (0) = t is
fulfilled.

As explained above, this particular uniaxial strain yields different values of the Dirac velocity
in x and y directions. Introducing Eq. 6.20 in Eq. 6.17, two velocities are obtained

v x
D =

a
2}

(
3t +2

xi t
3a

τ

)
v y

D =
a

2}
(3t)

(6.21)

At the position xi = 0 the anisotropy disappears. However, the further from the center,
the greater the difference between both components of the velocity. Inserting the hopping
amplitude along x in Eq. 6.18 one gets

eAx = 0

eAy =
ε

v y
D

( xt
3a

τ

) (6.22)
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Under this spatial distribution of the strain Ax = 0, therefore B⃗ depends only on the Ay

component. The presence of the parameter ε in Eq. 6.22 indicates the coexistence of fields
of opposite sign in the same lattice. The artificial field B⃗ is then defined inserting Eq. 6.21
and 6.22 into Eq. 6.19.

B′
z =

2}
9ea2 ετ (6.23)

The intensity of the field is linked to the hopping gradient (τ) and to the lattice spacing (a).
Considering the separation between two carbon atoms in graphene, a, and the rest of physical
constants in Eq. 6.23, an equivalent Bz ∼ 2×103τ T is obtained.

To obtain analytically the Landau levels, Eqs. 6.21 and 6.22 are introduced in the potential
defined in Eq. 6.16. The exact diagonalization of the Hamiltonian detailed in Eq. 6.14 under
uniaxial strain provides the value of the energy as a function of n.

En =±t
√

τ |n| (6.24)

An infinite number of Landau levels −∞ < n <+∞ with energies following a square-root
law of n are found. Note that the same dependence with n is found either by applying a real
B to graphene (Eq. 6.12) or by modulating the hopping amplitude along a single direction of
the honeycomb lattice.

To better understand the implications of Eq. 6.24, the dispersion of a honeycomb lattice
with 601 unit cells and a small strain (τ = 0.005) is numerically obtained in Fig. 6.3. The
energy is represented in units of the bare hopping t and, as the system is periodic along the y
direction, the dispersion relation is displayed as a function of kya. A sketch of the lattice is
shown in Fig. 6.3 in which sublattices A (blue) and B (yellow) are indicated. The appearance
of discrete bands around K and K′ as a consequence of the strain is clearly observed. Above
these bands, several red lines are depicted using the analytical prediction for the Landau
levels given by [149],

En =±t
√

τ |n|(1− εkya) (6.25)

where a small correction considering the spatial dependence of v x
D has been taken into

account. The fact that the expression of the energy includes the correction term, yields to
a small energy-shift of each level around the Dirac points. It is important to notice that
these levels are no longer flat bands, contrary to what happens when a real magnetic field is
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6.4 Observation of photonic Landau levels

Figure 6.3. Numerically calculated band structure of a honeycomb lattice with 601 unit cells and a
small strain, τ = 0.005. The inset shows the lattice with bearded edges considered in the calculations.
Landau levels are marked with red lines around Dirac points K and K′ for kya ≃±1.21,±2.42. Taken
from [149].

applied, in which vD is independent of the position and thus, the energy of the Landau levels
is independent of k.

The flat bands appearing at zero energy in Fig. 6.3 are doubly degenerated: they correspond
to the n = 0 Landau level and to a localized edge state arising from the bearded edge [149].
The type of edges that limit the lattice, in this case bearded (left and right) and armchair
(top and bottom), give rise to these states with zero energy when nearest-neighbor hoppings
are considered. If an armchair edge is present in an isotropic lattice, the localization length
diverges, therefore, no edge state is observed. However, when strain is applied to the lattice
and the hopping ti is modified at least in one direction, an armchair edge state is found
[152, 154, 165].

6.4 Observation of photonic Landau levels

To the best of our knowledge, the first and only realization so far of a strain induced
pseudomagnetic field at optical frequencies in a photonic lattice has been performed by
Rechtsman et al. [166]. They emulate the graphene lattice through a series of elliptical
waveguides arranged in a honeycomb distribution. They apply different strains to the system
that would yield to an equivalent B⃗ of the order of 5.500 T. They report the existence of
Landau levels based on a strong emission related to an edge state, however, no emission
from the rest of the lattice (bulk) is observed at high strain. In this chapter, we propose an
alternative photonic platform to investigate the emergence of Landau levels in the presence
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of uniaxial strain gradients in a honeycomb lattice studying the observation of isolated bands
in the dispersion relation and their corresponding PL maps in real-space.

