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CONICAL SQUARE FUNCTIONS FOR DEGENERATE ELLIPTIC OPERATORS

LI CHEN, JOSÉ MARÍA MARTELL, AND CRUZ PRISUELOS-ARRIBAS

Abstract. The aim of this paper is to study the boundedness of different conical square functions

that arise naturally from second order divergence form degenerate elliptic operators. More precisely,

let Lw = −w−1 div(w A∇) where w ∈ A2 and A is an n × n bounded, complex-valued, uniformly

elliptic matrix. D. Cruz-Uribe and C. Rios solved the L2(w)-Kato square root problem obtaining that√
Lw is equivalent to the gradient on L2(w). The same authors in collaboration with the second named

author of this paper studied the Lp(w)-boundedness of operators that are naturally associated with Lw,

such as the functional calculus, Riesz transforms, or vertical square functions. The theory developed

admitted also weighted estimates (i.e., estimates in Lp(vdw) for v ∈ A∞(w)), and in particular a

class of “degeneracy” weights w was found in such a way that the classical L2-Kato problem can be

solved. In this paper, continuing this line of research, and also that originated in some recent results

by the second and third named authors of the current paper, we study the boundedness on Lp(w)

and on Lp(vdw), with v ∈ A∞(w), of the conical square functions that one can construct using the

heat or Poisson semigroup associated with Lw. As a consequence of our methods, we find a class

of degeneracy weights w for which L2-estimates for these conical square functions hold. This opens

the door to the study of weighted and unweighted Hardy spaces and of boundary value problems

associated with Lw.
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1. Introduction

Associated with divergence form elliptic operators with complex bounded coefficients, we find

certain operators (functional calculi, Riesz transforms, square functions. . . ) that are beyond the

classical Calderón-Zygmund theory. The study of these operators and the development of a Cal-

derón-Zygmund theory for them are subjects of big interest, which mainly came up after the solution

of the Kato conjecture in [4]. A great contribution to a new theory adapted to singular “non-integral”

operators arising from elliptic operators was done in [1], where some key ingredients exploited ideas

from [9, 22, 3]. The related weighted theory was considered by P. Auscher and the second named

author of this paper in [6, 7, 8]. The study of conical square functions, which played a fundamental

role in the development of Hardy spaces associated with elliptic operators done by S. Hofmann,

A. McIntosh, and S. Mayboroda in [23, 24], was later taken in [5] (in the unweighted case) and

completed in [28], see also [10, 31].

One can also consider degenerate elliptic operators in which case the associated matrix ceases to

be uniformly elliptic and presents some controlled degeneracy in the ellipticity condition. The case

in which the degeneracy is an A2 weight was pioneered by E.B. Fabes, C. Kenig, and R. Serapioni

in [19] (with real symmetric matrices) and the corresponding Kato square root problem was solved

by D. Cruz-Uribe and C. Rios in [15]. The latter amounted to obtaining that the square root of

the operator in question is equivalent to the gradient in the weighted space L2(w), where w is the

A2 weight that controls the degeneracy of the matrix of coefficients. A further step was taken

in [14] (see also [26, 30]) where Lp(w) estimates were established for the associated operators

(functional calculi, Riesz transforms, reverse inequalities, vertical square functions. . . ). In fact,

using the Calderón-Zygmund theory for singular “non-integral” operators developed in [6] and the

notion of off-diagonal estimates on balls introduced in [7], “weighted” estimates (i.e, inequalities in

Lp(vdw) with v ∈ A∞(w), see Section 2) were also proved. As a consequence, it is shown in [14] that

under some additional assumptions on w (written in terms of some controlled higher integrability)

one can actually solve the L2-Kato square root problem, that is, the square root of the operator and

the gradient are comparable on L2(Rn).

In this paper we continue these lines of research and study several conical square functions

associated with the heat or Poisson semigroup generated by a degenerate elliptic operator (see

(2.16)–(2.21) below). It is well-known that these conical square functions are important objects

in the study of Hardy spaces, as well as in the study of boundary value problems (see, e.g., [25]).

Here we present a theory that allows us to prove boundedness on Lp(w) (again w ∈ A2 controls

the degeneracy of the ellipticity condition) — we note that in [30] there is a similar result for just

the conical square functions in (2.16) in a more restricted range. Additionally, we obtain weighted

estimates in Lp(vdw) with v ∈ A∞(w), which in particular lead us to establish L2-estimates under

some conditions on w.

In order to state some of the main results we need to introduce some background (see Section 2

for precise definitions). Fix w ∈ A2, that is, w is a non-negative locally integrable function such that

[w]A2
:= sup

B

(
−
∫

B

w(x) dx

)(
−
∫

B

w(x)−1 dx

)
< ∞.
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We will write Lp(w) to denote the Lp-space with underlying measure dw(x) = w(x) dx. Let A be

an n × n matrix of complex and L∞-valued coefficients defined on Rn. We assume that this matrix

satisfies the following uniform ellipticity (or “accretivity”) condition: there exist 0 < λ ≤ Λ < ∞
such that

(1.1) λ |ξ|2 ≤ Re A(x) ξ · ξ̄ and |A(x) ξ · ζ̄ | ≤ Λ |ξ| |ζ |,
for all ξ, ζ ∈ Cn and almost every x ∈ Rn. We have used the notation ξ · ζ = ξ1 ζ1 + · · · + ξn ζn

and therefore ξ · ζ̄ is the usual inner product in Cn. Associated with this matrix and a given weight

w ∈ A2, we define the second order divergence form degenerate elliptic operator

Lw f = −w−1 div(w A∇ f ),

which is understood in the standard weak sense as a maximal-accretive operator on L2(w) with

domain D(Lw) by means of a sesquilinear form. Equivalently, Aw := w A is a degenerate elliptic

matrix, that is,

λw(x) |ξ|2 ≤ Re Aw(x) ξ · ξ̄ and |Aw(x) ξ · ζ̄| ≤ Λw(x) |ξ| |ζ |,
for all ξ, ζ ∈ Cn and almost every x ∈ Rn. In [15] the Kato problem for these degenerate elliptic

operators was solved:

‖L1/2
w f ‖L2(w) ≈ ‖∇ f ‖L2(w),

for every f in the weighted Sobolev space H1(w), that is, the completion of C∞c (Rn) (the space

of infinitely differentiable functions with compact support) with respect to the norm ‖ f ‖H1(w) =

‖ f ‖L2(w) + ‖∇ f ‖L2(w). The operator −Lw generates a C0-semigroup {e−tLw}t>0 of contractions on

L2(w) which is called the heat semigroup. Using this semigroup and the corresponding Poisson

semigroup {e−t
√

Lw}t>0 (defined using the classical subordination formula) one can consider several

conical square functions associated with Lw. Here, for the sake of conciseness, we just introduce

two of them (in the body of the paper we study more general versions), one associated with the heat

semigroup and another with the Poisson semigroup:

SLw

H f (x) =

(∫∫

Γ(x)

|t2Lwe−t2 Lw f (y)|2 dw(y) dt

tw(B(y, t))

) 1
2

(1.2)

SLw

P f (x) =

(∫∫

Γ(x)

|t2Lw e−t
√

Lw f (y)|2 dw(y) dt

tw(B(y, t))

) 1
2

,(1.3)

where Γ(x) := {(y, t) ∈ Rn+1
+ : |x − y| < t} denotes the cone (of aperture 1) with vertex at x ∈ Rn and

w(B(y, t)) =
∫

B(y,t) w(x) dx. Taking these as the model of more general conical square functions, the

goal of this paper is to find ranges of p’s for which SLw

H and/or SLw

P are bounded on Lp(w). Also we

will obtain the corresponding weighted norm inequalities, that is, estimates in Lp(vdw) for some

range of p’s and some collection of v ∈ A∞(w) (see Section 2 for the precise definitions). As a

consequence we will also establish purely unweighted inequalities, that is, estimates in Lp(Rn) (the

Lp-space associated with the Lebesgue measure in Rn). As a sample of our results, let us present

one containing some of these estimates in the unweighted space L2(Rn) (see Corollaries 6.1, 6.4,

and 6.7 for complete statements). We note that the boundedness on L2(Rn) of the conical square

functions (1.2) and (1.3) in the uniformly elliptic case (i.e, when w ≡ 1) follows at once from

the fact that the associated divergence form elliptic operator has a bounded functional calculus on

L2(Rn). Here, in contrast, the L2(Rn) theory for degenerate elliptic operators becomes non-trivial

and our results open the door to considering, for instance, boundary value problems associated with

Lw with data in L2(Rn).

Theorem 1.4. Let A be an n × n complex- valued matrix that satisfies the uniform ellipticity condi-

tion (1.1).
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(a) Consider Lw = −w−1 div(w A∇), a degenerate elliptic operator as above, with w ∈ A2.

• Given 1 ≤ r ≤ 2, if w ∈ Ar ∩ RH n r
2
+1 then SLw

H is bounded on L2(Rn).

• Given 1 ≤ r ≤ min
{

2, 1 + 4
n

}
, if w ∈ Ar ∩ RH n r

2
+1 then SLw

P is bounded on L2(Rn).

(b) Consider Lγ = −|x|γ div(|x|−γ A∇) with −n < γ < n (hence |x|−γ ∈ A2).

• If −n < γ < 2 n
n+2

, then SLγ
H is bounded on L2(Rn).

• If −min{4, n} < γ < 2 n
n+2

, then SLγ
P is bounded on L2(Rn).

The plan of this paper is as follows. In Section 2 we present some of the preliminaries needed

to state our main results in Section 3. In Section 4 we first recall some earlier results concerning

off-diagonal estimates for the heat semigroup in question. We then obtain some “change of angle”

formulas that allow us to compare weighted tent-space norms for cones with different apertures.

This control is done in weighted spaces Lp(vdw) with v ∈ A∞(w) and w ∈ A∞ and we obtain

quantitative bounds depending on the ratio between the apertures of the cones. We also introduce

some p-adapted weighted Carleson condition and compare it with some weighted tent-space norms

in weighted spaces. Section 5 contains the proofs of the main results. In Section 6 we obtain

unweighted estimates, proving in particular Theorem 1.4 above. Finally, in the appendix, we for-

mulate some extrapolation results inspired by those in [13] but with the weighted measure space

(Rn,w) replacing (Rn, dx). The proofs are simply sketched as they follow the lines of the equivalent

ones in [13].

2. Preliminaries

We turn now to introducing some notation and set up our background. Throughout the paper n

will denote the dimension of the underlying space Rn and we will always assume n ≥ 2. We write

dx to denote the usual Lebesgue measure in Rn and Lp(Rn) or simply Lp for Lp(Rn, dx).

Given a ball B, let rB denote the radius of B. We write λB for the concentric ball with radius

rλB = λrB. Moreover, we set C1(B) = 4B and, for j ≥ 2, C j(B) = 2 j+1B \ 2 jB.

If we write Θ1 . Θ2 we mean that there exists a constant C such that Θ1 ≤ CΘ2. We write

Θ1 ≈ Θ2 if Θ1 . Θ2 and Θ2 . Θ1. The constant C in these estimates may depend on the dimension

n and other (fixed) parameters that should be clear from the context. All constants, explicit or

implicit, may change at each appearance.

2.1. Weights. By a weight w we mean a non-negative, locally integrable function. For brevity, we

will often write dw for w dx. In particular, we write w(E) =
∫

E
dw and Lp(w) = Lp(Rn, dw). We

will use the following notation for averages: given a ball B we write

−
∫

B

f dw =
1

w(B)

∫

B

f dw or −
∫

B

f dx =
1

|B|

∫

B

f dx,

and, for j ≥ 2, we set

−
∫

C j(B)

f dw =
1

w(2 j+1B)

∫

C j(B)

f dw.

We state some definitions and basic properties of Muckenhoupt weights. For further details,

see [16, 20, 21]. We say that w ∈ Ap, 1 < p < ∞, if

[w]Ap
:= sup

B

(
−
∫

B

w(x) dx

)(
−
∫

B

w(x)1−p′ dx

)p−1

< ∞.
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Here and below the sups run over the collection of balls B ⊂ Rn. When p = 1, we say w ∈ A1 if

[w]A1
:= sup

B

(
−
∫

B

w(x) dx

)(
ess sup

x∈B

w(x)−1

)
< ∞.

We say w ∈ RHs, 1 < s < ∞ if

[w]RHs
:= sup

B

(
−
∫

B

w(x) dx

)−1(
−
∫

B

w(x)s dx

)1/s

< ∞,

and

[w]RH∞ := sup
B

(
−
∫

B

w(x) dx

)−1(
ess sup

x∈B

w(x)

)
< ∞.

Let

A∞ :=
⋃

1≤p<∞
Ap =

⋃

1<s≤∞
RHs.

The classes Ap, 1 ≤ p < ∞, or RHs, 1 < s ≤ ∞, may be equivalently defined using cubes in Rn (in

place of balls), in which scenario [w]Ap
≈ [w]cubes

Ap
with implicit constants depending only on n and

p.

An important property is that if w ∈ RHs, 1 < s ≤ ∞,

w(E)

w(B)
≤ [w]RHs

(
|E|
|B|

) 1
s′

, ∀E ⊂ B,(2.1)

where B is any ball in Rn. Analogously, if w ∈ Ap,1 ≤ p < ∞, then
(
|E|
|B|

)p

≤ [w]Ap

w(E)

w(B)
, ∀E ⊂ B.(2.2)

A consequence of this, is that Ap weights are doubling measures: given w ∈ Ap, for all τ ≥ 1 and

any ball B, w(τB) ≤ [w]Ap
τpnw(B). This property will be used throughout the paper.

As a consequence of this doubling property, we have that with the ordinary Euclidean distance

| · |, (Rn, dw, | · |) is a space of homogeneous type. In this setting we can define new classes of weights

Ap(w) and RHs(w) by replacing Lebesgue measure in the definitions above with dw: e.g., v ∈ Ap(w)

if

[v]Ap(w) = sup
B

(
−
∫

B

v(x) dw

)(
−
∫

B

v(x)1−p′ dw

)p−1

< ∞.

From these definitions, it follows at once that there is a “duality” relationship between the weighted

and unweighted Ap and RHs conditions: v = w−1 ∈ Ap(w) if and only if w ∈ RHp′ and v = w−1 ∈
RHs(w) if and only if w ∈ As′ .

For every measurable set E ⊂ Rn, we write vw(E) = (vdw)(E) =
∫

E
vdw and Lp(vdw) =

Lp(Rn, v(x) w(x) dx). In this direction, for every w ∈ Ap, v ∈ Aq(w), 1 ≤ p, q < ∞, it follows

that (
|E|
|B|

)p q

≤ [w]
q
Ap

(
w(E)

w(B)

)q

≤ [w]
q
Ap

[v]Aq(w)
vw(E)

vw(B)
, ∀E ⊂ B.(2.3)

Analogously, if w ∈ RHp and v ∈ RHq(w), 1 < p, q ≤ ∞, one has

vw(E)

vw(B)
≤ [v]RHq(w)

(
w(E)

w(B)

) 1
q′

≤ [v]RHq(w)[w]
1
q′
RHp

(
|E|
|B|

) 1
p′ q′

, ∀E ⊂ B.(2.4)

Remark 2.5. Consider the Hardy-Littlewood maximal function

M f (x) := sup
B∋x

−
∫

B

| f (y)| dy.

By the classical theory of weights, w ∈ Ap, 1 < p < ∞, if and only if,M is bounded on Lp(w).
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On the other hand, given w ∈ A∞, we can introduce the weighted maximal operatorMw:

Mw f (x) := sup
B∋x

−
∫

B

| f (y)| dw(y).(2.6)

Since w is a doubling measure, one can also show that v ∈ Ap(w), 1 < p < ∞, if and only if,Mw is

bounded on Lp(vdw).

We continue by introducing some important notation. Weights in the Ap and RHs classes have a

self-improving property: if w ∈ Ap, there exists ǫ > 0 such that w ∈ Ap−ǫ , and similarly if w ∈ RHs,

then w ∈ RHs+δ for some δ > 0. Hereafter, given w ∈ A∞, let

(2.7) rw = inf
{

p : w ∈ Ap

}
, sw = inf

{
q : w ∈ RHq′

}
.

Note that according to our definition sw is the conjugated exponent of the one defined in [6, Lemma

4.1]. Given 0 ≤ p0 < q0 ≤ ∞ and w ∈ A∞, [6, Lemma 4.1] implies that

Ww(p0, q0) :=

{
p ∈ (p0, q0) : w ∈ A p

p0

∩ RH(
q0
p

)′

}
=

(
p0rw,

q0

sw

)
.(2.8)

If p0 = 0 and q0 < ∞ it is understood that the only condition that stays is w ∈ RH(
q0
p

)′ . Analo-

gously, if 0 < p0 and q0 = ∞ the only assumption is w ∈ A p
p0

. FinallyWw(0,∞) = (0,∞).

In the same way, for a weight v ∈ A∞(w), with w ∈ A∞ we set

rv(w) := inf
{

r : v ∈ Ar(w)
}

and sv(w) := inf
{

s : v ∈ RHs′(w)
}
.

For 0 ≤ p0 < q0 ≤ ∞ and v ∈ A∞(w), following mutatis mutandis [6, Lemma 4.1], we have

Ww
v (p0, q0) :=

{
p ∈ (p0, q0) : v ∈ A p

p0

(w) ∩ RH(
q0
p

)′(w)

}
=

(
p0rv(w),

q0

sv(w)

)
.(2.9)

If p0 = 0 and q0 < ∞, as before, it is understood that the only condition that stays is v ∈ RH(
q0
p

)′(w).

Analogously, if 0 < p0 and q0 = ∞ the only assumption is v ∈ A p
p0

(w). FinallyWw
v (0,∞) = (0,∞).

2.2. Degenerate elliptic operators. Let A be an n×n matrix of complex and L∞-valued coefficients

defined on Rn. We assume that this matrix satisfies the uniform ellipticity condition as introduced

in (1.1). Associated with this matrix and a given weight w ∈ A2 (which is fixed from now on) we

define the second order divergence form degenerate elliptic operator

Lw f = −w−1 div(w A∇ f ),(2.10)

which is understood in the standard weak sense as a maximal-accretive operator on L2(w) with

domainD(Lw) by means of a sesquilinear form. These operators were developed in [17, 18, 19, 15]

and we refer the reader there for complete details. Here we borrow some of their results. The

operator −Lw generates a C0-semigroup {e−tLw}t>0 of contractions on L2(w) which is called the heat

semigroup.

