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Introduction

“Why haven’t we theoretical physicists solved this problem yet?

The only reason that we cannot do this problem of superconductivity
1s that we haven’t got enough imagination. ”

R. P. FEYNMAN

There is no temperature below absolute zero. Out of curiosity, researchers have
tried to reach this lower limit and this, in turn, has led to the discovery of new physical
phenomena, and it has widened our understanding of the structure of the matter that
surrounds us. This curiosity led Heike Kamerlingh Onnes and his student Gille Holst to
cool down mercury with the aid of liquid helium in 1911. As the temperature reached a
critical value T, of 4.2K, the electrical resistance of mercury dropped to zero [1]. They had
discovered superconductivity. In 1933 Walther Meissner and Robert Ochsenfeld showed
that a superconductor is more than just a perfect conductor. They observed that, except
from a thin region near the surface, these materials expelled the magnetic flux from their
interior, i.e., they are perfect diamagnets. This effect is the so-called Meissner effect [2].
Perfect diamagnetism and perfect conductivity are the two hallmarks of a superconductor.

Since its discovery, most of the brightest physicists tried, unsuccessfully, to develop a
microscopic theory of superconductivity [3]. But it was not until 1957 when John Bardeen,
Leon N. Cooper and John Robert Schrieffer developed a revolutionary theory of super-
conductivity, the BCS theory [4,5]. This theory postulated that phonons, the quantum
excitations of the crystal lattice, mediate an attractive interaction between the electrons,
leading to the formation of bound pairs of electrons, the so-called Cooper pairs. These
pairs condense in a coherent macroscopic quantum state, the superconducting state, of
pairs with opposite momenta and spins.

In the early years, superconductivity was mostly discovered in metals and alloys
that could be well described by the BCS theory. Nevertheless, the discovery of heavy
fermions superconductors in the 70’s [6], challenged the theoretical understanding of the
phenomenon as in these materials superconductivity cannot be explained within a BCS
framework. We refer to those superconductors for which BCS theory does not work as
unconventional, in contrast to conventional superconductors for which the attraction is
mediated by phonons. Despite the findings of these new superconductors critical tem-
peratures were still extremely low, and liquid helium was needed to reach them. The
discovery of materials that could superconduct at higher temperatures, providing much
wider applications, was the dream of researchers.

In 1986 J. G. Bednorz and K. A. Miiller reported for the first time the observation
of superconductivity in a cuprate-based ceramic. The compound contained lanthanum,
copper, and oxygen and doped with barium presented a superconducting transition at a
critical temperature slightly above 30K [7]. This discovery triggered an intense research
and it was soon found that replacing the lanthanum with yttrium raised the critical tem-
perature up to 7, = 93K [8]. This temperature jump was extremely significant, since it
finally allowed researchers to use liquid nitrogen as a refrigerant instead of liquid helium.
The high temperature superconductors (HTSC) era had just started. In a few years, many
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copper-based superconducting materials were discovered giving rise to the first class of
HTSC, the cuprates. But the history of superconductivity does not end here. In 2008
another breakthrough happened when a new class of HT'SC was discovered, the iron-based
superconductors (IBS) [9-11]|. H. Hosono and his group announced the discovery of super-
conductivity in fluorine-doped LaOq_,F,FeAs, at T, = 26K [12|, which was later found
to superconduct at T, = 43K under pressure [13].
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Figure 1: Timeline of the discovery of superconducting materials. Colors represent different
classes of materials: BCS superconductors in blue circles, heavy fermions in orange triangles,
cuprates in green squares, fullerene-Cgg in yellow stars, carbon-allotrope in red diamond, iron-
based in violet pentagon, and twisted bilayer graphene in ligth green spiral. Partly based on [14].

The two main families of HT'SC, cuprates and iron-based, are unconventional super-
conductors in which the pairing mechanism is still nowadays under debate. It is notable
that in most of IBS and cuprates superconductivity emerges at the frontier of an antifer-
romagnetic phase [15]. This observation indicates a close interplay between magnetism
and unconventional superconductivity, and suggests that spin fluctuations may play an
important role in the formation of the Cooper pairs. The hope to find a consensus about
the pairing mechanism in IBS, and then to apply this knowledge to cuprates, is intriguing.
However, thirteen years of intense research following the IBS discovery has led to the
understanding that the physics of IBS is far richer than originally thought, and character-
ized by a number of highly non-trivial properties which have no analogs in cuprates [15].
This Thesis focuses on the study of IBS. In this theoretical work we analyze the role of
spin-fluctuation in the IBS physics and try to understand whether the spin fluctuations
represent the key to explain the complex phenomenology of IBS.

IBS materials, in contrast to cuprates, are characterized by multiorbital physics,
as theoretically predicted by ab intio calculations and confirmed by experiments [16-21].
The phase diagram of these materials exhibits a range of different phases including the
magnetic phase and the superconducting one [9-11,22|. An intriguing nematic phase just
above the magnetic one is also present in the phase diagram of many IBS. The nematic
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instability is characterized by a structural transition and a marked electronic anisotropy,
much larger than the one expected by the structural transition itself. The origin of the
nematic phase is one of the most controversial topics in this field [23]. It is also puzzling
that, although most of IBS present similar crystal structures, their phenomenology can be
extremely different, as the case of FeSe [24] in which a nematic order develops without an
antiferromagnetic order nearby.

A theoretical proposal able to explain the complex phenomenology of IBS within a
common framework is one of the most challenging issues in the field of HTSC. Within this
Thesis we focus on theoretical analysis based on a itinerant spin-driven scenario. In that
respect, there are two main approaches that can be used based on multiband or multiorbital
description of the low-energy electronic bands [25].

Low-energy multiband models offer an appealing and simple framework to explain
the origin and interplay of the different orders. Within this modeling both magnetism
and superconductivity are explained in terms of Fermi-surface instabilities due to the ex-
change of spin-fluctuations between different Fermi surface sheets. At the same time,
spin-fluctuation are also at the origin of the nematic phase. Nematicity is interpreted as a
precursor effect of magnetism that originates from the z/y anisotropy of spin-fluctuations
realized when the long-range magnetic order is not yet established. Although very suc-
cessful in explaining the emergence and interplay of several orders, low-energy multiband
models have a main limitation. They do not include the information about the orbital
composition of the bands and thus they cannot be used to study phenomena involving
orbital physics.

Multiorbital models, instead, start from a description of the electronic bands in the
orbital basis and thus are able to capture the multiorbital physics of IBS. Random phase
approximation (RPA) calculations have been proven to be suitable to quantitatively study
magnetism and superconductivity. However, the analysis of nematicity, i.e. a fluctuation-
driven phenomenon, cannot be performed via the standard RPA method and required the
inclusion of fluctuations beyond RPA in the multiorbital description. Implementation of
this procedure is possible, however it is quite complex given the number of orbitals involved
and does not lead to a unambiguous definition of nematicity.

The absence of orbital information within band-based approaches, the lack of con-
nection between multiband and multiorbital modelings, and, in particular, the difficulties
to analyze the spin-driven nematicity within multiorbital models leave several important
open questions. The development of a theoretical frame in which the simplicity of mult-
iband models merges with the orbital information contained in multiorbital descriptions is
necessary to unveil the spin-orbital interplay in IBS and provide a deeper understanding
of the IBS physics. The analysis of such a theoretical description is one of the aims of this
dissertation.

In this Thesis, we focus on the analysis of the Orbital Selective Spin-Fluctuation
(OSSF) model. This is a minimal low-energy model for IBS that operates in the band
basis, but fully incorporates the orbital composition and symmetries of the low-energy
excitations. This description, originally proposed in [26, 27|, unveiled a precise orbital
dependence of the spin-fluctuations. The description in terms of orbital-selective spin-
fluctuations retains the simplicity of the band-basis modeling, but fully account for the
orbital degree of freedom. As within a multiband description, the emergence of the ordered
phases can be explained analyzing the spin interaction and its fluctuations at various
orders; within this model, however, the spin-fluctuations are also orbital-selective and this
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has profound consequences. This approach provides a common framework that account for
the spin-orbital interplay and explain the origin and interplay of different phases of IBS.

Throughout this Thesis, we compare the physics of the OSSF model with the de-
scriptions obtained within multiband and multiorbital models to highlight the advantages
of a theoretical analysis based on the OSSF description. The low energy description
provided by the OSSF model allow us to calculate in an feasible way response functions
that we can compare to experimental results. Analytical results are available in certain
limits; this makes the results obtained easily readable and physically understandable and
provides further insight in the IBS phenomenology. Moreover the model can be easily
adapted to analyze the phenomenology of different IBS families.

This Thesis counts six chapters. The first two contains a summary of experimental
and theoretical results obtained for IBS in the literature. The rest of the Thesis contains
the original work performed during the Ph.D program.

In Chapter 1 we provide a brief overview on IBS, highlighting experimental and the-
oretical aspects that have served as motivations for this work. We first summarize IBS
phenomenology and discuss their electronic properties emphasizing the multiorbital char-
acter of these systems. We then introduce the theoretical approaches used to described
the low-energy physics of IBS within a spin-driven scenario: multiband and multiorbital
models. We show how an effective low-energy model including the orbital degrees of free-
dom is needed in order to reproduce the complex phenomenology of iron-based materials
and provide a unified picture for different members of the iron-based family. In Chapter 2
we review the main steps of the derivation of the OSSF model and we compare it to the
low-energy multiband model to show how the inclusion of the orbital degree of freedom
qualitatively affects the results of the analysis. We also discuss how the spin-nematic order
parameter defined within the OSSF model is unambiguously defined and has a clear phys-
ical interpretation, in contrast with the multi-component spin-nematic order parameter
defined within a multiorbital analysis.

The following chapters contains the original work performed during this Thesis. The
main scope of this work is to understand the phase diagram of different families of 1BS
within a common framework given by the OSSF model.

We start by analyzing, in Chapter 3, the magnetic excitation and the spin-mediated
superconductivity of the OSSF within a RPA analysis. First, we compute explicitly the
orbital-dependent magnetic spin susceptibility for a typical IBS Fermi surface. Then, as-
suming the spin fluctuations mediating superconductivity, we analyse the pairing vertex
and the gap functions. We compare our results with analogous RPA analysis of multior-
bital models and show how the orbital selectivity, encoded in the OSSF model, simplifies
substantially the analysis, allowing for analytical treatments, while retaining all the main
features of both spin-excitations and gap functions computed using multiorbital models.

In Chapter 4 we analyze the anisotropy of the electronic properties of IBS in the
nematic phase. In particular, we compute analytically and numerically the dc conductiv-
ity anisotropy in the nematic phase using realistic parameters to reproduce different 1BS
families. We want to address two main questions: First, how the anisotropy of the orbital
selective spin-fluctuations, at the origin of nematicity, affects the dc resistivity? Second,
can we reconcile in a single theoretical framework the strong material-dependence aniso-
tropy of the dc resistivity found experimentally in the various IBS family? By explicitly
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computing the current response function for the OSSF model, we show that due to the
spin-orbital interplay encoded in our description, the anisotropy of the orbital-selective
spin-fluctuations affects in an anisotropic way both the velocity and the scattering rate
of the carriers. This result qualitatively differs from the one obtained within spin-driven
multiband models in which only the scattering rate of the carriers is renormalized. We
then analyze the outcomes of our calculations for different families of IBS. This analysis
helps us to clarify the different degrees of freedom affecting the result and allows us to
reconcile the experimental observations reported in different families of IBS within a single
description.

The OSSF model has been derived within a four-pocket model representative for
IBS. However, a complete analysis of IBS requires to consider a five-pocket model. This
extra pocket differs among compounds and depends on doping or applied pressure. In
Chapter 5 we extend the analysis of the OSSF model to the case of Fermi surfaces made
by five-pockets. Generalizing what previously done for a four-pocket model, we derive the
effective action in terms of the spin degree of freedom and define the OSSF model for
the five-pockets case. We discuss the new physics emerging from this generalization by
comparing the results of this model with the ones obtained within a three/four-pockets.

In the final Chapter of this Thesis, Chapter 6, we give our conclusions and provide
an outlook of the possible avenues of research that one could follow building up on this
thesis.



Introducciéon

“ s Por qué los fisicos tedricos atin no hemos resuelto este problema?
La inica razon por la que no podemos resolver este problema de la
superconductividad es porque no tenemos suficiente imaginacion. ”

R. P. FEYNMAN

No existe temperatura por debajo del cero absoluto. La curiosidad por alcanzar tem-
peraturas cercanas a este limite nos ha permitido descubrir nuevos fenémenos fisicos, asi
como ampliar nuestra comprensiéon de la estructura de la materia que nos rodea. Esta
curiosidad fue la que llevo a Heike Kamerlingh Onnes junto con su estudiante Gille Holst
a enfriar mercurio con helio liquido en 1911. Cuando la temperatura alcanzaba un valor
critico de T, = 4,2K, la resistencia eléctrica del mercurio se hacia exactamente cero [1].
Acababan de descubrir el fenémeno de la superconductividad. En 1933 Walther Meissner
y Robert Ochsenfeld demostraron que un superconductor es mucho mas que un conductor
perfecto. Vieron que dichos materiales excluian el campo magnético de su interior, sal-
vo de una pequena regién cercana a la superficie, es decir, son materiales diamagnéticos
perfectos. Este efecto es conocido como el efecto Meissner [2]. Diamagnetismo perfecto y
conductividad perfecta son las dos principales caracteristicas de un superconductor.

Desde su descubrimiento, muchos de los fisicos més brillantes intentaron, sin éxito,
desarrollar una teoria microscopica de la superconductividad [3]. Pero no fue hasta 1957
cuando John Bardeen, Leon N. Cooper y John Robert Schrieffer desarrollaron una teoria
revolucionaria de la superconductividad, la teoria BCS [4, 5]. Esta teoria propone que los
fonones, excitaciones cuanticas de una red cristalina, son los mediadores de una interaccién
atractiva entre los electrones que da lugar a la formacion de pares de electrones ligados, los
pares de Cooper. Estos pares condensan en un estado cudntico coherente macroscopico, el
estado superconductor, de pares con momento y espin opuestos.

En los primeros anos, la superconductividad fue descubierta sobre todo en metales
y aleaciones los cuales se entendian bajo el marco de la teoria BCS. Sin embargo, el des-
cubrimiento en los anos 70 de los fermiones pesados [6], desafi6 la comprension teodrica
de la superconductividad ya que estos materiales no podian ser explicados con la teoria
BCS. Nos referimos a los materiales superconductores que no pueden ser explicados con
la teoria BCS como no convencionales, a diferencia de los superconductores convenciona-
les cuya atraccion estd mediada por fonones. A pesar del descubrimiento de estos nuevos
superconductores, sus temperaturas criticas eran atn extremadamente bajas y el helio li-
quido era necesario para poder enfriarlos. El descubrimiento de materiales que pudieran
ser superconductores a temperaturas més altas, proporcionando muchas mas aplicaciones,
era el sueno de muchos investigadores.

En 1986 J. G. Bednorz y K. A. Miiller observaron por primera vez superconductivi-
dad en una ceramica a base de cuprato. El compuesto contenia lantano, cobre y oxigeno,
y dopado con bario presentaba una temperatura critica de la transiciéon superconducto-
ra por encima de 30K [7]. Este descubrimiento desencadend una intensa investigacion y
no se tardé en descubrir que reemplazando el lantano por itrio la temperatura critica se
elevaba hasta T, = 93K [8]. Este salto en temperatura fue extremadamente significante,
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ya que finalmente permitié a los investigadores usar nitrogeno liquido como refrigerante
en vez de helio liquido. La era de los superconductores de alta temperatura (HT'SC) aca-
baba de empezar. En pocos anos, muchos mas materiales superconductores basados en
cobre fueron descubiertos, dando lugar a la primera clase de HTSC, los cupratos. Pero la
historia de la superconductividad no acaba ahi. En 2008 ocurrié otro gran avance, cuan-
do una nueva clase de HT'SC fueron descubiertos, los superconductores basados en hierro
(IBS) [9-11]. H. Hosono y su grupo anuncié el descubrimiento de superconductividad en
LaOy_,F,FeAs dopado con flior, a T, = 26K [12], el cual se encontré mas tarde que
también era superconductor bajo presion a T, = 43K [13].
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Figura 2: Cronologia del descubrimiento de los materiales superconductores. Los colores represen-
tan diferentes clases de materiales: superconductores BCS en circulos azules, fermiones pesados en
triAngulos naranjas, cupratos en cuadrados verdes, fullereno-Cgg en estrellas amarillas, al6tropos
del carbono en diamantes rojos, superconductores basados en hierro en pentagonos violetas y el
grafeno bicapa girado con la espiral verde clara. Figura parcialmente basada en [14].

Las dos familias de HTSC, los cupratos y los materiales basados en hierro, son su-
perconductores no convencionales en los que el mecanismo de la superconductividad atn
estd en debate. Es curioso que en la mayoria de IBS y cupratos, la superconductividad
emerge en la frontera de una fase antiferromagnética [15]. Esto podria indicar una estrecha
relacion entre el magnetismo y la superconductividad no convencional, sugiriendo que las
fluctuaciones de espin podrian jugar un papel importante en la formaciéon de los pares de
Cooper. La esperanza de encontrar un consenso sobre el mecanismo de la superconductivi-
dad en los IBS, y luego aplicar este conocimiento a los cupratos, es intrigante. Sin embargo,
trece anos de intensa investigacion desde el descubrimiento de los IBS ha llevado a com-
prender que la fisica de los IBS es mucho maés rica de lo que se pensaba originalmente, y
esta caracterizada por un gran ntimero de propiedades altamente no triviales que no tienen
analogia con los cupratos. En esta Tesis nos centramos en el estudio de los IBS. En este
trabajo tedrico, analizamos el papel de las fluctuaciones de espin en la fisica de los IBS e
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intentamos entender si las fluctuaciones de espin representan la llave para poder explicar
la compleja fenomenologia de los IBS.

Los superconductores basados en hierro, al contrario que los cupratos, estan carac-
terizados por fisica multiorbital, como fue predicho tedéricamente por calculos ab intio y
confirmado maés tarde por experimentos [16-21]. El diagrama de fases de estos materiales
exhibe un gran rango de fases diferentes entre las que se incluye la fase magnética y la
superconductora [9-11,22]. Una fase nemaética intrigante aparece justo por encima de la
fase magnética en la mayoria de los diagramas de fases los IBS. La inestabilidad nemaética
estd caracterizada por una transicién estructural y una notable anisotropia electrénica,
mucho mayor que la esperada de la transicién estructural. El origen de la fase nematica
es uno de los temas méas polémicos en este campo [23|. También es desconcertante que,
aunque la mayorfa de los IBS presentan estructuras cristalinas similares, su fenomenologia
puede ser extremadamente diferente, como el caso del FeSe [24] en el que se desarrolla un
orden nemético sin un orden antiferromagnético cerca.

Uno de los mayores retos en el campo de los HTSC es encontrar un modelo teorico
que sea capaz de explicar la compleja fenomenologia de los IBS dentro de un marco comin.
Esta Tesis se centra en un anélisis tedrico basado en un escenario itinerante impulsado por
espines. En ese sentido, hay dos enfoques principales que se basan en una descripcion
multibanda o multiorbital de las bandas electronicas a baja energia [25].

Los modelos multibanda de baja energia ofrecen un marco atractivo y sencillo para
explicar el origen y la interacciéon de los distintos 6rdenes. En este modelo tanto el mag-
netismo como la superconductividad son explicadas en términos de las inestabilidades en
la superficie de Fermi que son debidas al intercambio de fluctuaciones de espin entre di-
ferentes partes de la superficie de Fermi. Al mismo tiempo, las fluctuaciones de espin son
también el origen de la fase nematica. La nematicidad es interpretada como un precursor
del magnetismo que se origina a partir de la anisotropia en z/y de las fluctuaciones de
espin que se obtiene cuando atn no se ha establecido el orden magnético de largo alcance.
Aunque los modelos multibanda de baja energia son exitosos en explicar el surgimiento y
la interaccién entre varios 6rdenes, tienen una limitaciéon principal. No incluyen la infor-
macién sobre la composiciéon orbital de las bandas y por lo tanto no pueden usarse para
estudiar fenémenos relacionados con la fisica orbital.

Los modelos multiorbitales, en cambio, empiezan desde una descripcion de las bandas
electronicas en la base orbital y por ello son capaces de capturar la fisica multiorbital de
los IBS. Se ha demostrado que los célculos de Aproximacion de Fase Aleatoria (RPA)
son adecuados para estudiar cuantitativamente el magnetismo y la superconductividad.
Sin embargo, el anélisis de la nematicidad, que es un fenémeno impulsado por espines,
no puede ser realizado mediante el método estandar de RPA y requiere tener en cuenta
fluctuaciones mas alla de RPA en la descripcion multiorbital. La implementacion de este
procedimiento es posible, pero es bastante complejo dado el gran ntmero de orbitales
involucrados y no conduce a una definicién inequivoca de la nematicidad.

La ausencia de informaciéon orbital con los modelos basados en las bandas, la falta
de conexién entre dichos modelos y los multiorbitales, y en particular, la dificultad para
analizar la nematicidad impulsada por espin en los modelos multiorbitales dejan varias
preguntas abiertas. El desarrollo de un marco teérico en el que la simplicidad de los modelos
multibandas se una junto con la informacién orbital contenida en la descripciéon multiorbital
es necesario para desvelar la relaciéon entre el espin y el orbital en los IBS y proporcionar
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una comprensiéon més profunda de la fisica de los IBS. El anélisis de dicha descripciéon
tedrica es uno de los principales objetivos de esta tesis.

En esta Tesis nos centramos en el anélisis del modelo de Fluctuaciones de Espin
con Seleccion Orbital (OSSF). Este es un modelo minimo de baja energia para los IBS
que opera en la base de las bandas pero que incorpora completamente la composicién
orbital y las simetrias de las excitaciones de baja energia. Esta descripcién, originalmente
propuesta en [26,27], revel6 una precisa dependencia orbital de las fluctuaciones de espin.
La descripciéon en términos de fluctuaciones de espin con selecciéon orbital conserva la
simplicidad de los modelos basados en las bandas, pero tiene en cuenta el grado de libertad
orbital. Al igual que en la descripcion multibanda, la aparicion de las fases ordenadas puede
explicarse analizando la interacién entre espines y sus fluctuaciones en varios 6rdenes; con
este modelo, sin embargo, las fluctuaciones de espin proporcionan ademas, una seleccién
orbital lo que tiene profundas consecuencias. Esta propuesta ofrece un marco comun que
tiene en cuenta la relacién entre el espin y el orbital y que también puede explicar el origen
y la relacion de las distintas fases de los IBS.

A lo largo de esta Tesis, comparamos la fisica del OSSF model con las descripciones
obtenidas con los modelos multibanda y multiorbitales para resaltar las ventajas de un
anélisis tedrico basado en el modelo OSSF. La descripcién de baja energia dada por
el OSSF model nos permite calcular de manera factible funciones respuesta que pode-
mos comparar con los resultados experimentales. También podemos obtener resultados
analiticos en ciertos limites que nos proporcionan resultados fisicamente comprensibles
que se pueden interpretar facilmente y nos proporcionan una mayor comprension de la
fenomenologia de los IBS. Ademés el modelo se puede adaptar facilmente para analizar la
fenomenologia de las diferentes familias de los IBS.

Esta Tesis cuenta con seis capitulos. Los dos primeros contienen un resumen de los
resultados experimentales y teoricos obtenidos para los IBS en la literatura. El resto de la
Tesis contiene el trabajo original llevado a cabo durante este programa de doctorado.

En el Capitulo 1 damos una vision general de los IBS, resaltando los aspectos experi-
mentales y teéricos que han servido como motivaciéon para este trabajo. Primero resumimos
la fenomenologia de los IBS y discutimos sus propiedades electronicas enfatizando el ca-
racter multiorbital de estos sistemas. Luego introducimos los enfoques tedricos usados en
la descripcion de la fisica de baja energia de los IBS dentro de un escenario impulsado por
el espin: los modelos multibanda y multiorbitales. Mostramos como es necesario un mode-
lo efectivo de baja energia que incluya el grado de libertad orbital para reproducir toda
la compleja fenomenologia de los materiales basados en hierro y proporcionar una vision
unificada de los diferentes miembros de las familias de los IBS. En el Capitulo 2 revisamos
los pasos necesarios para la derivacién del modelo OSSF y lo comparamos con los modelos
de bandas de baja energfa para demostrar como la inclusién del grado de libertad orbital
afecta cualitativamente al resultado del anélisis. También discutimos como el parametro
de orden espin-nematico en el modelo OSSF esté definido de manera inequivoca y tiene
una interpretacion fisica clara, en comparacién con el parametro de orden espin-nemético
definido en el anélisis multiorbital.

Los capitulos siguientes contienen el trabajo original llevado a cabo durante esta
Tesis. El objetivo principal de este trabajo es entender el diagrama de fases de las diferentes
familias de IBS dentro de un mismo marco comun dado por el modelo OSSF.
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Empezamos analizando, en el Capitulo 3, la excitacion magnética y la superconduc-
tividad mediada por espines en el modelo OSSF con un anélisis RPA. Primero, calculamos
explicitamente la dependencia orbital de la susceptibilidad de espin magnética para una
superficie de Fermi tipica de un IBS. Luego, asumiendo que las fluctuaciones de espin me-
dian la superconductividad, analizamos el vértice superconductor y las ecuaciones del gap.
Nuestros resultados son comparados con el analisis RPA analogo para un modelo multior-
bital y mostramos como la selectividad orbital, codificada en el modelo OSSF, simplifica
sustancialmente el analisis permitiendo un tratamiento analitico de éste, al tiempo que
conserva todas las caracteristicas principales de tanto las excitaciones de espin como de las
ecuaciones del gap calculadas en un modelo multiorbital.

En el Capitulo 4 analizamos la anisotropia en las propiedades electrénicas de los
IBS en la fase nematica. En particular, calculamos analiticamente y numéricamente la
anisotropia en la conductividad dc en la fase neméatica usando parédmetros realistas para
reproducir varias familias de los IBS. Con ello queremos abordar dos preguntas principales:
Primero, ;jcomo afecta la anisotropia de las fluctuaciones de espin con seleccién orbital, en
el origen de la nematicidad, a la resistividad dc? En segundo lugar, ;podemos reconciliar
en un sé6lo marco tedrico toda la variedad de diferentes anisotropias que se encuentra
experimentalmente para los distintos materiales de las diversas familias de IBS? Calculando
explicitamente la funcién respuesta de la corriente en el modelo OSSF podemos demostrar
que gracias a la interaccién entre el espin y el orbital, codificada en nuestra descripcion, la
anisotropia de las fluctuaciones de espin con seleccién orbital afecta de manera anisotrépica
tanto a la velocidad como al tasa de dispersiéon de los electrones. Este resultado difiere
cualitativamente del obtenido en un modelo impulsado por el espin multibanda, en el que
solo la tasa de dispersion de los electrones se ve renormalizada. A continuacién hacemos un
analisis profundo de los resultados de nuestros calculos para las diferentes familias de IBS.
Gracias a este analisis podemos clarificar los diferentes grados de libertad que afectan al
resultado y nos permite conciliar las observaciones experimentales reportadas en diferentes
familias de IBS dentro de un mismo marco tedrico.

El modelo OSSF ha estudiado el modelo de cuatro areas que es representativo de la
mayorfa de IBS. Sin embargo, para llevar a cabo un analisis completo de los IBS se requiere
un modelo de cinco areas. Esta area extra difiere entre los compuestos y depende del dopaje
o de la presion aplicada. En el Capitulo 5 extendemos el anélisis del modelo OSSF al caso
de una superficie de Fermi con cinco areas. Generalizando lo que se hizo anteriormente para
un modelo de cuatro areas, derivamos la accion efectiva en términos del grado de libertad
del espin y definimos el modelo OSSF para el caso de cinco areas. Luego discutimos la
fisica nueva que emerge de esta generalizacién comparando los resultados obtenidos en
este modelo con los obtenidos con un modelo de tres o cuatro areas.

En el capitulo final de esta Tesis, Capitulo 6, exponemos nuestras conclusiones y
proporcionamos algunas de las posibles vias de investigacidén que se podrian seguir a partir
de esta Tesis.
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Iron-based Supercondutors

Iron-based superconductors were discovered in 2008 when Hosono and coworkers
reported the observation of a superconducting transition below 7, = 26K in LaOFeAs
under F-doping [12|. Since then, several members of the iron-based superconductors (IBS)
family have been identified [9, 10]. All IBS present a similar layered structure whose
common building block is the Fe-atoms square lattice. Ab initio band structure calculations
including all the five Fe-d orbitals qualitatively reproduce the Fermi Surface experimentally
observed, with several hole- and electron-like bands crossing the Fermi level in different
parts of the Brillouin zone [16-20].

The multiband character of the electronic structure has been immediately recognized
as an unavoidable ingredient of any theoretical description of the unconventional IBS su-
perconductivity. Already in 2008, indeed, it was proposed that pairing could be mediated
by the exchange of repulsive spin fluctuations between the hole and electron bands, con-
nected at the Fermi level by the same wave-vector characteristic of the spin modulations of
the magnetic phase [19,20]. However, within this scenario, the Fermi Surface geometry of
a system should rule completely its phenomenology; on the contrary, we find a huge variety
of phase diagrams associated to materials characterized by similar Fermi Surface. In that
respect, it has been recently proposed that the orbital composition of the bands connected
by the spin fluctuations could play an essential role and determining which instability is
realized at low-temperature [26,27]. This proposal requires to revise the standard spin-
fluctuations low-energy model originally discussed in [28| including the orbital degree of
freedom in the low-energy description of both the IBS bands and the spin excitations.

In what follows we provide a brief overview of the IBS phenomenology, we discuss
explicitly as the multiband/multiorbital physics is accounted in theoretical approaches
based on a spin-fluctuations scenario for IBS and show how the orbital selectivity of the
spin-excitations naturally emerges in a description that incorporate the orbital degree of
freedom in a low-energy multiband modeling.

1.1. Materials and Structure

The crystal structures of all IBS is characterized by the presence of a tetrahedral
Fe-pnictides/chalcogen layers in which the iron ions form a planar square lattice, while
the pnictogen (P, As) or chalcogen (S, Se, Te) ions are located at the center the squares,
alternatively above or below the Fe-planes. Depending on the family, we find the tetra-
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(a)

(b) SrfFe,As,

LaFeAsQ/
SrFeAsF

Figure 1.1: (a) Crystallographic structures of various families of iron-based superconductors.
(b) Tetrahedral structure of the Fe-pnictide/chalcogen common to all superconducting compounds
(iron in red, pnictogen/chalcogen in gold). Adapted from [29].

hedral Fe-pnictide/chalcogen layer separated by alkali, or rare-earth and oxygen/fluorine
blocking layers. In Figure 1.1 some of the common structures are shown: 1111 are com-
pounds with alternating FeAs and RE(O,F) sheets (RE= Rare Earth= La,Nd,Ce,etc.); 122
systems have two FeAs layers sandwiched between A (=Ba,Sr,K) layers; 111 as LiFeAs and
NaFeAs are compounds with a single layer in between the FeAs plane: and 11, as FeSe,
has the simplest structure as it does not have any filler species in between the iron-based
layer.

1.2. Phase Diagram and tuning parameters

Superconductivity is only one of the several quantum phases of the matter that can be
found in IBS. In Figure 1.2 we report the temperature-doping phase diagrams for different
systems: (a) 1111 F-doped LaOFeAs [30] (b) 122 P-doped BaFesAsg [31] and (c) 11 S-doped
FeSe [32]. Electron/hole doping, isovalent chemical substitutions or intercalations, and
external pressure are typical tuning parameters that drives superconductivity [10,11,33].

In most IBS, the parent compounds is characterized by a spin-density wave (SDW)
i.e. a metallic antiferromagnetic phase. The SDW transition is often coupled with a struc-
tural transition from a high-temperature tetragonal to a low-temperature orthorhombic
phase. The region enclosed between the structural transition and the magnetic one is
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Figure 1.2: Phase diagrams for the x-doped systems (a) 1111 LaO;_,F,FeAs [30], (b) 122

BaFeg(As;—zPyr)g [31] and (c) 11 FeSe; .S, [32].

the so-called nematic phase. This phase is characterized by a strong x/y anisotropy of
the electronic properties of the system. The SDW and superconducting state are intim-
ately related by either closely neighbouring (as in LaOFeAs and CeFeAsO systems), or
interpenetrating to each other (as in K-doped BaF'eaAss). The normal phase from which
superconductivity emerges at low-temperature is a metallic paramagnetic state character-
ized by strong correlations (bad metal). It is worth noticing that, even if IBS share similar
crystal structures, their phenomenology can be very different as in the case of FeSe for
which a nematic state, realized at Ts ~ 90K, evolves in a superconducting phase below
T. = 9K without the emergence of long-range magnetism.

We further discuss the instability and features of the ordered phases of IBS and the
different phenomenology of FeSe vs 122 systems in Section 1.4.

1.3. Electronic Structure

Density Functional Theory (DFT) and local density (LDA) calculations [16-20] pre-

dicts a semimetallic behaviour for the parent compound with the density of states around
the Fermi level dominated by the Fe—pnictogen (or chalcogen) planes. In undoped com-
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pounds, Fe is in a (3d) valence state and the crystal field between the orbitals is much
smaller than the bandwidth. This implies that all the d-orbitals participate to the forma-
tion of the low-energy electronic bands. Most IBS present two sets of disconnected Fermi
surface sheets with two or three hole-pockets centered at the Brillouin zone center (I'-
point) and two electron-pockets near the zone boundary. Mainly three orbital, d,., dy.,
dyy, participate to the formation of pocket at the Fermi level. Notice that because of the
tetragonal symmetry the yz/xz orbitals are locally degenerate.

As mentioned above, while the Fe-ions sit on a planar two-dimensional square lattice,
the pnictide/chalcogen ions are located alternatively above or below the Fe-plane. As a
consequence the unit cell contains two inequivalent Fe positions. For many IBS, for the
k., = 0 plane, there is a rigorous procedure of exact “unfolding” of bands to a reciprocal
space corresponding to a single Fe atom per unit cell [34,35]. In Figure 1.3 we show a
sketch of the crystallographic unit cell contains the 1-Fe/2-Fe in real space (a) and the
correspondent unfolded/folded Brillouin zone (b) for a generic IBS. One can discuss much
of the essential physics in the 1-Fe unit cell in the unfolded Brillouin zone, this is the
notation we use throughout this thesis unless mentioned otherwise.

(@) (b)
@ 9

(—m, 7 M = (m,7)
), ) X = (m,0)

o o

9 <

Figure 1.3: 1-Fe (red) and 2-Fe (blue) unit cells in (a) real and (b) momentum space. In (a),
gray denotes Fe-atoms and purple denotes the pnictogen/chalcogen-atoms in staggered positions
above and below the Fe-plane. In (b), the corresponding unit-cells in momentum space are shown
with schematic Fermi surfaces overlaid. Adapted from [36].

From Figure 1.3 we can learn another important feature associated to the IBS Fermi
surface: hole- and electron-pockets can be matched via a translation by momentum vector
Q = (7,0)/(0,7), which is the same wave-vector defining the periodicity of the IBS mag-
netic ordered state. This effect of nesting between matching Fermi surface can drives the
system into certain particle-hole instabilities, e.g. the SDW.

The presence of multiple disconnected Fermi surfaces predicted by ab initio calcu-
lations has been widely confirmed by experiments. Well-defined Fermi surfaces having
hole/electron character have been observed both in the parent compounds and doped
IBS by quantum oscillations (QO) [37-44] and angle-resolved photoemission spectroscopy
(ARPES) experiments [45-50| that also provide an experimental observation of the con-
ditions of the Q = (m,0)/(0,7) nesting between hole and electron pockets [51-53]. The
multiorbital character of the Fermi surface has also been widely experimentally investig-
ated e.g. using the polarization-sensitivity of the orbitals in ARPES to identify the orbital
characters of band structure |21].
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Although the qualitative agreement between ab initio calculations and experimental
findings, two main discrepancies can be observed. First, by comparing ab initio bands
with ARPES and QO measurements, a large band renormalization factor > 3 can be
estimated (see e.g. [42-44,46,54-56]), i.e. ab initio calculations consistently give bands
that are more dispersive than the measured ones. This is a clear indication that electron-
electron correlations are important in IBS, although their metallic behaviour [57,58]. The
second discrepancy is found at low-energy, i.e. around the Fermi level, where we find a
substantial shrinking of the experimental Fermi pockets with respect to the ones predicted
by LDA [37,40,41,59]. Such a discrepancy is quite large in some cases as e.g. in FeSe,
where of the two hole-pockets predicted by DFT at I', only one is experimentally found
crossing the Fermi level [55,60]. This effect has been theoretically analyzed in terms of
self-energy renormalizations induced by repulsive interband spin-fluctuations [60-62| as we
will discuss in Section 2.3.
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Figure 1.4: Schematic plot showing (a) band structure along k, direction and (b) corresponding
Fermi surface of a generic IBS in the 1-Fe BZ. The dashed lines represent DFT-predicted I'-centered
holes (blue) and X /Y -centered electron (green) bands. The solid lines represent the renormalized
bands, as observed in dHvA and ARPES experiments, with energy shifts giving rise to a Fermi
pocket shrinkage. Adapted from [62].