The polariton honeycomb lattices used in this experiment consist of coupled GaAs micropil-
lars organized in a hexagonal lattice. We study the response of four lattices with different
strain gradient along x-direction τ = 0,0.42,0.56 and 1.27. Since the gradient has a positive
value, the highest strain will be located at the right edge. We pump the sample non-resonantly
with a cw laser. A very low excitation density is chosen in order to be in the linear regime
and to observe the polariton relaxation in the full band structure. The excitation beam is
carefully centered in the lattice, with approximately equal distance to both, left and right,
edges. We set the energy of the Dirac points, E0 = 1569 meV, as the zero energy. The details
of the samples used in this experiment and the excitation conditions are described in section
2.2.4. We measure the real-space and the momentum distribution PL of the lattices and we
compare the results with the theoretical predictions presented in section 6.3.

We first compare the momentum-space maps for two cases, τ = 0 and 1.27, in Fig. 6.4(a,b).
Both PL maps are filtered at zero energy, where Dirac points are located. The momentum
distribution at zero energy for the unstrained case is depicted in Fig. 6.4(a), which reveals
a hexagonal structure similar to that of conventional graphene [Fig. 6.2(b)]. The six Dirac
points corresponding to the vertices of the hexagon are clearly observed as local intensity
maxima. When τ is increased up to 1.27, Fig. 6.4(b), the characteristic hexagonal shape is
deformed: the Dirac points at kx ∼ 0 seem to extend, creating a continuous band between
2 < |ky|< 4. The rest of the Dirac points are no longer easily discernible. As we will show
later, this deformation is related to the presence of a Landau level at zero energy.

For a greater understanding of the effect of the strain and therefore, the appearance of
B⃗, we show in Fig. 6.4(c) the dispersion relation for τ = 0 at the positions marked at
kx(2π/3a) = −1.1 (position 1) and 0 (position 2) with a white dashed line in panel (a).
The dispersion obtained at position 1 shows a profile of the bottom S-band located at one
edge of the hexagon in which the highest intensity is observed at the center of the band.
The dispersion measured at position 2 shows the bottom of the S-band. Due to destructive
interference along the highly symmetric crystallographic directions, characteristic of these
bipartite lattices, it is not possible to visualize the upper part of the S-band [167]. Therefore,
determining the exact positions of Dirac points through the dispersion, where both parts
touch, requires a more rigorous study than the one made here, based only on the PL maps
where all bands can be clearly observed.

132



6.4 Observation of photonic Landau levels

Figure 6.4. Momentum-space PL of two honeycomb lattices with strain gradients 0 (a) and 1.27 (b)
filtered at zero energy. Two white dashed lines in (a) mark the values of kx at which the profiles shown
in (c) have been obtained. The position 1 and 2 in (c) show the dispersion relation as a function of ky

at kx =−1.1 and 0, respectively. The emission intensity is in a false-color scale.

The dispersions along ky for several strained lattices, selected at kx = 0, are collected in
Fig. 6.5. For the unstrained lattice, Fig. 6.5(a), the dispersion shows a continuous S-band
consistent with the characteristic dispersion of graphene. For comparison, the dispersion
is theoretically calculated and depicted as a solid line. The theoretical and experimental
dispersions are clearly in accordance, yet, the top band cannot be observed due to the
aforementioned interference [167]. The intersection between the top and bottom bands
reveals the position of the Dirac points for which the dispersion is linear in their vicinity. As
a guide to the eye, a dashed line shows this crossing point at zero energy where no evidences
of gap or localized states are found. The fact that the experimental dispersion resembles
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Figure 6.5. Dispersion relation of a polariton honeycomb lattice at kx = 0 for different strain gradients:
0 (a), 0.42 (b), 0.56 (c) and 1.27 (d). In case (a), the solid lines show the calculated dispersion for
graphene.The dashed line is depicted at zero energy as a guide to the eye. In cases (b)-(d), the dashed
lines indicate the energy of the identified Landau levels n = 0,1. The white arrows in (d) indicate the
possible emergence of Landau levels at negative energies. The emission intensities are in a false-color
scale.
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that of graphene confirms the appropriateness of polariton honeycomb lattices as graphene
emulators.