As in [1, 7, 14], we denote by (p−(Lw), p+(Lw)) the maximal open interval on which the heat

semigroup {e−tLw}t>0 is uniformly bounded on Lp(w):

p−(Lw) := inf

{
p ∈ (1,∞) : sup

t>0

‖e−t2 Lw‖Lp(w)→Lp(w) < ∞
}
,(2.11)

p+(Lw) := sup

{
p ∈ (1,∞) : sup

t>0

‖e−t2 Lw‖Lp(w)→Lp(w) < ∞
}
.(2.12)

Note that in place of the semigroup {e−tLw}t>0 we are using its rescaling {e−t2Lw}t>0. We do so since

all the “heat” square functions that we consider below are written using the latter and also because
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in the context of the off-diagonal estimates discussed below it will simplify some computations.

According to [14],

(2.13) p−(Lw) ≤ (2∗w)′ < 2 < 2∗w ≤ p+(Lw),

where 2∗w =
2 n rw

n rw−2
if 2 < n rw and 2∗w = ∞ otherwise.

Let us also introduce for every K ∈ N0 := N ∪ {0},

(2.14) (p+(Lw))K,∗
w :=





p+(Lw)nrw

nrw − (2K + 1)p+(Lw)
, if (2K + 1)p+(Lw) < nrw,

∞, if (2K + 1)p+(Lw) ≥ nrw.

When K = 0, we write (p+(Lw))∗w := (p+(Lw))0,∗
w .

Using the heat semigroup and the classical subordination formula, or the functional calculus for

Lw, we can also consider the Poisson semigroup:

e−t
√

Lw =
1√
π

∫ ∞

0

e−uu
1
2 e−

t2

4u
Lw

du

u
.(2.15)

2.3. Conical square functions. One can define different conical square functions associated with

Lw as above which all have an expression of the form

QLw f (x) =

(∫∫

Γ(x)

|T Lw
t f (y)|2 dw(y) dt

tw(B(y, t))

) 1
2

, x ∈ Rn,

where Γ(x) := {(y, t) ∈ Rn+1
+ : |x − y| < t} denotes the cone (of aperture 1) with vertex at x ∈ Rn.

More precisely, we introduce the following conical square functions written in terms of the heat

semigroup {e−tLw}t>0 (hence the subscript H): for every m ∈ N,

SLw

m,H f (x) =

(∫∫

Γ(x)

|(t2Lw)me−t2Lw f (y)|2 dw(y) dt

tw(B(y, t))

) 1
2

,(2.16)

and, for every m ∈ N0 := N ∪ {0},

G
Lw

m,H f (x) =

(∫∫

Γ(x)

|t∇y(t2Lw)me−t2Lw f (y)|2 dw(y) dt

tw(B(y, t))

) 1
2

,(2.17)

GLw

m,H f (x) =

(∫∫

Γ(x)

|t∇y,t(t
2Lw)me−t2 Lw f (y)|2 dw(y) dt

tw(B(y, t))

) 1
2

.(2.18)

In the same manner, let us consider weighted conical square functions associated with the Pois-

son semigroup {e−t
√

Lw}t>0 (hence the subscript P): given K ∈ N,

SLw

K,P f (x) =

(∫∫

Γ(x)

|(t
√

Lw )2Ke−t
√

Lw f (y)|2 dw(y) dt

tw(B(y, t))

) 1
2

,(2.19)

and for every K ∈ N0,

G
Lw

K,P f (x) =

(∫∫

Γ(x)

|t∇y(t
√

Lw )2Ke−t
√

Lw f (y)|2 dw(y) dt

tw(B(y, t))

) 1
2

,(2.20)

GLw

K,P f (x) =

(∫∫

Γ(x)

|t∇y,t(t
√

Lw )2Ke−t
√

Lw f (y)|2 dw(y) dt

tw(B(y, t))

) 1
2

.(2.21)

Corresponding to the cases m = 0 or K = 0 we simply write G
Lw

H f := G
Lw

0,H f , GLw

H f := GLw

0,H f ,

G
Lw

P f := G
Lw

0,P f , and GLw

P f := GLw

0,P f . Besides, we set SLw

H f := SLw

1,H f and SLw

P f := SLw

1,P f .
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Let us observe that in all the above conical square functions the apertures of the cones are taken

to be 1. One could define conical square functions with any given aperture, but these are equivalent

in Lp(w) or in Lp(vdw) for every 0 < p < ∞ and v ∈ A∞(w) by the change of angle formulas

obtained in Proposition 4.9.

Notice also that when comparing the conical square functions associated with the heat and Pois-

son semigroups the parameter m is in correspondence with K (and not with 2K) since we can

rewrite (t
√

Lw )2K as (t2Lw)K . This is also reflected in the fact that, for instance, SLw

K,P f is controlled

(in norm) by SLw

K,H f , cf. Theorem 3.5 part (b). One could define conical square functions for the

Poisson semigroup with (t
√

Lw )2K+1 in front, which in terms of the heat semigroup, would mean to

put (t2Lw)m+ 1
2 . The corresponding square functions would also fit into the theory developed in this

paper, with appropriate changes. One of the difficulties that will appear is that (t2Lw)m+ 1
2 e−t2Lw sat-

isfies off-diagonal estimates with polynomial decay and in that scenario one would get restrictions

in the range of boundedness or comparison. This will not be pursued in the present paper.

3. Main results

We will obtain weighted norm inequalities and boundedness for the square functions presented

in (2.16)-(2.21) in weighted measure spaces. The word “weighted” refers to two different concepts

here, so we explain them better. First, note that the square functions that we consider are associated

with a degenerate elliptic operator, Lw, defined as in (2.10). Thus, the natural underlying measure

space is the “weighted” space (Rn,w). For this reason, the square functions introduced above in-

corporate w in their definition. In this way, an Lp(w) estimate for any of these square functions

can be written as a norm of a function in Rn+1
+ in the corresponding tent space whose underlying

measure is dw dt/t. Our goal is to obtain estimates in Lp(w) for some range of p’s and also to obtain

“weighted” estimates, that is, estimates in Lp(vdw) with v ∈ A∞(w).

Our first two results establish the boundedness of the conical square functions associated with

the heat and Poisson semigroup:

Theorem 3.1. Let Lw be a degenerate elliptic operator with w ∈ A2 and let v ∈ A∞(w).

(a) For every m ∈ N, SLw

m,H is bounded on Lp(vdw) for all p ∈ Ww
v (p−(Lw),∞).

(b) For every m ∈ N0, G
Lw

m,H, and GLw

m,H are bounded on Lp(vdw) for all p ∈ Ww
v (p−(Lw),∞).

Equivalently, all the previous square functions are bounded on Lp(vdw) for every p−(Lw) < p < ∞
and every v ∈ A p

p−(Lw)
(w). In particular, letting v ≡ 1, all these square functions are bounded on

Lp(w) for every p−(Lw) < p < ∞.

Theorem 3.2. Let Lw be a degenerate elliptic operator with w ∈ A2 and let v ∈ A∞(w).

(a) Given K ∈ N, SLw

K,P is bounded on Lp(vdw) for all p ∈ Ww
v (p−(Lw), (p+(Lw))K,∗

w ).

(b) Given K ∈ N0, GLw

K,P and G
Lw

K,P are bounded on Lp(vdw) for all p ∈ Ww
v (p−(Lw), (p+(Lw))K,∗

w ).

In particular, letting v ≡ 1, SLw

K,P for K ∈ N, and GLw

K,P and G
Lw

K,P for K ∈ N0, are bounded on Lp(w)

for every p−(Lw) < p < (p+(Lw))K,∗
w .

These two results will be proved with the help of some estimates, interesting in their own right,

which establish that all the previous square functions can be controlled (in the Lp(vdw)-norm) by

either SLw

H or GLw

H . Hence matters reduce to proving the boundedness of these two operators.

In the following two results we compare the square functions associated with the heat and Pois-

son semigroups, respectively.
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Theorem 3.3. Let Lw be a degenerate elliptic operator with w ∈ A2 and take an arbitrary f ∈
L2(w).

(a) SLw

H f (x) ≤ 1
2
GLw

H f (x) and G
Lw

m,H f (x) ≤ GLw

m,H f (x), for every x ∈ Rn and for all m ∈ N0.

(b) Given m ∈ N, ‖GLw

m,H f ‖Lp(vdw) . ‖SLw

m,H f ‖Lp(vdw), for all v ∈ A∞(w) and 0 < p < ∞.

(c) Given m ∈ N, ‖SLw

m+1,H f ‖Lp(vdw) . ‖SLw

m,H f ‖Lp(vdw), for all v ∈ A∞(w) and 0 < p < ∞.

As a consequence, for every m ∈ N, and for all v ∈ A∞(w) and 0 < p < ∞ there holds

(3.4) ‖SLw

m,H f ‖Lp(vdw) + ‖GLw

m,H f ‖Lp(vdw) + ‖GLw

m,H f ‖Lp(vdw) . ‖SLw

H f ‖Lp(vdw).

Theorem 3.5. Let Lw be a degenerate elliptic operator with w ∈ A2 and take an arbitrary f ∈
L2(w).

(a) G
Lw

K,P f (x) ≤ GLw

K,P f (x), for every x ∈ Rn and for all K ∈ N0.

(b) Given K ∈ N, ‖SLw

K,P f ‖Lp(vdw) . ‖SLw

K,H f ‖Lp(vdw), for all v ∈ A∞(w) and p ∈ Ww
v (0, (p+(Lw))K,∗

w ).

(c) ‖GLw

P f ‖Lp(vdw) . ‖GLw

H f ‖Lp(vdw), for all v ∈ A∞(w) and p ∈ Ww
v (0, (p+(Lw))∗w).

(d) Given K ∈ N, ‖GLw

K,P f ‖Lp(vdw) . ‖SLw

K,H f ‖Lp(vdw), for all v ∈ A∞(w) and p ∈ Ww
v (0, (p+(Lw))K,∗

w ).

As a consequence, for every K ∈ N, and for all v ∈ A∞(w) and p ∈ Ww
v (0, (p+(Lw))K,∗

w ) there

holds

(3.6) ‖SLw

K,P f ‖Lp(vdw) + ‖GLw

K,P f ‖Lp(vdw) + ‖GLw

K,P f ‖Lp(vdw) . ‖SLw

H f ‖Lp(vdw).

The proofs of Theorems 3.1–3.5 are in Section 3. Let us note that the non-degenerate versions

(i.e., the case when w ≡ 1) were established in [28] (see also [5]) and some of the ideas of this paper

are borrowed from there.

4. Auxiliary results

4.1. Off-diagonal estimates. We recall here the concept of weighted off-diagonal estimates on

balls. For more definitions of weighted off-diagonal estimates and a careful study of their properties,

we refer to [7].

Definition 4.1. Let {Tt}t>0 be a family of linear operators and let 1 ≤ p ≤ q ≤ ∞. Given w ∈ A∞,

we say that {Tt}t>0 satisfies Lp(w) − Lq(w) off-diagonal estimates on balls, which will be denoted

by Tt ∈ O(Lp(w) − Lq(w)), if there exist θ1, θ2, c > 0 such that for any t > 0 and for any ball B with

radius rB,

(4.2)

(
−
∫

B

|Tt( f 1B)|q dw

)1/q

. Υ

(
rB√

t

)θ2
(
−
∫

B

| f |p dw

)1/p

,

and for j ≥ 2,

(4.3)

(
−
∫

B

∣∣Tt( f 1C j(B))
∣∣q dw

)1/q

. 2 jθ1Υ

(
2 jrB√

t

)θ2

e−
c4 j r2

B
t

(
−
∫

C j(B)

| f |p dw

)1/p

,

and

(4.4)

(
−
∫

C j(B)

|Tt( f 1B)|q dw

)1/q

. 2 jθ1Υ

(
2 jrB√

t

)θ2

e−
c4 j r2

B
t

(
−
∫

B

| f |p dw

)1/p

,

where Υ(s) := max{s, s−1}, for s > 0.
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Recently, the second named author of this paper, together with D. Cruz-Uribe and C. Rios, has

obtained in [14] some new results about these types of estimates for the heat semigroup associated

with Lw. Here we just state some properties that will be needed later.

Lemma 4.5 ([14, Lemma 7.5]). Given w ∈ A∞ and a family of sublinear operators {Tt}t>0 such

that Tt ∈ O(Lp(w) − Lq(w)), with 1 ≤ p < q ≤ ∞, there exist α, β > 0 such that for any t > 0 and

for any ball B with radius rB,

(4.6)

(
−
∫

B

|Tt( f 1B)|q dw

)1/q

. max

{(
rB√

t

)α
,

(
rB√

t

)β}(
−
∫

B

| f |p dw

)1/p

.

Lemma 4.7 ([14, Proposition 3.1, Corollary 3.4, Proposition 7.1, and Section 8]). Let Lw be a

degenerate elliptic operator with w ∈ A2.

(a) If p−(Lw) < p ≤ q < p+(Lw) (cf. (2.11), (2.12)), then e−tLw and (tLw)me−tLw , for every m ∈ N,

belong to O(Lp(w) − Lq(w)).

(b) There exists an interval K(Lw) such that if p, q ∈ K(Lw), p ≤ q, then
√

t∇e−tLw ∈ O(Lp(w) −
Lq(w)). Moreover, denoting by q−(Lw) and q+(Lw) the left and right endpoints ofK(Lw), then

q−(Lw) = p−(Lw), 2 < q+(Lw) ≤ p+(Lw).

4.2. Change of angles for weighted conical square functions. In this section we present a result

that will allow us to change the aperture of the cone in different square functions. We indeed work

in the setting of tent spaces and we put the emphasis on quantifying the bound that is obtained by

the change of aperture. These change of angle formulas were first established for the Lebesgue

measure in [11] and with an optimal version in [2]. The weighted case was considered in [28] (see

also [27]). Here, as opposed to what was done in [28], the underlying measure is dw, as can be seen

from the conical square functions (2.16)–(2.21).

To set the stage, we denote by Rn+1
+ the upper-half space, that is, the set of points (y, t) ∈ Rn×R+.

Given α > 0 and x ∈ Rn we define the cone of aperture α with vertex at x by

Γα(x) := {(y, t) ∈ Rn+1
+ : |x − y| < αt}.

For any closed set E in Rn, let Rα(E) :=
⋃

x∈E Γ
α(x). We also define the operator Aα

w, α > 0,

w ∈ A∞:

Aα
wF(x) :=

(∫∫

Γα(x)

|F(y, t)|2 dw(y) dt

tw(B(y, t))

) 1
2

.(4.8)

When α = 1 we simplify the above notation by writing Γ(x), R(E), andAw.

In the following proposition we present the promised change of angle formulas which allow us

to compare the Lp(vdw)-norms of the operators Aα
w for different values of α.

Proposition 4.9 (Change of angles). Let 0 < α ≤ β < ∞.

(i) For every w ∈ Ar̃ and v ∈ Ar(w), 1 ≤ r, r̃ < ∞, there holds

∥∥Aβ
wF
∥∥

Lp(vdw)
≤ C

(
β

α

) n r̃ r
p ∥∥Aα

wF
∥∥

Lp(vdw)
for all 0 < p ≤ 2r,(4.10)

where C ≥ 1 depends on n, p, r, r̃, [w]Ãr
, and [v]Ar(w), but it is independent of α and β.

(ii) For every w ∈ RHs̃′ and v ∈ RHs′(w), 1 ≤ s, s̃ < ∞, there holds

∥∥Aα
wF
∥∥

Lp(vdw)
≤ C

(
α

β

) n
s s̃ p∥∥Aβ

wF
∥∥

Lp(vdw)
for all

2

s
≤ p < ∞.(4.11)

where C ≥ 1 depends on n, p, s, s̃, [w]RHs̃′ , and [v]RHs′ (w), but it is independent of α and β.
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Proof. We start proving part (i). Fix w ∈ Ar̃, 1 ≤ r̃ < ∞. We first consider the case p = 2 and

1 ≤ r < ∞, then we shall extrapolate to obtain (4.10) for 1 < r < ∞ and 0 < p ≤ 2r. Finally we

prove the case r = 1 and 0 < p < 2. In all these cases we may assume that ‖Aα
wF‖Lp(vdw) < ∞.

Otherwise, there is nothing to prove.

For p = 2 and v ∈ Ar0
(w), 1 ≤ r0 < ∞, applying (2.3) and Fubini’s theorem, we obtain

‖Aβ
wF‖L2(vdw) =

(∫

Rn

∫ ∞

0

∫

|x−y|<βt

|F(y, t)|2 dw(y) dt

tw(B(y, t))
v(x)dw(x)

) 1
2

(4.12)

=

(∫

Rn

∫ ∞

0

|F(y, t)|2vw(B(y, βt))
dw(y) dt

tw(B(y, t))

) 1
2

≤ C

(
β

α

) n r0 r̃

2
(∫

Rn

∫ ∞

0

|F(y, t)|2vw(B(y, αt))
dw(y) dt

tw(B(y, t))

) 1
2

= C

(
β

α

) n r0 r̃

2
(∫

Rn

∫ ∞

0

∫

|x−y|<αt

|F(y, t)|2 dw(y) dt

tw(B(y, t))
v(x)dw(x)

) 1
2

= C

(
β

α

) n r0 r̃

2 ∥∥Aα
wF
∥∥

L2(vdw)
,

where C is independent of α and β.

Next we extrapolate from this inequality to the case 1 < r < ∞ and 0 < p ≤ 2r. Take an arbitrary

1 ≤ r0 < ∞. Then, (4.12) implies, for all v ∈ Ar0
(w),

∫

Rn

((
Aβ

wF(x)
) 2

r0

)r0

v(x)dw(x) .

∫

Rn

((
β

α

)n r̃(
Aα

wF(x)
) 2

r0

)r0

v(x)dw(x).

Now, using Theorem A.1, part (a), we obtain that, for all 1 < r < ∞ and v ∈ Ar(w),

∫

Rn

(
Aβ

wF(x)
) 2r

r0 v(x)dw(x) .

(
β

α

)nr r̃ ∫

Rn

(
Aα

wF(x)
) 2r

r0 v(x)dw(x).

Since 1 ≤ r0 < ∞ is arbitrary, we conclude (4.10) for all 1 < r < ∞, v ∈ Ar(w), and 0 < p ≤ 2r.

Note that the implicit constant is independent of α and β.