1.4. Instabilities and ordered phases

Magnetism The parent compounds of many IBS develop below T a metallic long-range
SDW order, whose magnetic arrangement can vary depending on the material [11,22,63].
In many IBS the long-range order is a columnar SDW, with two interpenetrated Néel
spin lattices such that antiferromagnetic stripes form along one direction which ferromag-
netic stripes along the perpendicular direction. Notice that the columnar SDW ground
state is actually doubly degenerated i.e. the Q = (w,0) magnetic order in which we
have antiferromagnetic order in the z-direction and ferromagnetic in the y-direction of the
Fe-Fe first neighbours direction is degenerate with the Q = (0,7) in which the ferromag-
netic/antiferromagnetic arrangement is realized along the perpendicular directions. Notice
that this SDW is characterized by the same wave vector of the nesting match.
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Two opposite view can be used as starting point of a theoretical description of mag-
netism in IBS: an itinerant view in which electrons are delocalized and a strong coupling one
in which electrons are localized on the atomic lattice and can be consider as localized spins.
The itinerant approach was supported by the metallicity of the parent compounds, the low
magnetic moment, and the apparent nesting on the Fermi surface with a wave-vector. The
strong coupling approach was motivated by the observed band renormalization, the bad
metallicity and later by the discovery of families of IBS whose magnetic order could not
be explained by Fermi surface nesting [22].

In what follows we will perform our theoretical analysis starting from an itinerant
description of the electrons in which the effect of the band renormalization is taking into
account phenomenologically to describe the IBS phase diagram.

Superconductivity Since the discovery of IBS, various experimental probes [45,48, 64—
68] indicate that quite different symmetries of the superconducting order parameter can
be realized in IBS. Nowadays there is a general consensus, based on nuclear magnetic
resonance (NMR) [68,69] and inelastic neutron scattering (INS) [67] experiments, that
in moderated doped IBS the gap symmetry is sy (see Figure 1.5): a gap function which
changes sign between electron and hole pockets but not necessarily within the same pocket.
Notice that this implies that the electron/hole gap is s-wave but can present accidental
nodes [34,70].

In Figure 1.5 we show two other states that have also been proposed for at least some
IBS: one is a conventional s-wave state where the gap function has the same sign over the
whole Brillouin Zone (s4 ) [29]; the other is the d,2_,2-wave [71], where the interpocket
repulsion between two electron pockets become dominant over other interactions in the
Brillouin Zone.
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Figure 1.5: Different gap symmetry (s-wave and d-wave) and structure in IBS represented in the
1-Fe Brillouin zone. Different colors stands for different signs of the gap. Adapted from [34].

To determine the structure and symmetry of the superconducting order parameter is
crucial to get information about the microscopic pairing interaction in IBS [72]. As already
mention, IBS are unconventional superconductors since the calculated electron-phonon
coupling can not account for the high values of T, [73]. That leaves a nominally repulsive
screened Coulomb interaction as the most likely source of the pairing. The excitations
that pair electrons are now those of the electronic medium itself, either spin or charge
fluctuations. Those, however, mediate pairing in different channels: a sign-preserving s 4
s-wave state is expected from orbital-fluctuation mediated pairing |74, 75|, whereas a si or
a d-wave state is promoted by spin-fluctuation mediated pairing [19, 70, 76].
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Chapter 1. Iron-based Supercondutors

In this Thesis, we do not investigate different pairing channels. We assume spin-
fluctuation mediating the pairing and analyze the relevance of the orbital-degree of freedom
in determining the main features of the superconducting gap functions.

Nematicity The term nematic first appears in the context of isotropic liquid crystals
as a phase characterized by a broken rotational symmetry and an unbroken translational
symmetry [77,78]. In crystalline solids, being in a lattice, the rotational and translational
symmetries are always broken. In this context we use the term nematic to indicate a
phase in which the point group symmetry of the lattice is reduced from tetragonal to
orthorhombic, i.e. a phase characterized by a Cy — (5 breaking symmetry, whereas
translational symmetry is preserved (for further details see Appendix A).

Nematic states have been reported in many IBS [11,29,79]. A structural transition
from a high-temperature tetragonal phase to an orthorhombic one spontaneously breaks
the discrete fourfold rotational symmetry of the lattice, making the x/y directions of the
Fe-Fe plane non-equivalent. The nematic state, can be interpreted as a regular structural
transition driven by the vibrations of the ions of the lattice [80] (see Figure 1.6a). However,
several experimental probes highlight a much larger anisotropy in the electronic properties
of the system than expected from the structural changes alone [81-83] (see Figure 1.6b).
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Figure 1.6: (a) Structural distortion from a tetragonal (dashed line) to an orthorhombic (solid
line) unit cell. Adapted from [23]. (b) Temperature dependence of the in-plane resistivity of under-
doped Ba(Fej_,Coy)aAsa, x = 0.016. Solid and dashed vertical lines mark critical temperatures
for the structural and magnetic phase transitions Ts and Ty respectively. The parallel (p,) and
perpendicular (p,) components of the in-plane resistivity start to differentiate already before T's
and remain different until reach very low temperatures where they drop due to the superconducting
transition. Adapted from [84].

This observation suggests an electronic origin of the nematic transition, however
does not provide a clear indication about which electronic degree of freedom drives the
transition [23]. Within a spin-fluctuation driven scenario, the nematic phase is a precursor
effect of the SDW order that usually emerges at lower temperature by selecting an ordering
wave vector along the x direction. In this scenario, the static spin susceptibility becomes
different along the ¢, and g, directions of the Brillouin zone before the conventional SDW
state develops. Within an orbital-fluctuation scenario, nematicity is driven by the charge
unbalance created by a different occupation ng./n,. of the xz/yz orbitals. As orbital
and spin degrees of freedom are strongly entangled, it is not easy to discriminate their
respective role. The fact that both those quantities, spin-fluctuations along z/y and xz/yz
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polarization, are anisotropic in the nematic phase leads to a typical ‘chicken and egg
problem’.

In that respect, it is relevant to to ask a more general question: should we expect to
find the same mechanism driving the nematic instability in different materials, or should we
invoke different fluctuation mechanisms? It could seems, in fact, hard to develop a unified
picture that could account for the variety of the different realization of nematicity in
different family of IBS. For example, in 122 the nematic instability is always found slightly
above the magnetic transition, making the spin-driven mechanism the main candidate for
explaining the origin of nematicity. On the other hand, the lack of magnetic order in FeSe
and the orbital ordering measured by ARPES experiments [85,86], seem to support model
for nematicity as due to orbital ordering [87-93|. Another aspect that seems difficult to
reconcile assuming nematicity driven by a common mechanism in IBS is the variety of
anisotropy in the electronic properties found for different compounds. For example, if we
analyze the dc resistivity anisotropy in the nematic phase of IBS we find that the anisotropy
measured in 122 hole-doped systems [94] and FeSe [95] is opposite with respect to the one
find in the electron-doped 122 [82].

In this Thesis we do not investigate the origin of the nematic phase. We adopt a
spin-nematic view [23] and address the question whether it is possible to reconcile within a
single theoretical framework the variety found in the realization of nematicity in different
family of IBS.

1.5. Modeling iron-based superconductors within a spin-
driven scenario

In this section we provide a compact overview of theoretical models used to described
the low-energy physics of IBS, highlighting the differences between orbital- and band-based
modelings. The scope of this review is to point out the main advantages/disadvantages of
multiorbital /multiband descriptions and introduce the Orbital Selective Spin-Fluctuations
(OSSF) model used in this Thesis.

As already mentioned, in what follows we adopt an itinerant view. We use effect-
ive low-energy models that capture the electronic states near the Fermi level and their
interactions, to describe the properties of the ordered phases appearing in the phase dia-
gram. However, this weakly electron correlated view is not completely appropriated. In
fact, extensive theoretical and experimental studies in IBS have highlighted the relevance
of electron correlations driven by local interactions and there is now a general consensus
that the bad metallic behavior of the normal state can be described in terms of the Hund’s
metal physics [57,58]. At the same time, the interplay between those electronic correla-
tions and low-energy fluctuating modes is still poorly investigates. Recent analysis [96,97]
show that Hund’s driven correlations could potentially enhance the tendency of the system
towards certain instabilities, e.g. superconductivity. Although extremely promising, the
analysis of electronic correlations from local interactions and their effects at low-energy is
beyond the scope of this Thesis. In what follows we adopt an effective approach in which
the renormalization of the bands due to local interactions is already taken into account
and projected into a low-energy effective interaction.
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1.5.1. Multiband models

Within a spin-fluctuation driven scenario, all the instabilities observed in the phase
diagram of IBS follows from the near nesting between hole-like and electron-like Fermi
surfaces. Multiband models are band-basis low-energy model with phenomenologically-
derived interactions between low-energy electronic states. They offer an appealing and
simple framework to study magnetism, superconductivity and spin-nematic order. They
ignore, however, the orbital content of the low-energy states, and as such they are generally
blind to phenomena involving orbital physics. Multiband models has been extensively stud-
ied using a variety of methods involving different approximations e.g. mean-field, random
phase approximation (RPA) calculations, Ginzburg-Landau analysis and renormalization
group (RG) [25,98-101].

In order to illustrate the strengths and weaknesses of this approach, we consider
a minimal model with three-band, one hole band centered in I', and two electron bands
centered in X and Y. The non-interacting Hamiltonian in the band basis reads

gt =5 (gcjnkgcmka (1.1)

m ko

where m = I', X, Y labels the hole/electron bands. cjnk , is the fermionic operator that
creates an electron in the band m with spin o and momentum k. The band dispersions, €,
are parametrized as simple tight-binding or parabolic dispersions, with no reference to their
orbital content. The typical Fermi surface described by Eq. 1.1 is sketched in Figure 1.7a.
Multiband models of interacting Hamiltonian containing all possible interactions between
the low-energy electronic states can be studied via e.g. RG [98]. Here, we focus on
interactions in the spin channel only and we explicitly consider the exchange of spin-
fluctuations between nested Fermi surface i.e. with momenta near Qx = (7,0) and Qy =
(0,7)

1 =
HS ™ = = Stgpin (for- 5%+ Sy - 5%,) ( (1.2)
q
. XY - X/Y
with Sq/ = Z (Lsasslckiqs, (1.3)
kss’

Here wp;r, is the coupling constant, o4y the Pauli matrices and gé( /Y is the interband spin
operator that describes the spin exchange between the hole pocket at I' and the electron
pocket at X/Y. The consequences of nesting can be illustrated already considering the
bare static spin-susceptibility, x x/y(q) = (gé( / YS?[( / Y)
at Qx/y. This can be rewritten as

, associated to the spin-exchange

XYY p(er
Xx/y(Q) = Z A k;;ly) fr( k) (1.4)

k €k+q ~ %k

where f(e') are the Fermi distribution function for the m-band and q indicates the small
momentum around Qx/y. In the presence of nesting between the bands, i.e. eE = —ef/ Y,
the xx/y(q = 0) diverges logarithmically. Notice that the susceptibility develops initially
two equivalent peaks at Qx/y (see Figure 1.7b) with the system eventually ordering along

one of the two stripe magnetic ordering vectors below the Néel temperature Ty (not shown).
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Figure 1.7: (a) Fermi surface for three-band model with a circular hole pocket at I" and two
elliptical electron pockets at X and Y connected by the vectors Qx = (7,0) and Qy = (0, 7). (b)
Static magnetic susceptibility x(q) across the Brillouin zone lowering the temperature from above
to below the structural transition temperature Ts. Adapted from [28].

Moving away from perfect nesting the divergence of x X/y(q = 0), Eq. 1.4, is not
realized i.e. the magnetic instability is suppressed, however the exchange of magnetic ex-
citation between the hole and electron pockets can mediate an effecting pairing interaction
at low-energy [19,20,98]. The BCS equation in this case reads

Vers(k—K)
kl

where k' —k is the transferred momentum and V; sy the effective pairing interaction. Given
the repulsive and interband character of the spin interaction mediating the pairing we can
assume V,7¢(k — k') to be a constant for k' — k ~ Qx/y and vanish at other momentum,
ie. Verr(Qx/y) =V > 0. As a consequences we get a set of coupled BCS equation for the
gap functions of the different pocket. As one can see from Eq. 1.5 a gap function having a
preserving sign s-wave symmetry is not a solution. However, if the gap function changes
sign between the nested hole and electron Fermi surfaces, AU = —AX  asin a sy or d-wave
symmetry, then a solution is is allowed.

The three-band model also offers a suitable platform to study the onset of nematic
order |23,28|. Within this approach, nematicity is a precursor effect of the stripe magnetic
order. The idea is illustrated schematically in Figure 1.7b. At high temperatures, above
the structural transition T, spin-fluctuations near the two stripe magnetic ordering vectors
Qx/y are equally strong <§§(> = <§12/) and the system has tetragonal symmetry Cy. Below
Ts the system spontaneously selects one direction along which fluctuation becomes stronger
lowering the symmetry from Cy to Co. This means that <§§(> # (5"32/> before the long-range
stripe order is established below T. In that respect the nematic instability is described
in terms of a spontaneous symmetry breaking in which a nematic order parameter, ¢ =
S?( — 552,, acquires a final mean-field value across the nematic transition temperature,
defined by the divergence of the nematic susceptibility (see also discussion in Appendix A).
We will revise in more details the emergence of nematicity within the three-band model in
Section 2.1.

A similar multiband model has been used to explain the phenomenon of the Fermi
pocket shrinkage, illustrated in Figure 1.4 in Section 1.3. This effect is explained, in [61],
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in terms of renormalization effects induced by repulsive interband interactions. These
effects are computed within an Eliashberg framework via a self-energy function for each
band. Due to the multiband character of the electronic structure and the strong particle-
hole asymmetry of the IBS bands the real part of the self-energy is finite and renormalize
the low-energy bands leading to the shrinking of the Fermi Surface. We will revise the
derivation of [61] in Section 2.3.

Working in the band-basis representation simplifies substantially the modeling of
IBS. As we summarize above, minimal three-band models can successfully reproduce a
number of experimental features of IBS e.g. emergence of stripe magnetism, s supercon-
ductivity, nematicity as precursor of magnetism and Fermi pocket shrinkage. However, this
description does not include information about the orbital composition of the low-energy
bands, thus within a multiband modeling we cannot study phenomena involving orbital
physics nor spin-orbital interplay.

A first consequence of the lack of spin-orbital interplay in multiband approach is the
difficulty to reproduce the angular modulation of the superconducting gap functions. As
already discussed in Section 1.4, in fact, the gap functions in IBS can present different
structures (with or without accidental nodes) depending on the specific compound, despite
the s1 symmetry. Using a multiband description the exchange of spin-fluctuations is
homogeneous along the Fermi surfaces at perfect nesting and any angular dependence
follows from a deviation from that condition, such modulations are however quite small
and cannot reproduce the experimental findings. This was early noticed already in 2009,
e.g. in [102], where it is discussed as the orbital make-up of the states on the Fermi surface
together with the momentum dependence of the fluctuation-exchange pairing interaction
play a key roles in favouring an anisotropic gap.

Another consequence of the lack of orbital information within a multiband approach
is that band nesting is the only model parameter controlling the phenomenology of the
system. Thus, we cannot explain how systems with similar band structure can present a
very different realization of nematicity. For example, FeSe presents a single hole-pocket
at T" nested with electron X /Y -pockets. A similar situation is realized in underdoped 122
compounds where, although two hole bands cross the Fermi Level, only the inner hole-band
presents a good nesting with the electron pockets. Despite the similarity of the electronic
structure the nematic instability is realized slightly above the magnetic transition in 122,
while a much stronger nematicity without magnetism is found in FeSe. Another example
is the variety of dc-resistivity anisotropy found in the nematic phase of IBS that can have
different signs and magnitude depending on the compound under study.

In the next Chapters we show that the inclusion of the orbital degrees of free-
dom within a low-energy modeling is the key solve those discrepancies. In particular,
in Chapter 2 we review the results discussed in [27] that demonstrates that the inclusion of
the orbital information allows us to discriminate between similar band structures and that
different phenomenology is expected based on the orbital composition of the nested bands.
In Chapter 3 we show that, once the orbital physics is taken into account, the orbital
composition of the nested Fermi surface introduces an additional angular modulation in
the spin-fluctuations and as a consequence in the various observable e.g. superconducting
gaps. In Chapter 4 we study, instead, the anisotropy of the dc resistivity in the nematic
phase of IBS [103| and show that the spin-nematic scenario driven by orbital-selective
spin-fluctuations can reconcile the experimental observations reported in different families
of IBS within a single picture due to the orbital-spin interplay encoded in the model.
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1.5.2. Multiorbital Hubbard models

As discussed in Section 1.3, DFT calculations find the density of states of IBS dom-
inated by the Fe-d orbitals. States due to the pnictogen/chalcogen orbitals are located at
much higher energy (approximately 2eV’) below the Fermi level. Nonetheless, the pnicto-
gen/chalcogen orbitals allow for hybridization with the Fe-d states, therefore, an effective
Fe-Fe hopping Hamiltonian on a square lattice defined by the Fe-sites can be constructed,
provided the symmetries of the entire Fe-pnictogen/chalcogen layer are respected.

The observation that mainly three of the five Fe-d orbitals (zz, yz, xy) contribute to
the Fermi surface, motivated early two/three-orbital tight-binding models [104—106]. How-
ever, it was soon realized the minimal tight-binding model that respect all the symmetries
of the Fe-pnictogen/chalcogen plane and correctly reproduce the geometry of the Fermi
surface requires to include all the five Fe-3d orbitals [25,76,107,108|. In Figure 1.8 we show
the bands for the tight-binding model for iron-pnictides proposed in [109]. The electron
pockets at X/Y formed by xy and yz/xz orbitals and the two hole-pockets at I' given by
an opposite arrangement of the yz/xz orbital. Notice that the third hole zy-pocket at the
M-point is parameter sensitive (i.e. not common to all IBS families).
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Figure 1.8: Five-orbital tight-binding model for iron-pnictides from [109]. Fermi surface in the
1-Fe BZ (left panel) and bands dispersion (right panel). The bands are colored according to the
orbital that contributes the largest spectral weight. Adapted from [25].

The non-interacting tight-binding Hamiltonian reads
b /
HY =3 > {0 dhiodio + Y farnio- (1.6)
ijo nn’ o
n,m ={1,2,3,4,5} are orbital indices for the Fe-d orbitals (dy.,dy., dey, dy2_,2, d3,2_,2),
t?jnl are the tight-binding hopping parameters from the 71 orbital on site i to the 7 orbital

on site j, €, the on-site energy of the n orbital and n,;, = d;iadmg the occupation number

with djﬂ , is the fermionic creation. By diagonalizing Eq. 1.6 we obtain the quasiparticle
dispersions (as shown in Figure 1.8). The orbital spectral weights are defined by the
matrix elements a;,(k) = mk|n associated with the rotation from the orbital to the
band space.
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In first approximation, the electron-electron interactions are assumed to be heavily
screened and therefore can be approximated as local. The interacting Hamiltonian for
multiorbital models reads

107;? = Z (’nnnnnu + U, Z NpicNy'ic — J Z gm' : gﬁ'i + J/ Z d;deI]iidﬁ/iidn'iT
in ioyn'<n in'#n in'#

(1.7)
and can be generated using a Hubbard-type approach [110-112]. Here, gm‘ = %d;ioﬁgg/dnw/
is the intraorbital spin operator in the orbital basis, U is the Hubbard repulsion between
electrons on the same orbitals, U’ is the onsite repulsion between electrons on different
orbitals, J is the Hund’s exchange that tends to align spins at different orbitals and .J’
another exchange term usually called a pair-hopping term. Notice that interactions are
assumed to be independent on orbitals. The number of independent parameters can be
further reduced assuming J' = J and U’ = U — 2J the last condition is exact in the case
of spin-rotational invariance [113].

Multiorbital models described by Eqs. 1.6 and 1.7 have been extensively studied
using different methods. In what follows we focus on the results provided by RPA. For
magnetism, such analysis revealed magnetic instabilities towards a SDW order with mo-
menta Qx or Qy, as well as a subleading instability towards a Neel order with Qs = (7, 7)
order [76,114,115]. Assuming that the pairing interaction responsible for the occurrence
of superconductivity in IBS arises from the exchange of spin and charge fluctuations,
the pairing vertex can be computed using the fluctuation exchange approximation [116].
Within the range of parameters typical of underdoped IBS, RPA studies find an anisotropic
sign-changing s-wave state and a nearly degenerate d,2_,2 [76]. The orbital information
included in the model and the momentum dependence of the spin-interactions lead to an
anisotropic solution for the gap even in the s-wave case [34,102]. In Section 3.2 we review
the main steps of the RPA analysis and the results for magnetism and superconductivity
within a five-orbital model.

The main issue with microscopic multiorbital descriptions is that they do not distin-
guish high-energy and low-energy states, which makes it difficult to implement methods
beyond RPA [25]. This is particularly important if we want to study the nematic phase,
in fact, in contrast to usual electronic instabilities, such as magnetic and charge order,
this fluctuation-driven phenomenon cannot be captured by the standard RPA method and
requires the inclusion of fluctuations beyond RPA in the multiorbital interacting model.

An early attempt to describe nematicity within a multiorbital description has been
proposed in [26]. Here one starts from a multiorbital interacting Hamiltonian of Eq. 1.7
and, after projecting it at low energy, i.e. considering only electronic states around the
high-symmetry points, derives the effective action in term of the Qx/y spin-excitations up
to the quartic order. This allows the analysis of the spin-mediated nematicity retaining the
information of the orbital degree of freedom. This study analyzed for the first time the role
of the orbitals in the nematic instability driven by spin-excitations and found out a number
of outcomes of the model that are qualitatively different with respect to the results obtained
within a band-basis description. It was shown, for example, how the orbital symmetry
of the bands connected by spin-fluctuations affects the attractive/repulsive character of
the nematic coupling and how the orbital-weights of the low-energy states affects the
momentum dependence of the spin-fluctuations peaked at Qx/Qy. Moreover, this analysis
provided a theoretical frame to study the spin-orbital interplay showing explicitly how the
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anisotropy of the spin-fluctuations reflects in the break of the zz/yz symmetry in the
charge-orbital sector.

Such analysis, however, is remarkably complex given the number of orbitals involved.
The nematic order parameter is now a matrix in the orbital space,

Gy = SIS — SILSY (15)

and, as a consequence, the nematic susceptibility is a tensor x**" o< (¢pu¢py). The
same definition of the nematic order parameter and susceptibility is found in [117], where,
following the same strategy of [26], the free energy up to the quartic order for the orbital-
dependent spin-fluctuations is derived and the orbital components of the nematic suscept-
ibility tensor are numerically studied.

1.5.3. Orbital selective nature of the spin excitations

A way to deal with the complexity given by the multiorbital description is to reduce
the number of orbitals included in the calculation. For example, one can starts from the
five-orbital Hamiltonian of Eq. 1.6 and restrict the analysis to the subspace of the two
or three orbitals that dominate the low-energy states near the high-symmetry points. By
diagonalizing the quadratic Hamiltonian, one obtains the dispersion of low-energy states in
the band basis in terms of the original tight-binding parameters of the multiorbital model.
The low-energy fermionic operator defined via the diagonalization are used to build up
the orbital-dependent spin-excitations connecting the hole and electron bands. This idea
has been implemented in [26], in which the analysis is restricted to the zz — yz orbital
subsector. This approximation made possible analytical calculations and highlighted a
crucial feature of the spin-nematic model in the orbital basis. In fact, by projecting the
microscopic interaction of Eq. 1.7 on the low-energy state of xz —yz orbitals only, one finds
that spin fluctuations at different Q-vectors become orbital selective, i.e. they involve only
a specific orbital.

The drawback of this procedure is that one builds up the spin-excitations using
the low-energy states obtained from the truncated tight-binding model. These do not
respect all the symmetries of the system and can actually differs from the actual low-
energy dispersions, e.g. extracted from ARPES experiments, due to interaction-driven
renormalizations not accounted within this procedure. To overcome these limitations we
need to project the interacting Hamiltonian into a symmetry adapted low-energy model as
the one derived [118] exploiting the symmetry properties of the Fe-layer and constructing
a minimal model using the Luttinger’s method of invariants. This strategy has been
implemented in Ref. [27] and led to the definition of the Orbital Selective Spin-Fluctuations
(OSSF) model used in this Thesis.

In [27] the low-energy effective description derived in [118]| has been used as the
starting Hamiltonian for the derivation of the spin-nematic action in the orbital-basis. By
projecting the general microscopic interaction of Eq. 1.7 on the low-energy multiorbital
model of [118] one derives an effective spin-nematic action that respects all the symmetry
of the systems while retaining the orbital information of the low-energy excitations using
only three orbitals. This description not only reproduce the orbital-selective nature of the
spin-fluctuation already found in [26], but also leads to a new definition of the nematic
order parameter

¢ =S¥ SY — Sy Sy (1.9)
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that is now a scalar and formally equivalent to the nematic order parameter defined in the
band basis. Notice that the tensorial form of the nematic order parameter, Eq. 1.8 defined
in [26,117] does not contain this result, which in turn is dictated by the only possible
nematic contribution to the quartic order action of the model.

We will discuss more the nature of the nematic order parameter defined within
the OSSF model in Chapter 2 where we derive and discuss the OSSF model reviewing
the results of [27,60]. In Chapter 3, instead, we will focus on the analysis of the spin-
excitations of the OSSF model and on the superconductivity mediated by orbital selective
spin-fluctuations within RPA and compare our results to analogous calculations performed
within microscopic five-orbital models. We will show that the orbital selectivity, encoded
in the OSSF model, simplified substantially the analysis, allowing for analytical treat-
ments while retaining the main features of the spin-excitations computed using five-orbital
models.

The body of work collected in Chapter 2 and Chapter 3 aims to provide both a
complete description of the OSSF model and an extensive comparison of the model with
multiorbital and multiband descriptions. We will show that the OSSF offers a theoretical
frame in which the simplicity of multiband models merges with the orbital information
characteristic of multiorbital descriptions and it allows us to gain a deeper understanding
of the IBS physics.
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Orbital Selective Spin Fluctuation (OSSF) Model

In this Chapter we provide a general description of the OSSF model. First, we review
the main steps of the derivation of the spin-nematic model in the band-basis [28]. We then
analyze how the phenomenology of the model changes once the orbital degree of freedom
is taken into account [26] and introduce the Orbital Selective Spin-Fluctuations (OSSF)
model [27]. Finally, we discuss the self-energy corrections due to spin-fluctuations both in
the paramagnetic and nematic phase of IBS. Also in this case, we start by briefly reviewing
the derivation obtained in the band-basis and summarizing the results of [61], in which the
idea of shrinking of the Fermi pockets as due to self-energy effects was originally proposed.
We then derive the self-energy corrections within the OSSF model and discuss the orbital-
selective shrinking of the Fermi Surface analyzed in [60]. The self-energy corrections from
OSSF will be used in Chapter 4 as input for the calculation of the anisotropy of the
dc-conductivity in the nematic phase of IBS.

2.1. Spin-nematic model in the band-basis

As we discussed in Section 1.5.1, within a multiband description, the three-band
model provides the minimal low-energy model to explain the emergence of striped magnet-
ism, s+ superconductivity and nematicity within a spin-driven scenario. In this context,
the nematic state is a precursor of magnetism that is realized when the system spontan-
eously breaks the Zs-symmetry of the lattice, while still preserving the O(3) spin-rotational
symmetry (see also Appendix A). This idea has been originally discussed in [28] in which
the low-energy effective action for the collective magnetic excitations has been derived. In
what follows we review the main steps of this analysis.

The derivation of the effective action in terms of the spin fluctuations requires the
standard implementation of the Hubbard-Stratonovich (H-S) method [119]. Starting from
a microscopic generic Hamiltonian H [c;(7)], the microscopic action is defined as

Slei(r)] = /( drel(7)[0; — ulei(r) + Hei(7)] (2.1)

with 7 the imaginary time and 8 = 1/7. The partition function of the system can be
computed as the integral over Grassmann variables as

7 = /(Dc e~ Slei(m)] (2.2)
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Chapter 2. Orbital Selective Spin Fluctuation (OSSF) Model

The H-S transformation allows us to decouple the interacting term of S[c;(7)], i.e. the
quartic term in the fermionic operators, by using the functional identity

aa:2 y2
e 2 = /(Dye(_za+y$) a > 0. (23)

with y an auxiliary variable, i.e. the H-S field associated to the bilinear fermionic operator
x. After performing the H-S transformation, the action becomes quadratic with respect
to the fermionic operators, so that we can integrate out the fermions from Eq. 2.2. The
results of this operation is recast back into the exponent, and the partition function is
expressed in terms of the effective action Ser[y]

Z = /(Dyeseff[y]. (2.4)

We now apply this machinery to the low-energy three-band model discussed in Sec-
tion 1.5.1. We report here for simplicity the model Hamiltonian H""d = Hga”d + H fgg‘d
given in Eqgs. 1.1-1.2

ot 33 (I(ncin s~ Stigin Y ({gf 5K+ 8Y 5 ( (2.5)

m ko q

with m = I' XY, € the band dispersions, wspi, the coupling constant and S?f Y

Y s CLI;O_"SS/CfJ/rz;S, the interband electronic spin operator that describes the spin-exchange
bettween hole and electron pockets connected by Qx = (m,0) and Qy = (0,7). We

introduce the six-dimensional destruction (creation) operator \Ill(j)

T (T 01X X Y 1Y
Ve = (G A G G Gt i) (2.6)

and the auxiliary bosonic fields M x/v (a) coupled to 5*'(}1( Yo « and My are the H-S fields
and play the role of the magnetic order parameters in the Landau functional. Applying
the H-S transformation, Eq. 2.3, the partition function reads

Z = /(DMXDMyD\I/ =S My, My] (2.7)

with

sty i, iy = —— [0+ M @) + /(kWLAkkwk (2.9

Uspin Jq
We use here k — k' = ¢, with k = (wn, k), ¢ = (Qn,Q). wp, and Q,, are the fermionic and
bosonic Matsubara frequencies respectively. The Ay matrix is composed by the blocks
Ak,k’|mm = _ér_n}fk/(skk’ (2~9)
A lr x/v = —Mx/v () (2.10)

where we use a compact notation for the spin sector defining Gk = Gill and M Xy =
M x/y 0. Here Gp = (iwn — &™)~ is the non-interacting single-particle Green’s function,
il = e — 1, I and o; are the identity and the Pauli matrices in the spin-space.
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Chapter 2. Orbital Selective Spin Fluctuation (OSSF) Model

By integrating out the fermions from Eq. 2.7 we obtain the effective action in terms
of the H-S fields only

L 2 .
band 2 2
Sty M) = = /ﬁMX@ M)+ rn(Aw) (@
where the integral and the trace act over momentum, frequency, and spin indices. It is
convenient decompose the second term of Eq. 2.11 by separatlng in Egs. 2.9-2.10 the part
with the explicit structure of §i; from the rest Akk/ = —QO + /\/lkk/ This separation
allow us to rewrite in our action

Trin A = Trin ng-1 4+ Trln [i — C;o./\;l} (2.12)

Now we separate the H-S fields My ,y (q) = Mx,y(0) +6Mx/y(q) in its homogeneous and
constant part and its fluctuating part. By minimizing the action with respect to M X/y(())
we obtain the mean-field equations of the magnetic problem that admit two degenerate non
trivial solutions with finite magnetization, (Mx/,y), below a critical temperature, Ty. We
are interested into the analysis of the nematic phase, thus we have to study the fluctuations
of the spin-fields in the paramagnetic phase above Ty, i.e. for <MX/Y> =0. To do that we
need to expand the effective action, Eq. 2.11, up to quartic order in My y. It is easy to
verify that

A A A 1 A A
Temn [{ = GoM| = > ~Tr(Gor)”
rln Go ; - r(GoM)
By using the above expansion up to n = 4 and performing the traces, we are left with

SHH[Mx, My] = Z xgﬂ-le + Z(uijMfsz (2.13)
’L:X’Y ivj:Xv

where the Gaussian propagator x 11 and the quartic coefficients u;; are defined as

-1
Xos =

+2/GF]CG1 ks Ujj = /(G%sz,kG],k (2.14)
Uspin

and we simplified a bit the notation using  Mx/y — My, dropping the k, ¢ dependencies
of the variables and focusing only on the ¢ = 0 contributions. The multiband model is
invariant under 7 /2- rotation so that X(?}( = XS,%/ = Xal and uxx = uyy. We diagonalize
the quartic term of the action and rewrite Eq. 2.13 as

S A A
Sy, My] = xo (M5, + M) + (M5 + MP)’ + (MY — M§)* (2.15)

where we defined Ay, = uxx +uxy and Ay = uxx — uyxy. The magnetic instability
is controlled by the Gaussian propagator x, ! that diverges at the Néel temperature Ty.
Ay and Ay are the couplings of the z/y isotropic and anisotropic fluctuations of the spin-
excitations. The coefficient of the action explicitly read:

2
Xo' = +2 [ GreGxk (2.16)
Uspin
1
=1 /(G%k(GXk + Gyp)? (2.17)
1
Ap = 2AG%k(GXk — Gyp)? (2.18)
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From Eq. 2.15 one immediately sees that a nematic instability is possible only for
Ag < 0 when making the spin fluctuations along x/y different lowers the energy of the sys-
tem. Notice that Ay ~ Gx — Gy, thus it vanishes within a parabolic band approximation
in which the two electron bands are completely degenerate, i.e. G4 = GY = GY. However,
if one takes into account the ellipticity of the electron pockets the result changes. In first
approximation we can account for the ellipticity perturbatively, i.e. we can approximate
the electron Green’s functions as Gy/y = G°(1 F &, cos(20)G®), with the ellipticity para-
meter d ~ (mg — my)/(2mazmy). By substituting the elliptical Green’s functions G'y/y
in Eq. 2.18 and performing the integral, we find that Ay ~ —62. That means, we have
an attraction in the nematic channel. This implies that within the spin-nematic model in
the band-basis the ellipticity of the electron pockets is a necessary condition for nematicity.

In order to analyze the nematic instability, we need to perform a second H-S trans-
formation on the effective action of Eq. 2.15 using as auxiliary fields ¢ and ¢ associated
to M)2< + M)% and M_?( — M}Q/ respectively. The action now reads

St iy, 6,00 = x4 + 0 + [ - 20+
eff ) s @y 0 X Y 2)\¢ 2A¢
+ [wsg + 02+ /<¢<M§< - M) (219

1) gives an isotropic correction to the magnetic susceptibility, while ¢ is the nematic field
that renormalizes in an anisotropic way the X/Y spin propagators. Both these effects can
be seen explicitly by integrating out the spin degree of freedom Mx and My . In this way
the action reads

¢* Y

A (xo ' +v)? - ¢2} (2.20)

band _ v

This means that once the nematic order parameter ¢ acquires a finite value the static
susceptibilities for Mx and My become non-equivalent

1 1

Xx(q=0)=——— @ xy (¢ =0) T (2.21)
where we define y~! = Xo Ly (1), i.e. we included the isotropic correction given by the
¢ field in the definition of the propagator. Eq. 2.21 represents the main result of [28].
From this we understand that (i) the nematic phase is a precursor state of magnetism:
before the divergence of the magnetic susceptibility, when the long-range magnetic order
is not developed (M X/y> = 0, the difference between the spin propagators in the z/y-
direction makes the spin fluctuations along z/y inequivalent, i.e. (M%) # (MZ); (ii) the
nematic order selects a preferred direction and decides along which direction the striped
magnetism is eventually established; (iii) when (¢) # 0 the magnetic transition occurs in
the X/Y channel at Y~! = |#|, i.e. at a temperature larger than before. This means the
nematic transition may occur just before that the magnetic transition takes place as indeed
experimentally found in many IBS.
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2.2. Spin-nematic scenario driven by orbital selective spin-
fluctuations

The main limitation of a spin-nematic model in the band-basis is the absence of the
information of the orbital composition of the low-energy states. As a consequence, the band
nesting of the Fermi surfaces is the only parameter controlling the phenomenology of the
system and compounds with similar band structures and nesting conditions are expected
to display a close phenomenology. However, as we already mentioned, it is experimentally
found that different compounds can present a very different realization of nematicity despite
having similar band structures. In what follows we will explicitly show how by taking into
account the orbital make-up of the low-energy states near the Fermi level we can reconcile
within a single theoretical frame the variety of the nematic realization in IBS.

