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Abstract: The use of collaborative tools has notably increased recently. It is common to see distinct
users that need to work simultaneously on shared documents. In most cases, large companies provide
tools whose implementations have been a very complicated and expensive task. Likewise, their
platform deployment requirements should be robust hardware infrastructures. It becomes even more
critical when their main target is to reach scalability and highavailability. Therefore, this study aims to
design and implement a microservices-based collaborative architecture using assembled containers in
the cloud, enabling them to deploy Etherpad instances to guarantee high availability. To ensure such
a task, we developed and optimized a central management system that creates Etherpad instances
and continuously interacts with other Etherpad tools running on Docker containers. This design goes
from the monolithic Etherpad instantiation and handling towards a service architecture, where every
Etherpad is offered as a microservice. Furthermore, the management system follows (implements)
the Observer, Factory Method, Proxy, and Service Layerpopular design patterns. This allows users to
gain more privacy through access to validations and shared resources. Our results indicate both the
correct operation in the automation of containers’ creation for new users who register in the system
and quantifiable improvement in performance.

Keywords: collaborative tools; containers; cloud computing; Etherpad; management systems;
microservices; monolithic

1. Introduction

Microservices have increasingly become popular in recent years. Some companies, such as
Netflix, Amazon, and The Guardian, have successfully been early adopters of microservices in
large-scale software systems environments [1]. The microservices architecture (MSA) is an approach
in software development that consists of building a distributed application as a set of small services,
each one running in its process and communicating with light mechanisms; they are often HTTP API
resources [2]. Each service is responsible for the implementation of full business functionality and
is deployed independently. Furthermore, they can be programmed in different languages and use
diverse data storage technologies [3].

However, a microservices-based distributed architecture inevitably inherits the problems and
complexities of distributed systems. For example, they are much more complicated to design;
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they include a high risk of failure with performance and scalability problems, especially as the
system grows in size [4].

Additionally, the dilemma of the design of a microservice architecture versus a monolithic
architecture persists [5]. In the first case, the offered software package is not presented as an individual
product, as each function responds autonomously to others. This leads to an inefficientlymaintainable
solution and may even react with different levels of effectiveness depending on the generated
activity [6]. A monolithic architecture, on the other hand, is an architecture where software is structured
in such a way that every functional aspect is coupled and packaged inside the very same program.
Either way, the information that these systems need to run correctly is steadily hosted on a single
server. Due to its nature, there is no separation of modules of any kind. Therefore, the different layers
of a program depend entirely on each other [7]. Testing is generated based on a monolithic architecture,
which causes performance problems that prevent being scaled vertically or horizontally. The problem
has been corrected by introducing microservices-based containers, obtaining a vertical or horizontal
growth on demand.

Based on the given scenario, this study aims to design and implement a microservices-based
collaborative architecture, through the use of assembled containers in the cloud, enabling
deployment of Etherpad instances. To do this, we develop and optimize a central management
system that creates Etherpad instances and continuously interacts with Etherpad tool containers.
Specifically, our management system implements four popular design patterns that together solve the
aforementioned problems: Observer pattern, Factory Method pattern, Proxy pattern, and Service Layer
pattern. On the other side, Monitortools are only based on the Observer design pattern. A monitortool
does not make any decision, and it only informs other applications about monitored objects’ states.
It is worth noting that the design patterns we used are oriented towards the object-oriented paradigm;
hence, we adapted the patterns for our purposes. Our system mainly implements services.

Furthermore, this study demonstrates that Etherpad, an open-source collaborative real-time
web text editor, developed under a monolithic architecture [8], is able to perform in a cloud-based
microservices architecture. We expect that scaling the number of Etherpad nodes to a simultaneously
large number of editions/editors allows the application to operate regularly and without delay [9].
It is also expected to reduce the consumption of hardware resources in comparison to a monolithic
architecture. We, as well, intend to reveal how Etherpad can perform as a container that guarantees its
availability and allows for easy scalability in terms of adaptability for a scalable distributed system.

In concordance with Lascano [10], adaptability for a scalable distribution, i.e., scalability, means
that a system is scalable when it provides more or fewer resources and users than it was originally
designed for, yet, the systems perform properly. When we design a client-server or a distributed
application, we have to use communication protocols. Since RESTful apps work at the application
level, we follow application level communication protocols (ACPs) that offer scalability by providing
location transparency and/or replication transparency [11]. This scalability is able to refer to resources
such as data, operations, or objects that are able to be distributed across multiple hosts. Another
way to support scalability is to break up complex resources into smaller components (services or
microservices) and distribute them across multiple servers [10].

To demonstrate the proposed scalability, it is possible to have N layers, but only one layer
(database) is currently shown. This does not imply that such an architecture is able to grow according
to the requirements. Therefore, we deploy Etherpad instances so that improvement in performance,
scalability, and availability can be demonstrated. In this scenario, the application allows distinct
authors to edit a text document simultaneously and monitor all participants in real-time.

The experiment results show both the correct execution of the editor in the automation of
containers’ creation for new users registered in the system, as well as quantifiable improvement in
performance, compared to a traditional (monolithic) architecture under similar conditions. Therefore,
usability is not affected by allowing various services to work on demand and the containers to be
responsible, unlike a monolithic system, which is affected by the usability of the application.
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Among the main contributions of this study, we have the following: First is the design and
implementation of a free microservices-oriented software architecture that uses cloud-centered
containers to deploy Etherpad instances through GET http requests providing in this way high
availability. Second is the implementation of a central user management system, responsible for
installing Etherpad instances according to the users’ creation and their login into the platform. As a
consequence, it performs as a service using containers and giving better use to hardware resources.
Third, we are providing a robust and well-designed software architecture based on proven design
patterns, and this architecture integrates Docker as a deployment platform for Etherpad microservices
orchestrated by a management system that provides high availability through PM2.

The rest of this article is organized as follows. Section 2 describes the related work. Section 3
presents the theoretical framework for this study. Section 4 explains the design and implementation of
the management system for the microservices architecture. Section 5 provides the results. Section 6
discusses the findings. Finally, Section 7 closes with conclusions and future work lines.