Finally we show the case v ∈ A1(w) and 0 < p < 2. As in the proof of [11, Section 3, Proposition

4] and [28, Proposition 3.2], we consider, for all λ > 0, and for 0 < γ < 1 to be chosen later,

Oλ := {x ∈ Rn : Aα
wF(x) > λ}, Eλ := Rn\Oλ, and E∗λ :=

{
x ∈ Rn :

|B(x, r) ∩ Eλ|
|B(x, r)| ≥ γ, ∀r > 0

}
.

Note that

O∗λ := Rn \ E∗λ = {x ∈ Rn :M(1Oλ
)(x) > 1 − γ},

where M is the Hardy-Littlewood maximal operator. Clearly O∗λ is open and so is Oλ (see for

instance [28, Proposition 3.2]). Besides, Oλ ⊂ O∗λ, and

vw(O∗λ) ≤ C
1

(1 − γ)̃r
vw(Oλ) < ∞.(4.13)

Here the first inequality follows from the fact that M : Lr̃(vdw) → Lr̃,∞(vdw), since w ∈ Ar̃ and

v ∈ A1(w) easily imply that vw ∈ Ar̃. The last inequality is due to the assumption ‖Aα
wF‖Lp(vdw) < ∞.

Note now that, for all (y, t) ∈ Rβ(E∗λ), there exists x̄ ∈ E∗λ such that |x̄ − y| < βt. We claim that

(4.14) |B(y, βt)|(γ − cβ,α) = |B(x̄, βt)|(γ − cβ,α) ≤ |Eλ ∩ B(y, αt)|,
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where cβ,α := 1 − αn

2nβn . Indeed, for z := y − αt
2

y−x̄
|y−x̄| , we have that B(z, αt/2) ⊂ B(x̄, βt) ∩ B(y, αt).

Then, since x̄ ∈ E∗λ,

γ|B(x̄, βt)| ≤ |Eλ ∩ B(x̄, βt)| ≤ |Eλ ∩ B(y, αt)| + |B(x̄, βt) \ B(y, αt)|

≤ |Eλ ∩ B(y, αt)| + |B(x̄, βt) \ B(z, αt/2)| ≤ |Eλ ∩ B(y, αt)| + |B(x̄, βt)|
(

1 − αn

2nβn

)
,

and this proves (4.14).

Next, recalling that vw ∈ Ar̃, (2.3) and (4.14) then imply

vw(Eλ ∩ B(y, αt))

vw(B(y, βt))
≥ C

(
|Eλ ∩ B(y, αt)|
|B(y, βt)|

)r̃

≥ C(γ − cβ,α)̃r = C

(
α

β

)n r̃

,

after choosing γ := 1 − αn

2n+1βn . Hence,

∫

E∗λ

Aβ
wF(x)2v(x)dw(x) =

∫

E∗λ

∫ ∞

0

∫

Rn

|F(y, t)|21B(0,1)

(
x − y

βt

)
dw(y) dt

tw(B(y, t))
v(x)dw(x)(4.15)

≤
∫∫

Rβ(E∗λ)

|F(y, t)|2vw(B(y, βt))
dw(y) dt

tw(B(y, t))

≤ C

(
β

α

)n r̃ ∫∫

Rβ(E∗λ)

|F(y, t)|2vw(Eλ ∩ B(y, αt))
dw(y) dt

tw(B(y, t))

= C

(
β

α

)n r̃ ∫∫

Rβ(E∗λ)

|F(y, t)|2
∫

B(y,αt)∩Eλ

v(x)dw(x)
dw(y) dt

tw(B(y, t))

≤ C

(
β

α

)n r̃ ∫

Eλ

Aα
wF(x)2v(x)dw(x).

Therefore, from our choice of γ, by (4.13) and (4.15), and applying Chebychev’s inequality, we

have that

vw
({

x ∈ Rn : Aβ
wF(x) > λ

})
≤ vw

({
x ∈ O∗λ : Aβ

wF(x) > λ
})
+ vw

({
x ∈ E∗λ : Aβ

wF(x) > λ
})

≤ vw
(
O∗λ
)
+

1

λ2

∫

E∗λ

Aβ
wF(x)2v(x)dw(x)

.

(
β

α

)n r̃

vw(Oλ) +

(
β

α

)n r̃
1

λ2

∫

Eλ

Aα
wF(x)2v(x)dw(x).

Using the above estimate, it follows that for 0 < p < 2,

‖Aβ
wF‖pLp(vdw) =

∫ ∞

0

p λp vw
({

x ∈ Rn : Aβ
wF(x) > λ

}) dλ

λ

.

(
β

α

)n r̃(∫ ∞

0

p λp vw(Oλ)
dλ

λ
+

∫ ∞

0

pλp−2

∫

Eλ

Aα
wF(x)2v(x)dw(x)

dλ

λ

)

.

(
β

α

)n r̃
(
∥∥Aα

wF
∥∥p

Lp(vdw)
+

∫

Rn

Aα
wF(x)2

∫ ∞

Aα
wF(x)

pλp−2 dλ

λ
v(x)dw(x)

)

= C

(
β

α

)n r̃∥∥Aα
wF
∥∥p

Lp(vdw)
,

where C is independent of α and β. This completes the proof of (i).
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We next prove part (ii). Fix w ∈ RHs̃′ , 1 ≤ s̃ < ∞. As in the proof of part (i), we split the proof

into three steps. We first prove (4.11) for p = 2 and 1 ≤ s < ∞, then by extrapolation we will show

it for 2/s ≤ p < ∞ and 1 < s < ∞, and finally we will deal with the case s = 1 and 2 < p < ∞.

We start by taking p = 2 and v ∈ RHs′0
(w) with 1 ≤ s0 < ∞. Proceeding as in (4.12) but using

(2.4) instead of (2.3), we obtain

(4.16) ‖Aα
wF‖L2(vdw) =

(∫ ∞

0

∫

Rn

|F(y, t)|2vw(B(y, αt))
dw(y) dt

tw(B(y, t))

) 1
2

.

(
α

β

) n

2s0 s̃
(∫ ∞

0

∫

Rn

|F(y, t)|2vw(B(y, βt))
dw(y) dt

tw(B(y, t))

) 1
2

=

(
α

β

) n

2s0 s̃∥∥Aβ
wF
∥∥

L2(vdw)
,

where the implicit constant is independent of α and β. Let us extrapolate from this inequality. Take

an arbitrary 1 ≤ s0 < ∞ and notice that (4.16) immediately yields that, for every v ∈ RHs′0
(w),

∫

Rn

(Aα
wF(x)2 s0)

1
s0 v(x)dw(x) .

∫

Rn

((
α

β

) n

s̃

Aβ
wF(x)2 s0

) 1
s0

v(x)dw(x).

Next, we apply Theorem A.1, part (b), to conclude that, for every 1 < s < ∞ and for every

v ∈ RHs′(w),

∫

Rn

Aα
wF(x)

2 s0
s v(x)dw(x) ≤ C

(
α

β

) n
s s̃
∫

Rn

Aβ
wF(x)

2 s0
s v(x)dw(x),

where C does not depend on α or β. From this, using that 1 ≤ s0 < ∞ is arbitrary we conclude

(4.11) for all 1 < s < ∞ and 2/s ≤ p < ∞.

Finally, we show (4.11) for all 2 < p < ∞ and v ∈ RH∞(w) (i.e., s = 1). Without loss of

generality, we may assume that
β
α > 32 (for 1 ≤ β

α ≤ 32 we just use the fact that Aα
wF ≤ Aβ

wF).

Let us also assume that ‖Aβ
wF‖Lp(vdw) < ∞ (otherwise there is nothing to prove). Besides, since

v ∈ RH∞(w) there exists r > 1 such that r ≥ p/2 and v ∈ Ar(w). Then we can apply part (i) and

obtain that

(4.17) ‖A6
√

nβ
w F‖Lp(vdw) ≤ C

(
6
√

nβ

β

) n r r̃
p

‖Aβ
wF‖Lp(vdw) = C‖Aβ

wF‖Lp(vdw) < ∞,

where C does not depend on β.

After these observations, for every λ > 0, consider the set

Oλ :=
{

x ∈ Rn : A6
√

nβ
w F(x) > λ

}
.

We claim that

vw
({

x ∈ Rn : Aα
wF(x) > 2λ

})
.

1

λ2

(
α

β

) n

s̃
∫

Oλ

∣∣∣A6
√

nβ
w F(x)

∣∣∣
2

v(x)dw(x).(4.18)

Assuming (4.18) momentarily and applying (4.17), we obtain (4.11) for 2 < p < ∞. Indeed,

‖Aα
wF‖pLp(vdw) = 2p

∫ ∞

0

p λp vw
({

x ∈ Rn : Aα
wF(x) > 2λ

}) dλ

λ

.

(
α

β

) n

s̃
∫ ∞

0

λp−2

∫

Oλ

A6
√

nβ
w F(x)2v(x)dw(x)

dλ

λ

.

(
α

β

) n
s̃
∫

Rn

A6
√

nβ
w F(x)2

∫ A6
√

nβ
w F(x)

0

λp−2 dλ

λ
v(x)dw(x)
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.

(
α

β

) n

s̃
∥∥∥A6

√
nβ

w F

∥∥∥
p

Lp(vdw)

.

(
α

β

) n

s̃ ∥∥Aβ
wF
∥∥p

Lp(vdw)
,

where the implicit constants are independent of α and β.

It remains to show (4.18). We may assume that Oλ , ∅, otherwise both sides in (4.18) would

vanish sinceAα
wF ≤ A6

√
nβ

w F. Using similar arguments as in the proof of [28, Proposition 3.2, part

(i)], we clearly have that Oλ is open. Also, (4.17) and Chebychev’s inequality give us vw(Oλ) < ∞,

which in turn yields that Oλ ( R
n (since vw is a doubling measure and hence vw(Rn) = ∞). Then,

we can take a Whitney decomposition of Oλ (see for example [29, Chapter VI]): there exists a

family of closed cubes {Q j} j∈N with disjoint interiors so that

(4.19) Oλ =
⋃

j∈N
Q j, diam(Q j) ≤ d(Q j,R

n \ Oλ) ≤ 4diam(Q j), and
∑

j∈N
1Q∗j ≤ 12n 1Oλ

,

where Q∗j := 9
8

Q j and d(Q j,R
n\Oλ) denotes the Euclidean distance between the sets Q j and Rn\Oλ.

On the other hand, since Aα
wF ≤ A6

√
nβ

w F, we have that

vw
({

x ∈ Rn : Aα
wF(x) > 2λ

})
= vw

({
x ∈ Oλ : Aα

wF(x) > 2λ
})

(4.20)

=
∑

j∈N
vw
({

x ∈ Q j : Aα
wF(x) > 2λ

})
.

Fix j ∈ N and, for every x ∈ Q j, write

Aα
wF(x) ≤

(∫ ∞
ℓ(Q j)

β

∫

B(x,αt)

|F(y, t)|2 dw(y) dt

tw(B(y, t))

) 1
2

+



∫ ℓ(Q j)

β

0

∫

B(x,αt)

|F(y, t)|2 dw(y) dt

tw(B(y, t))




1
2

=: G j(x) + H j(x).

Pick x j ∈ Rn \ Oλ such that d(x j,Q j) ≤ 4diam(Q j). Notice that for every x ∈ Q j and t ≥ ℓ(Q j)/β

we have that B(x, αt) ⊂ B(x j, 6
√

nβt). Then,

G j(x)2 =

∫ ∞
ℓ(Q j)

β

∫

B(x,αt)

|F(y, t)|2 dw(y) dt

tw(B(y, t))
≤
∫ ∞
ℓ(Q j)

β

∫

B(x j ,6
√

nβt)

|F(y, t)|2 dw(y) dt

tw(B(y, t))

≤ A6
√

nβ
w F(x j)

2 ≤ λ2,

where the last inequality holds since x j ∈ Rn \Oλ. Using this, Chebychev’s inequality, and (2.4) for

w ∈ RHs̃ and v ∈ RH∞(w), we have

vw
({

x ∈ Q j : Aα
wF(x) > 2λ

})
≤ vw

({
x ∈ Q j : H j(x) > λ

})

≤ 1

λ2

∫

Q j

H j(x)2v(x)dw(x)

≤ 1

λ2

∫∫

Rα(Q j)

1(0, β−1ℓ(Q j))
(t)|F(y, t)|2vw(B(y, αt))

dw(y) dt

tw(B(y, t))

.
(α/β)

n
s̃

λ2

∫∫

Rα(Q j)

1(0,β−1ℓ(Q j))(t)|F(y, t)|2vw(B(y, 32−1βt))
dw(y) dt

tw(B(y, t))

≤ (α/β)
n

s̃

λ2

∫

Q∗j

∫ ∞

0

∫

B(x,32−1βt)

|F(y, t)|2 dw(y) dt

tw(B(y, t))
v(x)dw(x)
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≤ (α/β)
n

s̃

λ2

∫

Q∗j

A6
√

nβ
w F(x)2v(x)dw(x).

Then, by (4.20) and the bounded overlap of the family {Q∗j} j∈N,

vw
({

x ∈ Rn : Aα
wF(x) > 2λ

})
.

1

λ2

(
α

β

) n

s̃ ∑

j∈N

∫

Q∗j

∣∣∣A6
√

nβ
w F(x)

∣∣∣
2

v(x)dw(x)

.
1

λ2

(
α

β

) n
s̃
∫

Oλ

∣∣∣A6
√

nβ
w F(x)

∣∣∣
2

v(x)dw(x),

where the implicit constants are independent of α and β. This completes the proof of (4.18). �

4.3. Carleson measure condition. Given 0 < p < ∞, we now introduce a new maximal operator

(see [28] for the case w ≡ 1)

Cw,pF(x0) = sup
B∋x0

(
1

w(B)

∫

B

(∫ rB

0

∫

B(x,t)

|F(y, t)|2 dw(y) dt

tw(B(y, t))

) p
2

dw(x)

) 1
p

,(4.21)

where the supremum is taken over all balls B ⊂ Rn containing x0, and rB denotes the radius of B.

We also consider

CwF(x0) = sup
B∋x0

(
1

w(B)

∫ rB

0

∫

B

|F(y, t)|2 dw(y) dt

t

) 1
2

,

which is a weighted version of the one introduced in [11] to study duality in tent spaces.

We first observe that for p = 2,

CwF ≈ Cw,2F.(4.22)

Indeed, by (2.2) and Fubini’s theorem,

Cw,2F(x0) = sup
B∋x0

(
1

w(B)

∫

B

∫ rB

0

∫

B(x,t)

|F(y, t)|2 dw(y) dt

tw(B(y, t))
dw(x)

) 1
2

≤ sup
B∋x0

(
1

w(B)

∫

2B

∫ rB

0

|F(y, t)|2
∫

B(y,t)

dw(x)
dw(y) dt

tw(B(y, t))

) 1
2

. sup
B∋x0

(
1

w(2B)

∫ 2rB

0

∫

2B

|F(y, t)|2 dw(y) dt

t

) 1
2

= CwF(x0).

As for the reverse inequality, there holds

CwF(x0) = sup
B∋x0

(
1

w(B)

∫ rB

0

∫

B

|F(y, t)|2 dw(y) dt

t

) 1
2

= sup
B∋x0

(
1

w(B)

∫ rB

0

∫

B

|F(y, t)|2
∫

B(y,t)

dw(x)
dw(y) dt

tw(B(y, t))

) 1
2

. sup
B∋x0

(
1

w(2B)

∫

2B

∫ 2rB

0

∫

B(x,t)

|F(y, t)|2 dw(y) dt

tw(B(y, t))
dw(x)

) 1
2

= Cw,2F(x0).

The following proposition relates the norm of Cw,p0
f with that of Aw f . This will be crucial in

the proof of Theorem 3.1. When w ≡ 1 this was proved in [28, Proposition 3.34] for a general p0

(see also [11, Theorem 3] for the case p0 = 2 and w, v ≡ 1).

Proposition 4.23. Let w ∈ A∞.
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(a) If 0 < p0, p < ∞, v ∈ A∞(w), and F ∈ L2
loc(Rn+1

+ , dwdt) then

‖AwF‖Lp(vdw) . ‖Cw,p0
F‖Lp(vdw).

(b) If 0 < p0 < p < ∞ and v ∈ A p
p0

(w) then

‖Cw,p0
F‖Lp(vdw) . ‖AwF‖Lp(vdw).

Proof. We start proving part (a). Fix w ∈ A∞ and let 1 ≤ r < ∞ be so that w ∈ Ar. The proof is

divided into two steps.

Step 1: We first consider a function F ∈ L2(Rn+1
+ , dwdt) such that, for some N > 0, supp F ⊂

KN := {(y, t) ∈ Rn+1
+ : y ∈ B(0,N),N−1 < t < N}. Notice that for y ∈ B(0,N) and t ≥ N−1,

w(B(0,N)) ≤ w(B(y, 2N)) ≤ w(B(y, 2N2t)) ≤ [w]Ar
(2N2)nrw(B(y, t)).

Then,

‖AwF‖Lp(vdw) =

(∫

B(0,2N)

(∫ N

N−1

∫

B(x,t)∩B(0,N)

|F(y, t)|2 dw(y) dt

tw(B(y, t))

) p
2

v(x)dw(x)

) 1
p

(4.24)

. N
1
2

(
[w]Ar

(2N2)nr
)1/2

w(B(0,N))−
1
2 vw(B(0, 2N))

1
p ‖F‖L2(Rn+1

+ , dwdt) < ∞.

We claim that it is enough to prove that there exist α > 1 and c, cw,v > 0 such that for all

0 < γ < 1 and 0 < λ < ∞, we have

vw
({

x ∈ Rn : AwF(x) > 2λ,Cw,p0
F(x) ≤ γλ

})
≤ cγcw,v vw

({
x ∈ Rn : Aα

wF(x) > λ
})
.(4.25)

Assuming this momentarily, it follows that

vw
({

x ∈ Rn : AwF(x) > 2λ
})

≤ vw
({

x ∈ Rn : AwF(x) > 2λ,Cw,p0
F(x) ≤ γλ

})
+ vw

({
x ∈ Rn : Cw,p0

F(x) > γλ
})

≤ cγcw,v vw
({

x ∈ Rn : Aα
wF(x) > λ

})
+ vw

({
x ∈ Rn : Cw,p0

F(x) > γλ
})
.