The idea proposed in [26] is that one can derive a spin-nematic action that retains the
orbital information by projecting the multiorbital interacting Hamiltonian at low-energy
energy and then deriving the effective action following the same strategy used in the band
spin-nematic model 28] discussed in the previous section. A remarkable feature of this
theoretical description is unveiled by the low-energy projection that shows a strong orbital
selectivity of spin-fluctuations at Qx/y, i.e. spin-fluctuations at different momenta involve
only specific orbitals.

The orbital selective nature of the spin-fluctuations is a robust feature of the modeling
and does not depend on the particular procedure implemented to derive the spin-nematic
action. On the other hand, the low-energy model one uses to perform the projection can
affect the definition of the nematic order parameter and the symmetries incorporated into
the model. In particular, in Section 1.5.3 we showed that by using as starting point a
symmetry adapted low-energy model, e.g. [118], one obtains a definition of the nematic
order extremely elegant and simple that makes the physical interpretation of the results
straightforward while allowing for analytical treatment. Thus, in what follows we focus on
the Orbital Selective Spin Fluctuations (OSSF) model derived in [27] using the symmetry
adapted low-energy model of [118].

2.2.1. Model Hamiltonian

We consider a general four-pocket model with two hole pockets at I', I'y and two
electron pockets at X and Y, that can be easily adapted to describe different compounds
among the 122 and 11 families. In Figure 2.1 we show a sketch of the orbital content of
the Fermi surface for a generic IBS. Mainly three orbitals participate the formation of the
Fermi surfaces, yz and zz orbitals at I" and yz/xz and xy orbitals at X/Y.

Symmetry adapted low-energy model

The kinetic Hamiltonian is derived adapting the low-energy model considered in
[118], where the electronic states around the high-symmetry points | = I', X, Y are de-
scribed using a spinor representation in the pseudo-orbital space

-
=3 (Laﬂakwag. (2.22)

k,o
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Here ¢ = (ciZ, ), @ZJX/Y = ( iz/m &) and HOk = hOkTo + hk 7 with 7 the Pauli
matrices representing the orbital isospin. Diagonalizing H0 we find the dispersion relations

and the orbital composition for the bands

Hi=7 " GL’[,A ke (2.23)

k,o

with ¢! = LAllwl the fermionic operator in the band basis and Al = Z/Allfl(l)LA{rl
diag(E", E'-) the diagonal matrix containing the band dispersions E'+ = hé + h! with
hl = \El\ The components of the unitary matrix L?l, that connect the orbital-space to the
band-space, are the coherence factors that represent the orbital content of the [4-pockets.
All the above quantities still depends on momentum and spin, we drop those labels to
make the equations more readable.

Explicitly, for [ = I" for example, the fermionic operator in the band basis reads

h r _,r Yz

and analogous expressions can be derived for the X/Y pockets, provided that the corres-
ponding orbital spinors and I:i’(‘)X Y are used (full expression are available in Appendix B.1).
Notice that at X/Y only the EX/Y+ band crosses the Fermi level, so in the following we
will use eX/Y for the corresponding fermionic operators and EX/Y for the bands dropping
the + subscript.

Xz @

Tr vz e
Xy @
_@\

Figure 2.1: General sketch of the Fermi surface for a generic four-pocket model for IBS. The
orbital composition of the pockets is shown using the color code: red for xz, green for yz and blue
for zy. The arrows show the spin-fluctuation exchange between the nested Fermi surfaces. The
color code represents the orbital selectivity of the spin-fluctuations having yz character along x
direction and xz character along y.

The explicit expressions of (hé, Hl) that reproduce a four-pocket model as the one
shown Figure 2.1 are detailed in Appendix B.1. Notice that in order to lift the degeneracy
of the inner and outer xz/yz pockets at I" we need to account for the spin-orbit coupling
in the Hamiltonian. We added it explicitly by replacing A" — /(hF)2 + A2/4 in the
expression for ET.
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The the non-interacting Green’s functions in the orbital space are given by G =
wl — H} and we can express them via the band Green’s functions using G =u (wl —
AYU' that reads explicitly

R ul 2 ulvl ’Ul 2 —UZUZ
Gl g ) (vl)2> g W) (ul)2>< (2.25)

v'u

where we defined géi i) = (iwn — Ell(i)_l-

Interacting Hamiltonian

We consider the full multiorbital Hubbard Hamiltonian defined by Eq. 1.7 in Sec-
tion 1.5.2. By transforming by Fourier and considering only the spin channel of the inter-
actions we find

1 & i
Hz'nt = _5 Z nn’S (q> -5 (_q)' (226>
q

Here, 1,1 = yz, xz,xy are the orbital indices and U,y ~ Udy,y + J(1 — &,,y) the effective
coupling, with U and J being the Hubbard and Hund’s couplings. Notice that Eq. 2.26
contains only spin operators with intraorbital character S"(q) = > /. cﬁi&’ss/cﬁ tqs’ with
0ss the Pauli matrices for the spin operator. This choice is motivated by the general
finding that intraorbital magnetism is the dominant channel in IBS [22,76,120-122].

We project the interacting Hamiltonian, Eq. 2.26, into the low-energy model defined
by Egs. 2.23-2.24 focusing on spin-excitations with momentum close to Qx/Qy only.
The low-energy projection establishes a precise correspondence between the orbital and
the momentum character of the spin operators §;7(/Y = g”(q = QX/Y):

6 = SR+ oTh ) FuRes
K

Suz = Z—vrh1+urht)6’uyey (2.27)
K

As a consequence, the interacting Hamiltonian of Eq. 2.26 simplifies substantially and once
the spin-exchange interaction is projected at low energy it reduces to

U

Hint = _5

(S - §% + S¢7 - §%) (2.28)

where U is the intraorbital interaction renormalized at low energy.

This is a crucial result of the OSSF model [27]: the projection of the generic interac-
tion Hamiltonian into the low-energy model, Eq. 2.23, generates a one to one correspond-
ence between momentum Qyx/y and orbital character yz/zz of the spin-fluctuations. In
fact, as one can see also from Figure 2.1, at low energy the yz/xz-fermionic states exist
only around Qx/Qy, thus spin operators 537( with n # yz and 5;7, with 1 # zz are absent
in Eq. 2.28.

The orbital selective character of the low-energy spin-excitations makes the interact-
ing Hamiltonian for the spin-channel, Eq. 2.28, considerably simpler than the one obtained
within a five-orbital tight-binding model, Eq. 2.26. As a matter of fact, Eq. 2.28, while re-
taining the orbital dependence of the spin excitations does not acquire a complex tensorial
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form and is instead formally equivalent to the spin-spin interacting Hamiltonian written
in the band-basis, Eq. 1.2. This implies that in order to derive the effective action we
can simply use the derivation of [28] that we revised in Section 2.1. Notice that although
formally equivalent to a band-model, the OSSF model allows the analysis of orbital phys-
ics and as we will discuss, it is able to describe a much richer phenomenology due to the
spin-orbital interplay encoded in the model.

2.2.2. Effective action for orbital selective spin excitations

We exploit the orbital-selective character of the OSSF model that makes the model
Hamiltonian, Eqs. 2.23 and 2.28, formally equivalent to the multiband model, Eq. 2.5,
and decouple the interaction term by means of two H-S field Mgf and M following the
same derivation of Section 2.1. The effective action up to quartic order becomes

_ Yz Tz X_l 0 Myz Yz Tz u u (Myz')2
Seff—(MX My)< X Xyl> Mé)é(wx )2 (ME )2)<UE u;z) (Mgz)g)
(2.29)

Here X)_(}Y =1/ 2U + Hi/(z//;fz is the Gaussian susceptibility that controls the magnetic

instability, with U the effective interactions between low-energy quasiparticles, and Hgg// ;Z

the propagator in the long-wavelength and zero-frequency limit

I = 27 ) (upukgigx + viukg-gx), (2.30)
k,iwn,

%% — 92T 2,2 2,2 2.31

y = Z VUy g+ gy +ur)uy g-gy). (2.31)
k,iwn,

The coefficients of the quartic part of the action in Eq. 2.29 are

uyp = T Z uX gx)* (ufgy + vig-)?, (2.32)
k,iwn,

up = T Z u¥ gy ) (vigs + upg-)?, (2.33)
k,iwn,

uy = T Y fukgxuygyuivi(gy —g-)° (2.34)
k,iwn,

Notice that as a consequence of the orbital selectivity of the low-energy spin-excitations,
we find the same fermionic loops found in effective action derived in the band basis given
by Egs. 2.14 weighted by the coherence factors u!,v! defining the orbital content of each
pocket. It is easy to verify, in fact, that if we neglect the orbital weight, i.e. set u! = v =1
in Eq. 2.32-2.34, we recover indeed the expressions, Eqs. 2.14, obtained in the band-basis.

Since u11; = ug2 due to Cy symmetry, the quartic part of the action, Eq. 2.29 can be
simply diagonalized as

S = Av? + Mpg? (2.35)
where in analogy with the band case we have define Ay, and Ay and ¢ and ¢ as

1 Yz\2 2

= — + (M) Ay =u11 +u 2.36

¢ \/5( X7+ (MP)?) [ Ay = unn + ue (2.36)
1 Yz\2 2

= — (MJF)?),[ Ay = up1 — uqo. 2.37

¢ \@(( )= (MP*)?)( A = un1 — w2 (2.37)
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It is worth noticing again that the tensorial forms of the nematic order parameter pro-
posed in [26,117] do not contain the result of Eq. 2.37, which in turn is dictated by the
only possible nematic contribution in Eq. 2.29 for the OSSF model (see also discussion in
Section 1.5.3).

To compute the nematic transition temperature we have to perform a second H-S
and study the divergence of the nematic susceptibility. However, as we already pointed
out in the previous section, a necessary condition to have nematicity is to have attraction
in the nematic coupling i.e. Ay < 0. While in the band spin-nematic model this is only
controlled by the shape of the electron pockets, here the orbital composition of the nested
band plays an important role. This feature allows us to explain why systems having similar
band structure can display a very different realization of nematicity as we shown in the
next section.

2.2.3. Role of the orbital nesting in the OSSF model

To make a first estimate of the role of the orbital weights in affecting the magnetic
and nematic instabilities we consider the simple case where the hole and the electron
pockets are perfectly nested circular Fermi surface, so that the orbital weights and the
Green’s functions reduce to

ur = uy = vx = cosf, ur = vy = ux = sinf (2.38)

9+ =9-=gn=(iwn+ )" gx =gy = ge = (iwp — )" (2.39)
with € = —eg +k?/2m — . € is the off-set energy, m the parabolic band mass and y the

chemical potential (further details in Appendix B.2). Within this approximation we can
carry out explicitly the integration in Eqs. 2.30-2.34 using the usual decomposition

Zkzé /L<z (i}){2 N /027r % / deNr (2.40)

where 6 the azimuthal angle and Np = m/27 is the two-dimensional density of state per
spin at the Fermi level. In fact, the coherence weights, Eq. 2.38, depend on 6 only, and the
Green’s functions, Eq. 2.39, only on €. For what concerns the magnetic instability, the spin-
fluctuations bubbles Hg(z//;z, Eqgs. 2.30-2.31, are both proportional to Il = Tzkﬂwn Gegh
that lead to the usual log divergence: Il., ~ —Nplogwy/T where Np is the density of
states and wy an upper cut-off. On the other hand, the orbital renormalization of the

Sé?f) action is much more severe. Indeed, considering two hole pockets of same size, one
immediately finds from Eq. 2.33 that ujo = 0. This leads to a large positive nematic
eigenvalue Ay in Eq. 2.37, which prevents the occurrence of nematicity, in agreement with
renormalization group studies on the four-pocket model [123].

To simulate the case of specific compounds we consider two three-pocket models in
which a single hole pocket at I" is well-nested with the elliptical electron pocket

(a) The 3p4 model which reproduces FeSe (see Figure 2.2a), where only the outer pocket
I'; crosses the Fermi level while the inner pocket I'_ sinks below it before the nematic
transition [32,60].

(b) The 3p_ model which simulate 122 systems (see Figure 2.2b), where the outer pocket
Iy is much larger than the electron ones, so it weakly contributes to the nesting [45].
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Notice that these two cases are completely equivalent and indistinguishable within a band-
based description. On the contrary, within the OSSF model, they are different as the
orbital composition of the hole pocket is opposite in the two case, as one can see from
Figure 2.2. As a consequence the two systems are characterized by a different degree of
orbital nesting. In fact, by translating the Fermi surfaces of Qx/y we observe the orbitals
matching between the hole and electron pocket of the 122 system, while in the FeSe case
there is a clear orbital mismatch.

(a) XY (b) LEXY

() (
\\

—
=/

FeSe ® yzorbital AFe, As,
® xz orbital -
® xy orbital

O

\J

() -

Figure 2.2: Sketch of the orbital content of the Fermi surface for (a) FeSe in which only the
outer hole pocket is present. A clear orbital mismatch between the hole and electron pocket is
shown. (b) 122 in which the outer hole pocket is much larger than the inner hole pocket, so it can
be neglected in first approximation. An orbital matching between the inner hole and the electron
pockets is shown and thus a robust orbital nesting. Adapted from [27].

We focus first, on a perfect nested parabolic band approximation, see Eqgs. 2.38-2.39.
In the 3p, model for FeSe it is easy to verify from Egs. 2.32-2.34 that uY; = uY,, and thus

the nematic coupling )\zMXY = 0. In the 3p_ model for 122 instead, thanks to the perfect

orbital nesting, we have uj; ~ sz’n%gig% while w9 ~ sin4cos4ﬁggg}%. As a consequence,

once performed the angular integration we find that w1y is much larger than the w2, so
or_Xy . . .. . . ..
that A o > 0 is finite and positive, preventing a nematic transition.

We can go beyond this approximation and account for the ellipticity of the electron
pockets, as done in the analysis of spin-nematic model in the band basis. We introduce
the ellipticity d. at a perturbative level, and approximate the electron Green’s functions as
9x/v = ge(1F de cos(20)ge) with 6. = egm(my —my/2mym,). As one can see, we can still
analytically compute Eqgs. 2.30-2.37 as each additional term due to the ellipticity go with a
cos(20)g. factor that can be integrated analytically over 6 and e. By explicitly performing
the computation of each terms we find that the nematic couplings for the three-pocket

IllOdels are
)\3p+ =-K(T b(sz )\3177 =K(T)[ 16 — —==5 2.41

with K(T) = TNg((3)/(837%T?), b > 0 [27]. As one can see, as soon as a finite ellipticity
is included, we have in both cases a negative correction to results obtained within the
parabolic approximation. This means that in the 3p; model for FeSe Ay < 0 at any

temperature, while for the 3p; model for 122, Aip ~ changes sign only below a temperature
T* ~ é. [27]. A quantitative analysis for 6. = 0.55¢¢ is shown in Figure 2.3b.
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The orbital composition of the nested bands also affects the magnetic instability.
Already within the parabolic band approximation one can verify the magnetic tendency is
enhanced in presence of a good orbital nesting. In fact, the magnetic transition is pushed
to higher temperatures within the 3p_ model for 122 with respect to the 3py case [27].
The magnetic susceptibility for FeSe and 122 system is shown in Figure 2.3a.
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Figure 2.3: (a) Xsz//f,Z spin susceptibilities and (b) A4 nematic couplings for the 3p_ and 3p,
model. The Néel temperature for the 3p_ model is Tx, = 110K and for the 3p, model is
TN" = 24K. The change of sign of )\g‘ occurs around 112K. Adapted from [27].

The main result of [27], is that despite being formally equivalent to the spin-nematic
model in the band-basis, the OSSF model is able to explain the different phenomenology
displayed by systems having similar band structures. In fact within the OSSF model,
orbital nesting is equally important as band nesting to determine the magnetic and nematic
properties of a system. In particular, in systems in which the nested pockets have a
good orbital nesting, as 122, the coherence factors favour magnetism while suppressing
nematicity, so that the nematic channel becomes attractive only at temperature close to
the magnetic transition. On the contrary, the orbital mismatch of the nested bands boosts
nematicity and is detrimental for magnetism. This is the case of FeSe.

As argued in [27], this result offers also a possible explanation for the suppression
of nematicity in FeSe under internal and external pressure. Indeed, it has been reported
that sulphur isoelectronic substitution [32,124] brings back the inner hole pocket above
the Fermi level. This finding is also supported by ab-initio calculations, which usually miss
the experimental position of the Fermi level but report in general an increase of the hole-
pockets size with pressure [125]. The emergence of the inner hole pocket changes the FS
topology of FeSe towards the more symmetric four-pocket model, which has been shown
before to be detrimental for nematicity. On the other hand, the same mechanism could
also enhance magnetism, as observed.

In Chapter 5 we extend the analysis of the spin-nematic model due to OSSF to a
five-pockets model, in order to be able to study the phenomenology of the 1111 IBS family.
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Chapter 2. Orbital Selective Spin Fluctuation (OSSF) Model

2.3. Self-energy corrections from interband spin-fluctuations

In a quantum system the low-energy interaction between particles results in a renor-
malization of the particle properties that can affect for example the electronic and transport
properties of the system. We defined self-energy corrections the effects that renormalize the
single-particle properties (i.e. the single particle Green’s function) and vertex corrections
the renormalization of the two-particle interaction.

In what follows we will compute self-energy due to spin-fluctuations following
Ref.s [60,61] in which the spin-propagator is assumed momentum-independent. In this
case self-energy are momentum independent too and vertex corrections vanish identically.
We will use this self-energy in Chapter 4 where we consider its effects in the nematic phase
of IBS to analyze the anisotropy of the dc resistivity in 122 and FeSe compounds. Notice
that the choice of neglecting the effects of vertex corrections is justified by the analysis
performed in [126] in which the momentum dependence of the spin-mode is taken into
account and the effects of the vertex renormalizations on the dc resistivity is found to be
negligible with respect the self-energy renormalizations.

2.3.1. Self-energy effects due to spin-fluctuation in a multiband model

We consider the three-band spin-nematic model described in Section 1.5.1 and Sec-
tion 2.1. The self-energy due to the spin-fluctuation exchange between the hole and electron
pockets in the Matsubara space reads

2k = Vi),

Ez(kj) _ V;Z (2.42)

where i = X,Y, gx/y is the spin-operator that connects the hole pocket at I' and the

electron pockets at X/Y, Vy ngm is the interband coupling and G'/X/Y" are the local
Green’s function. Notices that given the interband nature of the spin-interaction, in
Eq. 2.42 the self-energy of the hole-band depends on the electron Green’s functions and

vice versa.

We follow the derivation from [61] where the momentum dependence of the interac-
tion is neglected and the spin-mode propagator is modelled as D(wy,) = [fAQ2QB(Q)/(Q*+
w?2), where B(f) is the density of the states of the bosonic excitations.(Eqs. 2.42 can be
rewritten as

S (iwn) = =T (Zvl’p(wn — W) G (iwp) (2.43)

m,l’

where 1,1 are band indices and V5" > 0 is the multiband interaction and G (iwy,).

The dressed Green’s functions for each band are obtained via the Dyson equation
G (K, iwy) = G%;l (k, iwy, ) — X (iwy, ) where G671 (k,iwp,) = (iw,—&k) is the non-interacting
Green’s function. The self-energy Eq. 2.43 is a complex quantity. The real part ReX! (iwy,)
renormalize the band dispersion and the imaginary part ImX!(iw,) renormalizes the scat-
tering rate.
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Fermi surface shrinking in IBS The multiband character of IBS and the strong
particle-hole asymmetry of the bands allow for a peculiar self-energy effect that concerns
the real part of the self-energy and is usually neglected in the Eliashberg approach for a
single particle-hole symmetric band [61]. As discussed in Section 1.5.1, the self-energy cor-
rection induced by repulsive interband spin-fluctuations in IBS, has been used to explain
the shrinking of the Fermi surfaces found when comparing the experimentally measured
Fermi surfaces to the one expected by LDA [37,40,41,59].

In the conventional Eliashberg analysis [127], is usually assumed that the distance
of the chemical potential u from the band edges is much larger than the typical boson
energy scale, and thus one can safely assume the system to be particle-hole symmetric.
In this way the Matsubara self-energy, Eq. 2.43 is purely imaginary. In systems in which
the particle-hole symmetry is not fulfilled (for example if we are far from half filling) the
situation changes. By taking into account the particle-hole asymmetry in a single-band
system, the self-energy acquires a finite real part that can be adsorbed in a redefinition of
the chemical potential. However, in multiband systems, like IBS, the self-energy acquires
a finite real part generally different for each band. In this case, we cannot simply redefine
the chemical potential as we need to account for a relative change in the bands. The sign
of the energy dependent shifts of the various bands with respect to the Fermi level depends
on the repulsive/attractive nature of the bosonic mode and in the case of an interband
spin-mode leads to a shrinking of the non-interacting Fermi surface [61].

A simple way to understand this effect is to compute explicitly the self-energy for
a system of two parabolic bands, an electron band and a hole one. We consider a two-
dimensional system, this means that given the top for band for hole band we fix the lower
edge from the density of states N' = 1/(E.,,, — E...,,) knowing that N' = m/m (vice versa
for the electron band). We compute the self-energy at the lowest order in the perturbation
theory, i.e. we replace GY (twn,) with the non-interacting one in Eq. 2.43. We also consider
an Einstein mode B(§2) = (wo/2)6(2 — wp). Within these approximations we can derive
an analytical expression for the real part of the self-energy

!

Rex! — _? Z(lvl’Nl’ln wWo =+ Bpnas @0 (l»l’N”ln Ernas = 1 (2.44)
l/

mwn

I w0+M_E£)/1m 2 Bl

where we also assumed T =~ 0 and used that the exchanged boson-energy is negligeble
with respect the rest. In a particle-hole symmetric system, ReX! = 0 as ]Ef;wx —pul =
|Ef7;m — p|. On the contrary, in a particle-hole asymmetric system, this correction is
finite and has opposite sign for hole and electron bands. In fact, in an electron-like band
|EL e — 11| > |EY . — | thus the energy shift is negative (downward), while for a hole-
like band |EL,. — pu| < |EY, — u| and the renormalization produces a positive shift
(upward). Therefore, Eq. 2.44, describes a shrinking of the Fermi surfaces in agreement
with experiments in IBS. Notice that, while within the analytical calculation of Eq. 2.44
the correction reduces to a constant, in the full numerical evaluation of Eq. 2.43 performed
in [61] this is an energy-dependent renormalization, ReX!(w), whose effect cannot be simply
reproduced by rigid shift of the bands.
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2.3.2. Self-energy effects in the OSSF model

Here we discuss the self-energy due to OSSF following the derivation performed
in [60]. We show that those corrections lead to a renormalization of the scattering rates
and the band dispersions analogous to the ones found in the multiband approach. However,
due to the spin-orbital interplay encoded in the OSSF model, those also affect the shape
and orbital content of the Fermi surface. All these effects will be accounted in the analysis
of the dc-resistivity contained in Chapter 4.

At the end of this section we also summarized the main results of [60], in particular
(i) the orbital ordering resulting from the orbital-selective shrinking in the nematic phase
of IBS and (ii) the interplay between spin and orbital in the OSSF model that makes
possible, via the analysis of the Fermi surface reconstruction in the nematic phase, to
establish the sign of the anisotropy of the spin-fluctuations.

The spin fluctuation exchange and the associated self-energy corrections must pre-
serve the orbital character of the electrons, thus within the OSSF model they both become
orbital selective. In particular, as one can see from Eq. 2.28, we have a single orbital
component for the spin-fluctuation connecting hole and electron pockets IT_X/Y ie. S¥

and S77. As a consequence, only the intraorbital components of the self-energy Eyz Jzz BTE
deﬁned In the Matsubara space the orbital selective self-energies read
V Z Syz Syz ))G;(zyz(k - Q)
= VTSZ SY q ’ Y _Q)>G¥zxz(k_q)
(2.45)

V Z Syz Syz ))ngyz<k - Q)

q

where <S§<Z/;Z Sg(zj//g'z) is the propagator of the spin-fluctuations connecting hole and elec-

tron pockets along x/y, Vi U? and Gfm is the nn-intraobital component of the Green’s
functions G given in Eq. 2.25.

In what follows we use the same approximation of [61], and neglect the momentum
dependence of the spin propagator. The self-energy for each band can be written as
matrices in the orbital space

A F w
STw) = Eyzo( ) EQS(w)) % Eg(w)f'o + Eg(w)f'g, (2.46)
iX/Y(w) _ E;i//gz(w) 8) % Zé(/y( )To +ZX/Y( )73 (2.47)

with 3 (w) = [EF (w) + 2L, (w)]/2 and XL (w) = [Egz(w) — L (w)]/2 for the holes and

Eg(/y(w) EX/Y( ) = E;(Z//L (w)/2 for the electrons where the Efc(y/y(w) = 0 as a con-

sequence of the lack of a xy orbital component on the hole pockets.
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The local Green’s functions are given by the corresponding Dyson equation for each
pocket as o L R

Gh (kw) =G (k,w) — BH(w), (2.48)

with Gl(;

Y4 (w)73 the orbital selective self-energy given in the Eqs. 2.46 and 2.47.

) = wl — fI(l)k the non-interacting Green’s function and %(w) = ¥} (w)7o +

1
,w

By rotating the orbital Hamiltonian into the band basis we can write

A~

. N X« Cqaa—1
Gty = Unew W1 = Arpe o] Ukpe o (2.49)

where f\lR = dz’ag(Eg, Ef,{) with Eﬁ,%i the renormalized quasiparticle energy and Z/A{JZL2 the
corresponding rotation matrix. Both the 73 and 73 components of the self-energy renor-
malize the quasiparticle energy of the I*" pockets as

Bl =+ S Wy = B+ Sh+ £/ ()2 + (hh)? + (h, + £4)? (2.50)
where the real part of the self-energy corrections renormalizes the band dispersion as
€ = ReEl: (2.51)
and the imaginary part renormalizes the scattering rate as
Tk = 6T + [ImE | (2.52)

with 0I" a residual constant broadening term. Notice that within the OSSF model, the
self-energy changes also the orbital composition of the bands. In fact, the unitary matrix
U' that diagonalizes the bare Hamiltonian is different from Z]ﬁz This means that also the
coherence factors u! and v are renormalized.

The effect of the orbital selective self-energy corrections is analyzed in Chapter 4,
where the anisotropy of the dc conductivity is computed in the tetragonal and nematic
phase of IBS. In what follows we discuss the orbital selective shrinking due to OSSF as
discussed in [60].

Orbital Selective Shrinking: the FeSe case As in the multiband case discussed
previously, the real part of the self-energy leads to a shrinking of the bands that, in this
case, inherits the orbital selectivity of the self-energy (Eq. 2.45) and thus, gives rise to an
orbital selective shrinking of the pockets. This effect renormalizes not only the size, but
also the shape of the Fermi surfaces, due to the orbital dependence of the shrinking and
the orbital composition of the Fermi surface, due to a change in the orbital weights. All
these effects are linked to the spin-orbital interplay encoded in the OSSF model and could
not be analyzed within a multiband approach.

In Ref. [60] the temperature evolution of the Fermi surface of FeSe has been studied
both experimentally via ARPES and theoretically within the OSSF model. The theoretical
description starts from a four-pocket model adapted from [118] and compute the effect of
the self-energy both in the tetragonal and the nematic phase.

In the tetragonal state, above the structural transition T's, the spin fluctuations along
x and y directions are isotropic

(S¥-S¥)=(S¥-S¥") = B.(w) =3 and T () =3 w). (2.53)
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This leads to equivalent self-energies for the C4 symmetric xz/yz orbitals with opposite
signs for the hole and electron pockets. Notice that Eq. 2.53 can be rewritten as

S =0, ) =) (2.54)

This means that both T'F pockets are shifted by the X{ part of the self-energy modifying
their size, but not their circular shape, as Zg = 0. The electron pockets in addition to be

shifted by Zg(/ Y, also become more elliptical, in agreement with experiments. Notice that
the combined effect of the spin-orbit coupling that lifts the degeneracy in the hole sector
and a sizeable correction due to Zg we find that the inner hole pocket is pushed below the
Fermi level already in the tetragonal phase (see Figure 2.4a).

In the nematic phase, the anisotropy of the spin fluctuations induces a x/y differen-
tiation in the self-energy

(S -S¥)#(SV-SY) = Bl.(w) #Tn(w) and Ti(w) #Zp(w). (255

Due to the spin-orbital entanglement, taken into account within the OSSF model, the
anisotropy of the spin-fluctuations reflects in anisotropic Fermi surface shrinking in which
the degeneracy of the yz/xz orbitals in the charge sector is broken via orbital-selective
self-energy corrections. Eq. 2.55 can be written as

Siw) #£0,  Z§(w) # T3 (W), (2.56)

i.e. all the pockets are modified in size, shape and orbital content (see Figure 2.4b). Notice
that the orbital-dependent renormalization of the quasiparticle energy (~ 73) due to the
OSSF in the C9 phase can be interpreted as an effective yz/xz crystal field. This is one
of the main results of [60] and explains why a soft nematic transition can give rise to an
order-parameter like behavior of the electronic structure. This result reconciles within a
spin-driven scenario the experimental observations of orbital-ordering in the nematic phase
of FeSe [86,90, 128-132].

Paramagnetic phase Nematic phase Xy
nl[) afjfy . .....b
U U
~ N Xz
2| |z
wn v
i P yZ
(SXSX) (S5S%)
0 |y 7) _0 .......
Xy

Figure 2.4: FeSe Fermi surfaces at k, = 0. (a). Paramagnetic phase. (b). Nematic phase. The
colors represent the main orbital character of the Fermi surface. The green/red arrows denote the
OSSF, connecting hole and electron pockets at different momenta. The spin fluctuations along I'’X
and I'Y are equivalent in the paramagnetic phase and become stronger along x in the nematic one.
Adapted from [133].
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Ref. [60] also contains a quantitative analysis to reproduce in details the experimental
ARPES data. In order to do that the spin-mode is modeled in analogy to [61] as

1 ww

B ) = L Gy o2

(2.57)

where wy is a constant while wy/y (T') is the characteristic energy scale of spin modes. The
self-energy functions are then computed as

S (iwn) = —VTY  Dx(wn —wm)g™ (K, iwn) (2.58)
k,m

S(iwn) = VI Dy(wn — wm)g” (K, iwn) (2.59)
k,m

where Dy (wn) = [ Q2 QQBX/Y(Q)/(Q2 +w?) is the propagator for the spin-mode along
x/y, Bx/y is its spdctral function given by Eq. 2.57 above, V' is the strength of the
coupling and ¢'* (k, iw,,) denotes the Greens function of the E* band at [. Analogous
expressions hold for the electron pockets. To reproduce quantitatively the experimental
data, the spectral functions are computed by using as fitting parameter the splitting of the
spin-fluctuation energies wy/y (see Figure 2.5).
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Figure 2.5: Evolution of the spin fluctuation with temperature. (a) Temperature evolution of the
spin-fluctuations energies wyx,y across the nematic transition. (b) Spin-fluctuations propagator
above and below the structural transition Ts. Notice that in the nematic phase (T' < Ts) the spin
propagator along x and y becomes different due to the differentiation of wy,y. Adapted from [60].

We refer the reader to [60] for further details. Here we, only point out that the
crucial prediction of [60] is that, given the experimentally observed nematic Fermi surfaces
reconstruction in FeSe, one can establish the sign of the anisotropy of the spin-fluctuations
below Ts. In fact, in order to reproduce shape and orbital content of the ARPES Fermi
surface one need to assume

(S%)7) > (85°)?)

i.e. spin-fluctuations along x are larger with respect to spin-fluctuations along y. This
is a result that one can only get accounting for the spin-orbital entanglement into the
spin-nematic approach. This prediction has been confirmed later by neutron scattering
experiment in FeSe [134] and it is consistent with the analysis of the superconductivity
mediated by nematic OSSF [133] in which the specific nematic orbital ordering induced by
the nematic OSSF (with the elliptical Gamma pocket almost completely zz at the Fermi
level See Figure 2.4) makes necessary to invoke a very strong nematic pairing with the
superconducting coupling along xz much stronger than the one along y.
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Magnetic excitations and superconductivity in the

OSSF model

3.1. Introduction

The discovery of iron-based superconductors (IBS) raised immediate questions about
the nature of the superconducting state and the pairing mechanism. From the very begin-
ning it was proposed that pairing could be unconventional [19,20]. This proposal has been
triggered, from one side, by the small estimated value of the electron-phonon coupling [73],
and, from the other side, by the proximity in the phase diagram of a magnetic instability
nearby the superconducting one. As discussed in Section 1.5.1, within an itinerant-electron
picture pairing is provided by repulsive spin-fluctuations between hole and electron pockets,
connected by the same wavevector characteristic of the spin modulations in the magnetic
phase [98,99, 101, 135-137]. Given the repulsive and interband character of the interac-
tion the expected symmetry for the gap function is the so-called s4, i.e. an isotropic
s-wave on each pocket with opposite sign between hole and electron pockets. This picture
has been discussed within a more realistic description for IBS using multiorbital Hubbard
model [34,76,98,108,109,114| that provide a quantitative estimate of the superconducting
properties starting from RPA-based description of the spin-susceptibility. As we discussed
in Section 1.5.2; the inclusion of the orbital degree of freedom in the analysis open the pos-
sibility to find anisotropic s4+ gap functions, in which the amplitude of the angular modu-
lation and the presence of accidental nodes depends on the system parameters [34,76,102].

As we widely discuss in Section 1.5.2, the main issue with multiorbital models is
that the implementation of these methods is complicated due to the number of the orbitals
considered so that analytical treatments of the problems are often unattainable. Moreover
the inclusion of fluctuations beyond RPA to describe spin-nematicity is not straightforward
as instead in the band-language. In the previous Chapter, we discuss the Orbital Selective
Spin Fluctuations (OSSF) model as the minimal model to describe the spin-nematic phase
within a simple multiband language while at the same time retaining the orbital inform-
ation. We showed that the orbital-selectivity makes the model extremely simple as the
spin-fluctuation along z/y are given by a single orbital component yz/zz.

In this Chapter we aim to discuss in detail the magnetic excitations of the OSSF
model and of the superconductivity mediated by OSSF. The main question we want to
address is: Is it possibile within the OSSF to reproduces the main features of the spin-
excitations computed within microscopic five-orbital models? In Sections 3.2-3.3 we prove
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that the OSSF qualitatively reproduce all the relevant features characterizing the RPA
spin susceptibilities obtained within microscopic multiobital models. This is a remarkable
results, especially considering that the OSSF is based on the symmetric adapted model
derived in [118] that only involved three orbitals, and that the orbital-selectivity of the spin-
fluctuation reduces the computation of the spin susceptibility to a few scalar components.

A direct consequence of the orbital selectivity then, is that it makes possible to per-
form analytical calculations that allows us to easily interpret our results. A clear example
of this is the momentum dependence of the RPA spin-susceptibility that is found within
both microscopic five-orbital models and OSSF model. Within the OSSF the modulation
can be directly linked to the orbital nesting properties of the low energy states connected
by orbital-selective interband interaction.

In Section 3.4 we compute the superconducting vertex mediated by the spin fluc-
tuations obtained in Section 3.3 and show how the pairing vertex inherits the orbital
modulation given by the orbital-selective spin fluctuations. By solving the the correspond-
ing gap equations, we find gap function characterized by anisotropic s+ gap functions that
can also present accidental nodes when the interaction between electron pockets is taking
into account in agreement with results obtained for a multiorbital Hubbard model [102].
A main result of the gap analysis is that the simplified description provided by the OSSF
model unveils the dominant role of the orbital nesting over the band nesting in establishing
the hierarchy of the band gaps.

3.2. Magnetic excitations and superconductivity in the mul-
tiorbital Hubbard model

The non-interacting tight-binding Hamiltonian for a five orbital model in the orbital
basis takes the following form

b /
HE™ =300 A dhiolyrio + 323 farnio (3.1)
ijo nn’ o n
with the orbital indices n,7" = {1,2,3,4,5} denoting the five different Fe-d orbit-
als (dgz,dyz, duy, dy2_y2,dgz2_y2), t?;? the tight-binding one-electron hopping paramet-
ers [18,76] from the 7 orbital on site i to the ' orbital on site j, djﬂ , the creation operator
of an electron in n orbital on the ¢ site with spin o = {1,l}, €, the site energy of the n

orbital and 1, = djﬂ »nioc the occupation number.
Within standard RPA analysis [20,34,76,108|, the pairing is assumed to be mediated
by spin and charge fluctuations. It has been shown [76], that the charge susceptibility is

more than one order of magnitude smaller than the spin susceptibility, therefore hereafter
we focus on the spin channel only.