As the strain increases, an energy gap emerges at the Dirac points giving rise to several flat
bands identified as Landau levels. These bands become visible for the cases (b) and (c), in
which a separation between the flat bands is observed. In both cases, the gap is evident as
a drop in the intensity between the bands. Following the expected energy for each Landau
level given by Eq. 6.24, we identify the first band appearing at zero energy as the Landau
level n = 0 and the second band at ∼ 0.2 meV as n = 1. Furthermore, we observe a linewidth
broadening of the bottom of the S-band with increasing τ at negative energies; although its
origin is still unclear, the superposition of the bottom of the S-band and the possible n < 0
Landau states could blur the emission at negative energies. In the case of the highest τ ,
Fig. 6.5(d), the dispersion is significantly deformed and only a vague resemblance to the
graphene’s dispersion remains. At zero and positive energies, an increase of the polariton
population with respect to the previous cases is observed. Moreover, the gap between both
levels is considerably larger than in panels (b) and (c), as expected from the action of the
pseudo-magnetic field [see Eq. 6.24]. In cases (c) and (d), the emergence of flat bands at
negative energies (∼ −0.2 and ∼ −0.5 meV) is hinted [see white arrows in Fig. 6.5(d)],
however, the occupation in these levels is similar to that of the S-band, which hinders their
clear identification. Thus, we are not able to identify unambiguously the n < 0 levels.

As we have seen, Landau states appear at discrete values of the energy with a separation
between them related to the hopping gradient. To further support our results we focus now
on the the wave function of the ground Landau level. The corresponding real-space emission
maps for the same strain gradients shown in Fig. 6.5 are depicted in Fig. 6.6, filtered at zero
energy. In the unstrained case, Fig. 6.6(a), the hexagonal structure of the lattice is easily
recognizable. As expected, no localization is observed in this case. The distribution of the
emission corresponds to the Gaussian shape of the laser beam over the lattice. When the
strain is increased up to τ = 1.27, cases (b), (c) and (d), an asymmetry in the PL is observed:
the predominant emission is located in sublattice B. This asymmetry has been theoretically
predicted when a strain-induced gauge field is applied to selected geometries [149]. As
explained in section 6.3, the wave function of a strained honeycomb lattice describes a
fundamental Landau state restricted to only one sublattice (B) for a positive τ . The emission
from sublattice A has almost vanished for the case of τ = 1.27. It is unquestionable to
conclude that the effect of the deformation significantly modifies the PL, demonstrating that
the engineering of the hopping parameters gives rise to discrete Landau states.
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Figure 6.6. Real-space maps of polariton honeycomb lattice filtered at zero energy for different
strain gradients: τ =0 (a), 0.42 (b), 0.56 (c) and 1.27 (d). The circles depicted in (a)-(d) illustrate the
micropillars that compose the lattice. The sublattice A (B) is marked in red (green). The emission
intensities are in a false-color scale.
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6.4 Observation of photonic Landau levels

Figure 6.7. (a) Normalized DOS of the S-band at different hopping gradients (τ). The energy of the
fundamental Landau level is set at zero (marked with a vertical dashed line). Other peaks suggesting
the presence of Landau levels are indicated by a short vertical mark. (b) Energy gap between n = 0
and the first Landau level (±1). The red line fits the experimental data following the square root law
∆E =±t

√
τ where t = 0.14±0.03 meV.

Apart from the value of τ , the size of the sample is also an important factor when studying
the real-space emission. By increasing the hopping (t1) along the x-direction the width of
the lattice is drastically reduced. Since the lattice is considerably large and the excitation
conditions are well-below the propagation threshold, the probability of polaritons reaching
the edge is limited. As we have already mentioned, the edge states are also localized at zero
energy for a specific shape termination of the honeycomb lattice: the zig-zag edge. In this
experiment, the optimal conditions to observe an edge state appear at Fig. 6.6(c) and (d)
in which a slight emission can be distinguished on the right side, where the deformation is
higher. Note that the edge state is located in A sublattice (red circles).