This easily gives

‖AwF‖pLp(vdw) ≤ Cγcw,v
∥∥Aα

wF
∥∥

Lp(vdw)
+Cγ,p

∥∥Cw,p0
F
∥∥p

Lp(vdw)
.

Note that, from Proposition 4.9 we know that ‖Aα
wF‖Lp(vdw) ≤ c(α, p)‖AwF‖Lp(vdw). Then, choosing

γ small enough so that Cγcw,v c(α, p) < 1 and from the fact that ‖AwF‖Lp(vdw) < ∞, we conclude

that

‖AwF‖Lp(vdw) .

∥∥Cw,p0
F
∥∥

Lp(vdw)
.

Therefore, in order to complete the proof it just remains to show (4.25). We argue as in [11].

Consider Oλ := {x ∈ Rn : Aα
wF(x) > λ}, and note that (4.10) and (4.24) yield that vw(Oλ) < ∞,

for all λ > 0 and as before Oλ ( R
n. Without loss of generality we can also suppose that Oλ , ∅

(otherwise both terms in (4.25) vanish, since Aα
wF ≥ AwF for α > 1, and then the claim is trivial).

Note finally that Oλ is open (see for instance [28, Proposition 3.2]). We can then take a Whitney

decomposition of Oλ (cf. [29, Chapter VI]): there exists a family of closed cubes {Q j} j∈N with

disjoint interiors satisfying (4.19). In particular, for each j ∈ N we can pick x j ∈ Rn \ Oλ such that

d(x j,Q j) ≤ 4diam(Q j). Furthermore, note again that Aα
wF ≥ AwF for α > 1. Then

vw
({

x ∈ Rn : AwF(x) > 2λ,Cw,p0
F(x) ≤ γλ

})

= vw
({

x ∈ Oλ : AwF(x) > 2λ,Cw,p0
F(x) ≤ γλ

})

=
∑

j∈N
vw
({

x ∈ Q j : AwF(x) > 2λ,Cw,p0
F(x) ≤ γλ

})
.
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Thus, to show (4.25), it is enough to prove, for each j ∈ N,

vw
({

x ∈ Q j : AwF(x) > 2λ,Cw,p0
F(x) ≤ γλ

})
≤ cγcw,v vw(Q j).

Finally note that since v ∈ A∞(w), (cf. (2.4)), the above inequality follows at once if we show, for

each j ∈ N,

w
({

x ∈ Q j : AwF(x) > 2λ,Cw,p0
F(x) ≤ γλ

})
≤ cγp0 w(Q j).(4.26)

Then, let us fix j ∈ N and obtain (4.26). There is nothing to prove if the set on its left-hand

side is empty. Thus, we assume that there exists x̄ j ∈
{

x ∈ Q j : AwF(x) > 2λ,Cw,p0
F(x) ≤ γλ

}
.

Let B j be the ball such that Q j ⊂ B j with radius rB j
= diam(Q j)/2. Then, d(x j,Q j) ≤ 8rB j

and

Q j ⊂ B(x j, 10rB j
).

We now write

F(x, t) = F1, j(x, t) + F2, j(x, t) := F(x, t) 1[rB j
,∞)(t) + F(x, t) 1(0,rB j

)(t).

Then, AwF(x) ≤ AwF1, j(x) + AwF2, j(x). Now, for t > rB j
, x ∈ Q j , and α ≥ 11, we have that

B(x, t) ⊂ B(x j, αt). Hence,

(4.27) AwF1, j(x)2 =

∫ ∞

rB j

∫

|x−y|<t

|F(y, t)|2 dw(y) dt

tw(B(y, t))

≤
∫ ∞

0

∫

|x j−y|<αt

|F(y, t)|2 dw(y) dt

tw(B(y, t))
= Aα

wF(x j)
2 ≤ λ2,

where the last inequality holds since x j ∈ Rn \ Oλ. On the other hand, by our choice of x̄ j ∈ Q j ⊂
B j ⊂ 2B j, it follows that

(4.28)
1

w(2B j)

∫

2B j

|AwF2, j(x)|p0 dw(x)

=
1

w(2B j)

∫

2B j

(∫ 2rB j

0

∫

B(x,t)

|F(y, t)|2 dw(y) dt

tw(B(y, t))

) p0
2

dw(x) ≤ Cw,p0
F(x̄ j)

p0 ≤ (γλ)p0 .

Using (4.27), Chebychev’s inequality, and (4.28) we conclude (4.26):

w({x ∈ Q j : AwF(x) > 2λ,Cw,p0
F(x) ≤ γλ}) ≤ w({x ∈ Q j : AwF2, j(x) > λ})

≤ 1

λp0

∫

Q j

|AwF2, j(x)|p0 dw(x) ≤ γp0 w(2B j) ≤ cγp0 w(Q j).

This completes the proof of Step 1.

Step 2: Take F ∈ L2
loc(Rn+1

+ , dwdt) and define, for every N > 1, FN := F1KN
. Then, since

FN ∈ L2(Rn+1
+ , dwdt) and supp FN ⊂ KN , we can apply Step 1 and obtain that

‖AwFN‖Lp(vdw) . ‖Cw,p0
FN‖Lp(vdw) ≤ ‖Cw,p0

F‖Lp(vdw),

where the implicit constant is uniform in N. Finally since |FN | ր |F| in Rn+1
+ (that is, |FN | is an

increasing sequence which converges to |F|), the monotone convergence theorem yields the desired

estimate. This finishes the proof of (a).

We next turn to the proof of (b). For every x0 ∈ Rn and any ball B ⊂ Rn such that x0 ∈ B, we

have

(
−
∫

B

(∫ rB

0

∫

B(x,t)

|F(y, t)|2 dw(y) dt

tw(B(y, t))

) p0
2

dw(x)

) 1
p0

≤
(
−
∫

B

|AwF(x)|p0 dw(x)

) 1
p0

≤ Mw
p0

(AwF)(x0),
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where for any function h, Mw
p0

h(x) := Mw
(
|h|p0

)
(x)

1
p0 and Mw is defined in (2.6). Taking the

supremum over all balls containing x0, we conclude that Cw,p0
F(x0) ≤ Mw

p0
(AwF)(x0). Moreover,

since p > p0 and v ∈ A p
p0

(w), it follows from Remark 2.5 thatMw
p0

is bounded on Lp(vdw). Thus

we conclude that

‖Cw,p0
F‖Lp(vdw) ≤ ‖Mw

p0
(AwF)‖Lp(vdw) . ‖AwF‖Lp(vdw).

This completes the proof. �

5. Proofs of the main results

In this section we prove Theorems 3.1–3.5. To this aim we first establish in Section 5.1 the

boundedness of GLw

H and SLw

H on Lp(w). In Section 5.2 we study the boundedness of GLw

H on Lp(vdw)

with the help of the operator Cw,p introduced in (4.21). This and Theorem 3.3 easily yield the

desired estimates in Theorem 3.1. In Section 5.3 we see that Theorem 3.2 follows at once from

Theorems 3.1 and 3.5. Finally the proofs of Theorems 3.3 and 3.5 are given in Sections 5.4 and 5.5,

respectively. We note that we improve some of the results in [10, 30] by considering wider families

of conical square functions, allowing estimates on Lp(vdw) (in place of on Lp(w)) and also enlarging

considerably the ranges of the estimates. For instance, [10, 30] establish that SLw

H is bounded on

Lp(w) for p ∈ ( 2n
n+1

, 2n
n−1

). Here we obtain that it is bounded on Lp(vdw) for all p−(Lw) < p < ∞
and every v ∈ A p

p−(Lw)
(w). Note that, in particular, we can take v ≡ 1 and in that case we get

boundedness in the range (p−(Lw),∞) which is clearly bigger as p−(Lw) < 2n
n+1

< 2n
n−1

< ∞. We

finally observe that it was shown in [5] that the ranges for the boundedness of some conical square

functions associated with the heat-semigroup are sharp, hence our ranges in that case are also sharp.

In what follows, unless otherwise specified, Lw is a degenerate elliptic operator as in (2.10) with

fixed w ∈ A2. In the context of Theorems 3.1 and 3.2, the considered conical square functions are

sublinear operators a priori defined in L2(w). When we say that any of them is bounded on Lp(vdw)

we mean that it satisfies estimates on Lp(vdw) for any function in L∞c (Rn) (or in L2(w) ∩ Lp(vdw))

where L∞c (Rn) stands for the space of essentially bounded functions with compact support. It is

standard to see that since L∞c (Rn) in dense in Lp(vdw), one can uniquely extend the conical square

function to a bounded operator on Lp(vdw). We will skip this standard argument below.

5.1. Boundedness of GLw

H and SLw

H on Lp(w). We recall that GLw

H = G
Lw

0,H (cf. (2.18)) and SLw

H =

SLw

1,H (cf. (2.16)).

Proposition 5.1. The conical square functions GLw

H and SLw

H are bounded on Lp(w) for all p−(Lw) <
p < ∞.

Proof. Note first that it is trivial to see that SLw

H f ≤ 1
2
GLw

H f , hence it is enough to establish the Lp(w)

boundedness for GLw

H . We split the proof into three cases: p = 2, 2 < p < ∞, and p−(Lw) < p < 2.

Case 1: p = 2. Recall that the vertical square function

g
Lw

H f (y) :=

(∫ ∞

0

∣∣∣t∇y,te
−t2Lw f (y)

∣∣∣
2 dt

t

) 1
2

is bounded on L2(w) (see [14]). Then, applying Fubini’s theorem, it follows that, for every f ∈
L2(w),

‖GLw

H f ‖L2(w) =

(∫

Rn

∫ ∞

0

∫

B(x,t)

∣∣∣t∇y,te
−t2Lw f (y)

∣∣∣
2 dw(y) dt

tw(B(y, t))
dw(x)

) 1
2
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=

(∫

Rn

∫ ∞

0

∣∣∣t∇y,te
−t2 Lw f (y)

∣∣∣
2
∫

B(y,t)

dw(x)
dw(y) dt

tw(B(y, t))

) 1
2

=

∥∥∥g
Lw

H f

∥∥∥
L2(w)

. ‖ f ‖L2(w).

Case 2: p > 2. Fix f ∈ L∞c (Rn) and let F(y, t) := t∇y,te
−t2Lw f (y) so that AwF = GLw

H f (recall the

definition ofAw in (4.8)). Moreover, for every x0 ∈ Rn, denote

C̃w f (x0) := CwF(x0) = sup
B∋x0

(
1

w(B)

∫ rB

0

∫

B

|t∇y,te
−t2Lw f (y)|2 dw(y) dt

t

) 1
2

.

Then, Proposition 4.23, part (a), for v ≡ 1, and (4.22) imply that
∥∥∥GLw

H f

∥∥∥
Lp(w)

= ‖AwF‖Lp(w) .

∥∥Cw,2F
∥∥

Lp(w)
≈ ‖CwF‖Lp(w) = ‖C̃w f ‖Lp(w).

Consequently, it suffices to prove that

‖C̃w f ‖Lp(w) . ‖Mw
2 f ‖Lp(w),(5.2)

whereMw
2 f := (Mw| f |2)

1
2 , sinceMw

2 is bounded on Lp(w) for p > 2 (see Remark 2.5).

In order to prove (5.2), take B a ball in Rn with radius rB and split f into its local and its global

part: f = floc+ fglob := f 14B+ f 1Rn\4B. Then, applying the boundedness of g
Lw

H on L2(w), we obtain

(5.3)

(
1

w(B)

∫

B

∫ rB

0

|t∇y,te
−t2Lw floc(y)|2 dt dw(y)

t

)1/2

≤
(

1

w(B)

∫

Rn

|gLw

H floc(y)|2dw(y)

)1/2

.

(
1

w(B)

∫

Rn

| floc(y)|2dw(y)

)1/2

.

(
−
∫

4B

| f (y)|2dw(y)

)1/2

. inf
x∈B
Mw

2 f (x).

As for the global part, since by Lemma 4.7 we have that
√

t∇ye−tLw , tLwe−tLw ∈ O(L2(w) − L2(w)),

then
(

1

w(B)

∫

B

∫ rB

0

|t∇y,te
−t2Lw fglob(y)|2 dt dw(y)

t

)1/2

(5.4)

.

∑

j≥2

(∫ rB

0

−
∫

B

|t∇y,te
−t2Lw( f 1C j(B))(y)|2 dw(y)

dt

t

)1/2

.

∑

j≥2

2 jθ1

(∫ rB

0

Υ

(
2 jrB

t

)2θ2

e
−

c4 j r2
B

t2 −
∫

2 j+1B

| f (y)|2dw(y)
dt

t

)1/2

.

∑

j≥2

2 jθ1

(∫ rB

0

(
2 jrB

t

)2θ2

e
−

c4 j r2
B

t2
dt

t

)1/2

inf
x∈B
Mw

2 f (x)

. inf
x∈B
Mw

2 f (x).

Hence by (5.3) and (5.4), we conclude that, for every x0 ∈ Rn and every ball B ⊂ Rn such that

x0 ∈ B,
(

1

w(B)

∫ rB

0

∫

B

|t∇y,te
−t2Lw f (y)|2 dw(y) dt

t

)1/2

.Mw
2 f (x0).

Now taking the supremum over all balls B ∋ x0, we have that C̃w f (x0) .Mw
2 f (x0) for all x0 ∈ Rn

and hence (5.2) follows.

Case 3: p−(Lw) < p < 2. Since GLw

H is bounded on Lq(w) for 2 ≤ q < ∞, by the Marcinkiewicz

interpolation theorem, it is enough to prove that GLw

H maps continuously Lp(w) into Lp,∞(w) for all
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p−(Lw) < p < 2. That is, we wish to show that for all λ > 0 and f ∈ L∞c (Rn),

(5.5) w

({
x ∈ Rn : GLw

H f (x) > λ
})
.

1

λp

∫

Rn

| f (x)|pdw(x).

To this end, fix p−(Lw) < p < 2, f ∈ L∞c (Rn), and λ > 0. Here we need to adapt the argument

in [5, p. 5480] and proceed as in [1, p. 61] (notice that, as it was already observed in the latter,

[1, Theorem 1.1] does not apply due to the nature of the conical square function). For starters we

need a Calderón-Zygmund decomposition for f adapted to the Lp(w) norm. This is quite standard,

but we need some extra features, hence we sketch the argument. First, using the notation in (2.6)

consider the level set Eλ = {x ∈ Rn : Mw(| f |p)(x)1/p > λ}. Since this is clearly open, we can

dyadically divide the standard Whitney cubes, as constructed in [29, Chapter VI], to find a pairwise

disjoint family of dyadic cubes {Qi}i∈N such that Eλ = ∪i∈NQi; the family {4Bi}i∈N has bounded

overlap, where Bi = B(xQi
,
√

nℓ(Qi)); and B∗i ∩ (Rn \ Eλ) , ∅ where B∗i = CnBi with Cn > 8 a large

enough constant depending only n. We can then write f = g +
∑∞

i=1 bi with

(5.6) g := f 1Rn\Eλ +
∞∑

i=1

(
−
∫

Qi

f (x) dw(x)

)
1Qi

and bi :=

(
f − −
∫

Qi

f (x) dw(x)

)
1Qi

.

We claim that the following properties hold:

(5.7) ‖g‖L∞(w) ≤ Cλ,

(5.8) supp bi ⊂ Qi ⊂ Bi and

∫

Bi

|bi(x)|pdw(x) ≤ Cλpw(Bi),

(5.9)

∞∑

i=1

w(Bi) ≤
C

λp

∫

Rn

| f (x)|pdw(x),

(5.10)

∞∑

i=1

14Bi
≤ N,

where C and N depend only on the dimension, p and w. To show (5.7) we combine Lebesgue’s

differentiation theorem for the doubling measure w and the fact that

(5.11)

∣∣∣∣−
∫

Qi

f (x) dw(x)

∣∣∣∣ .
(
−
∫

B∗i

| f (x)|p dw(x)

) 1
p

≤ inf
B∗i
Mw(| f |p)

1
p ≤ λ,

where the last estimate uses that B∗i ∩ (Rn \ Eλ) , ∅. Analogously,

(
−
∫

Bi

|bi(x)|p dw(x)

) 1
p

.

(
−
∫

Bi

| f (x)|p dw(x)

) 1
p

.

(
−
∫

B∗i

| f (x)|p dw(x)

) 1
p

≤ λ,

and this gives (5.8). To obtain (5.9) we use that w is a doubling measure (cf. (2.2)), that the cubes

{Qi}i are pairwise disjoint, and the weak-type (1, 1) inequality forMw:

∞∑

i=1

w(Bi) .

∞∑

i=1

w(Qi) = w(Eλ) .
1

λp

∫

Rn

| f (x)|pdw(x).

Finally (5.10) follows from the construction of the Whitney cubes.

Next, in order to justify the following computations we show that g and bi belong to L2(w). Note

first that by (5.11) and the weak-type (1, 1) inequality forMw we obtain

‖g‖L2(w) ≤ ‖ f ‖L2(w) + λw(Eλ)
1
2 ≤ ‖ f ‖L2(w) + λ

1− p
2 ‖ f ‖

p
2

Lp(w) < ∞,
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since f ∈ L∞c (Rn). Analogously,

‖bi‖L2(w) ≤ ‖ f ‖L2(w) + λw(Qi)
1
2 < ∞.

To continue, for each i ∈ N, denote by ri the radius of Bi and consider the operator Ari
=

I − (I − e−r2
i Lw)M , where M ∈ N will be determined later. Then,

GLw

H f ≤ GLw

H g + GLw

H

( ∞∑

i=1

Ari
bi

)
+ GLw

H

( ∞∑

i=1

(
I − e−r2

i Lw

)M

bi

)
.

Therefore, for all λ > 0,

w
({

x ∈ Rn : GLw

H f (x) > λ
})
≤ w

({
x ∈ Rn : GLw

H g(x) >
λ

3

})

+ w

({
x ∈ Rn : GLw

H

( ∞∑

i=1

Ari
bi

)
(x) >

λ

3

})

+ w

({
x ∈ Rn : GLw

H

( ∞∑

i=1

(
I − e−r2

i Lw

)M

bi

)
(x) >

λ

3

})

=: I + II + III.

We estimate each term in turn. Using the L2(w) boundedness of GLw

H and properties (5.6)−(5.9),

it follows that

I .
1

λ2

∫

Rn

|g(x)|2dw(x) .
1

λp

∫

Rn

|g(x)|pdw(x) .
1

λp

∫

Rn

| f (x)|pdw(x).

