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Introduction

“Why haven’t we theoretical physicists solved this problem yet?
The only reason that we cannot do this problem of superconductivity

is that we haven’t got enough imagination. ”
R. P. Feynman 

There is no temperature below absolute zero. Out of curiosity, researchers have
tried to reach this lower limit and this, in turn, has led to the discovery of new physical
phenomena, and it has widened our understanding of the structure of the matter that
surrounds us. This curiosity led Heike Kamerlingh Onnes and his student Gille Holst to
cool down mercury with the aid of liquid helium in 1911. As the temperature reached a
critical value Tc of 4.2K, the electrical resistance of mercury dropped to zero [1]. They had
discovered superconductivity. In 1933 Walther Meissner and Robert Ochsenfeld showed
that a superconductor is more than just a perfect conductor. They observed that, except
from a thin region near the surface, these materials expelled the magnetic fux from their
interior, i.e., they are perfect diamagnets. This e˙ect is the so-called Meissner e˙ect [2].
Perfect diamagnetism and perfect conductivity are the two hallmarks of a superconductor.

Since its discovery, most of the brightest physicists tried, unsuccessfully, to develop a
microscopic theory of superconductivity [3]. But it was not until 1957 when John Bardeen,
Leon N. Cooper and John Robert Schrie˙er developed a revolutionary theory of super-
conductivity, the BCS theory [4, 5]. This theory postulated that phonons, the quantum
excitations of the crystal lattice, mediate an attractive interaction between the electrons,
leading to the formation of bound pairs of electrons, the so-called Cooper pairs. These
pairs condense in a coherent macroscopic quantum state, the superconducting state, of
pairs with opposite momenta and spins.

In the early years, superconductivity was mostly discovered in metals and alloys
that could be well described by the BCS theory. Nevertheless, the discovery of heavy
fermions superconductors in the 70’s [6], challenged the theoretical understanding of the
phenomenon as in these materials superconductivity cannot be explained within a BCS
framework. We refer to those superconductors for which BCS theory does not work as
unconventional, in contrast to conventional superconductors for which the attraction is
mediated by phonons. Despite the fndings of these new superconductors critical tem-
peratures were still extremely low, and liquid helium was needed to reach them. The
discovery of materials that could superconduct at higher temperatures, providing much
wider applications, was the dream of researchers.

In 1986 J. G. Bednorz and K. A. Müller reported for the frst time the observation
of superconductivity in a cuprate-based ceramic. The compound contained lanthanum,
copper, and oxygen and doped with barium presented a superconducting transition at a
critical temperature slightly above 30K [7]. This discovery triggered an intense research
and it was soon found that replacing the lanthanum with yttrium raised the critical tem-
perature up to Tc = 93K [8]. This temperature jump was extremely signifcant, since it
fnally allowed researchers to use liquid nitrogen as a refrigerant instead of liquid helium.
The high temperature superconductors (HTSC) era had just started. In a few years, many
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Introduction

copper-based superconducting materials were discovered giving rise to the frst class of
HTSC, the cuprates. But the history of superconductivity does not end here. In 2008
another breakthrough happened when a new class of HTSC was discovered, the iron-based
superconductors (IBS) [9–11]. H. Hosono and his group announced the discovery of super-
conductivity in fuorine-doped LaO1−xFxF eAs, at Tc = 26K [12], which was later found
to superconduct at Tc = 43K under pressure [13].

Figure 1: Timeline of the discovery of superconducting materials. Colors represent di˙erent
classes of materials: BCS superconductors in blue circles, heavy fermions in orange triangles,
cuprates in green squares, fullerene-C60 in yellow stars, carbon-allotrope in red diamond, iron-
based in violet pentagon, and twisted bilayer graphene in ligth green spiral. Partly based on [14].

The two main families of HTSC, cuprates and iron-based, are unconventional super-
conductors in which the pairing mechanism is still nowadays under debate. It is notable
that in most of IBS and cuprates superconductivity emerges at the frontier of an antifer-
romagnetic phase [15]. This observation indicates a close interplay between magnetism
and unconventional superconductivity, and suggests that spin fuctuations may play an
important role in the formation of the Cooper pairs. The hope to fnd a consensus about
the pairing mechanism in IBS, and then to apply this knowledge to cuprates, is intriguing.
However, thirteen years of intense research following the IBS discovery has led to the
understanding that the physics of IBS is far richer than originally thought, and character-
ized by a number of highly non-trivial properties which have no analogs in cuprates [15].
This Thesis focuses on the study of IBS. In this theoretical work we analyze the role of
spin-fuctuation in the IBS physics and try to understand whether the spin fuctuations
represent the key to explain the complex phenomenology of IBS.