The spin susceptibility is a four orbital indices tensor, ng,l(q, Q). This is obtained
from the analytical continuation i€2,, — Q + i0" of the Matsubara spin-spin correlation
function

ng/l(q, Q) = / dr e¥tmT <T7-§775(q, 7)§U/5/(—q, O)> ( (3.2)

where q is the momentum vector, § = 1/kpT is the inverse temperature, 7 is the imaginary
time and 2, = 2mwkpgT is the bosonic Matsubara frequency. The spin operator in the
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orbital space for the 7, d orbitals is defined as

SP(q,r) = G@&ss,dﬁﬂs, (3.3)

kss’

with &gy the Pauli matrices for the spin operator being s, s’ spin indices. Using this explicit
definition given by Eq. 3.3 and applying the Wick’s theorem to Eq. 3.2 the non-interacting
spin susceptibility can be rewritten as

X2 (d, Q) = —= Z Tr [fén (K, it ) G (K + a it + i) (3.4)

where the spectral representation of the Green’s function is given by the rotation to the
orbital basis of the non-interacting Green’s function in the band basis

GO (K, iwy,) Z u;” (k) (3.5)

m

where w, = (2n + 1)7kpT is the fermionic Matsubara frequency and a;,(k) the matrix
elements connecting the orbital (n) and the band space (m) determined by diagonalization
of the tight-binding Hamiltonian, Eq. 3.1. Performing the Matsubara frequency summation

and setting 2 — 0, the static spin susceptibility for a generic multiorbital system is given
by

n(k+q) = En(k)

k,mn

am an &'
HAOEEDY C m(I)olh () k + e E29D) 1, 1 +-) - f(Bal)  (36)

with f(E,,(k)) the Fermi distribution function. The RPA spin-fluctuation is given in the
form of Dyson-type equation
'’
’ X556 (q)
(X&pa)dy (@) = —— (3.7)
1 — (Us)gg xdy (@)

with (Us)gg,l the non-zero components of the interaction spin matrix Ug in terms of the
interaction parameters |20, 76].

The singlet pairing vertex driven by spin-fluctuation is a four orbital indices tensor
and can be computed on the low-energy sector in terms of the RPA spin susceptibility
[76,138] as

/ 1 , 3 (U? )7777/ Xm]/ (k—-K) 1 3 /
T 7777/ kK) == 7777/ e S5/88" A6 _ = T)Til QS 7777/ k—k).
( RPA)55 ( ) ) 2 (US)55 + 9 1_ (Us)gg, ng/ (k ~ k’) 5 (Us)&; + 5 (XRPA)5§ ( )

(3.8)
Notice that the variety of possible diagrams given by Eq. 3.8 makes it unfeasible to draw
the possible Feynman’s diagrams up to orders larger than one.

The gap equation for the multiorbital model can be computed numerically by taking
into account the singlet pairing vertex given by Eq. 3.8 as a eigenvalue problem in which
the largest eigenvalue will lead to the highest transition temperature and its eigenfunction
determines the symmetry of the gap (see e.g. [34,76,108,139]). The main result is that an
anisotropic sign changing s-wave sy state is found as the dominant symmetry (for system
parameters compatible with moderated-doped IBS), in agreement to experiments [67-69].
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3.3. Magnetic excitations in the OSSF model: RPA analysis

We now compute the spin-excitation of the OSSF model within an RPA approach
and compare our results to the ones obtained within the analysis of microscopic five-orbital
model and three-band spin-nematic model. For that purpose, we focus on the tetragonal
phase of the OSSF four-pocket model discussed in Section 2.2.

Within our OSSF model, the situation is substantially simplified as compared with
the five-orbital tight-binding RPA approach due to the orbital-selective nature of the spin-
fluctuations. Within the OSSF model we assume the spin operator to be intraorbital.
Notice that this already reduces the spin-susceptibility of Eq. 3.2 to a two-orbital indices

matrix
7 (i) = /( dr T <TT§"<q,T>§"’<—q, o>> ( (3.9)

with g"(q,T) = > ey c@&'ss/cﬁJrqs, the intraorbital spin operator. Moreover, the low-
energy projection further simplified the spin-susceptibility structure as the low-energy
states are defined only around high symmetry point and have a well defined orbital char-
acter described by Eq. 2.23. As a consequence also the Green’s functions are defined
only for I = I, X, Y as Gl(k,iwy) = U (K, iwy)diag(gt (k, iwn), g (, iwn) U (K, iwy).
Here U' are the matrices that diagonalize the [-Hamiltonian given by Eq. 2.24 and
g E(k,iw,) = (iw, — Elljc)_1 the Green’s functions in the band basis. Substituting the
intraorbital spin operator §”(q,7) and applying Wick’s theorem to Eq. 3.9, the intraor-
bital spin susceptibility in the low-energy projection can be read as

X”/(q, iQm) = —; Z (‘r [fl(k, iwn)éll(k + q, iwp + sz)} < (3.10)
k,n

Eq. 3.10 represents the spin susceptibility between two pockets [ and I" and depends on
the transferred momentum q = k/ — k and the external frequency €.

k+q

~ -
k™ < q

Figure 3.1: Intraorbital non-interacting spin susceptibility with transferred momentum q in the
OSSF model. The solid line represents an electron particle and the dashed line a hole particle.

In Figure 3.1 it is shown the Feynman’s diagram representation for the intraorbital
non-interacting spin susceptibility given by Eq. 3.10 within the OSSF model. The low
energy spin susceptibility connects an electron (solid line) with a hole (dashed line) with
the same orbital content, that is, it is an interpocket and intraorbital spin susceptibility.
Performing the Matsubara frequency summation and setting @ — 0 in Eq. 3.10, we find
the static susceptibility for the I+ l;_L pockets in terms of the Fermi distribution function

f (Ellj) and the matrix element of each pocket |(u/v)!(k)| connecting the orbital and the
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band space is

o fladig) = FE) ,
X (@) = 30 S ) P/ o)l o (3.11)
k “kta T K

which has a much simpler expression than for the multiorbital model given in Eq. 3.6.

Within the OSSF model, we only consider magnetic fluctuations close to momenta
Qx = (m,0) and Qy = (0,7), so the two most relevant spin susceptibilities for a four-
pocket model will involve the yz orbital coming from the interaction between the I'y
holes with the X electron pockets, and the zz orbital coming from the I'+ holes with
the Y electron pockets near Qx and Qy respectively. The spin susceptibility around
Qus = (m,m) that involves the zy orbital from the interaction between the X and Y
electron pockets is also taken into account in order to better compare with the results
for the multiorbital model in which all five orbital contributions are considered. Notice
that the inclusion of the Qs = (,7) susceptibility within the OSSF is straightforward
due to the orbital selectivity of the spin fluctuation involved in the exchange process. In
Appendix C.1.1 are shown all the details about the computation of Eq. 3.11.

The RPA spin susceptibilities are obtained in the form of Dyson-type equations as

Ll i (@)

+

XnR]iDA(q) = 73 A (3.12)
1-Uxy (q)

with U the intraorbital effective coupling and X;ili (q) the non-interacting spin susceptib-
ility given by Eq. 3.11. Notice that, due to the orbital selectivity of the spin fluctuations,
the expressions for the spin susceptibility given by Eq. 3.11 and the RPA spin susceptib-
ility given by 3.12, acquire a scalar structure in the orbital basis. This will be crucial in
order to compute analytically in the following Sections 3.4 and 3.3 the pairing vertex and
superconducting gaps respectively, making the computations much more manageable than
for the multiorbital models.

To get insight into the previous result, we perform a numerical estimate for the
RPA spin susceptibility given by Eq. 3.12 for a four-pocket model in the tetragonal phase.
Figure 3.2 shows the XZ;“]‘%X pa(a), ng_ 153 4(q) and ng& pa(a) orbital components of the RPA
spin susceptibility, providing a significant qualitative insight into the role of the orbital
degrees of freedom. In the upper panel we 3D color maps in q,qy. In the bottom panel
of we show the q,qy 2D cuts. The middle point for all the 2D plots is Qx = (m,0) for
the electron-hole spin susceptibilities and Qps = (7, 7) for the electron-electron one. The

1l
right part of each graphics represents the Xnimj; 4 by moving from the center of the 3D plots
in the q, momentum, maintaining q, constant and analogously on the other side. This
representation makes easier to compare the relative weight of the different susceptibilities.

The specific expressions of the non-interacting and the RPA spin susceptibility for
the different pockets are given in Appendix C.1.2. Notice that the contributions of the Y
pocket (not shown) are equivalent to those for the X pockets with a 7/2 rotation, since in
the tetragonal phase the susceptibility is isotropic in both directions. From Figure 3.2 we
can highlight some main results:

(i) The orbital-selective RPA spin susceptibilities peaked at Qx and Qs show a clear
momentum-dependent structure of the peaks. This can be explained due to the degree of
orbital nesting between pockets. The orbital nesting indicates the relative orbital compos-
ition between the two pockets involved in the spin-exchange mechanism. In Figure 3.2 we
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Figure 3.2: RPA spin susceptibility for a four-pocket model in the tetragonal phase in 3D (upper
panel) and 2D cuts (bottom panel) around the high symmetry points X for the hole-electron
sector and M for the electron-electron sector. The right-hand part of the 2D cuts represents the
q, direction and the left-hand part the q, direction starting from X = (,0) or M = (m, ) points.

can see that when there is an orbital mismatch, as is the case of I'y and X pockets, the
spin susceptibility develops two incommensurate peaks around Qx. In contrast, if there
is an orbital match between pockets, i.e. the case of I'_ and X, the spin susceptibility
develops a single commensurate peak at the Qx = (m,0). For the ngg’,}ép 4(q) suscept-
ibility there is a total mismatch between the zy orbital of the electrons pockets. Thus,
the spin susceptibility is totally incommensurate and develops four symmetric peaks that
correspond with the overlap of the xy orbital contribution around the M = (7, 7) point.

(ii) From Figure 3.2 we can see that the RPA spin susceptibility at Qx is greater by
moving in the q, direction than in the q,. This is due to the orbital selectivity of the spin
fluctuation that connects the I'y. with the X. Notice that for the Qs spin susceptibility we
get a symmetric contributions in both directions q, and q, due to the equal contribution
from the zy orbital.

(iii) The main contribution to the spin susceptibility comes from the Qx spin-mode,
ie. xgjé; 4(q) (and analogously the nggp 4(q)) contributions are much greater (four
times greater) than the electron-electron exchange Xé(;}/%P 4(a). Among the two hole pock-
ets, we find that the commensurate peak coming in ng’é, 4(q) is bigger than the non-
commensurate one in X;;é, 4(q). This can also be explained thanks to the better orbital
nesting in the former case.

We now compare our results obtained within the OSSF model with a numerical
calculation of the RPA spin susceptibility for a five-orbital tight-binding four-pocket model
building on Eq. 3.6 and 3.7. By tuning the filling and the crystal field we consider two
different cases: the first one corresponding to a four-pocket model with better nesting
between the I'_ and the electron pockets, and the second case is appropriate to describe a
four-pocket model with better nesting between the I'; and the X/Y pockets. We obtained
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for the first case a commensurability of the RPA spin susceptibility at the Qx = (m,0).
Whereas in the second case we get an non-commensurate peaks around Qx = (m,0).
Therefore, the same orbital modulation for the momentum dependence of the RPA spin
susceptibility is obtained with both different models. We also compute the RPA spin
susceptibility coming from the electron-electron sector within the five-orbital model. We
obtain that the contribution from this sector is negligible in comparison with the one for
the hole-electron sector. This result is also in agreement with other different studies of the
RPA spin susceptibility within a multiorbital models given by Ref. [20,76,139].

Notice that, the orbital modulation of the RPA spin susceptibility is an effect that
comes directly from taking into account the orbital degree of freedom of IBS. Within a
low-energy multiband model, which is blind to the orbital content of the system, the spin
susceptibility give to two equivalents peaks with the same commensurable narrow structure
(see Figure 1.7b). Therefore, within this model is not possible to appreciate the orbital
modulation in the momentum dependence of the spin susceptibility.

Our results are particularly important. In fact, while a generic correlation between
the orbital-make up of the Fermi surface and the momentum-dependent structure of the
RPA spin excitation has been already highlighted within multiobital models (e.g. [102]), the
explicit link and precise relationship between orbital nesting and momentum dependence
of the spin-susceptibility is a new results of the RPA analysis within the OSSF model.
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Figure 3.3: Cuts of the total RPA spin susceptibility along the high symmetry directions I'’X M T
in the Brillouin zone within the (a) OSSF model (b) five-orbital tight-binding model. The interac-
tion parameters have been chosen for (a) as U = 16V and (b) as U = 1.2¢V. Notice for the OSSF
model the discontinuity of the susceptibility is due to the OSSF model is a low energy model and
we only get the contribution near the Fermi surface around the high symmetry points I', X, M.

To conclude our comparative analysis, in Figure 3.3 we compare the cuts along
the main symmetry directions of the RPA spin susceptibility (included the intraband
ones) computed within the OSSF model and within the five-orbital tight-binding model.
The calculation performed within the OSSF model reproduce remarkably well the overall
momentum-dependence of the spin-spectrum as well as the relative height and width of
the various peaks.

The comparative analysis performed in this Section is extremely encouraging as it
proves that we can still obtain reliable description of the spin spectrum within the OSSF
model of Eq. 3.11, without dealing with the tensorial form of the spin susceptibility given
in the five-orbital model, Eq. 3.6.

53
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3.4. Superconductivity mediated by the OSSF

Assuming that same spin fluctuations responsible for the magnetism, represented in
Figure 3.1, are also responsible for the superconductivity in the IBS, in the present section
we compute the pairing interaction that arises from the exchange of the spin fluctuations
discussed in the previous section and the correspondent gap equations for a four-pocket
model. We compare the results with the five-orbital microscopic model.

3.4.1. Superconducting vertex: RPA analysis

To determine the superconducting vertex in the random phase approximation, we
draw in Figure 3.4 all Feynman’s diagrams that contains only the (scalar) spin susceptibil-
ities up to finite order in perturbation of U for electrons of opposite spin and momentum.
From Figure 3.4 we can draw some relevant conclusions:

e
Lk |~k

> -
v

Figure 3.4: Pairing vertex in random phase approximation up to fifth order within the OSSF
model.

(i) As we discussed in Section 3.2, within the five-orbital model to draw analytically
all the Feynman’s diagrams involved in the pairing interaction vertex is something almost
unfeasible due to the large number of different possible diagrams. This is due to the
complex tensorial structure of the pairing vertex, Eq. 3.8. On the contrary, given the
scalar character of the low-energy orbital-selective spin susceptibility we can easily draw
analytically all the possible diagrams.

(i) Due to the simple orbital structure of the pairing vertex within the OSSF model,
the diagrams involved represented in Figure 3.4 may look similar to those in the original
spin fluctuation single-orbital Hubbard model to pattern the cuprates [140]. It is important
to notice that only the mathematical treatment for the diagrams is similar between these
two models, because the physical meaning is completely different. In the OSSF model the
starting point is a three-orbital low energy model where the exchanged spin fluctuations
come from the low energy-bands. In contrast, within the Hubbard model the full bands
are taking into account.

(iii) As a consequence of the projection to a constrained orbital space within the
OSSF model, the diagrammatic for the RPA pairing vertex is formally equivalent to the
one for the band-basis model which does not contain the orbital information of the spin-
fluctuations exchange. Within the multiband model the RPA pairing vertex is composed
by the exchange of spin fluctuations connecting an electron pocket with a hole pocket.
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While within the OSSF model, the essential difference is that the low energy exchanged
spin fluctuations connect a hole with an electron pocket with the same orbital content yz or
xz. In this way, we retain the simplicity of the analysis of the Feynman’s diagrams within
the multiband model and, at the same time, we account the orbital degree of freedom of
the system.

By applying the RPA approach and symmetrizing the singlet pairing interaction
vertex given in Figure 3.4, we get that the leading RPA diagrams for the vertex within the
OSSF model can be read as

[ l/ 11,
7t (q) U%xn ()

1402 ~ I
1—U?X$i (@ 1-0Uxi*(q)

G - U3y
Fni (@) =U+

(3.13)

where q = kK’ — k is the transferred momentum, U is the intraorbital effective coupling

I+l
and Xni *(q) the intraorbital susceptibility given in formula Eq. 3.11. In Section C.2.1 the
detailed computation of the RPA pairing vertex within the OSSF model is shown.

As follows, we perform a numerical estimates for the four-pocket model. We get the
RPA vertex is proportional to the spin susceptibility and thus preserves the orbital depend-
ence and all the physical properties as the RPA spin susceptibility given by Eq. 3.12. For
instance, we get the same criterion of commensurability or incommensurability depending
on the orbital nesting between pockets. In the same way, we also obtained that the dom-
inant contribution to the RPA pairing vertex is given by the spin-fluctuations exchange
between hole-electron pockets, i.e. the ngix(q) and ngiy(q) contributions, being the

I_1

I';, 7' (q) the greater.

3.4.2. Superconducting gaps

In this section we solve the BCS gap equation mediated by the orbital selective spin
fluctuation exchanged computed in the previous section for a four pocket model within the
OSSF model. Let’s consider first the pairing Hamiltonian involving only the yz and xz
orbital contributions

I+ X +ty,+ X X
Hé’gl;’;ng — _Zry;kk’[ h th T( )ek/e—k’]
K.k’

[ T\2—t7—1 . X\2 X X |
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— D T e [0 TR (u)) el
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B ZF(EZ kk’ u£)2h;Th:L(ui/>2€§/€}:k/ h.c.
kk/ 4

(3.14)
where F;illi, with n = yz/xz is the RPA pairing vertex given by Eq. 3.13 for the different

pockets 11l,. The coefficient (ul)? and (v})? are the coherence factors that connect the
orbital and the band basis and account for the pockets orbital character.
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The pairing Hamiltonian given by Eq. 3.14 is solved in the mean field approxim-
ation by defining the orbital dependent superconducting order parameters for the hole
sector (A, A,., Af,, A;,) and for the electron sector (A7F, As~, AST, AST). The precise
definition of these parameter is shown in Appendix C.2.2.

The resulting linearized gap equations at T=0 read as

A;_zk’ = _Z éilf/ uy )? ( %) A;rlﬁ”(“k) A;J( (3.15)
A = ( )AZerk+(uk) Azzk} (3.16)
Aty = (A + () A;@( (3.17)
Mo = (22 + (u)PA,] (3.18)
Avhy = _( i) Agj_zk+ (vk) A:Zk_ ( (3.19)
A = :<v£>2A;Zk+<u£>2A;zk:< (3.20)
Aty = (h)?A )+ (00) A;:k'( (3.21)
A, = [CARSRRCAR - (3.22)

with ! Fk = Gk(ek ) the Fermi velocity for the pocket . Eqgs. 3.15-3.22 represent the orbital
components for each gap. Then, we define the total low-energy band gaps Al as

AT = ()AL + ()AL, (3.23)
Ay = ()AL + ()AL, (3.24)
AF = (u)PATh + (ud)PAT (3.25)
A = (ug)PAS + (g )P AL (3.26)

where each low-energy band gap involves the sum of the different orbital contributions
weighted by the correspondent coherent factors of the pocket. The gap functions A{{,
given by the set of coupled equations in 3.23-3.26, contain information on the spatial and
orbital structures of the pairs.

To get insight into these results, we solve numerically the linearized gap equations for
a four pocket model given by Eqgs. 3.15-3.22, by searching for the largest eigenvalue that
corresponds to the leading instability of the system. Then, we calculate the eigenfunction
corresponding to the leading instability that determines the symmetry and the structure
of the gap function. In Figure 3.5 the solution for the low-energy band gaps functions A{(
given by Eqgs. 3.23-3.26 is shown.

56



Chapter 8. Magnetic excitations and superconductivity in the OSSF model

(a)

Figure 3.5: (a) Gap function plotted on the Fermi surfaces (red positive and black negative values)
and orbital content of the I'y (green and orange) X (yellow) and Y (blue) pockets a function of the
angle 0 in the tetragonal phase. Solid and dashed lines represent the u} and vl orbital coherence
factor respectively. (b) Angular dependence of the superconducting band gaps given in Egs. 3.23 -
3.26. An anisotropic s-wave symmetry is obtained within the OSSF model. The band parameter
are specified in Appendix B.3 and U = 1éV.

In Figure 3.5 the band gaps symmetry and structure and the orbital composition for
a four-pocket model are shown within our OSSF model. The following results are drawn:

(i) In the first panel in Figure 3.5a, the RPA band gaps (Eqs. 3.23-3.26) are plotted
on the Fermi surface. From it we can read that the gap in the hole pocket sector is
positive sign (red color), while the gap for the electron sector is negative sign (black color).
Therefore, we obtain a sign changing s-wave gap between the hole and the electron pockets
in agreement with five-orbital tight-binding model where a s; symmetry is also achieved
[76,102] and as also expected for low-energy multiband models [19,20,98].

(ii) Besides that, we show in Figure 3.5b the angular dependence of the supercon-
ducting RPA band gaps (Eqs. 3.23-3.26). Therefore, we get an anisotropic momentum s
gap symmetry. The momentum dependence can be explained as in terms of the orbital
content of the Fermi surface “i and vf( (plotted in Figure 3.5a) and the orbital nesting
in the superconducting order parameters (given in Eqs. 3.15-3.22). This result is again
in agreement with multiorbital models [102], but it cannot be reproduce within a perfect
nested multiband model due to the lack of spin-orbital interplay.

(iii) Another interesting related result concerns the orbital momentum modulation
of the gap bands. In Figure 3.5b it is shown that the maximum and the minimum values
for the angular dependence of the different pockets correspond exactly with the angular
position where there are better orbital nesting between the holes and the electrons. Thus,
for the I' sector, the maximum values for the angular dependence band gaps are located
at the 0 = (0,7/2,m,3m/2) angular positions corresponding with the position of the yz
and zz orbitals. While for the electron sector X/Y the maximum values of the band gaps
correspond to the yz/xz orbitals position at § = (7/2,37/2) and 6 = (0,7) for the X/Y
pockets respectively and it is zero where the zy orbital is placed.

In conclusion, from the analysis of Figure 3.5 we get that within the OSSF model
applied to a prototypical four-pocket model for IBS we find an anisotropic sign changing
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Chapter 8. Magnetic excitations and superconductivity in the OSSF model

s-wave gap symmetry, i.e., a s+ s-wave band gap. This result is in agreement with cal-
culations performed within five-orbital tigh-binding models in which the gap anisotropy
found for the s+ s — wave state in RPA spin fluctuations is discussed in Ref. [76,102]. We
illustrate that the overall momentum dependence of the band gaps is determined by the
momentum-dependence of the pairing vertex and the orbital-make of the Fermi surface. A
key parameter that control the angular modulation of the gap is the orbital nesting between
the low-energy states connected by the spin-fluctuations that determine the structure of

the spin-susceptibilities (and thus of the pairing vertex).

To provide a quantitaive analysis to these results, we compare them with the ones
obtained in Ref. [102], where the anisotropy of the gaps for a five-orbital model is discussed
in detail by using RPA calculations for the exchange of spin and charge fluctuations. The
authors conclude that the anisotropy of the gap on the different Fermi surfaces has been
shown to arise from an interplay of the orbital make-up of the states on the Fermi surface
together with the momentum dependence of the fluctuation-exchange pairing interaction.
Moreover, to minimize the repulsion between the electron Fermi surfaces, the electron can
present accidental nodes.

To provide a more accurate comparison we use a set of band parameters to generate
similar Fermi surface to the ones used in [102] (see Appendix C.2.3).

We also take into account the pairing mediated by xy-spin-fluctuation peaked at
Qs This means that we have to add to the pairing Hamiltonian, Eq. 3.27 the zy-pairing

term
§ X X X Y Y
ny Kk’ [f}k ) Cx €k’ ('Uk ) Ex€_ k/:| <’ h.c.

Kk’
where I‘fy{k, is the RPA pairing vertex given by Eq. 3.13 for the electron pockets X and
Y around Qs = (7, 7).

By defining the new orbital dependent superconducting order parameters for the
electron sector (AZY, AZ¥) (see Appendix C.2.2) and then by solving the pairing Hamilto-
nian given in Eqs. 3.14 and 3.27 in a mean field approximation, the resulting linearized
gap equations at T=0 read as

HEPIrmg — (3.27)

B = =X ‘FX| )2 [ >A;jk+<uk>Azk+<vk>A§§k'( (3.28)
A :( )A;rk (uic )Aezk+(vk) A;;(k- (3:29)
A ()2 A5h + (w255 + (o) Af;;k'< (3.30)
Al () )PAh + (u)?A% + (o)) Ai;(( (3.31)
A ( PATH + (i PAS + )PAT]  (332)
A% () PACH + ()2 A% + (o)) A;;:k'( (3.33)
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Chapter 8. Magnetic excitations and superconductivity in the OSSF model

where we only report the equations that changed due to the zy-pairing channel, while the
rest are identical to Eqgs. 3.19-3.22. Notice that two new gaps equations Egs. 3.33 and 3.30
are taking into account due to the inclusion of the XY pairing vertex I‘fy{k/. Moreover,
the orbital components for the gap equations for the hole sectors is modified by a new term
coming from the new order parameters for the electron sector given by (AZY, AZx).

Then, we define the total low-energy band gaps A{( as

A = (up)*AlL + ()AL, (3.34)
A = ()AL + (u)?A] (3.35)
A = (uy) AZ;rk+(Uk) Aezk+(vk) Ak (3.36)
AY = (ul)PALh A+ () PAS + (o )PA%, (3.37)

where each low-energy band gap involves the sum of the two different orbital contributions
weighted by the correspondent coherent factors of the pocket.

In Figures 3.6a and 3.7a the Fermi surface used for the OSSF model and for the
multiorbital model [102| are shown respectively. Notice that the electron Fermi surfaces
are much bigger than the holes and there is a better band nesting between the I'; and the
X/Y pocket than for the I'_.
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Figure 3.6: RPA gap function within the OSSF model (a) plotted on the Fermi surfaces (red
circles positive and black circles negative), (b) plotted as a function of angle from 0 to 27. The
band parameter are specified in Appendix C.2.3

Results for the gap function are summarized in Figures 3.6 and 3.7. From the
comparison we find:

(i) The inclusion of the charge channel within the RPA analysis of the five-orbital
model. In the five-orbital model [102] does not change qualitatively the results. We
still find a good agreement within the OSSF model calculation in which only the spin-
channel is considered and the microscopic model in which the charge channel is considered
in the RPA resummation. This confirms that the spin channel provides the dominant
pairing contribution and that this is well described within the OSSF model which is able
to reproduce in a much simpler way the same results.
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Figure 3.7: RPA gap function within the five-orbital model (a) plotted on the Fermi surfaces
(red/solid circles positive and blue/open circles negative), (b) plotted as a function of angle from
0 to 27. Adapted from [102].

(ii) An anisotropic s-wave sign changing band gaps are obtained within both models
with the same modulation in momentum. We already discussed in the previous section as
the modulation is a direct consequences of the orbital composition of the nested pockets.

(iii) We reproduce the correct hierarchy of the band gap \A£_| > ]AE* |. It is
interesting that the larger gap is found for the I'_ pocket despite the stronger band nesting
of the I' . with the electron pockets. The result can be easily interpreted within the OSSF
modeling as a consequence of the orbital matching between the I'_ and the electron Fermi
surfaces. This finding show that the orbital nesting (more than the band nesting) controls
the strength of the pairing.

(iv) When the interaction between the electron pockets X and Y is taken into ac-
count, we find accidental nodes for the electron gaps Af and A)k/ in agreement with the
microscopic analysis. As explained in [102] this is a way to reduces the effects of the
repulsive scattering between the electron-sheets.

3.5. Conclusion Chapter 3

In Chapter 3 we show that the OSSF model provide a reliable description of the
magnetic excitations and pairing interactions. We compare our results with the five-orbital
tight-binding RPA model and with the three-band spin-nematic model.

In Section 3.3 we compute the spin susceptibility for a four pocket model in the
tetragonal phase and we compare the results with the ones obtained for a five-orbital tight-
binding RPA model. One of the most relevant results, is that depending on the degree
of orbital nesting between pockets, we get an orbital modulation of the spin susceptibility
that rises to commensurate or incommensurate peaks in the spin susceptibility when there
is an orbital match or mismatch between the holes and the electrons respectively. Moreover
we see that the main contribution to the spin susceptibility is given by the spin-fluctuation
exchange between hole and electron pockets and the the larger contributions comes for
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the hole pocket whose orbital composition match better the orbital composition of the
electrons.

We also compare the total spin susceptibility and plot it along the high-symmetry
points. The OSSF reproduces qualitatively well the overall momentum dependence and
the relative heights and widths of the peaks located at different momenta. This is a
remarkable result considering that the OSSF model is a low-energy effective model that
only consider the yz,xz,xy orbitals and we compare with results obtained within the
microscopic five-orbital model.

Within a spin-driven scenario, in Section 3.4, we compute the RPA pairing vertex
and the correspondent gap equation for a four pocket model. The RPA pairing interaction,
estimated in Section 3.4.1, is given by the irreducible particle-particle vertex that can be
computed from all possible Feynman’s diagrams containing the orbital selective spin fluc-
tuation exchanged susceptibilities. It is interesting to notice that within the OSFF model
it is possible to draw analitically all the Feynman’s diagrams involved in the pairing vertex,
something which is almost unfeasible within the five-orbital model due to the large number
of different possible diagrams. As a result, the same features of the spin susceptibilities
are transmitted to the pairing vertex obtaining commensurate or incommensurate peaks
depending on the degree of orbital nesting. In Section 3.4.2 we solve the BCS gap equa-
tions mediated by the RPA pairing vertex computed in Section 3.4.1. We analyse the gap
symmetry and structure of the band gaps for the different pockets and we compare with
the results obtained for a five-orbital model. We find an anisotropic s+ gap function due
to the orbital degree of freedom.

A deep analysis of the bands gap structure shows that the angular dependence and
the magnitudes of the different gaps depend directly on the degree of orbital nesting
between the holes and the electrons pockets, and what is more important, that the de-
gree of orbital nesting is a stronger condition than the degree of band nesting between the
different Fermi surfaces. This result proves that a minimal theoretical model to understand
superconductivity in IBS has to account for the spin-orbital interplay. In that respect, the
OSSF model is a perfect candidate.

Despite is simplicity, the OSSF model is able to reproduce qualitatively well all the
relevant features of the spin-excitations and pairing interactions of the multiorbital descrip-
tion. It allows for analytical treatment making easy and straightforward the interpretation
of the results. Moreover, due to the orbital-selectivity of the spin-fluctuations, it allows to
include in a very simple way additional interacting channel, as we showed explicitly by con-
sidering the electron-electron interaction beside the hole-electron spin-exchange. Also in
this case we find a perfect agreement with the multiorbital analysis in which it was shown
as the presence of an electron-electron interaction leads to the appearance of accidental
nodes in the electron gap bands.
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Anisotropy of the de¢ conductivity in the nematic
phase

4.1. Introduction

Resistivity anisotropy is a hallmark of nematicity in iron-based superconductors
(IBS). As discussed in Section 1.4 the experimental evidences appear extremely puzzling
and difficult to be explained using a single theoretical frame. In fact, the dc-resistivity
anisotropy measured in the nematic phase of IBS can have different signs and magnitude
depending on the compound.

In detwinned electron-doped 122 compounds Ap = p, — p, < 0 is found below
the structural transition [82,141-144| while detwinned hole-doped compounds present the
opposite anisotropy [94]. There is an on-going debate in the literature on whether the
observed dc anisotropy is due to the anisotropy in the scattering rate or to the anisotropy
in Fermi surface parameters [95,145-152|. In principle, within an orbital-ordering scenario
the different occupation of the various orbitals affects mainly the Fermi surface 74,153,
154], while within a spin-driven scenario the largest effect is expected to come from an
anisotropy in the inelastic scattering rate [145, 155-158]. Specifically, in the band spin-
nematic scenario, depending on the Fermi surface shape and size, the band nesting is active
at the so called hot spots on the Fermi surface, where the scattering rate is maximum. It
has been argued that the location of the hot spots could explain the different signs between
electron-doped compounds and hole-doped compounds [94] in pnictides. Besides the spin-
nematic or orbital order scenario, further attempts to explain the dc anisotropy in pnictides
taking into account the spin-orbital interplay has been performed using effective spin-
fermion model [159] or multiorbital microscopic model in the magnetic phase [22,160, 161].
Experiments in FeSe have found the opposite anisotropy with respect to the electron-doped
122 compounds [162], i.e. Ap = p; — py > 0. The significant Fermi surface reconstruction
observed in the nematic phase of FeSe [24, 32|, suggests that both scattering rate and
velocity could play a role in contributing to the anisotropy of the dc resistivity, in particular
in the light of the results obtained in [60] in which the temperature evolution of the Fermi
Surface (size, shape and orbital composition) of FeSe across the nematic transition has been
quantitatively explained within the orbital selective spin-fluctuations (OSSF) scenario.

In this Chapter, which is based on [103], we analyze the anisotropy of the dc resistivity
in the nematic phase of IBS within the theoretical frame of the OSSF model presented in
Chapter 2. The model, due to the spin-orbital entanglement encoded in the theory, is
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able to account for the different phenomenology of 122 and FeSe regarding magnetism
and nematicity [27] and provides a simple scheme to understand both nematicity and
superconductivity of FeSe [60, 133].

To compute the conductivity of the system, we implement a quantum field theory
approach as discussed in Section 4.2 starting from the definition of the current-current
correlator in the bare bubble approximation. This means we account for self-energy effects
only. As we already discussed in Section 2.3, the OSSF self-energy we use do not depend
on momentum, thus vertex corrections vanish identically. However, our results do not
depend crucially on this approximation and are expected to hold even in a calculation
in which the self-energy is given by spin-mode having a momentum dependence. This
idea is supported by the work performed in [126, 163], where it is shown that self-energy
corrections to resistivity are dominant (over the vertex ones) in IBS.

We focus in the analysis of the nematic phase where the OSSF self-energy are not
longer degenerate for the xz/yz orbital as consequences of the x/y anisotropy of the spin-
fluctuations. The analysis in contained in Section 4.3. To gain physical insight and dis-
entangle the effects of anisotropy coming form scattering rate or velocity, we first perform
analytical calculation using the perfectly-nested parabolic-band approximation and treat-
ing the nematic order parameter perturbatively. This analysis allow us to define simple a
analytical equation for the dc conductivity anisotropy of each band. We find that, in con-
trast to the band spin-nematic scenario [23, 28] where just the scattering rate contributes
to the dc anisotropy, also the velocity contributes. The contribution of the scattering rate
to the resistivity anisotropy is dominated by the location of the cold spots where the scat-
tering rate is minimum, which, within our model, is determined by the orbital composition
of the Fermi surface and by the spin-orbital interplay of the OSSF. The contribution of
the velocity to the resistivity anisotropy is counter-intuitive and opposite to the one of the
scattering rate. We find indeed that the conductivity is larger in the direction where the
self-energy is also larger. This interesting new effect is due to an orbital character exchange
in the pockets arising from the OSSF self-energy in the nematic phase.

To check the validity of the analytical approximation, we compute numerically the
dc conductivity using realistic band parameters for 122 compounds and FeSe compounds,
i.e. accounting for spin-orbit coupling elliptical electron pockets. We verified that for 122
compounds due to a smaller spin-orbital coupling and a weaker nematic order numerical
results are very close to the analytical ones, while more important deviation from the
analytical analysis are found in FeSe.

Last, in Section 4.4 we discuss our results and put them in the context of experiments
in IBS. Our study shows that the sign of the anisotropy of the dc conductivity depends
on whether scattering rate or velocity anisotropy dominates on each pocket, as well as
other parameters such as the ellipticity and the quasiparticle renormalization due to local
interactions. Thus, different experimental results among the various families of IBS can be
explained within the same OSSF scenario.