2. Related Work

In 1990, Knister and Prakas dealt with distributed collaborative tools for text editing [12].
They developed a toolkit called DistEdit. This tool provided a set of primitives for collaborative
text editors, without dealing with distributed problems such as communication protocols and fault
tolerance. They tested this approach by modifying two editors: MicroEmacs and GNU Emacs.
The resulting editor allowed users to reach changes simultaneously while other users were able
to observe those changes. In a similar context, Gianoutsos and Grundy in 1996 [13] developed
W4, an extended WWW browser, that provided a variety of computer-supported cooperative work
(CSCW) extensions for collaborative document editing. These extensions included synchronous and
asynchronous communication mechanisms (i.e., text chats, notes, and collaboration messages). It also
involved the WYSIWYG editing software (i.e., What You See Is What You Get) and collaboration editors
such as whiteboards and text editors. Existing WWW pages were annotated with URL links, notes,
text chats, brainstorming sessions, and whiteboards. These annotations and the shared documents for
whiteboards and text editors were stored in a GroupKit conference and, therefore, were independent
of HTML documents. In addition, users were enabled to join and leave a W4 meeting at any time.

Preeth et al. [14] evaluated the performance of containers used in Docker versus the performance
of virtualized host systems. To accomplish such a task, the authors ran tests on memory usage
performance, CPU consumption, CPU number, disk usage, boot time, and others. In most aspects,
Docker performance was more efficient, since it decreased the use of resources and obtained improved
results in availability, usability, response times, adaptation between several programming languages,
and ease of use. Our research compares CPU, RAM, and network consumption produced by a Docker
container versus a bare computer machine, while Bonnie ++ used it for stress tests. CPU and RAM
consumption were also determined. Stress tests were not performed automatically because actual
users accessed one shared document and edited it at the same time. Later, performance levels and
accessibility were yielded with cAdvisor, which demonstrated the benefits of using containers.

Among research works that aim to allow multiple users to edit text documents in real-time from
multiple devices collaboratively, the study proposed by Gadea et al. [15] presented the architecture
and implementation of a text editor so that various users collaboratively edited rich-text documents in
real-time from multiple devices that used microservices. The architecture used Docker containers to
allow the development and testing of individual services as separate containers, which allowed
a smooth implementation in the available network of computers and other computing devices.
The system demonstrated how microservices allowed multiple users to co-edit a document in which
images containing faces were added and recognized as part of the document content, supporting the
creative process of the document. Compared with our proposal, this research also used Etherpad.
Nevertheless, the differences are very noticeable. Although the authors talked about architecture
implementation, they approached it quickly and gave more interest to the collaborative text editor
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Etherpad’s solution, where they added some functionalities. Instead, our study details each component
of the architecture and the role it plays within it. In the same way, the authors did not elaborate on
any system for the management of users; that is, they left security aside. It is worth mentioning that
Etherpad by itself does not have a management system, which means that anyone can access any
shared file. We provide in our solution a management system that is in charge of user management,
pad management, and container management. Our management system is new and innovative since,
so far, not even the official Etherpad site has implemented one. Making a management system for
Etherpad is a difficult task to perform since it is not enough to connect users to a container. However,
it must know from which container a user should be redirected because Etherpad session handling
is developed with socket.io. Another notable difference is that the authors did not obtain or show
any metrics. Their only numerical results stated that 80 users were able to connect, and the text was
synchronized correctly. However, there was nothing that quantified the achievements. Therefore,
it could not be established whether it improved on something compared to a monolithic architecture.
In our research, results are quantified and compared with a monolithic architecture, providing the pros
and cons of the proposed architecture.

Quang-Vinh and Claudia-Lavinia [16] performed concurrent tests with collaborative tools such
as Google Docs and Etherpad. According to them, Etherpad lacks allowing more than ten users
to connect at the same time. In our proposal, however, we procured 47 actual users connected
concurrently without any inconvenience. Moreover, the available users limit such numbers at the time
of testing instead of Etherpad’s performance. As Etherpad became a microservice, its performance
improved. Their results demonstrated that this software was not ready for collaboration activities at a
significant scale since new users’ connections were rejected. Furthermore, delay problems appeared
when the system needed to deal with an increasing number of users. For example, text writing and
updating speeds were slowed down in the shared document.

Brodahl and Hansen [17] proposed the use of a text editor in academic environments. Google
Docs and Etherpad Web 2.0 are tools that provide the opportunity for multiple users to work online in
the same document consecutively and concurrently. In this case, they intended to examine the factors
or practices that students manifested, in order to appreciate how relevant and useful these tools were,
and also how these tools influenced them. Their main conclusions were that Etherpad and Google Docs
facilitated new ways of approaching communication for different styles of collaborative writing work,
as well as in different environments. However, the configuration in which the tool was used influenced
the way students perceived its usefulness. Recommendations derived from students’ perceptions of
the success factors for using the collaborative writing tool included a variety of factors: The group size
should preferably not exceed three persons. Students needed to be prepared for technical difficulties.
They also needed to have a contingency plan. At last, they were required to agree in advance about
the working method and the rules for commenting and editing each other’s work.

Villamizar et al. [18] proposed, beyond a monolithic architecture and microservices, the use of
cloud services for deployment purposes. This study was conducted using Amazon Web Services (AWS).
They accomplished performance, methodology, implementation, operation, and process adoption
tests. Results indicated lower costs in the AWS services based on the microservices architecture,
in addition to the control and management of each service independently [18]. They evaluated the
performance of a monolithic application versus an application based on microservices. The outcome
displayed response time improvement and the use of AWS. In our research, we analyzed CPU and
RAM consumption, given a certain number of users, and we implemented in our infrastructure leading
the solution to the cloud.

Sunil [19] pursued the very same purpose of the current study. They converted a monolithic
application into a microservices application. Nevertheless, they only dealt with theoretical research,
lacking a specific software application. In our study, however, we implemented a collaborative tool
using Etherpad. Compared with our study, the approach of the article differed almost wholly. In this
case, a proposal was made for a “generic” procedure, which could be used to transform a monolithic
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application into microservices. The article did not show quantifiable values to determine if there
were real advantages or disadvantages. This was because the authors” methodological approach
was very attached to literary and theoretical aspects. They mentioned the “agile methodology” as
a suggestion. Their architecture was the same as found on official websites. Instead, our proposal
shows the interaction of a practical and real case (collaborative systems). All this is thanks to the
implementation of a management system that allows adapting and taking advantage of microservices.