IBS materials, in contrast to cuprates, are characterized by multiorbital physics,
as theoretically predicted by ab intio calculations and confrmed by experiments [16–21].
The phase diagram of these materials exhibits a range of di˙erent phases including the
magnetic phase and the superconducting one [9–11,22]. An intriguing nematic phase just
above the magnetic one is also present in the phase diagram of many IBS. The nematic
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instability is characterized by a structural transition and a marked electronic anisotropy,
much larger than the one expected by the structural transition itself. The origin of the
nematic phase is one of the most controversial topics in this feld [23]. It is also puzzling
that, although most of IBS present similar crystal structures, their phenomenology can be
extremely di˙erent, as the case of FeSe [24] in which a nematic order develops without an
antiferromagnetic order nearby.

A theoretical proposal able to explain the complex phenomenology of IBS within a
common framework is one of the most challenging issues in the feld of HTSC. Within this
Thesis we focus on theoretical analysis based on a itinerant spin-driven scenario. In that
respect, there are two main approaches that can be used based on multiband or multiorbital
description of the low-energy electronic bands [25].

Low-energy multiband models o˙er an appealing and simple framework to explain
the origin and interplay of the di˙erent orders. Within this modeling both magnetism
and superconductivity are explained in terms of Fermi-surface instabilities due to the ex-
change of spin-fuctuations between di˙erent Fermi surface sheets. At the same time,
spin-fuctuation are also at the origin of the nematic phase. Nematicity is interpreted as a
precursor e˙ect of magnetism that originates from the x/y anisotropy of spin-fuctuations
realized when the long-range magnetic order is not yet established. Although very suc-
cessful in explaining the emergence and interplay of several orders, low-energy multiband
models have a main limitation. They do not include the information about the orbital
composition of the bands and thus they cannot be used to study phenomena involving
orbital physics.

Multiorbital models, instead, start from a description of the electronic bands in the
orbital basis and thus are able to capture the multiorbital physics of IBS. Random phase
approximation (RPA) calculations have been proven to be suitable to quantitatively study
magnetism and superconductivity. However, the analysis of nematicity, i.e. a fuctuation-
driven phenomenon, cannot be performed via the standard RPA method and required the
inclusion of fuctuations beyond RPA in the multiorbital description. Implementation of
this procedure is possible, however it is quite complex given the number of orbitals involved
and does not lead to a unambiguous defnition of nematicity.

The absence of orbital information within band-based approaches, the lack of con-
nection between multiband and multiorbital modelings, and, in particular, the diÿculties
to analyze the spin-driven nematicity within multiorbital models leave several important
open questions. The development of a theoretical frame in which the simplicity of mult-
iband models merges with the orbital information contained in multiorbital descriptions is
necessary to unveil the spin-orbital interplay in IBS and provide a deeper understanding
of the IBS physics. The analysis of such a theoretical description is one of the aims of this
dissertation.

In this Thesis, we focus on the analysis of the Orbital Selective Spin-Fluctuation
(OSSF) model. This is a minimal low-energy model for IBS that operates in the band
basis, but fully incorporates the orbital composition and symmetries of the low-energy
excitations. This description, originally proposed in [26, 27], unveiled a precise orbital
dependence of the spin-fuctuations. The description in terms of orbital-selective spin-
fuctuations retains the simplicity of the band-basis modeling, but fully account for the
orbital degree of freedom. As within a multiband description, the emergence of the ordered
phases can be explained analyzing the spin interaction and its fuctuations at various
orders; within this model, however, the spin-fuctuations are also orbital-selective and this
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has profound consequences. This approach provides a common framework that account for
the spin-orbital interplay and explain the origin and interplay of di˙erent phases of IBS.

Throughout this Thesis, we compare the physics of the OSSF model with the de-
scriptions obtained within multiband and multiorbital models to highlight the advantages
of a theoretical analysis based on the OSSF description. The low energy description
provided by the OSSF model allow us to calculate in an feasible way response functions
that we can compare to experimental results. Analytical results are available in certain
limits; this makes the results obtained easily readable and physically understandable and
provides further insight in the IBS phenomenology. Moreover the model can be easily
adapted to analyze the phenomenology of di˙erent IBS families.

This Thesis counts six chapters. The frst two contains a summary of experimental
and theoretical results obtained for IBS in the literature. The rest of the Thesis contains
the original work performed during the Ph.D program.

