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1
A B S T R AC T

The thesis project consists in the theoretical and computational investigation of the
influence on the mechanical properties of nanoscale conductors due to the presence
of thermodynamic equilibrium rupture conditions, under current conditions of parti-
cles and energy (1, 2). They are analyzed by nanostructures such as metal nanocon-
tacts, rare earth nanocontacts (Europium, Gadolinium), two-dimensional nanomateri-
als (graphene), molecular conductors ...

The main line of the project deals with the theoretical description at the atomic
level of the interaction between electronic-spintronic transport and the nanomechan-
ics of the conductors, that is, the forces experienced by each atom, the result of trans-
port conditions and rupture of equilibrium. This phenomenon is known as electromi-
gration. The aforementioned phenomenology gives rise to applications in Nanotech-
nology, as is the case of the manipulation of individual atoms mediated by voltage
and current (4,6). Individual atoms serve as building-blocks for nanoengineering, na-
noelectronics and nanospintronics. As a result of the collaboration with experimen-
tal physicists from other universities, the study of magnetic properties of rare earth
nanocontacts such as Europium and Gadolinium was carried out in the presence of a
very densely localized electric current and a strong magnetic field (5 ).

The core of the methodology used to address the problems raised is standard in the
Theoretical Physics of Condensed matter and Nanotechnology when they are treated
from the theoretical-computational mechano-quantum approach.

In the first place, the so-called Functional Density Theory (DFT) intervenes, in this
case, applied on a base of localized Gaussian wave functions that make up a reduced
Hilbert space. This method based on the use of localized orbitals is known as the
Linear Combination of Atomic Orbitals (LCAO), and is of conventional use in the
study of finite mechano-quantum systems (such as molecules) and periodic infinity
(such as crystals).

The foundation of the thermodynamic forces acting on atoms lies in the Lippmann-
Schwinger Scattering State Formalism, which explains the behavior of particles through
a constriction or potential obstacle. This formalism, in order to be implemented
computationally in simulations, needs to be translated into the Green Functions Off-
Balance (NEGF) method. The incorporation of the electrodes or reservoirs of parti-
cles through boundary conditions allows reproducing the conditions of infinite non-
periodic system. These are necessary to study nanoscale contacts between macro-
scopic electrodes and simulate the rupture of electrochemical equilibrium. There is a
matrix form of the NEGF formalism, which is given by the description of the electron
density projected as a matrix on the basis of wave functions of Gaussian profile. This
description facilitates the compatibility of this formalism with the previous one, the
LCAO-DFT. The combination of both methods is widespread among the community



of scientists specialized in the fields of Nanophysics, Nanoelectronics and Nanospin-
tronics.

The theoretical extension of the formalism that describes the thermodynamic forces
through the NEGF-DFT method in its LCAO form for the description of electonic and
spintronic systems out of balance is the central object of this thesis.



2
R E S U M E N

El proyecto de tesis consiste en la investigación teórica y computacional de la influ-
encia sobre las propiedades mecánicas de conductores a escala nanométrica debidas
a la presencia de condiciones de ruptura del equilibrio termodinámico, bajo condicio-
nes de corriente de partículas y energía (1,2). Son objeto de análisis nanoestructuras
como nanocontactos metálicos, nanocontactos de tierras raras (Europio, Gadolinio),
nanomateriales bidimensionales (grafeno), conductores moleculares...

La línea principal del proyecto trata la descripción teórica a nivel atómico de la
interacción entre transporte electrónico-spintrónico y la nanomecánica de los con-
ductores, esto es, las fuerzas que experimenta cada átomo, fruto de las condiciones
de transporte y ruptura del equilibrio. A este fenómeno se le conoce como electromi-
gración. La mencionada fenomenología da lugar a aplicaciones en Nanotecnología,
como es el caso de la manipulación de átomos individuales mediada por voltaje y
corriente (4,6). Los átomos individuales cumplen la función de building-blocks para
hacer nanoingeniería, nanoelectrónica y nanospintrónica. Como resultado de la co-
laboración con físicos experimentales de otras universidades se ha llevado a cabo el
estudio de propiedades magnéticas de nanocontactos de tierras raras como Europio
y Gadolinio en presencia de corriente eléctrica muy densamente localizada y campo
magnético fuerte (5).

El núcleo de la metodología empleada para abordar los problemas planteados es
estándar en la Física Teórica de la materia Condensada y la Nanotecnología cuando
son tratadas desde la aproximación teórica-computacional mecano-cuántica.

En primer lugar interviene la conocida como Teoría del Funcional Densidad (DFT,
por sus siglas en inglés), en este caso, aplicada sobre una base de funciones de onda
gaussianas localizadas que conforman un espacio de Hilbert reducido. A este método
basado en el uso de orbitales localizados se le conoce como Combinación Lineal
de Orbitales Atómicos (LCAO), y es de uso convencional en el estudio de sistemas
mecano-cuánticos finitos (como moléculas) e infinitos periódicos (como cristales).

La fundamentación de las fuerzas termodinámicas que actúan sobre los átomos ra-
dica en el Formalismo de estados de Scattering de Lippmann-Schwinger, que explica
el comportamiento de las partículas atravesando una constricción o un obstáculo de
potencial. Este formalismo, a fin de ser implementado computacionalmente en simu-
laciones, necesita ser traducido al método de Funciones de Green fuera del equilibrio
(NEGF). La incorporación de los electrodos o reservorios de partículas a través de
las condiciones de frontera permite reproducir las condiciones de sistema infinito no
periódico. Estas son necesarias para estudiar contactos de escala nanométrica entre
electrodos macroscópicos y simular la ruptura del equilibrio electroquímico. Existe
una forma matricial del formalismo NEGF, que viene dada por la descripción de la
densidad electrónica proyectada como matriz sobre la base de funciones de onda de
perfil gaussiano. Esta descripción facilita la compatibilidad de este formalismo con
el anterior, el LCAO-DFT. La combinación de ambos métodos está extendida entre la



comunidad de científicos especializados en los ámbitos de la Nanofísica, Nanoelec-
trónica y Nanospintrónica.

La extensión teórica del formalismo que describe las fuerzas termodinámicas a
través del método NEGF-DFT en su forma LCAO para la descripción de sistemas
electónicos y spintrónicos fuera del equilibrio es el objeto central de esta tesis.
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tograms of hysteresis widths (H) observed from closing and
subsequent breaking of junctions comprising Pb(111) and
single Pb adatoms, respectively. All contacts were formed
with bias voltages ranging from −50 mV to 50 mV. . . . . . 69
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Figure 6.3 Calculations of conductance-distance characteristics during
forming and breaking of Pb contacts. (a) A single-atom
terminated tip approaches (filled symbols) to and retracts
(open symbols) from on-top (squares) and hollow (circles)
Pb(111) lattice sites. (b) Same as (a) for a single Pb adatom
(triangles). (c), (d) Position of single-atom terminated tip
(filled and hatched circles for apex atom and second-layer
atoms, respectively) relative to the Pb(111) lattice (circles)
for contacts comprising the on-top (c) and the hollow (d)
site. (e), (f) Like (a), (b) for a four-atom terminated tip.
(g), (h) Position of four-atom terminated tip (filled circles)
relative to the Pb(111) lattice (circles) for contacts compris-
ing the on-top (g) and hollow (h) site. (i) Snapshots of cal-
culated contact geometries for a single-atom terminated tip
approaching an on-top site of pristine Pb(111). Increasing
(decreasing) displacements (∆z) correspond to tip approach
(retraction). Upon retraction the tip apex atom (encircled by
a full red line) is transferred to a Pb(111) hollow site adja-
cent to the approached on-top site. . . . . . . . . . . . . . . 72

Figure H.1 Contour for the Hamiltonian Ĥ(z) to calculate the time-
dependent ensemble average of any operator in a system
whose time-evolution is governed by the Hamiltonian Ĥ(z)

from the initial equilibrium in t0. The system is supposed to
be at temperature T , being β = 1/(kBT ). . . . . . . . . . . 112
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Table 6.1 Calculated contact conductances (Gc) and hysteresis widths
(H) of atom-sized Pb junctions. Pb tips grown in the 〈100〉
( 〈111〉 ) have apices terminated by 1 and 4 (1 and 3) atoms.
On pristine Pb(111) contacts are formed at on-top and hol-
low sites. The contacted single Pb adatom resides at a Pb(111)
hollow site. . . . . . . . . . . . . . . . . . . . . . . . . . . 73
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T H E S I S



1
G R E E N ’ S F U N C T I O N

1.1 H A M I LT O N I A N

We treat systems with scattering Hamiltonian operators of the form Ĥ = Ĥ0 + Ĥint,
which can be written in terms of the Lippmann-Schwinger scattering states operators,
which diagonalize the Hamiltonian, as:

Ĥ(x, t) =
∑
kα

εkαψ̂
†
kα(x, t)ψ̂kα(x, t) (1.1)

where ψ̂†kα creates a particle in the eigenstate with eigenenergy εkα connected to
reservoir α (typically L,R) and k labels the continuum of states.

It is important to notice that in equation (1.1) and throughout this book x = (rσ)

is contraction for the position-spin coordinate, based on the notation in reference
(Stefanucci & Van Leeuwen, 2010) and explained in A. Thus, there is no need to
specify the spin component of the scattering eigenstate operators ψ̂†kα(x, t), because
it is completely specified by entry x.

The expression of the scattering Hamiltonian in terms of its eigenstates is closely
related to the expression of the number operator N̂ :

N̂(x, t) =
∑
kα

ψ̂†kα(x, t)ψ̂kα(x, t) (1.2)

If we convert the expressions to a general basis set of spin-orbitals ϕi(x), where the
Lippmann-Schwinger scattering eigenstates take the form of a linear combination:

ψ̂(x, t) =
∑
i

ϕi(x)d̂i(t); ψ̂
†(x, t) =

∑
i

ϕ∗i (x)d̂†i (t); (1.3)

we get expressions for the operators which are more suitable for the computations,
for example, if the ϕi(x) basis constitutes a combination of plane waves or a linear
combination of atomic orbitals (LCAO), by which the infinite system can be decom-
posed to the Caroli partition scheme, frequent in the literature (Datta, 1995; Caroli,
Combescot, Nozieres, & Saint-James, 1971). This Hamiltonian consists of a nonin-
teracting part and an interacting one as:

Ĥ = Ĥ0 + Ĥint (1.4)
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The noninteracting Ĥ0 part in second quantization is:

Ĥ0 =
∑
mn

σm=σn

HC
mnd̂

†
mσd̂nσ

︸ ︷︷ ︸
central region

+
∑
αk

εαkn̂αk︸ ︷︷ ︸
reservoirs

+
∑
m,αk

σαk=σm

Tmαkd̂
†
md̂αk + Tαkmd̂

†
αkd̂m

︸ ︷︷ ︸
coupling

(1.5)

where α labels each reservoir and the quantum numbers m, n, k of the general
basis of spin-orbitals are the contraction for an orbital and a spin quantum number,
based on the notation in reference (Stefanucci & Van Leeuwen, 2010) and explained
in A, so that:

m = smσm; n = snσn; k = skσk. (1.6)

In equation (1.5) the sum is restricted to matrix elements where σm = σn in the
central region C and σαk = σm for the coupling because the one-body interactions
in the noninteracting Hamiltonian Ĥ0 involved are independent of spin.

In the other hand, the Hartree-Fock-like interaction:

Ĥint =
1

2

∑
ijmn
σi=σn
σj=σm

vijmnd̂
†
i d̂
†
j d̂md̂n

(1.7)

where the interaction is restricted to wavefunctions localized in the central region
and the matrix elements vijmn are:

vijmn =

∫
dxdx′ϕ∗i (x)ϕ∗j (x

′)v(x,x′)ϕm(x′)ϕn(x) (1.8)

In equations (1.7) and (1.8), as in equations (1.5) and (1.6), the quantum numbers
of the general basis of spin-orbitals are the contraction for an orbital and a spin quan-
tum number,as explained in A, so that:

i = siσi; j = sjσj ; m = smσm; n = snσn. (1.9)
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From (1.8), because the interaction is independent of spin (v(x,x′) = v(r, r′)), we
conclude that vijmn is zero if σj 6= σm or σi 6= σn. Thus, (1.7), being σi = σn = σ

and σj = σm = σ′, reduces to:

Ĥint =
1

2

∑
sisjsmsn
σσ′

vsisjsmsn d̂
†
siσd̂

†
sjσ′

d̂smσ′ d̂snσ (1.10)

where we have expanded the spin-orbital quantum numbers as in (1.9). The inter-
acting part is not quadratic in the creation and annihilation d̂-operators, because it’s
not a one-body operator, but a two-body one, and an approximation is needed. In this
case, the one used is the Hartree-Fock approximation, but any mean-field approxima-
tion, as is the case of DFT, works in the same manner. The approximation will be
developed in section 1.3.

It’s easy to rewrite the noninteracting part of the Hamiltonian in first quantization
Ĥ0 as:

Ĥ0 =
∑
mn

σm=σn

HC
αk |m〉 〈n|

︸ ︷︷ ︸
central region

+
∑
αk

εαk |αk〉 〈αk|︸ ︷︷ ︸
reservoirs

+
∑
m,αk

σm=σαk

(Tmαk |m〉 〈αk|+ Tαkm |αk〉 〈m|)

︸ ︷︷ ︸
coupling

(1.11)

The interaction part in first quantization can be rewritten as:

Ĥint =
1

2

∑
ijmn
σi=σn
σj=σm

vijmn |i, j〉 〈n,m|
(1.12)

1.2 G R E E N ’ S F U N C T I O N

The central quantity of our formalism is the one-body Green’s function, whose corre-
sponding operator in Second Quantization is given by the next expression in terms of
the second quantization Lippmann-Schwinger operators, which diagonalize the full
Hamiltonian of the entire problem:

Ĝ1(x, z;x′, z′) =
1

ı1
T
{
ψ̂H(x, z)ψ̂†H(x′, z′)

}
(1.13)

Where the time-contour ordering operator T orders the operators according to the
Keldysh contour (Stefanucci & Van Leeuwen, 2010). Variable x denotes the position-
spin coordinate so that (x) = (x, σ). From now on, subscript 1 of the Green’s func-
tion will be suppressed.
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The form of the Green’s function suitable for the calculations, however, is given
by its grand canonical ensemble average along the Keldysh contour:

G(x, z;x′, z′) ≡
Tr
[
e−βĤ

M
Ĝ(x, z;x′, z′)

]
Tr
[
e−βĤM

]
=

1

ı

T r
[
T
{
e−ı

∫
γM

dz̄Ĥ(z̄)ψ̂kσ,H(x, z)ψ̂†kσ,H(x′, z′)
}]

Tr
[
e−βĤM

]
(1.14)

The statistical average performed after the second equality in (1.2) is explained in
appendix H.1 (see equation (H.19)).

In the case of the field operators we know that they are constant over the entire
contour γM (fig. H.1 based on the teory in (Stefanucci & Van Leeuwen, 2010)), which
means:

ψ̂(x, z ∈ γM ) = ψ̂(x); ψ̂†(x, z ∈ γM ) = ψ̂†(x); (1.15)

Taking into account the (anti)commutation relation for the scattering state opera-
tors:

[
ψ̂(x), ψ̂†(x′)

]
∓

= δ(x− x′) (1.16)

Looking at the first line in equation (1.3) and setting x′ = x, z′ = z+, we can write
the average of the density operator n(x, z) = ±ıG(x, z;x, z+):

n(x, z) =
Tr
[
e−βĤ

M
ψ̂†H(x, z+)ψ̂H(x, z)

]
Tr
[
e−βĤM

] (1.17)

and, based on the form of the current operator:

~̂j(x, z) =
1

2mı

[
ψ̂†(x, z)

(
∇ψ̂(x, z)

)
−
(
∇ψ̂†(x, z)

)
ψ̂(x, z)

]
(1.18)

it’s ensemble average results in:

~j(x, z) =
Tr
[
e−βĤ

M~̂j(x, z)
]

Tr
[
e−βĤM

]
= ±

(
∇−∇′

2m
G(x, z;x′, z+)

) ∣∣∣∣
x′=x

(1.19)
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Expression (1.5) is useful to write the Green’s function operator in first quantiza-
tion, which will be denoted with calligraphic letters, Ĝ(z, z′) as:

Ĝ(z, z′) =

∫
dxdx′ |x〉G(x, z;x′, z′)

〈
x′
∣∣ (1.20)

where the matrix elementsns of Ĝ(z, z′) are:

〈x| Ĝ(z, z′)
∣∣x′〉 = G(x, z;x′, z′) (1.21)

In the general basis, which can be typically an LCAO, the element j, i of the
Green’s function is calculated as:

Gji(z, z
′) =

1

ı

T r
[
e−βĤ

MT
{
d̂j,H(z)d̂†i,H(z′)

}]
Tr
[
e−βĤM

] (1.22)

It’s remarkable that both expressions of the Green’s function, the Lippmann-Schwinger
scattering eigenstates basedG(x, z;x′, z′) in (1.14) and the general basis basedGji(z, z′)
in (1.22) represent just different matrix elements of the Green’s function operator in
first quantization Ĝ(z, z′). When expanding the Lippmann-Schwinger operators in
G(x, z;x′, z′):

G(x, z;x′, z′) =
∑
ji

ϕj(x)Gji(z, z
′)ϕ∗i (x

′)

=
∑
ji

〈x|j〉Gji(z, z′)
〈
i
∣∣x′〉 (1.23)

which, compared with (1.11), reveals:

Ĝ(z, z′) =
∑
ji

|j〉Gji(z, z′) 〈i| (1.24)

and

〈j| Ĝ(z, z′) |i〉 = Gji(z, z
′) (1.25)

Because of the generality of the expressions, it is preferable to work with oper-
ator Ĝ(z, z′) than with it’s matrix elements in the basis of the ψ̂-operators or the
d̂-operators, to leave the equations invariant and avoid these to depend on the rep-
resentation. If we take the equations of motion of G, known as Kadanoff-Baym
Equations (Stefanucci & Van Leeuwen, 2010; Myöhänen, Stan, Stefanucci, & Van
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Leeuwen, 2009), for noninteracting (and interacting) particles extracted from the
Martin-Schwinger hierarchy:

ı
d

dz1
G(x1, z1;x2, z2)−

∫
dx3dz3h(x1, z1;x3z3)G(x3, z3;x2, z2)

= (δ(x1 − x2)δ(z1, z2))

(1.26)

−ı d
dz2

G(x1, z1;x2, z2)−
∫
dx3dz3G(x1, z1;x3z3)h(x3, z3;x2, z2)

= (δ(x1 − x2)δ(z1, z2))

(1.27)

where h(x1, z1;x3z3) ≡ δ(z1, z2) 〈x1| ĥ(z1) |x2〉. Equations (1.26) and (1.27) are
the expression in the position-spin representation of the more general operator equa-
tions:

[
ı
d

dz1
− ĥ(z1)

]
Ĝ(z1, z2) = δ(z1, z2) (1.28)

and

Ĝ(z1, z2)

[
−ı
←−
d

dz2
− ĥ(z2)

]
= δ(z1, z2) (1.29)

The procedure to convert the equations of motion to the operator form as in equa-
tions (1.28) and (1.29) is general, so that one can construct the operator in first quanti-
zation for the n-particle Green’s function, as we do for the two-body Green’s function
G2 in section 1.3.

Because we are interested in the time-dependent ensemble average of one-body
operators, the time evolution of any of these is described by the real-time-axis defined
lesser Green’s function, with t′ > t:

G<ji(t, t
′) = ∓ı

T r
[
e−βĤ

M
d̂†i,H(t′)d̂j,H(t)

]
Tr
[
e−βĤM

] = ∓ı
∑
k

ρk 〈Ψk| d̂†i,H(t′)d̂j,H(t) |Ψk〉

(1.30)

where the ∓ sign stands for bosons/fermions, and the |Ψk〉’s are the quasi-particle
eigenstates of the interacting Hamiltonian explained in next section. The real time
d̂-operators are in the Heisenberg picture instead of the Keldysh contour one.

1.3 M E A N F I E L D T H E O RY: H A RT R E E - F O C K M E T H O D

Mean Field Theories have an associated Kadanoff-Baym Equation for the Green’s
Function. All the results described for the Hartree-Fock Method are general for Mean
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Field Theories and have their corresponding counterparts with more sofisticated DFT
functionals.

Interparticle interactions correlate the motion of a particle to the motion of all the
other ones. For the two-body interactions considered in equation (1.10), at most two
particles change their state. Under this approximation, a particle can scatter at most
with another particle and, after the scattering event, the two particles end up in new
states.

If the Hamiltonian includes interactions up to only two-body ones, as is the case of
(1.10), the two particles whose interaction is represented by Ĝ2(x1, z1,x2, z2;x′1, z

′
1,x
′
2, z
′
2)

feel the presence of all other particles but they are insensitive to their mutual position.
Then, the probability amplitude for the first particle to go from (x′;1, z′1) to (x1, z1)

and the second particle to go from (x′;2, z′2) to (x2, z2) is simply the product of the
probability amplitudes of the two separate events.

The interacting part Ĥint (equation (1.10)) of the Hamiltonian is not a one-body
operator. However, there exist different mean-field approximations which allow to
get suitable single-particle expressions, as is the case of Hartree-Fock.

In E we show that the ensemble average of the interaction part of the Hamiltonian is
proportional to the two-body Green’s function G2(x1, z1,x2, z2;x′1, z

′
1,x
′
2, z
′
2). We

now want to develope a suitable approximation to treat the two-body interaction part
as a one-body operator. Similar to the noninteracting equations 1.26 and 1.27, the
Kadanoff-Baym equations for the one-body Green’s function G(x1, z1;x2, z2) of in-
teracting systems are (Myöhänen et al., 2009; Stefanucci & Van Leeuwen, 2010):

[
ı
d

dz1
− h(x1, z1)

]
G(x1, z1;x2, z2) = (δ(x1 − x2)δ(z1, z2))

± ı
∫
dx3dz3v(x1, z1;x3, z3)G2(x1, z1,x3, z3;x2, z2,x3, z

+
3 ))

(1.31)

G(x1, z1;x2, z2)

[
−ı
←−
d

dz2
− h(x2, z2)

]
= (δ(x1 − x2)δ(z1, z2))

± ı
∫
dx3dz3v(x2, z2;x3, z3)G2(x1, z1,x3, z

−
3 ;x2, z2,x3, z3))

(1.32)

where both the zero-body Green’s funtion G0 ≡ 1 (multiplying the (δ(x1 −
x2)δ(z1, z2))) and the two-body Green’s funtion G2 appear, as stated by the Martin-
Schwinger Hierarchy for the one-body Green’s function G1.

The Hartree-Fock Method approximates the two-body Green’s functions presents
in (1.31) and (1.32) by one-body Green’s functions. Inserting approximation (1.33)
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into the equations of motion (1.31) and (1.32), we get (1.34) and (1.35), which do not
depend anymore on the two-body Green’s function:

G2(x1, z1,x2, z2;x′1, z
′
1,x
′
2, z
′
2) ∼ G2,HF (x1, z1,x2, z2;x′1, z

′
1,x
′
2, z
′
2)

≡ G(x1, z1;x′1, z
′
1)G(x2, z2;x′2, z

′
2)±G(x1, z1;x′2, z

′
2)G(x2, z2;x′1, z

′
1)

(1.33)

[
ı
d

dz1
− h(x1, z1)

]
G(x1, z1;x2, z2) = (δ(x1 − x2)δ(z1, z2))

+

∫
dx3dz3Σ(x1, z1;x3, z3)G(x3, z3;x2, z2))

(1.34)

G(x1, z1;x2, z2)

[
−ı
←−
d

dz2
− h(x2, z2)

]
= (δ(x1 − x2)δ(z1, z2))

+

∫
dx3dz3G(x2, z2;x3, z3)Σ(x3, z3;x2, z2))

(1.35)

where the ± sign in (1.33) stands for bosons/fermions. We have implicitly defined
the self-energy Σ:

Σ(x1, z1;x3, z3) = (δ(x1 − x3)δ(z1, z3))qVH(x1, z1)

+ ıv(x1, z1;x3, z3)G(x1, z1;x3, z
+
3 )

(1.36)

with

VH(x1, z1) = ± ı
q

∫
dx3dz3v(x1, z1;x3, z3)G(x3, z3;x3, z

+
3 )

=

∫
dx3v(x1,x3, z1)n(x3, z1)

(1.37)

where we use v(x1, z1;x3, z3) = δ(z1, z3)v(x1,x3, z1) and±ıG(x3, z1;x3, z
+
3 ) =

n(x3, z1), the density at point x3 in the position-spin representation and at time z1 in
the Keldysh contour.
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Inserting (1.37) in the equation of motion for the Green’s function (Stefanucci &
Van Leeuwen, 2010):

ı
d

dz1
G(x1, z1;x2, z2)

−
∫
dx3dz3

[
h(x1, z1;x3z3) + qVH(x1, z1)(δ(x1 − x3)δ(z1, z3))

+ ıv(x1, z1;x3, z3)G(x1, z1;x3, z
+
3 )
]
G(x3, z3;x2, z2)

= ı
d

dz1
G(x1, z1;x2, z2)−

∫
dx3dz3

[
h(x1, z1;x3z3)

+ Σ(x1, z1;x3, z
+
3 )
]
G(x3, z3;x2, z2) = (δ(x1 − x2)δ(z1, z2))

(1.38)

simplified by the use of the self-energy as:
with Σ(x1, z1;x3, z

+
3 ) = δ(z1, z3)E(x1,x3, z1).

We have to notice that the quantity

qVH(x1, z1)(δ(x1 − x3)δ(z1, z3)) (1.39)

is local both in time and space, while the quantity

v(x1, z1;x3, z3)G(x1, z1;x3, z
+
3 )

= δ(z1, z3)v(x1,x3)G(x1, z1;x3, z
+
3 )

(1.40)

is local in time (because of the δ-function) but is not local in space. However,
this supposes no additional complication for the equivalence with the noninteracting
Green’s function. Defining the Hartree-Fock potential as:

VHF (x1,x2, z) =

[
δ(x1 − x2)VH(x1, z) +

ı

q
v(x1,x2)G(x1, z;x2, z

+)

]
=

1

q

[
δ(x1 − x2)

∫
dxv(x1, x)n(x, z)± v(x1,x2)n(x1,x2, z)

]
(1.41)

where

n(x1,x2, z) = ±ıG(x1, z;x2, z
+) (1.42)

is the time-dependent one-particle density matrix, where the ± sign stands for
bosons/fermions. Introducing, also, the Hartree-Fock potential operator in first quan-
tization:

V̂HF (z) =

∫
dx1dx2 |x1〉VHF (x1,x2, z) 〈x2| (1.43)
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concluding that (1.41) is the matrix element (1, 2) in the position representation by
braketing between 〈x1| and |x2〉 of:

[
ı
d

dz1
− ĥ(z1)− qV̂HF (z1)

]
Ĝ(z1, z2) = δ(z1, z2) (1.44)

which has exactly the same structure as the equation of motion of a noninteracting
Green’s function. This is a completely general result: given an equation of the form
(1.38).