4.2. Conductivity in the OSSF model: a quantum field theory
approach

Consider a system of electrons subjected to an external electromagnetic field. In
linear response theory, the conductivity tensor o is the proportionality function between
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the induced electric density J and the applied external electric field E
Ji(q, ) = 0ij(q, Q) Ej(q, Q) (4.1)

with ¢ = {z,y, 2z} the spatial coordinate and q and € the transferred momentum and
frequency respectively. The spatial components of the conductivity tensor o;; are defined
as
ie?
0ij(q, ) = ~va [1Li(a, ©2) — (73)d5] (a (4.2)
where V' is the unit-cell volume, II;; is the current-current correlation function and 7; is
the diamagnetic tensor, where the current operator and the diamagnetic term are given by

, 1 t 1 %ex
Jji(a) = N ;V(k)ckqgckﬁ and Tii = 37 ; Tkignk,a (4.3)

with N the number of unit cells, v(k) = Oex/0k; the velocity, ex the band dispersion and
nk,s the electron density. Eq. 4.2 represents a powerful result that defines the electromag-
netic response of the system.

The q — 0 limit of Eq. 4.2 defines the optical conductivity in which the off-diagonal
component of the conductivity tensor vanish by symmetry (if the system is time-reversal
symmetric e.g. in the absence of magnetic field). The real and the imaginary part of the
conductivity represent the dissipative and the absorptive part respectively. The optical
properties of the system are expressed through the optical response functions which are
determined by the real part of the optical conductivity tensor given by

271 II.,(q=0,9Q
Reaa(Q):%m (?_2 0, )?

(4.4)

where we simplified the notation o« = 4 = {x,y}. The dc conductivity is defined as the
Q0 — 0 limit of the longitudinal optical conductivity

e? ImIl,(q =0,
Odea = Vllmg_m ((;2 ) (4.5)

Therefore, the conductivity of a given system reduces to the computation of the current-
current correlation function II,,.

In what follows we summarize the main step of the computation the current-current
correlation function and dc conductivity within the OSSF model. We refer the reader to
Appendix D.1.1 and D.1.2 for the complete derivation.

4.2.1. Current-current correlation function

The current-current correlation function II, can be evaluated as usual from the
standard analytic continuation €2, — € + in of the equivalent correlation function in the
Matsubara formalism as

IL;(q, i) = % /( dre (T ji(q, 7)7;(—q, 0)) (4.6)

with 7 the imaginary time, €, = 27mT the bosonic Matsubara frequency and j;(q,7)
is the current operator given by Eq. 4.3. According the diagrammatic technique this can
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be decomposed in a series of diagrams with increasing numbers of single-particle Green’s
functions and interactions lines [164]. If we consider a non-interacting electron system we
have

T (q, iQm) =2 w(‘r{él(k — /2, iwn) Vg, G' (k + q/2, iwn + Q) VAL } (4.7)
lkn

where the factor 2 is due to the spin summation and we are summing over [ =I', X, Y. Here

wy, = 2m(n + 1/2)T the fermionic Matsubara frequency, G'(k, iwy,) is the non-interacting
Green’s function fro the OSSF model, Eq. 2.25, and Vk Ok, H' are the bare velocity in the
direction ¢ = {z,y}. As soon as interactions are present in the system, we have to consider
their effect on I;;(q, i€2y,). It is easy to demonstrate [164] that one can perform a partial
summation of diagrams to all orders by replacing in Eq. 4.7 each bare Green’s function
by the full Green’s function defined by the Dyson equation Eq. 2.48. The current-current
correlation function computed within this approximation is the so-called bare-bubble. In
what follows we work within this approximation and compute the current-current correlator
from Eq. 4.7 in which we dress the bare Green’s functions with the OSSF self-energy as
discussed in Section 2.3.

When can now set q = 0 and use that Gl(k,iw,) = L?}l%(k, iwn ) [iw, 1 —
f\%(k, iwn)]_ll;{gl(k, iwn) (Eq. 2.49). By using the cyclic property of the trace, Eq. 4.6
can be rewritten as

IL;; (i) = 2 Z Ef{[iwnﬂ—AZR(k,wn)]_1V11%(kﬂw") [(iwn + iQm)ﬂ—AlR(k,mnﬂﬂm)]_1V11%(k,-iwn+mm)}

lkn
(4.8)
with the renormalized velocity matrix defined as

Vhicion) = Ul (k, iwn) VI UG (K, iwn + i) (4.9)

where LA{E 1(uR,UR) is the rotation matrix with ug and vy the renormalized coherence
factors Eq. D.22. Notice that the renormalized velocities are affected by the self-energy
via the coherence factors. Notice that those depend on both the internal (w,,) and external
(Qp) frequencies. This effect does not enter in our calculation as we focus on the dc
conductivity, but could be important in the analysis of the optical conductivity.

We replace the expressions for the velocity, Eq. 4.9, and the renormalized Green’s
functions G!(k, iwy,) = [iw, 1 — AL (k, iw,)] ™1 = diag(g™ (k,iwy), g~ (k, iw,)) in Eq. 4.8. By
evaluating the trace over the orbital basis the current-current correlation function can be
rewritten as

. _ ot i+ lag—+ log——
i (i2m) = Wita + Wita,) + Wita,) ¥ Wito,.) =

. 4+ l11 + l11 l12 lo1
= 2 Z ( |: W R gzwn +szV + giwn VR wgzwn—HQm V ] 6
lkn

+ [gzwn Vi i, Vi + 90, Vi Gi i Vlmp ( Y

where we drop the k dependence. Notice that in Eq. 4.10, Hl“(gr) and l‘[Z (m ) Tep-

resent intraband terms and Hgl(:gn) and Hij%z_ﬂ—;) interband contributions to the optical
conductivity given by Eq. 4.4.

We are interested in the intraband terms given by the H++/ as we focus on the
analysis of the dc conductivity and hereafter we use the Compact notation a = i = {x,y}
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4.2.2. Dc conductivity
/-

- q o ione oL (s
a—i;i  terms, we express the Green’s functions g (iwp)

In order to compute the

in terms of the spectral functions Ai(i (w). After performing the Matsubara sum we can
replace the current-current correlator in Eqgs. 4.4 and 4.5. The dc conductivity for each

pocket is then given by
271'6 Z /(

where f(w) the Fermi distribution function and the spectral function reads
l
1 )
l l
T a@)]? + [w = ege(w)]?

The total dc conductivity is defined by the sum over the pockets I = {T';,I'_, X, Y}
as Odeq = Ziéaéi. By direct inspection of Eq. 4.11 we see that the dc conductivity

[vlémw)ﬁAif (@))%, (4.11)

(4.12)

A w) =

within the bar¢-bubble approximation depends on the self-energy via: (i) the renormalized
energy dispersions and scattering rate contained in the spectral function Eq. 4.12 (ii) the
renormalized velocity.

The dispersions and scattering rate for the interacting system, derived in Section 2.3,
are given by

b (W) = ReEY (w) (4.13)

I (w) = 00+ |[ImE% (w)| (4.14)
where E%k(w) is
!

(@) = B+ Sh() £ (Ry)? + ()2 + (y + D @))2 (4.15)

derived in Eq. 2.50 in Section 2.2.1.

Vll%ia, Eq. 4.9, is the bare velocity operator rotated (using the rotation matrix of
the interacting system) into the band basis. We take the £ — 0 limit and consider the
intraband component only

V}lﬁ[{a :Végm%ﬁivlm *[ *IZIIVl21URUR+ l22’,ul ‘2 (4.16)

Lyt . .
Viee? are the nn’ component of the velocity, (u/ v)lR are the renormalized coherence factors

and hereafter we omit the dependence on the internal frequency w for simplicity. VRka
depends on the self-energy via the coherence factors. It is worth noticing that Eq. 4.16 show
a dependence on the orbital 73 component of the self-energies, ¥4 (w) that mixes the orbital
content of each pocket. This can be easily check by looking at the analytical expressions
for ur/vg that can be derive within the parabolic approximation (see Appendix D.2) as

2ReX!
i =l 14 =2 3|qu> (

2ReY!
Rl =l 1= 3|ul12> (
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In the T' — 0 limit we can approximate the Fermi function with a §(w) which selects
only states at the Fermi level w = 0. Moreover, we assume Flﬁ to be small so that

(/Cif)Q — 27;1 =0 (e%k) and the pocket conductivity reduces to
Rk
2 Vl:t )2
. € Z ( Rk, l

In the next Section we will perform analytical and numerical analysis of Eq. 4.18 to
analyze the dc conductivity in the nematic phase of IBS. Further details can be found in
Appendix D.2.

4.3. 122 and FeSe dc conductivity within the OSSF model

The general sketch of the orbital content of the Fermi surface for a generic four-pocket
model for IBS is shown in Figure 4.1.

XZ ;.
L I B & vZ @
- Xy @
N 3
= n
P
= @

0 ey T

Figure 4.1: General sketch of the orbital content of the Fermi surface of the 4 pocket model for
IBS. The green and red arrows show the OSSF with yz content in the x-direction and xz content in
the y-direction. Cold spots, where the scattering rate is minimum, are shown by a circle and they
are found on the zy and xz orbitals in the nematic phase due to anisotropic self-energy corrections.

The qualitative behavior of the self-energies in the nematic phase allows us to easily
localize the minimum value of Flﬁ on the Fermi surface (FS), i.e. the cold spots shown in
Figure 4.1. As is discussed in Ref. [60], within the OSSF model, the reconstruction of the
F'S below Ty is consistent with the spin-fluctuations being bigger at @) x than at QQy. This
implies that self-energy corrections are stronger on the yz orbital than on the zz one. As a
consequence on the hole pockets the smaller scattering rate corresponds to the xz orbital.
On the electron pockets instead, the smaller scattering rate is found for the xy orbital,
given the absence of zy-SF within our model. The result is an example of the spin-orbital
interplay retained by the OSSF approach that allows us to directly link the cold spots
position with the FS orbital character and is not present in the band-based spin-nematic
scenario [28§].
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4.3.1. Analytical estimate of the dc-conductivity anisotropy

To gain physical insight on the dc anisotropy and disentangle the effect of the velocity
and scattering rate in Eq. 4.18, we estimate analytically o,. In order to do that we
performed two main approximations. First, we approximate the hole and electron bands
with perfectly nested parabolic bands (see also Appendix B.2). Second, with respect to
the self-energy, we define the nematic splitting as symmetric around the isotropic value Ef)
of the tetragonal phase and assume that the nematic order is small enough to allow for a
perturbative expansion of the renormalized energy E% given in Eq. 4.15.

By expanding E% at first order in the 73 self-energy component we can estimate
analytically for each pocket Vll%i o elﬁ[ and Flﬁfk via Eqgs. 4.13 and 4.14.

Renormalized velocity By neglecting the imaginary part of the self-energy in the co-
herence factors (u/v)k, it is easy to check the velocity given in Eq. 4.16 can also be written
as the derivative of the renormalized dispersion relation

Vi = 0t (k) /Oke. (4.19)

Let’s perform explicitly the derivation for one pocket. Deriving, for example with respect
k. the renormalized energy of the pocket I'; we find

r, kcos@

k cos 6
— I i p2
Ve, = — T 4 Re¥s5 sin

k?

(4.20)

where m!'+ is the bare mass of the I';. pocket whose definition in terms of the Hamiltonian
parameters. The first term on the right hand side of Eq. 4.20, is the o component of
the bare velocity, while the second term O(ReX}) is an additional contribution due to the
orbital mixing induced by the nematic order as expected from the (u, v)ﬂ,% coherence factors
in Eq. 4.16. The expression of the renormalized velocities for the different pockets in the

k. and k, directions are specified in Appendix D.2.

To compute the k integration in Eq. 4.18 we will use the delta function and evaluate
Vlglix at the renormalized Fermi surface. Notice that, in the nematic phase k%r (#) is no
longer constant but gets deformed because of the anisotropic self-energy renormalization.
This effect is also of order O(ReX}) and has to be taken into account.

We estimate the change in the Fermi wave vector at the first order in the self-energy.
Replacing the expression of k;* (0) into Eq. 4.20 we find

r r
Vel =Vok, | 14 cos26 — 4sin” 6 4.21
ks Ok ( 263 268‘ ( )
where 66‘ = +Re§]g and Voer+ = fk‘o;;r /m+ are the 2 component of the bare velocity
in the tetragonal state with k:oll;+ = \/qy/(2mI+).

From Eq. 4.21, one sees that the\bare Fermi velocity in the nematic phase has two
contributions O(ReZé) opposite in sign: the first one is due to the change in k:%i, while
the second one comes from the orbital mixing produced by the nematic order.

Analogous calculation of the velocity contributions along k, for the I' . as well as for
the other pockets lead to similar expressions (see Appendix D.2) with the band velocity

of the tetragonal phase renormalized by two additional contributions O(ReEg) of opposite
sign.
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Renormalized scattering rate The scattering rate is analytically estimated from
Eq. 4.14 using again the expansion of E12+ at the first order in %

F;*’ = T} + cos 20| ImX}| (4.22)

where we separate the tetragonal phase scattering rate, Ff)‘ = 6" + \ImEg [, from the
angular dependent correction due to the nematic effect ~ I mZg. By looking Eq. 4.22
and comparing it with Figure 4.1, is easy to understand where are the minimum values of
the scattering rate at the Fermi surface, that is, where are the cold spot located in each
pocket. Analogous calculation of the renormalized scattering rate for the I'_, X, Y pockets
are specified in Appendix D.2.

dc conductivity By replacing the analytical expressions found for the velocity, Eq. 4.21,
and for the scattering rate, Eq. 4.22 in Eq. 4.18 the expression of the I'y pockets dc
conductivity read as

ReXl  ReXb ]ImEF]

'y h 3 3 3
g = 0 + F F =
v < 2l eh 2rh >

- ((-r Mh)( (1.23)

S 2dh T orh
h Th h _ 2.h/e h : : . :
where €7, I'g and 0" = e®¢,’ /(2nh)[§ are respectively the Fermi energy, the scattering
rate and the dc conductivity in the tetragonal phase for the hole pocket. We also defined
the real and imaginary part of the nematic order parameter (<I>h, AFh) for the hole pocket
as

dh = —Rext, AT = |ImXi, (4.24)

taking also into account that stronger spin-fluctuation at Qx implies ReZ‘g < 0, so that
now the nematic order parameters are positive defined. Via analogous calculations we
derive the dc conductivities along = and y for each pockets.

The dc conductivity components for the hole pocket at I' point read as

r, b oh N oh AT
o =0 —_— —_— — ]
a/y T o Tk T ok

o b AT
O'Fi = O'h :l: o h + - + oTh
2/y 2 T b T o

In the absence of spin-orbit interaction the hole pockets have the same eg , so they
also have the same conductivity ¢’ in the tetragonal phase. Additional terms proportional
to ®" and AT arise in the nematic phase and make the conductivity different for the two
hole pocket.

(4.25)

As discussed within the calculation of the velocity operator for the I't pocket in
Eq. 4.21, the nematic order has two opposite effects O(®") in the velocity and this is
reflected into the pocket dc conductivity anisotropy as one sees from Eq. 4.25. The first
correction comes directly from the kll;i changes due to the nematic Fermi surface recon-
struction, while the second one, opposite in sign, is due to the orbital mixing. Notice that
this last term also determine the overall sign of the correction ~ ®" in each pocket.
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Due to the zz/yz orbital arrangement of the I'y Fermi surface, the two hole pockets
contribute with opposite sign to the conductivity anisotropy i.e. in Eq. 4.25 we find the
same sign of the nematic terms in the conductivity along x of the I';. pocket and in the
conductivity along y of the I'_ one. In particular, the opposite sign of the contribution
O(AT™") giving negative /positive anisotropy for the T', /— pocket is a direct consequence of
the cold spots physics, Figure 4.1, from where we can easily infer the sign of the anisotropic
contribution for 't having in mind that lower scattering implies a bigger conductivity.

By computing the hole dc conductivity anisotropy as the different of the dc conduct-

ivity in the x and y directions Ac”*+ = Ug S 05 * we find
h h
Aght —gh 20 AF) (
24 Ik
0 0
. . (4.26)
P AT
Ach= =g R e i
€0 g

Within a parabolic band approximation, neglecting the effect of the spin-orbit coupling
the hole pockets are completely degenerated, thus is no surprising to find that by summing
up Ao for the two hole pockets their anisotropic contributions cancel out. Therefore the
sign of the anisotropy of the total dc conductivity is in this case completely controlled by
the electron pockets.

The dc conductivity components for the electron pocket at X read as

X X
X _pef1 ReX, N [Im>,
v A€t aTe )

X _pe({4 BReZf,  |[ImZ]
v 4e§ arg )

where we used that of y = 0° as within the parabolic approximation we neglect the
ellipticity of the electron pockets. Same expressions hold for the Y pocket once replaced
Zé(z — E;/Z and k, — k. This imply that X/Y pockets contribute with opposite sign to
the overall dc conductivity.

(4.27)

We define the real and imaginary part of the nematic order parameter for the electron
pockets (®¢, AT') as

o — ReX;\, — ReXY, _ [ImX;)| — [ImXY,
= 5 =

2

. Ar° (4.28)

which are all positive defined.

By using Eq. 4.28 we can write the electronic dc conductivity anisotropy Ac® =

AcX + AcY as
e I‘e
Ao =0o° ¥ + = ) ( (4.29)

(A e
€0 I'g

Also for the electron pockets we find that the renormalized velocity and the scattering rate
contribute with opposite sign to the dc conductivity anisotropy. The balance between the
two effects is controlled by the nematic order parameters normalized to the Fermi energy
and isotropic scattering rate, respectively, i.e. ®¢/ef vs AI'*/I.
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In conclusion, we computed analytically the anisotropy of the dc conductivity of the
various pockets using the parabolic-band approximation Eq. 4.26 and 4.29 and treating
the nematic order perturbatively. In each pocket, we find that the anisotropy of the dc
conductivity is given by a contribution O(ReX!) and another O(Im¥'), opposite in sign

with respect to each other, whose relevance is controlled by the relative values of Ph/e / 68/ ¢

Vs AFh/e/Fg/e. Summing up the hole and electron pockets Ac"/¢ we find that the sign of
the anisotropy of the total dc conductivity is controlled by the electron contribution and
depends on which among X/Y-pocket contributes more to the total conductivity and on
which effect, among the scattering rate and velocity renormalization, dominates.

The cancellation of the hole-contribution is an artifact of the approximation used in
the calculation. In order to consider realistic system, we need to account for the presence
of the spin-orbit interaction that splits the hole pockets at I' and mixes their orbital
content at the Fermi surface already in the tetragonal phase. Moreover, the parabolic
band approximation is particularly inaccurate for the electron pockets that are strongly
elliptical in IBS. Furthermore, especially for FeSe, the nematic self-energy components Eé
are not small [60], thus the expansion of the renormalized energy in Eé performed above
is not longer justified.

For realistic cases then, we cannot use the analytical expressions for the renormalized
velocity Eq. 4.21 and scattering rate Eq. 4.22, and we need to compute the dc conductivity
from Eq. 4.18 using a numerical estimate of the velocity and scattering rate from Eqs. 4.13-
4.15.

4.3.2. Numerical estimate of the dc-conductivity anisotropy

We perform a numerical estimate of the conductivity anisotropy using realistic para-
meters for 122 and FeSe systems in order to assess the limits of validity of the analytical
expressions Eq. 4.26 and 4.29 and qualitatively discuss our results in the context of the
experimental outcomes found for 122 pnictides and FeSe.

We assume for both 122 and FeSe equivalent bare band structure parameters and
real part of the self-energy caplable of reproducing the 122 tetragonal Fermi surface shown
in Figure 4.1. The Fermi surface topology of FeSe with just the outer hole pocket crossing
the Fermi level at I' already in the tetragonal phase is achieved in the calculation using
a larger value of the spin-orbit interaction as well as a larger values of the real part of
the self-energy renormalizations in agreement with previous analysis [60]. The numerical
values of the parameters used in the following are detailed in Appendix D.3.

122 pnictides

In Figure 4.2 we show for each pockets the Fermi surface wave-vectors and velocities
along x/y computed by Eq. 4.16. To better appreciate the changes induced by the nematic
order we plot in the first row the results for the tetragonal phase and in the second ones
the results obtained in the nematic phase assuming ®" = ®¢ = 4 meV.

The shrinking acts isotropically in the tetragonal phase, i.e. the hole pockets are
still circular and kp is constant. However due to the orbital-selectivity of the shrinking in
the OSSF model, they are weakly deformed in the nematic phase (4.2a-d). The changes in
the velocities for the ' pockets appear to be quite small and do not follow monotonously
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Figure 4.2: Numerical computation of FS wavevectors and velocity components for 122 system
parameters in the tetragonal and nematic phase. ®; = ®., = 4 meV, the spin-orbit interaction
is 5 meV, other band parameters are detailed in Appendix B.3. The kr are measured in units
1/a ~ 0.375 A, where a = ap.re is the lattice constant of the 1-Fe unit cell. Velocities are in eV.
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Figure 4.3: Renormalized scattering rate (in meV) computed using realistic 122 system paramet-
ers. Here I'? = 3 meV and T'§ = 2 meV. We fix AT'* and AI'® considering the imaginary part of
the self-energy for each pocket changing proportionally to the real part in the nematic phase (see
Appendix D.3).

the renormalization of the Fermi vectors as one could have naively expected (4.2¢-f). This
is in agreement with the analytical calculation (see Eq. 4.21), where we found that the
renormalization of the velocities is given by the combination of two opposite contributions,
one due to the orbital mixing and the other from the shrinking (Fermi vector renormaliz-
ation), reducing the overall anisotropic effect on the velocity. Due to the ellipticity of the
Fermi surface, the electron pockets have anisotropic velocities already in the tetragonal
phase (4.2b-c) with the X/Y pockets showing larger velocity along y/x. No qualitatively
changes are visible in the nematic phase (4.2¢-f).
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In Figure 4.3 we show for each pocket the scattering rate obtained from Eq. 4.14. In
the three panels we show the tetragonal value, I'g, the nematic one I'g and their difference.

We find again a good agreement between the analytical calculations and the numer-
ical results for the hole pockets. As in Eq. 4.22 the angular dependence of the correction
F% — ng goes almost as a cos 20, even if the weak ellipticity of the hole Fermi surface
induced by the nematic order causes minor deviations, e.g. the correction vanishes for the
'y /T_ slightly before/after m/4. No renormalizations are found along z/y for the X/Y
pockets since, within our model, no scattering is allowed in the zy channel (Figure 4.1).
The location of the so-called cold spots i.e. the position of the minima of the scattering
rate for both hole and electron pockets, does not change once a realistic Fermi surfaces are
considered and corresponds to the ones shown in Figure 4.1.
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Figure 4.4: Numerical computation of the velocity contribution to the dc conductivity anisotropy
Aoy and of the total dc conductivity anisotropy Ao for realistic parameter for 122. In panels a-b we
renormalized the pocket contributions to their value in the tetragonal phase i.e. Aai/* (®h/e = 0)
and analogously in panels d-e. In ¢ and f panels instead we renormalize the hole and electron
contributions to the total tetragonal values, i.e. oyior = JV(CDh/e =0) and o1 = U(@h/e =0).

We can disentangle the effect of the velocity and of the scattering rate on the dc
anisotropy by computing Eq. 4.18 using a constant scattering rate. This result just account
for the anisotropic effects coming from the velocity so we will refer to it as Aoy. In
Figure 4.4 we show for each pockets Aoy 4.4a-c and the complete conductivity anisotropy
Ac 4.4d-f as a function of ®"/¢. To easily compare the results of the numerics with the
analytical estimate of Eq. 4.26 and 4.29 we renormalized the hy /e pocket anisotropy in
4.4a-b and 4.4d-e to their value in the tetragonal phase. In 4.4c and 4.4f we renormalize
instead the hole and electron anisotropy to the total values of oy and ¢ obtained summing
all the pockets contributions in the tetragonal phase.
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Chapter 4. Anisotropy of the dc conductivity in the nematic phase

From the analysis of Aoy we find that the sign of the anisotropic contribution pro-
portional to ®"¢ found in Eq. 4.26 and 4.29 is robust, with the I'y/_ and the Y/X
pockets contributing with positive/negative terms to the dc conductivity anisotropy (see
panels 4.4a-b and inset of 4.4b). The hole pockets anisotropy due to the velocity, panels
4.4a-c, are opposite in sign and grows as ®"/ 68 in agreement with the analytical expecta-
tion. Even if the 'L are not longer equivalent due to a small spin-orbit interaction their
anisotropic contributions almost cancel out so that the negative anisotropy of the electron
pocket is the one that determines the final results. Once the effect of the scattering rate
is included in the calculation we see in 4.4d a reduction of the conductivity anisotropy for
the hole pocket that however still sum up to an anisotropic conductivity terms close to
zero (4.4f). In contrast a change of sign in the overall electronic term is observed due to
the larger positive contribution AcY of the Y pocket once that the anisotropic scattering
rate is correctly taken into account. For the set of parameters used, thus, we find a final
Ao > 0. The result comes from the change in the relative weight of the contribution of

the X and Y pockets in the electron term due to the different scattering rate Fg/ Y,
The final outcome is thus particularly sensitive to the I'§ and AI'® used and could

be strongly affected by any mechanism (temperature, disorder, interactions, ect.) affecting
their absolute values.

FeSe

We repeat the numerical analysis considering the case of FeSe. In Figure 4.5 we
show the pockets Fermi surface wavevectors and velocities both in the tetragonal and in
the nematic phase assuming ®" = ®¢ = 15 meV.
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Figure 4.5: Numerical computation of the tetragonal and nematic Fermi surface and Fermi
velocity components for FeSe parameters. ®;, = ®, = 15 meV, the spin-orbit interaction is 20
meV, the other band parameters are detailed in Appendix B.3.
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Figure 4.6: Renormalized scattering rate for FeSe. I'f = 5 meV and I'§ = 2.5 meV. AT'" and
AT are considered as proportional to the nematic variation of the real parts (App. D.3)

With respect to the previous case, here we clearly see that the outer hole pocket,
the only one crossing the Fermi level, becomes strongly elliptical in the nematic phase due
to the large nematic order which also makes the X/Y pockets consistently different in
size (4.5a-d). The changes in the velocities (4.5¢-f panels) are similar to the ones observed
for the 122 case but quantitatively more pronounced here due to the larger value of the
nematic order parameters.

The scattering rates for all the pockets are shown in Figure 4.6. For all the pockets
we find a clear deviation of the renormalized scattering rate from the analytical estimate.
In particular, the angular dependence of the I'| scattering rate is very weak and does
not resemble the cos 20 predicted by Eq. 4.14. This is a consequence of the Fermi surface
nematic reconstruction of FeSe. In fact, the nematic order not only makes the I'y pocket
elliptical but also affect its orbital content that becomes almost completely xz at the
Fermi level 60,86, 128]. As a consequence, the cold spots of the outer pocket shown in
Fig. 4.1 do not represent anymore a minimum of the scattering since the I'y Fermi surface
is mostly zz also at 8 = 0.

We study also in this case for each pocket the behaviour of Aoy and Ao as a function
of ®"/¢_ Figure 4.7. We use the same renormalizations used in Figure 4.4.

The analysis of the velocity contribution reveals that the sign of the ®"/¢ terms of
Eq. 4.26 and 4.29 is robust also in this case. We are no longer in the perturbative regime
as one can see from the non-linear behaviour of Aa‘hf, shown in 4.7a, where the I' pocket
anisotropy contribution grows much faster than what expected from the linear dependence
in Eq. 4.26. The final anisotropy of Aoy is the result of the competition between the hole
and electron terms.

The inclusion of the scattering rate in the calculation strongly affect the electron
pockets contribution while leaving Ac"+ almost unchanged. As a matter of fact, the
scattering rate of the outer hole pocket 1“1};+ is almost isotropic, see Figure 4.6, so that the
anisotropic velocity is the only factor which contributes to the dc anisotropy of the I'}
pocket.
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Figure 4.7: Numerical computation of the velocity contribution to the dc conductivity anisotropy
and of the total dc conductivity anisotropy for realistic parameter for FeSe. All the pockets show
consistent deviations of the dc anisotropy with respect the analytical expectations Eq. 4.26 and 4.29.

The final result for the dc conductivity strongly depends on the set of Fg/ ¢ and ATe
used. In 4.7d-f, we show a case in which the inclusion of the scattering rate enhances the
relative weight of the electron contribution with respect the hole term, so that overall the
negative anisotropy of the electron part, due to the X pocket, determines the final results
shown in 4.7f.

High-energy renormalization and nesting

An effect neglected in the above calculation is the renormalization of the quasiparticle
due to local electronic interactions. It is well established that in IBS the high-energy
renormalizations of the quasiparticle Z,,;, coming from local interactions are quite strong
and orbital-dependent [57,58]. The high-energy renormalizations have noticeable effects
on the optical conductivity in the tetragonal phase of IBS, as discussed in Ref. [165] and
should be included in the above calculation.

In order to assess the importance of this effect, we repeted the numerical analysis in-
cluding phenomenologically the orbital renormalizations into the coherence factors (u/ v)lR
entering in Eq. 4.16. As expected, the inclusion of a severe reduction of the coherence
of the zy orbital (Z;, ~ 0.3), that is the most correlated orbital in all IBS, leads to the

V;é;l{, contributions enhancing the dc anisotropy in the electron pock-

suppression of the
ets. Moreover, the small differentiation (~ 10%) of the quasiparticle masses for the xz/yz
orbitals in the nematic phase [97] contributes to enhance the differentiation of the I'y and
X/Y pockets. However, the sign of the velocity contribution to the dc anisotropy is robust

within the set of Z,,; considered. The quasiparticle renormalizations affect also the con-
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ductivity via the renormalized scattering rate, however their relevance strongly depends
on the set of parameters used, whose analysis goes beyond the scope of the present work.

Finally, it is worth noting that the analysis presented here does not include the
physics of the band-nesting effects, which are the only ones to determine the location
of the hot-spots in the band-based description [94, 155]. In particular the ellipticity of
the X /Y pockets suggests that the scattering rate is maximum at the location where the
nesting with the hole pockets is realized. Within the OSSF both, the orbital character and
the degree of band nesting will contribute to the hot-spot location. Recent multiorbital
RPA calculation in the paramagnetic state support the idea that the dominant effect in
determining the scattering rate is still the orbital character of the Fermi surface [121,166].
How these results evolve below T's within an orbital selective spin-nematic scenario is still
an open question which certainly deserves further investigation.

4.4. Discussion and comparison with experiments

In the previous section we computed numerically the dc anisotropy for realistic para-
meters of 122 pnictides and FeSe. The values of the band structure parameters and self-
energies used in the calculations quantitatively reproduce the main features of the Fermi
surface, including the Fermi surface shrinking and the orbital Fermi surface reconstruction
experimentally observed in the nematic phase of 122 and FeSe.

In 122, where the nematic order parameters /¢ are small, the hole pockets contri-
bution to the dc conductivity anisotropy is well approximated by the analytical estimate
Eq. 4.26, while we observe consistent deviations in FeSe. Nonetheless, for both 122 and
FeSe systems the sign of the anisotropic contribution coming from the renormalized velo-
city, Aoy, is robust. In both cases considered in Section 4.3.2 we managed to match the
experimental result, Acg.(FeSe) < 0 and Aog.(122) > 0, once the renormalization of the
scattering rate is included in the calculation. As already mentioned, the final result is still
somehow sensitive to the set of parameters used. Thus, in this last section we discuss in
general which are the possibilities to match the experimental results regardless the precise
choice of parameters used in Section 4.3.2.

Concerning 122 systems, as long as the hole pockets contributions to the dc aniso-
tropy cancel out, the final result is controlled by the electron pockets. Since they have
a strong elliptical deformation, their overall contribution to the dc¢ anisotropy cannot be
predicted from the analytical result Eq. 4.29, and the final outcome depends on the relat-
ive weight of the X and Y pockets and on the relevance of the scattering rate anisotropy
over the contribution Acy,. Even in doped 122 compounds the hole pocket contributions
cancellation still occurs since the relatively small value of the spin-orbit splitting at I" guar-
antees that the Fermi energy is the same for the hole pockets. However, doping changes
both the size of the pockets and the degree of nesting between hole and electron pockets.
Both effects contribute to change the relative weight of the X/Y electron pockets as well
as the balance between the velocity vs scattering rate anisotropic contributions and can be
at the origin of the different sign of Aoy, experimentally observed between the hole and
electron doped side of 122 phase diagram.

For what concerns FeSe, the presence of a single hole pocket and its strong orbital
reconstruction lead to rather different physics. In particular, since the nematic Fermi
surface reconstruction makes the whole I'; Fermi surface mostly xz even at 8 = 0, the
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expected anisotropy of the renormalized scattering rate is absent, see Figure 4.6. As
a consequence the I'y anisotropic contribution is more likely controlled by the velocity
anisotropy. This result should be contrasted with the outcomes of Ref. [167|, where the
difference between 122 and FeSe is fully ascribed to a different behavior of the scattering-
rate anisotropy in the two compounds. In our picture the FeSe dc conductivity anisotropy
emerges from a subtle interplay between the competing effects coming from the scattering
rate and the velocity, as it has been recently suggested by optical conductivity experiments
in FeSe [168].

It is worth noting that recent ARPES experiments reveal a strong k., dependence of
the orbital composition of the I'y Fermi surface [169], with the Fermi surface a k, = =
recovering yz-character at 6 = 0. As a consequence, also the scattering rate anisotropy
on I'y is expected to be larger at k, = 7 and its effect on the dc conductivity aniso-
tropy can possibly compete with the velocity term at this k,. This observation calls for a
more complete analysis of the dc anisotropy involving also the k,-dependence of the Fermi
surface.

4.5. Conclusion Chapter 4

In conclusion, in the present Chapter we computed the dc-conductivity anisotropy
in the nematic phase of IBS using the orbital selective spin-nematic scenario that accounts
for the orbital content of the Fermi surface [26,27|. In this scenario, the dc anisotropy
of the nematic phase of IBS depends on the scattering rate and velocity renormalizations
due to self-energy corrections. Both scattering rate and velocity are affected by the Fermi
surface nematic reconstruction.

The scattering rate is strongly affected by the orbital content of the Fermi surface,
and the location of its minima on the Fermi surface is found in correspondence of the less
renormalized orbitals giving rise to cold spots. The velocity renormalization is sensitive
both to the orbital mixing and to the shrinking of the Fermi surface induced by the nematic
order, with the former effect dominating over the latter. Due to this effect we find the
unexpected result that the conductivity increases in the direction in which the self-energy
is larger and the shrinking is stronger.

For both, hole and electron carriers the contribution of the velocity to the dc aniso-
tropy is opposite in sign to the one of the scattering rate. This is in agreement with optical
conductivity experiment in FeSe [168] where it is shown that scattering rate and velocity
contribute to the conductivity anisotropy with opposite signs.

Our results naturally follows from the spin-orbital entanglement implicit in the OSSF
model and are new results in contrast to the band spin-nematic scenario [23,28]. In
particular we demonstrated that the usual expectation of anisotropic magnetic fluctuations
giving rise only to an anisotropy in the inelastic scattering rate [155] is not longer valid
once the orbital degree of freedom is taken into account in the theoretical description.

We performed numerical calculation for representative parameters for 122 pnictides
and FeSe. We verified that for 122 system the analytical estimate represents a good approx-
imation of the numerical with the overall hole pockets contribution vanishing even once
a finite spin-orbit splitting at ' is considered. Numerical results for FeSe instead deviate
from the analytical expectations due to the huge nematic Fermi surface reconstruction.
We also discuss how the conductivity anisotropy depends on the system parameters. It
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can be dominated by either electron or hole pocket conductivity and depends on ellipticity
and high-energy renormalizations.

The OSSF scenario provides then a suitable framework where the same mechan-
ism due to orbital-spin interplay can reconcile the experimental observations reported in

different families of iron-based superconductors.
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OSSF within a five-pockets model

5.1. Introduction

The Orbital Selective Spin Fluctuation (OSSF) model has been derived in [27] within
a four-pocket model representative for IBS. This model offers the possibility to study
qualitatively the different phenomenology of FeSe and 122 systems [27,103] and it has
been exploited to perform quantitative analysis of the nematic and superconducting phase
of FeSe [60, 133].

In order address within a realistic calculation different compounds we need to con-
sider the most general five-pockets that counts an additional pocket at the M = (7, ) point
with xy orbital content. The analysis of this pocket is interesting as it has been shown that
magnetic and superconducting properties vary with the size of this extra pocket [120,139].
One well-known explanation for the change of the size of the M pocket is given in terms
of the angle formed by the Fe-As bonds and the Fe-plane [107|. This angle differs among
compounds [170,171], and depends on doping [170,172,173| or applied pressure [174].

In the present Chapter we extend the OSSF model and generalize it to a five-pocket
model. In Section 5.2 we introduce the extended OSSF model presenting the five-orbital
kinetic and interacting Hamiltonian by adding the M hole pocket. The projection of the
interaction into the low-energy five-pocket model unveils the orbital-selective character of
the spin-fluctuations with yz/xz spin-fluctuations connecting the hole-pockets in I' and
the electron pockets in X/Y and xy spin-fluctuations connecting the hole-pockets in M
with the X/Y electron pockets.