To estimate term II, we take 0 ≤ ψ ∈ L2(w) with ‖ψ‖L2(w) = 1, and obtain that

∫

Rn

∣∣∣∣
∞∑

i=1

Ari
bi

∣∣∣∣ψdw ≤
∞∑

i=1

∞∑

j=1

w(2 j+1Bi)

(
−
∫

C j(Bi)

|Ari
bi|2dw

) 1
2(
−
∫

2 j+1Bi

|ψ|2dw

) 1
2

.

Besides, observe that Ari
=
∑M

k=1 ck,Me−r2
i kLw satisfies O(Lp(w) − L2(w)) by Lemma 4.7. This and

properties (5.8)−(5.10) yield

∫

Rn

∣∣∣∣
∞∑

i=1

Ari
bi

∣∣∣∣ψdw .

∞∑

i=1

∞∑

j=1

2 jθ1Υ
(
2 j
)θ2

e−c4 j

w(2 j+1Bi)

(
−
∫

Bi

|bi|pdw

) 1
p

inf
Bi

Mw
2ψ

. λ

∞∑

i=1

∞∑

j=1

e−c4 j

∫

Bi

Mw
2ψ(y)dw(y)

. λ

∫

∪iBi

Mw
2ψ(y)dw(y)

. λw(∪iBi)
1/2
∥∥ψ2

∥∥ 1
2

L1(w)
. λ1−p/2‖ f ‖

p
2

Lp(w),

where in the last step above we have used Kolmogorov’s inequality along with the fact thatMw is

of weak type (1, 1) (with respect to w). Taking the supremum over all ψ as above and using again

that GLw

H is bounded on L2(w) we obtain

II .
1

λ2

∥∥∥∥∥

∞∑

i=1

Ari
bi

∥∥∥∥∥

2

L2(w)

.
1

λp
‖ f ‖pLp(w).
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Next we estimate III. Applying Chebychev’s inequality and (5.9), we have that

III . w

( ∞⋃

i=1

5Bi

)
+ w

({
x ∈ Rn \

∞⋃

i=1

5Bi : GLw

H

( ∞∑

i=1

(
I − e−r2

i Lw

)M

bi

)
(x) >

λ

3

})
(5.12)

.

∞∑

i=1

w(Bi) +
1

λ2

∫

Rn\
⋃∞

i=1 5Bi

∣∣∣∣∣G
Lw

H

( ∞∑

i=1

(
I − e−r2

i Lw

)M

bi

)
(x)

∣∣∣∣∣

2

dw(x)

.
1

λp

∫

Rn

| f (x)|pdw(x) +
1

λ2

∫

Rn\
⋃∞

i=1 5Bi

∣∣∣∣∣G
Lw

H

( ∞∑

i=1

(
I − e−r2

i Lw

)M

bi

)
(x)

∣∣∣∣∣

2

dw(x).

It remains to estimate the last integral above. Denote hi = (I − e−r2
i Lw)Mbi. Then, applying Fubini’s

theorem,

∫

Rn\
⋃∞

i=1 5Bi

∣∣∣∣∣G
Lw

H

( ∞∑

i=1

hi

)
(x)

∣∣∣∣∣

2

dw(x)(5.13)

.

∫ ∞

0

∫

Rn

∣∣∣∣∣

∞∑

i=1

14Bi
(y)t∇y,te

−t2Lwhi(y)

∣∣∣∣∣

2

w

(
B(y, t) \

∞⋃

i=1

5Bi

)
dw(y) dt

tw(B(y, t))

+

∫ ∞

0

∫

Rn

∣∣∣∣∣

∞∑

i=1

1Rn\4Bi
(y)t∇y,te

−t2Lwhi(y)

∣∣∣∣∣

2

w

(
B(y, t) \

∞⋃

i=1

5Bi

)
dw(y) dt

tw(B(y, t))

=: Iloc + Iglob.

Recall that the collection {4Bi}i∈N has finite overlap. Besides, given y ∈ 4Bi, if there exists

x ∈ B(y, t) \
⋃

i 5Bi, then t > ri. Hence

Iloc .

∞∑

i=1

∫ ∞

ri

∫

4Bi

∣∣∣t∇y,te
−t2Lwhi(y)

∣∣∣
2

w

(
B(y, t) \

∞⋃

i=1

5Bi

)
dw(y) dt

tw(B(y, t))

.

∞∑

i=1

∫ ∞

ri

∫

4Bi

∣∣∣∣t∇y,te
−t2Lwhi(y)

∣∣∣∣
2

dw(y) dt

t
.

Since
√

t∇ye−t Lw , t Lw e−t Lw belong to O(Lp(w) − L2(w)), by Lemma 4.5 , we can find γ1 ≤ γ2 so

that (4.6) holds simultaneously for both (with α = γ1 and β = γ2). This, the Lp(w) boundedness of

the heat semigroup and (5.8) allow us to obtain that there is γ1 > 0 such that for every t > ri,

(
−
∫

4Bi

∣∣∣t∇y,te
−t2Lw(hi14Bi

)(y)

∣∣∣
2

dw(y)

)1/2

.

( ri

t

)γ1

(
−
∫

4Bi

|hi(y)|pdw(y)

) 1
p

.

(ri

t

)γ1

(
−
∫

Bi

|bi(y)|pdw(y)

) 1
p

.

(ri

t

)γ1

λ.

Using a similar argument and expanding (I − e−r2
i Lw)M it follows that

(
−
∫

4Bi

∣∣∣t∇y,te
−t2 Lw(hi1Rn\4Bi

)(y)

∣∣∣
2

dw(y)

) 1
2

.

∑

j≥2

(
w(2 j+1Bi)

w(4Bi)
−
∫

2 j+1Bi

∣∣∣t∇y,te
−t2Lw(hi1C j(Bi))(y)

∣∣∣
2

dw(y)

) 1
2

.

∑

j≥2

2n j

(
−
∫

2 j+1Bi

∣∣∣t∇y,te
−t2Lw((hi1C j(Bi))12 j+1Bi

)(y)

∣∣∣
2

dw(y)

) 1
2
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.

∑

j≥2

2 j(n+γ2)
( ri

t

)γ1

(
−
∫

C j(Bi)

|hi(y)|pdw(y)

) 1
p

.

∑

j≥2

2 j(n+γ2)
( ri

t

)γ1
M∑

k=1

(
−
∫

C j(Bi)

|e−kr2
i Lwbi(y)|pdw(y)

) 1
p

.

∑

j≥2

2 j(n+γ2+θ1+θ2)
( ri

t

)γ1

e−c4 j

(
−
∫

Bi

|bi(y)|pdw(y)

) 1
p

.

(ri

t

)γ1

λ,

where in the fourth inequality we have used that the term k = 0 vanishes since bi is supported in Bi

and the integral takes place in C j(Bi) with j ≥ 2. Therefore,

(5.14) Iloc . λ
2

∞∑

i=1

w(4Bi)

∫ ∞

ri

(ri

t

)2γ1 dt

t
. λ2

∞∑

i=1

w(Bi) . λ
2−p

∫

Rn

| f (x)|pdw(x).

We turn now to estimating Iglob. We claim that for every i ≥ 1 and j ≥ 2, if M is chosen large

enough,

(5.15) Ii j :=

(∫ ∞

0

−
∫

C j(Bi)

∣∣t∇y,te
−t2 Lwhi(y)

∣∣2dw(y)
dt

t

) 1
2

. 2− j(2M−θ1)λ.

Assuming this momentarily, take 0 ≤ Ψ ∈ L2(Rn+1
+ , dwdt

t
) with ‖Ψ‖L2(Rn+1

+ , dwdt
t

) = 1 and write Ψ̃(y) :=∫ ∞
0 Ψ(y, t)2 dt

t
. Then, taking M > n + θ1/2, using Kolmogorov’s inequality and thatMw is of weak

type-(1, 1) we conclude that
∫ ∞

0

∫

Rn

∣∣∣∣
∞∑

i=1

1Rn\4Bi
(y)t∇y,te

−t2Lwhi(y)

∣∣∣∣Ψ(y, t)
dw(y) dt

t

≤
∞∑

i=1

∑

j≥2

w(2 j+1Bi)Ii j

(∫ ∞

0

−
∫

C j(Bi)

Ψ(y, t)2 dw(y) dt

t

) 1
2

≤ λ
∑

j≥1

2 j(2n−2M+θ1 )

∞∑

i=1

w(Bi) inf
x∈Bi

(
MwΨ̃(x)

) 1
2

. λ

∫

∪iBi

(
MwΨ̃(x)

) 1
2

dw(x)

. λw
(⋃

i

Bi

) 1
2
. λ1− p

2 ‖ f ‖
p
2

Lp(w),

where last estimate follows from (5.9). Taking the sup over all functions Ψ as above yields

(
Iglob

) 1
2 ≤

(∫ ∞

0

∫

Rn

∣∣∣∣
∞∑

i=1

1Rn\4Bi
(y)t∇y,te

−t2 Lwhi(y)

∣∣∣∣
2

dw(y) dt

t

) 1
2

. λ1− p
2 ‖ f ‖

p
2

Lp(w).

Plugging this and (5.14) into (5.13) and the latter into (5.12), we see that III . λ−p ‖ f ‖pLp(w). This

eventually finishes the proof of (5.5).

To complete the proof of Case 3 we need to show (5.15). Note first that

(
Ii j

)2
.

∫ ∞

0

−
∫

C j(Bi)

∣∣∣t∇ye−t2Lwhi(y)

∣∣∣
2

dw(y)
dt

t
+

∫ ∞

0

−
∫

C j(Bi)

∣∣∣t2Lwe−t2Lwhi(y)

∣∣∣
2

dw(y)
dt

t
=: Ii j,1 + Ii j,2.
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We estimate the first term Ii j,1 by using functional calculus, where the notation is taken from [1] and

[8, Section 7]. As usual write ϑ ∈ [0, π/2) for the sup of |arg(〈L f , f 〉L2(w))| over all f in the domain

of Lw. Let 0 < ϑ < θ < ν < µ < π/2 and note that, for a fixed t > 0, φ(z, t) := e−t2z(1 − e−r2
i z)M is

holomorphic in the open sector Σµ = {z ∈ C\{0} : |arg(z)| < µ} and satisfies |φ(z, t)| . |z|M (1+|z|)−2M

(with implicit constant depending on t > 0, ri, µ, and M) for every z ∈ Σµ. Hence we can write

φ(Lw, t) =

∫

Γ

e−zLwη(z, t)dz, where η(z, t) =

∫

γ

eζzφ(ζ, t)dζ.

Here Γ = ∂Σ π
2
−θ with positive orientation (although orientation is irrelevant for our computations)

and γ = R+ei sign(Im(z)) ν. It is not difficult to see that for every z ∈ Γ,

(5.16) |η(z, t)| . r2M
i

(|z| + t2)M+1
.

where the implicit constant is independent of t and ri. This, the fact that
√

z∇ye−zLw ∈ O(Lp(w) −
L2(w)) (see [14, Corollary 7.4]), and (5.8) imply

(
−
∫

C j(Bi)

∣∣t∇yφ(Lw, t)bi

∣∣2dw

) 1
2

.

∫

Γ

(
−
∫

C j(Bi)

∣∣√z∇ye−zLwbi

∣∣2dw

) 1
2

tr2M
i

|z| 12 (|z| + t2)M+1
|dz|

. 2 jθ1

(
−
∫

Bi

|bi|pdw

) 1
p
∫ ∞

0

Υ

(
2 jri√

s

)θ2

e−
c4 j r2

i
s t s1/2 r2M

i

(s + t2)M+1

ds

s

. 2 jθ1λ

∫ ∞

0

Υ

(
2 jri√

s

)θ2

e−
c4 j r2

i
s t s1/2 r2M

i

(s + t2)M+1

ds

s
.

Hence, after changing the variables s and t into
4 jr2

i

s2 and 2 jrit respectively,

Ii j,1 . 22 jθ1λ2

∫ ∞

0

(∫ ∞

0

Υ

(
2 jri√

s

)θ2

e−
c4 j r2

i
s t s1/2 r2M

i

(s + t2)M+1

ds

s

)2
dt

t

≈ 2−2 j(2M−θ1)λ2

∫ ∞

0

(∫ ∞

0

Υ(s)θ2e−cs2 t

s

1
(

1
s2 + t2

)M+1

ds

s

)2
dt

t
=: 2−2 j(2M−θ1 )λ2

∫ ∞

0

Θ(t)2 dt

t
.

Choosing M so that 2M + 1 − θ2 > 0, if t ≥ 1,

Θ(t) ≤
∫ 1

t

0

1

sθ2

t

s
s2(M+1) ds

s
+

∫ 1

1
t

1

sθ2

t

s

1

t2M+2

ds

s
+

∫ ∞

1

sθ2e−cs2 t

s

1

t2M+2

ds

s
.

1

t2M−θ2
.

Similarly, for 0 < t < 1,

Θ(t) ≤
∫ 1

0

1

sθ2

t

s
s2(M+1) ds

s
+

∫ ∞

1

sθ2e−cs2 t

s
s2M+2 ds

s
. t.

Consequently, if 2M − θ2 > 0,

Ii j,1 . 2−2 j(2M−θ1)λ2

(∫ 1

0

t2 dt

t
+

∫ ∞

1

1

t4M−2θ2

dt

t

)
. 2−2 j(2M−θ1)λ2.

This and an analogous estimate for Ii j,2 complete the proof of (5.15). In fact, the formal argument

for Ii j,2 is the same as the one for Ii j,1, but taking φ(z, t) := t2ze−t2z(1 − e−r2
i z)M . Consequently, we

have that |η(z, t)| . t2r2M
i

(|z|+t2)M+2 in place of (5.16), and we use e−zLw ∈ O(Lp(w) − L2(w)) instead of
√

z∇ye−zLw ∈ O(Lp(w) − L2(w)). We leave the details to the interested reader.

�
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5.2. Proof of Theorem 3.1. Assuming momentarily that GLw

H is bounded on Lp(vdw). Then, (3.4)

and Theorem 3.3 part (a) take care of the boundedness of SLw

m,H, G
Lw

m,H, GLw

m,H when m ≥ 1, and

also that of G
Lw

H . Thus we only need to consider the boundedness of GLw

H , which will follow from

Proposition 4.23, part (a) and the following auxiliary result:

Proposition 5.17. If we set

C̃Lw
p0

f (x) := sup
B∋x

(
1

w(B)

∫

B

(∫ rB

0

∫

B(x,t)

∣∣∣t∇y,te
−t2Lw f (y)

∣∣∣
2 dw(y) dt

tw(B(y, t))

) p0
2

dw(x)

) 1
p0

,

then, for every p−(Lw) < p0 ≤ 2 and f ∈ L∞c (Rn) there holds

(5.18) C̃Lw
p0

f (x) .Mw
p0

f (x), ∀ x ∈ Rn.

Eventually, GLw

H f is bounded on Lp(vdw) for every v ∈ A∞(w) and p ∈ Ww
v (p−(Lw),∞).

Assuming this result momentarily, Theorem 3.1 follows immediately in view of Theorem 3.3.

Proof of Proposition 5.17. Fix p−(Lw) < p0 ≤ 2 and x0 ∈ Rn. Take an arbitrary ball B ∋ x0 with

radius rB and split f ∈ L∞c (Rn) into its local and its global part: f = floc + fglob := f 18B + f 1Rn\8B.

In order to estimate floc, note that by Proposition 5.1, GLw

H is bounded on Lp0 (w). Then

(
1

w(B)

∫

B

(∫ rB

0

∫

B(x,t)

∣∣∣t∇y,te
−t2Lw floc(y)

∣∣∣
2 dw(y) dt

tw(B(y, t))

) p0
2

dw(x)

) 1
p0

≤
(

1

w(B)

∫

Rn

GLw

H floc(x)p0 dw(x)

) 1
p0

.

(
1

w(B)

∫

Rn

| floc(x)|p0 dw(x)

) 1
p0

.

(
1

w(8B)

∫

8B

| f (x)|p0 dw(x)

) 1
p0

.Mw
p0

f (x0).

As for fglob, note first that by Lemma 4.7, {
√

t∇ye−tLw}t>0, {tLwe−tLw}t>0 ∈ O(Lp0 (w)→ L2(w)). Use

this, Hölder’s inequality for 2/p0 and argue as in the proof of (4.22). Then,

(
1

w(B)

∫

B

(∫ rB

0

∫

B(x,t)

∣∣∣t∇y,te
−t2 Lw fglob(y)

∣∣∣
2 dw(y) dt

tw(B(y, t))

) p0
2

dw(x)

) 1
p0

.

∑

j≥2

(∫ rB

0

−
∫

2B

∣∣∣t∇y,te
−t2 Lw( f 1C j(2B))(y)

∣∣∣
2 dw(y) dt

t

) 1
2

.

∑

j≥2

(∫ rB

0

(
−
∫

2 j+2B

| f (y)|p0 dw(y)

) 2
p0

22 jθ1Υ

(
2 j+1rB

t

)2 θ2

e
−c

4 j r2
B

t2
dt

t

) 1
2

.Mw
p0

f (x0)
∑

j≥2

2 jθ1

(∫ ∞

2 j

s2θ2 e−cs2 ds

s

) 1
2

.Mw
p0

f (x0).

Collecting the estimates obtained for floc and for fglob we can conclude that

(
1

w(B)

∫

B

(∫ rB

0

∫

B(x,t)

∣∣∣t∇y,te
−t2Lw f (y)

∣∣∣
2 dw(y) dt

tw(B(y, t))

) p0
2

dw(x)

) 1
p0

.Mw
p0

f (x0).

Taking the sup over all balls B such that x0 ∈ B, we get (5.18).
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To complete the proof we need to show the boundedness of GLw

H . To this end, take F(y, t) :=

t∇y,te
−t2 Lw f (y), so that GLw

H f (x) = AwF(x) and C̃Lw
p0

f (x) = Cw,p0
F(x). Thus, (5.18) and Proposition

4.23, part (a), imply that for every p−(Lw) < p0 ≤ 2, 0 < p < ∞, v ∈ A∞(w)

(5.19)

∥∥∥GLw

H f

∥∥∥
Lp(vdw)

.

∥∥∥C̃Lw
p0

f

∥∥∥
Lp(vdw)

.

∥∥Mw
p0

f
∥∥

Lp(vdw)
, ∀ f ∈ L∞c (Rn).