Stubbs et al., in Equation [20], proposed a framework to implement a distributed architecture
based on microservices using Serfnode and Docker. Nevertheless, there was no evidence of any
interface or an additional application as a proof of concept. Brogi et al. [21], suggested a Docker
Analyzer as a solution to customize images and configure the architecture according to its needs.
The difference from the current study is that we customize the Etherpad image through Docker
build and control; also, the deployment of containers is monitored and controlled by our management
system. Saha et al., in Equation [22], developed a tool that monitored and controlled Docker containers,
“Clusters of Messos,” in such a way that users were notified by messaging about any infrastructure
issue. This functionality will be implemented in future works of our research. Kuroki et al. [23]
proposed the implementation of an orchestrator that dealt with application deployments according to
the users’ requests.

Qingfeng et al. [24] designed a container-based anomaly detection system (ADS) to detect and
diagnose anomalies in microservices and monitor and analyze performance data in real-time from
them. The proposed ADS consisted of a monitoring module that collected performance data from
containers, a data processing module based on machine learning models, and an integrated fault
injection module to train these models using machine learning techniques. Specifically, its ADS relied
on performance monitoring data from anomaly detection services for container-based microservices,
machine learning algorithms to classify abnormal and healthy behaviors, and the failure injection
module to collect performance data on various system conditions. Instead, in our study, we focus on
the design of a central user management system, which creates instances and continuously interacts
with containers of the Etherpad tool. This is because Etherpad currently works without authentication
or user management, in such a way that it works as a service using containers and giving better use to
hardware resources.

Gedia and Perigo [25] measured the performance of a network function virtualization (VNF) that
ran on container platforms and also on virtual machines (VMs). The authors used the ONOS software
defined networks (SDN) driver as a network feature in a container and VM format and compared the
performance metrics: CPU, memory consumption, performance, and VNF provisioning time. Identical
tests were performed in a bare server environment. The authors hoped that the results of this research
would help network operators identify an optimal platform to host VNF services that are agile and
profitable. Performance tests conducted revealed that a containerized ONOS VNF outperformed a
VM-based ONOS VNF in terms of memory consumption, performance (intra-node), and provisioning
time. The framework in this research demonstrated that Grafana, Prometheus, cAdvisor, and Node
Exporter could serve as a unified platform (container and VM) for VNF orchestration and monitoring.
Compared to our work, we use cAdvisor, which is a Docker container advisor that allows us to monitor
in real-time the use of resources and the characteristics of each running container and the system in
general. cAdvisor shows complete histories of processor activity, memory consumption, and network
usage, among other things, which evidences the efficient performance of our proposal.

All previous studies were extraordinary efforts. However, there are additional features to our
proposal. We use microservices, and our management system handles the services’ orchestration.
This deals with the creation of instances for each user and redirects the requests accordingly.
An orchestrator is not implemented per se. Instead, we implement a management system that
behaves like a container orchestrator.
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3. Theoretical Framework

This section briefly addresses the conceptual elements in the current research. Figure 1 is a
general representation of the components. It emphasizes why they were chosen and how each concept
contributed to this research.
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Figure 1. A visual representation of the systematization of the fundamental concepts used during the
development of this research.

3.1. Microservices

Currently, many web applications provide dynamic experiences to users. A clear example is
when users are capable of editing texts collaboratively in real-time from several devices. For this
purpose, architectures have evolved into microservices, in part due to the low levels of coupling and
decoupling they offer. Furthermore, through microservices, several users are enabled to co-edit a
document simultaneously without the need for the presence of very robust hardware. The principle
of using microservices within this research is to have small components, which work autonomously,
with the characteristic of being able to communicate with each other [15].

In the context of this study, we selected a microservices architecture adaptation since it significantly
reduces development time and adapts to market changes, which allows customers to deliver products
with adequate quality. Furthermore, it introduces innovations to mitigate problems with service
programming and resource management. This architecture is based on small services that individually
are focused on achieving a specific goal and have a unique responsibility. These services are highly
decoupled and are configured in such a way that they fulfil user requirements [19].

Therefore, the containerization was performed employing Etherpads by separating the database
from the containers to the database engine. For this, the administration application performs the
requests for user creation, execution, and container administration. All these were created according
to containers on demand.

On the other hand, the reason why we chose microservices is that they significantly reduce the
use of hardware, since they allow reducing the number of nodes that will execute the collaborative
tools. Hence, the number of nodes corresponds to the number of servers that have an image of the
operating system created for the Etherpad application. Etherpad is executed via REST Web Service
commands from the administration service to the application servers (nodes), thus starting the image
of the application. All these nodes are independent and perform specific tasks, and a management
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system controls them. This system, per se, is also a microservice. Another remarkable contribution
that microservices provide is the scalability and availability within any proposed architecture [26].

We propose the adaptation of a monolithic architecture (see Figure 2) to a microservices
architecture (see Figure 3) based on the following arguments: (1) It is an architecture style that
defines and creates systems through the use of small, independent, and autonomous services aligned
closely with business logic [19]; (2) its features include: speed, quality, agility, and scalability; (3) its
exceptional ability to be executed in the cloud; (4) its ability to use each resource appropriately,
thus avoiding capacity problems; (5) each service can run speedily, with high fault tolerance and
less complexity; and (6) the Docker platform allows the creation of several containers, each taking
place with a specific service. These benefits will make this architecture the perfect fit to replace the
monolithic architecture [27].

N Request
g . — 4 |
Response Etherpad NodeJS

@ o o
{ n ] MysQL
Monolithic Application O

Figure 2. Schematic representation of the monolithic-based architecture. Adapted from Reference [19].
Etherpad
Container
Etherpad
Container

MysQL
Container

-5

Response Management
System
Container

40

Container

0

’3 v MongoDB
e 7 ‘ v Container
Figure 3. Schematic representation of the microservices-based architecture. An adaptation from
Reference [19].

3.2. Etherpad

Etherpad is a collaborative real-time, open-source text editing web tool that is continuously being
improved. In the scope of this research, we see that Etherpad allows researchers to make modifications
depending on their needs. It also lets customization of the web interface to render it more appealing
for the user. Etherpad is developed in JavaScript.

Etherpad allows several users to write text in real-time. If a user modifies or adds the text in a file
within Etherpad, the other users can see the changes and contribute to the editing process. Etherpad
owns an online chat that allows users to share their ideas with each other. It handles file versioning
and enables us to view all the changes from the file creation [28]. In this research, we propose to use
Etherpad in a different way, that is a Docker-based microservices architecture, which is customizable
and can modify the specific connection and operation properties.