Now we are able to define the operator:

Ê =

∫
dx1dx2 |x1〉E(x1,x3, z1) 〈x2| (1.45)

and comparing with (1.38), which is the braket with 〈x1| and |x2〉 of the extended
interacting version of the noninteracting (1.28) with the interaction operator in (1.43):

[
ı
d

dz1
− ĥ(z1)− Ê(z1)

]
Ĝ(z1, z2) = δ(z1, z2) (1.46)

More generally, any approximation to G2 leading to an equation like (1.46) is a
mean-field approximation, which discards the direct interaction between the particles.
The corresponding mean-field G has the same structure as that of a noninteracting G.
This fact allows us to extend the results of (P. Hyldgaard, 2012; Per Hyldgaard, 2008)
for the nonequilibrium statistical operator in noninteracting systems to interacting
systems under a mean-field approximation, local in time, as is the case of Hartree-
Fock or DFT.

As we noticed in the first paragraph of this chapter, the interacting potential opera-
tor Ê has a sufficiently general form to encomprise any Mean Field Theory, as is the
case of DFT, not only Hartree-Fock.

1.4 S T E A DY- S TAT E F O R M A L I S M

1.4.0.1 Equations of motion

For steady state, which we consider here, the Green’s functions depend only on the
time difference t − t′ , which we can Fourier transform to energy. By Fourier trans-
forming (1.34), under the steady-state condition, we get the Keldysh-Kadanoff-Baym
equation of motion for the Green’s function in the energy (or frequency) domain:

[E − h(x1)]GR(x1,x2;E) = +

∫
dx3ΣR(x1,x3;E)GR(x3,x2;E) + δ(x1 − x2)

(1.47)
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and from reference (Myöhänen et al., 2009) we also have the Keldysh-Kadanoff-
Baym equation of motion for the lesser Green’s function:

[E − h(x1)]G<(x1,x2;E)−
∫

dx3ΣR(x1,x3;E)G<(x3,x2;E)

=

∫
dx3Σ<(x1,x3;E)GA(x3,x2;E)

(1.48)

By expanding the operator equation (H.11) in the position representation, we get
the equivalent integral formulation of (1.48), we have:

G<(x1,x2;E) =

∫
dx3

∫
dx4G

R(x1,x3;E)Σ<(x3,x4;E)GA(x4,x2;E)

(1.49)

where the lesser self-energy is defined as:

Σ<(x1,x3;E) = ∓ıf(E − µ)Γ(x1,x3;E) (1.50)

where f is the Fermi distribution function and f̄ its complementary, defined in
(H.6).

In Hartree-Fock the Keldysh-Kadanoff-Baym equation can be written by Fourier
transforming equation (1.38)

[
E −

∫
dx3 (h(x1,x3;E) + ΣHF (x1,x3;E))

]
G(x1,x2;E)

−
∫
dx3ΣR/A

c (x1,x3;E)G(x3,x2;E) = δ(x1 − x2)

(1.51)

The Hartree-Fock self energy Σ
R/A
HF , derived from equations (1.41) and (1.43) is:

Σ
R/A
HF (x1,x2;E) = qVHF (x1,x2) (1.52)

in the long-time limit steady state the Hartree-Fock potential V R/A
HF (x1,x2) does

not depend on time nor energy, so does not the associated the self-energy. Because of
its definition, ΣHF is real.

The correlation self energy takes into account all the effects beyond Mean-Field
(HF) and has the structure shown in (H.4) (Stefanucci & Van Leeuwen, 2010; Ste-
fanucci & Almbladh, 2004).

The embedding self-energy is not yet present, because it is an artifact of the parti-
tion, a tool to represent the effects of the leads connected to the central region C.

Equations (1.49) and (1.51) are the key ingredients to solve the steady sate trans-
port problem in quantum devices. However, the position-spin representation is not
the most tractable.
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1.4.0.2 NEGF Transport matrix formulation

Changing the basis from the position-spin representation to the general basis of the
ϕ(x) as in (1.13), the Green’s function matrix in the frequency (or energy) domain
satisfies the matrix equation:

∑
k

(E+Sik −Hik)G
R
kj(E) = δij (1.53)

where E+ = E + ıη where η is a positive infinitesimal and where the quantity
Sik is introduced multiplying the energy eigenvalue E because of the generalization
of the eigenvalue problem to a nonorthogonal basis. We have implicitly defined the
overlap matrix elements Sik for nonorthogonal basis, which is the case for LCAO:

Sij =

∫
d3rϕ∗i (x)ϕj(x) (1.54)

Equation (1.53) involves infinite matrix whose elements are the matrix ones in
the basis formed by the orbital functions ϕ(x), which in our case correspond to a
linear combination of atomic orbitals (LCAO). By partitioning the space into a central
region C and different electrodes connected to it and disconnected between them,
following the Caroli partition scheme (Datta, 1995; Caroli et al., 1971), we represent
the Hamiltonian in equation (1.4) as a block partitioned matrix:

H =



H11 0 0 ... H1C

0 H22 0 ... H2C

0 0 H33 ... H3C

. . . . .

. . . . .

. . . . .

HC1 HC2 HC3 ... HCC


(1.55)

In the same way as the Hamiltonian, the self-energy and the Green’s function matri-
ces are also partitioned in blocks for the central region C and the reservoirs labelled
α = 1, 2.... Each block is a matrix, and corresponds to the projection of the full
matrix onto the subspace of localized functions ϕi(x) for this reservoir or onto the
subspace of the central region C.

For practical purposes, in this section we will restrict the problem to the case of two
reservoir electrodes L/R, which is the minimum example to illustrate the nonequilib-
rium quantum transport physics. The Hamiltonian (1.55) results:

H =

HLL HLC HLR

HCL HCC HCR

HRL HRC HRR

 (1.56)
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Rewriting (1.53) in matrix form:

E
+SLL −HLL E+SLC −HLC E+SLR −HLR

E+SCL −HCL E+SCC −HCC E+SCR −HCR

E+SRL −HRL E+SRC −HRC E+SRR −HRR



×

G
R
LL GRLC GRLR

GRCL GRCC GRCR

GRRL GRRC GRRR

 =

1LL 0 0

0 1CC 0

0 0 1RR


(1.57)

Typically the inter-electrode blocks of the Hamiltonian and the overlap matrices
HLR, HLR, SLR and SRL are negligible, and thus the solution for the matrix Green’s
function GRCC results:

GRCC =
1[

E+SCC −HCC − ΣR
L(E)− ΣR

R(E)
] (1.58)

where the quantity SCC is introduced multiplying the energy eigenvalue E, as in
(1.53), because of the generalization of the eigenvalue problem to a nonorthogonal
basis. The embedding self-energies are the expansions in the ϕi(x) orbitals of the
operators in (F.27):

ΣR
L(E) = (E+SCL −HCL)gRLL(E+SLC −HLC)

ΣR
R(E) = (E+SCR −HCR)gRRR(E+SRC −HRC)

(1.59)

where the unperturbed Green’s functions of the leads is the conversion to a nonorthog-
onal basis of (F.21):

gRLL =
1

[E+SLL −HLL]

gRRR =
1

[E+SRR −HRR]

(1.60)

Equation (1.60) expresses the Green’s function in the molecule in terms of the
Hamiltonian matrix elements in the same region, with the coupling to the left and
right electrode included rigorously in terms of the self-energy operators ΣR

L(E) and
ΣR
R(E). Note again that due to the short-range nature of the basis set, only the finite

block of gRLL(RR) is needed for the calculation of ΣR
L(R)(E) corresponding to the

orbital basis in the left(right) electrode that have non-negligible L(R) overlap with
the orbital basis in the extended molecule. So the calculation of GRCC involves matrix
operations only on finite matrices. The matrix self-energy operator can be taken as the
matrix elements of a non-local operator in real space, as defined in equations (F.19)
and (F.20).
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As we have deduced in appendix F.1, the lesser/greater Green’s function matrix is
the representation in the general basis of the ϕi(x) of (F.25):

G<(E) = GR(E)Σ<(E)GA(E) (1.61)

Because of the decomposition of the embedding self-energy between the different
contacts defined in (F.18) and the definition for the reservoir α lesser self-energy
operator in (F.26), we can rewrite the lesser Green’s function matrix as:

Σ<(E) = Σ<
L (E) + Σ<

R(E) = iΓL(E)f(E − µL) + iΓR(E)f(E − µR) (1.62)

since there is no “lesser” self-energy operator associated with V xc . And we can
express the correlation function in terms of the distribution in each electrodes:

G<(E) = ı[GR(E)ΓL(E)GA(E)]f(E − µL) + i[GR(E)ΓR(E)GA(E)]f(E − µR)

(1.63)

where the products within the brackets are matrix products. Every physical observ-
able of interest can be computed from the matrix correlation function G<ij .

But often it is more useful to compute the terminal current directly from the ma-
trix Green’s function and the matrix self-energy operators. This can be achieved by
defining a current in the position representation, as in reference (Caroli et al., 1971):

I(x,x′;E) =
e

h
[H(x1)G<(x1,x2;E)−G<(x2,x1;E)H(x2)] (1.64)

whose diagonal elements give the divergence of the current density:

I(x,x;E) = ∇ · ~J(x;E) (1.65)

Converting from the position representation to the suitable matrix representation
in the basis of the ϕi(x) orbitals:

I =
e

h

∫
dE
[
H,G<

]
− (1.66)

Again we have made the transformation from the position representation to the
general basis of the ϕi(x) operators, getting the matrix equation involving the Hamil-
tonian and correlation function matrices. From here on the usual derivation using the
matrix notation, often used in second quantization, can be carried through without
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changeproviding us the final form for the current through each terminal (Xue, Datta,
& Ratner, 2002; Datta, 1995, 2005):

IL(R) =
e

h

∫
dETr

[
ΓL(R)[f(E − µL(R))A(E) + iG<(E)]

]
(1.67)

where the replacement of the spectral function operator Â(E) by its definition in
(F.24), expanded in the ϕi(x) basis, results in:

IL(R) =
e

h

∫
dETr[ΓL(E)GR(E)ΓR(E)GA(E)][f(E − µL)− f(E − µR)]

(1.68)

where the rate operator matrices for both leads are:

ΓL(E) = i(ΣR
L(E)− [ΣR

L(E)]†),

ΓR(E) = i(ΣR
R(E)− [ΣR

R(E)]†)
(1.69)

1.4.1 Transient solution

The equal time lesser Green’s function matrix (Stefanucci & Van Leeuwen, 2010)
can be calculated from the matrix equations of motion (F.1) and (F.2) by setting

z = t− and z′ = t′+, substracting the former from its adjoint, the latter, and setting
t′ = t:

ı
d

dt
−
[
h(t), G<(t, t)

]
−

=
[
GR · Σ<

em +G< · ΣA
em +Ge ? Σdem

]
(t, t) + H.c.

(1.70)

where Ge, Σd are functions whose expressions are detailed in appendix H.

− ıG<(t, t) =

∫
dE

2π
f(E − µ)

∑
α

{
Aα(E + Vα)

+ Vα

[
eı(E+Vα−heff )tGR(E)Aα(E + Vα) + H.c.

]
+ V 2

α e
−ıheff tGR(E)Aα(E + Vα)GA(E)eıh

†
eff t

}
(1.71)

where heff = h+ Σem and the partial spectral function Aα(E) for each reservoir
is

Aα(E) = GR(E)Aα(E + Vα)GA(E), (1.72)
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satisfying

A(E) =
∑
α

Aα(E). (1.73)



2
T H E O RY

2.1 A B S T R AC T

Nonequilibrium Electron Transport through metallic contacts at the nanoscale has
been studied theoretically and with experiments. However, not only Nonequilibrium
Transport, but mechanical phenomena appear in such devices. These appear due to
the exchange of particles with the reservoirs, tractable through the grand canonical
ensemble[1]. If present, Nonequilibrium Quantum Transport also contributes to the
forces on atoms, as is the case of Electromigration. These forces cause the transfer of
atoms between metallic electrodes and surfaces mediated by an applied bias voltage
(Salgado and Palacios, 2019).

2.2 I N T RO D U C T I O N

As we learned in freshman physics, specifically in Ch. 8 of Feynman’s Lectures on
Physics (Feynman, 1964), the force between the plates of an isolated parallel-plate
condenser, with fixed charge in each plate, is equal to the change in electrostatic inter-
nal energy of the condenser, which is attractive because of the attraction of opposite
charges:

U(Q) =
Q2

2C
; F∆z = − Q2

2C2
∆C (2.1)

where C is the capacitance and Q the charge on each plate. However, if the con-
denser is supposed to be held by a battery at a constant potential difference V between
the plates, where the charge is not fixed anymore, but determined as Q = V C, the
internal energy and the force become:

U(V ) =
CV 2

2
; F∆z =

V 2

2
∆C (2.2)

where the force is repulsive, which must be wrong, and opposite to the one in (2.1).
The error committed in (2.2) is that we have not taken into account the work done by
the condenser on the battery. To keep the potential drop between the plates constant
as these move, changing the capacitance, a charge ∆Q = V∆C must be supplied
to the condenser by the battery, at the potential of the electrodes, so that the work
done by the condenser to keep the potential constant is We = V∆Q = V 2∆C. The
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mechanical work Wm plus this electrical work We make the change in the particle
exchanging open-system energy of the condenser:

Wm +We = F∆z + V 2∆C =
V 2

2
∆C

F∆z = −V
2

2
∆C

(2.3)

so that we recover the attractive force in (2.1). As we will see in next sections,
something similar happens to quantum devices, not only with an applied bias voltage,
but also with a temperature gradient between the electrodes.

The formulation of the problem rests on an open-boundary model described by
the NEGF. We implemented this framework at the DFT level in a LCAO basis. The
DFT-Hamiltonian for the infinite open system works as the Lippmann-Schwinger
(LS) Hamiltonian in equation (2.7) for the scattering of electrons through the device,
as described by Hyldgaard in references (Per Hyldgaard, 2008; P. Hyldgaard, 2012)
following Herschfield’s work in (Hershfield, 1993). The LS eigenstates diagonaliz-
ing (2.7) form the density matrix tractable through DFT. The open system bound-
ary conditions allow the device to exchange electrons with the reservoirs. The grand
canonical ensemble energy, whose negative gradient describes the forces (Eq.4), is
the Grand Potential Ω described in section 2.3.1, instead of the Internal Energy U ,
calculated from the Hamiltonian Ĥ , valid for isolated systems.

The remaining question concerns the mechanism for the dissipation of this energy
to occur. Instead of reproducing it by the creation of any phonons in the crystalline
lattice, the work associated to the inelastic displacement of the atoms caused by the
forces derived as the gradient of the canonical grand potential Ω explains this dissi-
pation.

2.3 E Q UAT I O N S

2.3.1 Canonical Grand-Potential Ω

The conversion between Ĥ and Ω̂ is performed as the classical Legendre transforma-
tion from the internal energy U(N,S) to the canonical grand-potential Ω({µα} , T )

in equation (2.4)(P. Hyldgaard, 2012; Per Hyldgaard, 2008), where α labels the dif-
ferent reservoirs connected to the system at a chemical potential µα and an inverse
temperature βα = 1/(kBT ), where kB is the Boltzmann constant and T the tempera-
ture. Substracting the Gibbs free energy Y = Y Q+Y E , given by the nonequilibrium
statistical operator, also called Gibbs free energy operator, Ŷ = Ŷ Q + Ŷ E , where Q
stands for charge and E for energy, described in section 2.3.2, we have:

Ω({Tα} , {µα}) = U(S, {Nα})
− Y Q({µα} , {Nα})− Y E({Tα} , {Sα})

(2.4)

where α labels the different reservoirs connected to the system. In (2.4) there ap-
pear the common thermodynamic variables: chemical potential µ, number of particles
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N , the temperature T and entropy S. The detailed structure of the energies Y Q and
Y E will be discussed in section 2.3.2 from the structure of its associated operators.

It is important to notice that the canonical grand potential Ω can’t be calculated for
infinite systems lake the ones we are dealing with. Instead of it, grand potential energy
variations ∆Ω appeared in the vicinity of the scattering region can be calculated. Only
in the proximity of the scattering region the perturbations on the electronic density are
considered to be non-negligible, and thus this grand potential differences are enough
to reproduce the physics related to the scattering event.

The conversion to second quantization one-body operators:

Ω̂ = Ĥ − Ŷ Q − Ŷ E = Ĥ − Ŷ (2.5)

From now on, second quantization operators will be denoted with modern letters,
Ŷ , while first quantization operators will be denoted by calligraphic ones, Ŷ .

The energies are calculated as the ensemble averages of one-body operators de-
scribed in equation (H.23) of appendix H.1.

Ω = 〈Ω̂〉; U = 〈Ĥ〉; Y = 〈Ŷ 〉; (2.6)

2.3.2 Nonequilibrium statistical operator

Throughout this work we always work with (non)interacting systems whose scatter-
ing Hamiltonian in second quantization can be expressed as a one-body operator,
quadratic in the ψ̂-operators for the scattering eigenstates which diagonalize it, as:

Ĥ(x′, t′;x, t) =
∑
αkσ

εαkσψ̂
†
αkσ(x, t)ψ̂αkσ(x′, t′) (2.7)

where α labels the different reservoirs from which electrons are injected, while
k is a generic label for the eigenstates in each reservoir and σ separates both spin
components.

On the basis for the one-body operators constituted by the Green’s function, it is
easy to write the nonequilibrium statistical operator or Gibbs Free Energy Operator
for open systems which interchange particles with one or various reservoirs at a chem-
ical potential µα (J. E. Han, 2007; J. E. Han & Heary, 2007; Dutt, Koch, Han, & Le
Hur, 2011; Jong E. Han, Dirks, & Pruschke, 2012; Jong E. Han & Li, 2013). The
calculation of thermodynamic forces rests on the derivatives of this operator:

Ŷ Q(x′, t′;x, t) =
∑
αkσ

µαψ̂
†
αkσ(x, t)ψ̂αkσ(x′, t′) (2.8)

In a similar fashion, it has been deduced (Ness, 2014, 2017) an expression for
the nonequilibrium statistical operator Ŷ E in the presence of a temperature gradient
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between two electrodes L/R, which treats the energy flow between the electrodes
instead of the particle interchange. Compared to (2.8), it becomes:

Ŷ E(x′, t′;x, t) =
∑
αkσ

βα − 〈β〉C
〈β〉C

εαkσψ̂
†
αkσ(x, t)ψ̂αkσ(x′, t′) (2.9)

where the εαkσ are the energy eigenvalues of the particles deep inside each reser-
voir, as for the Hamiltonian, βα = 1/(kBTα) is the inverse temperature at which
the particles are injected from each reservoir α and 〈β〉C is the inverse temperature
promediated in the central or scattering region by means of the central region C par-
tial number of particles injected from each lead as described in equation (F.31) from
section F.1:

〈β〉C =

∑
α βαNα∑
αNα

(2.10)

As suggested by Ness (Ness, 2014, 2017), in the pressence of both, interchange of
particles with the reservoirs and a temperature gradient between them, (2.8) has to be
rewritten as:

Ŷ Q(x′, t′;x, t) =
∑
αkσ

βα
〈β〉C

µαψ̂
†
αkσ(x, t)ψ̂αkσ(x′, t′) (2.11)

Of course, if there is no temperature gradient between the reservoirs, equation
(2.11) reduces to (2.8).

As stated by Ness (Ness, 2014, 2017), at thermal equilibrium, βα = 〈β〉C for all
α and thus, Ŷ E vanishes. However, at chemical equilibrium, with a single chemical
potential µα = µeq, Ŷ Q does not vanish. It is important to recall that Ŷ Q exists
because of the presence of any particle reservoirs which provide particles at a fixed
chemical potentiual, while Ŷ E exists only because of the presence of a temperature
gradient βα − 〈β〉C between the reservoirs and the central or scattering region C.

From equations (2.7), (2.8), (2.9) and (2.11) we deduce that both Ŷ Q and Ŷ E

commute with the Hamiltonian, since the three operators share the basis of the scat-
tering eigenstates. The three operators are closely related to the density operators
N̂α(x′, t′;x, t) of the number of particles injected from each lead α:

N̂α(x′, t′;x, t) =
∑
kσ

ψ̂†αkσ(x, t)ψ̂αkσ(x′, t′) (2.12)

where the ψ̂αkσ(x′, t′) denote the eigenstates coming from reservoir α, satisfying:

N̂ =
∑
α

N̂α (2.13)
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When there is only a single reservoir with a common chemical potential µ for the
system molecule-reservoir, the expression (2.8) reduces to:

Ŷ Q(x′, t′;x, t) =
∑
kσ

µψ̂†kσ(x, t)ψ̂kσ(x′, t′) = µN̂(x′, t′;x, t) (2.14)

while (2.9) vanishes, because 〈β〉C = β:

Ŷ E(x′, t′;x, t) =
∑
kσ

β − 〈β〉C
〈β〉C

εkσψ̂
†
kσ(x, t)ψ̂kσ(x′, t′) = 0̂ (2.15)

From now on, the spin label σ will ve neglected, but all operators may have two
different spin components, for example Ŷ = {Ŷ+, Ŷ−}, which satisfy the same equa-
tions.

In first quantization, the number operator is related to the lesser Green’s function
as N̂ (x, t) = ±ıĜ<(t; t+). The lesser/greater Green’s functions can be expressed in
the position representation:

Ĝ≶(t, t′) =

∫
dxdx′ |x〉G≶(x, t;x′, t′)

〈
x′
∣∣ (2.16)

or in the general basis representation:

Ĝ≶(t, t+) =
∑
ji

|j〉G≶
ji(t, t

+) 〈i| (2.17)

Where the real time lesser/greater Green’s function operator Ĝ≶(t, t′) in the steady-
state long-time limit can be extracted from the convolution (Stefanucci & Almbladh,
2004; Myöhänen et al., 2009; Stefanucci & Van Leeuwen, 2010)

lim
t,t′→∞

Ĝ≶(t, t′) =

∫
dt1dt2ĜR(t, t1)Σ≶(t1, t2)ĜA(t2, t

′) (2.18)

and setting t′ = t+. The lesser/greater self-energy Σ≶(t1, t2) in equation (2.18) is
defined in appendix F.1.

When Fourier transforming, because the convolution only depends on time differ-
ences, it reduces to a simple product of operators:

Ĝ≶(E) = ĜR(E)Σ≶(E)ĜA(E) (2.19)
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which can be rewritten as a sum of partial spectral lesser/greater Green’s function
operators as:

Ĝ≶(E) =
∑
α

Ĝ≶α (E)

Ĝ≶α (E) = ĜR(E)Σ̂≶
α(E)ĜA(E)

(2.20)

This result is enough to calculate steady-state quantities, instead of solving the
Kadanoff-Baym equations.

With operator Ŷ , we get the key ingredient to calculate thermodynamic forces from
now on. Because the nonequilibrium statistical operator for particle exchange ŶQ is
proportional to the number operator corresponding to each reservoir:

ŶQ =
∑
α

ŶQα =
∑
α

βα
〈β〉C

µαn̂α =
∑
α

βα
〈β〉C

µα

∞∫
−∞

dE
1

2πı
Ĝ<α (E) (2.21)

while the nonequilibrium statistical operator for heat exchange ŶE is:

ŶE =
∑
α

ŶEα =
∑
α

βα − 〈β〉C
〈β〉C

∞∫
−∞

EdE
1

2πı
Ĝ<α (E) (2.22)

and, of course:

Ŷ = ŶQ + ŶE (2.23)

Equations (2.23) for the nonequilibrium statistical operator is valid, not only for
noninteracting systems (Per Hyldgaard, 2008; P. Hyldgaard, 2012), but for interacting
ones under a mean-field description (Hartree-Fock, DFT), whose Green’s function,
after the self-consistency is reached, satisfies an equation of motion like (1.46) in
appendix 1.3, analogous to the noninteracting (1.28), but including a one-body, local
in time, approximation for the interactions.

Since the non-equilibrium density matrix is given by

ρ̂ne =
1

2πı

∞∫
−∞

dEĜ<(E) (2.24)

the non-equilibrium contributions to the grand canonical potential given by Eqs. (2.21)
and (2.22) can now be calculated as

Y Q =
∑
α

Y Q
α =

∑
α

βα
β̄
µα

1

2πı

∞∫
−∞

dETr
[
Ĝ<α (E)

]
, (2.25)
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Y E =
∑
α

Y E
α =

∑
α

βα − β̄
β̄

1

2πı

∞∫
−∞

dEETr
[
Ĝ<α (E)

]
(2.26)

Here we have used the fact that

Ĝ<Âα = Ĝ<α Âα = Ĝ<α

which can be easily demonstrated taking into account that

Ĝ<β Âα(E) = δαβĜ<β (E)

and noting that Ĝ<α (E) is the projector on the occupied subspace of Âα(E).

2.3.3 Forces

There are different methods to calculate forces on atoms in quantum chemistry and
condensed matter physics. Using DFT-methos based on a linear combination of atomic
orbitals (LCAO from now on) to describe the problem is a common practice, because
of the dependence of the wavefunctions on the atomic coordinates. This dependence
is propagated from the wavefunctions to the functional evaluations. Calculating the
derivatives of the functionals with respect to the atomic coordinates is then reduced to
a careful application of the chain rule. By doing this, the generalized gradient of the
functional, also called the jacobian matrix (which has only one row or column), and
the matrix of the second derivatives, the hessian matrix, can be calculated. The gen-
eralized gradient or jacobian in conjunction with the total energy (extracted from the
grand potential Ω) are the key ingredients to perform DFT-based Molecular Dynam-
ics calculations, by means of algorithms like BFGS (Peng, Ayala, Schlegel, & Frisch,
1996) or Berny (Vreven, Morokuma, Farkas, Schlegel, & Frisch, 2003). Eventually,
the hessian matrix is useful to calculate transition geometries or saddle points.

If a LCAO is used to describe the operators in the DFT-calculation, the equilibrium
positions of the total number P of atoms are calculated by minimizing functional
Ω(β, µ) with respect to the basis centers, located on the atomic positions, instead of
the internal energy U(S,N), as for closed systems.

The 3P -dimensional gradient of the Ω functional gives the generalized grand canon-
ical ensemble force FGCE

Ri
acting on atom i until they reach equilibrium, when the

gradient or jacobian becomes vector ~0. The force on atom i is the negative of the 3-D
gradient∇i = ∂

∂Ri
with respect to theRi = (xi, yi, zi) coordinates:

FGCE
Ri

= −
〈

∂

∂Ri
Ω̂({βα} , {µα} , {Rj})

〉
= −

〈
∂

∂Ri

[
Ĥ({Rj})− Ŷ ({βα} , {µα} , {Rj})

]〉 (2.27)



26 T H E O RY

where indices i, j go over the P atoms. The concatenation of the P 3D-vectors
forms the 3P -dimensional jacobian vector of derivatives useful for the geometry op-
timization calculations described in section 2.3.4. In case of any of the three spatial
coordinates for atom i is frozen, not subject to the minimization, it will be not in-
cluded in the jacobian.