For the sake of completeness, the density of states (DOS) for the S-band has been calculated.
The normalized DOS are depicted in Fig. 6.7(a) for different values of the strain parameter
τ . The vertical dashed line marks the zero energy point, where the level n = 0 is located.
As expected, no remarkable occupation is observed in this level for τ = 0, where a drop
of the polariton population can be clearly appreciated. This confirms the similarity of our
polariton honeycomb lattice with that of real graphene. However, when τ is increased, a
local maximum arises at zero energy. The lattices with τ ̸= 0 not only show a well-defined
n = 0 level, but other nearby local maxima appearing at both positive and negative energies,
which are indicated by a short vertical mark in the figure. The appearance of these maxima
could be related to the presence of the first Landau levels n =±1. Since the identification of
these levels in the dispersion is not trivial [as seen in Fig. 6.5], we calculate the energy gap
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(∆E = En=±1 −En=0) between the ground state and the first Landau level. The energy gap
as a function of the strain gradient is shown in Fig. 6.7(b). The experimental data are fitted
following the evolution of the energy in a strained lattice given by Eq. 6.24. The energy
gap between this two consecutive Landau levels is consistent with the theoretical proposal,
within the experimental accuracy, confirming the identification of the n =±1 Landau levels
as the local maxima arising in the vicinity of n = 0 [short vertical mark in Fig. 6.7(a)]. In
addition, a precise value of the hopping amplitude at x = 0 is obtained, t = 0.14±0.03 meV.
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6.5 Conclusions

We have experimentally demonstrated the existence of Landau levels in honeycomb lattices
of photonic resonators subject to an artificial gauge field. Coupled micropillars provide an
excellent platform to emulate the topological properties of 2D materials since they display a
band dispersion similar to that of graphene in which Dirac cones are visible. This has been
evidenced in the dispersion measured for the unstrained honeycomb lattice (τ = 0). The
engineering of the gradient of the hopping amplitude between sites of the honey-comb lattice
creates an artificial valley dependent magnetic field capable of emulating values of the order
of 103 T. Due to the appearance of the artificial magnetic field, a gap opens in the Dirac cones
at zero energy and several quantized Landau levels arise in their proximity. Additionally,
we have been able to measure the wave function of the fundamental Landau level, which is
localized on one sublattice at zero energy. Finally, we have compared the size of the energy
gap between two consecutive Landau levels with a square-root law, theoretically predicted,
which confirms the expected evolution of the energy of these states with the gradient of the
hopping amplitude.

The semiconductor micropillars employed in this work open exciting possibilities to study
phenomena at the crossroad of solid-state physics and photonics. Taking advantage of
the strong coupling between quantum well excitons embedded in the micropillars and the
confined photons our platform opens the way to study Landau levels subject to polariton-
polariton interactions and lasing in flat bands [168].
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Chapter 7

General conclusions and future
perspectives of the thesis

In this thesis we have investigated the properties of polariton condensates in patterned
microcavities either in real- or momentum-space. Following the ordering of the chapters, we
summarize the main achievements of this thesis:

The thermal robustness of the coherence of non-equilibrium polariton condensates is ad-
dressed in chapter 3. This coherence, evidenced by the presence of interference fringes along
the full polariton propagation, reveals a time- and space-preserved phase correlation. The
fringes are observed in momentum-space when condensates, which are spatially separated,
travel with the same velocity. Additional fringes are observed at the crossing of condensates
in real-space. The analysis of both, the visibility of the fringes (υ) and the fraction of con-
densed to uncondensed polariton populations ( fC) leads to the same result: both magnitudes
allows us to infer a critical temperature for the BEC-like transition when they decay to zero,
despite the non-equilibrium nature of polariton condensates. A comparison of the results
with two theoretical models developed for equilibrium atomic condensates yields a critical
temperature which is very similar in both models. This is the reason why we have been
unable to identify which model fits more accurately our non-equilibrium condensates’ results.
Therefore, a more adequate theoretical proposal that takes into account the characteristics of
polariton condensates is required.