From the academic point of view, the use of online and collaborative tools gives enhanced feedback
to students. It is intended to improve academic performance, and it may be used as an option in
pedagogical design [17,29].
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3.3. Rest API

Representational state transfer (REST), also known as the REST API architecture, is an architectural
style for data exchange and manipulation through web services. Its interaction is usually based on the
HTTP protocol, mainly when it is used for web APIs [30], i.e., developers do not need to install libraries
or additional software to adapt to a REST API design. A REST application can be any inter-system
interface that uses HTTP to obtain data or execute operations on that data in formats such as plain
text, XML, and JSON [31]. It is also an alternative to other standard data exchange protocols such as
the simple object access protocol (SOAP). Additionally, REST handles a more straightforward data
manipulation solution.

In our research, the REST API is used to allow external users to access the description of images
stored locally due to its microservices architecture. The leading research service enables users to add,
delete, update, and search for descriptions of pictures stored in the database through a REST API.
Therefore, there is no need to be in the same device of the database. However, with a request, it is able
to perform any service that it provides, and thus, it is capable of visualizing the information [32].

3.4. Docker Containers

The use of Docker is helping in different types of applications and architectures. Thanks to Docker,
it is possible to improve costs, performance, and capacity, among other issues. Its implementation has
a database image repository, operating systems, and several applications. It also allows the elimination,
modification, and creation of new images, reducing hereby the time of use of each service required in
different containers with their respective IP addresses and several open ports [33].

Docker was used for implementing this microservices architecture because of its scalability and
intelligence characteristics [34]. If it detects a running node that stops, it can start it up immediately,
and the end-user is not affected by errors in the system. This is possible thanks to the implementation
of a microservices cluster. In this way, it is evident that vulnerabilities have nothing to do with the
number of connected users, highlighting that the user may create one or more documents within the
same container independent of the sharing they may perform. In addition, Docker is able to run in the
cloud. However, for Docker to work in this way, it is necessary to have an orchestrator that can create
services according to the need of the architecture or the supported workload.

This current study focuses on providing each user a container that runs the Etherpad application,
so all their pads are inside their container. This would provide independence from other users’
containers, just as described in the principle of a microservices-based architecture. Therefore, if there
is an issue with the container of a specific user, it will not affect other users, and they are able to
continue editing their text regularly. On the other hand, if it is performed in the traditional way (i.e.,
a monolithic architecture), it would generate a severe problem that would affect the whole system and
possibly cause its complete failure.

3.5. Socket IO

The Socket IO is a Node.js library that enables real-time and bidirectional communication between
clients and servers. It also allows handling events in real-time through TCP connections. It helps avoid
compatibility problems between computers. This library uses sessions. Thus, every user who is in that
session can interact and exchange information [35].

In this study, Etherpad operations are based on the socket.io library. A significant difference
emerges, as for each pad, Etherpad creates connection rooms, and within such rooms, it provides
sessions. This guarantees the execution of several editing pads at the same time. It also prevents users
from losing control and staying in the pad they want to edit. We applied rooms and sessions with
socket.io themes. However, this resulted in a limitation, since it is improbable to run Etherpads to
perform in a distributed style. While this happens, the program loses control of the sessions and stops
working as a collaborative tool, becoming a simple online individual text editor.
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3.6. cAdvisor

The containers advisor (cAdvisor) runs in a container, and it uses the Docker Remote API to obtain
statistic values [36]. It allows real-time monitoring of resources use and of every running container
characteristics, as well as of the system. It displays a complete history of processor activity, memory
consumption, network usage, etc. Google developed this container and used it as the primary tool to

00,

cAdvisor

monitor architecture resources (see Figure 4).

Usage

Figure 4. The cAdvisor interface management system provides users with an understanding of the
use of resources and the performance features of their running containers. It is a running daemon that
collects, accumulates, processes, and exports information about container execution.

Within the context of the current research, we developed a management system that allows
a high-level visualization of computer network nodes, Docker containers, Kubernetes, and Linux
Containers that are executed. This enables controlling containers, as well as deploying and migrating
applications in real-time without losing connectivity, obtaining thereby complete control. This results
in improved portability, security, and automation [37]. Additionally, our container management
system reduces operating costs, providing agility in their life cycle service management. This system
offers options for creating, repairing, and eliminating a network service by employing a user-friendly
interface. It also helps in reducing the time of execution of each task with automatic processing. All the
characteristics mentioned above are additional issues, which are beyond the main scope of the current
study [23].

4. Materials and Methods

This section describes the implementation model of the proposed microservices architecture.
Subsequently, it represents both the design and the implementation of the central management system,
as well as the algorithms for its operation. It also describes the creation process of the container image
and the deployment of the algorithms. It finalizes with the proofs of concepts that were applied to
this architecture.

4.1. Proposed Microservices Architecture Design

According to [38,39], a microservices architecture is an approach for building a server application
that consists of a collection of small autonomous services. In our case, there was a unique database and
several containers that accessed that database, to obtain a microservice (logic + data). Figure 5 illustrates
the architecture layers, the components, and tools. This model was based on the microservices
architecture style [39]. It consisted of a collection of small and independent services. Each service was
self-contained and should perform a single business logic action. A brief description of every layer
and its components will follow further below.
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Figure 5 presents the elements of our proposed architecture. In the presentation layer, there is a
responsive web interface that can be visualized from any device or equipment (computer or phone)
with a web browser. These devices are connected to the management system through a REST API
using HTTP methods. The management system is in charge of performing all the actions for the correct
operation of our software, and this, in turn, has three modules:

o Container management module: This module is in charge of carrying out the requests to unload,
build, execute, and stop containers. It is in charge of deploying a container when a user connects
to manage a pad. This module has a direct connection to the service layer, which executes the
instructions sent by it;

e Authentication module: This module is in charge of the logical creation, edition, and elimination
of users. It is also responsible for managing users’ sessions;

e Pad management module: This module allows users to edit, create, delete, and share pads with
other users.

The service layer is responsible for providing the Etherpad containers that the container
management module requires. In this layer, basic components of Docker are handled. In addition,
the custom images of the Etherpad containers are hosted. The data layer allows the information to
be stored persistently. This data layer sits on top of containers in order to facilitate deployment and
minimize server resource consumption.