2.3.4 Analytical derivatives

In this section we present the details of the actual implementation of the equations
discussed above using as an example Eq. (2.25). Differentiating with respect to the
coordinateRi, which can be the x, y or z component of the ith atom:

∂

∂Ri
Y Q =

∑
α

βα
β̄
µα

∞∫
−∞

dE
∂

∂Ri
Tr
[
Ĝ<α (E)

]

=
∑
α

βα
β̄
µα

∞∫
−∞

dETr

[
∂

∂Ri
Ĝ<α (E)

]
.

Now taking into account the expression for Ĝ<α (E) in:

Ĝ≶ =
∑
α

Ĝ≶α

Ĝ≶α = ĜRΣ̂≶
α ĜA.

(2.28)

and applying the chain rule:

∂

∂Ri
Ĝ<α (E) =

∂

∂Ri

[
ĜR(E)Σ̂<

α (E)ĜA(E)
]

=
∂

∂Ri

[
ĜR(E)

]
Σ̂<
α (E)ĜA(E)

+ ĜR(E)
∂

∂Ri

[
Σ̂<
α (E)

]
︸ ︷︷ ︸

0

ĜA(E)

+ ĜR(E)Σ̂<
α (E)

∂

∂Ri

[
ĜA(E)

]
Notice that

∂Σ̂<
α (E)

∂Ri
= 0

since the self-energy can always be taken independent of the moving coordinates of
the central region when connecting the electrode sufficiently far away. In this regard
one decision to make concerns the size of this central region, i.e., the actual Hamilto-
nian H . Even if the atomic coordinates of the reservoir are considered fixed, energy
changes may occur outside the central region since the electronic perturbation can
propagate into the reservoir. The only way to guarantee this is by making the central
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region larger and larger until convergence in the size is achieved. Alternatively, de-
pending on how many atoms are included in the central region, it may be necessary to
calculate the perturbation on the electronic density of the first layers of the electrodes
and update their self-energy accordingly in the self-consistency.

Now we represent the operators on a generic non-orthogonal basis where the re-
tarded and advanced Green’s function operators become matrices

GR(A)(E) =
[
(E ± ıη)S − (H+ Σ(†)(E))

]−1
,

where

Σ(E) =
∑
α

Σα(E).

We apply now the differentiation rule for inverse matrices:

∂

∂X
[K]−1 = [K]−1

[
∂

∂X
K
]

[K]−1

to obtain

∂

∂Ri

[
GR/A(E)

]
= GR/A(E)

[
(E ± iη)

∂S
∂Ri

− ∂H
∂Ri

]
GR/A(E).

(2.29)

Also notice that we have used the fact that

∂Σ(E)

∂Ri
= 0

in Eq. (2.29) which further simplifies the evaluation.
As anticipated in previous section, interactions will be described in the framework

of HF or DFT. Localized atomic orbitals are a standard choice in many codes and are
appropriate to partition the infinite system into the central part and the reservoirs (D
Jacob & Palacios, 2011). Theoretical chemistry codes such as Gaussian (g16) or our
quantum transport code based on it, ANT.Gaussian (J. J. Palacios, Pérez-Jiménez,
Louis, & Vergés, 2001; D Jacob & Palacios, 2011) use gaussian-type orbital basis.
These are convenient since analytical expressions are available for the matrix ele-
ments of one-body operators such as the electron-nuclear interaction Ve−N , the ki-
netic energy T (which adds to the the noninteracting Hamiltonian H0 = Ve−N + T ),
the overlap S, and also the two-body integrals necessary to construct the electron-
electron interaction matrices Ve−e = J +K (in the H-F approximation). To calculate
the forces, first (and second) analytical derivatives of the matrix elements are also
available with respect to the coordinates of the atomic centers on which the basis
elements are centered:

∂

∂Ri
Ojk; O = Ve−N , T, S, J,K... (2.30)
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where O can be any of the matrices which represent the operators in the problem.
In steady-state, the Gibbs Free Energy for each lead considered in equilibrium

with it’s chemical potential µL,R can be calculated from the density of states of the

electrodes D̂L,R(E) =
1

2πı
GL,R(E):

〈Ŷ Q
α 〉 = µα

∞∫
−∞

dE
1

2πı
Gα(E) = µαN̂α (2.31)

In the central region there is no unique chemical potential to be considered, but the
charge can be separated by means of the partial spectral density matrix in 2 contribu-
tions

〈Ŷ Q
C 〉 =

∑
α=L,R

µα

∞∫
−∞

dEE
1

2πi
G<α,ij(E) (2.32)

In the central region C, there may exist isolated states which do not cross to any of
the reservoirs. Because of this fact, these states do not contribute to the work done by
the reservoirs on the system and need not to be included in the calculation of Ŷ Q

C .
then given as:

2.4 R E S U LT S

We perform calculations on atomistic systems in equilibrium and out of equilibrium
like the one depicted fig. 4.1. The equilibrium geometries are reached following the
gradient of the canonical grand potential Ω, and correspond to its minima with respect
to the coordinates of each atom.

Figure 2.1: Toy representation of an atomic contact between whose two tips an atom can be
moved by means of bias or temperature, following the gradient of the canonical
grand potential Ω
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2.4.1 Atom adsorption onto a single electrode: checking the method

How can we check that our method is correct? By comparing the results obtained
for the canonical grand potential Ω of an adatom chemisorbing on an infinite chain
(system (b) in fig. 2.2) with the ones obtained for the adatom chemisorbing on a finite
but big chain, by calculating the internal energy U (system (a) in fig. 2.2).

Because we are dealing with infinite systems (system (b) in fig. 2.2), it is not cor-
rect to speak about the total canonical grand potential, but canonical grand potential
differences calculated for the selected region of the system on which the perturba-
tion is not negligible. Along the infinite reservoirs used, the perturbation due to the
chemisorption of an adatom is considered to vanish.

2.4.1.1 Noninteracting electrons

For a finite chain of atoms populated by noninteracting electrons (system (a) in fig.
2.2), therefore, electron-hole symmetric, the internal energy vs. position curve for
the chemisorption of an adatom can be calculated at any chemical potential. It can be
calculated at µ = 0, which is the neutral condition. But it can be also calculated at
µ = µL, the chemical potential of the LUMO, or µ = µH = −µL (because of the
electron-hole symmetry), the chemical potential of the HOMO.

If we compare the canonical grand potential Ω vs. position curves for such a
chemisorption at any chemical potential (blue, green and yellow lines in fig. 2.3),
the results must approach those of the internal energy U vs. position for a finite but
big chain (dotted blue line in fig. 2.3). If the finite chain is taken increasingly long,
both results must match. However, if only the Hamiltonian and the internal energy U
are calculated for the first atoms of infinite chains (purple, brown and red lines in fig.
2.3), the result must differ from the reference one, as shown in fig. 2.3.

Depending on how many atoms are included in the central region C in the Caroli
partition scheme, it will be necessary or not to calculate the perturbation on the elec-
tronic density in the first layers of the source reservoir S. The projection of the Gibbs
free energy operator can be calculated as:

ŶQSS = µ

∞∫
−∞

dE
1

2πı
ĜSS(E) (2.33)

where ĜSS(E) and its matrix form GSS(E) are calculated in (F.29) and (F.28)
respectively.

Because only one electrode is involved, its chemical potential µ is common for
the whole system, and the projection of the Gibbs free energy operator in the central
region can be calculated as:

ŶQCC = µ

∞∫
−∞

dE
1

2πı
Ĝ<CC(E) (2.34)
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Figure 2.2: Two different systems to be compared. System (a) is a finite chain to whose tip
the red adatom can be chemisorbed, developing the internal energy U vs. position
x curve. System (b) is an infinite chain, modelled by a 1D-reservoir, to whose tip
the red adatom can be also chemisorbed, developing, in this case, the canonical
grand potential Ω vs. position x curve.

Figure 2.3: Energy-distance curves for the adsorption of an adatom on the tip of a chain.
The blue dotted line represents the internal energy U curve for the adsorption on
a finite 20-atom chain. The purple, brown and red lines, which lie far below the
dotted one, represent the internal energiesU of 2-, 3- and 4-atom chains connected
to an infinite reservoir chain providing the open boundary conditions, which are
not correct. The blue, red and yellow lines, which approach progressively the
dotted one, represent the canonical grand potential Ω of 2-, 3- and 4-atom chains
connected to an infinite reservoir chain providing the open boundary conditions,
which are correct.
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2.4.1.2 Interacting electrons

Following the same philosophy as in section 2.4.1.1, it is convenient to compare the
results for the grand potential Ω vs. position curves of interacting systems with the
ones obtained for the internal energy U vs. position of isolated but big systems. As
a reference, we have used the LCAO based Gaussian chemistry code (M. J. Frisch,
Trucks, Schlegel, Scuseria, Robb, Cheeseman, Scalmani, Barone, Mennucci, Peters-
son, Nakatsuji, Caricato, Li, Hratchian, Izmaylov, Bloino, Zheng, Sonnenberg, Hada,
Ehara, Toyota, Fukuda, Hasegawa, Ishida, Nakajima, Honda, Kitao, Nakai, Vreven,
Montgomery, Jr., et al., 2009).

For our purpose, the reference calculation performed by Gaussian consists of a 20-
atom single-orbital isolated chain under unrestricted Hartree-Fock (UHF) from which
one apex atom is extracted. While the chemical bond between the atom and the chain
resists, the system remains in a singlet or restricted Hartree-Fock (RHF) solution (see
fig. 2.4). However, when the chemical bond breaks, an unpaired electron jumps to the
atom, leaving also an UHF density matrix in the chain (see fig. 2.4).

To be compared with the 20-atom isolated chain, we choose a 6-atom chain, treated
as the central regionC, connected to an infinite reservoir at a fixed chemical potential,
from which it can take as many electrons as it needs. In this 6-atom central region,
we calculated both, the internal energy U and the grand potential Ω.

While separating the apex atom from the rest of the chain, the transition from
the RHF density to the UHF one occurs, forcing an abrupt charge rearrangement in
the central region, which forces the reservoir to inject electrons into it. Before the
breakup of the bond, the central region contains a tip accumulating charge. However,
after the breakup, it contains not only a tip, but also an isolated atom, accumulating
more charge. In the case of the isolated chain, it implies a charge defect along the
rest of the chain, except for both apex, which accumulate charge. In the case of the
infinite chain, however, no charge-per-atom defect appears.

When calculating the internal energy of the central region for the infinite system,
this charge accumulation implies an abrupt increment of the internal energy, which is
shown in fig. 2.4. But from the reference calculation, we know that this increment in
the internal energy is compensated with the charge defect in the rest of the chain. The
work done on the rest of the chain is what the internal energy of the central region
does not take into account, in analogy to the classical case in section 2.2. However,
the Gibbs free energy solves this problem, equilibrating the energy imbalance and
recovering the energy vs. position profile for the grand potential, as can be seen in fig.
2.4.

The curves in 2.4 were calculated with Hydrogen atoms modelled by the STO-3G
basis (Gordon, Binkley, Pople, Pietro, & Hehre, 1982). All the curves are calculated
through the Hartree-Fock Method.
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Figure 2.4: Energy-distance curves for the adsorption of an adatom on the tip of a chain. The
blue line represents the internal energy U curve for the adsorption on a finite
20-atom chain. The red discontinuous line represents the internal energies U of
a 6-atom chain connected to an infinite reservoir providing the open boundary
conditions. The yellow dotted line, which approaches the blue one, represents the
canonical grand potential Ω of a 6-atom chain connected to an infinite reservoir
providing the open boundary conditions.

2.4.2 Two electrodes

The Gibbs Free Energy for each lead considered in equilibrium with it’s chemical
potential µL,R can be calculated from the Green’s function or the density of states of
the electrodes:

ŶQαα = µ

∞∫
−∞

dE
1

2πı
Ĝαα(E); α = L,R (2.35)

where we use the subscript αα to point that this is the projection in the partition
α of the operators and matrices, in contrast to the single subscript α which, in case
of the lesser Green’s function G<α in the central region, labels the incoming density
from reservoir α onto the central region C and projected into it, as will be used in
(2.36).

In the central region there is no unique chemical potential to be considered, but
the charge can be separated by means of the partial spectral density matrix in two
contributions

ŶQCC =
∑
α=L,R

µα

∞∫
−∞

dEE
1

2πı
Ĝ<α (E) (2.36)
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Figure 2.5: Energy-distance curves for the adsorption of an adatom on the tip of a chain.
The blue dotted line represents the internal energy U curve for the adsorption on
a finite 20-atom chain. The purple, brown and red lines, which lie far below the
dotted one, represent the internal energiesU of 2-, 3- and 4-atom chains connected
to an infinite reservoir chain providing the open boundary conditions, which are
not correct. The blue, red and yellow lines, which approach progressively the
dotted one, represent the canonical grand potential Ω of 2-, 3- and 4-atom chains
connected to an infinite reservoir chain providing the open boundary conditions,
which are correct.
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It is worth noting that the isolated states do not contribute to the work performed
by the reservoirs. Thus, it is enough to consider the left/right incoming eigenstates
contained in Ĝ<L/R(E) for the calculation of the Gibbs free energy.

2.4.3 Attraction between the plates of a quantum capacitor

To check that the two plates of a quantum atomic capacitor (fig. 2.5) also attract
when a bias is applied between both, as occurs in the classical macroscopic capacitor
treated in section 2.2. Calculations at different biases have been performed to check
that the higher the applied bias, the stronger the attraction between the plates. The
results are depicted in fig. 2.6.

Figure 2.6: Energy curves for the separation of the two plates of a quantum 1D atomic capaci-
tor consisting of two semiinfinite chains. The tip-tip distance is represented in the
horizontal axis, while the vertical one represents the calculated canonical grand
potential Ω.

2.4.4 Electromigration of an atom between two electrodes

If we consider an atom moving between two symmetric chains connected to reser-
voirs, even at equilibrium bias and temperature, with interacting electrons subject to
the Hamiltonian H in equation (1.5) there appear thermodynamic forces due to the
exchange of particles with the reservoirs. The model consists of two diatomic single-
orbital tips with two vacancies between them. Thus, the tip-tip distance is three times
the lattice parameter of the chains. While moving the atom between both tips, we can
calculate the internal energy U vs. position and the grand potential Ω vs. position
curves, as in fig. 2.7.
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2.4.4.1 Equilibrium

Even when both electrodes have the same chemical potential µ, there appear thermo-
dynamical forces which are typically attractive between both electrodes, as expected
from the classical counterpart explained in section 2.2. The equilibrium thermody-
namic forces which result from the gradient of the canonical grand potential Ω help
the central atom maintaining the bond between both tips, as can be seen in fig. 2.7. If
only the internal energy U of the central region were considered, the atom would fall
onto one of the electrodes, breaking the contact between both.

Figure 2.7: Energy curves for an atom moving between two diatomic single-orbital tips with
two vacancies between them. The tip-tip distance is three times the lattice param-
eter of the chains. The blue curve represents the internal energy U vs. position,
while the red dashed curve represents the grand potential Ω vs. position curves.

If we look at fig. 2.7, we can check that while the internal energy U shows two
symmetric minima, which coincide with the adsorption minima on each of the tips
conforming the electrodes, the grand potential Ω shows a single minimum equidistant
to both tips. The physical interpretation of this fact is that, while the internal energy
behaviour would have broken the contact, the action of the Gibbs free energy Y on
the canonical grand potential Ω helps the system to maintain the bond stable, kept by
the presence of the thermodynamic forces.

2.4.4.2 Nonequilibrium bias

By applying different voltages to the same system, we get the results in fig. 2.8. We
observe that in equilibrium the atom stays between the two tips, but, even with small
voltages, a potential barrier appears between the two tips and the atom chemisorbs
onto one of them. To eject drastically the atom from one tip, voltages above 2V

are needed. The capability to eject atoms from one tip to another is expected to be
easier for materials with a noticeable electron-hole asymmetry. Atoms with a higher
density of states for electrons (under the Fermi level) will chemisorb to the negative
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electrode, while atoms with a higher density of states for holes (above the Fermi level)
will chemisorb to the positive one.

Figure 2.8: Energy curves for an atom moving between two diatomic single-orbital tips with
two vacancies between them. Thus, the tip-tip distance is three times the lattice
parameter of the chains. All the curves represent the grand potential Ω vs. position
curves at different applied voltages.

2.4.4.3 Nonequilibrium temperature

In the same system, if a temperature gradient is applied, instead of a voltage drop,
there appear also forces according to the definition of the Gibbs free energy operator
for a temperature gradient Ŷ E in (2.9). Temperature gradients along contacts have
been applied between the ranges (10K − 10K = 0K), (20K − 10K = 10K) ...
(100K − 10K = 90K). The results for the calculations are shown in fig. 2.9.

2.4.5 Alternative formulation in terms of the current operator

As suggested by Han (J. E. Han, 2007), the nonequilibrium statistical operator for the
exchange of particles can be rewritten in the case of noninteracting systems which
are neutral at zero chemical potentialN(µ = 0)−Z = 0 connected to two reservoirs
L/R, at low biases in the linear response regime (small V , |I| ∝ |V |), in terms of the
current operator as:

Ŷ Q
I ≡ V ŷ = V

[
ŷ0 −

1

e

ı

−Ľ+ ıη
Î

]
(2.37)

where e is the electron charge, η is a small positive constant, ŷ0 =
1

2

∑
k(ĉ
†
Lk ĉLk−

ĉ†Rk ĉRk) is the difference between the number operators before the connection is es-
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Figure 2.9: Energy curves for an atom moving between two diatomic single-orbital tips with
two vacancies between them. The tip-tip distance is three times the lattice parame-
ter of the chains. All the curves represent the grand potential Ω vs. position curves
at different applied temperature gradients.

tablished, beeing the ĉαk’s the bare field operators for the disconnected system. The
Liouvillian Ľ is the superoperator which performs the commutation with the Hamil-
tonian as ĽÔ = [Ĥ, Ô]−. The current operator can be calculated as the commutation
of the Hamiltonian with the lesser Green’s function operator Î = [Ĥ, Ĝ<]−, for ex-
ample. The comparison of the results for the ensemble average of operator Ŷ Q and
Han’s expression Ŷ Q

I (2.37) and the conventional one (2.8) are shown in figure 2.10
by separating a symmetric atomic 1D-contact at different applied voltages. The pa-
rameters of the model for the LCAO basis are non-realistic, thus, the applied voltages
may be. Because of the charge neutrality condition at µ = 0, the value of 〈Ŷ Q〉 is
zero for all distances. As shown in figure 2.10, both results coincide for small voltages
and currents. Applying bigger voltages undermines the linear response condition, by
which |I| ∝ |V |.
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Figure 2.10: Variation of the ensemble average 〈Ŷ Q〉 with the distance for a symmetric
atomic 1D-contact. The blue lines display the voltage based conventional expres-
sion 〈Ŷ Q〉while the red discontinuous ones represent 〈Ŷ Q

I 〉. Results for voltages
of 0.1V , 0.2V and 0.3V are shown in subfigures (a), (b) and (c) respectively.
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N E G F Y C O D E

3.1 A B S T R AC T

NEGFY code is a quantum chemistry program used to solve the electronic struc-
ture of atoms, molecules, crystals and molecular junctions based on the Nonequilib-
rium Green’s Function Formalism in its matrix form on a basis of Gaussian Orbitals
as done by the code ANT.G, originally developed by JJ. Palacios at the University
of Alicante. It’s Hartree-Fock and DFT implementations to build the Hamiltonian
are based primarily on the Quantum Chemistry codes ERKALE (Lehtola, Hakala,
Sakko, & Hämäläinen, 2012), originally developed by Susi Lehtola at the University
of Helsinki, and Libint (Kenny, Janssen, Valeev, & Windus, 2008), originally de-
veloped by Eduard Valeyev at Virginia Tech. The DFT functionals are implemented
throgh library (Marques, Oliveira, & Burnus, 2012).

3.2 D E S C R I P T I O N

The NEGFY code is a numerical implementation of the evaluation of forces in first-
principles non-equilibrium quantum transport calculations. Unlike closed systems,
where this evaluation is carried out in the microcanonical ensemble, open systems,
both in and out of equilibrium, require the evaluation of the Grand Canonical Poten-
tial (generalized to non-equilibrium situations) and its derivatives with respect to the
atomic coordinates. NEGFY code uses gaussian-based localized atomic orbitals as a
basis set in the actual calculations.

The NEGFY code encomprises in a practical implementation the theory explained
in chapters 1, 2. In chapter 2 few proof-of-principle examples are presented which
show the feasibility of these calculations and illustrate some of the issues faced in
these type of calculations. As a practical case, we show how a finite bias can induce
electromigration of atoms between metallic tips. Chapters 4, 6 display other usages
of the code that prove the feasibility of the method.

The code can be downloaded from:
https://github.com/carlos-sg/negfy

3.3 R E S U LT S

The curves in 3.1 were calculated with Hydrogen atoms modelled by the STO-3G
basis (Gordon et al., 1982) and the Hartree-Fock Method, but the immense variety of
functionals present in libxc (Marques et al., 2012) can be used.

https://github.com/carlos-sg/negfy
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Figure 3.1: Energy-distance curves for the adsorption of an adatom on the tip of a chain. The
blue line represents the internal energy U curve for the adsorption on a finite 20-
atom chain. The red discontinuous line represents the canonical grand potential Ω
of a 6-atom chain connected to an infinite reservoir providing the open boundary
conditions as calculated with a simple model. The yellow dotted line, which ap-
proaches the blue one, represents also the canonical grand potential Ω of a 6-atom
chain connected to an infinite reservoir, but calculated with NEGFY code.
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4.1 A B S T R AC T

By using the STM tip to manipulate hydrogen atoms with atomic precision, it is pos-
sible to tailor the magnetism of selected graphene regions. DFT calculations for open
systems to simulate the tip-surface device where performed in (González-Herrero et
al., 2016).

4.2 I N T RO D U C T I O N

To understand the chemisorption phenomenon of Hydrogen on graphene, the nature
of the chemical bonds involved in the process has to be unravelled. Not only the Hy-
drogen Carbon bond, but the bond between the Hydrogen atom and the Platinum tip
apex atom are relevant. The first, for the adsorption of Hydrogen on graphene, and
the last, for the adsorption of Hydrogen on the STM Platinum tip, as been published
in (González-Herrero et al., 2016). The hexagonal lattice of graphene is formed by
carbon atoms which are connected by means of sp 2 hybridized orbitals. This elec-
tronic structure results in three σ orbitals contained in the graphene plane forming
120 o angles between each other and one π orbital in the axis perpendicular to the
graphene. For the Hydrogen atom to be chemisorbed, the π bonds need to be bro-
ken to form a new σ bond. The physical mechanism which allows such a transition
is the local deformation of the crystallographic structure by a carbon atom moving
out of the graphene plane, thus transforming the sp 2 hybridization to sp 3 hybridiza-
tion. Not only the Carbon atom, which binds directly to the Hydrogen atom, but the
three surrounding ones move up to favor the process. DFT calculations performed
with SIESTA [Moaied] reveal a Carbon-Hydrogen distance of 1.20 Å, with the cen-
tral carbon moved 0.35 Å upwards and the three surrounding around 0.08 Å. The
sp 3 hybridization advantages the elongation of the hydrogenated graphene, and thus
the lift of the Carbon atoms. The DFT calculated adsorption energy of the Hydro-
gen on graphene is around 1.6 eV. The other process which needs to be taken into
account is the Hydrogen adsorption at the platinum STM tip, widely studied in quan-
tum electrochemistry. The bond formed between the Platinum tip apex atom and the
Hydrogen is formed by the 5d 9 and 6s 1 shells of the Platinum atom and the 1s 1
shell of the Hydrogen one. The calculated adsorption energy of the Hydrogen at the
Platinum tip apex is around 2.8 eV, by means of DFT calculations using the Gaussian
QC code. A result of 1.20 Å arises for the Platinum - Hydrogen distance. Because of
the difference between the adsorption energies for Hydrogen on graphene and on the
Platinum tip, it can be inferred that the only obstacle to adsorb the Hydrogen from the
graphene to the tip is the vacuum barrier. This vacuum barrier can be suppressed by
approaching progressively the tip to the deposited Hydrogen until both energy min-
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ima merge. When retracting, the vacuum barrier builds up, but the Hydrogen adsorbs
completely on the Platinum tip because of the higher adsorption energy value, with
which the graphene one cannot compete, which makes the total energy decrease. In
our calculations, performed through the Matrix form of the Green’s Function Method
implemented in ANT.G, with the help of the DFT method implemented in Gaussian,
only the electrons from the 5s 2 , 5p 6 , 5d 9 and 6s 1 shells of Platinum were treated
explicitly, while the shells below these were replaced by Effective Core Potentials
(ECP), as is the case of the LanL2DZ basis in the Gaussian QC code. In the case
of Hydrogen, the same type of basis set reproduces the complete electronic structure
without need of ECP potentials. Finally, the bonding Carbon atomwas treated with
the complete basis set LanL2DZ describing the six electrons, while the other carbon
atoms were described bythe minimum basis set CRENBS, in which only the 2s 2
and 2p 2 shells are treated explicitly, with the others replaced by an ECP potential.
The functional used to describe the minimum total energy state of the system was the
unrestricted BLYP, which leads to proper results for both, organic and metallic and
non-metallic elements.

4.3 E X P E R I M E N TA L AT O M I C H M A N I P U L AT I O N

Choosing the appropriate tunneling parameters atomic H can be removed, laterally
moved, and even deposited on graphene surfaces with atomic precision. The role
played by the STM tip is to selectively modify the binding energy landscape of H
atoms to produce the required H manipulation, see Sect. 10 for DFT calculations
on the H extraction. To selectively remove H atoms from the graphene sample we
approached the STM tip towards the sample. This can be done by continuously in-
creasing, under feedback control, the setpoint tunneling current on top of the selected
H atom until it is desorbed, or by switching the feedback off and slightly decreasing
the tip-sample distance on top of it. It is also possible to completely remove all H
atoms from a graphene region by imaging it at high currents. The precise tunneling
values for the manipulation depend on each specific tip apex, but for the same tip
apex those values are very reproducible. As a rough guide, for removing H atoms it
is usually enough to approach the STM tip by 1-2 Å. The deposition of H atoms is
done by applying negative sample voltages pulses. In order to deposit H atoms, we
first need to pick them up from the graphene surface, so the tip can act as an H reser-
voir. Then by applying negative sample voltages pulses the H atoms are deposited on
the selected graphene region under the tip position (see Fig. S13). Again, the voltage
threshold for H deposition might vary from tip to tip, but values of around -5 V are
usually enough for H deposition. Finally, small positive sample voltages enable the
lateral manipulation of H atoms.