In Section 5.3, we derive the effective action for the five-pocket spin-nematic model
following the same procedure discussed in Chapter 2 and we discuss the contribution to the
magnetic and nematic instabilities coming from the I-X/Y sector and from the M-X/Y
sector.

In order to analyse the effects on magnetism and nematicity due to the inclusion of
the M hole pocket in the low-energy model, in Section 5.4 we perform a preliminary study
of the three-band model M XY . The analysis represents an easy way to study the physics
associated to the xy OSSF coming in absence of coupling with the I'=XY sector. The
analysis is also motivated by the results of renormalization group study of the five-pocket
model that show that such a three-band model represents a fix-point of the low-energy
theory [123].
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5.2. Model Hamiltonian

5.2.1. Kinetic Hamiltonian

We consider a general five-pocket model with two hole pockets, I'; and I'_, centered
at the I' = (0,0) point, two electron pockets, X and Y, centered at X = (m,0) and
Y = (0,7) points respectively and a M hole pocket located at the M = (7, n) point. In
Figure 5.1 it is shown a schematic representation of the orbital content of the Fermi surface
for a generic five-pockets model for IBS. As within the four-pocket model, the hole pockets
at I' and the electron pockets at X/Y are composed by yz — xz orbitals and yz/zz — zy
orbitals respectively. The fifth pocket at M pocket is composed exclusively of d, orbital.

Y (Sx Sx)

e ® yz orbital
@ ... ® xzorbital
® Xy orbital

I I (S‘r S}>

Figure 5.1: General sketch of the orbital content of the Fermi surface of the five-pocket model
for IBS. The three dominant orbital weights, d., dy. and d,,, are taking into account. The green
and red arrows show the OSSF carrying yz content in the x direction and zz content in the y
direction, which connects the I" hole pocket with an electron X and Y pocket respectively. The
blue arrows show the OSSF carrying zy content in the x and y directions connecting the M hole
pocket with both electron pockets X and Y.

(Sy Sy)

k

The low-enegy bands are modelled by the kinetic part of the Hamiltonian

T
H(l) = Z(IT(UH(lew{m' (51)

k,o

where [ = I', X, Y, M and the spinors around the high-symmetry points are defined as
U, = (2 ), l)it/y = (Cii/m, 2) and Y = Y. As the hole pocket M is exclusively
composed by the zy orbital, the corresponding fermionic operator has only one component.

The diagonalization of the lﬁlék leads to the band dispersion for the different pockets.
The same rotation matrices that defines the bands for the four-pocket model diagonalize

the [ = I', X, Y Hamiltonian. For the I' hole sector the fermionic spinor ¢} = (ci=,cf?)
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. . . ~ T
rotates via the unitary matrix U as

T _,UF cY?
Z+> % ZF UF > sz) ( (52)

and for the X/Y electron sector the fermionic spinor wlf a/ Y= (cﬁff/ =, cjr ) rotates via the

EX/Y+ UX/Y _,UX/Y Cyz/xz (53>
XY~ oXIY XY oy :

T M : : M _ 2y
Hg, only has one component thus does not require any rotation and we can use ¢y, = ¢

and

) . s X)Y
unitary matrix Uy as

heY = Y (5.4)

5.2.2. Interacting Hamiltonian

The interacting Hamiltonian, as for the four-pocket model (Eq. 2.26), is given by

q

Hip = _% Z ﬁrm’gn(q) : gn/(_q) (55>

with 7,7" = yz,xz,xy the orbital indices and U,y ~ Udy,y + J(1 — dyyy), with U and J
being the usual Hubbard and Hund couplings. We again consider only spin operators with
intraorbital character S (q) = Zﬁ; cﬁl&ss/cﬁ g with o,y the Pauli matrices for the spin
operator and peaked at (m,0)/(0,fr) momenta. By projecting the interacting Hamiltonian
Eq. 5.5 into the low-energy model ¥qs. 5.2-5.4, the low-energy intraorbital spin operators
are given by

S%’f = Z Fhl+vrh1)5”uxex (5.6)
k

Sez = Z_,Ul“h:rr+thT_)5»uYeY (5.7)
k

S = Y (hl)F(—v¥eX) (5.8)
k

SY = D (hl,)F(—v"e) (5.9)
k

As already discuss within the analysis of the four-pocket model, the low-energy
projection unveils a strong orbital-selectivity of the spin-fluctuations. The inclusion into
the low-energy multiband description of the zy-hole pocket at M leads to the emergence
of a spin-fluctuating mode connecting the hole pocket at M and the electron pockets at
X/Y having xy character.

Consequently, the low energy for the five-pocket interacting Hamiltonian Eq. 5.5
reduces to

U

H’int = _5

(S-S + 5y - Sy + 5S¢ - S + 5P - SP) (5.10)
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where U is the intraorbital interaction renormalized at low energy.

Due to the orbital-selectivity of the spin-fluctuation the inclusion of the zy-hole
pocket at M in the OSSF model does not affect the interacting Hamiltonian describing
the yz/xz spin-fluctuation exchange between I'-X/Y and only appears via and additional
interacting term representing the exchange of spin-fluctuation having xy character between
the M hole pocket and the X/Y electrons. A schematic representation of the model is
sketched in Figure 5.1.

5.3. Effective action for the five-pocket spin-nematic model

In this Section we derive the effective action for the five-pocket spin-nematic model
using the same machinery discussed in Section 2.1 exploiting the Hubbard-Stratonovich

(H-S) transformation to decouple the spin-spin interacting term Eq. 5.10.
We introduce the H-S fields M;’:/;fz coupled to the OSSF connecting I'-X /Y having
2ay/zy
yz/xz character and M y 1Y coupled to the OSSF connecting M-X/Y having xy character

S0 0 0 @x (
~ 0 Lo 0 %
Sat = (My My My My) oo o [
X

0 0 0 Xy v
11 u12< 0 1( Xz
—~ —~ le 0 My
+(M2M2M2M2) 12 U2 Far 1
(X) (My)= (Mx)™ (My) ko1 w11 wio (NX )
12 0wy u My

We are using a notation in which the terms related to the xy QSSF ‘are defined using a
tilde~character. Herafter we refer to M-X/Y sector to indicate those quantities and I'-X /Y
sector for the other. Notice that the quartic order expansion contains coupling terms k32
that connect the Gaussian fluctuation of the yz/xz spin-mode along = with the zy along
the same direction (idem along y).

Quadratic terms

The Gaussian part of the action Eq. 5.11 is given by the magnetic susceptibilities

/Y

d Tev/a

X;(}Y =1/2U0 + Hg(z//;iz and 5{*}), =1/20 + I1%Y/™  where U is the effective interactions
>< Jy are the propagators in the zero-

between low-energy quasiparti%esa and chz//xgiz
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frequency limit given by

I = 27 (upukgigx + viukg-gx), (5.12)
K, iwn

% — o7 2,2 2,2 5.13

% Z VRUY g4 gy + upuy g-gy ), (5.13)
Kk, iwn

Iy = 21y fguoy, (5.14)
k,iwn

my = 2TZ 2 gMgx- (5.15)
k,iwn

Notice that the two first equations 5.12 and 5.13, are the same than Egs. 2.30 and 2.31
for the four pocket model analyzed in Chapter 2 and represent the spin exchange of yz/xz
spin-fluctuations between the I'-X /Y sector. On the other hand, Eq. 5.14 and Eq. 5.15 are
the magnetic propagators in the zero-frequency limit coming from the xy spin-fluctuation
exchange between the M-X/Y

Quartic terms

The coefficients of the quartic part of the action Eq. 5.11 are given by

uyp = TZ ui gx)* (ufgy + vPg-)?, (5.16)
k,iwn,

ugy = TZ uirgy)? (vigy + upg-)?, (5.17)
k,iwn,

wy = T Y fikgxuygvupvi(gy —g-) (5.18)
k,iwn,

all = TZ v%/gng)Q, (5.19)
k,iwn,

uzp = TZ vk 9x9m)?, (5.20)
k,iwn,

ue = T fokgxvigvair, (5.21)
k,iwn,

ko = T Y (uxvxgx)’gu(ubgs +vig-), (5.22)
k,iwn,

k= T Y (uyvygy)’gu(vigs + upg-). (5.23)
k,iwn,

The expression for the quartic order coefficients relative to the I'-X/Y sector Eqgs. 5.16 -
5.18, are the same found for the four pocket model Egs. 2.32-2.34. Analogous expressions
are found for the M-X/Y sector, Egs. 5.19-5.21. The mixed contribution connect the
two sector by combining the spin-fluctuation along z/y weighted with the correspondent
orbital factors, Eq. 5.22 and 5.23.

In what follows we perform analytical calculation of the coefficients of the effective
action first within the perfect nested parabolic band approximation and then accounting
perturbatively deviation from the perfect nesting conditions. We refer to Appendix E.1
for further details of the analytical computation.
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5.3.1. Perfect circular nested Fermi surfaces

To make a first estimate of the new physics coming from the inclusion of the M
pocket in the OSSF model, we start considering the simple case where the hole and the
electron pockets are described by perfect nested circular Fermi surfaces.

In this approximation the orbital weights and pocket Green’s functions reduce to
ur = uy = vx = cosb, ur = vy = ux = sinf (5.24)

gy =9-=gu=gn=(iw,+67"  gx =gy = ge = (iw, — )" (5.25)

with € = —eg + k?/2m — p. € is the off-set energy, m the parabolic band mass and p
the chemical potential and wy, = (2n + 1)wkpT is the fermionic Matsubara frequency (see
Appendix E.1.1). Notice that Eq. 5.24 are the same used for the analysis of the four-pockets
OSSF model given by Eq. 2.38 and describe the orbital composition of the I', X, Y pockets.
The M hole-pocket has purely xy orbital character so there is no angular modulation in
the orbital composition.

Quadratic terms

Within the perfect nested parabolic band approximation the quadratic terms for a
five-pocket model given by Eqs. 5.12-5.15 become

% = or Z cos 0% sin 6% gy, g + sin 6% sin 62 gy, g ), (5.26)
k,iwn

m, = or Z sin 62 cos 6% gy ge + cos 6% cos 62gpge), (5.27)
k,iwn,

% = 271 Z in 6%gnge, (5.28)
k,iwn,

Iy = 2T ) fos6gnge (5.29)
k,iwn,

It easy to verify that within this approximation all the components of the propagator
reduce to the same expression once performed angular integration over ¢. By evaluating
the sum over the Matsubara frequency w, we find

Hg{/y = ﬁ())(/y = Ilep (5.30)

where we define Ilep, = TNp Y, [ fle gegn = —Np(In(wo/T) + const) that leads to the
usual logarithmic divergence. As a cbnsequence the magnetic susceptibility associated to
yz/xz OSSF exchange between I'X Y and the one relative to zy OSSF exchange between
MXYn are equivalent

X?c/yfl(q =0)= @}}y(q =0)=Nrln (gv) ( (5.31)

where the Neél temperature is

Ty = -0 ¢~ (1/CNr D)), (5.32)
kp
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Quartic terms

The quartic coefficients involving the I'-X/Y sector (Egs. 5.16-5.18) are given by

48 Np

0 0

= = T 5.33
Uy U2 198 A(T) (5.33)
with A(T') = 87752(;)2 coming from the integration of the hole and electron Green’s func-

tions computed in detail in Appendix E.1.2.
The quartic terms for the M-X/Y sector are

- B 48 Np
g, = ug<128 (T), (5.35)
16 N
~0 F
= = T .
5 A(T) (5.36)

Uq =
We find that the diagonal Components u?i and ﬂ?i are equal for both sectors, while
the off-diagonal components are different. u. is finite, gj instead vanishes for the I'-X/Y
sector due to the contribution from T'F pockefts that cangel each other within the parabolic

band approximation.

Notice that already within the parabolic band approximation the I'-X/Y and the
M-X/Y sectors are coupled at quartic level by

16 Np

K, = kI =
12 21 128

A(T) (5.37)
that assumes the same value of @)y term given in Eq. 5.36.

Within the perfect nested parabolic case using that udy = 0 and u§; = 'd(l)( Ky = s,

we can rewrite
0 ~0
11 (()) (()) Uy
Oquartic __ 0 Uy Up2
Seft = ~0 ~0 (5.38)

l, 0 af,
with the quartic terms different from 0 glven by a s(mila(analytical expressions that only
vary in the numerical factors (Egs. 5.33- 5.37).

To study the magnetic and the nematic instabilities, we have to define the analogous
of the ¥ and ¢ order parameters for the four-pocket model given in Eq. 2.36 and 2.37
respectively and then, perform a second Hubbard-Stratonovich transformation by diagon-
alizing the quartic term of the effective action given by Eq. 5.38. Despite the complication
due to the additional M-X/Y sector appearing in the effective action of the OSSF model
for five-pockets, the computation of the eigenvalues and the corresponding eigenvectors is
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still treatable analytically. The eigenvalues of Eq. 5.38 are given by

A=+ %(1 ~ Vo), = %cl AT)
A = W — %(1 +V5)uy, = %02 A(T)
A o= uf) - %@ — V5)u, = %64 AM) (539

where ¢; > 0 are positive numerical factors. The corresponding eigenvectors are

o= | ({0 + o) = ({ier? + a5 2)
= | (0r02 - 012) - ({322 - a2
pr= | (e = ot ?) + ({0102 - ()
p1= % ( Mx)* + a(My)2> - < (Mx)? + (My)"’): (5.40)

where a = %(\/5 —1). Notice that in Eq. 5.40 we separated the contribution of the I'-X/Y

sector given by My y from the contribution of the M-X/Y sector given by M y. The
specific computation of Eqgs. 5.39 and 5.40 is shown in Appendix E.2. )(:

As one can see from Eq. 5.40, p; and ps are the eigenvectors describing ‘sotropic
contributions to the magnetic fluctuations along the x /y directions, while py and p3 describe
anisotropic fluctuations which are related with the nematic order. From Eq. 5.39 we see
that for the perfect nested band approximation, all the eigenvalues are positive, this means
that analogously to what found for the four-pocket model, the interaction in the nematic
channel is always repulsive.

5.3.2. Effect of the ellipticity in the model

In this Section we include at perturbative level the electron pockets ellipticity d. and
the deviations from perfect circular nesting for the hole sector 6,,, ps in order to study
a more realistic case in which the form and size of the pockets are different. We follow
the same strategy of Chapter 2 and analyze how the Fermi surface shapes affect to the
quadratic and quartic terms of the effective action for the five-pocket model.

In this approximation, the pockets Green’s function are

gem = Gn(1+0me mgn)
9x)y = ge(lF decos(20)ge). (5.41)
with g, and g, the perfect nested circular Green’s function given by Eq. 5.25. The effect

of the ellipticity for the electron pockets is included in the perturbative parameter §. =
€m (m“my).(‘We account for a deviation from the perfect circular nesting condition (as

2mgmy
mi/Mfm)

results of dopipg for example) defining a perturbative parameter 0,,, v = eo(—%
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term, where subscript m4. /); refers to the 't /M hole pockets. To reduce the number of
parameters and make the result more readable for simplicity we set here d,,, = 0 as it
is only necessary one 6, to differentiate the two gamma pockets. See Appendix E.1.1 for
further details of the elliptical approximation.

Quadratic term

The quadratic term for the I'-X/Y sector is given by

N,
Mx;y = Il +7FA(T) SO (5.42)
and for the M-X/Y sector is
~ N,
My = Mo — TFA(T) Sa16e (5.43)
Notice that the corrections N(éedm ..M appear in the propagator with same numerical

coefficient but opposite sign for the two sectors. This is a direct consequence of the angular
integration of the cos(26) angular factor coming from the . expansion Eq. 5.41 multiplied
by the orbital weights (u/v)! that are different from the I'-X/Y sector and the M-X/Y
sector.

As consequence, the magnetic susceptibility is now different for the yz/zz OSSF of
the I-X/Y sector and the xy OSSF of the M-X/Y sector

) T\ [/ TNpC(3 11
Xxy (g=0) = Npln <Tz*v> 6 1277§)5m_5e<T1*v2 - T2> ( (5.44)

gz}y(q =0) = Nph (;};) 6 7]\1“(;%3) 5M56(T1]*V2 - 1}2> ( (5.45)

where T5 is the\new Néel temperature that is still the degenerate for the yz/zz and zy
OSSEF. Notice that the corrections ~ dc0,,, 3 differentiate the two subsectors for 7' > Ty,
and vanish approaching T7%;.

Quartic terms

The quartic terms for the I'-X /Y sector are

Ul = ugy = % [48 A(T) + B(T) <3553n_ + 2853) 6 120C(T) 6m53} ( (5.46)

Uy = %C(T)éﬁh (5.47)
with A(T) = 7¢(3) (T) = _3K6) and C(T) = _93¢(5)
- 8w T 64rt T = 128 Te

the different temperature dependence factors that come from the different Green’s function
integrals.
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The quartic terms involving the M-X/Y are given by

Ui = Usp = % [48 A(T) + B(T) (485%4 + 2853) 128C(T) 5M56} ( (5.48)
Ty = %1; Ks A(T) + B(T) (16512\4 _ 453)] (5.49)

where the dp70. term appears with opposite sign respect to the I'-X/Y sector given by
Eq. 5.46. The mixing terms are

Np

kio=ky = o8 [(6 A(T) + B(T) <86M6m_ + 453) 640@) 5m_56} ( (5.50)

where an extra dps0,,  term that connects the I'-X/Y sector and the M-X/Y sector is
obtained.

In Table 5.1 we summarize the different contributions for the quadratic and quartic
terms in the perfect circular nested Fermi surfaces and elliptical approximation are shown.

I [ Five-pocket model: T"T~ XY M |

H H Quadratic terms H

From I'-X/Y sector ‘ From M-X/Y sector
Hg( Yy Hg( Y Ilep Iep
Myy , Ox/y +Np/2A6m_0c —Np/2A0m,_0dc
H H Quartic terms H
From I'-X/Y sector ‘ From M-X/Y sector
uly/Np , ud;/Np 48A 48A
u11 /N , U1/ Np || +B(3562, + 2862) + 120C6,, e | +B(4853, + 2852) — 128C3 0
uly/Np , uly/Np 0 164
u12/Np , U2/ Np +2C82, +B(1662, — 452)
From mixed I'-X/Y and M-X/Y sectors
kY /Np 164
ki2/Np +B(86010m_ + 462) + 4C6p_ e

Table 5.1: Quadratic and quartic terms for the five-pockets model for the perfect circular nested
Fermi surfaces and the case for elliptical electrons and deviated hole pockets from the perfect nested
approximation. The quantities coming from the I'-X/Y and M sectors are represented without or
with a tilde "respectively.

The analytical computation of the eigenvalues and the corresponding eigenvectors for
the quartic term of the effective action as a function of the ellipticity and pocket size is still
working in progress. To gain physical in what follows we study two complementary three-
band model I' _XY and M XY . The analysis of the three-pocket model M XY represents
an easy way to study the physics associated to the zy OSSF coming from the presence of
the M pocket in a simplified frame in which there is no coupling with the zz/yz OSSF of
the I'-XY sector. The analysis is also motivated by the results of renormalization group
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study of the five-pocket model that show that such a three-band model represents a fix-
point of the low-energy theory [123]. We compare the results of the M XY model with
the results of the I'_ XY that present the same degree of orbital nesting (good matching
between the orbitals in the nested hole and electron pockets) and has been already studied
in [27].

5.4. Orbital selectivity in the I' XY vs MXY pocket model

5.4.1. T'_XY model

As we discussed in Section 2.2.2, the I'_XY model is a prototypical three-pocket
model in which the hole I'_ pocket has optimal orbital yz/xz nesting with the electron
pockets.

The interacting Hamiltonian for the I'_XY model is given by

U K4 oYz
Hiny = —55_?(/52 : S_é’(/ﬁz (5.51)

By decoupling the interacting term 5.51 by means of two vectorial H-S fields Mgf and M{ﬁz
associated with the collective magnetic degree of freedom ggf and 5’?/2 given by Eqgs. 5.6
and 5.7 respectively setting hl = 0, the effective action for the I'_XY model is

-1 yz yz\2

r-xy _ Yz Tz Xx 0 MX Yz\2 T2\2 Uil u12 (MX)

Seff - (MX MY ) ( 0 X}_/1> M}w/z) 6 <(MX) (MY ) > <U12 U11> (Mgvz)2
(5.52)

with X;(}Y(q =0) =x'-¥ v (¢ = 0) the static magnetic susceptibility equivalent for both
directions X/Y given by

-1 3N T TNp((3 1 1
XF,XY (¢g=0) = 4F In <T*F_XY> 6 1gﬂ§ ) Om_0e <(T*F_XY)2 — TQ> (5.53)

N N

The coefficients of the quartic part of the action in Eq. 5.52 are

X = Nr [35 A(T) + B(T) <35531 + 49252> 6 112¢(T) 5m56] ( (5.54)

128
WXV %g [Z(A(T) + B(T) <353n_ - 5;)] ( (5.55)

Thus, the nematic coupling for I'_ XY model the is defining as )\Z*XY = u{fXY — u{iXY

and is given by

v = 22 [32 A(T) + B(T)(3267, +2567) + 112(T) 5m-5e] ( (5.56)

which depends on both, the ellipticity of the electrons d. and the deviation from perfect
nested I'_ Fermi surfaces 6,,_.
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5.4.2. MXY model

We perform the same analysis for the MXY model, in which the only the M hole is
taken into account. The low-energy projection in this model leads to interacting Hamilto-
nian

U

Hine = =5 SR - S (5.57)

in which the spin-fluctuations connecting the M hole pocket and the X/Y electron pockets
are fully zy. By decoupling the interacting term 5.57 by means of two H-S fields M” and
M{fy associated with magnetic degree of freedom gf(y and S’;:/y given by Egs. 5.8 and 5.9
respectively, the effective action for the MXY model is

B - . o i NEYN2
SMXY _ (M;c(y M ) (XX %)) Mi) <F (Miy)2> <€ZE ﬂ?) E% y§2>
< ( )( ( ( (5.58)

with XX/Y(q =0) = X]EXY (¢ = 0) the static magnetic susceptibilities for the X/Y

directions are given by
MXY ! T TNr((3) 1 1
X (g=0) = Npln (T]»\}MXY> (F 6.2 dnrde TVXT )2 ~ 7 (5.59)

Given the orbital composition of the M-pocket the angular integral makes the M XY spin-
propagator larger than the one for the three pocket model I'_XY. This leads to a higher
instability temperature for the zy OSSF of the M XY model with respect to the the xz/yz
OSSF of the I'_XY. Notice that the term proportional to d3;9. is equal to the term
proportional to é,,_J. for the ' _XY model given in Eq. 5.53 but it contributes to the total
static spin susceptibility with opposite sign.

The coefficients of the quartic part of the action in Eq. 5.58 are

WMXY = Nr [48,4( )+ B(T )(485]2w+2853)—1286(T)5M56],< (5.60)

128
MXY Np 2 2
uly = o8 [16./4( )+ B(T') (1605, — 456)] < (5.61)
The nematic coupling for the M XY model )\24 XY — uj\{X Y ujl\gX Y is given by
)\MXY 58 [32 A(T) + B(T) (3263, 4+ 3262) — 128C(T) 5M5€] ( (5.62)

where, as in the quadratic term, the term proportional to djsd. contribute with opposite
sign in comparison with the I'_XY model term to the nematic coupling.
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5.4.3. T'_XY model vs MXY model
Effect of the ellipticity: . # 0, 6,,, =0y =0

We first consider the case in which only the electron pocket shapes are modified from
the perfect nested condition.

100 3 ‘ ‘ ]
ol — ATXY ]
_ - |
S D1 pomxy ]
2 100 — Xg'XY % ¢ /_—
g s 0 :
= = -1t
= <
1 -2
50 100 150 200 250 300 -3 50 100 150
T(K) T(K)
(a) (b)

Figure 5.2: (a) Static spin susceptibilities Xg‘XY(q =0), x22XY (¢ = 0) and (b) nematic coup-

X0
lings )\ZF‘XY, )\gM XY for the two three-pocket models I'_ X )(aand MXY respectively. The Néel

temperature is TJI\;‘XY = 110K and TH#*Y = 132K. The deviation of the hole pockets from the

perfect nested Fermi surfaces is set to d,,_ = dpy = 0. The ellipticity of the electron pockets is
de = 0.55¢9. In the inset of (a) is shown the perfect nested hole pocket (orange) in comparison
with the elliptical electron one (blue).

The ellipticity of the electron pocket does not affect the hierarchy of the magnetic
instability and we still find the divergence of )Z(])W XY (g = 0) at higher temperature than
the one for Xg’XY (¢ =0). As we mentioned befofre this is the result of angular integration
over the different orbital weights for the hole band. In fact, while the I'_ hole pocket has
an angular orbital modulation given by A~ = sinfc,, — cosfc,., the M pocket does not
present orbital modulation since it is made exclusively of xy orbital component h*Y = ¢*¥
(Eq. 5.4).

In Figure 5.2b the nematic coupling for the two three-band model taking into ac-
count elliptical electron Fermi surface is shown. The nematic coupling is positive at high

temperature and changes sign lowering 7. While )\ZF’XY changes sign slightly above the
T}:,‘XY [27], /\gM XY is always positive for any T > T]]\\% XY and changes sign slightly below

the T]J\‘,/I XY this means that the nematic channel is always repulsive. Notice that, the ho-
mogeneous orbital modulation of the M pocket that appeared to boost magnetism appear
detrimental for nematic instability.

Effect of the deviation from perfect nesting: §,, = dy # 0, 6. #0

We consider é,,_ = dpr # 0 for the three-band models, I'_XY and MXY, taking into
account the same effect of the ellipticity 6. = 0.55¢g than in the previous case. We show
the results for two different set of parameters d,, = dp;r = {0.07€¢p,0.1€p}.
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1. 5m_ = 5M = 0.0760, (56 = 0.5560

100 . ;
XY A
— MXY &
% 10 ¥ %
g % ®
% _____ Xg'IXY :-e-
1} SN
50 100 150 200 250 300 0o 50 100 150
T(K) T(K)
(a) (b)

Figure 5.3: (a) Static spin susceptibilities (q=0) and (b) nematic couplings for the two three-
pocket models I'_ XY and MXY. Solid lines represent these quantities by taking into account the
deviation of the hole pockets from the perfect nested Fermi surfaces §,, = dp; = 0.07¢g and the
ellipticity of the electron pockets d. = 0.55¢p. Dashed lines represent the previous case where
Om_ =0y =0 and d. = 0.55¢( in order to compare them. In the inset of (a) is shown the effect of
the deviation d,, /p # 0 (solid orange line) from the perfect nested hole pocket (dashed orange
line) in comparison with the elliptical electron one (blue).

The Fermi surface for this range of parameters are shown in the inset panel of the
Figure 5.3a in comparison with the perfect nested hole pocket.

The small variation in size of the hole-pocket does not introduce strong variation in
the temperature behaviour of the magnetic susceptibility, Figure 5.3a. The hierarchy of
the the Néel temperatures is the same as the parabolic approximation and the corrections
proportional to §¢d,, /M, opposite in signs for the two models, vanish when approaching

the instability temperature as shown in Eqgs. 5.53 and 5.59.

On the contrary, the nematic coupling is strongly affected by small variations of
the hole-pockets sizes. In Figure 5.3b it is shown the results for the nematic coupling
(Egs. 5.56 and 5.62) represented by solid lines in comparison with the previous result for
Om_ = 0pr = 0 represented by dashed lines. As one can reads from Eqs. 5.56 and 5.62 the
term proportional to d,, ,p0. contributes with opposite sign to the nematic coupling of
the two models under exam. Nematicity in the I'__ XY model is favoured by the variation of
the hole-pocket size i.e. the nematic coupling changes sign for higher temperature compare
to the case d,,,_ = 0. For the M XY model, instead we find the opposite results with the
nematic coupling changing sign at even lower temperature.

2. 5m_ = 5M = 0.160, 6@ = 0.5560

The above results are made more striking by the analysis of a slightly larger variation
of the hole-pocket size d,,_ = dpr = 0.1¢p ( Fermi surface shown in the inset of Figure 5.4a)

While the the magnetic susceptibility shown in Figure 5.4a are robust with respect
variation of the hole-pocket size, the nematic couplings, Figure 5.4b | are extremely sensit-
ive to d,,,_/p variations. Again the two model are affected by the pocket size variation in a
opposite way with the interaction in the nematic channel attractive over a wider range of
temperature for the I'_ XY model and the nematic coupling for the M X/Y model found
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Figure 5.4: (a) Static spin susceptibilities (q=0) and (b) nematic couplings for the two three-
pocket models I'_ XY and MXY. Solid lines represent these quantities by taking into account
Om_ = 0y = 0.1¢g and §. = 0.55¢g. Dashed lines represent the case where d,, = dp; = 0 and
de = 0.55¢p. In the inset of (a) is shown the effect of the deviation d,, /us # 0 (solid orange line)
from perfect nested hole pocket (dashed orange line) in comparison with the electron one (blue).

out to be always repulsive.

From the previous analysis we can obtain the following results:

(i) Given two system with similar band and orbital nesting the magnetic transition
is higher in system in which the angular integral is maximize by the orbital composition
of the pockets, in our case, be the homogeneous composition of the M pocket.

(ii) Magnetism is robust and is not strongly not affected by deviation from the perfect
nesting of the hole pockets.

(iii) The nematic coupling is very sensitive to to small variation of the hole-pocket
size. Notice, that when increasing the value of the d,, /s # 0 parameter, it affects in an
opposite way to the orbital nesting for the I'_-X/Y or M-X/Y models. When 6, > 0 we
are moving away from the perfect orbital matching between I'_ and the electron pockets.
That means d,,_ > 0 values are detrimental for magnetism but enhance the appearance of
the nematic instability. However, for the M XY moving away from d;; = 0 implies a better
orbital nesting with the elliptical electron pockets due to the position of the xy orbitals
(see inset of Figure 5.4b). Therefore, when d,; > 0 magnetism is enhanced and nematicity
is suppressed.

5.5. Conclusion Chapter 5

In this Section we analyze the effective action up to the quartic order for the five-
pocket model. The low-energy projection unveil within low-energy model the existence of
two OSSF, one, having yz/xz character, describes the spin-exchange between the two-hole
pockets at I' and the X/Y electron pockets, the other, having xy character, describes
the spin-exchange between the zy-hole pocket at M and the X/Y electron pockets. The
two OSSF are decoupled at Gaussian level, while the quartic term of the action present
coupling terms that combine the zz/yz OSSF and the zy OSSF along x and along y.
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Within the perfect nested parabolic band approximation we find that the magnetic
yz/xz susceptibility associated to the spin fluctuation exchange between I'x and X/Y in
the four-pocket subsector and the zy susceptibility associated to the M-X/Y pockets are
equivalent as naively expected given the orbital composition of the hole-pockets involved.
As mentioned at the OSSF are coupled at the quartic order and the analysis of the nematic
instability cannot be performed studying the four-pocket yz/zz systems and the zy three-
pocket separately. Diagonalizing the quartic action we find indeed a set of order parameters
that contain a linear combination of the spin-fluctuations of the two subsectors. We identify
the nematic order parameters as the two eigenvector having x/y anisotropic character
and by analyzing the corresponding coupling we find that the nematic channel is always
repulsive within the perfected nested parabolic band approximation.

We include perturbatively the ellipticity of the electron pocket d., and consider a
deviation from the perfect nesting condition assuming a variation in the size of the hole
pocket ., ar. The variation of the hole-pockets size can be the results for example of
doping or pressure. We find that the correction proportional to d,, asd. appear with
opposite sign in the I'-X/Y and M-X/Y subsectors. This is a direct consequence of the
different orbital character of the hole pockets, this in fact affect the orbital weight factors
appearing in the calculations.

The analysis of the nematic instability within the full model accounting for ellipticity
and doping is still work in progress.

In order to gain physical insight we study two complementary three-band model
I'_ XY and M XY. The analysis of the three-pocket model M XY represents an easy way
to study the physics associated to the xy OSSF coming from the presence of the M pocket
in a simplified frame in which there is no coupling with the zz/yz OSSF of the I'-XY
sector. The analysis is also motivated by the results of renormalization group study of the
five-pocket model that show that such a three-band model represents a fix-point of the
low-energy theory [123]. We compare the results of the M XY model with the results of
the I'_ XY model which both present the same degree of band and orbital nesting (good
matching between the orbitals in the nested hole and electron pockets). We find:

(i) The orbital modulation of the hole pocket is an essential element in order to
understand the magnetic instability. Given the same degree of band and orbital nesting the
M XY band model present a stronger magnetic tendency as a consequence of homogeneous
orbital composition of the M pocket. Notice that this result does not change even when
ellipticity and variation of the hole-pocket size (that affect the degree of band and orbital
nesting) are taken into account. This results is consistent with [120, 139] where the M
pockets is considered as a key piece for the appearance of magnetism in 1111 systems.

(ii) The nematic channel is much more sensitive to deviation from the parabolic
approximations and the M XY and the I'_XY models are affected by elliptivity and
hole-pocket size variation in an opposite way. For the M XY model, nematicity is under-
mined and even is not realized, while for the I'_XY model, nematicity is boosted as we
move away from the optimal orbital matching. The competition between this two kind of
nematicity could be at the origin of the more elusive nematic phase recently observed in
1111 compounds [175,176].
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We leave for further work the study of magnetic and nematic instabilities for a
realistic five-pockets model. With the analysis of the two three-pockets models I'_XY
and M XY we study two limits cases which contain the relevant orbital information of the
general five-pocket model. Thus, we could expect that when the study of the complete
five-pocket model is done, a competition between the I'-X/Y and M-X/Y hole sectors in
the nematic transition will take place.
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Conclusions

This Thesis focuses on iron-based superconductors (IBS). The physics of these
materials is so rich that it has placed their theoretical understanding as one of the most
interesting open puzzles in the field of superconductivity. The phase diagram of IBS exhib-
its a wide range of different phases including the magnetic, nematic and superconducting.
In these materials antiferromagnetism appears in the proximity of superconductivity sug-
gesting that spin-fluctuations might play an important role in mediating pairing. Another
key feature is the multiorbital character of their electronic structure at low-energy. There
are two main theoretical approaches that have been use to explain the complex phenomen-
ology of IBS in the spin-fluctuation driven scenario: multiband and multiorbital models.
Multiband descriptions lack the information of the orbital degree of freedom of the system,
while the complexity given by the inclusion of the multiorbital structure makes difficult to
address the spin-orbital interplay in multiorbital models. In this Thesis we have studied
the following issues: (i) can we describe the magnetic, nematic and superconducting phases
of iron-based materials using a single modeling? (ii) can this theoretical frame account for
the different phenomenology of the diverse compounds? and (iii) how does emerges and
what are the effects of the spin-orbital interplay in the physics of IBS?.

We addressed these questions using the Orbital Selective Spin-Fluctuation (OSSF)
model. The OSSF model is a minimal low-energy model for IBS that operates in the
band basis but fully incorporates the orbital information of the low-energy excitations.
The projection of the orbital information at low-energy unveils a non trivial spin-orbital
interplay that results in a strong orbital selectivity of the Spin Fluctuations: Spin Fluc-
tuations peaked around the Qx/Qy vectors involve only the yz/zz orbitals, respectively.
The description of the physical phenomena in terms of OSSF retains the simplicity of the
band basis models, but fully account for the orbital degree of freedom.

We first analyzed the magnetic and the superconducting phases in a Random Phase
Approximation (RPA) for a generic four-pocket model: T'y, ', X and Y, within the
OSSF scenario. The orbital selectivity, encoded in our model, simplified substantially
the analysis, allowing for analytical treatments, while retaining the main features of the
spin-excitations computed using five-orbital models. The OSSF model in fact, reproduces
qualitatively well the overall momentum dependence and the relative heights and widths
of the peaks located at different momenta. This is a remarkable result considering that
the OSSF model is a low-energy effective model that only consider the yz, xz, zy orbitals.
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Another important result follows from the observation that the momentum-
dependence of the peak of the RPA susceptibility depends on the degree of orbital nest-
ing between the nested pockets: we find a commensurate/incommensurate peaks in the
spin susceptibility depending if there is orbital match/mismatch between the nested pock-
ets. Moreover we see that the main contribution to the spin susceptibility comes from
the spin-fluctuations exchange between the hole and electron pockets and that the larger
contributions comes from the hole pocket whose orbital composition match better the or-
bital composition of the electrons. Notice that, while a generic correlation between the
orbital-make up of the Fermi surface and the momentum-dependent structure of the RPA
spin excitation has been already highlighted within multiobital models, the explicit link
and precise relationship between orbital nesting and momentum dependence of the spin-
susceptibility is a new results obtained from the RPA analysis within the OSSF model.