In Chapter 1 we provide a brief overview on IBS, highlighting experimental and the-
oretical aspects that have served as motivations for this work. We frst summarize IBS
phenomenology and discuss their electronic properties emphasizing the multiorbital char-
acter of these systems. We then introduce the theoretical approaches used to described
the low-energy physics of IBS within a spin-driven scenario: multiband and multiorbital
models. We show how an e˙ective low-energy model including the orbital degrees of free-
dom is needed in order to reproduce the complex phenomenology of iron-based materials
and provide a unifed picture for di˙erent members of the iron-based family. In Chapter 2
we review the main steps of the derivation of the OSSF model and we compare it to the
low-energy multiband model to show how the inclusion of the orbital degree of freedom
qualitatively a˙ects the results of the analysis. We also discuss how the spin-nematic order
parameter defned within the OSSF model is unambiguously defned and has a clear phys-
ical interpretation, in contrast with the multi-component spin-nematic order parameter
defned within a multiorbital analysis.

The following chapters contains the original work performed during this Thesis. The
main scope of this work is to understand the phase diagram of di˙erent families of IBS
within a common framework given by the OSSF model.

We start by analyzing, in Chapter 3, the magnetic excitation and the spin-mediated
superconductivity of the OSSF within a RPA analysis. First, we compute explicitly the
orbital-dependent magnetic spin susceptibility for a typical IBS Fermi surface. Then, as-
suming the spin fuctuations mediating superconductivity, we analyse the pairing vertex
and the gap functions. We compare our results with analogous RPA analysis of multior-
bital models and show how the orbital selectivity, encoded in the OSSF model, simplifes
substantially the analysis, allowing for analytical treatments, while retaining all the main
features of both spin-excitations and gap functions computed using multiorbital models.

In Chapter 4 we analyze the anisotropy of the electronic properties of IBS in the
nematic phase. In particular, we compute analytically and numerically the dc conductiv-
ity anisotropy in the nematic phase using realistic parameters to reproduce di˙erent IBS
families. We want to address two main questions: First, how the anisotropy of the orbital
selective spin-fuctuations, at the origin of nematicity, a˙ects the dc resistivity? Second,
can we reconcile in a single theoretical framework the strong material-dependence aniso-
tropy of the dc resistivity found experimentally in the various IBS family? By explicitly
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computing the current response function for the OSSF model, we show that due to the
spin-orbital interplay encoded in our description, the anisotropy of the orbital-selective
spin-fuctuations a˙ects in an anisotropic way both the velocity and the scattering rate
of the carriers. This result qualitatively di˙ers from the one obtained within spin-driven
multiband models in which only the scattering rate of the carriers is renormalized. We
then analyze the outcomes of our calculations for di˙erent families of IBS. This analysis
helps us to clarify the di˙erent degrees of freedom a˙ecting the result and allows us to
reconcile the experimental observations reported in di˙erent families of IBS within a single
description.

The OSSF model has been derived within a four-pocket model representative for
IBS. However, a complete analysis of IBS requires to consider a fve-pocket model. This
extra pocket di˙ers among compounds and depends on doping or applied pressure. In
Chapter 5 we extend the analysis of the OSSF model to the case of Fermi surfaces made
by fve-pockets. Generalizing what previously done for a four-pocket model, we derive the
e˙ective action in terms of the spin degree of freedom and defne the OSSF model for
the fve-pockets case. We discuss the new physics emerging from this generalization by
comparing the results of this model with the ones obtained within a three/four-pockets.

In the fnal Chapter of this Thesis, Chapter 6, we give our conclusions and provide
an outlook of the possible avenues of research that one could follow building up on this
thesis.
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Introducción

“ ¿Por qué los físicos teóricos aún no hemos resuelto este problema?
La única razón por la que no podemos resolver este problema de la
superconductividad es porque no tenemos sufciente imaginación. ”

R. P. Feynman 

No existe temperatura por debajo del cero absoluto. La curiosidad por alcanzar tem-
peraturas cercanas a este límite nos ha permitido descubrir nuevos fenómenos físicos, así
como ampliar nuestra comprensión de la estructura de la materia que nos rodea. Esta
curiosidad fue la que llevó a Heike Kamerlingh Onnes junto con su estudiante Gille Holst
a enfriar mercurio con helio líquido en 1911. Cuando la temperatura alcanzaba un valor
crítico de Tc = 4,2K, la resistencia eléctrica del mercurio se hacía exactamente cero [1].
Acababan de descubrir el fenómeno de la superconductividad. En 1933 Walther Meissner
y Robert Ochsenfeld demostraron que un superconductor es mucho más que un conductor
perfecto. Vieron que dichos materiales excluían el campo magnético de su interior, sal-
vo de una pequeña región cercana a la superfcie, es decir, son materiales diamagnéticos
perfectos. Este efecto es conocido como el efecto Meissner [2]. Diamagnetismo perfecto y
conductividad perfecta son las dos principales características de un superconductor.