4.4 T H E O R E T I C A L M E T H O D O L O G Y H O N G R A P H E N E

The hexagonal lattice of graphene is formed by carbon atoms which are connected
by means of sp 2 hybridized orbitals. This electronic structure results in three σ or-
bitals contained in the graphene plane forming 120 o angles between each other and
one π orbital in the axis perpendicular to the graphene. For the Hydrogen atom to
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be chemisorbed, the π bonds need to be broken to form a new σ bond. The physical
mechanism which allows such a transition is the local deformation of the crystallo-
graphic structure by a carbon atom moving out of the graphene plane, thus transform-
ing the sp 2 hybridization to a local sp 3 hybridization (17,18).

In order to study the geometrical and electronic structure of the different defects in
graphene we use the first principles density functional (47, 48) SIESTA code (49, 50)
which uses localized orbitals as basis functions (51). We use a double basis set, non-
local norm conserving pseudopotentials and for the exchange correlation functional
we use the local density approximation (LDA). The results have being checked with
generalized gradient approximation (GGA) (52) calculations. The calculations are
performed with stringent criteria in the electronic structure convergence (down to 10
-5 in the density matrix), 2D Brillouin zone sampling (up to 1600 k-points), real space
grid (energy cut-off of 400 Ryd) and equilibrium geometry (residual forces lower
than 3X10 -2 eV/Å). Due to the rapid variation of the density of states at the Fermi
level, we used a polynomial smearing method (53). To study defects we use the super
cell approximations in the way that we end up with an interaction between defects in
the repeated unit cell. To minimize this interaction we use unit cells of different size
and, in addition, we use "skewed" unit cells in a way that the lattice vector do not
coincide with graphene symmetry directions therefore interactions along the zig-zag
and armchair chains of atoms are minimized, see Fig. S15.

4.5 1 0 . P T T I P M A N I P U L AT I O N O F H

To understand why a Pt STM tip can perform the manipulations shown in Fig. 4 of
the main manuscript, we have carried out DFT calculations for a model system as the
one shown in Fig. S19 where a pyramidal Pt tip approaches a H atom adsorbed on
graphene. The calculated adsorption energy of a H atom on the Pt tip apex is around
2.8 eV. Because of the difference between the adsorption energy for H on graphene
(around 1 eV) and that on the Pt tip, it can be inferred that H prefers to adsorb on the
Pt tip, the only obstacle being the desorption barrier. This barrier can be suppressed by
approaching progressively the tip to the deposited H. Figure S19 shows the evolution
of the binding energy curve of the H atom in between the tip and graphene. When the
tip gets closer both adsorption energy minima merge at some point. When retracting
the tip, the desorption barrier builds up again, but now with the H adsorbed on the Pt
tip (see also movie S1). The blue and red arrows indicate the spin density on the atoms
as in the main text. The Pt tip apex also develops a magnetic moment, but we have
not depicted it for clarity. The manipulation of H with the Pt tip has been modelled
through the DFT+ Green’s function methodology as implemented in ANT.G (54-56).
The DFT part in this code is performed by Gaussian (57). Only the electrons from the
5s 2 , 5p 6 , 5d 9 and 6s 1 shells of Pt were treated explicitly, while the shells below
these were replaced by Effective Core Potentials (ECP), as is the case of the LanL2DZ
basis set in the Gaussian code. In the case of H, the same type of basis set reproduces
the complete electronic structure without the need of ECP potentials. Finally, the
bonding Carbon atom was treated with the complete basis set LanL2DZ describing
the six electrons, while the other carbon atoms were described by the minimum basis
set CRENBS in which only the 2s 2 and 2p 2 shells are treated explicitly, with the
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others replaced by an ECP potential. The functional used was BLYP, which typically
leads to proper results for covalent and metallic bonds in both organic and metallic
elements. The functional used was BLYP (58) , which typically leads to proper results
for covalent and metallic bonds in both organic and metallic elements, complemented
with dispersion forces through the GD3 Grimme implementation (59).

and graphene as a function of tip-sample distance. See movie S1 for the complete
sequence.

4.6 C O N C L U S I O N S

STM manipulation plays a key role in the development and tuning of novel materials
with impressive properties. Quantum Transport and Molecular Dynamics are a small
building block necessary for this amazing field.
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5
E L E C T RO N I C T R A N S P O RT I N G A D O L I N I U M AT O M I C - S I Z E
C O N TAC T S

5.1 A B S T R AC T

Fabrication, transport measurements, and density functional theory (DFT) calcula-
tions of atomic size contacts made out of gadolinium (Gd) are reported in this chapter,
as been published in (Olivera et al., 2017). Gd is known to have local moments mainly
associated with f electrons. These coexist with itinerant s and d bands that account
for its metallic character. Here we explore whether and how the local moments in-
fluence electronic transport properties at the atomic scale. Using both Scanning Tun-
neling Microscope (STM) and lithographic Mechanically Controllable Break Junc-
tion (MCBJ) techniques under cryogenic conditions, we study the conductance of
Gd when only few atoms form the junction between bulk electrodes made out of the
very same material. Thousands of measurements show that Gd has an average lowest
conductance, attributed to single-atom contact, below 2e2

h .
Our density functional theory (DFT) calculations show that for one dimensional

chains a large spin splitting in the d-manifold emerges, in comparison with their bulk
counterparts. We also analyze the electronic transport for model nanocontacts using
the non-equilibrium Green’s function formalism in combination with DFT. We obtain
an overall good agreement with the experimental results and show that the contribu-
tion to the electronic transport from the f-manifold is negligible and that from the
d-manifold is marginal.

5.2 I N T RO D U C T I O N

Quantum transport plays a key role in the electrical response of atomic scale contacts,
giving rise to new phenomena differing from the bulk behavior of the different ma-
terials (Alexei Igorevich Yanson, 2001; N. Agraït & van Ruitenbeek, 2003; Naidyuk
& Yanson, 2008). The central assumptions that permit to have a first guess of the
conductance of an atomic scale contact are two. First, the conductance of the system
is determined by the elastic transmission of the electrons at the Fermi level (Lan-
dauer formalism) and, second, the number of transmission channels that appear in
the Landauer formula is determined by the chemical valence of the atoms (Scheer
et al., 1998).

After three decades of exploration of electronic transport in atomic scale contacts,
many materials with different physical properties have been studied. The groups that
are relatively well understood include noble metals, such as Au (Agraït, Rodrigo, &
Vieira, 1993) and Pt (R. H. M. Smit & van Ruitenbeek, 2001), sp metals, such as
Al (Scheer, Joyez, Esteve, Urbina, & Devoret, 1997; Sánchez-Portal, Untiedt, Soler,
Sáenz, & Agraåt, 1997) and Zn (Häfner, Konrad, Pauly, Cuevas, & Scheer, 2004),
ferromagnetic 3d transition metals, such as Fe, Co and Ni (M. Reyes Calvo et al.,
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2009), superconductors, such as Pb (Alexei Igorevich Yanson, 2001; M Müller, Sal-
gado, Néel, Palacios, & Kröger, 2016; Cuevas et al., 1998), and even semi-metals
such as Bi (Sabater et al., 2013; Pernau, Pietsch, & Scheer, 2014). Some metals like
Ir (R. H. M. Smit & van Ruitenbeek, 2001), Pt (R. H. M. Smit & van Ruitenbeek,
2001) and Au (A. I. Yanson, Rubio Bollinger, Van Den Brom, Agraït, & Van Ruiten-
beek, 1998; Ohnishi, Kondo, & Takayanagi, 1998) form single-stranded chains of
atoms. Still, despite of all this effort, some important families remain to be covered.

In this context, while atomic contacts with s, p, and d electrons have been widely
explored, systems with partially filled f shells remain pretty much an uncharted terri-
tory (with a few exceptions (Marc Müller et al., 2010; Jammalamadaka et al., 2015)).
On the other hand, there has been an interest to unveil the role of magnetism in
the electronic transport in atomic-sized contacts. Later attempts in d materials have
shown Kondo screening of the magnetic moments at such scale (Madhavan, Chen,
Jamneala, Crommie, & Wingreen, 1998; M. Reyes Calvo et al., 2009; M. R. Calvo,
Jacob, & Untiedt, 2012). f materials are therefore also good candidates to study the
influence of the f decoupled magnetic moments on the transport electrons, mainly of
s− p, and maybe d character.

Gd is a rare earth metal that belongs to the lanthanide group with the electronic con-
figuration [Xe] 4f75d16s2. It is a trivalent metal (Gschneidner & Eyring, 1978) that
in bulk is a strong ferromagnet with TC = 293.2 K (H. E. Nigh & Spedding, 1963)
with hexagonal close-packed (hcp) structure. It presents interesting properties, such
as very high neutron absorption (Leinweber et al., 2006) and a pronounced magne-
tocaloric effect (GschneidnerJr, Pecharsky, & Tsokol, 2005). Regarding other types
of experimental measurements on rare earths, studies of electron-magnon interac-
tion on point contacts made out of Gd, holmium (Ho), and terbium (Tb) (Akimenko
& Yanson, 1980) as well as electronic structure measurements with photo-electron
spectroscopy (Bovensiepen, 2007) have been performed. There are few experimental
works about electronic transport on rare earth atomic-size contacts. Some of them
(Berg, 2014; Marc Müller et al., 2010; Jammalamadaka et al., 2015) reported mea-
surements on nanocontacts made out of metals such as yttrium (Y), cerium (Ce),
dysprosium (Dy), and Gd by using the notched-wire MCBJ technique (N. Agraït &
van Ruitenbeek, 2003).

Concerning calculations on lanthanide materials, not much has been published for
atomic-scale contacts but their bulk properties have been widely studied. Calcula-
tions of the magnetic moment (R. Ahuja & Brooks, 1994; Kurz, Bihlmayer, & Blügel,
2002) of bulk Gd compare well with the measured 7.63µB (H. E. Nigh & Spedding,
1963), where approximately 7µB come from the 4f7 orbital. As a result, the remain-
ing 0.63µB belong to the conduction electrons. Exchange interaction studies on Gd
can be found elsewhere (Goodings, 1962). Moreover, several groups have calculated
the electronic band structure (Temmerman & Sterne, 1990) from where the electronic
density of states (DOS) as well as its projection on different orbitals has been inferred
(I. Turek & Blügel, 2003; C. Santos & Eyert, 2004; Duan et al., 2007).

Here we present a combined experimental-theoretical work with two independent
experimental techniques along with using DFT calculations. With STM we obtain a
higher amount of statistical data than what can be obtained with lithographed MCBJ,
which offers samples with much higher temporal stability. DFT calculations of both
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electronic structure and transport properties have been carried out to give more insight
into the interpretation of the experimental results.

5.3 E X P E R I M E N T S

Atomic-size contacts are the narrowest experimentally accessible junctions between
bulk electrodes made out of the same material

(Gimzewski & Möller, 1987) (see inset in Fig. 5.1). In this work we investigate
nanocontacts made out of pure metallic Gd. In order to study electronic transport
on nanocontacts, we use STM (Binning, Rohrer, Gerber, & Weibel, 1982) and litho-
graphic MCBJ (Moreland & Ekin, 1985; Van Ruitenbeek et al., 1996) techniques, in-
dependently. With both techniques we record the electrical current through nanocon-
tacts under fixed applied DC bias voltage when changing the contact geometry.

We use the STM technique in contact mode and we read the current from a low-
noise amplifier with a gain factor of 5. With piezoelectric materials we control the
distance between bulk electrodes with atomic precision (∼ 1 pm) under cryogenic
conditions (liquid helium bath). Samples consist of two wires of ∼ 1 mm diameter
and cross-shaped arranged in order to avoid multi-contact locations. With this tech-
nique we build atomic contacts in a straightforward way, that is bringing into and out
of contact the bulk wire-shaped electrodes by applying electrical DC sawtooth pulses
to the piezos mentioned above.

Gd gets quickly oxidized in contact with air. In order to avoid contact with environ-
mental compounds and to preserve the purity of these materials we use the following
methods. For STM experiments, we mount samples inside a custom-made controlled
atmosphere chamber. Gd wire-shaped samples have 99.9% purity and 0.5 mm diam-
eter. We use argon gas (99.999% pure) as surrounding atmosphere before closing
the STM under high vacuum conditions (10−8 mbar reached with turbo-molecular
pumping). Besides, right before starting pumping, a ceramic (i.e. insulator and non-
magnetic) knife is used for scratching the outer layer of Gd wires that are afterwards
brought into contact. After pumping at room temperature, the STM is inserted into a
bath cryostat filled with liquid helium (He). Then, when samples reach equilibrium
with liquid He temperature, we measure the conductance as a function of distance
when approaching or retracting the electrodes, so called conductance (creating/break-
ing) traces.

For comparison, we use the MCBJ technique (Van Ruitenbeek et al., 1996) in
which a motor moves the pushing rod of a three-point bending mechanism with micro-
metric precision. This rod bends the sample from the rear side of the substrate right
below the nano-junction location. The fabrication process of the latter will be ex-
plained below. The movement of the rod is reversible, so that atomic contacts can be
created and broken repeatedly and the electronic transport through them is measured
in the same way as with the STM technique.

In MCBJ experiments, we ensure the purity of Gd samples from the technique prin-
ciple itself. As substrate we use 250 m thick gently polished bronze foil covered by
a ≈ 2 m thick polyimide layer serving for planarization, electrical isolation and as
sacrificial layer. Electron-beam lithography is performed in a scanning tunneling mi-
croscope equipped with a pattern generator to expose a PMMA-based two layer resist
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Figure 5.1: Typical conductance traces for atomic size contacts made out of Gd. Bright/dark
curves stand for breaking/creating contacts as arrows indicate. Upper plot: Mea-
surements taken with STM technique in equilibrium with liquid He bath and at
10−8 mbar. All traces have been taken at 100 mV bias voltage. Inset: artistic rep-
resentation of nanocontacts; hcp ball-stacking is pictured, where balls represent
atoms. Lower plot: Measurements taken with lithographic MCBJ technique in
equilibrium with liquid He bath and at 10−5 mbar. Red and green traces and their
return traces have been taken at 5 mV bias voltage, yellow curve has been taken
at 10 mV.

after development. Gd pellets with 99.9% purity are thermally evaporated from a W
boat, that avoids alloy formation. The evaporation speed is adjusted to have minimal
mechanical strain in the film. The sample fabrication is completed by lift-off in ace-
tone and reactive ion etching in an isotropic oxygen plasma to reduce the polyimide
thickness and thereby suspending a Gd bridge of length ≈ 2µm, width ≈ 100 nm

and thickness ≈ 75 nm. In order to avoid possible oxide coming from pristine Gd
pellets, we cover the substrate for the first couple of evaporated nanometres of mate-
rial. After evaporation, a subsequent final etching with oxygen plasma (Reactive Ion
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Etching (RIE)) is performed to suspend nano-bridge. The sample is then mounted
to a three-point bending mechanism anchored to a cryostat insert, pumped to a mod-
erate high vacuum of 10−5 mbar, and cooled down to liquid He temperature. The
MCBJ contact is broken for the first time, when 4.2 K are reached. By this way, the
few nanometres thick outer layer of Gd oxide at the sample protects the pure Gd
nano-junction before MCBJ measurements start.

For both techniques, we record the electrical conductance as a function of distance
between bulk electrodes (Agraït et al., 1993), obtaining the conductance traces (see
Fig. 5.1). We focus on the last stages before breaking the contacts into the vacuum
tunnel regime and the first ones when establishing metallic atomic-size contacts. The
resulting conductance is in the order of 2e2

h , as expected for a quantum conductor
with a few channels, and shows abrupt changes as a function of the electrode distance
that reflect variations in the atomic configuration of the nanocontact (see Fig. 5.1).
With STM technique we manage to create stable low-noise traces of conductance at
a rate of about 10 traces per second. This allows us to obtain significant statistical
data in a relatively brief period of time. The MCBJ technique enables mechanically
more stable contacts than with the STM, but its rate of recording conductance traces
is limited to about one trace per minute. We make histograms of conductance (A. I.
Yanson & van Ruitenbeek, 1997) out of the measured traces with STM and MCBJ
(see Fig. 5.2).

Thousands of conductance traces with deep indentations (beyond 100 2e2

h ) are
recorded along with electro-migrative fast (≈ 0.5 s) DC pulses of 10 V that are
applied to randomly chosen atomic-size contacts. 2e2

h is the conductance quantum
where e is the elementary charge and h is Planck’s constant. A conductance of 100 2e2

h

corresponds to a nanoconstriction with more than 100 atoms in cross section.
We have recorded conductance traces for different electrode configurations. Every

configuration comes from geometrical reconstruction of bulk electrodes by strong in-
dentation of electrodes with STM technique (beyond 100 2e2

h ). With MCBJ, a smaller
amount of data is obtained (see caption at Fig. 5.2), therefore less variety of traces of
conductance is achieved. Different families of conductance traces for this last tech-
nique are obtained moving back the pushing rod until reaching conductances beyond
50 2e2

h .
In Fig. 5.1 we show typical conductance traces. In the STM case For the STM tech-

nique (upper plot), we show a series of measurements few seconds spaced between
them where deep indentations are performed. We observe that the last plateau always
falls at conductance values visibly smaller than 2e2

h . The same observation applies
for MCBJ measurements (lower plot). We see that the plateau shapes are negatively
inclined, i.e. revealing lower conductance upon further stretching, as previously ob-
served for some materials such as Pb (Cuevas et al., 1998), but different from the
observations of other soft metals, like Au. However, some of the last plateaus reveal
rising conductance upon stretching, as systematically observed for example in the
case of Al (Scheer et al., 1997; Sánchez-Portal et al., 1997; Cuevas et al., 1998). Both
effects, the falling and the rising last plateaus, are observed with both measurement
techniques and are therefore attributed to intrinsic properties of Gd contacts. Another
observation that appears in the traces recorded with both techniques is that upon cre-
ating the contact in most cases the conductance of the first contacts is higher than the
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Figure 5.2: Histograms of conductance calculated from conductance traces for Gd atomic-
size contacts. Upper/lower plot stands for breaking/closing contact mode. Same
colors for upper and lower plot stand for a set of traces with electrodes that have
not been modified with deep indentations (i.e. less than ≈ 20 2e2

h ).The differ-
ent colors illustrate the variability in the histograms between contacts, or for dif-
ferent choices of depth of indentations. All measurements have been taken with
STM technique at 100 mV bias voltage in equilibrium with liquid He bath and
10−8 mbar, except the purple curve, that has been taken with MCBJ technique,
where a bias voltage of 10 mV has been applied. For STM histograms few (from
1 to 10) thousands of traces are considered. For MCBJ ≈ 500 traces are included.

conductance of the last contact before breaking in the preceding trace. Furthermore,
the backlash between breaking and creating the next contacts is somewhat larger in
MCBJ technique, presumably because of the elastic deformation of the suspended
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Figure 5.3: (Linear color scale) Overlapped Gd conductance traces measured with STM.
Breaking contact (left-sided plot) and creating contact (right-sided plot) situa-
tions are shown. Traces are centered to 1 nm when 0.01 2e2

h is reached from
higher/lower to lower/higher conductance values for breaking/creating contacts.
Total number of traces are 2524 and 2511 for breaking and creating contact cases,
respectively.

nanobridge. As a final remark, we have checked that these materials do not form long
atomic chains when stretching.
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Our results agree with those of Berg et al. (Berg, 2014) who reported values of
(0.60 ± 0.23) 2e2

h and (0.83 ± 0.32) 2e2

h for the last plateau right before breaking
(746 curves) and first one after creating (568 curves) the contact, respectively, of Gd
notched-wire MCBJs 4.2 K. More details on the unpublished work by Berg et al. is
given in the supplemental material. Similarly, low conductance values were also ob-
served for Dy ((0.87± 0.27) 2e2

h from 528 breaking traces). Reported measurements
on nanocontacts made out of Dy (Marc Müller et al., 2010) showed a non-trivial
change of conductance as a function of the value of the external magnetic field. We
observe similar but weaker magnetostrictive effect for some lithographic Gd MCBJ
samples, in our case changing from sample to sample (see figure S1 at supplemental
material).

From every set of traces with electrode indentations that have not reached conduc-
tance values above≈ 20 2e2

h , we build up histograms. Some of them are shown in Fig.
5.2. For most well-studied metals (Au, Pt, Ni. . . ) the position of the lowest maximum
in the conductance histograms is very reproducible from experiment to experiment,
although slight differences in the relative height and shape of the peaks have been
reported (Agraït et al., 1993; R. H. M. Smit & van Ruitenbeek, 2001; M. Reyes
Calvo et al., 2009). In the case of Gd the position of such histogram peaks shows a
lower reproducibility, which we attribute to different configurations of the electrodes.
At Fig. 5.2 we show five independent histograms (solid line, full color and vertical
striped line patterns facilitate the identification of each one of them). We want to
remark the strong resemblance between red (STM) and purple (MCBJ) breaking his-
tograms. On the other hand, for MCBJ closing histograms, the first peak is located at
higher conductance values suggesting that first MCBJ contacts are thicker than first
contacts created with the STM. The yellow curve shows a very wide histogram, its
corresponding traces were obtained with deeper indentations, meaning that a greater
random rearrangement of the electrode tips was achieved. The black curve shows
higher conductance values for both breaking and creating histograms. The contacts
that account for this result were poorly sharpened, as could be noticed from the high
slope of the conductance vs. displacement curves (Untiedt, Rubio, Vieira, & Agraït,
1997), meaning therefore that thicker tips are considered.

In addition, the last value of conductance before breaking contacts is well below
that observed for other magnetic metals such as, e.g., Ni (M. Reyes Calvo et al., 2009)
where a mean value of conductance of ≈ 1.5 2e2

h is found.
In order to gain further insight into the evolution of conductance traces, we have

constructed intensity maps as a function of both the conductance and the displace-
ment of the electrodes for our measured data, shown in Fig. 5.3. This time, we collect
all the conductance traces that we have measured with STM with indentations mostly
up to 20 2e2

h and plot them in a two-dimensional histogram. In order to highlight the
atomic-size contact area, we center the traces at the same value of piezo displacement
for a chosen conductance value (see figure caption). This way of representing data
permits to check the dispersion of data at the low conductance stages unveiling the
dependence of the most probable conductance on the applied strain. At the right-sided
edge of the represented cloud of data a dispersion of ≈ 0.25 2e2

h is clearly apparent,
one quarter less than in the case of the conductance histograms in Fig. 5.2. For the
closing curves the highest density is observed for the conductance (0.9 ± 0.3) 2e2

h ,
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while for the opening traces the distribution splits up into two branches, one ending
with a conductance of (0.9 ± 0.3) 2e2

h at slightly shorter distance and one ending
at (0.65 ± 0.20) 2e2

h at the rightmost extremity of the cloud. This finding indicates
that longer contacts with lower conductance are are formed when opening. With the
calculations presented in the next section we will interpret the longer constrictions
as dimeric configurations where two atoms in series form the constriction, while the
shorter ones are single-atom or monomeric atomic configurations in which a single
atom is surrounded by thicker electrodes to both sides. As we will discuss below, this
may be unexpected, because of the presence of a s band at the Fermi energy, that
normally contributes with one open channel per spin.

5.4 T H E O RY

Density functional theory (DFT) calculations are initially carried out with the LAPW
code ELK. Correlations in the f orbitals are treated using the DFT+U method in
the Yukawa scheme (Bultmark, Cricchio, Grånäs, & Nordström, 2009) in the fully
localized limit, to account for the strong correlations within the f-manifold. No corre-
lations are introduced in the s, p, and dmanifolds due to their delocalized nature, well
accounted for by more conventional functionals. Spin-orbit coupling is treated in the
non-collinear formalism. Within this framework, the bulk lattice constant matches the
experimental one within 3% deviation. To gain insight into the electronic structure in
the constriction, we calculate the electronic structure of one-dimensional Gd chains
and compare the differences driven by the reduced dimensionality. Chain structures
are optimized in the lattice parameter.

The magnetic structure strongly changes upon reducing the dimensionality from
bulk to a one-dimensional chain (Fig. 5.4). Whereas the bulk structures yield a total
magnetic moment of µbulk = 7.61µB , one-dimensional chains show larger moments
of µchain = 8.9µB . The projected density of states reveals that, whereas bulk struc-
tures have spin polarization mainly coming from the f levels plus a small contribution
from s ones (not shown), chains show a stronger polarization in the d manifold aris-
ing from a stronger Stoner instability (see Fig. 5.4). This translates into energy differ-
ences between antiferromagnetic and ferromagnetic configurations, J = EAF−EFE ,
in chain structures which are much larger than the ones expected for bulk. Specifically
we get J = 0.5 eV, favoring a fairly stable ferromagnetic configuration. Notice that
the strong exchange coupling in chains can be understood as a consequence of the
direct d − d exchange coupling, whereas in bulk d magnetism barely appears in our
calculations.

Transport calculations for Gd atomic contacts are also carried out. We have cho-
sen simplified models with pyramidal forms growing along the 〈111〉 direction for
both sides of the nanocontacts (see inset at Fig. 5.1). The electron reservoirs, which
make the nanocontact an open quantum system, are chosen to be Au electrodes. Au
electrodes reduce the computational cost without introducing artifacts in the actual
conductance of the model nanocontacts when these contain a large enough number
of Gd atoms. The results presented below correspond to the minimum number of
Gd atoms that needs to be considered (contacts with a larger number of Gd atoms
have been studied, not finding significant differences). The transport methodology



56 E L E C T RO N I C T R A N S P O RT I N G A D O L I N I U M AT O M I C - S I Z E C O N TAC T S

Figure 5.4: Spin resolved projected density of states onto the d-levels of Gd, in chain (a) and
bulk (b) structures. Chain structures show net spin polarization in the d-manifold,
apart from the one due to f -electrons. In comparison, bulk structures do not show
polarization in the d-manifold, being the magnetism almost entirely due to local-
ized f -levels.

is the well-known DFT-based non-equilibrium Green’s function formalism as imple-
mented in the package ANT.G (JJ Palacios, Pérez-Jiménez, Louis, & Vergés, 2001;
J. J. Palacios, Pérez-Jiménez, Louis, SanFabián, & Vergés, 2002; Louis, Vergés, Pala-
cios, Pérez-Jiménez, & SanFabián, 2003; D Jacob & Palacios, 2011; David Jacob &
Palacios, 2006). This software uses the DFT functionality of Gaussian09 (M. Frisch
et al., 2009) to construct the one-particle Hamiltonian of the system. This Hamilto-
nian constitutes the basis for the implementation of the NEGF method through the
Landauer-Keldysh formalism, which allows the simulation of open quantum systems
connected to electron reservoirs.