Since this architecture is running on containers, scalability is conducted using Docker Swarm.
Docker Swarm is a native Docker application that allows easily and quickly creating container clusters.
Basically, the number of containers is configured for the cluster, and replication is enabled. In this way,
Docker Swarm automatically delegates to a master node to orchestrate the work of the slave nodes.
Similarly, it is responsible for load balancing within the worker nodes. The potential advantage of this
Docker application is that it is able to scale an application in 2, 10, 50, or more containers. Based on the
aforementioned functionality, we can tell that the scalability and high availability characteristic of our
architecture is covered.

Concerning availability, the management system was developed in NodeJS, where many instances
of running threads use a single process [40]. To make the most of the hardware resources, we used PM2.
PM2 is a process manager that allows a system always to be online, and we used it in cluster mode
so that the application scales to all the available CPUs, without the need to modify code. A NodeJS
cluster ensures that multiple child processes run multiple instances of the server; it also provides a load
balancer embedded within the cluster mode. In this way, scalability was achieved at the CPU level
according to the workload administered by the management system. Furthermore, it contributes to
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error handling and the relaunch of the applications in the event of a crash, i.e., it provides availability
for the users.

4.2. Design of the Etherpad Instances Management System

The management system is located in the Service Layer. It implements the Observer, the Proxy,
and the Factory method patterns from the GoFDesign patterns book [41]. We also applied the Service
Layer pattern [42,43] throughout the full architecture of our solution. The management system is
responsible for creating Etherpad nodes accordingly: Observer + Factory Method, orchestrating
existing and new nodes: Proxy, identifying faults: Observer, rebalancing services: Proxy, editing
documents: Service Layer, and managing user authentication and sessions: Observer + Proxy + Service
Layer [38]. Every resource is a microservice running on a Docker instance. The interaction between
the management system and the Etherpads is achieved through the HTTP protocol. Clients do not
call services directly; instead, they call the APl GATEWAY: Service Layer, which forwards the call to
the appropriate service in the backend. After a set of responses from several functions, it is possible
to return an aggregate response. In other words, the API GATEWAY allows the calls to execute
tasks such as authentication, registration, and user logging, as well as the creation of documents,
everything through one service. When Docker resources are full, the management system will create
a new Docker instance for balancing existing and new Etherpad nodes resources. In a further study,
the architecture will be optimized by utilizing a load balancer for adjusting the number of concurrent
sessions to the system [38]. The management system stores user information and the container port
assigned to the user in a MongoDB database microservice. MongoDB does not execute replicas.
Instead, replication is accomplished by Docker Swarm, allowing programmers/users to manage
instances and delegate tasks according to the needs of the application being executed [39]. As stated
before, when a set of Etherpads is executed in Docker instances, and the current container is filling its
capacity, the management system creates a new container and rebalances the load in such a way that
it splits current services (Etherpads) among the previous and the new docker instance. Concluding,
our software architecture design implements a combination of the Observer, the Proxy, the Factory
Method, and the Service Layer design patterns, breaking the undesirable coupling and initializing
objects when needed. The advantage of this design is that the API GATEWAY manages client requests
and abstracts every functionality; it also monitors and manages RAM and CPU consumption for
allocating new recourse nodes (Etherpads) or new resource containers (Dockers).

Figure 6 illustrates a not actual, but a representative class diagram of the management system.
Even though we are not using classes, we consider that the following explanation can be mapped to
the components and functions that our management system implements: The REST API receives the
request from the client application. This request reaches the “Service Proxy”, where depending on
the type of request, it redirects it to the appropriate services. The services, in turn, are connected to
“Create”, which works as an object factory. These objects can be Containers, Pads, and Users. A user can
have multiple pads, while a container has various pads on it. The “Observer” design pattern is used to
implement the monitoring of container and pad states. By monitoring the containers, it is possible to
determine when a container stopped executing a service in an unscheduled manner and to deploy
immediately another container. By monitoring the pads with the “Observer”, it is possible to determine
when a user accesses a pad and the total number of users connected to that pad. Likewise, when an
unscheduled stop happens, it immediately deploys a new pad. On the other hand, the management to
access the system is given by the “SessionService”, which is responsible for authenticating the user
and creating a session when the user enters the system. Furthermore, it terminates a session when the
user leaves the system.
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Figure 6. Class diagram of the management system.

4.3. Implementation of the Etherpad Instances Management System

The management system is responsible for establishing Etherpad instances according to users’
creation and their logins into the system. Users’ data and ports assigned to use the correspondent
Etherpad container are stored in a MongoDB (a NoSQL database) [7]. We used Pug for the graphical
user interfaces. Pug is a template engine, the middleware and routing solution for Node.js [44].
The management system runs once the creation of users is requested and executed since the Etherpad
container deployment is performed for the specific created user. The container configuration is the
same for all users, except for their container ports. Port numbers are determined consecutively.
Instead of redirecting when the user wants to enter a pad, this interface of Etherpad is embedded
in the management system layout (scheme), since Etherpad has its graphical interface for document
management. Hence, users may edit their documents without leaving the management system domain.
Nonetheless, Pug is designed for the administration layer, and subsequently, it is linked to the Etherpad
interface and is not part of that layer (Pug). The following algorithm (see Algorithm 1) demonstrates
how the edition of pads was implemented within the management system. The management system
layout has a menu bar that allows users to access all their pads, configure their data, and close the
current session.
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Algorithm 1 The edition of pads within the management system.

1: extends layout

2: block title

3: title Etherpad ESPE - Pads

4 -statusDocker = ‘stopped’

5: if conﬁ?runnin

6: - statusDocker = ‘running’

7: block content

8: style.

9: # content {
%(1): adding: Opx; }
12: iframe (style="border:none; width:100 %; hei%ht: cale(100vh-10px)”
13: src="http:/ /$config.host : $cofig.port /p/$pad’)

The main advantage of our management system is its integration with Etherpad, which does not
include a user management module. This provides users privacy over their documents, overcoming
Etherpad’s problem of free/open use of the pad’s URL. In this way, users can share the pads with
the users they want. It should be noted that the entire management system works through REST.
For example, POST is used to change user’s passwords, while PUT is used to enter the system, and GET
is used to respond to the menu bar options selected by the user (see Algorithm 2). Furthermore, another
source of scalability is the safe operations (GET), whose responses can be cached by the intermediary
proxies to enhance performance [45].

Algorithm 2 Operation of the management system.