We analyzed the pairing interaction of IBS assuming that the same orbital selective
spin-fluctuations responsible for magnetism are also responsible for superconductivity. We
studied the superconducting pairing vertex and the resulting gap equations for these ma-
terials. Thanks to the orbital selectivity, the diagrammatic for the pairing vertex within the
OSSF model become treatable via analytical computation and all the Feynman’s diagrams
can be explicitly drawn in an easy way in contrast to the complex diagrammatic of the
full multiorbital description. We showed that both the pairing vertex and the band gaps
inherit the orbital modulation in momentum given by the spin susceptibilities. Therefore,
we obtained an anisotropic sign changing s-wave gap symmetry, i.e., a s+ s-wave band gap,
in agreement with the experiments and multiorbital models. A deep analysis of the bands
gap structure shows that the angular dependence and the magnitudes of the different gaps
depend directly on the degree of orbital nesting between the holes and the electrons pock-
ets, and what is more important, that the degree of orbital nesting (more than the band
nesting) controls the strength of the pairing. This result proves that a minimal theoretical
model to understand superconductivity in IBS has to account for the spin-orbital interplay.
In that respect, the OSSF model is a perfect candidate.

We then analyzed the nematic phase of IBS by studying analytically and numerically
the DC conductivity within the orbital-selective spin fluctuation scenario. Within this
approach, the anisotropy of spin fluctuations below the spin-nematic transition at Tg is
also responsible for the orbital ordering, induced by nematic self-energy corrections to the
quasiparticle dispersion. As a consequence, the anisotropy of the DC conductivity below
Ts is determined not only by the anisotropy of the scattering rates as expected within
a spin-nematic scenario, but also by the modification of the Fermi velocity due to the
orbital reconstruction (change in size, shape and orbital composition of the pockets). This
is a remarkable example of the spin-orbital interplay in these systems. More interestingly,
it turns out that these two effects contribute to the DC conductivity anisotropy with
opposite signs. By using realistic band-structure parameters we compute the conductivity
anisotropy for both 122 and FeSe compounds, discussing the possible origin of the different
DC conductivity anisotropy observed experimentally in these two families of iron-based
superconductors. We reproduced the experimental sign of the DC conductivity anisotropy
for the 122 Aopc(122) > 0 and for the FeSe Aopc(FeSe) < 0 when taking into account
shrinking and the orbital reconstruction of the Fermi surface of those materials.

The OSSF model has been extensively studied to analyze the phenomenology of
three- and four-pocket. In this Thesis we extended the OSSF model to the analysis of
a more realistic five-pockets model, in which we account for the zy-hole pocket M at

100



Chapter 6. Conclusions

Qus = (m, 7). We have derived the effective action in terms of the spin excitation up to
the forth order following the same strategy used to analyze the four-pocket model. Our
analysis for the five-pocket model shows that also in this case the projection of the orbital
information at low-energy unveils a strong orbital selectivity of the spin fluctuations. We
found, in fact, two additional spin excitations connecting the M hole pocket with the X/Y
electron pockets, having zy-orbital character. We showed how the spin-fluctuations in
this model contribute within two different coupled subsectors: I'-X/Y and M-X/Y, that
give opposite contributions to the magnetic- and nematic-channel of the total effective
action. In order to understand how the inclusion of the fifth pocket affects the magnetic
and nematic instabilities, we perform a preliminary study of two limit cases in which
we consider the two subsectors fully decoupled: in one case we consider only the yz/xz
spin-fluctuations of the I'-X/Y sector, while in the other case we only account for the zy
spin-fluctuations connecting the M-X/Y sector. This analysis is also motivated by the
result of renormalization group study of the five-pocket models that found the three-band
M-XY model as a fixed point of the theory at low energy. By comparing these two limit
cases, we are able to gain physical insight on the new physics arising from the presence
of the extra pocket. The contribution to magnetism and nematicity of the xy OSSF of
the M-X/Y appears to be in competition with the one coming from the yz/xz OSSF
of the I'-X/Y. We realized that this effect can be understood in terms of the orbital
degree of nesting between the hole and the electron pockets, which is again more effective
than the band nesting of the Fermi surfaces in controlling the instabilities realized in the
system. The competition between OSSF belonging to different subsectors could explain
why different realizations of nematicity are found in different members of the IBS family,
with certain compounds as e.g. 1111 showing more elusive nematicity with respect FeSe.
In order to fully address this issue, we need to understand how the competition between
the OSSF of the I'X/Y and M-X/Y sectors evolves once considered the full five-pockets
model in which the two are coupled. This will be the subject of further investigation.

To conclude, in this Thesis we have shown how the diverse phenomenology of various
families of IBS can be understood within a common framework: the Orbital Selective Spin
Fluctuation scenario. We have seen that, thanks to the orbital selectivity of the magnetic
excitations of the system, a spin-orbital interplay arises in the magnetic susceptibility,
superconducting gaps and velocity and the scattering rate in the nematic phase of IBS.
Given the success of the model, it could be used to make a complete study of most of
the IBS phenomenology. In this respect, a complete study of the five-pocket model to
analyze, magnetic, nematic and superconducting phases in different IBS compounds is
already work in progress. In the next future, one could compute other response functions
in order to compare with available experiments, e.g. the dynamical susceptibility in order to
compare with Inelastic Neutron Scattering (INS) and Nuclear Magnetic Resonance (NMR)
experiments. Another possible direction could be the extension of the analysis of the pairing
vertex performed for the tetragonal phase into the nematic one. As the nematicity is an
effect beyond RPA, this calculation would require to perform self-consistent calculations of
the pairing vertex and superconducting gaps. Finally, orbital selectivity might also appear
in other compounds in which the multiorbital character plays an important role. Without
doubt, there are numerous avenues where orbital selectivity may play an important role,
leaving many possibilities to be explored.
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Esta Tesis se ha centrado en los superconductores basados en hierro (IBS). La
fisica de estos materiales es tan rica que ha situado su comprension teérica como uno de
los rompecabezas mas interesantes en el campo de la superconductividad. El diagrama
de fases de los IBS exhiben un gran rango de fases diferentes incluyendo la magnética,
nematica y superconductora. En estos materiales el antiferromagnetismo aparece en las
proximidades de la superconductividad sugiriendo que las fluctuaciones de espin podrian
jugar un papel importante en el mecanismo de la superconductividad. Otro factor clave
es el caracter multiorbital de su estructura electrénica a baja energia. Hay dos principales
propuestas tedricas que son usadas para explicar la compleja fenomenologia de los IBS en
el escenario mediado por fluctuaciones de espin: los modelos multibanda o multiorbitales.
A los modelos multibanda les falta la informacién sobre el grado de libertad orbital del
sistema, mientras que la complejidad al considerar estructuras multiorbitales hace dificil
abordar la interaccién entre el espin y el orbital en los modelos multiorbitales. En esta
Tesis hemos estudiado los siguientes problemas: (i) jpodemos describir la fase magnética,
nemaética y superconductora de los materiales basados en hierro usando un solo modelo?
(ii) ;puede este marco tedrico explicar la diferente fenomenologia entre los diversos com-
puestos? (iii) jcomo surge y cudles son los efectos de la interaccion entre el espin y el
orbital en la fisica de los IBS?

Abordamos esas preguntas usando el modelo de Fluctuaciones de Espin con Selec-
cion Orbital (OSSF). El modelo OSSF es un modelo de baja energia que opera en la base
de las bandas pero incorpora completamente la informacién orbital de las excitaciones de
baja energia. La proyeccién del contenido orbital a baja energia descubre una relacién no
trivial entre el espin y el orbital que resulta en una fuerte selectividad orbital dada por
las fluctuaciones de espin: las fluctuaciones de espin se vuelven maximas alrededor de los
vectores Qx/Qy involucrando a los orbitales yz/xz respectivamente. La descripcion de
los fenémenos fisicos en términos de OSSF conserva la simplicidad de los modelos basados
en la banda, pero teniendo ademaés en cuenta el grado de libertad orbital.

Primero hemos analizado la fase magnética y superconductora en una Aproxim-
acion de Fase Aleatoria (RPA) un modelo genérico de cuatro areas: I'y, ', X y Y en
un escenario OSSF. La selectividad orbital, codificada en nuestro modelo, simplifica sub-
stancialmente el anélisis, permitiendo tratamientos analiticos mientras se conservan las
caracteristicas principales de las excitaciones de espin calculadas usando un modelo de
cinco orbitales. El modelo OSSF de hecho, reproduce cualitativamente bien la dependen-
cia general del momento y las relativas alturas y anchuras de picos localizados en momentos
diferentes. Esto es un resultado remarcable considerando que el modelo OSSF es un modelo
efectivo a baja energia que solo considera los orbitales yz, zz, xy.

Otro resultado importante viene de la observacion de que la dependencia en mo-
mento del pico de la susceptibilidad RPA depende del grado de coincidencia orbital entre
las diferentes areas: encontramos picos conmensurados/inconmensurados en la susceptib-
ilidad de espin dependiendo de si hay buen grado de coincidencia orbital entre las areas
relacionadas. Ademés, vimos que la principal contribucion a la susceptibilidad de espin
viene del intercambio de fluctuaciones de espin entre las deras de huecos y de electrones
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siendo la mayor contribucion la de el area de huecos con mejor coincidencia orbital con las
areas de electrones. Es importante darse cuenta de que mientras la correlaccién genérica
entre la composicién orbital de las superficies de Fermi y la estructura dependiente del mo-
mento en las excitaciones de espin en RPA ya ha sido destacado en modelos multiorbitales,
el vinculo explicito y la relacién precisa entre la coincidencia orbital y la dependencia en
momento de la susceptibilidad de espin es un resultado nuevo obtenido desde el analisis
RPA dentro del modelo OSSF.

Hemos analizado también el vértice de interaccién de los IBS asumiendo que las
mismas fluctuaciones de espin con seleccién orbital responsables del magnetismo, también
son responsables de la superconductividad. Estudiamos el vértice superconductor y las
ecuaciones de gap resultantes para estos materiales. Gracias a la seleccion orbital, los dia-
gramas de Feynman’s asociados al vértice de interacciéon se pueden tratar de forma analitica
y se pueden representar de forma facil en comparacion con la compleja diagramética de la
descripcién en el modelo multiorbital. Demostramos que tanto el vértice superconductor
como los gaps de las bandas heredan la modulacién orbital en momento dada por las sus-
ceptibilidades de espin. Por lo tanto, obtuvimos un gap anisotrépico con una simetria de
onda-s con cambio de signo, es decir, un gap de banda s, de acuerdo con los experimentos
y con los modelos multiorbitales. Haciendo un anélisis més profundo de la estructura de los
gaps de banda, demostramos que la dependencia angular y las magnitudes de los diferentes
gaps dependen directamente del grado de coincidencia orbital entre las areas de huecos y
las de electrones, y lo que es més importante, que el grado de coincidencia orbital (més
que el de coincidencia de banda) es el que controla la fuerza del vértice superconductor.
Este resultado es una prueba de que el modelo minimo tebrico usado para entender la
superconductividad en IBS tiene que tener en cuenta la relacion entre el espin y el orbital.
En lo que respecta, el modelo OSSF es un candidado perfecto.

Después, analizamos la fase nematica de los IBS estudiando analiticamente y
numéricamente la conductividad dc dentro del OSSF escenario. Bajo este enfoque, la
anisotropia de las fluctuaciones de espin por debajo de la transicién de espin nematica
a Ts es también responsable del ordenamiento orbital, inducido por las correcciones de
autoenergia nematicas inducidas a la dispersion de la cuasiparticula. Como consecuencia,
la anisotropia de la conductividad dc por debajo de Tg estid determinada no sélo por la
anisotropia en la tasa de dispersiéon de los electrones, sino que también esta determinada
por la modificacion en la velocidad de Fermi debida a la reconstruccion orbital (cambio en
tamafo, forma y composicion orbital de las areas). Esto es un ejemplo remarcable de la
interaccion entre el espin y el orbital en estos sistemas. Y lo que es mas interesante, esto
lleva a que los dos efectos contribuyan a la anisotropia en la conductividad dc con signos
opuestos. Usando parametros de banda realistas, calculamos la anisotropia en la conduct-
ividad para el FeSe y los compuestos 122, discutiendo el posible origen de la anisotropia
en la conductividad dc observada experimentalmente en estas dos familias de supercon-
ductores basados en hierro. Logramos reproducir el signo experimental de la anisotropia
en la conductividad dc para los 122 Aopc(122) > 0 y para el FeSe Aopc(FeSe) < 0
cuando tenemos en cuenta la disminucién y la reconstrucciéon orbital de la superficie de
Fermi de esos materiales.

El modelo OSSF ha sido extensamente estudiado para analizar la fenomenologia de
los sistemas de tres y cuatro areas. En esta Tesis extendemos el modelo OSSF para el
analisis de systemas mas realistas de cinco areas, en los que tenemos en cuenta el area de
huecos M con zy localizada en Qps = (7, 7). Derivamos la accién efectiva en términos de
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las excitaciones de espin hasta cuarto orden siguiendo la misma estrategia que se hizo para
analizar el modelo de cuatro areas. Nuestro analisis del modelo de cinco areas, muestra que
también en ese caso la proyecciéon del contenido orbital a baja energia descubre una fuerte
seleccion orbital de las fluctuaciones de espin. De hecho, encontramos dos fluctuaciones de
espin adicionales que conectan el area de huecos M con el area de electrones X/Y teniendo
contenido orbital zy. Demostramos como las fluctuaciones de espin en este modelo con-
tribuyen a dos subsectores diferentes acoplados: el sector I'-X/Y y el sector M-X/Y, que
dan lugar a contribuciones opuestas en el canal magnético y nematico en la acciéon efectiva
total. Para entender como afecta la inclusién de la quinta area a las inestabilidades
magnéticas y neméticas del sistema, llevamos a cabo un estudio preliminar de dos casos
limites en los que considerados los dos subsectores completamente desacoplados: en un
caso considerados solo las fluctuaciones de espin yz/zz del sector I'-X /Y, mientras que en
el otro caso sblo tenemos en cuenta las fluctuaciones de espin xy que conectan el sector
M-X/Y. Este analisis estd motivado también por el resultado del estudio del caso de
cinco areas en grupo de renormalizaciéon donde se encuentra que el modelo de tres bandas
M — XY tiene un punto fijo de la teorfa a baja energia. Comparando estos dos casos
limites, somos capaces de adquirir conocimientos fisicos sobre la nueva fisica que surge de
la presencia de esta area extra. La contribucién al magnetismo y a la nematicidad de las
xy OSSF en el sector M-X/Y parece competir con la que proveniente de las yz/zz OSSF
en el sector I'-X/Y. Nos dimos cuenta que ese efecto podia ser entendido en términos del
grado de coincidencia orbital entre las areas de huecos y las de electrones, el ctal una
vez mas era més importante que el grado de coincidencia de banda de las superficies de
Fermi a la hora de controlar las inestabilidades que se llevaban a cabo en el sistema. La
competiciéon entre las OSSF que pertenecen a los diferentes subsectores podria explicar
por qué se encuentran diferentes realizaciones de la nematicidad en distintos miembros
de las familias de IBS, en ciertos compuestos como por ejemplo los 1111, mostrando una
nematicidad mas vaga respecto al FeSe. Para poder abordar de manera completa este
hecho, necesitamos entender como evoluciona la competicion entre las OSSF de los sectores
I-X/Y y M-X/Y una vez consideremos el caso completo de cinco areas en el que los dos
sectores estan acoplados. Esto sera objeto de una mayor investigacion.

Para concluir, en esta Tesis hemos demostrado que la diversa fenomenologia de las
diferentes familias de los IBS puede ser entendida con un marco comun: el escenario de
Fluctuaciones de Espin con Seleccion Orbital. Hemos visto que, gracias a la selectividad
orbital de las excitaciones magnéticas del sistema, surge una relaciéon entre el espin y el
orbital en la susceptibilidad magnética, los gaps superconductores y en la velocidad y en la
tasa de dispersion de los electrones en la fase nemaética de los IBS. Dado el éxito del mod-
elo, podria ser usado para hacer un estudio completo de la mayoria de la fenomenologia de
los IBS. En lo que respecta, un estudio completo del modelo de cinco areas para analizar
la fase magnética, nematica y susperconductora en diferentes compuestos de los IBS es ya
un trabajo en proceso. En el futuro cercano, uno podria calcular también otras funciones
respuesta para comparar con experimentos disponibles como, por ejemplo, la susceptib-
ilidad dindmica para comparar con experimentos de Dispersién Ineléstica de Neutrones
(INS) y con experimentos de Resonancia Magnética Nuclear (NMR). Otra direccion pos-
ible podria ser la extension del analisis del vértice superconductor llevado a cabo en la fase
tetragonal, a la fase nemética. como la nematicidad es un efecto mas alla de RPA, este
calculo requeriria llevar a cabo calculos autoconsistentes del vértice y de los gaps supercon-
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ductores. Finalmente, la selectividad orbital debe aparecer también en otros compuestos
en los que el caracter multiorbital juega un papel importante. Sin duda alguna, existen
numerosas vias en las que la selectividad orbital puede desempenar un papel importante,

dejandonos muchas posibilidades que explorar.
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Spin-driven nematic transition as spontaneous
Zo-symmetry breaking

We look into the concept of the nematic phase using symmetries arguments. The
present discussion is mainly based on Ref.s [79] and [177].

When we study a spontaneous symmetry breaking we start from a disordered phase
(such a paramagnetic phase) and we end in a ordered magnetic phase (such a magnetic
SDW phase). In a paramagnetic phase, all the spins are indistinguishable, so the system
has O(3) spin rotational symmetry. To end in an ordered magnetic phase, the system has
to break at least, the O(3) spin rotational symmetry. To the O(3) symmetry breaking
corresponds also a translational symmetry breaking, due to the increase in the size of
the crystalline unit cell in the magnetically ordered phase. This is, indeed, the case of
many antiferromagnets in which the symmetry that is broken at the magnetic transition
temperature is the O(3) spin-rotational symmetry. However, in IBS the situation is more
involved. In fact, the magnetically ordered state for most IBS is a SDW phase, that is
actually doubly degenerate, as it is characterized by magnetic stripes of parallel spins along
either the y axis with an ordering vector Qx = (7, 0) or the x axis with an ordering vector
Qy = (0, 7). This two degenerate ground states correspond to a Z, (Ising-like) symmetry
(see Figure A.1). In this case, thus, the system has to break not only the O(3) spin-
rotational symmetry, but it also has to choose between one of the two degenerate ground
states and thus has to break the Z; symmetry. In real space, the Zs symmetry breaking
corresponds to a broken rotational symmetry of the lattice.

Symmetry-based discussion

A generic d-dimensional rotation symmetry is represented by the rotational group
O(d). Although the rotational symmetry in crystalline solids is always broken, the point
group of the symmetry, that is a subgroup of O(d), is preserved. For a 2-dimensional
systems, the point group that represents the n-fold rotational symmetry groups are the C),
cyclic groups. The C,, groups represent the discrete rotational symmetry of the n order
with respect to a particular point, that means a rotation by an angle of 360°/n leaves the
system invariant.

In crystalline solid, the point group symmetry for a 2-dimensional lattice with rota-
tional symmetry is the C4 group. That means the system is invariant under all rotations
given by an angle of 360°/4 = 90° which represents a tetragonal structure of the lattice.
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Figure A.1: The transition from the disordered phase to the SDW phase breaks an O(3) X Z
symmetry. The O(3) symmetry refers to rotations in spin space while the Z5 symmetry refers to the
two degenerate ground states of magnetic stripes with parallel spins along the y axis with ordering
vector Qx = (m,0) or along the x axis with ordering vector Qy = (0, 7). Adapted from [79].

The Cy group is, therefore, the cyclic group of order n = 4, that contains four elements,
which can be represented as Cy = {1, eim/2 i2m idT/ 2} referred to the lattice rotations by
a /2 angle.

Let us now introduce the quotient group of the Cy as Cy/Cy with Cy the normal
group of Cy. It can be shown that the quotient group Cy/Cs is isomorphic to Zs, that is
C4/Coy = Z,. Here, the Cy and Z5 groups are the same cyclic group of order 2 (Ising-like),
but we call it different because the Zy group is referred to the two degenerated ground
states and the Cj is referred to the lattice rotations by a 7 angle with Cy = {1,¢e/"}. What
does the isomorphism C4/Cy = Z3 mean? On one hand, it means that a Zy symmetry
breaking corresponds to a Cy symmetry breaking, and thus a rotational symmetry breaking
of the lattice. On the other, the isomorphism C4/Cy = Z5 also means that the remained
symmetry of the lattice after such symmetry breaking is a Cs rotational symmetry.

This is the definition of the nematic phase: a broken rotation symmetry of the lattice
Cy — C5, but unbroken translational symmetry, i.e. unbroken spin rotational symmetry

0(3).

Physical interpretation

In the disordered phase of a 2-dimensional crystalline solid the system preserves
spin-rotational symmetry O(3) and rotational symmetry Cj of the lattice. That is, the
total symmetry of the system is O(3) x C4. On the other hand, to end in a SWD phase,
the system has to break the O(3) spin rotational symmetry, in order to acquires long-
range magnetic order, and the Zs rotational symmetry, in order to choose one of the two
degenerated SWD ground states. So, in the SDW phase the system breaks O(3) x Z
symmetry (see Figure A.1). Since this is a discrete symmetry, the Zs-symmetry breaking
is expected to be less affected by magnetic fluctuations than the continuous O(3) symmetry
breaking, and that suggest the possibility of the former happening before the latter. This
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is just the idea of behind the Ising-nematic state: an intermediate phase preceding the
SDW state, where the Zs symmetry is broken but the O(3) symmetry is not.

i

disordered ------- nematic ------- » magnetic

K

Figure A.2: The O(3) X Z; symmetry can be broken in two steps. First, only the Z5 symmetry
is broken. The system is still paramagnetic since (S;) = 0 (gray double arrow on top of the spins),
but the spin correlations break the tetragonal symmetry, (S; - S;y.) = —(S; - S;4,) (red and blue
bonds, respectively). In the second step, the O(3) symmetry is broken and the system acquires
long-range magnetic order with ordering vector Qx = (,0). Adapted from [79].

Figure A.2 show a schematic of the transition from a disordered paramagnetic phase
to a SDW through a nematic phase. Left-hand side of Figure A.2 represents the disordered
paramagnetic phase. The symmetry of the system in this phase is O(3) x Cy: we have
translational symmetry O(3), i.e. we do not have a long range magnetic order (S;) = 0 and
at the same time we have a rotational symmetry Cy, so the spin correlations preserve the
tetragonal symmetry (S; - Sitz) = (S;i - Sity). In the nematic phase, middle of Figure A.2,
magnetic fluctuations spontaneously lead the system to choose one of the two degenerated
possible states and thus to break the Zs symmetry. Therefore a Z5 breaking occurs already
in the non-magnetic phase by making the spin correlations non equivalents along z/y, i.e.
(Si - Siyz) # (Si - Sity). As the Zy symmetry breaking corresponds to a broken Cjy
tetragonal symmetry, the symmetry that survives is just the Cy orthorhombic symmetry.
It means that the system in the nematic phase is invariant under lattice rotations given by
a 7 angle. On the other hand, the translational O(3) symmetry is still preserved, and thus
the system does not develop a long range magnetic order (S;) = 0. The total symmetry of
the system in the nematic phase is O(3) x Cy. It means in the nematic phase the rotational
symmetry of the crystal is broken, going from tetragonal to orthorhombic Cy — Cs, but
the translational symmetry O(3) is not. Last, on the right-hand side of Figure A.2 we have
the ordered SDW phase. The translational O(3) symmetry of the system is not preserved
anymore and the system develops a long-range magnetic order (S;) # 0 with an ordering

vector Qx = (m,0) (or Qy = (m,0)).
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Kinetic model for IBS

B.1. Symmetry adapted low-energy model for the four-
pocket model

The kinetic Hamiltonian is derived adapting the low-energy model considered in
[118], where the electronic states around the high-symmetry points | = T', X, Y are de-
scribed using a spinor representation in the pseudo-orbital space

l L £yl l
Hy = Z G, (B.1)
k,o
Yz oz XY [ yz/zz l
Here L, = ()2, c2), Yrt = (ci cka) and HOk = hOkTo—i-hk 7 with 7 Pauli matrices
representing the orbital isospin. The (hé, hl) components of the Hamiltonian at I" are
AN . )
Al = —2b" k.ky, (B.2)
hgk = br(ka% - ki)?

at X read
hoje = (b + ) /2
haye = vk, (B.3)
B = (WY = hi) /2 — (k2 — k2)

where hi’z = —e¥*+a¥?k? and hiy = —e™+a"¥k2. Analogous expressions hold for (hé/, ﬁy)

by exchanging k, by k, and yz/xz.
The band dispersion and their orbital composition are obtained by diagonalizing the
Hamiltonian, Eq. 2.22. For the hole sector I' we have

Hy —Z¢ Uk, = Zébg,/\ Dho (B.4)
k,o

AT
where @1 = (hf{' > i) are the fermionic operator for the I'+ bands obtained by the Uy
rotation of the orbital spinor w{o

R r _,r Yz ht
of Uyt = ui%) C)% h_>< (B.5)
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where we omit the momentum and spin dependence for convenience. The components of
the rotation matrix U are given by

1 hi
r 3
ut =1+ 2
VAT A
1 — (B.6)

and define the coherence factors representing the orbital content of the I'-pockets. Al =
diag(E"+, E'-) is diagonal in the band space and contains the expression for the disper-
sions

+
E™ = hb £ = b £ /(D)2 + (h5)? + 22/4 (B.7)
Here we accounted explicitly the spin-orbit coupling A by replacing ]h_f] =1/] T\Q + A\2/4.
This lifts the xz/yz degeneracy of the inner/outer pockets at I'.
Analogously we derive the band dispersions and the orbital content at X and Y. We

X _ X Yz X4
X _ X x _ U v c e
¢ =U w - U*X u*X) Ca:y) % eX—> ( (B8)

where we again drop the momentum and spin dependence for convenience. The rotation
matrix U~ is defined around X as

find

1 h
UX == ﬁ + hiX,
(B.9)
* X L. hX h§(
v = \ﬁzsgn( >0\ 1 - X
and the band dispersions
EXY = nf £ 10X = b £/(hX)2 + (h)? (B.10)

where hy, hé( and hX are given by Eq. B.3. Eqs. B.8 - B.10 are also valid for the YV
electron pocket by substituting the X pocket index by the Y and the yz orbital label by
the zz. Notice that since only the EX/Y" band in Eq. B.10 crosses the Fermi level at X/Y
points, we drop the + subscript from the electron pockets band dispersion EX/Y and from
the fermionic operator eX/Y .

The the non-interacting Green’s functions are given by
Gl =wl - A, (B.11)

with lﬁl(l] the non-interacting Hamiltonian and w the fermionic frequency. By rotating it
to the pocket basis we get the non-interacting pocket Green’s function is given by GU' =
U (wl — AYU, so that

R W2 ! 2 ol
Gl =gl 2131 (Uz)2> +g- ( z)z (uz)2>< (B.12)

—Uu'v

where we introduced the pocket’s Green’s function as géiiw) = (iwp, — Ell{i)_l.
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B.2. Perfect circular nested and elliptical Fermi surfaces
Perfect circular nested Fermi surfaces

A useful approximation that allows for analytical treatment is to approximate any
low-energy dispersion as a parabola and to assume a condition of perfect nesting between
the hole and electron pockets.

Within the parabolic approximation we can rewrite the (h), El) components given in
Eqgs. B.2-B.3
hy = €' — ak?,
hi = —bk?sin(26), (B.13)
hy = bk? cos(26)

and
hg(/y = XY 4 ak?,
hyXY = bk? sin(26), (B.14)
WY = bk cos(26)

with § = arctan k,/k, the polar angle and k = ,//(% + k:g the modulus of the momentum
vector k = (kz, ky). The non-interacting energy fok a pocket [ is given by EF = hf) + At

with h! = \/ (111)2 + (hb)% + (h%)2, while the coherence factors reduce to

P = [u¥? = 0P = cos 67, (B.15)
|UF‘2:‘UY|2:|UX‘2:SHU92 ’

Notice that the orbital content of the four-pocket model is still well described within the
perfect nested parabolic bands approximation.

The non-interacting pocket Green’s functions are given by

9+ = g- = gn = (iwp + €)' (B.16)
9x = gy = ge = (iwn — €)' (B.17)
where € is the parabolic dispersion € = —eg + k?/2m, with € is the off-set energy with

respect to the chemical potential, put conventionally to zero, and m the parabolic band
mass. Notice that for a perfect nested Fermi surface, the Green’s function of the system
is only differentiate between the hole and electron sector, but inside each sector all the
hole/electron pockets have the same energy.
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Elliptical approrimation

We account for the deviations from the perfectly nested parabolic band approxima-
tion perturbatively. Omne can describe the ellipticity of the electronic band dispersion
as

My —my)
9

EXY ~ ¢ F 6, cos 264, 0 = €0m ( (B.18)

2mgmy
where 6§, accounts for the ellipticity of the electron pocket via the x/y anisotropy of the
masses with respect the parabolic band mass m. The expressions in Eqgs. B.18 correctly
reproduces the opposite ellipticity of the X/Y pockets. For the sake of completeness we
also consider the deviation from perfect nesting due to, such as for example, a mass, off
set energy, spin-orbit coupling mismatch of the hole pockets via

[ S (mﬂ;m)< (B.19)

These perturbations can be included in the estimate of the quadratic and quartic terms of
the action by expanding the Green functions for small dc, 0

g+ = gn(1+dmign)
Ix/y = ge(lF decos(20k)ge). (B.20)

In principle the perturbations é. and 6,,, affect also the angular orbital factors, which
should deviate from the cos 8/ sin 6 expressions of Eq. B.15. However in first approximation
we will neglect these modifications and we will retain only the effects of J. and d,,, on the
Green’s functions.

B.3. Model parameters for the kinetic Hamiltonian

The parameters for the kinetic part of the Hamiltonian for a generic four-pocket
model are given in Table B.1

r X/Y
€T 46 €ry 12 €yz/az 9O
ar 263 Qzy 93 Ay /2 101
br 182 b 154
v 144

Table B.1: Model parameters for a generic four-pocket system. All the parameters are in meV.

The spin-orbit interaction for the 122 is set to A = 5 meV and for the FeSe A = 20 meV.
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C.1. Magnetic excitations in the OSSF model: RPA analysis

C.1.1. Computation of the spin susceptibility

In this appendix we compute the spin susceptibility induced by the orbital selective
spin fluctuations within the OSSF model from the expression of the spin susceptibility in
terms of the intraorbital Matsubara spin-spin correlation function given in Eq. 3.9 from

the main text
XM (q, i) = /f dr e imT <TT§’7(q, )57 (—q, 0)> < (C.1)

where S7(q,7) =3 » cﬁi&sslcﬁ L q 18 the intraorbital spin operator. As we discussed in
Section 3.3, the low-gnergy projection simplified considerably Eq. C.1 and thus substituting
the intraorbital spin operator S"(q, 7) and applying Wick’s theorem the spin susceptibility
reads as

(g, i) = -3 ; Tr [fl(k, iwn) G (k + q iy, + mm)} ( (C.2)

where the Green’s function for the [ pocket Gl(k, iwy) are defined only around the high
symmetry points I', X, Y (Eq. 3.10 from the main text). The Green’s functions in the
orbital basis G'(k, iw,,) can be written in terms of the rotation matrices ¢ that diagonalize

the [-Hamiltonian and in terms of the Green’s functions in the band basis géi o) 8

k,iwn,

W —ot\ g+ 0 R (C.3)
= TR IR, 0 gl_ —o*t !

Then, by substituting in Eq. C.2 the expression for the orbital Green’s functions given by
Eq. C.3 we get the spin susceptibility read as

A g . W, _(kyiwn)\—177171 _
Gl(k,iwn) _ L{(l )(dmg<gl+(k, )’gl (k )> 1u(lk,wn) _

X" (a, i€m) =
Bk ( ol 0 glf —oxt ! v*! utl 0 gl— oy
n
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where we have omitted the momentum and frequency dependence for convenience but can
be read from the ! pocket which has the implicit dependence (k, iwn)l and from the [/
pocket which has the implicit (k + q, iw, + iQm)l dependence. Operating Eq. C.4 and
evaluating the trace over the orbital-basis, the spin susceptibility for a generic I, ! pockets
can be expressed as

. (q,zQ 3 Z [ It z+<| z’ |uz 2 R P TR 0 O |vl‘2‘vl’|2>+
+ gz+gz', (|uz|2|vz ‘2 e 0 ’Ul|2|ul’|2)
4 gl—g” (|Uz‘2’uz"2 A T ‘ul‘Q‘vl’|2>
4 gz,gz/, (|6l|2’vl’|2+ulvlu*lv 4wyl z'+|uz| |u | ) Q
(CR)

Selecting the intraorbital contribution for each term of Eq. C.5, i.e. the first and the latest
terms for each summand, we get the intraorbital spin susceptibility can be expressed in a
general way as

(q’m BZ gl+g+ (<2|uy|2+’vl|2|vl/|2) +gl+gl/_ (| l|2|vl/|2—|—|vl‘2|ul/’2)—|—
+gl_gl+ <‘ l\Qlul/]2+\ul\2\vl/|2> _i_gl_glL (, l|2‘vl”2+’ul‘2’ul"2)
(C.6)

We can rewrite Eq. C.6 renaming each term as

X (@, 1m) = X% (a, 1) + X (@, i) + x5 (@, i0) + X (@,i,)  (C7)

where the individuals terms of Eq. C.7 can be written as
’ . 141/ . I .
N (@ i) = X (0, 1) + X (a1 ) (C.8)

Notice the two different contribution to the pocket susceptibility Xlil/i (q,18,) come from
different orbitals 1 and 7/, since they correspond to the first and the latest terms for each
summand of Eq. C.5 which carry on the orbital information from the rotation matrix u'
being different for each pocket I.

Last but not least, performing the Matsubara frequency summation with w,, = (2n+
1)7kpT the fermionic Matsubara frequency and setting the external frequency Q — 0, we
find the static intraorbital susceptibility has the following expression

I I+
Vi) = 32 T IO g (C.9)

k 6k+q €k

with f(el) = (66{(5 +1)~! the Fermi distribution function. Eq. C.9 is just Eq. 3.11 from
the main text.

The RPA spin susceptibilities are obtained in the form of Dyson-type equations
(Eq. 3.12 from the main text) as
140

A Xn (9)

n
Xyrpa(Q) = -

_Xn 4 (C.10)
l+1
1—Uxy *(q)
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~ Il
with U is the intraorbital effective coupling and Xni *(q) the intraorbital spin susceptibility
given in Eq. C.9.

C.1.2. Four pocket model susceptibilities

Let us apply the current derivation for a four-pocket model I' ., I'_, X| Y. Within
the OSSF model the spin fluctuations are orbital selective, so the two more relevant spin
fluctuation propagators are around Qx = (m,0) (involving the yz orbital component) and
around Qy = (0, 7) (involving the xz orbital component). If we apply Eq. C.9 we will get
for those two propagators the following contributions ng X(q) and XZ; X(q) referred to
the yz orbital component and xL. ¥ (q) and x., ¥ (q) referred to the zz orbital component.

Still the spin susceptibility around Q = (7, ) Xﬁ;/y(q), that represent the contribution of
the xy orbital component is also computed for completeness.

F+X(q) _ Z f(ei)((-i—q) - f(€£+)

2
yz X r+ ‘uk‘ ’ukJrq’
Kk Ck+q ~ k
fledq) — flea )
r-x + k 2
Xyz ( )_ Z Xq - ’vk‘ ’ukJrq’
Kk €k+q ~ k
+
rty f(€K+q) - f(eﬁ ) 2
Tz (q) = Z Y T+ |’Uk‘ ’ukJrq’
6kJrq €k
6k+ )
XJ:Z f 3 ‘ |2|u§+q|2
Rk k ek+q
X
€k+ f(e )
Xy (@)= yq X ot [*[vicyq” (C.11)
Rk “kta ~ K

where we have simplified the notation (X/Y)* as X/Y due to the (X/Y)~ contribution
is not in the Fermi level for the electron pockets. Notice that for a three pocket model (for
example simulating the FeSe case) the I'” contributions, i.e. XI?;Z_ X(q) and XL, Y (q), are
absent.