The NEGF-DFT method implemented in ANT.G operates in the framework of
linear combination of atomic orbitals (LCAO). Therefore, as a necessary first check,
we need to compare with the well-grounded results of ELK. The basis “Stuttgart
RSC 1997 ECP” has been used for Gd (Bergner, Dolg, Küchle, Stoll, & Preuß, 1993;
Kaupp, Schleyer, Stoll, & Preuss, 1991; Dolg, Stoll, Preuss, & Pitzer, 1993) in the
LCAO-DFT calculations for chain and nanocontact structures. This basis set includes
ECP (energy-consistent pseudopotentials) to describe the interaction with the core-
electrons. Due to the lack of a DFT+U implementation in the LCAO codes used,
instead we make use of the hybrid functional HSE06 (Heyd & Scuseria, 2004) which
also captures the strongly correlated nature of the f-levels. In this hybrid functional
developed for metals the exchange energy term is split into short-range and long-
range components and the Hartree-Fock long range is neglected but compensated by
the PBE long range.

We compare the results obtained in two schemes for the DOS of the one-dimensional
infinite chain (see Fig. 5.5) . The LCAO calculations are performed with the code
CRYSTAL14 (Dovesi et al., 2014) using the same basis set and functional as for the
transport calculations shown below. We note that the spin splittings are slightly bigger
in the LCAO method (around 20%) which also leads a more peaked resonance struc-
ture in the DOS. These differences can be traced back to the exact exchange present
in the HSE06 functional calculations, which affect the four s, p, d, and f manifolds.
In comparison, in the LAPW method, correlations included with the DFT+U scheme



5.4 T H E O RY 57

(a
)S

de
ns

ity
of

st
at

es
in

th
e

1-
D

ch
ai

n
ca

l-
cu

la
te

d
w

ith
E

L
K

.
(b

)P
de

ns
ity

of
st

at
es

in
th

e
1-

D
ch

ai
n

ca
l-

cu
la

te
d

w
ith

E
L

K
.

(c
)D

de
ns

ity
of

st
at

es
in

th
e

1-
D

ch
ai

n
ca

l-
cu

la
te

d
w

ith
E

L
K

.
(d

)F
de

ns
ity

of
st

at
es

in
th

e
1-

D
ch

ai
n

ca
l-

cu
la

te
d

w
ith

E
L

K
.

(e
)S

de
ns

ity
of

st
at

es
in

th
e

1-
D

ch
ai

n
ca

l-
cu

la
te

d
w

ith
C

RY
ST

A
L

.
(f

)P
de

ns
ity

of
st

at
es

in
th

e
1-

D
ch

ai
n

ca
l-

cu
la

te
d

w
ith

C
RY

ST
A

L
.

(g
)D

de
ns

ity
of

st
at

es
in

th
e

1-
D

ch
ai

n
ca

l-
cu

la
te

d
w

ith
C

RY
ST

A
L

.
(h

)F
de

ns
ity

of
st

at
es

in
th

e
1-

D
ch

ai
n

ca
l-

cu
la

te
d

w
ith

C
RY

ST
A

L
.

Fi
gu

re
5.

5:
Sp

in
re

so
lv

ed
de

ns
ity

of
st

at
es

of
G

d
in

ch
ai

n
st

ru
ct

ur
es

ca
lc

ul
at

ed
w

ith
E

L
K

(L
A

PW
)p

ro
je

ct
ed

on
to

th
e

m
an

if
ol

ds
s

(a
),
p

(b
),
d

(c
)a

nd
f

(d
).

Sa
m

e
ca

se
s

ca
lc

ul
at

ed
w

ith
C

RY
ST

A
L

14
(L

C
A

O
)(
s

(e
),
p

(f
),
d

(g
)a

nd
f

(h
))

.



58 E L E C T RO N I C T R A N S P O RT I N G A D O L I N I U M AT O M I C - S I Z E C O N TAC T S

are introduced in the localized f -manifold but not in the delocalized s, p, dmanifolds.
In spite of these spectral differences, the magnetic moment calculated with both meth-
ods yields a similar value. Nevertheless, differences in the character of the electrons
around the Fermi energy, which dominate the electronic transport, may yield differ-
ent conductance values. By considering different functionals (with and without exact
exchange) we have concluded that these differences are not significant in this regard.

Figure 5.6: Gd <111> nanocontact calculated conductance-distance characteristic. Upper
plot: two atomically-sharp tips in the <111> direction forming a dimeric con-
tact. The distance ∆z equals 0 when the distance between both tip apex atoms
equals the n.n. distance in bulk. Lower plot: an atomically-sharp tip in the<111>
direction against a blunt <111> one. Both tips touch to form a monomeric con-
tact. The distance ∆z equals 0 when the distance between the tip apex atom in
the atomically-sharp tip and each tip apex atom in the blunt one equals the n.n.
distance in bulk.

In the following, I present the results obtained for the conductance in the LCAO
scheme using the HSE06 functional. The calculated conductance-distance character-
istics for Gd nanocontacts are shown in Fig. 5.6 for both monomer and dimer config-
urations (see insets in Fig. 5.6). As anticipated in the discussion of the experimental
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results, monomer and dimer configurations are expected to form when breaking the
contacts while in most of the cases only monomers are expected to appear when
forming the contacts. The piezo displacement is simulated by opposite displacement
of the two tips, while keeping their atomic structure intact. Thus, we do not make any
distinction between breaking and creating contacts, although a small difference in
the average atomic bond distance is expected between the two processes if relaxation
were allowed. Relaxation would also permit to simulate the plasticity effects (jumps
in conductance), as seen in this type of experiments. This is, however, computation-
ally too costly since a large number of Gd atoms are required and beyond the scope
of our discussion here.

As their periodic counterparts (bulk and chains), Gd nanocontacts show a purely
ferromagnetic behavior all along the breaking process. Anti-parallel magnetic config-
urations (between the two tips) show smaller conductance values, but these magnetic
states have a higher energy and tend to relax into the ferromagnetic ones. The current
is spin-polarized with a dominant contribution from the minority channel (spin-up
here in red) for stretched dimeric contacts and from the majority one (spin-down in
blue) for monomeric contacts. The calculated total conductance at bulk near-neighbor
distance between tip apex atoms (or zero displacement, ∆z = 0) is 0.80 2e2

h for
the dimer and 1.15 2e2

h for the monomer contacts. Both values, along with the ones
nearby for small displacements (representing actual stretched contacts) fall within
their tentatively assigned experimental bright spots seen in Fig. 5.3. Notice that, due
to lack of relaxation in our calculations, longer displacements may not represent ac-
tual atomic configurations since sudden plastic deformations must occur. Even so, for
the monomer configuration we obtain an increase of conductance as the tip-tip dis-
tance increases which is of purely electronic origin and could be tentatively related
to the one often observed in the experiments [see Fig. 5.6(b)].

A deeper insight into the electronic nature of transport can be revealed by analyz-
ing the nature of the eigenchannels (David Jacob & Palacios, 2006) involved in the
conductance. In Figs. 5.7a, 5.7b and 5.7c we plot the conductance of the spin up and
spin down dominant eigenchannels for three representative examples. We have cho-
sen: (a) a dimer contact at a displacement of ∆ = 1.0 and (b) a monomer contact
at a displacement of ∆ = 1.0 and (c) ∆ = 2.2 . In general, the eigenchannels do
not show a dominant s character. For the case (a) they display mostly a pz character
(minority) or spz character (majority).

In the monomer case, in addition to the spz hybridization (Cuevas et al., 1998;
Scheer et al., 1997), the transition from spz-like eigenchannels at smaller displace-
ments (Fig. 5.7b) to an eigenchannel with a strong d character for majority spins 5.7c
at larger displacements seems to also play a role in the change of the slope of the
conductance traces, as seen in 5.6(b). No direct contribution from f orbitals appears
in transport, apart from enhancing the spin polarization in the other subshells, as ex-
pected from their localized nature. We finally emphasize that the previous analysis
relies on the assumption that the LCAO+HSE method properly captures the elec-
tronic structure around the Fermi energy for the rare earth compound, which could
change using other DFT schemes. The accuracy of our method is subject therefore
to its test by more sophisticated methods, capable of capturing simultaneously the
metallic behavior and strongly localized states in these rare earth chains.
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In Figs. 5.7a, 5.7b and 5.7c , “Up” electrons correspond to the “minority” spin
component while “down” electrons to the “majority” one.

5.5 C O N C L U S I O N S

We have carried out electrical current transport on atomic-size contacts made out of
Gd under cryogenic conditions. Unlike the case of 3d ferromagnetic materials and
despite the d1 valence of Gd, their single atom conductance is typically smaller than
2e2

h . This is might be at first sight surprising, because in both cases there is a wide
s-band at the Fermi energy, which normally provides a highly transmissive channel
and which, along with an additional contribution coming from the d channels, may
give conductance values above 2e2

h . However, in the case of Gd, the transmission of
all channels are reduced presumably to the position of the Fermi energy close to the
edges of the respective bands. The results are reproducible for both STM and MCBJ
measurements in many details: lengths of plateaus, shapes of plateaus, position and
height of histogram maxima, differences between creating and breaking curves. . . .

Our DFT calculations show that, apart from the f -magnetism, the dimensionality
reduction of the nanocontacts creates a spin splitting in the d-manifold, in compar-
ison with bulk structures where the d-manifold remains nearly unpolarized. Using
the non-equilibrium Green function formalism within the LCAO+HSE06 scheme we
generically obtain conductance values smaller than 2e2

h , with differences between
monomer and dimer configurations. The analysis of the eigenchannels shows that
this is due to a hybridization of the s and pz channels, which apparently reduces the
conductance of a pure s channel. This is also in line with the increasing conductance
on the last plateau as the electrodes are pulled apart, which has also been observed
in Al atomic contacts and for which the spz hybridization is also known to play a
role. In the case of Gd, the d orbitals also seem to play a role in this conductance
rise. Finally, our zero-bias measurements do not seem to be strongly influenced by
the large f local magnetic moments, firstly because f electrons do not participate in
conduction and, secondly, the stable ferromagnetic configuration will avoid electric
conductance variations due to magnetic disorder.



5.5 C O N C L U S I O N S 61

(a) Spin resolved principal eigenchannel projected onto all the magnetic shells of a Gd dimeric nanocon-
tact at a tip-tip displacement of 1.0 .

(b) Spin resolved principal eigenchannel projected onto all the magnetic shells of a Gd monomeric contact
at tip-tip displacement of ∆z = 1.0 .

(c) Spin resolved principal eigenchannel projected onto all the magnetic shells of a Gd monomeric contact
at tip-tip displacement of ∆z = 2.2 .

Figure 5.7: Spin resolved principal eigenchannels
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P L A S T I C I T Y O F S I N G L E - AT O M P B J U N C T I O N S

6.1 A B S T R AC T

A low-temperature scanning tunneling microscope was used to fabricate atomic con-
tacts on Pb(111). Conductance characteristics of the junctions were simultaneously
recorded with forming and subsequent breaking of the contacts. A pronounced hys-
teresis effect in conductance traces was observed from junctions comprising the clean
Pb(111) surface. The hysteretic behavior was less profound in contacts to single Pb
atoms adsorbed to Pb(111). Density functional calculations were able to reproduce
the experimental results by performing a full ab-initio modeling of plastic junction de-
formations. A comprehensive description of the experimental findings was achieved
by considering different atomic tip apex geometries, as been published in (M. Müller,
Salgado, Néel, Palacios, & Kröger, 2016).

6.2 I N T RO D U C T I O N

Electrical contacts with constrictions at the atomic scale are receiving substantial
attention owing to their importance in fundamental and applied sciences. (Nicolás
Agrait, Yeyati, & van Ruitenbeek, 2003; Kröger, Néel, & Limot, 2008; Berndt, Kröger,
Néel, & Schull, 2010) In particular, molecular spintronics, (Sanvito, 2011) spin caloritron-
ics (Bauer, Saitph, & van Wees, 2012) and thermoelectric effects in nanoscale junc-
tions (Dubi & Di Ventra, 2011) are emerging fields. To these investigations structural
and mechanical properties of the junctions are relevant since electron transport de-
pends crucially on the contact geometry. (Wang et al., 2010; Schull, Frederiksen,
Arnau, Sánchez-Portal, & Berndt, 2011)

A wealth of experimental and theoretical works has been reported for Au contacts,
(Nicolás Agrait et al., 2003) presumably due to their propensity to form monoatomic
chains bridging the electrodes. (Ohnishi et al., 1998; A. I. Yanson, Bollinger, van den
Brom, Agraït, & van Ruitenbeek, 1998)

By appropriate treatment of Au electrodes in break-junction experiments hysteretic
loops were reproducibly observed in conductance-versus-distance traces that were si-
multaneously recorded with closing and opening of the junctions. (Trouwborst, Huis-
man, Bakker, Van Der Molen, & Van Wees, 2008) This observation was traced to the
elasticity of the electrodes.

To our knowledge this work (Trouwborst et al., 2008) represents the only combi-
nation of experimentally observed and theoretically described hysteretic conductance
behavior between tunneling and contact regime of single-atom junctions that has been
available to date. Other materials that have often been used in contact experiments are
Ni, Cu, Pd, Ag, Al and Pt. (Nicolás Agrait et al., 2003)

For some of these materials conductance hysteresis upon opening high-conductance
junctions were reported. (N. Agrait, Rodrigo, Rubio, Sirvent, & Vieira, 1994; den
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Brom, Yanson, & Ruitenbeek, 1998a; Halbritter et al., 2002; Rodrigo, Suderow, Vieira,
Bascones, & Guinea, 2004)

However, investigations of the contact formation and breaking of atom-sized Pb
junctions are scarce. In an early work W tips of a scanning tunneling microscope
(STM) were approached to Pb(110) and neck formation was investigated at differ-
ent sample temperatures (Kuipers & Frenken, 1993). Neck heights exceeding 500 nm
were reported and their growth was rationalized in terms of mobile surface atoms.
In another experiment polycrystalline Pb tips and samples were used to study the
conductance of Pb junctions depending on the forces exerted on the electrodes. (N.
Agrait et al., 1994) A jump to contact was observed upon approaching the tip to the
sample surface. The resulting junction conductance of less than one quantum of con-
ductance, G0 = 2e2/h (e: elementary charge, h: Planck constant), was rationalized in
terms of constrictions comprising about one atom. In addition, conductance hysteresis
was reported after indenting the tip into the substrate, thereby increasing the junction
conductance to ≈ 10 G0, and subsequent retraction of the tip. The contact area was
appreciably modified by forming asperities with diameters on the order of 100 nm. In
a break junction experiment Pb–Pb contacts were stretched until an abrupt decrease
of the conductance occurred from ≈ 1 — 3 G0 to typical tunneling conductances.
(Scheer et al., 1998) Tight-binding calculations assuming a simple pyramid-based ge-
ometry for the electrodes confirmed conductance values of ≈ 2.5 G0 as a result of
electron transport through spz , px, py orbitals of the Pb atom bridging the electrodes.

In the ballistic electron transport range, STM experiments revealed that contact
formation between Pb-covered W tips and thin films of Pb on Ag(111) depended on
the film thickness (Becker & Berndt, 2010). While a gradual transition from tunneling
to contact was observed for the single Pb wetting layer, the transitions became more
abrupt for thicker films. Conductances of contacts comprising the single Pb wetting
layer as well as several layers were broadly distributed around ≈ 2 G0. For Pb(111)
films on Si(111) atomically resolved conductance traces were obtained by using Pb-
coated PtIr tips. (Kim & Hasegawa, 2015) On-top, bridge, face-centered cubic and
hexagonal close-packed sites of the Pb(111) lattice led to different conductances in
the range of ≈ 1 — 1.3 G0.

In a broader context, Pb junctions in electrochemical environments were investi-
gated and the findings compared with density functional calculations revealing the
importance of the contact geometry for the conductance.(Xie et al., 2010) Pb junc-
tions exposed to external magnetic fields were probed revealing the influence of the
geometry on the superconducting properties. (Rodrigo, Crespo, Suderow, Vieira, &
Guinea, 2012) Moreover, atomic Pb wires were grown on a vicinal semiconductor
surface and demonstrated to exhibit correlated spin-orbit order. (Brand et al., 2015)
In tunneling junctions comprising Pb electrodes the competition of superconducting
phenomena and Kondo screening (Franke, Schulze, & Pascual, 2011) as well as tun-
neling processes into localized subgap states were unraveled. (Ruby, Pientka, et al.,
2015)

Here, we present our findings for single-atom contacts fabricated from Pb-covered
W tips and a Pb(111) surface in a low-temperature STM experiment. The forming
and breaking of junctions was performed on pristine Pb(111) as well as on single
Pb adsorbed atoms (adatoms). Simultaneously, the conductance of the junction was
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recorded for tip–sample distances in tunneling and contact ranges. Both types of junc-
tions exhibited a rather broad distribution of contact conductances, i. e., from 1 G0 to
5 G0 for Pb(111) and from 0.7 G0 to 3 G0 for Pb adatoms. These distributions are not
compatible with the previous tight-binding calculations for a single-atom Pb junction
where conductance variations from 1 G0 to 2.5 G0 depending on the distance between
the central atom and its first neighbors were reported (Cuevas et al., 1998). In addi-
tion, both junctions showed hysteretic behavior. Breaking of the contacts on clean
Pb(111) required tip retractions by up to hundreds of pm beyond the jump to con-
tact. Contact regions were imaged prior to and after contact experiments in order to
identify surface and tip modifications. The experimental results were corroborated by
state-of-the-art ab initio quantum mechanical simulations. The calculations unveiled
the important role of relaxations of the tip structure on the contact conductance and
the hysteresis width. Atomically sharp and crystalline tips alone were unable to ex-
plain the experimental observations. Rather, tip apices terminated by more than one
atom had additionally to be considered to comprehensively describe the experimen-
tally observed contact conductances and hysteresis effects.

6.3 E X P E R I M E N TA L

The experiments were performed with an STM operated in ultrahigh vacuum (10−9 Pa).
The absence of the superconducting energy gap in spectra of the differential con-
ductance together with the temperature readings from a Si diode indicated a sample
temperature of 7.2 K – 7.5 K. Pb(111) was cleaned by Ar+ bombardment and an-
nealing. Tips were electrochemically etched from polycrystalline W wire (diameter
300µm, purity 99.95 %) in a 0.1 M solution of NaOH. In the vacuum recipient the tips
were heated close to the W melting temperature. The tip apex was then coated with
substrate material by indentation into the Pb(111) surface with an applied voltage
of 130 V. A similar procedure was reported previously, which ensured the bulk-like
character of the Pb coating by measuring the superconducting energy gap. (Ruby,
Heinrich, Pascual, & Franke, 2015)1 Tip–surface contacts were formed by disabling
the feedback loop at a tunneling current of 0.5 nA, at a bias voltage between−50 mV
and 50 mV, and approaching the tip by 300 – 600 pm towards the surface. The tip
approach was stopped a few tens of picometers after the first jump to contact. The
tip was then retracted by 1 nm. Approach and retraction velocities ranged between
2 nm s−1 and 3 nm s−1. For the contact experiments a specific selection of tips was
used. The tip was approached to the surface until a single Pb atom was transferred
from the tip to the sample upon contact. Atom transfer from the tip apex to the surface
was reported previously for several surfaces (Limot, Kröger, Berndt, Garcia-Lekue,
& Hofer, n.d.; Kröger, Jensen, & Berndt, 2007; Kröger et al., 2008; Kröger, Néel,
Sperl, Wang, & Berndt, 2009; Berndt et al., 2010) and is due to the strong adhesive
forces between the electrodes close to the point of maximum attraction. Such tips
were particularly stable and led to reproducible conductance traces and STM images
prior to and after contact formation. STM images were recorded at constant current
with the bias voltage applied to the sample. For measurements with a time resolution

1 Experiments were likewise performed with bulk Pb tips. The resulting junctions exhibited virtually
identical behavior to the contacts with Pb-covered W tips.



66 P L A S T I C I T Y O F S I N G L E - AT O M P B J U N C T I O N S

of 20 ns a transimpedance amplifier with a 3 dB cut-off frequency of 14 MHz and an
oscilloscope sampling rate of 50 MS s−1 were used.

6.4 R E S U LT S A N D D I S C U S S I O N

Tip approach to the clean Pb(111) surface gave rise to the evolution of the junc-
tion conductance depicted as the black line in Fig. 6.1(a). The tunneling range in
the vicinity of the transition to contact (−100 pm < ∆z < 0 pm) was character-
ized by an exponential increase of the conductance with an apparent barrier height
of (5.0 ± 0.5) eV. This value is larger than the Pb(111) work function of 4.05 eV.
(Jacobi, 1988) The deviation is in accordance with the previously reported increase
of the apparent barrier height close to contact formation on thin Pb films on Ag(111).
(Becker & Berndt, 2010) Indeed, the calculations presented below revealed strong
atomic relaxations in the vicinity of the tunneling-to-contact transition, which caused
the tip–surface distance to vary more strongly than the tip displacement.

The transition from the tunneling range to the contact range was reflected by an
abrupt increase of the junction conductance. Time-resolved measurements of the
jump to contact revealed that the transition was abrupt on a time scale of 20 ns. This
almost discontinuous tunneling-to-contact transition was used to define ∆z = 0 pm
[Fig. 6.1(a)]. These observations are compatible with the emerging trend reported pre-
viously. (Becker & Berndt, 2010) While for a single wetting layer of Pb on Ag(111)
the transition from the tunneling to the contact range was gradual, it turned into a
more abrupt cross-over region for thicker Pb films. (Becker & Berndt, 2010) There-
fore, a jump to contact for bulk Pb may be expected and was observed in our exper-
iments. The conductances just before [Gj, Fig. 6.1(a)] and after (Gc) the jump did
not depend on the applied bias voltage in the range of −50 mV to 50 mV. Tunneling
spectra of the differential conductance were featureless and nearly constant in that
voltage interval.

In the subsequent contact range, i. e., for ∆z > 0 pm, the conductance exhib-
ited a linear increase. Upon tip retraction the junction conductance decreased linearly
[gray line in Fig. 6.1(a)] several hundreds of pm beyond the precedent point of con-
tact formation, i. e., the conductance displayed a pronounced hysteretic behavior.
The conductance decrease in the contact range (∆z < 0 pm) were reported previ-
ously and rationalized in terms of the splitting of Pb p orbitals at the Fermi level
due to elastic distortions of the contact. (Cuevas et al., 1998) During retraction of
the tip two-level fluctuations of the conductance were often observed [dashed rect-
angle in Fig. 6.1(a)]. Data acquisition with high time resolution [inset to Fig. 6.1(a)]
revealed that the fluctuations were abrupt changes between two conductance values,
which may be attributed to atomic relaxations in the junction. (den Brom, Yanson, &
Ruitenbeek, 1998b; Sperl, Kröger, & Berndt, 2010; Néel, Kröger, & Berndt, 2011)
Local heating of the junction due to power dissipation in the µW range is likely to
be present. For Au junctions a temperature increase of 50 mK was unraveled for this
power dissipation. (Lee et al., 2013) On general grounds, in the case of electron and
hole injection into pure metal a temperature increase on the order of 1 mK may be
estimated for the used currents and bias voltages assuming that electrons and holes de-
posit their energy within the inelastic mean free path. (Flores, Echenique, & Ritchie,
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Figure 6.1: (a) Representative conductance evolution of a junction comprising Pb(111) and
a Pb-coated W tip acquired at 50 mV. Tip approach (black line) leads to an
exponential increase of the conductance in the tunneling range (displacements
∆z < 0 pm). The abrupt change of the conductance from Gj = 0.2 G0 to
Gc = 2.9 G0 at ∆z = 0 pm reflects the formation of the contact. In the probed
contact range (∆z > 0 pm) the conductance increases linearly. Upon tip retrac-
tion (gray line) the conductance decreases linearly and reveals instabilities in the
form of, e. g., two-level fluctuations (dashed rectangle). The definition of the hys-
teresis width, H , is indicated. Inset: Two-level fluctuations observed in the con-
ductance trace upon tip retraction. (b) As (a) for a contact to a single Pb adatom
on Pb(111) with Gj = 0.1 G0 and Gc = 2.2 G0. Inset: Pseudo-three-dimensional
representation of an STM image of Pb(111) (0.1 V, 55 pA, 50 nm× 50 nm). Two
terraces are visible. A Pb adatom appears as a protrusion on the upper terrace.
Additional structure is due to near-surface voids induced by Ar+ bombardment.
(Schmid, Hebenstreit, Varga, & Crampin, 1996; Kurnosikov, Adam, Swagten, De
Jonge, & Koopmans, 2008) Image processing was performed by Nanotec WSxM.
(Horcas et al., 2007) (c), (d) Density plots of all acquired conductance traces [137
for Pb(111), 19 for single Pb adatoms]. The color scale depicts the number of con-
ductance data linearly grouped into bins defined by a regular 90× 90 grid, which
was spanned from −1090 pm to 260 pm and from 0 G0 to 7 G0. Full lines are the
conductance traces shown in (a), (b).
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1986) This temperature increase is not sufficient to surpass Ehrlich-Schwoebel bar-
riers (86 meV) (Li, Han, Jia, Xue, & Liu, 2006) and kink energies per atom (61–
87 meV) (Arenhold, Surnev, Bonzel, & Wynblatt, 1999) of Pb(111). Therefore, local
heating of the junction does not represent the main driving mechanism for the ob-
served junction instabilities. Importantly, after acquiring a typical conductance trace
on Pb(111) [Fig. 6.1(a)] STM images of the contact area showed that in most cases a
single atom was transferred from the tip to the surfaces. In less frequent cases a Pb
dimer was transferred.

Contact experiments on single Pb adatoms were likewise performed. Single Pb
atoms were transferred from the tip to the Pb(111) surface, as reported previously for
other surfaces. (Limot et al., n.d.; Kröger et al., 2007; Kröger et al., 2008; Kröger
et al., 2009; Berndt et al., 2010) The inset to Fig. 6.1(b) shows an STM image of
Pb(111) where a single adatom is visible as a protrusion on the upper terrace. The
tip approach to a single Pb adatom exhibited an abrupt change of the conductance
at the tunneling-to-contact transition and a linear variation of the conductance in the
contact range. A hysteresis loop of the conductance was observed for the adatom, too,
albeit considerably less pronounced than on clean Pb(111). A representative example
is shown in Fig. 6.1(b) in which the conductance hysteresis appears with a width of
≈ 50 pm. Imaging the adatom after conductance data acquisition showed that no
material had been transferred to the surface.

While the conductance traces in Figs. 6.1(a), (b) represent specific data sets Figs. 6.1(c),
(d) comprise all conductance data as density plots. These density plots illustrate
the propensity of single-adatom contacts to exhibit smaller conductance hysteresis
widths than junctions on clean Pb(111) surfaces. For clarity the data sets of Figs. 6.1(a),
(b) were added to the density plots as black lines.