The experiments performed on the devices dubbed as couplers, summarized in chapter
4, demonstrate their functionality as full optical devices, opening the way to routing and
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splitting the condensates towards different output terminals by properly selecting the size
parameters. First, we have investigated the implications of the use of bent waveguides in the
propagation of polariton condensates: due to the abrupt variation of 45º in the condensates’
trajectory, a significant decay of the polaritons’ momentum is observed. We are able to
select a specific value of the polaritons’ momentum during their creation, but after reaching
the bend, the control over the momentum is lost. Therefore, it would be convenient to
investigate whether a reduction of the bend’s angle could help to control the polaritons
momentum over the entire device. Furthermore, our measurements show that, depending
on the size parameters, polaritons are able to couple between the two arms that compose
the couplers. As a consequence of the interaction between both populations, Josephson
oscillations are observed. These oscillations together with the selection of the length of the
coupling region allows guiding the polariton population at will to just one or to the two
output terminals. Additionally, our study on the polarization-resolved PL has revealed a
conspicuous interference in the output terminals. It results from the interference of forward
and backward’s moving polaritons. Up to now, we have only addressed the linear polarization
dependence of this interference but a careful analysis of the degree of circular polarization
of the coupler emission could set the basis for the development of spin-based logic devices
employing these couplers, which would be capable of monitoring and controlling the spin of
polaritons in the output terminals.

The device proposed in chapter 5 has demonstrated its functionality as an ultrafast counter-
directional polariton router. The astute combination of 1D and 2D confinement on the
different parts of the device allows the direct manipulation of the condensates’ trajectory
without any external control parameter, laying out the device capabilities to reverse the
propagation direction. Furthermore, our experimental measurements demonstrate that by
engineering the size parameters of the polariton router, a filtering of modes with discrete
energies at the output port is achieved. This functionality would allow in future experiments
the use of the device as a transistor switch, capable of controlling the emergence of a
monochromatic signal at the output port. In this way, more complex architectures could be
designed by connecting several of these routers or combining them with additional devices.
We have obtained a coupling efficiency between the different parts of the router of ∼11.5 %,
which considerably limits the propagation of the signal. Therefore, further investigations are
needed to enhance the counter-directional device efficiency.

In Chapter 6 we have reported a direct measurement of the n = 0 Landau level wavefunctions
in a photonic honeycomb lattice of polaritons under the effect of a synthetic magnetic field.
The use of these structures allows to emulate the transport and topological properties of
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graphene, as it has been proven by the dispersion relation of the honeycomb lattices, where
Dirac cones are visible. Due to the appearance of a synthetic magnetic field of the order
of 103 T, created by modulating the inter-pillar distance of the micropillars that compose
the lattice, several quantized Landau levels arise in the proximity of the Dirac cones. The
Landau levels here reported are promising for the study of strongly correlated photonic
phases: taking advantage of the strong coupling between excitons and photons, polariton
honeycomb lattices open the way to study the lasing in Landau levels.

All the devices used in this thesis are easily scalable and integrable into networks based
on polaritons. Our methods allow the optical generation and manipulation of 1D and 2D
condensates in arbitrary locations inside semiconductor structures in the micrometer scale.
We have demonstrated how to control the trajectory, flow speed and interaction between
polaritons in these microstructures. The study of these light-matter states paves the way to
take advantage of their nonlinearity in the next generation of photonics.
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Conclusiones generales y perspectivas
futuras de esta tesis

En esta tesis hemos investigado, tanto en espacio real como en el de momentos, las
propiedades de los condensados de polaritones en microcavidades esculpidas. Siguiendo el
orden de los capítulos, resumimos a continuación los principales logros de esta tesis:

La robustez térmica de la coherencia de los condensados de polaritones se aborda en el
capítulo 3. Esta coherencia, evidenciada por la presencia de franjas de interferencia a
lo largo de la propagación de los polaritones, revela una correlación de las fases de los
condensados, conservada en el tiempo y el espacio. Las franjas se observan en el espacio de
momentos cuando los condensados, que están separados espacialmente, viajan con la misma
velocidad. De forma adicional, se observan franjas durante el cruce de los condensados en
el espacio real. El análisis de la visibilidad de las franjas (υ) y la fracción de polaritones
condensados ( fC) conduce al mismo resultado: ambas magnitudes nos permiten determinar
una temperatura crítica para la condensación tipo Bose-Einstein cuando decaen a cero, a
pesar de que los condensados de polaritones son sistemas fuera de equilibrio. La comparación
de los resultados con dos modelos teóricos desarrollados para condensados atómicos en
equilibrio conduce a un valor de la temperatura crítica que es muy similar para ambos
modelos. Esta es la razón por la cual no hemos podido identificar qué modelo ajusta con
mayor precisión los resultados. Por lo tanto, sería necesario el desarrollo de una teoría más
adecuada, que tenga en cuenta las características de condensados polaritónicos.

En el capítulo 4 se resumen los experimentos realizados con los dispositivos denominados
acopladores. Los resultados demuestran la funcionalidad de estos acopladores como dis-
positivos totalmente ópticos, estableciendo el camino hacia el enrutamiento y guiado de los
condensados hacia diferentes terminales de salida seleccionando adecuadamente las dimen-
siones de los dispositivos. En primer lugar hemos investigado las implicaciones del uso de
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guías de ondas dobladas en la propagación de los condensados de polaritones: una variación
abrupta de 45º en su trayectoria produce una disminución significativa del momento de los
polaritones. Es posible seleccionar un valor específico del momento durante la creación de
estas partículas, sin embargo, después de sobrepasar la curva, se pierde el control sobre su
velocidad. Por lo tanto, sería deseable investigar si los efectos de una disminución del ángulo
de la curva podría ayudar a controlar el momento de los polaritones en todo el dispositivo.
En segundo lugar, nuestras medidas muestran que, dependiendo de las dimensiones de los
dispositivos, los polaritones pueden transferirse entre las dos guías de ondas que componen
los acopladores. Como resultado de la interacción entre ambas poblaciones, se observan
oscilaciones de Josephson. Estas oscilaciones, junto con la selección del tamaño de la
región de acoplamiento, permiten guiar la población de polaritones a voluntad hacia solo
uno de los terminales o repartirla entre ambos. Adicionalmente, nuestro estudio sobre la
polarización de la fotoluminiscencia ha revelado pronunciadas oscilaciones de la intensidad
de la emisión para determinadas orientaciones de la polarización. Este resultado se produce
por la interferencia entre polaritones moviéndose hacia adelante y hacia atrás en el terminal
de salida. Hasta ahora, solo hemos abordado el análisis de la polarización lineal de esta
interferencia pero un estudio cuidadoso del grado de polarización circular de la emisión del
acoplador podría sentar las bases para el uso de estos acopladores como dispositivos lógicos
basados en el espín, empleando estos acopladores, con los que sería posible monitorizar y
controlar el espín de los polaritones en los terminales de salida.

El dispositivo propuesto en el capítulo 5 ha demostrado su funcionalidad como enrutador
contradireccional ultrarrápido. La astuta combinación de confinamiento en 1D y en 2D
a lo largo de las diferentes partes del dispositivo permite la manipulación directa de la
trayectoria de los condensados sin ningún parámetro de control externo, estableciendo así la
capacidad del dispositivo para invertir la dirección de propagación. Además, nuestras medidas
experimentales demuestran que al diseñar las dimensiones del enrutador, se logra un filtrado
de modos con energías discretas en el puerto de salida. Este funcionamiento permitiría en
futuros experimentos usar el dispositivo como un interruptor, capaz de controlar la aparición
de una señal monocromática en el puerto de salida. De esta forma, se podrían diseñar
construcciones más complejas, conectando varios de estos enrutadores o combinándolos con
otros dispositivos. En los experimentos, hemos obtenido una eficiencia de acoplamiento
entre las diferentes partes del enrutador del ∼11.5 %, lo que limita considerablemente la
propagación de los polaritones. Por lo tanto, es necesario continuar investigando alternativas
que permitan mejorar la eficiencia del dispositivo.