The RPA spin susceptibilities for the FeSe and 122 systems are obtained in the form
of Dyson-type equations based on Eq. C.10 with Eq. C.11 as

I+ X Ity

I+ X ( ) _ ny (Q) rLy ( )_ Xa:f (Q) XY ( )_ Xﬂi(yy(q)

Xy-rPA\d —1 _ UXF*X(q) XzzRPA 1_ eriy( )’ XzyrPA\4 1T XY (q) UX%%Y(Q)
(C.12)

Egs. C.12 are exactly those represented in Fig. 3.2 from the main text.

C.2. Superconductivity mediated by OSSF

C.2.1. Computation of the RPA pairing vertex

The RPA pairing interaction is given by the irreducible particle-particle vertex that
can be computed from all possible Feynman’s diagrams containing the orbital selective spin
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susceptibility. In Figure C.1, that corresponds to Figure 3.4 in the main text, we draw
again for convenience all Feynman’s diagrams that contains only the spin susceptibilities
up to finite order in perturbation of U for electrons of opposite spin and momentum.

——
LK

>
1 -k LK

Figure C.1: Pairing vertex in random phase approximation up to fifth order in the OSSF model.
At first order perturbation in U, we find only one diagram given by

T (K) = U (C.13)

At higher orders we can differentiate between ladder diagrams or bubble diagrams. The
ladder diagrams (first line in Figure C.1) can be expressed as

Fier (b, ) = U2 4 k) + DOX 4K+ k) + O(07) (C.14)

Eq. C.14 can be rewrite using a geometrical series as

; U3x=2 (K + k
Pl (6 K) = l l( k) (C.15)
1—U2Xii (k' + k)
The bubble diagrams (second line in Figure C.1) can be expressed as
l U ~ ’ ~ / ~
Ly (k K) = U3 (K — k) + U\ =22 (K — k) + O(UY) (C.16)
and it can be rewrite using a geometrical series as
1l U2y % (K — k)
Fbtbile(k’ k') = (C.17)

1— Uy (K — k)
So, the singlet pairing vertex can be expressed as the sum of this three contribution like
’ I+l I+l I+l
Il (k K) =Ty (kK) + T (kK) +Tpr (kK (C.18)

Symmetrizing Eq. C.18 due to the k — —k invariance of the gap, we get that in the weak
coupling limit, the leading RPA diagrams for vertex in the OSSF model pairing interaction
can be expressed

~ ziz/ 2 lil
/ = Uy * Uy *
I (q) = U + @, U 1 C (C.19)
L= () 1- T (@)

which is just Eq. 3.13 in the main text where q = k’ —k and X i( ) the spin susceptibility
given in formula Eq. C.9. Notice that in Eq. C.19 we recover the orbital dependant notation
and also we simplify it by calling 1 to nn indices.
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C.2.2. Orbital-dependent superconducting order parameters

In order to reduce the two-particle operators to single-particle operators we ap-
ply mean field theory to Eq. 3.14 from the main text. The mean-field equations for the
mean field Hamiltonian, can be easily derived by defining the orbital-dependent supercon-
ducting order parameters for the hole sector (A, A ., A¥, A7) and the electron sector
(A AST AST AST) as

yz 1 Byzor Bz
A;/sz’ - _F;zekk’ <(uf)2€f e)fk>
A;zk’ = _F;;kk/ <(uf)2€X ke)_(k>
Alw = Tl ((ui)?e kely)
A = Tiha ((ug)ercey)
A;jk, = _F;_zekk’ <(“T<F)2h+ hJ_rk>
A = T ((vi)?hych™y,)
AZerk’ = _F;:kk’ <(U11F)2hf: hfk>
Ave = Tl hich™y)

(C.20)

The superscript | = +/— is referred to the hole pockets I't or I'~ respectively and the
superscript e is referred to the electron pockets X or Y.

By considering the electron-electron interaction we can define the xy order paramet-
ers (AZY, AZY) as:

Ty
XY X\2,X X
Aiik/ = I e ((vi )7eic e2y)
XY Y2 Y1, Y
A?y(k’ = Ty e (v )7e” keZy)

(C.21)

with which we then solve the mean-field equations for the xy pairing Hamiltonian given in
Eq. 3.27 from the main text.

C.2.3. Band parameters to reproduced the multiorbital model

The modified parameters for reproduce the four pockets Fermi surface in [102]| are
given in Table B.1

r X/Y
€r 10 €oy 12 €yz/zz OO
ar 150 azy 93 Ay /zz 101
br 50 b 154
v 144

Table C.1: Low-energy model parameters used in Fig. 3.6. All the parameters are in meV.

The spin-orbit interaction is set to A = 0 meV.
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D.1. Computation of the dc conductivity from the optical
conductivity in the OSSF model

D.1.1. Current-current correlation function

In this Appendix we perform the complete derivation for the current-current correla-
tion function within the OSSF model. We start from the expression of the current-current
correlation function in the Matsubara formalism II, (Eq. 4.6 from the main text)

I (q, iQm) = % /( dre (T, ji(q, 7)7;(—q, 0)) (D.1)

with 7 the imaginary time, 5 = 1/7" and ,,, = 2ermT the bosonic Matsubara frequency.

In the bubble approximation, the current-current correlation function D.1 can be
expressed as

i (q i) =2 Er{él(k — /2, iwn) VL, G (k + /2, iwn + i) Vi } (D.2)
lkn

with [ =T, X, Y denoting the pocket index, w,, = 27(n 4+ 1/2)T the fermionic Matsubara
frequency and the factor 2 is due to the spin summation.

In Eq. D.2, él(k, iwy,) is the renormalized Green’s function from the OSSF (defined in
Eq. 2.48 in the main text) and Vlil are the velocity operator in the direction i = {z,y}. Since
the self energy corrections computed within an Eliashberg-like treatment are momentum
independent, VIL = 0Ok, H! = Ok, (}:f(l)—i—il) = Ok, ﬁ(l) = Volki so that vertex corrections vanish

identically and the interacting velocity is the same than the bare velocity.

As we are interested in the dc conductivity, we set q = 0 in Eq. D.2

I (iQm) =2 Er{él(k, iwn) Vi, G (K, it + iQ0m) VAL } (D.3)
lkn
We rotate Eq. D.3 into the band basis GH(k,iw,) = Z/A{llq(k,iwn)[iwnﬂ =
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f\%(k, iwn)]_ll;{gl (k,iwy,) and we get the current-current correlation is given by

T (i) =2 M {Ulh(k, iwp) [iwn T — A (k, iw,)] ™' Ul (k, iw, ) Vi,
lkn
Uy (K, it + i) [(iwn + iQm) T — Mgk, iwn + Q)] 71U (K, it +iQm) L}
(D.4)

Using the cyclic property of the trace allows us to define the renormalized velocity matrix

V]l%(ki m) and redefine Eq. D.4 as
1135 (iS2n) = 226 liwn 1= A i)™ Vi) [((@n+iQm) 1=Ahn i ian] Vs iwon +i0m)
lkn
(D.5)

with the renormalized velocity matrix defined as

Vll%(ki,iwn) - Z/A{]l;l (k7 an)vlizz;{]l%(ka iwn + ZQm)7 (D 6)
3 L . PR , :
Vll%(kjiwnJriQm) = ull% (k, iwy, + ZQm)VlijU]l%(k, iwn)

If we substitute the unitary matrix L?Il%(k, iwn), the explicit result for the renormalized
velocity matrix is

l l l l
VLo Vél VI%LQ _ uRp VR yitoyl2 UR —UR (D.7)
R(k;,iwn) V}%I V]%Q _U}% uR ' V21 V22 U;{ uj(l{ ' A .
k; (k,iwn) i (k,iwn+iQm)

with ug and vg the renormalized coherence factors defined in Eq. D.22. Operating Eq. D.7
we get that, as a consequence of the orbital structure, the explicit components of Vé(k. im)

read as

I I ! Io1 ! lio las “l
Vet =V uRquw—',-Q + V= URquw+Q + Ve URw”Rw+Q + V2 URwUR/.u+Qv

lo1 __ 1 l 2 l l12 129 ]
Vil==-V 1URwURw+Q +V! luRquv-i-Q -Vt UvaRw-i-Q + V2 uRw’URw-&-Q: (D.8)

*[

l l l l l l
Vit = = Vg oo — VP 0y vhro + VUl i ro + V2 0R Ul 40,
l l l l I *[

Vg2 =VIug vk, o — VPl vhrg — V20 koo + V2 uR, iR g
where we have dropped the k indices and we call w to the Matsubara frequency iw,
for simplicity. Analogous expressions for the Vll%(ka‘wn i) and its components hold, by
replacing k; by k; and exchanging iw, by iw, + 1§}, in Eq. D.7 and Eq. D.8.

By using Eq. D.7, the current-current correlation function D.5 can be rewritten as
l l l l
Vil 12 gt 0 Vil 12
’LJ ZQ - 22 V}%I V@2 0 - Vgl VIEQ (D9)
™ 4 R R g o R R
n (kyiwn) k; (kyiwn+iQm) k;
with G!(k, iwy,) = [iwy, 1 — Ak (k, iw,)] ™ = diag(g* (k, iwy), g~ (k, iwy,)) as the renormalized
Green function.

Operating the trace over the orbital basis we get

i (1) = [12 (1) + [@;ﬂmm)} 6

l l l l
=2 ([ ztmv ugzwn-i-iQmVR + g:c_unv - gzwn—i-zQ v 21] ( + (D10>
lkn

l l — l — l
+ {fwn VR21guun+ZQ V - + gianRﬂgiwn—i-iQmVRﬂ}) (
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We can write Eq. D.10 in a simple way as

, li++ ! ! l
I3 (i2m) = o, )4—1'11”(1Q e )""Hf%mm) (D.11)

where explicity the components of I1;;(i€2,,) are given by

111++ + l11 l11
H’Lj iQm) =2 Z WWn VR wgzwn+zﬂm VR w0
lkn
111+— l12 lo1
’Lj (1Qm) — =2 Z iWn, VR wgzwn +iQm VR,w—I—Q’
e (D.12)
Hl22 + -9 Z — Vlzl Vl1
i (1Qm) iwn R wgzwn+zﬂm R,w+
lkn
l22—— -9 Z 122 Vl22
Z](Zﬂm) Wy, ,wgzwn—l—sz Rw+Q
lkn

In Eq. D.12, Hi}l(;g;) and HZZQ ) are the intraband terms and Hgl(;g ) and Hg%zf;“) the

interband terms.

D.1.2. Dc conductivity
We start from the expression of the dc conductivity (Eq. 4.5 from the main text), as
the 2 — 0 limit of the longitudinal optical conductivity given by

e . ImIl,(q=0,%
Odea = Vllmﬂ—m (?2 ) (D.13)

Therefore, we are interested in the intraband terms given by the IIT+/~— components of
Eq. D.12 and also in the diagonal terms of the current-current function II;; which we call
as II, with o = {x,y} equivalent to the index ii = {zz, yy}.

++/——
IL;

In order to compute the terms, we express the Green’s functions g% (iw,)

in terms of the spectral functions Ai{i (w) in Eq. D.12, by introducing the spectral repres-
entation

g™ (iwn) = /dz.Ai(Z) (D.14)

iy, — 2
Then, we perform the Matsubara sum, take the imaginary part of the current-current

diagonal terms and take the 2 — 0 limit and we finally arrive to the pocket dc conductivity

expression O’fli. The o = {z,y} component of the dc conductivity in the band basis is

obtained from the sum over all the pockets I+ = {TI"y,I'_, X, Y}
Odea = 9 (ﬁf (D.15)
I+

The pocket conductivity is

27e?
e _ Z
Y - ((ood

where f(w) the Fermi distribution function. In this basis the spectral function is diagonal

1 ()
[ (@)]2 + [ — ey (@)]?
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with the renormalized energy dispersion relation as
€ia(w) = ReEpg (w) (D.18)
and the renormalized scattering rate as

% (W) = 6T + |[ImER (w)] (D.19)

The eigenvalue matrix E%k(w) is given by

[
Bl (w) = 1+ Shye(w) % /(102 4 ()2 + (4 5 ()2 (D.20)

V}iji ., is the bare velocity operator rotated into the band basis. As we take the Q2 — 0
limit and we only consider the intraband component, the velocity given by Eq. D.8 reduces
to

Vi = Vit uh|? £ Vii2ugloi + VE ulbol, + V22 ok 2 (D.21)
Rka ka "R ka "RYR ko :

Hereafter we omit the dependence on w for simplicity. ng"' are the nn’ component of the
velocity and (u/ v)ﬁl2 are the renormalized coherence factors which are renormalized by the
self-energy correction as

’ 1 Rk + %% 1 Ry + ik} g

!
up = —= |1+ —7—, ¥ (D.22)
\/i th /( hl

In the 7' — 0 limit we can approximate the Fermi function — 8 — 0(w) which
selects only states at the Fermi level w = 0.

7T€2
ol = ¢ Z(vzéiﬂxcif)? (D.23)

k

By further assuming Flﬁ to be small Flﬁ — 0, we can also approximate the spectral

function as (Ai{i)2 - L1 (el]fztk) and the pocket conductivity reduces to
27

T
e’ (Vll%jli )2 l
df:jVE:g—ﬂ?—&gi) (D.24)
k FRk

which is Eq. 4.18 from the main text.

Moreover, if we express the delta in energy (elﬁk) in terms of the momentum we get

e dk? }aza > 5(k — kp) Do
Oa N 2 I+ ( : )
| V €Ric

where the gradient |Vel§k| = |(V1l%j1iw)2 + (Vle )2| is different to the velocity term (V]lﬁia)Q in
the numerator given by Eq. D.21 which is in the direction of the dc conductivity o« = {z, y}.
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D.2. Analytical computation of the anisotropy of the dc con-
ductivity for the 122 and FeSe

D.2.1. Perfect nested circular Fermi surfaces

To allow analytical treatment for the renormalized system in the parabolic approx-
imation, we assume that the self-energy correction X3 is small enough to allow one for a
perturbative expansion up to first order in 3. The imaginary part of the self-energy is
neglected since it goes to zero at low w and T" = 0. Thus, the dressed coherence factors
(u/v)ky in the analytical approach become

2ReX!

2 =l 14 =2 WP) (
2ReX}

[oRl? =] 1- = 3ru112> <

with u' and v’ the bare coherence factors appearing in Eq. B.15. From Eq. D.26 we can
see that the correction term ReEé mixes the orbital character in each pocket, that is,
contribute to uﬁ,% with a term proportional to v! and vice versa. This effect of the OSSF
self-energy in the coherence factors will have important consequences for the renormalized
velocities in the nematic phase as we show below.

(D.26)

The dressed dispersion relations elﬁ = ReEﬁ,%i is given by

e = = 4 Rex) + Z%’Rezg. (D.27)
Replacing the values for the case of circular Fermi surface given in Eq. B.13 and Eq. B.14
we get
el;%i = €} 4+ cos20ReX},
eg/y = —€g F cos 29R62§(/Y, (D-28)
where we defined the tetragonal band energy for the hole pockets as e’(} = + ReZg

and €f = € — Requ Y for the electron pockets. For simplicity we further assume that

X =¥ = .

The scattering rate '+ = 6T + |T mEiﬂ acquires the expression

l
I h
I'E ~ 0T + [ImX)| + ﬁung\, (D.29)
Replacing Eq. B.13 and Eq. B.14 we get

Fl;f = Th+ cos20|Im¥}),

(D.30)

/Y = T¢ ¥ cos 20/ Imxy Y,
where we have separated the angular dependent renormalization ~ |I m2g| from the tet-
ragonal constant part, Fg/e = ol + \Imﬁg/e\. From Eq. D.30 it is very easy to find

analytically the locations of the cold spots on the Fermi surface by substituting the I mEé
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and [ mEg expressions in terms of its orbital components. Thus, the minimum value of the
scattering rate for each pocket is found at

() = g) = 6T + [ImSE

s

T (0 = 0) = 6T + [ImXL,|, (D.31)
s
50 =0)=Ik0= 5) =0T

The qualitative behavior of the self-energies in the nematic phase allows us to easily localize
the minimum value of Fl]fjf on the Fermi surface, that is, the cold spots.

As it is discussed in Ref. [60], the reconstruction of the Fermi surface below Ty is
consistent with the Ising-nematic spin-fluctuations being bigger at Qx than at Qy. This
implies that self-energy corrections are stronger on the gz orbital than on the xz one.
As a consequence for the holes, the smaller scattering rate corresponds to the xz orbital.
Instead for the electrons, the smaller scattering rate is found for the xy orbital, given the
absence of xy spin fluctuation between hole and electron pockets.

This result analysed in Chapter 4, is an example of the spin-orbital interplay retained
by the OSSF approach that allows us to directly link the cold spots position with the Fermi
surface orbital character and is not present in the band-based spin-nematic scenario.

D.2.2. Anisotropy of the dc conductivity

In order to gain physical insight on the DC anisotropy given by Eq. D.25 we compute
in this Appendix the expression for the renormalized velocity and scattering rate for each
pocket I ={I';,T_, X, Y}.

Renormalized velocity

By neglecting the imaginary part of the self-energy in the coherence factors (u/ v)lR
given by Eq. D.26, it is easy to check the velocity given in Eq. D.21 can also be written as
the derivative of the renormalized dispersion relation

Vi = 0t (k) /Oke. (D.32)
Explicitly for the hole pockets at I" we have

rhy
S pr

r
Fhl

rhy
+ R€E3 (hF)Q

ST

rhy
L

hF
Viiea = Oruh = O, I 1 £ Ok, [8th — O h ] (D.33)

and analogous expressions Véia and nga for the electron pockets. The first three terms
in Eq. D.33 corresponds to the bare velocity, while the term multiplied by Rezg accounts
for the renormalization in the velocity due to OSSF self-energy corrections.

Using the explicit definition of hf) and h! given by Eq. B.13 and Eq. B.14 in the
analytical approximation, and deriving with respect to k, and k,, the velocities for the
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different pockets read as

Vlgli = k:IOSG + 4R62 sin 92]{:(;:280,

Vfglfy = y 4 ReX 00892k2§07 (D.34)
vk C;jg 4 Rexy"Y sin 92$, |
Vil = l:nb”}e 4 Res /Y cosg? P00

where m!* is the bare mass of the I+ pocket whose definition in terms of the Hamiltonian
parameters is given by m'* = 2(a Fb)"" and m*/Y = m® = 2(a 4+ b)~"

The first term on the right hand side of Eq. D.34, is the a component of the bare
velocity, while the second term O(ReX}) is an additional contribution due to the orbital

mixing induced by the nematic order as expected from the (u,v)lR coherence factors in
Eq. D.21.

To compute the k integration in Eq. D.25 we will use the delta function and evaluate
V}lﬁ( ., at the renormalized Fermi surface. Notice that, in the nematic phase k% (#) is no
longer constant but gets deformed because of the anisotropic self-energy renormalization.
This effect is also of order O(ReX}) and has to be taken into account.

We estimate the change in the Fermi wave vector at the first order in the self-energy.
Replacing the expression of /c?? (0) into Eq. D.34 we find

EF

E
V =Vok, ' * <1 + cos 20R2

60 268
VI v T ({2 cos 2052 4 4o eReZg
= cos co ,
Ry Oky 60 268
XY /Y (D.35)
ReX; ReX
VI;(I;/Y :VkaX/Y( =+ cos 20 eX/Y F 4sin 96)(3/Y>,
‘ 2€;)
X/Y X/Y
Re¥; ReX
V};’{/y ZVOkyX/Y ( + cos QQT + 4 cos? Ge;}y>
Y 2¢ 2¢;)
where e’(} =e' 4+ ReEF and €f = €° — ReZX/ Y are the Fermi energy in the tetragonal state
and Vo 1+ = —kOF /mY+ and V., /Y = ko%,/m° are the a component of the bare
velocity in the tetragonal state with kok = y/d,/(2ml).

From Eq. D.35, one sees that the bare Fermi velocity in the nematic phase has two
contributions O(ReX}) opposite in sign: the first one is due to the change in k:li, while
the second one comes from the orbital mixing produced by the nematic order.

Renormalized scattering rate

The scattering rate is analytically estimated from Eq. D.19 using again the expansion
of E% at the first order in ¥4

I‘;i = T} + cos20|ImX%],

XY X/Y|

(D.36)
Iy = T'§Fcos20/Im%
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where we separate the tetragonal phase scattering rate, Fé = o' + |Im26|, from the
angular dependent correction due to the nematic effect ~ I mEé.

DC' conductivity

Last, in order to estimate analytically the conductivity Eq. D.25, we also need to
evaluate the norm of the pocket velocity | 7 elﬁk\ which is different to the pocket velocity
in a given direction x/y given by Eq. D.35.

By replacing all the analytical expressions found for the velocities, Eq. D.35, and
the scattering rate, Eq. D.36 in Eq. D.25 and computing the | 5/ e%k\ term, the pockets dc
conductivities read as

r, :Jh< n ReXY  ReX} - |Im2£|)

2/y 2 eh 2T}

o o ({+ ReX} N Rex} N |[ImXL|

z/y 2¢h h oTh )

‘o 0 0 (D.37)
X . ReXy  ReXy | [ImXf|
= + F +

Tafy =7 2 = ore )

RO Rexy jERezgY [ImXY |

oy =7 \ 1T 2e e ore

where o/¢ = 8263/ ‘/ (27rfi)Fg/ “ is the dc conductivity in the tetragonal phase for the
hole/electron pocket.
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D.3. Model parameters for FeSe and 122 systems

To perform the numerical analysis discussed in the main text we used the set of band
parameters given in and self-energies corrections which reproduce the 122 and FeSe systems.
The parameters of the static self-energies (w = 0) used in the numerical calculation to
simulated the FeSe and 122 materials in the tetragonal and nematic phases in Chapter 4
are shown in Table D.1

122 FeSe
Tetragonal phase
Sy, (-15,-2) X, (-55, -4)
= (15.2) = (-55, -4)
s (15,-2) X, (30, -3)
>y (15,2) = (30, -3)
Nematic phase
X, (-19, -2.67) X, (-70, -4.27)
L (-11, -1.73) L (-40, -3.73)
Y (19, -2.67) 2. (45, -3.5)
>y (11, -1.73) >y, (15, -2.50)

Table D.1: Self-energies correction parameters for FeSe and 122 system in the tetragonal and
nematic phases. All the parameters are in meV.

For the 122 the nematic phase is computed with a symmetric nematic splitting of
®" = ®° = 4 meV. For the FeSe nematic order parameter resulting in ®* = ®¢ = 15
meV. We fix the background scattering to 61" = 1 meV. The scattering rates used in the

tetragonal phase for 122 are ImX! = ImyxNY = o meV, while for the FeSe case we
yz/xz yz/xz
used ImX! = —4 meV and ImZX/Y = —3 meV. In both cases their variations of the

yz/xz yz/xz
imaginary part of the self-energies in the nematic phase are assumed to be proportional
to the variation of their real parts, i.e. AT ~ ¢;(®"/ReXl) and AT® ~ ce(®e/ReE§/Y)

with ¢y, /. arbitrary coefficients.
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E.1. Estimation of the quadratic and quartic terms of the
effective action for the five-pocket model

In this Appendix we discuss how to compute the quadratic and quartic coefficients
of the effective action for the five-pocket model for two cases: one with perfect circular
nested Fermi surfaces and other with elliptical electron Fermi surfaces. For that purpose,
in Appendix E.1.1 we first introduce the expressions for the Green’s functions within the
two different cases, and then, in Appendix E.1.2 we evaluate the sum over the Matsubara
frequency and momentum for some relevant expressions involving the different pocket
Green’s functions.

E.1.1. Perfect circular nested and elliptical Fermi surfaces

Perfect circular nested Fermi surfaces

To make a first estimate we consider the simple case where the electron and hole
pockets are perfectly nested circular Fermi surfaces. The orbital weights (as we discussed
in Section B.2 in Appendix B) simply become

P = [u¥[* = [0¥* = cos 67, 1)
|UF‘2:‘UY|2:|UX‘2:S11102 :
with 6 = arctan (ky / k:x) .<The pocket Green’s function are given by
9+ =9- =gy = gn = (iwp +€) "
9x = gy = ge = (iwn — €)' (E.2)
where ¢ is the parabolic dispersion € = —eg + k?/2m, with ¢ is the off-set energy with

respect to the chemical potential, put conventionally to zero, and m the parabolic band
mass. Egs. E.1 and E.2 are Egs. 5.24 and 5.25 from the main text. For a perfect nested
Fermi surface, the Green’s function of the system is only differentiate between the hole
and electron sector, but inside each sector all the hole/electron pockets have the same
energy.
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Elliptical approximation

We account for the deviations from the perfectly nested parabolic band approxima-
tion perturbatively. Omne can describe the ellipticity of the electronic band dispersion
as

My —my)
9

EXY ~ ¢ F 6, cos 264, 0 = €0m ( (E.3)

2mgmy
where d. accounts for the ellipticity of the electron pocket via the xAy anisotropy of the
masses with respect the parabolic band mass m. The expressions in Eqgs. E.3 correctly
reproduces the opposite ellipticity of the X/Y pockets. For the sake of completeness we
also consider the deviation from perfect nesting due to, such as for example, a mass, offset
energy, spin-orbit coupling mismatch of the hole pockets via

ma/M —m m> (E.4)

Ty, M
E " ~ —e+ 5mi,M7 5mi,M = E0< m

These perturbations can be included in the estimate of the quadratic and quartic terms of
the action by expanding the Green functions for small dc, 6y s

g+ M = gh(l + 5mi,Mgh)
9x)y = ge(l F e cos(20x)ge)- (E.5)
In general we set d,,, = 0 because it is only necessary one d,, to differentiate the two

gamma pockets, so we choose a finite §,, . Eqs. E.5 and E.5 are Eqs. 5.41 and 5.41 from
the main text.

In principle the perturbations 6. and d,,, as affect also the angular orbital factors,
which should deviate from the cos 6/ sin 6 expressions of Eq. E.1. However in first approx-
imation we will neglect these modifications and we will retain only the effects of d. and
Om, on the Green’s functions.

E.1.2. Evaluation of the sum over frequency and momenta

To compute the sum over Matsubara frequency and momenta we will use the usual

decomposition
d?k 2T d
—_— = — [ deN E.
zk:f/(ﬂ%ﬁ || 3 [ dee (£6)

where € is the energy, 6 the azimuthal angle Np = m/27 is the density of state per spin
at the Fermi level in 2D. In this way the only difference between the various models is in
the angular integration of the orbital factors. Let us then discuss briefly the remaining
common integrals over energy and the Matsubara sums.

Starting from the Gaussian term within the perfectly nested parabolic band approx-
imation we need to compute the Il.; bubble

e, = TNp Y (| degegn (E.7)

[

By performing the energy integration via the calculus of the residua of the Green functions

poles we found
T 1
T de gegn = —2 — = —_— E.
2 desean =22 =2 i (E:8)

Wn n>0 n>0
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where we used that w, = 27T (n + 1/2). The calculation of the above sum can be carried
out in terms of Euler digamma functions

- 1
M (2) = (=1)N N nz:o T (E.9)

The logarithmic divergence at the upper limit (9 (z >> 1) ~ In(z)) is cut-off by the wo
typical energy scale of the spin mode and one gets

R = R O)]

= e (in(en/T) + tn(2/m) + O (
= —Np (ln(wo JT) + const> ( (E.10)

where we used that 1(9) (1/2) = —C—2In(2) with C being the Euler-Mascheroni constant
and we called const = In(2/7) + Cg.

In order to compute the quartic terms within the perfectly nested parabolic band
approximation we need to compute

s
1Y [degii =13 (T (E.11)
Wn n>0 n
while beyond such approximation the Green functions expansion lead to:
T
TZ/dﬁgﬁgi = T o
- Wn,
TWn n>0
3
3.3 _
TZ/degegh = _Tzéwnf) (E.12)
W, n>0

and analogously for the ggg% case. It is easy to verify that the integrals of combination
(gegn)™ gzﬁf“ with odd unpaired powers of the electron/hole Green’s functions vanish,
since the contribution coming from Matsubara frequency with positive n exactly cancels
out with the contribution of the negative ones. Using that w, = 277(n + 1/2), one
can recognize in Eqs. E.11-E.12 the Euler digamma functions, Eq. E.9 for z = 1/2 and
N =2,4. For z = 1/2 one can express 1»(™)(1/2) in terms of the Riemann ¢(n) functions

N M(1/2) = ()N @Y - DN + 1)

Using these definitions in Eqs. E.11-E.12 we obtain
7¢(3)

Ty (| deglgr = coags = AT) (E.13)
31¢(5

TZ(degggfL = —MWLL(TLE B(T) (E.14)
93¢(5

7> ([ deglgy = —1287€£T)456(T) (E.15)

Wn

where ((3) ~ 1.202 and ¢(5) ~ 1.037.
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E.2. Magnetic and nematic couplings and order parameters:
eigenvalues and eigenvectors of the quartic term of the
effective action

In the present Appendix we first review in Section E.2.1 the calculation of the mag-
netic and nematic couplings and order parameters for the three and four-pocket models
which correspond to the eigenvalues and eigenvectors of the quartic term of the effective
action given in Eq. 2.29. Then, in Section E.2.2 we try to derive the magnetic and nematic
order parameters and couplings for the case of the five-pocket model. We show that in
this case, even for the perfect circular nested case, the definition of these quantities is not
unique and the analytical calculation becomes very complex due to the higher form of the
effective action matrix given in Eq. 5.11.

E.2.1. Three and four-pockets models

FEigenvalues and eigenvectors

The quartic term matrix (Eq. 2.29) for three and four-pockets models is written as

A = U “’12>< (E.16)
U2 U11

Therefore the eigenvalues are given by

A1 = un tue (E.17)
A2 = un —up (E.18)
and the corresponding normalized eigenvectors are:
1
v = (1,1) (E.19)

(1,-1) (E.20)

Vo =

Sl =S

New eigenvectors: magnetic and nematic order parameters

Now we can related the old eigenvectors with the new one performing a simple change
of basis. We want to get a quartic effective action of this form

Sggartic _ ((MX)2 (My)2)<u11 U12> E%ifiz): (E.21)

Uiz U1l

- (1/, ¢)<AO¢ A0¢> i) (E.22)

So, we want to get an Sg;artic expressed in terms of the new field ¢ and ¢. With Ay = A\
and Ay = A2 and the new corresponding eigenvectors 1 and ¢. The change of basis matrix
will be just the matrix with the normalized old eigenvectors as columns so

1 1 1 (Mx)? 0
V2 1 —1><<M§>2>: ¢>< (29
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So we get the new eigenvectors with is corresponding eigenvalues are:

p = \}i ((MX)2 + (MY)Z), Ay = U1l + u12 (E.24)
6= \2 ((MX)2 _ (My)2>, N = w11 — una (E.25)

(E.26)

where we can call ¢ the magnetic and ¢ the nematic order parameters and Ay and Ay the
magnetic and nematic couplings.

E.2.2. Five pockets model

In this Section we try to perform the same procedure than for the three and four-
pocket models to obtain the magnetic and nematic order parameters and couplings.

FEigenvalues and eigenvectors

The quartic term matrix (Eq. 5.11) for the five pocket model is given by

uir w2 0 K2
A — |w2 un ki O (E.27)
k12 w1 w2

12 0w un

The general form for the eigenvalues for the five pocket case is given by

A= %(un + w12 + Ur1 + Ur2) —

- \/ ury + uiz + Ui+ U2)? + 4T, — (unn 4 wi2) (U + U2)]
Ay = %(Un —u12 + U — U12) —

- \/ ury — uiz + Uy — )% + 43, — (unn — wi2) (U — U2)]
Az = %(Un +uig + Uy + ﬂ1() +

1 - ~
A o= —(unn — w2 + U —wd) +

2
+ \/ Uiy — uiz + Uy — wi2)? + 4lkY, — (u1n — ui2) (U — ui2)] (E.28)

+ \/ w1y + w12 + U + az)2 + 4[k‘%2 — (u11 + w12)(w1y + u13)]
| .

As we can see the definition for the eigenvalues of the quartic term acquires a very complex
structure and it is very difficult to define in a proper way the corresponding eigenvectors.
To gain insight into the problem we analyse down below a perfect nested case and try to
compute the eigenvectors of the five-pocket system.
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Perfect nested parabolic band approximation

genvalues given by Eq. E.28 slightly simplify and the computation of the corresponding

For the perfect case we have “(1)2 = 0 and u11 = U1y, k12 = Uig, so that the ei-
eigenvectors can be treated analytically. { (

FEigenvalues and eigenvectors

The eigenvalues in Eq. E.28 simplify as

1 - N
A= un+ 5(1 —VB)tp = Tgcl A(T)
1 - Np
Ay = up— 5(1 + V5)i1 = 16 A(T)
N
A = wp = (1+f)u12_Tg63 A(T)
1 - Np
A= upg— 5= V5)lig = 1—6C4 A(T) (E.29)
with A(T') = Q(T)Q defined in Eq. E.13 and ¢; = (7 +V5), ca = (5 + V/5), c3 = (7T —/5),
cg = (b— \f) where ¢; > 0 with ¢ = {1,2,3,4}.
The corresponding normalized eigenvectors are
1 1 1 1
= — (= —-1), = -1),,1 )| =— 1,1 E.
U1 5_\/5<2(\/g )72(\/5 )7 9 > A(a7a7 ) ) ( 30)
1 1 1
1 < 1 1
v3 = ———rf —=(V5+1),— (V5 + 1),1,1> —( b,b,1,1) (E.32)
5+VE\ 2 2 B
S —1(\/5—1) 1(\/5—1) -1,1 —l(— ~1,1) (E.33)
V4 = 5_\/5 ) 72 ) 9 - A a, a, ) .

with A = /5—+v5,a=%(v/6—1) and B =5+ V5, b= £(v/5+1). It is very inter-

esting to realize that a/A = 1/B and b/B =1/A, sowe Wlll use that fact in the next section.

New etgenvectors: magnetic and nematic order parameters

Now we can related the old eigenvectors with the new one performing a simple change
of basis. We want to get a quartic effective action of this form:

11 w2 0 ki X); Q
st = ((x)2 (ay)? (T2 () | s D Mii?
2 0 Ty w My2
cre ot CORC

_ (;(n P2 p3 p4> 3 /})2 )(\)3 8 p2 (E.34)

quartic

i 0 0 M/ {4
So, we want to get an Sgg expressed in terms of the hew fields p; with ¢ = {1,2,3,4}.
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The change of basis matrix will be just the matrix with the normalized old eigenvectors

as columns so
1 -1 — My)?
1 -1 a Y§2 5 (5.35)

All —a a -1 (Mx

M P
where we use the relation between the normalizatipn andl the\coefficients a/A = 1/B and

b/B =1/A and with A = —+V5and a = £(v5 - 1).
The new eigenvectors are:

p=1 :(a<MX>2 ¥ <My>2) - ((MX>2 ¥ a<My>2)_ (£.36)

= | (00r0? - 012) - ((fw}a? )] (E37)

= | (0007 = ot ?) (# (a2 - (31)?) (E.35)
i

b=

As we can see from Eq. E.39 there are many forms to "regroup" the different terms to get
a magnetic and nematic vectors. Therefore, even for the perfect circular nested case, the
definition of the magnetic and nematic order parameters is not unique. The form to define
in a proper way the order parameters and couplings is an open problem that we are going
to analysis in depth in the near future.

_((MX)Q + a(My)2> + <a(MX()2 + (My 2) (E.39)

E.3. Parameters for the quantitative analysis for the ' XY
and MXY models

We consider the same band-structure parameters than in Ref. [27]|, which are appro-
priate for 122 iron-based compounds e.g. BaFeyAsy. For the spin fluctuations we refer
to [67] and use wg ~ 18meV.

To compute the static =0 magnetic susceptibilities '~ Y~ and xMX Yﬁl, Eq. 5.53
and 5.59 respectively from the main text, we need first consider the difference in Néel
temperatures, Ty, for the two the three-pocket models, I'_XY and MXYX. To determine
the Néel temperature we need the value of the low-energy coupling U. We choose this value
in order to reproduce, within the I'_XY model, the experimental value TJE‘XY = 110K
found for weakly doped BaFesAse compounds [29]. Keeping then all the parameters fixed
we can estimate NpU and use this value to compute the Ty for the MXY model. In this

way we get that T]]\‘,JXY = 132K.

For the band structure we choose again parameters appropriate for weakly-doped
122 compounds: we set g = 90meV and 1/(2m) ~ 60meV, (Np ~ 1.3eV 1) for the
perfect parabolic case. With these parameters we have circular Fermi pockets of radius
k% ~ 0.31 in 7/a unit, with a ~ 3.96 A the lattice parameter. Then, beyond the parabolic-
band approximation we further consider the ellipticity of the electron pockets assuming
de = 0.55¢p. This define electronic elliptical Fermi pockets with kfp/ Y~ 0.39 and k%/ ¥ ~0.21
for the X/Y pockets respectively.
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