Statistics were performed for the contact conductance,Gc, and the hysteresis width,
H , in order to more thoroughly compare contact experiments on clean Pb(111) and on
single Pb adatoms on Pb(111). To this end Gc was defined as the conductance value
that is reached directly after the jump to contact. The hysteresis width was defined as
follows [Fig. 6.1(a)]. A horizontal line starting from Gj – the conductance just before
the jump to contact – intersects the conductance trace acquired during retraction. The
difference of the corresponding displacements is referred to as H .

Figures 6.2(a), (b) show histograms of Gc obtained for contacts comprising Pb-
covered W tips and the clean Pb(111) surface [Fig. 6.2(a)] and single Pb adatoms
on Pb(111) [Fig. 6.2(b)]. The distribution of Gc for contacts on Pb(111) exhibited
a broad maximum at ≈ 2.5 G0. Contacts on three-layer thick Pb films on Ag(111)
were previously reported to exhibit similar conductances. (Becker & Berndt, 2010)
However, these contact conductances were observed less frequently than contact con-
ductances of ≈ 1.4 G0. (Becker & Berndt, 2010) Junctions comprising a single Pb
adatom showed a maximum in the histogram of Gc that is more sharply peaked be-
tween 2 G0 and 2.25 G0. The different widths of the conductance histograms are as-
signed to the degree of precise knowledge of the contact geometry. The Pb(111) sur-
face was not imaged with atomic resolution. Therefore, whether contact was formed
to on-top, hollow or bridge lattice sites of Pb(111) remained elusive. In contrast, con-
tact to the adatom left less doubt to the junction geometry at the substrate and thus led
to a sharper distribution of Gc. These findings are in agreement with results obtained
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Figure 6.2: Histograms of observed contact conductances (Gc) on pristine Pb(111) (a) and on
single Pb adatoms (b). (c), (d) Histograms of hysteresis widths (H) observed from
closing and subsequent breaking of junctions comprising Pb(111) and single Pb
adatoms, respectively. All contacts were formed with bias voltages ranging from
−50 mV to 50 mV.
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for Ag(111), Cu(111) (Limot et al., n.d.) and Au(111). (Kröger et al., 2007; Kröger
et al., 2009) Below we will show that contact conductances calculated for different
lattice sites and tip geometries corroborate the experimental results (Table 6.1).

Histograms of the hysteresis widths are different for Pb(111) [Fig. 6.2(c)] and Pb
adatoms [Fig. 6.2(d)], too. For contacts on clean Pb(111) the distribution is broad with
a maximum at ≈ 250 pm. Junctions comprising Pb adatoms most frequently exhibit
conductance hysteresis widths between 0 pm and 50 pm. In the probed bias voltage
range 10 mV ≤ |V | ≤ 50 mV and within the uncertainty margins the hysteresis
width did not depend on the sample voltage. Moreover, the potential influence of Pb
phonons was not explored since bulk and surface phonon energies are below 10 meV.
(Sklyadneva, Heid, Bohnen, Echenique, & Chulkov, 2012)

For both contact types breaking of the junctions was accompanied by conductance
instabilities before the jump out of contact occurred. These findings are different from
results reported for Au contacts. (Trouwborst et al., 2008) The hysteretic conductance
variations in Au contacts were characterized by clear jumps to contact and jumps out
of contact. Stretching of the Au junctions led to a gradual decrease of the conduc-
tance without the occurrence of conductance fluctuations. These observations were
rationalized in terms of junctions in which no further atomic reorganizations took
place, i. e., the closing and opening of the Au contacts was understood by elastic
deformations of the electrodes. (Trouwborst et al., 2008) For Pb, however, our ab-
initio quantum mechanical calculations showed that reorganizations of the electrode
structure occurred, i. e., the junctions were characterized by plastic deformations. In
particular, several atoms were involved in forming and breaking of the contact. This
interpretation is compatible with our observation that the hysteresis width slightly
increased with increasing contact conductance (not shown).

In order to rationalize the experimental data and gain insight into the relation be-
tween the mechanical or structural properties and the conductance of the contacts, a
full set of density functional calculations was performed. While it is common prac-
tice to address the mechanical behavior of contacts at the nanometer scale through
molecular dynamics and effective interatomic potentials, (Sabater, Untiedt, Palacios,
& Caturla, 2012) the detailed and controlled nature of the present experiments called
for taking quantum effects on the forces into account. Both the mechanical behavior
and the electron transport were addressed by means of our code ANT.G (J. J. Pala-
cios et al., 2002; Louis et al., 2003) in combination with Gaussian. (M. J. Frisch,
Trucks, Schlegel, Scuseria, Robb, Cheeseman, Scalmani, Barone, Mennucci, Peters-
son, Nakatsuji, Caricato, Li, Hratchian, Izmaylov, Bloino, Zheng, Sonnenberg, Hada,
Ehara, Toyota, Fukuda, Hasegawa, Ishida, Nakajima, Honda, Kitao, Nakai, Vreven,
Montgomery, et al., 2009) The atomic and electronic structure of the relevant contact
region were obtained in a fully self-consistent manner and translated into a conduc-
tance through a standard Green function formalism with the help of effective self-
energies representing the far and less relevant part of the system. (J. J. Palacios et al.,
2001; J. J. Palacios et al., 2002; Louis et al., 2003; D. Jacob & Palacios, 2011) To ex-
pand the electronic density and represent the Green function, the CRENBS minimal
basis set was typically used, with one s and three p orbitals, including its correspond-
ing core pseudo-potentials. (Ross et al., 1990) Additionally, calculations with larger
basis sets such as the LANL2DZ were performed. (Wadt & Hay, 1985) However,
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the resulting atomic and electronic properties were virtually identical to the findings
obtained by the minimal basis sets. A standard local density approximation to the
density functional was used. The choice of the functional is not critical to the results
for mono-elemental sp metals. The specific procedure to mimic the experiments in-
volved successive instantaneous structural relaxations subject to certain geometrical
constraints on the boundary atoms of our system which coupled to the bulk substrate
and the rest of the tip.

The geometry of the surface and of the contact was known to a very good extent
owing to the imaging capabilities of the STM. However, to reduce the large number
of possible atomic coordinates the starting atomic structure of the tip prior to con-
tact had in part to be guessed. For all calculations a pyramidal Pb tip grown in the
〈100〉 direction was chosen. This choice was motivated by the findings of several
previous works. Pb tips grown along 〈100〉 directions exhibit {111} facets, which
were shown to exhibit the lowest surface energy. (Zhang, Ma, & Xu, 2004) Further,
Pb electrodes stacked along 〈100〉 directions gave rise to contact conductances of
2.7 G0, (Xie et al., 2010) in good agreement with our observations. Face-centered
cubic metals in general realize 〈100〉 stacking directions, which was demonstrated
for, e. g., Au (Ohnishi et al., 1998; Rodrigues, Fuhrer, & Ugarte, 2000; Rego, Rocha,
Rodrigues, Ugarte, & Rego, 2003; Evangeli et al., 2015), Al (Schirm et al., 2013)
and Pt (Evangeli et al., 2015) electrodes. Although 〈111〉 growth directions are also
likely to appear, qualitatively different physics was not unraveled from several tests
carried out. Consequently, two obvious choices for the tip termination were available,
i. e., the commonly assumed single-atom termination and a termination via a four-
atom plane parallel to the surface. While these two choices did not cover all possible
configurations, the particular preparation of the tip (vide supra) certainly reduced the
possibilities. The clean Pb(111) surface was represented by an embedded three-layer
cluster of up to 100 atoms. The calculations revealed that threefold coordinated hol-
low sites of Pb(111) represent energetically favored adsorption sites for single Pb
atoms.

Entire conductance traces were calculated for tips approaching to and retracting
from on-top and hollow sites of the pristine Pb(111) lattice [Figs. 6.3(a), (e)]. Addi-
tionally, conductance traces for single Pb adatoms [Figs. 6.3(b), (f)] were simulated.
The orientation of the tip structure with respect to the Pb(111) lattice is indicated for
the single-atom [Figs. 6.3(c), (d)] and the four-atom [Figs. 6.3(g), (h)] terminated tip.
The resulting contact conductances and hysteresis widths are summarized in Table
6.1. In the calculations contact formation (∆z = 0 pm) was defined by a conduc-
tance increase exceeding 0.3 G0 between two subsequent tip displacements. An addi-
tional requirement was the variation of the conductance by less than 0.3 G0 for two
subsequent displacements in the contact range (∆z > 0 pm). According to this def-
inition the single-atom terminated Pb tip exhibited calculated contact conductances
of Gc = 0.7 G0 and Gc = 0.9 G0 for on-top and hollow sites on Pb(111), respec-
tively [Fig. 6.3(a)]. The geometry of such low-conductance junctions is depicted in
Fig. 6.3(i) for the on-top configuration at displacement ∆z = 0 pm. Distortions of
the tip and the substrate were still elastic at this displacement. In particular, the tip
apex atom was centered atop the approached Pb(111) atom. The calculations unveiled
that the geometry of these low-conductance junctions was unstable. Indeed, the sim-
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Table 6.1: Calculated contact conductances (Gc) and hysteresis widths (H) of atom-sized Pb
junctions. Pb tips grown in the 〈100〉 ( 〈111〉 ) have apices terminated by 1 and 4 (1
and 3) atoms. On pristine Pb(111) contacts are formed at on-top and hollow sites.
The contacted single Pb adatom resides at a Pb(111) hollow site.

orientation & Gc (G0) H (pm)

apex atoms on-top hollow adatom on-top hollow adatom

〈100〉 1 0.7 0.9 0.9 270 180 40

4 2.2 4.5 2.2 200 140 260

〈111〉 1 1.1 2.4 1.5 380 80 100

3 (3) 2 2.5 (400) 150 550

ulations revealed that these junctions exhibited the propensity for atomic relaxations
upon further tip approach. Approaching the single-atom terminated tip towards the
Pb(111) on-top (hollow) site by 140 pm (60 pm) led to a strong increase of the junc-
tion conductance, rather than to a plateau-like variation. The calculated junction ge-
ometry showed the implantation of the tip apex atom into the surface [Fig. 6.3(i),
∆z = 220 pm], which caused the conductance increase.

Forming and breaking of contacts comprising a single-atom terminated tip and
the pristine Pb(111) surface revealed hysteretic behavior [Fig. 6.3(a)]. The hysteresis
widths were extracted from calculated conductance traces according to the procedure
exposed in Fig. 6.1(a). For single-atom terminated tips hysteresis widths of 270 pm
and 180 pm were obtained for on-top and hollow sites, respectively (Table 6.1). Fig-
ure 6.3(i) further shows that single-atom terminated tips transfer their apex atom to
the bare Pb(111) surface upon contact, in agreement with the experimental observa-
tion. Upon approaching a Pb(111) on-top site the tip apex atom was transferred to an
adjacent hollow site upon contact, reflecting the preferred adsorption site of a single
Pb atom.

Junctions comprising an atomically sharp tip and a single Pb adatom showed
conductance-displacement characteristics depicted in Fig. 6.3(b). In contrast to the
simulation of contacts comprising the pristine Pb(111) surface a nearly gradual evo-
lution of the conductance in transition range between tunneling an contact was ob-
served, rather than an abrupt jump. The contact conductance was ≈ 0.9 G0 and thus
appreciably lower than the averaged experimental value. Only a few number of con-
tacts were experimentally observed with a similarly low conductance [Fig. 6.2(b)]. In
addition, a conductance hysteresis was virtually absent for the simulated contacts to
adatoms.

The broad range of contact conductances observed in the experiments, i. e., ≈
1.0 G0 to ≈ 5.0 G0 for Pb(111) and ≈ 1.5 G0 to ≈ 3 G0 for Pb adatoms, could not
be explained by tip apices terminated by a single atom alone. According to Table 6.1
calculated contact conductances comprising single-atom terminated tips and on-top
and hollow sites of Pb(111) are 0.7 G0 and 0.9 G0, respectively, while contacts to a
single Pb adatom exhibit a conductance of 0.9 G0. These deviations to experimental
observations represented the impetus to likewise consider junctions comprising tips
terminated by 4 Pb atoms in the simulations.
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Representative conductance-displacement characteristics are displayed in Fig. 6.3(e)
for contacts at on-top and hollow Pb(111) sites and in Fig. 6.3(f) for single Pb adatoms
residing at Pb(111) hollow sites. In agreement with the experiment abrupt changes of
tunneling to contact conductances and jumps out of contact occurred in the calcula-
tions. The calculated contact conductance for on-top and hollow Pb(111) sites was
2.2 G0 and 4.5 G0, respectively. 2 Contacts comprising a four-atom terminated tip
and a single Pb adatom exhibited a conductance of 2.2 G0. The calculated hysteresis
widths were 200 pm and 140 pm for on-top and hollow sites of Pb(111), respectively,
and 260 pm for the Pb adatom. The simulated hysteresis width for the adatom junction
exceeds the experimentally most frequently observed widths between 0 and 50 pm
[Fig.6.2(d)]. Only a few junctions exhibited widths in the range of 200 – 450 pm,
which are compatible with the calculated result. For the other ideal contact geometry
considered in the calculations, i. e., a single-atom terminated tip and the adatom, an
essentially vanishing H was obtained [Fig.6.3(b)]. Therefore, the experimental junc-
tion most likely adopts a geometry within the range of these two extreme and ideal
cases. Unlike the simulations based on a single-atom terminated tip, the approach of
a four-atom terminated tip to a single Pb adatom on Pb(111) [Fig. 6.3(f)] showed –
in accordance with the experiment – an abrupt jump to and out of contact. Therefore,
considering both single-atom and four-atom terminated tips in the simulations led to
an improved description of the broad conductance distribution observed in the exper-
iments. Furthermore, the conductance hysteresis observed from closing and opening
of the junctions was well reproduced.

Similar calculations were performend for Pb tips grown along the 〈111〉 direction
(Table 6.1).

6.5 C O N C L U S I O N S

Closing tunneling junctions comprising Pb tips of an STM and Pb(111) surfaces oc-
curred via an abrupt jump to the first ballistic conductance plateau. Upon opening
such junctions a pronounced hysteretic conductance behavior was observed. In con-
trast to previously studied Au junctions the Pb conductance hysteresis was not solely
due to elastic distortions of the electrodes. Rather, it reflected the plasticity of Pb con-
strictions even at the ultimate size limit. Additionally, to comprehensively describe
electron transport through the biased Pb contacts and mechanical relaxations of the
junctions simulations had to deviate from the commonly assumed simple pyramidal
tip structure and include more complex tip apices that were terminated by more than
a single atom. The presented findings therefore highlight that low-conductance junc-
tions do not necessarily reflect simple junction geometries. Moreover, the results are
relevant to mechanical deformations at the nanometer scale.

2 Calculations revealed that contacts comprising a four-atom terminated tip apex and on-top sites of
Pb(111) involved many atoms in the contact range. In particular, decreasing the tip–surface distance led
to an increase of the conductance without reaching a plateau-like conductance variation. Therefore, for
this specific junction geometry contact was defined at the same displacement ∆z at which contact was
reached for junctions comprising four-atom terminated tips and Pb(111) hollow sites.
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N OTAT I O N F O R T H E P O S I T I O N - S P I N R E P R E S E N TAT I O N

For the sake of simplicity, throughout this book, we use the simplified position-spin
representation explained below. We consider the ultra-simplified notation 1 for the
particle with associated position r1, spin σ1 and time z1 (on the contour) ot t1 (if
real) to be:

1 = (x1, z1) = (r1σ1, z1) (A.1)

where we have implicitly defined the position-spin coordinate x1. Following this
definitions, for example, the two-particle Green’s function for the interaction of par-
ticles 1 and 2 can be written with the next entries:

G2(1, 2; 1′, 2′) = G2(x1, z1,x2, z2;x′1, z
′
1,x
′
2, z
′
2)

= G2(r1σ1, z1, r2σ2, z2; r′1σ
′
1, z
′
1, r
′
2σ
′
2, z
′
2)

(A.2)

The last term reveals how necessary this trick is to simplify the notation and the
equations.

The definition of the simplified notations mixing positions and spin components
forces us to use also a tricky, simplified notation for integrals in space and sums in
the spin component defined by the next chain of equivalences:

∫
d1 ≡

∫
dx1 ≡

∑
σ1

∫
dr1 (A.3)

and also if we take limits on (real/contour)-time without touching the rest of coor-
dinates:

1+ ≡ lim
z1→z+

(x1, z1) ≡ lim
z1→z+

(r1σ1, z1) (A.4)

or if we act with the δ-function:

δ(x1 − x2) = δσ1σ2δ(r1 − r2) (A.5)



B
T I M E E VO L U T I O N

The time evolution of a system governed by the Time-dependent Schrödinger equa-
tion:

i
d

dt
|Ψ(t)〉 = Ĥ (t) |Ψ(t)〉 (B.1)

|Ψ(t)〉 is uniquely determined once the initial ket |Ψ(t)〉 is given. For time-independent
Hamiltonians Ĥ (t) = Ĥ (t0) for all times t and ((B.1)) is solved by

|Ψ(t)〉 = e−iĤ (t0)(t−t0) |Ψ(t0)〉 (B.2)

If Ĥ (t) is time-dependent, we need the evolution operator Û (t, t0) which converts
|Ψ(t0)〉 into |Ψ(t)〉:

|Ψ(t)〉 = Û (t, t0) |Ψ(t0)〉 (B.3)

Now we introduce the time and anti-time ordering operators T and T̄ . The action
of the former is to sort the operators in chronological order with that of the later time
to the right, while the later, as its counterpart, does the opposite. The time-evolution
operator results in:

Û (t, t0) =

 T
{
e
−i

∫ t
t0

dt̄Ĥ (t̄)
}

t > t0

T̄
{
e+i

∫ t0
t dt̄Ĥ (t̄)

}
t < t0

(B.4)

In the Heisenberg picture, operators instead of wavefunctions evolve in time, so
that the evolution of a Heisenberg picture operator ÔH(t) looks, in terms of its corre-
sponding Schrödinger picture Ô(t) and the time-evolution operator:

ÔH(t) ≡ Û (t0, t)Ô(t)Û (t, t0) (B.5)

which we apply not only to observable operators, but also to field operators. To
show that it is legitimate, we take the density operator n̂(x) = ψ̂†(x)ψ̂(x) which is
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associated with an observable quantity and is written in terms of two field operators
which also admit a Heisenberg picture

n̂H(x) =Û (t0, t)n̂(x)Û (t, t0) = Û (t0, t)ψ̂
†(x)ψ̂(x)Û (t, t0)

=Û (t0, t)ψ̂
†(x) Û (t, t0)Û (t0, t)︸ ︷︷ ︸

1̂

ψ̂(x)Û (t, t0) = ψ̂†H(x, t)ψ̂H(x, t) (B.6)

which respects the form given by the Schrödinger picture definition of the den-
sity operator, so that the Heisenberg picture of the product of two operators Ô =

Ô1Ô2 is simply the product of the two operators in the Heisenberg picture ÔH(t) =

Ô1,H(t)Ô2,H(t). As a consequence, operators in the Heisenberg picture at equal
times satisfy the same (anti)commutation relations as the original operators.

For the non-observable field operators:

[
ψ̂†H(x, t), ψ̂H(x′, t)

]
∓

= δ(x− x′)

B.1 E Q UAT I O N S O F M OT I O N F O R O P E R AT O R S I N T H E H E I S E N B E R G P I C -
T U R E

The equation of motion for operators in the Heisenberg picture:

ı
d

dt
ÔH(t) =

[
ÔH(t), ĤH(t)

]
−

+ ı
∂

∂t
ÔH(t) (B.7)

Because field operators ψ̂(x), ψ̂†(x) are the basis to build any operator in second
quantization, the equations of motion for ψ̂H(x, t) and ψ̂†H(x, t) play a crucial role.
Let us consider the many-body Hamiltonian 1.4 with some time-dependent one-body
part ĥ(t)

ĤH(t) =
∑
σσ′

∫
drψ̂†(rσ, t)hσσ′(r,−i∇,S, t)ψ̂†(rσ′)︸ ︷︷ ︸

Ĥ0(t)

+
1

2

∫
dx dx′v(x,x′)ψ̂†(x)ψ̂†(x′)ψ̂(x′)ψ̂(x)

(B.8)

After some algebra, the equation of motion for the non-observable field annihila-
tion operator ψ̂H(t) reads:

ı
d

dt
ψ̂H(t) =

∑
σ′

hσσ′(r,−i∇,S, t)ψ̂H(rσ′, t) +

∫
dx′v(x,x′)n̂H(x′, t)ψ̂H(t)

(B.9)
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And the adjoint equation for the creation operator ψ̂†H(t):

ı
d

dt
ψ̂†H(t) = −

∑
σ′

ψ̂†H(rσ′, t)hσσ′(r, i
←−
∇ ,S, t) +

∫
dx′v(x,x′)ψ̂†H(t)n̂H(x′, t)

(B.10)



C
T I M E - D E P E N D E N T Q UA N T U M A N D E N S E M B L E
AV E R AG E S .

C.1 T I M E - D E P E N D E N T Q UA N T U M AV E R AG E S : T H E K E L DY S H C O N T O U R

The time-dependent quantum average of an operator Ô(t) at time t when the system
is prepared in the state |Ψ(t0)〉 ≡ |Ψ0〉 at time t0 is, by performing the average of
equation (B.5) with |Ψ(t)〉:

O(t) =

Schrödinger picture︷ ︸︸ ︷
〈Ψ(t)| Ô(t) ||Ψ(t)〉〉 ≡

Heisenberg picture︷ ︸︸ ︷
〈Ψ0| ÔH(t) |Ψ0〉

= 〈Ψ0| Û (t0, t)Ô(t)Û (t, t0) |Ψ0〉
(C.1)

with Û (t0, t) the evolution operator defined in (B.4). With this definition of Û (t0, t)

and Û (t, t0), we get:

O(t) = 〈Ψ0| T̄
{
e

+i
∫ t
t0

dt̄Ĥ (t̄)
}

︸ ︷︷ ︸
Û (t0,t) t0<t

Ô(t)T
{
e
−i

∫ t
t0

dt̄Ĥ (t̄)
}

︸ ︷︷ ︸
Û (t,t0) t0<t

|Ψ0〉
(C.2)

As can be checked in the literature (for example (Stefanucci & Van Leeuwen,
2010)), when expanding the exponentials in (C.2) in powers of the Hamiltonian, the
terms of the expansion are composed by integrals of operators like (Stefanucci & Van
Leeuwen, 2010)

T̄
{
Ĥ (t̄1)...Ĥ (t̄n)

}
Ô(t)T

{
Ĥ (t̄′1)...Ĥ (t̄′m)

}
(C.3)

where all ti and t′i have values between t0 and t. Introducing the next tricks, these
terms can be written in a more convenient form. First, we define the oriented "con-
tour":

γ ≡ (t0, t)︸ ︷︷ ︸
γ−

⊕ (t, t0)︸ ︷︷ ︸
γ+

(C.4)

which travels the path t0 → t→ t0. The contour γ is composed by two paths: the
right-travelling branch γ− and the left-travelling branch γ+. With this definition of γ,
we introduce operators evaluated on time-arguments on the contour as:

Ô(z′) ≡

{
Ô−(t′) z′ = t′−

Ô+(t′) z′ = t′+
(C.5)
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In general Ô+(t′) 6= Ô−(t′). By defining a contour ordering operator for the prod-
uct of operators on the contour, say T , which puts the "latest" operators on the left,
for every permutation P of the times zm later than zm−1... later than z1 we have

T
{
Ôm(zP (m))Ôm−1(zP (m−1))...Ô1(zP (1))

}
= Ôm(zm)Ôm−1(zm−1)...Ô1(z1)

(C.6)

Any point on the left-travelling branch is always later than a point on the right-
travelling branch.

The contour ordering operator can be used to rewrite (C.3) in a compact form. By
writing the Hamiltonian Ĥ and the operator Ô on γ, taking into account that both
Ĥ and Ô are the same on the left- and right-travelling branches, and the same as
evaluated on the real-time axis:

Ĥ (z′ = t′±) ≡ Ĥ (t′) Ô(z′ = t′±) ≡ Ô(t′) (C.7)

Actually, all operators associated with observable quantities (like the density, cur-
rent, energy, etc.), with argument on the contour are defined as in (C.7), in particular
the field operators:

ψ̂(x, z′ = t′±) ≡ ψ̂(x, t′) ψ̂†(x, z′ = t′±) ≡ ψ̂†(x, t′) (C.8)

Using (C.7) we can rewrite (C.3) using a single contour ordered instead of two
time-ordered operator product chains as:

T
{
Ĥ (t1+)...Ĥ (tn+)Ô(t±)Ĥ (t′1−)...Ĥ (t′m−)

}
(C.9)

The contour integral between two points z1 and z1 on γ works the same way as the
standard integral along any contour. If z1 is earlier than z2

∫ z2

z1

dz̄Ô(z̄) =


∫ t2
t1
dz̄Ô−(z̄) ifz1 = t1−andz2 = t2−∫ t

t1
dz̄Ô−(z̄) +

∫ t2
t dz̄Ô+(z̄) ifz1 = t1−andz2 = t2+∫ t2

t1
dz̄Ô+(z̄) ifz1 = t1+andz2 = t2+

(C.10)

while if z1 is later than z2, the sign is the opposite:

∫ z2

z1

dz̄Ô(z̄) = −
∫ z1

z2

dz̄Ô(z̄) (C.11)

Doing this for every term (C.3) of the expansion of the exponentials in (C.2) the
time-dependent quantum average (which coincides for both the Schrödinger ad the
Heisenberg pictures) of the later is rewritten as:
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O(t) = 〈Ψ0| T
{

e
−i

∫
γ+

dz̄Ĥ (z̄)︸ ︷︷ ︸
−

∫
γ+
≡−

∫ t0+
t+
≡
∫ t
t0

Ô(t±) e
−i

∫
γ−

dz̄Ĥ (z̄)︸ ︷︷ ︸∫
γ−
≡
∫ t−
t0−
≡
∫ t
t0

}
|Ψ0〉

Because products of operators under the T action can be reordered without chang-
ing the result, as if these were commuting ones (the same happens for the time and
anti-time ordering operators), this can be simplified as:

O(t) = 〈Ψ0| T
{
e−i

∫
γ dz̄Ĥ (z̄)Ô(t±)

}
|Ψ0〉 (C.12)

where
∫
γ ≡

∫
γ−

+
∫
γ+

travels through t0− → t− → t+ → t0+.
If we extend γ up to infinity, the contour ordered product in (C.12) is evaluated,

with γ the extended contour, when the operator Ô is placed in the position t±

T
{
e−i

∫
γ dz̄Ĥ (z̄)Ô(t−)

}
= Û (t0,∞)Û (∞, t)Ô(t)Û (t, t0) = Û (t0, t)Ô(t)Û (t, t0)

and

T
{
e−i

∫
γ dz̄Ĥ (z̄)Ô(t+)

}
= Û (t0, t)Ô(t)Û (t,∞)Û (∞, t0) = Û (t0, t)Ô(t)Û (t, t0)

So that expanding the contour until ∞ in time does not change the expectation
value. This infinitely extended contour is referred as the Keldysh or Schwinger-Keldysh
contour (Stefanucci and Van Leeuwen (Stefanucci & Van Leeuwen, 2010)). The
physics does not depend on the contour choice, thus, all the different formulations
of the Green’s function method must be equivalent.