1: doctype html
Deral

2:

3: head

4: include head

5. block title

% o

: age

8: #gag

9:  #navigator
10: p-title ESPEpad
11: p-small.text-center # {user.name }
12: nav
13: a (href="/’ class=navPads) # [i.fa.fa-book] Pads
14: a (href="/config’ class=navConfig) # [i.fa.fa-cog] Config
15: a (href="/logout’) # [i.fa.fa-sign-out] Close session

16:  #content
17:  block content
18:  block scripts

Figure 7 is a visual representation of a set of rules and actions that involve the
Managementoperating system. The idea focuses on being able to provide each user with a container,
which contains the user’s documents. If the document is not of their own, the system will search
the document’s author container and redirect it to the specific port. It is also responsible for user
authentication and management, creating instances, and regularly interacting with Etherpad containers.
The whole process works on Docker containers.

Login to
[ Start > the system

Look in the database to
the user who created it

User
creation

Etherpad
container
creation for
the user

It is registered?
Yes

Is the document
to be edited what
do you think?

It is redirected to
Get the port the container
assigned to the user

Redirects to the The user End
text document edits the text n

Figure 7. Management system flowchart.

The process starts when the user enters the management system. If the user is already registered,
he/she must log in with their credentials. Otherwise, he/she needs to register first, and the
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management system will automatically assign a port number. Once the user is logged into the
system, the user may create an editing space (pad). That is, if the user wants to create a new pad,
the management system will search for it in the database. When it finds a match by name, this means
that another user is running it in another container. If not, it will redirect to the container port that was
assigned when registered. If the user wants other users to edit the text concurrently, the user needs
to share the link containing the designated port, i.e., when it receives an API call and the access URL
to the created pad is generated and thus may be shared, the Gateway executes this. This procedure
also explains how the management system processes its elements and how they perform, i.e., inputs,
requirements, conditions, outputs, and their relationships.

4.4. Creating an Image from a Container

We used a Docker command-based script to create the Etherpad container image. Once the
image is ready, it is executed in the container. We used a Debian 9.0 image since it has network
connectivity characteristics and allows the interconnection with the rest of the nodes that are part of the
proposed architecture [46]. In addition, the script contains an entry point that is able to modify specific
characteristics of the container before it is created; for example, the port and information needed for
the database connection.

Docker built is a tool that aims to create custom images. It is able to load components that the
developer wants, and it also configures the network, storage, and user permissions. In addition,
the user can execute commands that allow the container to be seen as a service. The following script
(see Algorithm 3) contains some tools that are installed for the execution of the Etherpad container
such as Debian OS, Node.js, Git, curl, MySQL-client, and software properties. Finally, the Etherpad
that has been modified for this project is downloaded.

Algorithm 3 Etherpad container creation.

1: FROM debian
: RUN apt-get update && apt-get —y install git && apt-get -y install curl && apt-get —y install nano curt unzip mysql —client
3: RUN apt mstall -y curl software-properties-common gn g
4: RUN curl —sL https:/ /deb.nodesource.com/setup _6. x | bash -&& apt-get install —y nodejs
5: WORKDIR / etherpad /etherpad-lite
6: RUN bin/ mstallDe}ﬁs .sh && rm settings.json
7: COPY entrypoint.sh / entrypoint.sh
8: RUN sed —i’s/" node &exec node /' bin/run.sh
9: RUN chmod g+rwx, o+rwx —-R
10: VOLUME /opt/ etherpadhte /var
11: RUN In -s var/settings.json settlngs json
12: ENTRYPOINT [“/en rypomt s
13: CMD (“bin/run.sh”,

4.5. Deployment of Containers

The containers are deployed by the management system. Once a new user is registered, the user is
granted a container for his/her documents (see Algorithm 4). As shown in this code, the deployment
is performed when a new user is registered, and a new container is assigned. The default variables
used by Etherpad are those starting with ETHERPAD_. In this case, the credentials of the database in
which the text of each pad of that user is stored are sent as a parameter to the container. The default
internal port of the container is 9001, while the external port uses a function that increases its value
(sequencer) by one each time a new container is created. Finally, the container is executed.
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Algorithm 4 Deployment of Etherpad containers from the management system.

1: debug (‘creating Etherpad docker’)
2: alet dockerContiguration =

: %Emage: ‘etherpad-lite’,

nv:

3

4. :

5: "ETHERPAD_DB_HOST=$ {etherpadConf.url}’,

6: 'ETHERPAD_DB_PASSWORD=$ {etherpadConf.password}’,
g ETHERPAD_DB_NAME=$ {user.username}’,

: I,
9: __ExposedPorts: {9001/tcp”: {}},
10: HostConfig: {
11: PortBindings: I—%
12: 9001/ }tcp :%{ ostIP: “’, HostPort : nextPort . toString() }

15: name: user,name
17: then (container => {

18: debug (‘starting container”)
19: ﬁeturn container.start()

4.6. Proofs of Concept

Proofs of the concept were performed on an Ubuntu 16.04 cloud server. Users accessed the service
from Windows10 desktop computers using Google Chrome and Mozilla Firefox. Additionally, users
needed to be registered prior to entering the system. The tests were performed when traffic was
similar to the daily average. The download speed was 5.75 Mbps, and the upload speed was about
5.01 Mbps. These tests were performed using the virtual servers’ provisions from the Cloud Computing
infrastructure of the Universidad de las Fuerzas Armadas ESPEin Ecuador, i.e., Infrastructure as a
Service (IAAS). This allowed researches to install and deploy different computer services that were
accessed through the University’s LAN/WLAN/WAN. These resources were used for data processing,
storage, and backup in an HP Blade Infrastructure, a Citrix XenServer Hypervisor, and an EMCbackup
system. This layer was used for the deployment of the created containers that executed the Etherpad
collaboration tool, i.e., Software as a Service (SAAS). We describe in more detail the different proofs
of concept:

e User’s creation: We used actual users who created accounts so that we were able to observe the
behavior of container creation for different users.

e Collaborative text edition: We obtained some metric values related to server behavior. These
metric values were collected when the users were editing their collaborative text.

e Edition of a shared document: In this test, we captured data related to the edition of one document
accessed by several users simultaneously. Therefore, it was possible to determine whether the
proposed architecture supported concurrent users without long delays.

e CPU and memory consumption: The performance and consumption of server resources and
containers were monitored in real-time using cAdvisor. The cAdvisor container ran on the same
servers where the entire microservices-based architecture was deployed.