Note that the fact that f ∈ L∞c (Rn) guarantees that t∇y,te
−t2 Lw f (y) ∈ L2

loc(Rn+1
+ , dwdt), since t∇y,te

−t2Lw

is bounded on L2(w) uniformly in t.

Next, fix v ∈ A∞(w) and p ∈ Ww
v (p−(Lw),∞). In particular, we can find p0 such that p−(Lw) <

p0 ≤ min{p, 2} (close enough to p−(Lw)) such that v ∈ A p
p0

(w). Therefore, Mw
p0

is bounded on

Lp(vdw). This and (5.19) yield
∥∥∥GLw

H f

∥∥∥
Lp(vdw)

. ‖ f ‖Lp(vdw), ∀ f ∈ L∞c (Rn).

The proof is then complete. �

5.3. Proof of Theorem 3.2. The desired estimates follow very easily from Theorem 3.5 and The-

orem 3.1. To prove (a) we just use Theorem 3.5 part (b) and Theorem 3.1 part (a). To obtain (b),

we only need to invoke Theorem 3.5 parts (a), (c), (d) and Theorem 3.1 (note that Theorem 3.5 part

(c) and Theorem 3.1 part (b) are used for the case K = 0). Details are left to the interested reader.

5.4. Proof of Theorem 3.3. We first note that part (a) is trivial. To prove (b) and (c) we fix

0 < p < ∞ and v ∈ A∞(w). Pick r > max{ p
2
, rv(w)} so that v ∈ Ar(w) and 0 < p < 2r. If |x − y| < t,

then B(x, t) ⊂ B(y, 2t) and B(y, t) ⊂ B(x, 2t). Since w is a doubling measure, one has

w(B(x, t))

w(B(y, t))
≤ w(B(y, 2t))

w(B(y, t))
≤ C and

w(B(y, t))

w(B(x, 2 j+1t))
≤ w(B(x, 2t))

w(B(x, 2 j+1t))
≤ 1, for all j ≥ 0.(5.20)

We now prove (c). Let m ∈ N and note that

(5.21) (t2Lw)m+1e−t2Lw = 2m+1A t2

2

B t2

2
,m
, with At := tLwe−tLw and Bt,m := (tLw)m e−tLw .

Using (5.20), the fact that At ∈ O(L2(w) − L2(w)), and Proposition 4.9, which can be applied by the

choice of r, we obtain

(∫

Rn

(∫ ∞

0

∫

B(x,t)

∣∣∣A t2

2

B t2

2
,m

f (y)

∣∣∣
2 dw(y) dt

tw(B(y, t))

) p
2

v(x)dw(x)

) 1
p

(5.22)

.

∑

j≥1

(∫

Rn

(∫ ∞

0

−
∫

B(x,t)

∣∣∣A t2

2

((
B t2

2
,m

f
)

1C j(B(x,t))

)
(y)

∣∣∣
2 dw(y) dt

t

) p
2

v(x)dw(x)

) 1
p

.

∑

j≥1

2 j(θ1+θ2)e−c4 j

(∫

Rn

(∫ ∞

0

−
∫

B(x,2 j+1t)

∣∣∣B t2

2
,m

f (y)

∣∣∣
2 dw(y) dt

t

) p
2

v(x)dw(x)

) 1
p

.

∑

j≥1

e−c4 j

(∫

Rn

(∫ ∞

0

∫

B(x,2 j+1
√

2t)

∣∣Bt2,m f (y)
∣∣2 dw(y) dt

tw(B(y, t))

) p
2

v(x)dw(x)

) 1
p

.

∑

j≥1

e−c4 j
∥∥∥SLw

m,H f

∥∥∥
Lp(vdw)

.

∥∥∥SLw

m,H f

∥∥∥
Lp(vdw)

,



CONICAL SQUARE FUNCTIONS FOR DEGENERATE ELLIPTIC OPERATORS 27

Note that in the fourth estimate we have changed the variable t into
√

2t and used that w(B(y, t)) ≤
w(B(x, 2 j+3t)) . w(B(x, 2 j+1

√
2t)) whenever y ∈ B(x, 2 j+1

√
2t). Collecting (5.21) and (5.22) we

conclude as desired (c).

We finally prove part (b). Take m ∈ N and note that elementary computations show

GLw

m,H f (y) ≤ G
Lw

m,H f (y) + 2mSLw

m,H f (y) + 2SLw

m+1,H f (y), y ∈ Rn.

Thus (b) will follow from (c) once we control the term involving G
Lw

m,H f . To that end we proceed as

before and observe that

t∇y(t2Lw)me−t2Lw = 2m+ 1
2 A t2

2

B t2

2
,m
, with At :=

√
t∇ye−tLw and Bt,m := (tLw)m e−tLw .

We can now repeat the computations in (5.22), since again At ∈ O(L2(w) − L2(w)), to conclude that
∥∥∥G

Lw

m,H f

∥∥∥
Lp(vdw)

.

∥∥∥SLw

m,H f

∥∥∥
Lp(vdw)

.

This, together with the previous considerations, allows us to complete the proof of (b) and thus that

of Theorem 3.3.

5.5. Proof of Theorem 3.5. Recall that w ∈ A2 has been fixed already. If w ∈ A1 we set r̂ := 1.

Otherwise, let r̂ be so that rw < r̂ < 2 (eventually r̂ will be chosen very close to rw) . Note that in

any scenario we have w ∈ Ar̂.

The proof of part (a) is trivial. We start proving part (b). We need to show that for every K ∈ N
∥∥∥SLw

K,P f

∥∥∥
Lp(vdw)

.

∥∥∥SLw

K,H f

∥∥∥
Lp(vdw)

,(5.23)

for all v ∈ A∞(w) and p ∈ Ww
v (0, (p+(Lw))K,∗

w ), that is, for all 0 < p < (p+(Lw))K,∗
w and v ∈

RH((p+(Lw))K,∗
w /p)′(w). By Theorem A.1 parts (b) and (c) one can see that it suffices to prove such

estimate for some fixed p in the same range and all v in the corresponding reverse Hölder class. In

particular, as (p+(Lw))K,∗
w > 2, we can take p = 2 and hence we need to obtain that

∥∥∥SLw

K,P f

∥∥∥
L2(vdw)

.

∥∥∥SLw

K,H f

∥∥∥
L2(vdw)

, ∀ v ∈ RH((p+(Lw))K,∗
w /2)′(w).(5.24)

Fix then v ∈ RH((p+(Lw))K,∗
w /2)′ (w) (notice that if (p+(Lw))K,∗

w = ∞ the condition on the weight v

becomes v ∈ A∞(w)) and set

Bt,K :=
(
t2Lw

)K
e−t2Lw ,

and recall the subordination formula (2.15). This and Minkowski’s inequality imply

∥∥∥SLw

K,P f

∥∥∥
L2(vdw)

.

(∫

Rn

∫∫

Γ(x)

∣∣∣∣(t
2Lw)K

∫ ∞

0

e−uu
1
2 e−

t2

4u
Lw f (y)

du

u

∣∣∣∣
2

dw(y) dt

tw(B(y, t))
v(x)dw(x)

) 1
2

.

∫ ∞

0

e−uu
1
2

(∫

Rn

∫ ∞

0

∫

B(x,t)

∣∣∣∣(t
2Lw)Ke−

t2

4u
Lw f (y)

∣∣∣∣
2

dw(y) dt

tw(B(y, t))
v(x)dw(x)

) 1
2

du

u

.

∫ 1
4

0

e−uuK+ 1
2

(∫

Rn

∫ ∞

0

∫

B(x,t)

∣∣∣B t

2
√

u
,K f (y)

∣∣∣
2 dw(y) dt

tw(B(y, t))
v(x)dw(x)

) 1
2 du

u

+

∫ ∞
1
4

e−uuK+ 1
2

(∫

Rn

∫ ∞

0

∫

B(x,t)

∣∣∣B t

2
√

u
,K f (y)

∣∣∣
2 dw(y) dt

tw(B(y, t))
v(x)dw(x)

) 1
2 du

u

=: I + II.
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To estimate II we let F(y, t) := Bt,K f (y) and pick r̃ > rv(w) ≥ 1 so that v ∈ Ar̃(w). Hence,

changing the variable t into 2
√

ut, applying the fact that w(B(y, t)) ≤ w(B(y, 2
√

ut)) when u > 1/4,

and Proposition 4.9, we have

II .

∫ ∞
1
4

e−uuK+ 1
2

∥∥∥A2
√

u
w F

∥∥∥
L2(vdw)

du

u
.

∫ ∞
1
4

e−uuK+ 1
2
+ n r̂ r̃

4 ‖AwF‖L2(vdw)

du

u
.

∥∥∥SLw

K,H f

∥∥∥
L2(vdw)

.

In order to estimate I we start by distinguishing two cases. If nrw > (2K+1)p+(Lw), the condition

v ∈ RH((p+(Lw))K,∗
w /2)′(w) implies that 0 < sv(w) < p+(Lw)nrw

2 (nrw−(2K+1)p+(Lw))
. Therefore, it is possible to pick

ε1 > 0 small enough, r̂ ∈ (rw, 2) close enough to rw ( r̂ = 1 if w ∈ A1) and 2 < q̃ < p+(Lw) so that

0 < sv(w) <
q̃ n r̂

2(1 + ε1)(n r̂ − (2K + 1) q̃ )
.

Besides, there also exists ε2 > 0 so that

q̃ <
q̃ n r̂

(1 + ε2)(n r̂ − (2K + 1) q̃ )
.

Take ε0 := min{ε1, ε2} and s :=
q̃ n̂r

2(1+ε0)(n̂r−(2K+1) q̃ )
. Then our choices guarantee that 2 < q̃ < p+(Lw),

q̃
2
≤ s < ∞, 1 ≤ sv(w) < s < ∞, and hence v ∈ RHs′(w). Also,

K +
1

2
+

r̂ n

4s
− r̂ n

2 q̃
= ε0

(
r̂ n

2 q̃
− K − 1

2

)
> ε0

(
rwn

2p+(Lw)
− K − 1

2

)
> 0.(5.25)

In the other case, nrw ≤ (2K + 1)p+(Lw) and then (p+(Lw))K,∗
w = ∞. Recall then that our

assumption on v is simply v ∈ A∞(w). Fix now s > sv(w) so that v ∈ RHs′(w). If w < A1 we pick

r̂ ∈ (rw, 2) (close enough to rw) in such a way that 1 − rw

r̂
< p+(Lw)

2s
, and if w ∈ A1 we just take r̂ = 1.

Let q̃ satisfy max
{

2, 2sp+(Lw)

p+(Lw)+2s
rw
r̂

}
< q̃ < min {p+(Lw), 2s} with the understanding that q̃ = 2s if

p+(Lw) = ∞. All these choices guarantee that 2 < q̃ < p+(Lw),
q̃
2
≤ s < ∞, 1 ≤ sv(w) < s < ∞, and

therefore v ∈ RHs′(w). Moreover, note that from the lower bound for q̃ involving s, we have that if

p+(Lw) < ∞

K +
1

2
+

r̂ n

4s
− r̂ n

2q̃
> K +

1

2
− rw n

2p+(Lw)
≥ 0.

Additionally, if p+(Lw) = ∞, then K + 1
2
+ r̂ n

4s
− r̂ n

2 q̃
= K + 1

2
> 0.

Putting all the possible cases together we have been able to find q̃ and s such that 2 < q̃ < p+(Lw),
q̃
2
≤ s < ∞, v ∈ RHs′(w), and

K +
1

2
+

r̂ n

4s
− r̂ n

2 q̃
> 0.(5.26)

We can now proceed to estimate I. We first apply Hölder’s inequality and (5.20)

I .

∫ 1
4

0

uK+ 1
2

(∫

Rn

∫ ∞

0

(∫

B(x,t)

∣∣∣B t

2
√

u
,K f (y)

∣∣∣
q̃ dw(y)

w(B(y, t))

) 2
q̃ dt

t
v(x)dw(x)

) 1
2

du

u
(5.27)

=:

∫ 1
4

0

uK+ 1
2

(∫

Rn

J(u, x)2 v(x)dw(x)

) 1
2 du

u
.

Besides, note that since 1 < q̃
2
≤ s < ∞, then for α := 2

√
u ∈ (0, 1] and q :=

q̃
2
, we can apply

Proposition A.2 to conclude that
∫

Rn

J(u, x)2v(x)dw(x)(5.28)
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=

∫ ∞

0

∫

Rn



∫

B(x,2
√

u t
2
√

u
)

∣∣∣B t

2
√

u
,K f (y)

∣∣∣
q̃ dw(y)

w

(
B

(
y, 2
√

u t
2
√

u

))




2
q̃

v(x)dw(x)
dt

t

. u
r̂ n
2s
− r̂ n

q̃

∫

Rn

∫ ∞

0



∫

B(x, t
2
√

u
)

∣∣∣B t

2
√

u
,K f (y)

∣∣∣
q̃ dw(y)

w

(
B

(
y, t

2
√

u

))




2
q̃

dt

t
v(x)dw(x)

. u
r̂ n
2s
− r̂ n

q̃

∫

Rn

∫ ∞

0

(∫

B(x,t)

∣∣Bt,K f (y)
∣∣q̃ w(y)dy

w(B(y, t))

) 2
q̃ dt

t
v(x)dw(x)

=: u
r̂ n
2s
− r̂ n

q̃

∫

Rn

T (x)2 v(x)dw(x),

where in the last inequality we have changed the variable t into 2
√

ut. By Lemma 4.7, e−tLw ∈
O(L2(w) − Lq̃(w)). Applying this, (5.20) and Proposition 4.9, we get

(∫

Rn

T (x)2 v(x)dw(x)

) 1
2

.



∫

Rn

∫ ∞

0

(
−
∫

B(x,t)

∣∣∣∣e
− t2

2
Lw B t√

2
,K f (y)

∣∣∣∣
q̃

dw(y)

) 2
q̃

dt

t
v(x)dw(x)




1
2

.

∑

j≥1

2 j(θ1+θ2)e−c4 j

(∫

Rn

∫ ∞

0

−
∫

B(x,2 j+1t)

∣∣∣B t√
2
,K f (y)

∣∣∣
2 dw(y) dt

t
v(x)dw(x)

) 1
2

.

∑

j≥1

e−c4 j

(∫

Rn

∫ ∞

0

∫

B(x,2 j+1
√

2t)

∣∣Bt,K f (x)
∣∣2 dw(y) dt

tw(B(y, t))
v(x)dw(x)

) 1
2

.

∥∥∥SLw

K,H f

∥∥∥
L2(vdw)

.

Notice that in the third estimate we have changed the variable t into
√

2t and used that w(B(y, t)) ≤
w(B(x, 2 j+3t)) . w(B(x, 2 j+1

√
2t)). This, (5.27), and (5.28) yield,

I .

∥∥∥SLw

K,H f

∥∥∥
L2(vdw)

∫ 1
4

0

u
K+ 1

2
+ r̂ n

4s
− r̂ n

2̃q
du

u
.

∥∥∥SLw

K,H f

∥∥∥
L2(vdw)

,

where in the last inequality we have used (5.26). This completes the proof of part (b).

Let us continue by showing parts (c) and (d). We need the following auxiliary result in the spirit

of [5, Lemma 3.5] whose proof is given below:

Lemma 5.29. For every K ∈ N0, f ∈ L2(w) and almost every x ∈ Rn, there holds

GLw

K,P f (x) . K

(∫∫

|x−y|<2t

∣∣∣(t2Lw)Ke−t2Lw f (y)

∣∣∣
2 dw(y) dt

tw(B(y, t))

) 1
2

(5.30)

+

(∫∫

|x−y|<2t

∣∣∣t∇y,t(t
2Lw)Ke−t2 Lw f (y)

∣∣∣
2 dw(y) dt

tw(B(y, t))

) 1
2

+

(∫∫

|x−y|<2t

∣∣∣(t2Lw)K(e−t
√

Lw − e−t2Lw) f (y)

∣∣∣
2 dw(y) dt

tw(B(y, t))

) 1
2

.

Moreover, setting

G
Lw

K,P f (x) :=

(∫∫

|x−y|<2t

∣∣∣
(
t2Lw

)K
(

e−t
√

Lw − e−t2Lw

)
f (y)

∣∣∣
2 dw(y) dt

tw(B(y, t))

) 1
2

, K ∈ N0,



30 LI CHEN, JOSÉ MARÍA MARTELL, AND CRUZ PRISUELOS-ARRIBAS

the following estimate holds: ∥∥∥GLw

K,P f

∥∥∥
Lp(vdw)

.

∥∥∥SLw

K+1,H f

∥∥∥
Lp(vdw)

,(5.31)

for all K ∈ N0, v ∈ A∞(w), and p ∈ Ww
v (0, (p+(Lw))K,∗

w ).

Assuming this lemma momentarily and applying Proposition 4.9 to the first two terms in the

right-hand side of (5.30), we conclude, for all K ∈ N0, v ∈ A∞(w), and p ∈ Ww
v (0, (p+(Lw))K,∗

w ),
∥∥∥GLw

K,P f

∥∥∥
Lp(vdw)

. K

∥∥∥SLw

K,H f

∥∥∥
Lp(vdw)

+

∥∥∥GLw

K,H f

∥∥∥
Lp(vdw)

+

∥∥∥SLw

K+1,H f

∥∥∥
Lp(vdw)

.(5.32)

For K ∈ N, we just apply parts (b) and (c) of Theorem 3.3 and (d) follows at once. For K = 0, we

use part (a) of Theorem 3.3 to obtain
∥∥∥GLw

P f

∥∥∥
Lp(vdw)

.

∥∥∥GLw

H f

∥∥∥
Lp(vdw)

+

∥∥∥SLw

H f

∥∥∥
Lp(vdw)

.

∥∥∥GLw

H f

∥∥∥
Lp(vdw)

,

and this shows part (c).

Proof of Lemma 5.29. For a fixed K ∈ N0, we start proving (5.31). Much as before, it suffices

to obtain (5.31) for p = 2 and for every v ∈ RH((p+(Lw))K,∗
w /2)′(w). Fixing such a weight, by the

subordination formula (2.15) and Minkowski’s inequality, we get
∥∥∥GLw

K,P f

∥∥∥
L2(vdw)

.