Desde su descubrimiento, muchos de los físicos más brillantes intentaron, sin éxito,
desarrollar una teoría microscópica de la superconductividad [3]. Pero no fue hasta 1957
cuando John Bardeen, Leon N. Cooper y John Robert Schrie˙er desarrollaron una teoría
revolucionaria de la superconductividad, la teoría BCS [4, 5]. Esta teoría propone que los
fonones, excitaciones cuánticas de una red cristalina, son los mediadores de una interacción
atractiva entre los electrones que da lugar a la formación de pares de electrones ligados, los
pares de Cooper. Estos pares condensan en un estado cuántico coherente macroscópico, el
estado superconductor, de pares con momento y espín opuestos.

En los primeros años, la superconductividad fue descubierta sobre todo en metales
y aleaciones los cuales se entendían bajo el marco de la teoría BCS. Sin embargo, el des-
cubrimiento en los años 70 de los fermiones pesados [6], desafó la comprensión teórica
de la superconductividad ya que estos materiales no podían ser explicados con la teoría
BCS. Nos referimos a los materiales superconductores que no pueden ser explicados con
la teoría BCS como no convencionales, a diferencia de los superconductores convenciona-
les cuya atracción está mediada por fonones. A pesar del descubrimiento de estos nuevos
superconductores, sus temperaturas críticas eran aún extremadamente bajas y el helio lí-
quido era necesario para poder enfriarlos. El descubrimiento de materiales que pudieran
ser superconductores a temperaturas más altas, proporcionando muchas más aplicaciones,
era el sueño de muchos investigadores.

En 1986 J. G. Bednorz y K. A. Müller observaron por primera vez superconductivi-
dad en una cerámica a base de cuprato. El compuesto contenía lantano, cobre y oxígeno,
y dopado con bario presentaba una temperatura crítica de la transición superconducto-
ra por encima de 30K [7]. Este descubrimiento desencadenó una intensa investigación y
no se tardó en descubrir que reemplazando el lantano por itrio la temperatura crítica se
elevaba hasta Tc = 93K [8]. Este salto en temperatura fue extremadamente signifcante,
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Introduction

ya que fnalmente permitió a los investigadores usar nitrógeno líquido como refrigerante
en vez de helio líquido. La era de los superconductores de alta temperatura (HTSC) aca-
baba de empezar. En pocos años, muchos más materiales superconductores basados en
cobre fueron descubiertos, dando lugar a la primera clase de HTSC, los cupratos. Pero la
historia de la superconductividad no acaba ahí. En 2008 ocurrió otro gran avance, cuan-
do una nueva clase de HTSC fueron descubiertos, los superconductores basados en hierro
(IBS) [9–11]. H. Hosono y su grupo anunció el descubrimiento de superconductividad en
LaO1−xFxF eAs dopado con fúor, a Tc = 26K [12], el cual se encontró más tarde que
también era superconductor bajo presión a Tc = 43K [13].

Figura 2: Cronología del descubrimiento de los materiales superconductores. Los colores represen-
tan diferentes clases de materiales: superconductores BCS en círculos azules, fermiones pesados en
triángulos naranjas, cupratos en cuadrados verdes, fullereno-C60 en estrellas amarillas, alótropos
del carbono en diamantes rojos, superconductores basados en hierro en pentágonos violetas y el
grafeno bicapa girado con la espiral verde clara. Figura parcialmente basada en [14].