At the end of the proofs of concept, it was possible to get interesting outcomes of the correct
operation in the automation of the container’s creation and its collaborative text edition. These results
are shown in the next section.

5. Results

5.1. Results Obtained When Running Etherpad on a Microservices Architecture

As explained in Section 3.6, we used cAdvisor to collect our experiment metric values. This software
analyzes and exposes the use of resources and performance data of running containers [47]. As a result,
we obtained the necessary parameters that were used for a detailed analysis. This information was
collected from a total of 47 users. The tests were performed using desktop computers, with an Intel
Core i7 processor and 4GB of RAM. It is worth noting that all computers were connected physically
to the University. We used Google Chrome to perform the tests. We performed two tests, the first test
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in a scenario focused on the creation of one pad, while 47 users accessed that single pad. The second
scenario was based on the creation of eleven pads with different users, so it revealed the consumption
of CPU and RAM. Table 1 lists the percentage of the initial and final use of CPU, RAM, and file system
consumption in the first scenario.

Containers ran within the same infrastructure comprising two virtual servers with the following
characteristics: Intel Xeon Family VI 2.55 GHz OctaCore processor, 12 GB RAM, and 20 GB HDD
storage. The service management layer managed the execution of containers.

Table 1. CPU, memory, and file system consumption, before and after the tests for 47 users in one

only pad.
Resource  Initial Consumption Final consumption
CPU 1% 2.2%
Memory 56 MB 160 MB
File System 39 40

Figure 8 illustrates the CPU consumption when 47 users accessed a single pad. The initial
condition increased by 1.2% of CPU, 104 MB of RAM, and 1% of the file system. Further, Figure 9
illustrates the network use when 47 users accessed a single pad. This was evidence of the fact that,
even though we had 47 users connected through sessions, the exchange of messages for the connection
remained constant.

CPU

Total Usage

Cores

3:22:00 PM 3:22:15 PM 3:22:30 PM 3:22:45 PM 3:23:00 PM 3:23:15 PM
— Total

Figure 8. CPU consumption of 47 users on one pad.

Interface: etho ~

Throughput

8,000,000
6,000,000
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Bytes per second

2,000,000

0
3:22:00 PM 3:22:15 PM 3:22:30 PM 3:22:45 PM 3:23:00 PM 3:23:15 PM

—— Tx bytes —— Rx bytes

Figure 9. Network throughput of 47 users on one pad.

For the second scenario, where one pad was created for every user, i.e., 47 pads running on
11 containers independently, we collected CPU, RAM, and storage consumption values per created
user, as listed in Table 2.
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Table 2. Consumption per created user.

Resources Consumption

CPU 1.2%
Memory 104 MB
Storage 1048 MB

When sizing a new service, it is also essential to be clear about the expected performance of the file
system. File systems are designed to optimize data availability, efficiently manage scalability for large
volumes of data, and ensure their integrity. Figure 10 demonstrates the analysis of the performance
and resource use of file systems using microservices. As noted in the third section, cAdvisor was
integrated into Kubernetes to calculate the metrics related to the file system information.

Finally, we could tell that, as CPU and memory consumption are central factors in the performance
of a system, the results revealed how a container may be able to group the information of both resources.
In this case, after automatically discovering all the used containers and sub-containers, as well as
collecting the data, cAdvisor presented the best CPU (2.2% and 1.2%, respectively) usage and the
lowest memory consumption of the sub-containers (104 MB, 104 MB, respectively). Therefore, Docker
was able to provide a better performance using fewer memory resources. Its best performance was
when the application ran without virtualization.

Filesystem

FS #1: /dev/mapper/docker-253:0-101291454-6813db7122fda3d0c25c¢0173031cc3a70a320c092093668b248dad3c2eb626ad
93.56 MB/10.73 GB (0%)

FS #2: /dev/imapper/centos-root

I 6.95GB/ 17.78 GB (39%)

FS #3: /dev/xvdal

173.65 MB / 520.79 MB (33%)

FS #4: /dev/mapper/docker-253:0-101291454-c0a4abab5c4a2938ceabbed70098186712a469bf90fbd4c0ee0ef117c47e56567
645.63 MB / 10.73 GB (6%)

FS #5: /dev/mapper/docker-253:0-101291454-1e1dd4677b5818ef5706f9fb7e6b91572d598cea9986059acc0ef0b724901feb
645.63 MB/10.73 GB (6%)

FS #6: /dev/mapper/docker-253:0-101291454-a3dcfd2b158ab10631594a340eal 2ef79a480d33056f6c24b02c6dc47dd3fe84
645.69 MB / 10.73 GB (6%)

Figure 10. File system performance of 47 users on one pad each.
5.2. Comparison of Results When Running Etherpad on a Monolithic Architecture

To compare the results from our research, a proof of concept was performed by running the
collaborative Etherpad tool on a monolithic architecture. In particular, Etherpad was executed directly
on a virtual machine running the NodeJS development environment. We used Dynatrace [48] to
capture the Etherpad performance data running on the monolithic architecture; this software allows
the management and monitoring of infrastructure, as well as applications in the cloud. It is ideal
for measuring the performance of applications developed in NodeJS. Despite being proprietary
software, it provides an optional free 14 day trial. We only ran the scripts found in the official software
documentation, and we were able to see the captured data immediately.

It is essential to note that the tests performed were the same as those used with Etherpad in
the microservices-based architecture. Table 3 shows the results. In the first scenario that consisted
of the access of 47 users to the same pad, a memory consumption of 174 MB of RAM was achieved
compared to some 104 MB of consumption of the architecture based on microservices. This meant
that with the proposed architecture, we obtained a drop of about 40.22% of the RAM consumption.
In terms of CPU consumption, the monolithic architecture used 0.65% compared to the 1.2% used by
the microservices-based architecture (see Figure 11).
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Table 3. Comparison of the results obtained by executing Etherpad on the monolithic and
microservices platforms.

Resource Scenariol (47 Users in Only One Pad) Scenario 2 (Consumption per Created User)

Monolithic Microservices Monolithic Microservices
CPU 0.65% 1.2% 2.33% 56.4%
RAM 174 MB 104 MB 126 MB 4888 MB
1 Service

® Nodejs

0 =«

Suspension

7 process 1 Process

065% 174 us

cPU Memory

@ instance-1us-centrall-a.c

Figure 11. Monolithic performance of 47 users on one pad each.