∫ ∞

0

e−uu
1
2

(∫

Rn

∫ ∞

0

∫

B(x,2t)

∣∣∣∣(t
2Lw)K

(
e−

t2

4u
Lw − e−t2Lw

)
f (y)

∣∣∣∣
2

dw(y) dt

tw(B(y, t))
v(x)dw(x)

) 1
2

du

u

=:

∫ ∞

0

e−uu
1
2 F(u)

du

u
≤
∫ 1

4

0

u
1
2 F(u)

du

u
+

∫ ∞
1
4

e−uu
1
2 F(u)

du

u
=: I + II.

We start dealing with I. We proceed as in the proof of the corresponding estimate of I for SLw

K,P.

Recall that after considering some cases we ended up finding q̃ and s such that 2 < q̃ < p+(Lw),
q̃
2
≤ s < ∞, v ∈ RHs′(w), and

θ := K +
1

2
+

r̂ n

4s
− r̂ n

2 q̃
> 0.(5.33)

For later use choose θ̃ so that 0 < θ̃ < min{4 θ, 1}. Then, for every 0 < a < 1

(5.34)

∫ 1

a

t4 θ−1 dt

t
≤
∫ 1

a

tθ̃−1 dt

t
≤ 1

1 − θ̃
aθ̃−1.

Fix now 0 < u < 1
4
, and note that

∣∣∣∣
(

e−
t2

4u
Lw − e−t2Lw

)
f

∣∣∣∣ =
∣∣∣∣∣

∫ t
2
√

u

t

∂re
−r2Lw f dr

∣∣∣∣∣ .
∫ t

2
√

u

t

∣∣r2Lwe−r2Lw f
∣∣dr

r
.

We set HK(y, r) := (r2Lw)K+1e−r2Lw f (y). Using the above estimate and applying Minkowski’s and

Hölder’s inequalities, it follows that

F(u) .



∫

Rn

∫ ∞

0

(∫ t

2
√

u

t

(∫

B(x,2t)

∣∣∣(t2Lw)Kr2Lwe−r2Lw f (y)

∣∣∣
2 dw(y)

w(B(y, t))

) 1
2 dr

r

)2

dt

t
v(x)dw(x)




1
2

. u−
1
4

(∫

Rn

∫ ∞

0

∫ t
2
√

u

t

∫

B(x,2t)

|HK(y, r)|2
( t

r

)4 K dw(y)

w(B(y, t))

dr

r2
dt v(x)dw(x)

) 1
2
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. u−
1
4

(∫

Rn

∫ ∞

0

∫ r

2
√

ur

∫

B(x,2t)

|HK(y, r)|2
( t

r

)4 K dw(y)

w(B(y, t))
dt

dr

r2
v(x)dw(x)

) 1
2

.

By (5.20), applying Hölder’s inequality to the integral in y, and changing the variable t into rt, we

obtain

F(u) . u−
1
4

(∫

Rn

∫ ∞

0

∫ r

2
√

ur

(
−
∫

B(x,2t)

|HK(y, r)|q̃dw(y)

) 2
q̃
( t

r

)4 K dt dr

r2
v(x)dw(x)

) 1
2

(5.35)

. u−
1
4

(∫

Rn

∫ ∞

0

∫ r

2
√

ur

(∫

B(x,2t)

|HK(y, r)|q̃ dw(y)

w(B(y, t))

) 2
q̃
( t

r

)4 K dt dr

r2
v(x)dw(x)

) 1
2

. u−
1
4

(∫

Rn

∫ ∞

0

∫ 1

2
√

u

(∫

B(x,2rt)

|HK(y, r)|q̃ dw(y)

w(B(y, rt))

) 2
q̃

t4K dt dr

r
v(x)dw(x)

) 1
2

=: u−
1
4

(∫

Rn

Ĥ(x, u)2v(x)dw(x)

) 1
2

.

Note that 1 < q̃

2
≤ s < ∞ and recall that w ∈ Ar̂, with r̂ fixed before. Then, for α := t ∈ (0, 1) and

q :=
q̃
2
, we can apply Proposition A.2 and (2.2) to obtain

∫

Rn

Ĥ(x, u)2v(x)dw(x) .

∫ 1

2
√

u

∫ ∞

0

∫

Rn

(∫

B(x,2rt)

|HK(y, r)|q̃ dw(y)

w(B(y, 2rt))

) 2
q̃

v(x)dw(x)
dr

r
t4Kdt

(5.36)

.

(∫ 1

2
√

u

t
4K+ r̂ n

s
− 2 r̂ n

q̃
+1 dt

t

)∫ ∞

0

∫

Rn

(∫

B(x,2r)

|HK(y, r)|q̃ dw(y)

w(B(y, r))

) 2
q̃

v(x)dw(x)
dr

r

. u
θ̃−1

2

∫

Rn

H̃K(x)2v(x)dw(x),

where we have used (5.34) and where

H̃K(x) :=

(∫ ∞

0

(∫

B(x,2r)

|HK(y, r)|q̃ dw(y)

w(B(y, r))

) 2
q̃ dr

r

) 1
2

.

Using that e−tLw ∈ O(L2(w) → Lq̃(w)) by Lemma 4.7, and since HK(y, r) = 2K+1e−
r2

2
Lw HK

(
y, r√

2

)
,

it follows from (5.20) and Proposition 4.9 that

(∫

Rn

H̃K(x)2v(x)dw(x)

) 1
2

.

∑

j≥1

e−c4 j

(∫

Rn

∫ ∞

0

−
∫

B(x,2 j+2r)

∣∣HK

(
y, r√

2

)∣∣2 dw(y) dr

r
v(x)dw(x)

) 1
2

.

∑

j≥1

e−c4 j

(∫

Rn

∫ ∞

0

∫

B(x,2 j+2
√

2r)

∣∣HK(y, r)
∣∣2 dw(y) dr

rw(B(y, r))
v(x)dw(x)

) 1
2

.

∑

j≥1

e−c4 j

(∫

Rn

SLw

K+1,H f (x)2v(x)dw(x)

) 1
2

.

∥∥∥SLw

K+1,H f

∥∥∥
L2(vdw)

.
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Note that in the second estimate we have changed the variable r into
√

2r and used that w(B(y, r)) ≤
w(B(x, 2 j+4r)) . w(B(x, 2 j+2

√
2r)). This, (5.35), and (5.36) give

F(u) . u
θ̃−2

4

∥∥∥SLw

K+1,H f

∥∥∥
L2(vdw)

,

which in turn yields

I =

∫ 1
4

0

u
1
2 F(u)

du

u
.

(∫ 1
4

0

u
θ̃
4

du

u

) ∥∥∥SLw

K+1,H f

∥∥∥
L2(vdw)

.

∥∥∥SLw

K+1,H f

∥∥∥
L2(vdw)

,

since θ̃ > 0.

To estimate II, we fix 1
4
< u < ∞ and observe that

∣∣∣∣(e
− t2

4u
Lw − e−t2Lw) f

∣∣∣∣ =
∣∣∣∣∣

∫ t

t
2
√

u

∂re
−r2Lw f dr

∣∣∣∣∣ .
∫ t

t
2
√

u

∣∣∣r2Lwe−r2Lw f

∣∣∣dr

r
.

Set Tr2,K := (r2Lw)K+1e−r2Lw and pick r̃ > rv(w) ≥ 1 so that v ∈ Ar̃(w). Then, applying Minkowski’s

integral inequality, Hölder’s inequality, Fubini’s Theorem, and Proposition 4.9, we have

F(u) .



∫

Rn

∫ ∞

0

(∫ t

t

2
√

u

(∫

B(x,2t)

∣∣(t2Lw)KTr2,0 f (y)
∣∣2 dw(y)

w(B(y, t))

) 1
2 dr

r

)2

dt

t
v(x)dw(x)




1
2

.

(∫

Rn

∫ ∞

0

∫ t

t

2
√

u

∫

B(x,2t)

∣∣(t2Lw)KTr2,0 f (y)
∣∣2 dw(y)

w(B(y, t))

dr

r2
dt v(x)dw(x)

) 1
2

=

(∫

Rn

∫ ∞

0

∫ 2
√

ur

r

∫

B(x,2t)

∣∣(t2Lw)KTr2,0 f (y)
∣∣2 dw(y) dt

w(B(y, t))

dr

r2
v(x)dw(x)

) 1
2

. uK

(∫

Rn

∫ ∞

0

∫ 2
√

ur

r

∫

B(x,4
√

ur)

∣∣Tr2,K f (y)
∣∣2 dw(y)

w(B(y, r))
dt

dr

r2
v(x)dw(x)

) 1
2

. uK+ 1
4

(∫

Rn

∫ ∞

0

∫

B(x,4
√

ur)

∣∣Tr2,K f (y)
∣∣2 dw(y) dr

rw(B(y, r))
v(x)dw(x)

) 1
2

. uK+ 1
4
+ n r̂ r̃

4

(∫

Rn

∫ ∞

0

∫

B(x,r)

∣∣Tr2,K f (y)
∣∣2 dw(y) dr

rw(B(y, r))
v(x)dw(x)

) 1
2

= uK+ 1
4
+ n r̂ r̃

4

∥∥∥SLw

K+1,H f

∥∥∥
L2(vdw)

.

Hence,

II =

∫ ∞
1
4

e−uu
1
2 F(u)

du

u
.

(∫ ∞
1
4

e−uuK+ 3
4
+ n r̂ r̃

4
du

u

) ∥∥∥SLw

K+1,H f

∥∥∥
Lp(vdw)

.

∥∥∥SLw

K+1,H f

∥∥∥
Lp(vdw)

.

This completes the proof of (5.31).

We finally show (5.30). The proof of this inequality follows the lines of that of [5, Lemma 3.5].

If K = 0 take f ∈ L2(w), and f0 := f . If K ≥ 1, we assume that f is in the domain of LK
w (we

explain at the end of the proof how to pass to general functions in L2(w)), and define fK := LK
w f .

Besides, consider uK := LK
we−t

√
Lw f = e−t

√
Lw fK, and vK := LK

we−t2 Lw f = e−t2Lw fK. Notice that

t∇y,t(t
2KuK) = 2Kt2KvK~e + 2Kt2K(uK − vK)~e + t2K(t∇y,tuK)
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with ~e = (0, . . . , 0, 1). The first and second terms give the first and third terms on the right hand side

of (5.30), respectively. Then we need to control the third term which in turn is controlled by

I(x) :=

∫∫
|∇y,tuK(y, t)|2ϕ2

(
x − y

t

)
t4 K+1dw(y) dt

w(B(y, t))
,

where ϕ is a smooth function such that 0 ≤ ϕ ≤ 1, ϕ ≡ 1 on B(0, 1) and ϕ ≡ 0 in Rn \ B(0, 2). Write

ϕw(x, t) :=
∫
Rn ϕ

2
(

x−z
t

)
w(z) dz and note that since w ∈ A2 (and hence is doubling), we have

(5.37)
w(B(x, t))

w(B(y, t))
≈ 1 and 1 ≤ ϕw(x, t)

w(B(x, t))
≤ w(B(x, 2t))

w(B(x, t))
. 1

whenever |x − y| < 2t. For 0 < r < R/10 < ∞, take ψr,R(t) = ζ(t/r)(1 − ζ(t/R)), where ζ(t) is a

smooth function that satisfies: ζ(t) ≡ 0 if t ≤ 1/2 and ζ(t) ≡ 1 if t ≥ 2. Using all this and the

monotone convergence theorem, it suffices to estimate

Ir,R(x) :=

∫∫
|∇y,tuK(y, t)|2ϕ2

(
x − y

t

)
ψ2

r,R(t)
t4 K+1dw(y) dt

ϕw(x, t)
.

Let B be the (n + 1) × (n + 1) block matrix with A being one block and 1 the other one, i.e.,

B =

(
A 0

0 1

)
. Since the matrix B is uniformly elliptic, Ir,R(x) ≤ C(λ)ReIr,R(x) with

Ir,R(x) :=

∫∫
B(y)∇y,tuK(y, t) · ∇y,tuK(y, t) ϕ2

(
x − y

t

)
ψ2

r,R(t)
t4 K+1dw(y) dt

ϕw(x, t)
.

Next, we write

Ir,R(x) =

∫∫
B(y)∇y,tuK(y, t) · ∇y,t(uK − vK)(y, t) ϕ2

(
x − y

t

)
ψ2

r,R(t)
t4 K+1dw(y) dt

ϕw(x, t)

+

∫∫
B(y)∇y,tuK(y, t) · ∇y,tvK(y, t) ϕ2

(
x − y

t

)
ψ2

r,R(t)
t4 K+1dw(y) dt

ϕw(x, t)

=: I1
r,R(x) + I2

r,R(x).

In the last integral, distribute the product ϕψr,R on each gradient term and use Young’s inequality

with ǫ to obtain a bound

|I2
r,R(x)| ≤ ǫIr,R(x) +C‖B‖2∞ǫ−1

∫∫

|x−y|<2t

|∇y,tvK(y, t)|2 t4 K+1dw(y) dt

ϕw(x, t)
.

Using that

t2K(t∇y,tvK(y, t)) = t∇y,t(t
2KvK(y, t)) − 2Kt2KvK(y, t)~e,

and (5.37) we can obtain

|I2
r,R(x)| ≤ ǫIr,R(x) +C‖B‖2∞ǫ−1K

∫∫

|x−y|<2t

|t2KvK(y, t)|2 dw(y) dt

tw(B(y, t))

+C‖B‖2∞ǫ−1

∫∫

|x−y|<2t

|t∇y,t(t
2KvK(y, t))|2 dw(y) dt

tw(B(y, t))
.

To estimate I1
r,R we first observe that w−1 divy,t

(
w(y)B(y)∇y,tuK(y, t)

)
= 0 in the weak sense in

Rn+1
+ with respect to the inner product in L2(Rn+1

+ , dw dt). This and Leibniz’s rule give

I1
r,R(x) = −

∫∫
B(y)∇y,tuK(y, t) · ∇y,t

{
ϕ2
( x − y

t

)
ψ2

r,R(t)
t4K+1

ϕw(x, t)

}
(uK − vK)(y, t) dw(y) dt.

To estimate this we first observe that easy calculations lead to

F(y, t) :=

∣∣∣∣∇y,t

{
ϕ2
( x − y

t

)
ψ2

r,R(t)
t4K+1

ϕw(x, t)

}∣∣∣∣
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.
t4Kψr,R(t)

ϕw(x, t)
ϕ
( x − y

t

) {
ψr,R(t)

∣∣∣(∇ϕ)
( x − y

t

)∣∣∣ + ψr,R(t)ϕ
( x − y

t

)
+ t|ψ′r,R(t)|ϕ

( x − y

t

)

+ ψr,R(t)
|x − y|

t

∣∣∣(∇ϕ)
( x − y

t

)∣∣∣ + t ψr,R(t)ϕ
( x − y

t

) |∂t(ϕw(x, t))|
ϕw(x, t)

}
.

Note that |ψ′r,R(t)| . t−1 uniformly in r and R. Also, using (5.37) and the properties of ϕ it follows

that |∂t(ϕw(x, t))| . t−1ϕw(x, t). These and the way that ϕ and ψr,R have been chosen easily lead to

F(y, t) .
t4Kψr,R(t)

ϕw(x, t)
ϕ
( x − y

t

)
Θ

( x − y

t

)
,

where Θ = ϕ+ |∇ϕ| is a bounded function supported in B(0, 2). We can use this, Young’s inequality

with ǫ > 0, and (5.37) to estimate I1
r,R(x):

|I1
r,R(x)|

≤
∫∫ {

|∇y,tuK(y, t)|ϕ
( x − y

t

)
ψr,R(t)

}{
C ‖B‖∞ t−1Θ

( x − y

t

)
|(uK − vK)(y, t)|

} t4 K+1dw(y) dt

ϕw(x, t)

≤ ǫIr,R(x) +C‖B‖2∞ǫ−1

∫∫

|x−y|<2t

∣∣t2K(uK − vK)(y, t)
∣∣2 dw(y) dt

tw(B(y, t))
.

Collecting the estimates that we have obtained and recalling the definitions of uK , vK , we conclude

|Ir,R(x)| ≤ 2 ǫIr,R(x) +C‖B‖2∞ǫ−1K

∫∫

|x−y|<2t

∣∣∣(t2Lw)Ke−t2Lw f (y)

∣∣∣
2 dw(y) dt

tw(B(y, t))

+C‖B‖2∞ǫ−1

∫∫

|x−y|<2t

∣∣∣t∇y,t(t
2Lw)Ke−t2Lw f (y)

∣∣∣
2 dw(y) dt

tw(B(y, t))

+C‖B‖2∞ǫ−1

∫∫

|x−y|<2t

∣∣∣(t2Lw)K(e−t
√

Lw − e−t2Lw) f (y)

∣∣∣
2 dw(y) dt

tw(B(y, t))
,

where all the constants are uniform in r, R, and x. Recalling that Ir,R(x) ≤ C(λ)ReIr,R(x) we

can hide the first term in the right-hand side of the previous estimate (which is finite thanks to the

different cut-off functions) by choosing ǫ small enough. Letting then r ց 0 and R ր ∞, one

derives (5.30) for functions f ∈ L2(w) when K = 0 and for functions f is in the domain of LK
w when

K ≥ 1.

To complete the proof we explain how to extend (5.30) to arbitrary functions in L2(w). Let us

fix K ≥ 1 and write T to denote the sublinear operator defined from the right-hand side of the

inequality (5.30). Note that combining Proposition 4.9, (5.31), Theorem 3.3, and the trivial case

p = 2 of Proposition 5.1 we conclude that for all f ∈ L2(w)

(5.38) ‖T f ‖L2(w) . ‖GLw

H f ‖L2(w) . ‖ f ‖L2(w).