Taking into account that O(t±) = O(t−) = O(t+) = O(t), equation (C.12) can
be rewritten as:

O(z) = 〈Ψ0| T
{
e−i

∫
γ dz̄Ĥ (z̄)Ô(t±)

}
|Ψ0〉 (C.13)

C.2 T I M E - D E P E N D E N T E N S E M B L E AV E R AG E S : T H E D E N S I T Y M AT R I X

O P E R AT O R

In the section before we treated an isolated system in which kets |Ψ〉 and |Ψ0〉 de-
signed a pure state. However, such systems rarely exist, these are idealizations. Sys-
tems interacting with the environment need to be described by a mixture of many-
body pure states. The statystical approach is to assign a probability wnin[0, 1] for the
system to be in the state |χn〉 in t0, with the normalization condition

∑
n
wn = 1. The

kets |χn〉 are normalized 〈χn|χn〉 but do not need to be orthogonal, because, typically,
they have different spectral energies and other quantum numbers, forming a spectral
distribution given by the spectral function Â(E).
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With this definition of the mixed states, the ensemble average of an operator Ô(t)

at time t0 is defined in the most natural way as:

O(t0) =
∑
n

wn 〈χn| Ô(t0) |χn〉 (C.14)

with allwn = 0 except for one in the case of a pure state, when it reduces to the for-
mer quantum average. The wheighting factor wn introduces the interaction between
the system and the environment.

The ensemble average is characterized by a quantity which is extremely useful, the
density matrix operator ρ̂, described by the states forming the mixture as:

ρ̂ =
∑
n

wn |χn〉〈χn| (C.15)

which is self-adjoint ρ̂ = ρ̂† and positive-semidefinite since:

〈Ψ| ρ̂ |Ψ〉 =
∑
n

wn| 〈Ψ|χn〉 |2 ≥ 0

for any state |Ψ〉. If we construct a generic basis of orthonormal states denoted by
|Ψk〉, the ensemble average based on ρ̂ is:

O(t0) =
∑
k

∑
n

wn 〈χn|Ψk〉 〈Ψk| Ô(t0) |χn〉 =
∑
k

〈Ψk| Ô(t0)ρ̂ |Ψk〉

=Tr[Ô(t0)ρ̂] = Tr[ρ̂Ô(t0)]

(C.16)

where Tr represents the Trace in the Fock space F . Every |χn〉 is normalized and∑
n
wn = 1, so that Tr[ρ̂] = 1.

If we choose the family of kets |Ψk〉 to be the eigenstates of ρ̂ with positive eigen-
values ρk summing up to 1, which leads to ρk ∈ [0, 1] and Tr[ρ̂2] ≤ 1, the density
matrix operator can be expanded by its eigenstates as

∑
k

ρk |Ψk〉〈Ψk|. The ρk are

defined as:

ρk =
e−βE

M
k∑

p e
−βEMp

where EMk is the energy eigenvalue of ket Ψk from the so called Matsubara Hamil-
tonian ĤM , which describe the system in the initial preparation, and β is the inverse
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temperature β =
1

kBT
where kB is the Boltzmann constant. We can write the Mat-

subara Hamiltonian:

ĤM =
∑
k

EMk |Ψk〉〈Ψk| (C.17)

and the density operator as:

ρ̂ =
∑
k

e−βE
M
k

Z
|Ψk〉〈Ψk| =

e−βĤ
M

Z
(C.18)

where Z is the partition function defines as:

Z =
∑
p

e−βE
M
p = Tr

[
e−βĤ

M
]

(C.19)

Typically the density matrix operator ρ̂ is chosen to describe a system in thermody-
namic equilibrium at a given temperature T and chemical potential µ. The Matsubara
Hamiltonian from which ρ̂ arises relates the many-body Hamiltonian and the chemi-
cal poitential of the system as ĤM = Ĥ − µN̂ .

Following the statisticall description of the mixed states explained above, the time-
evolution of each system of the enseble needs to be calculated and then the wn
wheighted sum of the time-dependent single-state quantum averages 〈χn(t)| Ô(t) |χn(t)〉.
Because the Hamiltonian Ĥ (z) is common for all the single many-body kets |χn(t)〉,
the time-evolution is also common:

O(z) =
∑
n

〈χn(t)| Û (t0, t)Ô(t)Û (t, t0) |χn(t)〉 = Tr
[
ρ̂Û (t0, t)Ô(t)Û (t, t0)

]
=Tr

[
ρ̂T
{
e−i

∫
γ dz̄Ĥ (z̄)Ô(z)

}]
(C.20)

with the representation of the density matrix operator in (C.18)

O(z) =
Tr
[
e−βĤ

MT
{
e−i

∫
γ dz̄Ĥ (z̄)Ô(z)

}]
Tr
[
e−βĤM

] (C.21)

By inspection of the equations, as seen in (Stefanucci and Van Leeuwen (Ste-
fanucci & Van Leeuwen, 2010)), two remarkable issues arise:
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1. The contour ordered product equals the identity and, thus, can be inserted any-
where, particularly inside the trace in the denominator of (C.21)

T
{
e−i

∫
γ dz̄Ĥ (z̄)Ô(z)

}
= Û (t0,∞)Û (∞, t0) = 1̂ (C.22)

2. There is a trick to write the exponential of ĤM as an integral along a vertical
path in the complex plane related to the inverse temperature β:

e−βĤ
M

= e−i
∫
γM

dz̄ĤM (z̄) (C.23)

the path γM beeing any contour travelling from za to zb fulfilling:

zb − za = −ıβ

From 1 and 2:

O(z) =
Tr
[
e−i

∫
γM

dz̄ĤM (z̄)T
{
e−i

∫
γ dz̄Ĥ (z̄)Ô(z)

}]
Tr
[
e−i

∫
γM

dz̄ĤM (z̄)T
{
e−i

∫
γ dz̄Ĥ (z̄)

}] (C.24)

Which, after redefining γ as γ = γ−⊕ γ+⊕ γM , can be reduced, due to the cyclic
property of the trace (see (Stefanucci & Van Leeuwen, 2010)), to:

O(z) =
Tr
[
T
{
e−i

∫
γ dz̄Ĥ (z̄)Ô(z)

}]
Tr
[
T
{
e−i

∫
γ dz̄Ĥ (z̄)

}] (C.25)



D
E Q UAT I O N S O F M OT I O N O F T H E G R E E N ’ S F U N C T I O N O N
T H E C O N T O U R

D.1 E Q UAT I O N S O F M OT I O N O N T H E C O N T O U R

Moving the equations of motion of the creation (B.9) and annihilation (B.10) opera-
tors to the contour, by doing:

〈x| ĥ |x〉 = hσσ′(r,−ı∇,S, z)δ(r− r′) = δ(r− r′)hσσ′(r
′, ı
←−
∇ ′,S, z)

the equation of motion for the non-observable field annihilation operator ψ̂H(z)

reads:

ı
d

dz
ψ̂H(z) =

∫
dx′ 〈x| ĥ(z) |x〉 ψ̂H(x′, z) +

∫
dx′v(x,x′, z)n̂H(x′, z)ψ̂H(z)

(D.1)

and the adjoint equation for the creation operator ψ̂†H(z):

−ı d
dz
ψ̂†H(z) =

∫
dx′ψ̂†H(x′, z) 〈x| ĥ(z) |x〉+

∫
dx′v(x,x′, z)ψ̂†H(z)n̂H(x′, z)

(D.2)

D.2 O P E R AT O R C O R R E L AT O R S O N T H E C O N T O U R

The operator correlators are strings of operators with the following structure:

k̂(z1, ..., zn) = T
{
Ô1(z1)...Ôn(zn)

}
(D.3)

The best way to derive relations for the operator correlators is to differentiate them
with respect to their contour arguments. The most simple operator correlator is the
contour ordered product of two operators (abbreviating the notation Ôj(zj) ≡ Ôj):

The operator correlators are strings of operators with the following structure:

T
{
Ô1Ô2

}
= θ(z1, z2)Ô1Ô2 + θ(z2, z1)Ô2Ô1 (D.4)
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Differentiating with respect to z1:

d

dz1
T
{
Ô1Ô2

}
= δ(z1, z2)

[
Ô1, Ô2

]
∓

+ T
{(

d

dz1
Ô1

)
Ô2

}
(D.5)

where the upper/lower∓ sign stands for bosonic/fermionic operators, so that fermions
use the anti-commutator.

The generalization of (D.5) for correlators of n operators is:

d

dzk
T
{
Ô1...Ôn

}
= δθzkT

{
Ô1...Ôn

}
+ T

{
Ô1...Ôk−1

(
d

dzk
Ôk

)
Ôk+1...Ôn

}
(D.6)

and defining

∂θzkT
{
Ô1...Ôn

}
=
∑
P

(±)P
(
d

dzk
θn(zP (1), ..., zP (n))

)
ÔP (1)...ÔP (n) (D.7)

where:

∂θzkT
{
Ô1...Ôn

}
=
k−1∑
l=1

(±)k−lδ(zk, zl)T
{
Ô1...Ôl−1Ôl+1...

[
Ôk, Ôl

]
∓
Ôk+1...Ôn

}

+
n∑

l=k+1

(±)l−k−1δ(zk, zl)T
{
Ô1...

[
Ôk, Ôl

]
∓
Ôk+1...Ôl−1Ôl+1...Ôn

} (D.8)

In case the operators Ôl are the field operators in the contour Heisenberg picture,
taking into account that equal-time operators are subject to the (anti)commutation in
each term of the sum:

[
ψ̂†(xk, z), ψ̂

†(yl, z)
]
∓

=0;[
ψ̂(xk, z), ψ̂(yl, z)

]
∓

=0;[
ψ̂(xk, z), ψ̂

†(yl, z)
]
∓

=δ(xk − yl);

we propose for the Ôl’s:[
Ôk(z), Ôl(z)

]
∓

= ckl(z)1̂ (D.9)
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where ckl(z) is a scalar function of z and the expression is valid only for the equal-
time (anti)commutation. Of course, the identity commutes with all the operators in-
side the contour-ordering operator and, thus, can be extracted:

∂θzkT
{
Ô1...Ôn

}
=
k−1∑
l=1

(±)k−lδ(zk, zl)
[
Ôk, Ôl

]
∓
T
{
Ô1...��̂Ol...�

�̂Ok...Ôn

}
+

n∑
l=k+1

(±)l−k−1δ(zk, zl)
[
Ôk, Ôl

]
∓
T
{
Ô1...�

�̂Ok...��̂Ol...Ôn

} (D.10)

The operator correlators k̂ arise from the expansion of the contour-ordered expo-
nential and in the equations of motion. Because of this fact, the Ôk’s correspond
usually to observable quantities characterized by an equal number of creation and
annihilation field operators.

For simplicity, we make the notation more compact:

i = xi, zi; j = xj , zj ; i
′ = x′i, z

′
i; j

′ = x′j , z
′
j ;

and for the arguments of the functions, for example, the δ-function:

δ(j; k) = δ(zj , zk)δ(xj − xk)

by defining a special kind of correlators, the Green’s functions, which play the
central role in our formalism:

Ĝn(1, ..., n; 1′, ..., n′) ≡ 1

ın
T
{
ψ̂H(1)...ψ̂H(n)ψ̂†H(n′)...ψ̂†H(1′)

}
(D.11)

where the j′ = x′j , z
′
j and j = xj , zj coordinates label creation and annihilation

field operators respectively. In case n = 0 we define Ĝ0 ≡ 1. Identifying

Ôj =

{
ψ̂H(j) j = 1, ..., n

ψ̂†H((2n− j + 1)′) j = n+ 1, ..., 2n

we get

ı
d

dzk
Ĝn(1, ..., n; 1′, ..., n′)

=
1

ın
T
{
ψ̂H(1)...

(
ı
d

dzk
ψ̂H(k)

)
...ψ̂H(n)ψ̂†H(n′)...ψ̂†H(1′)

}
+

n∑
j=1

(±)k+jδ(k; j′)Ĝn−1(1, ...�k..., n; 1′, ...��j
′..., n′)

(D.12)
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and

−ı d
dz′k

Ĝn(1, ..., n; 1′, ..., n′)

=
1

ın
T
{
ψ̂H(1)...ψ̂H(n)ψ̂†H(n′)...

(
−ı d
dz′k

ψ̂H(k′)

)
...ψ̂†H(1′)

}
+

n∑
j=1

(±)k+jδ(k; j′)Ĝn−1(1, ...��j..., n; 1′, ...��k
′..., n′)

(D.13)

Assuming that ĥ does not mix the spin components, beeing diagonal in spin space

〈x1| ĥ(z1) |x2〉 = h(1)δ(x1 − x2) = δ(x1 − x2)h(2) (D.14)

rewriting equations (C.24) and (C.25) , with the definition v(i; j) ≡ δ(zi, zj)v(xi,xj , zi)

ı
d

dzk
ψ̂H(k) = h(k)ψ̂H(k) +

∫
d1̄v(k, 1̄, z)n̂H(1̄)ψ̂H(k) (D.15)

and the adjoint equation for the creation operator ψ̂†H(z):

−ı d
dz′k

ψ̂†H(k′) = ψ̂†H(k′)h(k′) +

∫
d1̄v(k′, 1̄, z)ψ̂H(k′)n̂H(1̄) (D.16)

Now we want to remove the
(
ı
d

dzk
ψ̂H(k)

)
terms in (D.12) and (D.13). First, we

notice that the r.h.s. of (D.15) and (D.16) contains chains of thrre field operator with
the same contour time argument.

n̂H(1̄)ψ̂H(k) = ψ̂†H(1̄)ψ̂H(1̄)ψ̂H(k) = ±ψ̂†H(1̄)ψ̂H(k)ψ̂H(1̄)

We want to move the ψ̂†H(1̄) to the right to form a Ĝn, by means of the contour
ordering operator T . Because we want ψ̂†H(1̄) to end up to the left of both ψ̂H(1̄)

and ψ̂H(k), we choose to calculate it infinitesimally after ψ̂H(1̄), in 1̄+ = x1, z
+
1 , as

ψ̂†H(1̄+). When beeing under the action of T :

T
{
...ψ̂†H(1̄+)ψ̂H(1̄)ψ̂H(k)...

}
= ±T

{
...ψ̂H(k)ψ̂H(1̄)ψ̂†H(1̄+)...

}
Taking into account that ψ̂H(1̄)ψ̂†H(1̄+) is formed by an even number of field op-

erators it works like a bosonic operator under the action of the T and can be freely
moved. With this trick the first term on the r.h.s. of (D.12) can be written as
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1

ın
T
{
ψ̂H(1)...

(
ı
d

dzk
ψ̂H(k)

)
...ψ̂H(n)ψ̂†H(n′)...ψ̂†H(1′)

}
=h(k)Ĝn(1, ..., n; 1′, ..., n′)

± 1

ın

∫
d1̄v(k; 1̄)T

{
ψ̂H(1)...ψ̂H(n)ψ̂H(1̄)ψ̂†H(1̄+)ψ̂†H(n′)...ψ̂†H(1′)

}
=h(k)Ĝn(1, ..., n; 1′, ..., n′)± ı

∫
d1̄v(k; 1̄)Ĝn+1(1, ..., n, 1̄; 1′, ..., n′, 1̄+)

and a similar one for (D.13).
Using (D.15) and (D.16) in (D.12) and (D.13), and inserting the result before, the

final equations of motion for the Green’s function are:

[
ı
d

dzk
− h(k)

]
Ĝn(1, ..., n; 1′, ..., n′)

= ±ı
∫
d1̄v(k; 1̄)Ĝn+1(1, ..., n, 1̄; 1′, ..., n′, 1̄+)

+

n∑
j=1

(±)k+jδ(k; j′)Ĝn−1(1, ...�k..., n; 1′, ...��j
′..., n′)

(D.17)

and

Ĝn(1, ..., n; 1′, ..., n′)

[
−ı
←−
d

dz′k
− h(k′)

]

= ±ı
∫
d1̄v(k′; 1̄)Ĝn+1(1, ..., n, 1̄−; 1′, ..., n′, 1̄)

+
n∑
j=1

(±)k+jδ(j; k′)Ĝn−1(1, ...��j..., n; 1′, ...��k
′..., n′)

(D.18)

Thus, the derivative of Ĝn is expressed in terms of Ĝn−1 and Ĝn+1. These are the
general equations of motion for the Green’s functions, which constitute the Martin-
Schwinger Hierarchy, whose complexity is far beyond the scope of this thesis. How-
ever, its knowledge derivation is necessary to present the useful simplifications of the
One-body and Two-body Green’s functions we are going to use explained in E.

D.3 T H E G R E E N ’ S F U N C T I O N A S T H E AV E R AG E O F T H E C O R R E L AT O R S

To transform the Martin-Schwinger hierarchy for the Green’s function operators into
a coupled set of differential equations we need to take the average by means of the
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density matrix operator ρ̂ = e−βĤM /Z as seen in Appendix H.1 to get the n-body
Green’s function Gn:

Gn(1, ..., n; 1′, ..., n′) ≡
Tr
[
e−βĤM Ĝn(1, ..., n; 1′, ..., n′)

]
Tr
[
e−βĤM

]
=

1

ın

Tr
[
T
{
e−ı

∫
γ dz̄Ĥ (z̄)ψ̂(1)...ψ̂(n)ψ̂†(n′)...ψ̂†(1′)

}]
Tr
[
e−βĤM

]
(D.19)

Given the Martin-Schwinger hierarchy, which constitutes in any case the system of
equations to be solved, what remains to be determined to provide a unique solution
are the spatial and temporal boundary conditions. The spatial boundary conditions of
the Green’s function are the same as the ones for the wavefunctions of the many-body
states. For the boundary conditions on the time-dependence, since the equations of
motion for each Green’s function Ĝn are first order in contour ordered time zk we
also need one condition per time-argument z1, ..., zk, ..., zn. From (D.19) it follows:

Gn(1, ...,xk, zi, ..., n; 1′, ..., n′) = ±Gn(1, ...,xk, zf , ..., n; 1′, ..., n′)

Gn(1, ..., n; 1′, ...,x′k, zi, ..., n
′) = ±Gn(1, ..., n; 1′, ...,x′k, zf , ..., n

′)
(D.20)

where the sign±makes the difference for bosonic/fermionic operators. As a conse-
quence, the Green’s functions are (anti)periodic along the time contour γ. The bound-
ary conditions (D.20) receive the name of Kubo-Martin-Schwinger (KMS) relations.



E
T H E M E A N - F I E L D A P P ROX I M AT I O N : H A RT R E E - F O C K
A N D T H E DY S O N E Q UAT I O N

E.1 T H E H A RT R E E - F O C K A P P ROX I M AT I O N

By writing down the lowest order equations of motion in the Martin-Schwinger
hierarchy (D.17) and (D.18), the only useful throughout the scope of this thesis,
we get the one- G(1; 2) = Ĝ1(x1, z1;x2, z2) and two-particle G2(1, 2; 1′, 2′) =

G2(x1, z1,x2, z2;x′1, z1,x
′
2, z2) Green’s functions. For the sake of simplicity we

avoid the subscript 1 in the one-particle Green’s function. The form of G0 is triv-
ial, because of the lack of creation and annihilation operators, G0 = 1̂. For G1(1; 1′),
which has a creation operator and an annihilation one:

[
ı
d

dz1
− h(1)

]
G(1; 1′) = δ(1; 1′)± ı

∫
d2v(1; 2)G2(1, 2; 1′, 2+) (E.1)

G(1; 1′)

[
−ı d
dz′1
− h(1′)

]
= δ(1; 1′)± ı

∫
d2v(1′; 2)G2(1, 2−; 1′, 2) (E.2)

Notice that 2+ = x2, z
+
2 takes place infinitesimally after 2 = x2, z2 in the time

contour, while 2− = x2, z
−
2 infinitesimally before.

We can do the same with the equations of motion of G2, which have two cre-
ation operators and two annihilation ones, and therefore four position-spin-time co-
ordinates and entries. Differentiating with respect to the four time coordinates, four
equations arise:

[
ı
d

dz1
− h(1)

]
G2(1, 2; 1′, 2′) =δ(1; 1′)G(2; 2′)± δ(1; 2′)G(2; 1′)

± ı
∫
d3v(1; 3)G3(1, 2, 3; 1′, 2′, 3+)

(E.3)

[
ı
d

dz2
− h(2)

]
G2(1, 2; 1′, 2′) =± δ(2; 1′)G(1; 2′) + δ(2; 2′)G(2; 1′)

± ı
∫
d3v(2; 3)G3(1, 2, 3; 1′, 2′, 3+)

(E.4)
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G2(1, 2; 1′, 2′)

[
−ı
←−
d

dz′1
− h(1′)

]
=δ(1; 1′)G(2; 2′)± δ(2; 1′)G(1; 2′)

± ı
∫
d3v(1′; 3)G3(1, 2, 3−; 1′, 2′, 3)

(E.5)

G2(1, 2; 1′, 2′)

[
−ı
←−
d

dz′2
− h(2′)

]
=± δ(1; 2′)G(2; 1′) + δ(2; 2′)G(1; 1′)

± ı
∫
d3v(2′; 3)G3(1, 2, 3−; 1′, 2′, 3)

(E.6)

Because of the complexity of the G2(1, 2; 1′, 2′)’s, we are looking for correlator
operators quadratic in the field operators, as is the case of G(1; 1′). Thus, an ap-
proximation for G2(1, 2; 1′, 2′) which truncates the Martin-Schwinger hierarchy and
avoids the use of higher order Green’s functionsis desired. Let’s try:

G2(1, 2; 1′, 2′) = G(1; 1′)G(2; 2′)±G(1; 2′)G(2; 1′) + Υ(1, 2; 1′, 2′) (E.7)

where we have implicitly defined the four position-spin-time correlation function
Υ(1, 2; 1′, 2′). If the interaction v = 0, the above G2 with Υ = 0 is a solution of
the equations of motion in the Martin-Schwinger hierarchy. Inserting (E.7) into (E.3)
with Υ = 0 and v = 0:

[
ı
d

dz1
− h(1)

] [
G1(1; 1′)G1(2; 2′)±G1(1; 2′)G1(2; 1′)

]
= δ(1; 1′)G(2; 2′)± δ(1; 2′)G(2; 1′)

This G2 inherits from G the satisfaction of the KMS boundary conditions and
therefore, if the exact noninteracting G is used, this will be exactly the correspond-
ing noninteracting G2. Thus, for weak interactions, we eliminate the remaining four
coordinates Green’s function Υ ≈ 0 and

G2(1, 2; 1′, 2′) = G(1; 1′)G(2; 2′)±G(1; 2′)G(2; 1′) (E.8)

This Ansatz for the second order G2, which is the average of a quartic product
of the field operators, in terms of only first order Green’s functions G, which are
quadratic, is called the Hartree-Fock approximation. Inserting this approximation into
the equations (E.1) and (E.2) for G:

[
ı
d

dz1
− h(1)

]
G(1; 1′) = δ(1; 1′)± ı

∫
d2v(1; 2)

[
G(1; 1′)G(2; 2′)±G(1; 2′)G(2; 1′)

]
= δ(1; 1′) +

∫
d2Σ(1; 2)G(2; 1′)

(E.9)
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G(1; 1′)

[
−ı
←−
d

dz′1
− h(1′)

]
= δ(1; 1′)± ı

∫
d2v(1′; 2)

[
G(1; 1′)G(2; 2′)±G(1; 2′)G(2; 1′)

]
= δ(1; 1′) +

∫
d2G(1; 2)Σ(2; 1′)

(E.10)

where we have defined the integral kernerl Σ as:

Σ(1; 2) = δ(1; 2)VH(1) + ıv(1; 2)G(1; 2+)

with VH(1) = ±ı
∫
d3v(1; 3)G(3; 3+) =

∫
dx3v(x1,x3, z1)n(x3, z1). Notice

that v(1; 3) = δ(z1, z3)v(x1,x3, z1) and ±ıG(x3, z1;x3, z
+
1 ) = n(x3, z1). Remem-

ber from equations (D.17) and (D.18) that the infinitesimal delay in time between z1

and z+
1 , z2 and z+

2 or z−2 and z2 is the trick to maintain equal-time creation opera-
tors to the right and get the correct Green’s function operators. The Hartree potential
VH(x1, z1) has a clear physical interpretation as the classical potential that a parti-
cle in x 1 experiences from a density distribution n of all the particles in the system
(for Coulombic interactions v(x1,x3, z1) = 1/|r1 − r3| the Hartree potential is the
potential of classical electrostatics). The integral kernel Σ which is known as the
self-energy. While the first term of Σ is VH , the second one is the Fock or exchange
potential, which is local in time but non-local in space and has no classical interpre-
tation.

E.1.1 The Dyson equations

The equations (E.9) and (E.10) are self-consistent as Σ depends on the G itself. To
write the solution in integral form, using the KMS boundary conditions, we define the
noninteracting Green’s function G0 as the solution of the equations of motion with
v = 0,

[
ı
d

dz1
− h(1)

]
G0(1; 1′) = δ(1; 1′) (E.11)

G0(1; 1′)

[
−ı
←−
d

dz′1
− h(1′)

]
= δ(1; 1′) (E.12)

Taking equations (E.9) and (E.10) with v = 0, we have:

[
ı
d

dz1
− h(1)

]
G(1; 1′) = δ(1; 1′) (E.13)
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G(1; 1′)

[
−ı
←−
d

dz′1
− h(1′)

]
= δ(1; 1′) (E.14)

Multiplying (E.13) by G0(2; 1) from the left and integrating by parts in z1, taking
into account that d1 ≡ dx1dz1:

∫
d1G0(2; 1)

[
ı
d

dz1
− h(1)

]
G(1; 1′)

=

∫ u︷ ︸︸ ︷
G0(2; 1)

dw︷ ︸︸ ︷
(ı
d

dz1
)G(1; 1′)d1︸ ︷︷ ︸

u×dw

+

∫
d1G0(2; 1)(−h(1))G(1; 1′)

=

∫ −du︷ ︸︸ ︷
G0(2; 1)(−ı

←−
d

dz′1
)d1

w︷ ︸︸ ︷
G(1; 1′)︸ ︷︷ ︸

−du×w

+ ı

∫
dx1G0(2;x1, z1)G(x1, z1; 1′)

∣∣∣∣z1=zf

z1=zi︸ ︷︷ ︸
u×w

+

∫
d1G0(2; 1)(−h(1))G(1; 1′)

=

∫
d1G0(2; 1)

[
−ı
←−
d

dz′1
− h(1)

]
︸ ︷︷ ︸

δ(2;1)

G(1; 1′)

+ ı

∫
dx1G0(2;x1, z1)G(x1, z1; 1′)

∣∣∣∣z1=zf

z1=zi︸ ︷︷ ︸
0 due to KMS b.c.