In the second scenario, which consisted of creating eleven pads and allowing each user to
access the pad he/she created, the monolithic architecture consumed 126 MB of RAM, while the
proposed architecture with microservices consumed 4888 MB of RAM. In terms of CPU consumption,
the monolithic architecture used 2.33% of the CPU, while the microservices-based architecture used
about 56.4% (see Figure 12). This notable difference in the second scenario as based on the fact that not
only a pad was being created, but also a Docker container, which guaranteed independence between
one container from another. This led to greater security for the proposed solution. In Etherpad,
any user is able to access any pad that is created in the monolithic architecture, avoiding users from
gaining privacy on their pads.

012=
——

1 Process T process

233x 126 me

1] Memary

@ instance-1.us-centralt-a.c...

Figure 12. Monolithic performance in the second scenario.

However, it may be considered that the memory consumption in the proposed architecture could
be reduced if the way to avoid creating a container per user is researched. In future work, and based
on the current research, it is planned to implement a load balancer that deploys containers as needed,
without losing the privacy and independence of the containers.

6. Discussion

Our proposed architecture was intended for the implementation of Etherpad based on
microservices and a user management system to minimize the use of hardware resources, through
vertical and horizontal scalability in any of its N layers. The design and implementation of a
management system are essential when conducting studies related to microservices. Therefore,
our software had the function of an administrator that allowed establishing a link between those
services. Thereby, an end-user may control it, regardless of where it may be located. Likewise, it
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needed to manage an internal process for navigation and use of an application, since each service,
database, and applications may be deployed in different containers.

Our architecture was not different from other architectures. It was clearly established that
we followed [38,39] designs. Our architecture, hence our design, moved from the monolithic
instantiation and handling of Etherpads towards a services architecture, where every Etherpad
offered a microservice. Our management system followed (implemented) three popular design
patterns that together solve the following problems. These patterns can be found on the GoF Design
patterns book [41]: (1) Observer pattern: “several components depend on a subject components’ state,
a dependent component should be informed about state changes of the subjects, loose coupling between
dependent and subject component required, and keeping related objects consistent without tightly
coupling them”, (2) Factory Method pattern: “A class needs to instantiate a derivation of another class
but does not know which one”. (3) Proxy pattern: “creation and initialization of objects are expensive
tasks, some objects do not have appropriate access rights, and we need different access rights to
different objects, when an object is accessed by a pointer, additional action is performed by that pointer,
it is difficult to create an object in a different space.” [43]. (4) Service Later pattern: “The interactions
may be complex, involving transactions across multiple resources and the coordination of several
responses to an action. Encoding the logic of the interactions separately in each interface causes a
lot of duplication.” On the other had, the monitoring tools were only based on the Observer design
pattern [41], and a monitor system does not make any decision; it only informs other applications
about monitored objects’ states.

The performance tests yielded that when 47 users were connected simultaneously to the same
Etherpad, the memory consumption did not exceed 104 MB per user. However, CPU consumption
increased by 16%. This represented that it did not affect the number of containers since they all
accessed the same pad. In the second scenario, where every user had a pad, it increased by 1.2% CPU.
In conclusion, with 82 containers, the CPU would become saturated, which was a limitation, unless
more nodes were incorporated.

Similarly, the consumption of RAM limited the use of the system to a maximum of 54 concurrent
users connected simultaneously to the same pad in real-time. In normal conditions, RAM consumption
was about 56%. Not implementing a load balancer in our architecture was a limitation in improving
the performance and optimization of resources use. This happened when Etherpad handled sessions
within rooms, forcing all users to connect to the container in which the pad was created, causing the
duplication of processes.

In addition, the proposed architecture allowed easy scaling, which was directly proportional
to the number of connected users. This may become a disadvantage since a connected user did not
necessarily need to represent an instantiated and running container. This was not optimal or viable
when executing the proposal, taking into consideration the limitations of the Etherpad. This issue may
be solved in future research, where the creation of containers will be optimized to the reduction of
the consumption of both CPU and RAM by more efficient container management with the support
of a load balancer that adapts to the operation of socket.io. The latter is another issue of conception
and adaptability.

Finally, the current study evidenced how advisable it was to use this type of tool and what its
benefits and limitations may be. It also produced information about the levels of satisfaction and
usability, as well as the technical difficulties that appeared while correcting them. Furthermore, it aimed
to identify the percentage of students who were enthusiastic about using collaborative tools, as well as
those who may be frustrated by the technical difficulties that potentially arose. The main objective of
this study was to implement a collaborative architecture based on microservices through the use of
containers. The application of this prototype was tested in the laboratories of the Universidad de las
Fuerzas Armadas ESPE.
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7. Conclusions

In this study, we designed and implemented a three-layer-based microservices architecture that
supported Etherpad, a collaborative tool. In the services layer, we developed a central management
system, using containers assembled in the cloud so that we were able to deploy Etherpad instances
in an efficient, scalable, and available way. This allowed several editors to edit a text document
simultaneously and monitor all participants in real-time. The management system was responsible
for establishing Etherpad instances according to created users that accessed the system. User data
and ports of every Etherpad container were stored in MongoDB. For the graphical user interfaces,
we used Pug. Instead of using re-addressing at the time the user desired to enter a pad, the Etherpad
graphical interface was embedded in the management system layout. This allowed the users to enter
the edition of their documents without leaving the domain of the management system. Besides, we
were able to share the address of the pad so that other users may edit files simultaneously during online
editing. The results demonstrated the functionality of the architecture, although with a non-negligible
consumption of CPU and memory when adding new collaborative users.

As future work, we plan to improve our current architecture scalability in two ways: (1) using
a NoSQL database for the management system, for user data storage, and the users” pads’ names.
Containers will be used more efficiently since it will not only cover pads, but also registered users and
stored data. The microservices will run containers in the form of clusters employing Docker Swarm.
The management system pages’ design and style will be standardized using embedded JavaScript
templates (EJS). The management system will also incorporate basic persistence storage operations
(CRUD), as well as user authentication using the Facebook login API and SSL valid certificates through
HTTPS. (2) We plan to implement a load balancer that will adapt to socket.io. This will allow an
improvement of text editing in real-time. The load balancer will automatically deploy a new instance
of Etherpad when the total of containers’” CPU or RAM consumption exceeds 80%. Lastly, it will
balance the load among the new number of available Etherpad instances. This will be performed for
every new user request and for every time that a user leaves a pad, which will ensure scalability in the
Etherpad instances’ microservices layer.
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