We fix f ∈ L2(w) and our goal is to show that GLw

K,P f (x) . T f (x) for almost every x ∈ Rn. To

that end, we use that the domain of LK
w is dense in L2(w) and find a sequence { f j} j contained in

the domain of LK
w such that f j → f in L2(w) as j → ∞. Without loss of generality we may also

assume that T ( f − f j)(x) → 0 for a.e. x ∈ Rn as j → ∞. Indeed, from (5.38) we know that

T ( f − f j)→ 0 in L2(w) as j→ ∞ and therefore, passing to a subsequence, the convergence occurs

almost everywhere. On the other hand, t∇y,t(t
√

Lw )2Ke−t
√

Lw is uniformly bounded on L2(w) and it

follows from (5.20) that for every N, j ≥ 1 and every x ∈ Rn

(∫ N

N−1

∫

|x−y|<t

|t∇y,t(t
√

Lw )2Ke−t
√

Lw f (y)|2 dw(y) dt

tw(B(y, t))

) 1
2

.
log N

w(B(x,N−1))
‖ f − f j‖L2(w) +

(∫∫

|x−y|<t

|t∇y,t(t
√

Lw )2Ke−t
√

Lw f j(y)|2 dw(y) dt

tw(B(y, t))

) 1
2
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.
log N

w(B(x,N−1))
‖ f − f j‖L2(w) + T f j(x)

.
log N

w(B(x,N−1))
‖ f − f j‖L2(w) + T ( f − f j)(x) + T f (x),

where in the second inequality we have used (5.30) for f j, which by construction is in the domain

of LK
w . Next, we first let j → ∞ and then N → ∞ to conclude as desired that (5.30) holds for

f ∈ L2(w). The proof of Lemma 5.29 is now complete. �

6. Unweighted boundedness for square functions

In this section we prove unweighted estimates, that is, on Lp(Rn), for the conical square functions

associated with the heat or Poisson semigroups associated with Lw. These will be obtained as a con-

sequence of their weighted boundedness on Lp(vdw) by simply taking v = w−1 on Theorems 3.1 and

3.2. In order to check that the corresponding result can be applied we will need to make additional

assumptions on w ∈ A2. In particular, we are interested in specific examples of power weights |x|α,

−n < α < n, and their associated family of degenerate operators L|x|α = −|x|−α div(|x|α A∇).

Before stating our results we need to recall some definitions. Given w ∈ A∞, the “critical”

exponents rw and sw were defined in (2.7). By “self-improving” properties of the Ap and RHs

classes it follows that if w ∈ Ar with r > 1 then rw < r and, analogously, if w ∈ RHq′ with q > 1

then sw < q.

We also note that as observed above there is a “duality” relationship between the weighted and

unweighted Ap and RHs conditions: v = w−1 ∈ Ap(w) if and only if w ∈ RHp′ and v = w−1 ∈
RHs′(w) if and only if w ∈ As. We also recall that 2∗w =

2 n rw

n rw−2
if 2 < n rw and 2∗w = ∞ otherwise.

We start considering the conical square functions associated with the heat semigroup.

Corollary 6.1. Let Lw be a degenerate elliptic operator with w ∈ A2. If p > (2∗w)′ sw then the

conical square functions SLw

m,H for m ∈ N, and GLw

m,H and G
Lw

m,H for m ∈ N0, are all bounded on

Lp(Rn). In particular, this is the case in the following situations:

(a) If 2n
n+2

< p < ∞ and w ∈ A1 ∩ RH( p(n+2)
2n

)′ .

(b) If 1 < r ≤ 2, 2nr
nr+2
≤ p < ∞ and w ∈ Ar ∩ RH( p(nr+2)

2nr

)′ .

Hence, all the previous square functions are bounded on L2(Rn) if w ∈ Ar ∩ RH n
2

r+1 for 1 ≤ r ≤ 2.

Proof. Fix p > (2∗w)′ sw and note that by (2.13) we have p > (2∗w)′ ≥ p−(Lw). Also, sw < p/(2∗w)′ ≤
p/p−(Lw) and hence w ∈ RH(

p
p−(Lw)

)′ or, equivalently, v := w−1 ∈ A p
p−(Lw)

(w). These facts imply that

p ∈ Ww
v (p−(Lw),∞), and then, Theorem 3.1 gives immediately the boundedness on Lp(v dw) =

Lp(Rn) of all the conical square functions in the statement.

To see that the situation in (a) falls within the conditions stated above, we first consider the

case n = 2. Our current assumptions give rw = 1 and w ∈ RH( p(n+2)
2n

)′ = RHp′ , hence 2∗w = ∞
and p > sw as desired. On the other hand, if n ≥ 3, using again that rw = 1 it follows that

(2∗w)′ = (2n/(n − 2))′ = 2n/(n + 2). In turn, w ∈ RH( p(n+2)
2n

)′ implies that p > (2∗w)′ sw.

We now examine the conditions in (b). Note that in that case since w ∈ Ar with r > 1, then rw < r.

This implies that (2∗w)′ < 2 n r
n r+2

. Then, the assumptions on p and w easily yield that p > (2∗w)′ sw.

Concerning the estimates on L2(Rn) we just need to combine (a) and (b) with p = 2. �
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Next, we consider the conical square functions associated with the Poisson semigroup. Let us

make some comments first. Given w ∈ A∞, 1 ≤ q < ∞, and K ≥ 1 set

(6.2) qK,⋆
w :=





qnrw

nrw − Kq
, if Kq < nrw,

∞, if Kq ≥ nrw.

When K = 1 we write q⋆w := q1,⋆
w . Notice that according to the notation introduced above 2∗w = 2⋆w

and also (p+(Lw))K,∗
w = (p+(Lw))2K+1,⋆

w for every K ∈ N0 (cf. (2.14)). On the other hand, it is easy

to see that qK+1,⋆
w =

(
qK,⋆

w

)⋆
w
=
(
q⋆w
)K,⋆

w
for every K ∈ N.

It might be convenient to observe that

qK,⋆
w =

[(
1

q
− K

nrw

)+]−1

,

where r+ = max{r, 0}. Using this, it is easy to see that qK+1,⋆
w ≥ qK,⋆

w for every K ∈ N. Moreover,

if K ∈ N is fixed, then qK,⋆
w is an increasing function of q. Hence, since p+(Lw) ≥ 2∗w = 2⋆w (see

(2.13)), it follows that for all K ∈ N, one has (p+(Lw))K,∗
w ≥ (p+(Lw))∗w ≥ 2∗∗w , where, as defined

above,

(6.3) 2∗∗w :=
(
2⋆w
)⋆

w
= 22,⋆

w =

{
2nrw

nrw−4
if 4 < nrw,

∞ if 4 ≥ nrw.

In the following result we present some Lp(Rn) estimates for the conical square functions asso-

ciated with the Poisson semigroup. As seen from Theorem 3.2, these square functions are “better”

as the parameter K increases —sinceWw
v (p−(Lw), (p+(Lw))K,∗

w ) ⊂ Ww
v (p−(Lw), (p+(Lw))K+1,∗

w ), for

all K ∈ N0. To simplify the statements we will compute the conditions that arise from the case

K = 0, and, in particular, all the square functions in Theorem 3.2 will be bounded under the same

conditions. Having said that, if one targets a particular square functions with a given parameter K,

the following result and its proof can be sharpened to provide both better ranges of p’s where the

Lp(Rn)-boundedness happens and also bigger classes of weights, see Remark 6.5 below.

Corollary 6.4. Let Lw be a degenerate elliptic operator with w ∈ A2. If (2∗w)′ sw < p <
2∗∗w
rw

then

the conical square functions SLw

K,P for K ∈ N, and GLw

K,P and G
Lw

K,P for K ∈ N0, are all bounded on

Lp(Rn). In particular, this is the case in the following situations:

(a) If 2n
n+2

< p < ∞ for n ≤ 4 or if 2n
n+2

< p < 2n
n−4

for n > 4, and w ∈ A1 ∩ RH( p(n+2)
2n

)′ .

(b) If 1 < r ≤ 2, 2nr
nr+2

≤ p < ∞ for nr ≤ 4 or 2nr
nr+2

≤ p ≤ 2n
nr−4

for nr > 4, and w ∈
Ar ∩ RH( p(nr+2)

2nr

)′ .

Hence, all the previous square functions are bounded on L2(Rn) if w ∈ Ar ∩ RH n
2

r+1, for 1 ≤ r ≤
min

{
2, 1 + 4

n

}
.

Remark 6.5. Let us mention that in the scenario (b) when nr > 4 it could happen that there is

no value of p satisfying the required conditions unless r is sufficiently close to 1 depending on

dimension. This happens because in the previous result we allow small values of K. Indeed, if we

just fix K ∈ N, the same argument, with appropriate changes, will give the range (2∗w)′ sw < p <
2

2(K+1),⋆
w

rw
. In particular, in (a) we will have 2n

n+2
< p < ∞ for n ≤ 4(K + 1) and 2n

n+2
< p < 2n

n−4(K+1)
if

n > 4(K+1). Analogously, in the context of (b) we would obtain 2nr
nr+2
≤ p < ∞ for nr ≤ 4(K+1) or

2nr
nr+2
≤ p ≤ 2n

nr−4(K+1)
for nr > 4(K + 1). In particular, taking K ≥ max{ n−5

4
, 0} the latter range will

be non-empty regardless of r. Further details and the precise statements are left to the interested

reader.
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Proof. Using the ideas in the proof of Corollary 6.1 and the previous comments we need to see that

if we set v := w−1 then p ∈ Ww
v (p−(Lw), (p+(Lw))∗w). This amounts to checking that p−(Lw) < p <

(p+(Lw))∗w and also that

w−1 ∈ A p
p−(Lw)

(w) ∩ RH(
(p+(Lw))∗w

p

)′(w) ⇐⇒ w ∈ A (p+(Lw))∗w
p

∩ RH(
p

p−(Lw)

)′ .

Let us observe that in the proof of Corollary 6.1 we took care on the lower bound for p and the

membership of w to a reverse Hölder class by assuming that p > (2∗w)′ sw. Now we need to look

at the upper bound and the membership to a Muckenhoupt class. That is, we need to see that our

assumption p < 2∗∗w /rw guarantees that p < (p+(Lw))∗w and that w ∈ A (p+(Lw))∗w
p

. But, this follows at

once from the estimates p < 2∗∗w /rw ≤ (p+(Lw))∗w/rw ≤ (p+(Lw))∗w.

Much as before, we now see that the situations described in (a) and (b) give the desired restric-

tions on p depending on sw and rw. We start with (a). We showed in the proof of Corollary 6.1

that p > 2n/(n + 2) and w ∈ A1 ∩ RH( p(n+2)
2n

)′ imply that p > (2∗w)′ sw. On the other hand, taking

into account that rw = 1 in the present scenario, we see that the upper bound assumed in p can be

rewritten as p < 2∗∗w as desired.

Turning our attention to the scenario in (b), and looking again at the proof of Corollary 6.1, we

know that if 1 < r ≤ 2, 2nr
nr+2
≤ p < ∞ and w ∈ Ar ∩ RH( p(nr+2)

2nr

)′ then p > (2∗w)′ sw. Again, since

w ∈ Ar with r > 1 it follows that rw < r. Note that if nr ≤ 4 then nrw < nr < 4 and hence 2∗∗w = ∞
in which case we can take p as larger as we wish. On the other hand, if nr > 4 then one can easily

see that p ≤ 2n/(nr − 4) < 2∗∗w /rw as desired.

Concerning the estimates on L2(Rn) we just need to combine (a) and (b) with p = 2. �

Finally, we consider the case of power weights. Define now wα(x) := |x|α, α > −n; this restriction

guarantees that wα is locally integrable. We can exactly determine the Muckenhoupt Ap and reverse

Hölder RHs classes of these weights in terms of α: if −n < α ≤ 0, then wα ∈ A1; for 1 < p < ∞,

wα ∈ Ap if −n < α < n (p − 1). Furthermore, if 0 ≤ α < ∞, wα ∈ RH∞; for 1 < q < ∞, wα ∈ RHq,

if −n/q < α < ∞. Hence, we easily see that

(6.6) rwα
= max

{
1, 1 +

α

n

}
and swα

= max

{
1,
(

1 +
α

n

)−1
}
.

Using all these and Corollaries 6.1 and 6.4 we obtain the following result whose proof is left to the

interested reader.

Corollary 6.7. Let A be an n× n complex-valued matrix that satisfies the uniform ellipticity condi-

tion (1.1) and consider Lwα
= −w−1

α div(wα A∇) with −n < α < n.

(a) For − 2n
n+2

< α < n, all the square functions in Theorem 3.1 (the ones associated with the heat

semigroup) are bounded on L2(Rn);

(b) For − 2n
n+2

< α < min{n, 4}, all the square functions in Theorem 3.2 (the ones associated with

the Poisson semigroup) are bounded on L2(Rn).

Appendix A. Extrapolation on weighted measure spaces

In this section we present some extrapolation results where the underlying measure space is

(Rn,w) with w ∈ A∞. The statements and proofs are quite similar to the euclidean setting with the

Lebesgue measure. As in [13], we write the extrapolation theorem in terms of pairs of functions.
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To set the stage consider F a family of pairs ( f , g) of non-negative, measurable functions that are

not identically zero. Given such a family F , 0 < p < ∞, and a weight v ∈ A∞(w), when we write∫

Rn

f (x)pv(x)dw(x) ≤ Cw,v,p

∫

Rn

g(x)pv(x)dw(x), ( f , g) ∈ F ,

we mean that this inequality holds for all pairs ( f , g) ∈ F and that the constant Cw,v,p depends only

on p, the A∞(w) constant of v (and the A∞ character of w which is ultimately fixed). Note that

in [13] such inequalities appear both in the hypotheses and in the conclusion of the extrapolation

results and hold for all pairs ( f , g) ∈ F for which the left hand sides are finite. Here we do not make

such assumptions and, in particular, we do have that the infiniteness of the left-hand side will imply

that of the right-hand one. This formulation is more convenient for our purposes and, as pointed out

in [28, Section 3.1], it follows from the formulation where the inequalities hold for pairs for which

the left hand sides are finite.

The following result for w = 1 can be found in [13, Chapter 2] and [28, Section 3.1]. The

proof can be easily obtained by adapting the arguments there replacing everywhere the Lebesgue

measure by the measure w and the Hardy-Littlewood maximal function by its “weighted” version

Mw introduced in (2.6). Further details are left to the interested reader.

Theorem A.1. Let F be a given family of pairs ( f , g) of non-negative and not identically zero

measurable functions.

(a) Suppose that for some fixed exponent p0, 1 ≤ p0 < ∞, and every weight v ∈ Ap0
(w),

∫

Rn

f (x)p0 v(x)dw(x) ≤ Cw,v,p0

∫

Rn

g(x)p0 v(x)dw(x), ∀ ( f , g) ∈ F .

Then, for all 1 < p < ∞, and for all v ∈ Ap(w),
∫

Rn

f (x)p v(x)dw(x) ≤ Cw,v,p

∫

Rn

g(x)p v(x)dw(x), ∀ ( f , g) ∈ F .

(b) Suppose that for some fixed exponent q0, 1 ≤ q0 < ∞, and every weight v ∈ RHq′0
(w),

∫

Rn

f (x)
1

q0 v(x)dw(x) ≤ Cw,v,q0

∫

Rn

g(x)
1

q0 v(x)dw(x), ∀ ( f , g) ∈ F .

Then, for all 1 < q < ∞ and for all v ∈ RHq′(w),
∫

Rn

f (x)
1
q v(x)dw(x) ≤ Cw,v,q

∫

Rn

g(x)
1
q v(x)dw(x), ∀ ( f , g) ∈ F .

(c) Suppose that for some fixed exponent r0, 0 < r0 < ∞, and every weight v ∈ A∞(w),∫

Rn

f (x)r0 v(x)dw(x) ≤ Cw,v,r0

∫

Rn

g(x)r0 v(x)dw(x), ∀ ( f , g) ∈ F .

Then, for all 0 < r < ∞ and for all v ∈ A∞(w),∫

Rn

f (x)r v(x)dw(x) ≤ Cw,v,r

∫

Rn

g(x)r v(x)dw(x), ∀ ( f , g) ∈ F .

The following result is a version of [28, Proposition 3.30] in our current setting.

Proposition A.2. Let w ∈ Ar and v ∈ RHs′(w) with 1 ≤ r, s < ∞. For every 1 ≤ q ≤ s, 0 < α ≤ 1

and t > 0, there holds

(A.3)

∫

Rn

(∫

B(x,αt)

|h(y, t)| dw(y)

w(B(y, αt))

) 1
q

v(x)dw(x)

. α
nr
(

1
s
− 1

q

) ∫

Rn

(∫

B(x,t)

|h(y, t)| dw(y)

w(B(y, t))

) 1
q

v(x)dw(x).
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Proof. We fix t > 0, 0 < α ≤ 1 and set

Gα(x, t) :=

∫

B(x,αt)

|h(y, t)| dw(y)

w(B(y, αt))
.

For simplicity, G(x, t) := G1(x, t). Then, for any 1 ≤ s0 < ∞ and v0 ∈ RHs′0
(w), we have

∫

Rn

Gα(x, t)v0(x)dw(x) =

∫

Rn

|h(y, t)| v0w(B(y, αt))

w(B(y, αt))
dw(y)(A.4)

.

∫

Rn

|h(y, t)| v0w(B(y, t))

(
w(B(y, αt))

w(B(y, t))

) 1
s0 dw(y)

w(B(y, αt))

=

∫

Rn

∫

B(x,t)

|h(y, t)|
(

w(B(y, αt))

w(B(y, t))

) 1
s0
−1

dw(y)

w(B(y, t))
v0(x)dw(x)

. α
n r

(
1
s0
−1

) ∫

Rn

∫

B(x,t)

|h(y, t)| dw(y)

w(B(y, t))
v0(x)dw(x)

= α
n r

(
1
s0
−1

) ∫

Rn

G(x, t)v0(x)dw(x).

Note that the two inequalities follow from (2.4) and (2.2), respectively, and the second equality is

obtained by using Fubini’s theorem. Let us observe that (A.4) is the desired estimate when q = 1.

To prove the case q > 1 we next extrapolate from (A.4). Consider F the family of pairs

( f , g) =
(
Gα(·, t)s0 , αn r (1−s0) G(·, t)s0

)
,

and notice that (A.4) immediately gives that, for every v0 ∈ RHs′0
(w), 1 ≤ s0 < ∞,

∫

Rn

f (x)
1
s0 v0(x) dw(x) ≤ C

∫

Rn

g(x)
1
s0 v0(x) dw(x),

where C does not depend on α or t. Next, apply Theorem A.1, part (b), to conclude that, for every

1 < s < ∞ and for every v ∈ RHs′(w),
∫

Rn

Gα(x, t)
s0
s v(x) dw(x) ≤ C αn r

(
1
s
− s0

s

) ∫

Rn

G(x, t)
s0
s v(x) dw(x),

where C does not depend on α or t and where 1 ≤ s0 < ∞ is arbitrary. From this, given v ∈ RHs′(w),

1 < q ≤ s < ∞, we can conclude (A.3) by taking s0 = s/q. �
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