=

∫
d1δ(2; 1)G(1; 1′) = G(2; 1′)

(E.15)

Because of the KMS boundary conditions we know thatG0(2;x1, zf ) = ±G0(2;x1, zi)

and also G(x1, zf ; 1′) = ±G(x1, zi; 1′), so that in both, the bosonic (+) and the
fermionic (−) cases the integral

ı

∫
dx1G0(2;x1, z1)G(x1, z1; 1′)

∣∣∣∣z1=zf

z1=zi

= 0

vanishes.
The integrals for (E.14) work the same way, so that:

∫
d1′G(1; 1′)

[
−ı
←−
d

dz′1
− h(1′)

]
G0(1′; 2) = G(1; 2) (E.16)
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Multiplying both equations (E.9) and (E.10) by G0 from the left and using (E.15)
and (E.16) we obtain the Dyson equations for the Green’s function:

G(1; 2) = G0(1; 2) +

∫
d3d4G0(1; 3)Σ(3; 4)G(4; 2)

G(1; 2) = G0(1; 2) +

∫
d3d4G(1; 3)Σ(3; 4)G0(4; 2)

(E.17)

The difference between the Dyson equations and the integro-differential equations
(E.9) and (E.10) is that in the Dyson equations the boundary conditions are incorpo-
rated through G0. The exact Green’s function G satisfies a Dyson equation in which
Σ depends in a more complicated manner on G. The Dyson equation is, thus, the
solution of the Martin-Schwinger hierarchy for the one-particle Green’s function.

If converted to the general basis of the ϕ(r)’s:

Gji(z1; z2) = G0,ji(z1; z2)

+
∑
ijkl

∫
γ

dz3dz4G0,jk(z1; z3)Σkl(z3; z4)Gli(r4, z4; r2, z2)

Gji(z1; z2) = G0,ji(z1; z2)

+
∑
ijkl

∫
γ

dz3dz4Gjk(z1; z3)Σkl(z3; z4)G0,li(r4, z4; r2, z2)

(E.18)

And to the more suitable first quantization operator form:

Ĝ(z1; z2) = Ĝ0(z1; z2)

+

∫
γ

dz3dz4Ĝ0(z1; z3)Σ̂(z3; z4)Ĝ(r4, z4; r2, z2)

Ĝ(z1; z2) = Ĝ0(z1; z2)

+

∫
γ

dz3dz4Ĝ(z1; z3)Σ̂(z3; z4)Ĝ0(r4, z4; r2, z2)

(E.19)
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F.1 T H E E M B E D D I N G S E L F - E N E R G Y

To calculate the Green’s function, the density matrix and all the properties of the
central region in (1.5) caused by the surrounding reservoirs, according to the spatial
division in the Caroli partition scheme (Datta, 1995; Caroli et al., 1971), we make
use of a useful tool called wmbedding self-energy Σem(z, z′). This self-energy repro-
duces in the central region C the effects of the reservoirs, so that its definition is only
useful after partitioning. For interacting systems, we can write the Kadanoff-Baym
equations in its matricial form, by transforming equations (1.34) and (1.35) from the
position-spin representation to the general basis of the φi(r)’s:

[
ı
d

dz
− h(z)

]
G(z, z′) = δ(z, z′) +

∫
γ

dz̄Σ(z, z̄)G(z̄, z′) (F.1)

and

G(z, z′)

[
−ı
←−
d

dz′
− ĥ(z′)

]
= δ(z, z′) +

∫
γ

dz̄G(z, z̄)Σ(z̄, z′) (F.2)

where the self-energy has to satisfy:

∫
γ

dz̄Σ(z, z̄)G(z̄, z′) = ±ı
∫
γ

dz̄v(z, z̄)G2(z, z̄; z′, z̄+) (F.3)

With the equations written in the general basis, following the Caroli partition
scheme (Datta, 1995; Caroli et al., 1971) we separate the full Hamiltonian, the self-
energy and the Green’s function matrices in blocks for the central region C and the
reservoirs labelled α = 1, 2.... Each block in the matrices corresponds to the projec-
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tion of the full matrix onto the subspace corresponding to this reservoir or onto the
subspace of the central region C.

h =



h11 0 0 ... h1C

0 h22 0 ... h2C

0 0 h33 ... h3C

. . . . .

. . . . .

. . . . .

hC1 hC2 hC3 ... hCC


(F.4)

If we compare to (1.5), we can identify the reservoir on-diagonal element [hαα′ ]kk′ =

δαα′δkk′εkα, the off-diagonal interaction between reservoir alpha and the central re-
gion [hαC ]km = Tkαm, and the on-diagonal block which represents the projection
onto the central region hCC , whose elements [hCC ]mn = HC

mn.
While the Hamiltonian matrix h has ’zero’ blocks in the off-diagonal blocks that

connect subspaces whose interaction vanish, the Green’s function matrix G is non-
zero everywhere, and the self-energy Σ has only one non-vanishing block, which is
ΣCC .

The projections of equation (F.1) onto the blocks corresponding to the on-diagonal
central region CC, and the off-diagonal block αC, encoding the interaction between
the central region and reservoir α are:

[
ı
d

dz
− hCC(z)

]
GCC(z, z′) = δ(z, z′)

+
∑
α

hCα(z)GαC(z, z′) +

∫
γ

dz̄ΣCC(z, z̄)GCC(z̄, z′)
(F.5)

where the sum includes only the non-vanishing matrix elements 〈i|hCα |kα〉 6= 0.
In the central region CC, the self-energy is non-zero only in the subspace whose
Hamiltonian interaction with any of the reservoirs does not vanish.

[
ı
d

dz
− hαα(z)

]
GαC(z, z′) = hαC(z)GCC(z, z′) (F.6)

The solution for (F.6) is:

GαC(z, z′) =

∫
γ

dz̄gαα(z, z̄)hαC(z̄)GCC(z̄, z′) (F.7)
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where the Green’s funtion on-diagonal block gαα on the subspace of the isolated
contact α solves the noninteracting Kadanoff-Baym equation (1.26), under the KMS
boundary conditions in time, projected onto this reservoir:

[
ı
d

dz
− hαα(z)

]
gαα(z, z′) = δ(z, z′) (F.8)

Recall that the Green’s function gαα is noninteracting and it’s solution does not
depend on any interaction with the central region. Since the projection of the Hamil-
tonian in this block hαα(z) is diagonal with matrix elements εkα(z), the solution is
[gαα]kk′(z, z

′) = δααδkk′gkα(z, z′), where:

gkα(z, z′) = −ı
[
θ(z, z′)f̄(εMkα)− θ(z′, z)f(εMkα)

]
e−ı

∫ z
z′ dz̄εkα(z̄) (F.9)

where εMkα = εkα − µ. Inserting (F.7) in (F.5) it results:

∑
α

hCα(z)GαC(z, z′) =

∫
dz̄Σem(z, z̄)GCC(z̄, z′) (F.10)

where the embedding self-energy Σem(z, z′) is defined as:

Σem(z, z′) =
∑
α

Σα(z, z′)

Σα(z, z′) = hCα(z)gαα(z, z′)hαC(z′)

(F.11)

which is also an interaction independent quantity, and is completely determined
by the noninteracting Hamiltonian of the reservoir hαα and by off-diagonal contact
Hamiltonian hαC .

Using (F.11), the Kadanoff-Baym equation of the central region C becomes:

[
ı
d

dz
− hCC(z)

]
GCC(z, z′) = δ(z, z′)

+

∫
γ

dz̄ [ΣCC(z, z̄) + Σem(z, z̄)]GCC(z̄, z′)
(F.12)

Equation (F.12) is not an approximation, but an exact closed equation for the pro-
jection GCC(z, z′) of the Green’s function in the central region, including both, the
Hartree-Fock self-energy ΣCC(z, z̄), which includes the interaction and correlations
strictly inside the central region, and whose structure is described in appendix H, and
Σem(z, z̄), which incorporates the effects of the surroundings. It is practical to be
implemented computationally because of its finite size.
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If we now want to calculate the Green’s function of the reservoir after the pertur-
bation Gαα(z, z′):

[
ı
d

dz
− hαα(z)

]
Gαα(z, z′) = δ(z, z′) + hαC(z)GCα(z, z′) (F.13)

taking the adjoint of (F.7)

GCα(z, z′) =

∫
γ

dz̄GCC(z, z̄)hCα(z̄)gαα(z̄, z′) (F.14)

and substituting GCα(z, z′) into (F.13)

[
ı
d

dz
− hαα(z)

]
Gαα(z, z′) = δ(z, z′)

+

∫
γ

dz̄Σin,α(z, z̄)gαα(z̄, z′)
(F.15)

where the inbedding self-energy Σin,α(z, z′) for reservoir α plays the inverse role
of the embedding one and is defined as:

Σin,α(z, z′) = hαC(z)GCC(z, z′)hCα(z′) (F.16)

and after integrating (F.15):

Gαα(z, z′) = gαα(z, z′)

+

∫
γ

dz̄dz̄′gαα(z, z̄)Σin,α(z̄, z̄′)gαα(z̄′, z′) (F.17)

we get the integral solution for lead’s α Green’s function, which is useful to cal-
culatephysical quantities in the reservoir as is the case of the density, charge, current,
energy, etc.

If the Green’s functions of the reservoirs in (F.11) are considered to be in steady-
state, the retarded/advanced embedding self-energy can be Fourier transformed to the
frequency domain:

Σem(E) =
∑
α

Σα(E)

ΣR/A
α (E) = hCα(E)gR/Aαα (E)hαC(E)

(F.18)
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Converting to the first quantization operator notation:

Σ̂R/A
α (E) =

∑
j,i

kα,lα

|j〉 〈j|hCα(E) |kα〉

〈kα| gR/Aαα (E) |lα〉 〈lα|hαC(E) |i〉 〈i|

=
∑
j,i

kα,lα

|j〉hCα,jkα(E)g
R/A
αα,kαlα(E)hαC,lαj(E) 〈i|

(F.19)

and every matrix element:

Σ
R/A
α,ji (E) =

∑
kα,lα

hCα,jkα(E)g
R/A
αα,kαlα(E)hαC,lαi(E) (F.20)

where, of course, the restarded/advanced unperturbed Green’s function matrix gR/Aαα (E)

has to satisfy the Fourier transform of (F.8):

gR/Aαα (E) =
1

((E ± ıη)1̂αα − hαα)
(F.21)

so that the first quantization operator for the retarded/advanced embedding self-
energy reduces to:

Σ̂R/A
α (E) =

∑
ji

|j〉ΣR/A
α,ji (E) 〈i| (F.22)

The embedding self-energy operator of each reservoir α and the total one can be
separated in their real and an imaginary parts:

Σ̂R/A
α (E) = Λ̂α(E)∓ ı

2
Γ̂α(E) (F.23)

Where we have defined the rate operator Γ̂α(E). With this definition, the spectral
function operator in equation (H.10), if projected onto the central region C, in the
same way as the lesser/greater Green’s function operators in equation (F.25) and the
embedding self-energy in (F.18), can be separated into components corresponding to
each reservoir:

Â(E) =
∑
α

Âα(E)

Âα(E) = ĜR(E)Γ̂α(E)ĜA(E)

(F.24)

The lesser/greater Green’s function G≶ can be decomposed in as many compo-
nents as reservoirs are present, in other words, in as many components as embedding
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Self-Energy operators Σ̂α are added to the Hamiltonian. Following (F.23) for the par-
tial self-energies and (H.11) for the lesser/greater Green’s functions, we define the
partial spectral lesser/greater Green’s function operators Ĝ≶α (E). Each of these par-
tial lesser/greater Green’s function operators α, expressed in the frequency domain,
takes the form:

Ĝ≶α (E) = ĜR(E)Σ̂≶
α(E)ĜA(E) (F.25)

where

Σ̂<
α (E) = ıΓ̂α(E)f(E − µα) (F.26)

and

Σ̂>
α (E) = ıΓ̂α(E)f̄(E − µα) (F.27)

where Γ̂α(E) is twice the imaginary part of the retarded self-energy as defined
in appendix H, and f and f̄ the Fermi function and its complementary, defined in
equation (H.6).

In a similar manner as (F.25), in steady-state, the convolution in (F.17) reduces to
a conventional product:

GR/Aαα (E) = gR/Aαα (E) + gR/Aαα (E)Σ
R/A
in,α(E)gR/Aαα (E) (F.28)

and in first quantization operator form:

ĜR/Aαα (E) = ĝR/Aαα (E) + ĝR/Aαα (E)Σ̂
R/A
in,α(E)ĝR/Aαα (E) (F.29)

where the only non-vanishing matrix elements 〈i| ĜR/Aαα (E) |j〉 are those with ϕi(r)

and ϕj(r) located in the α reservoir’s partition.
From the matrix elements of (F.25), we define the partial spectral density of states

DOSα(E) and the partial density matrix ρα as:

DOSα(E) = −ıĜ<α (E)

ρα,ij =

∞∫
−∞

dE DOSα,ij(E)
(F.30)

from which we can calculate the partial numbers of particles injected from each
lead:

Nα = Tr [ρα] (F.31)
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The self-consistent calculation then proceeds by computing the input density matrix
to the next iteration from the correlation function computed in the current iteration:

ρ(r) =
∑
ij

ρijϕi(r)ϕ∗j (r) =

∫
dE

2πi
G<(r, r;E) =

∑
ij

∫
dEE

2πi
G<ij(E)ϕi(r)ϕ∗j (r)

(G.1)

or in the matrix formulation.

ρij =

∫
dEE

2πi
G<ij(E) (G.2)

The density matrix is nothing but the energy integration of the matrix correlation
function. To see better the physical meaning of this, we divide both sides of Eq. (5.11)
by:

A(E) = i(GR(E)GA(E)) = GR(E)[ΓL(E) + ΓR(E)]GA(E) (G.3)

and get:

−iG<(E)

A(E)
= f(E − µL)γL − f(E − µR)γR,

γL = GR(E)ΓL(E)GA(E)/A(E)

γR = GR(E)ΓR(E)GA(E)/A(E)

(G.4)

where the coefficient-wise division of matrices is defined such that [AB ]ij =
Aij
Bij

.
Since the correlation function −iG< describes the number of electrons at energy E
and the spectral function A describes the density of states at energy E, the above
equation essentially says that the probability of the states at energy E being occupied
in the molecule equals the probability of it being occupied in the left electrode multi-
plying the escape rate γL from the left electrode to the molecule plus the probability
of it being occupied in the right electrode multiplying the escape rate γR from the
right electrode to the molecule. Note the integration contour appearing in Eq. (5.13)
is along the real energy axis rather than in the complex energy plane. Unlike the re-
tarded Green’s function, the correlation Green’s function −iG<(E) is not analytic
away from the real energy axis. This would have increased significantly the computa-
tional cost of the energy integration. However, for energy sufficiently lower than both
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µL and µR , say E < µL(R) − 10kT , we have f(E − µL(R)) ≈ 1 and Eq. (5.11)
reduces to:

G<(E) = i
[
GR(E)ΓL(E)GA(E)

]
+ i
[
GR(E)ΓR(E)GA(E)

]
=

G<L (E) +G<R(E)
(G.5)

Comparing with Eq. (5.14), we have:

G<(E) = iA(E) = −2iIm[GR(E)] (G.6)

Consequently the integration over the energy in Eq. (5.13) can be split into two
parts:

ρij =
1

2πi

∫
C

dZGRij(Z) +
1

2πi

µsource∫
µdrain

dEG<ij(E) (G.7)

The lesser Green’s Function inside the Central region can be decomposed into
two parts, representing the influx of electrons from each lead (at the corresponding
chemical potetial):

G<(E) = i
[
GR(E)ΓL(E)GA(E)

]
+ i
[
GR(E)ΓR(E)GA(E)

]
=

G<L (E) +G<R(E)
(G.8)

Giving rise to the partial spectral density matrices L/R inside the device:

ρα,ij =
1

2πi

µα∫
−∞

dEG<α,ij(E); α = L,R (G.9)
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Depending on the point along the Keldysh contour on which the complex plane
Green’s function operator is evaluated, different components are defined.

Considering a Hamiltonian constant in time ĥeff , a reasonable assumption for
the long-time limit steady-state, which can be noninteracting, or may include the
interaction at the Mean-Field level (Hartree-Fock) through a self-energy Σ̂. The usual
starting point for the definitions are the frequency domain retarded/advanced Green’s
function operators in first quantization. The noninteracting Green’s function operator
ĜR/A0 is calculated as:

ĜR/A0 (E) =
1

E − ĥ± ıη
(H.1)

while the interacting one ĜR/A:

ĜR/A(E) =
1

E − ĥ− ΣR/A(E)± ıη
(H.2)

where the self-energy ΣR/A(E) can include the embedding self-energy operator
defined in equation (F.22) from section F.1, if the system is partitioned as in the
Caroli partition scheme, and also the Hartree-Fock self-energy and the correlation
one. The Hartree-Fock self energy, derived from equations (1.41) and (1.43) is:

Σ̂
R/A
HF (z1, z2) = δ(z1; z2)qV̂HF (t1) (H.3)

in the long-time limit steady state the Hartree-Fock potential operator V̂R/AHF does
not depend on time, so does not the associated the self-energy. Because of its defini-
tion, Σ̂HF is real.

The correlation self energy takes into account all the effects beyond Mean-Field
(HF) and has the following structure (Stefanucci & Van Leeuwen, 2010; Stefanucci
& Almbladh, 2004):

Σ̂c(z1, z2) = θ(z1; z2)Σ̂>(z1, z2) + θ(z2; z1)Σ̂<(z1, z2) (H.4)

where the lesser/greater Green’s function operator remains undefined. From the
definition of the rate operator Γ̂(E) in (F.23), in the frequency domain:

Σ̂<(E) = ∓ıf(E − µ)Γ̂(E)

Σ̂>(E) = −ıf̄(E − µ)Γ̂(E)
(H.5)
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where f is the Fermi distribution function and f̄ its complementary

f(E − µ) =
1

1 + e−β(E−µ)

f̄(E − µ) = 1− f(E − µ)

(H.6)

and the rate operator also has to satisfy:

Γ̂(E) ≡ ı
[
Σ̂>(E)− Σ̂<(E)

]
= ı
[
Σ̂R(E)− Σ̂A(E)

]
(H.7)

Knowing Γ̂ we can determine all Keldysh components of Σ̂ approaching the real-
time axis. The retarded/advanced correlation self-energy operators are calculated by
taking (H.4) with real-time arguments, and in the frequency domain by Fourier trans-
forming:

Σ̂c(E) =

∫
dE

2π

Γ̂(E′)

E − E′ ± ıη
(H.8)

Only the Matsubara self-energy remains to be defined. Approaching the real-frequency
axis it is related to the retarded/advanced self-energy operator:

Σ̂M (E ± ıη) = Σ̂R/A(E + µ) (H.9)

Now we proceed to define the spectral function operator Â(E):

Â(E) = ı
[
ĜR(E)− ĜA(E)

]
= ıĜR(E)

[
1

ĜA(E)
− 1

ĜR(E)

]
ĜA(E)

= ıĜR(E)
[
Σ̂R(E)− Σ̂A(E)

]
ĜA(E)

= ĜR(E)Γ̂(E)ĜA(E)

(H.10)

Meanwhile, the lesser/greater Green’s function operators can be written in terms
of the lesser/greater self-energy, taking into account (H.5), as:

Ĝ≶(E) = ĜR(E)Σ̂≶(E)ĜA(E) (H.11)
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where the elements of its matrix expression Gij are proportional to the ones of
density of states DOSij(E) at energy E and by integration permit the calculation of
the (non)equilibrium steady-state single-particle density matrix ρij :

DOS(E) = −ıĜ<(E)

ρij =

∞∫
−∞

dE DOSij(E)
(H.12)

And the left/right Green’s function operators, with one real and one imaginary time
argument:

Ĝd(τ, t) ≡ Ĝ(t0 − ıτ, t±)

Ĝe(t, τ) ≡ Ĝ(t±, t0 − ıτ)
(H.13)

Approaching the real-frequency axis it is related to the retarded/advanced Green’s
function operator:

ĜM (E ± ıη) = ĜR/A(E + µ) (H.14)

H.1 S T E A DY- S TAT E E N S E M B L E AV E R AG E S

Taking into account that the partition function, beeing β = 1/kBT the inverse tem-
perature and EMk the eigenvalues of the Matsubara Hamiltonian, is defined as:

Z =
∑
k

e−βE
M
k = Tr

[
e−βĤ

M
]

(H.15)

and the density matrix operator:

ρ̂ =
∑
k

ρk |Ψk〉 〈Ψk|

=
∑
k

e−βE
M
k

Z
|Ψk〉 〈Ψk| =

e−βĤ
M

Z

(H.16)

where the |Ψk〉’s form the common set of eigenkets of both, the first quantization
Hamiltonian Ĥ and the Matsubara Hamiltonian ĤM :

Ĥ =
∑
k

Ek |Ψk〉 〈Ψk|

ĤM = Ĥ − µN̂ =
∑
k

EMk |Ψk〉 〈Ψk|
(H.17)
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The contour-time dependent ensemble average O of any operator Ô in second
quantization results:

〈O〉(z) =
1

ı

T r
[
e−βĤ

MT
{
e−ı

∫
γ dz̄Ĥ(z̄)Ô(z)

}]
Tr
[
e−βĤM

] (H.18)

Figure H.1: Contour for the Hamiltonian Ĥ(z) to calculate the time-dependent ensemble av-
erage of any operator in a system whose time-evolution is governed by the Hamil-
tonian Ĥ(z) from the initial equilibrium in t0. The system is supposed to be at
temperature T , being β = 1/(kBT ).

The statistical average performed after the second equality in (1.2) is equivalent to
a time propagation along γM , where γM , related to the inverse temperature, is any
contour from za to zb with the constraint zb − za = −ıβ, (see fig. H.1), resulting in

−ı
∫
γM

dz̄Ĥ(z̄) = −βĤM (H.19)

so that the most simple γM is a vertical segment −−→zazb in the complex time plane.
We can choose z′ to be z+ infinitesimally after z, and by choosing the arguments of
the inverse temperature contour to be za = z and z′a = z′ = z+, and thus:

〈O〉(z) =
1

ı

T r
[
e−ı

∫
γM

dz̄ĤM

T
{
e−ı

∫
γ dz̄Ĥ(z̄)Ô(z)

}]
Tr
[
e−ı

∫
γM

dz̄ĤM

T
{
e−ı

∫
γ dz̄Ĥ(z̄)

}] (H.20)
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If we now incorporate γM to the full continuous path γ in the Keldysh contour the
result simplifies to:

〈O〉(z) =
1

ı

T r
[
T
{
e−ı

∫
γ dz̄Ĥ(z̄)Ô(z)

}]
Tr
[
T
{
e−ı

∫
γ dz̄Ĥ(z̄)

}] (H.21)

if restricted to the real-time ensemble average of one-body operators, since any
one-body operator in second quantization can be written as:

Ô =
∑
ij

Oij d̂
†
i d̂j (H.22)

taking into account the definition (1.30) for the lesser Green’s function, we get:

〈O〉(t) = ±ı
∑
ij

OijG
<
ji(t, t) (H.23)

where ± stands for bosons/fermions.
In steady-state and from the definition of the steady-state single particle density

matrix operator (H.16), the ensemble average of operator Ô:

〈O〉 = Tr
[
ρ̂Ô
]

(H.24)
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S U M M A RY A N D O U T L O O K - R E S U M E N Y
P E R S P E C T I VA S



1
C O N C L U S I O N S

In chapters 1, 2 and 3, we present the theory and an actual numerical implemen-
tation for the evaluation of thermodynamic forces in an out of equilibrium situation.
Our purpose has been to bridge the gap between existing theoretical work and a prac-
tical use of these forces for, e.g., electromigration problems (Sadeghi et al., 2015;
Sabater, Untiedt, & van Ruitenbeek, 2017) and STM atomic manipulation (González-
Herrero et al., 2016), while explaining several important conceptual and numerical
issues that arise along the way. As we have shown here, the numerical evaluation
of the derivatives of the corresponding free energy becomes non-trivial since non-
equilibrium Green’s functions are involved in the evaluation of such free energy. We
have implemented this at the Hartree-Fock (HF) and DFT levels using LCAO where
the orbitals are described by Gaussian functions. Several results for model systems
illustrating the need, validity, and prospective use of our implementation have been
presented. We have focused here on electrostatic effects, while intentionally leav-
ing out of the discussion Joule heating effects or dissipation of energy by coupling to
phonons (Engelund, Brandbyge, & Jauho, 2009, 4; Lü, Christensen, Wang, Hedegård,
& Brandbyge, 2015, 9), which may also play a role in actual experiments.

Chapters 4, 5 and 6 present the collaborations with experimentalists in which the
methods previously described have been applied during the development of the thesis.



2
C O N C L U S I O N E S

En los capítulos 1, 2 y 3, presentamos la teoría y una implementación numérica
efectiva de la evaluación de las fuerzas termodinámicas en una situación fuera de
equilibrio electroquímico. Nuestro propósito ha sido cerrar la brecha entre el traba-
jo teórico existente y el uso práctico de estas fuerzas para, por ejemplo, problemas
de electromigración (Sadeghi u. a., 2015; Sabater u. a., 2017) y de manipulación ató-
mica por medio de STM (González-Herrero u. a., 2016), al tiempo que explicamos
varios problemas conceptuales y numéricos importantes surgidos en el camino. Como
hemos mostrado aquí, la evaluación numérica de las derivadas de la energía libre cor-
respondiente se vuelve no trivial, ya que las funciones de Green fuera del equilibrio
están involucradas en la evaluación de dicha energía libre. Hemos implementado esto
ea nivel Hartree-Fock (HF) y DFT usando LCAO, método en el cual los orbitales son
descritos por funciones gaussianas. Se han presentado varios resultados para sistemas
modelo que ilustran la necesidad, validez y uso prospectivo de nuestra implementa-
ción. Nos hemos centrado aquí en los efectos electrostáticos, mientras que dejamos
deliberadamente fuera de la discusión los efectos de calentamiento de Joule o la disi-
pación de energía mediante el acoplamiento de fonones (Engelund u. a., 2009, 4; Lü
u. a., 2015, 9), que también pueden desempeñar un papel en experimentos reales.

Los capítulos 4, 5 and 6 presentan las colaboraciones con físicos experimentales en
las que los métodos anteriormente descritos han sido aplicados durante el desarrollo
de la tesis.
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