146



En el capítulo 6 hemos realizado una medida directa de la función de ondas del nivel n = 0 de
Landau en una red fotónica de panal de abeja bajo el efecto de un campo magnético artificial.
El uso de estas estructuras permite simular las propiedades topológicas y de transporte del
grafeno, tal como se ha demostrado por la presencia de conos de Dirac en la relación de
dispersión de redes de panal de abeja. La modulación de la distancia entre los micropilares
que componen la red puede inducir la aparición de un campo magnético artificial del orden de
103 T, lo que produce la aparición de varios niveles de Landau cuantizados en la proximidad
de los conos de Dirac. Los niveles de Landau aquí investigados son prometedores para el
estudio de fases fotónicas fuertemente correlacionadas: aprovechando el acoplamiento fuerte
entre los excitones y los fotones, las redes de panal de abeja abren el camino para estudiar la
emisión láser en estos niveles de Landau.

Todos los dispositivos utilizados en esta tesis son fácilmente reescalables e integrables
en redes basadas en polaritones. Nuestros métodos experimentales permiten no solo la
generación óptica sino también la manipulación de condensados en 1D y 2D en regiones
espaciales arbitrarias dentro de microestructuras semiconductoras. A lo largo de esta tesis,
hemos demostrado cómo controlar la trayectoria, la velocidad del flujo y la interacción entre
polaritones en dichas microestructuras. Por tanto, el estudio de los estados mixtos de luz y
materia, como lo son los polaritones, allana el camino para utilizar sus nolinealidades en la
próxima generación de dispositivos fotónicos.
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Appendix A

Polariton energy relaxation in a 1D
waveguide

When a semiconductor microcavity is optically excited with an excess of energy, polaritons
suffer an energy relaxation process until they reach the fundamental state. Here, we address
this relaxation dynamics in a planar waveguide after two pulsed laser beams excite the
structure under quasi-resonant conditions (at 1.5459 eV) and with a power above the threshold
for condensation. The excitation scheme is the same as that used in Chapter 3. Fig. A.1
depicts the time-resolved PL at different time delays after the laser beams impinge on the
sample at t = 0. The real- and k-space are indicated by the indexes 1 and 2, respectively.
To avoid saturation in the streak camera due to the emission of the laser, only energies up
to 1.5445 eV are shown. Panel (a) shows the emission at 15 ps. The excitons created by
the two laser beams start to decrease their energy towards the polariton states in the LPB
(extended from 1.5398 to 1.5420 eV). The emission in real-space reveals that at this time
delay polaritons do not extend beyond the excitation area while decreasing their energy.
Furthermore, the corresponding k-space shows that this small population of polaritons is
initially created with kx = 0. The intensity has been intentionally saturated in panel (a.2)
in order to observe the contribution from the lower energies. When the time is further
increased just by 10 ps, panel (b), the polariton population considerably increases around
∼ 1.541 eV. Their momentum now shows a wide distribution in the range 0 < |kx| < 1.5
µm−1, since polaritons start to move in the positive and negative x-direction. In panel
(c), the emission in real-space shows the formation of two polariton condensates from
each laser source, propagating towards the left/right hand side of the excitation spot. As
a result, these condensates show discrete values of the wave vector, ±1.6 µm−1, negative
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Polariton energy relaxation in a 1D waveguide

Figure A.1. Energy relaxation process in a 1D waveguide under quasi-resonant excitation with two
laser beams. The time-resolved PL is shown at four different time delays: (a) 15, (b) 25, (c) 40 and
(d) 60 ps after the laser excites the sample (t = 0). The indexes 1 and 2 refer to real- and k-space,
respectively. The red solid line in real- /momentum-space marks the position x = 0/kx = 0. The
intensity is coded in linear false-color scale. The emissions have been measured with a power density
of 9 kW/cm2.

(positive) for those traveling towards left (right). Note that at this time, 40 ps, the PL is
practically concentrated at a discrete energy level at 1.5404 eV. Finally, at 60 ps [panel
(d)], the condensates propagate along the structure and only emission arising from the
fundamental state is observed. Therefore, the energy relaxation dynamics clearly demonstrate
the macroscopic occupation of the fundamental level when a polariton condensate is created.
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