Las dos familias de HTSC, los cupratos y los materiales basados en hierro, son su-
perconductores no convencionales en los que el mecanismo de la superconductividad aún
está en debate. Es curioso que en la mayoría de IBS y cupratos, la superconductividad
emerge en la frontera de una fase antiferromagnética [15]. Esto podría indicar una estrecha
relación entre el magnetismo y la superconductividad no convencional, sugiriendo que las
fuctuaciones de espín podrían jugar un papel importante en la formación de los pares de
Cooper. La esperanza de encontrar un consenso sobre el mecanismo de la superconductivi-
dad en los IBS, y luego aplicar este conocimiento a los cupratos, es intrigante. Sin embargo,
trece años de intensa investigación desde el descubrimiento de los IBS ha llevado a com-
prender que la física de los IBS es mucho más rica de lo que se pensaba originalmente, y
está caracterizada por un gran número de propiedades altamente no triviales que no tienen
analogía con los cupratos. En esta Tesis nos centramos en el estudio de los IBS. En este
trabajo teórico, analizamos el papel de las fuctuaciones de espín en la física de los IBS e
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Introduction

intentamos entender si las fuctuaciones de espín representan la llave para poder explicar
la compleja fenomenología de los IBS.

Los superconductores basados en hierro, al contrario que los cupratos, están carac-
terizados por física multiorbital, como fue predicho teóricamente por cálculos ab intio y
confrmado más tarde por experimentos [16–21]. El diagrama de fases de estos materiales
exhibe un gran rango de fases diferentes entre las que se incluye la fase magnética y la
superconductora [9–11, 22]. Una fase nemática intrigante aparece justo por encima de la
fase magnética en la mayoría de los diagramas de fases los IBS. La inestabilidad nemática
está caracterizada por una transición estructural y una notable anisotropía electrónica,
mucho mayor que la esperada de la transición estructural. El origen de la fase nemática
es uno de los temas más polémicos en este campo [23]. También es desconcertante que,
aunque la mayoría de los IBS presentan estructuras cristalinas similares, su fenomenología
puede ser extremadamente diferente, como el caso del FeSe [24] en el que se desarrolla un
orden nemático sin un orden antiferromagnético cerca.

Uno de los mayores retos en el campo de los HTSC es encontrar un modelo teorico
que sea capaz de explicar la compleja fenomenologia de los IBS dentro de un marco común.
Esta Tesis se centra en un análisis teórico basado en un escenario itinerante impulsado por
espines. En ese sentido, hay dos enfoques principales que se basan en una descripción
multibanda o multiorbital de las bandas electrónicas a baja energía [25].

Los modelos multibanda de baja energía ofrecen un marco atractivo y sencillo para
explicar el origen y la interacción de los distintos órdenes. En este modelo tanto el mag-
netismo como la superconductividad son explicadas en términos de las inestabilidades en
la superfcie de Fermi que son debidas al intercambio de fuctuaciones de espín entre di-
ferentes partes de la superfcie de Fermi. Al mismo tiempo, las fuctuaciones de espín son
también el origen de la fase nemática. La nematicidad es interpretada como un precursor
del magnetismo que se origina a partir de la anisotropía en x/y de las fuctuaciones de
espín que se obtiene cuando aún no se ha establecido el orden magnético de largo alcance.
Aunque los modelos multibanda de baja energía son exitosos en explicar el surgimiento y
la interacción entre varios órdenes, tienen una limitación principal. No incluyen la infor-
mación sobre la composición orbital de las bandas y por lo tanto no pueden usarse para
estudiar fenómenos relacionados con la física orbital.

Los modelos multiorbitales, en cambio, empiezan desde una descripción de las bandas
electrónicas en la base orbital y por ello son capaces de capturar la física multiorbital de
los IBS. Se ha demostrado que los cálculos de Aproximación de Fase Aleatoria (RPA)
son adecuados para estudiar cuantitativamente el magnetismo y la superconductividad.
Sin embargo, el análisis de la nematicidad, que es un fenómeno impulsado por espines,
no puede ser realizado mediante el método estándar de RPA y requiere tener en cuenta
fuctuaciones más allá de RPA en la descripción multiorbital. La implementación de este
procedimiento es posible, pero es bastante complejo dado el gran número de orbitales
involucrados y no conduce a una defnición inequívoca de la nematicidad.

La ausencia de información orbital con los modelos basados en las bandas, la falta
de conexión entre dichos modelos y los multiorbitales, y en particular, la difcultad para
analizar la nematicidad impulsada por espín en los modelos multiorbitales dejan varías
preguntas abiertas. El desarrollo de un marco teórico en el que la simplicidad de los modelos
multibandas se una junto con la información orbital contenida en la descripción multiorbital
es necesario para desvelar la relación entre el espín y el orbital en los IBS y proporcionar
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una comprensión más profunda de la física de los IBS. El análisis de dicha descripción
teórica es uno de los principales objetivos de esta tesis.

En esta Tesis nos centramos en el análisis del modelo de Fluctuaciones de Espín
con Selección Orbital (OSSF). Este es un modelo mínimo de baja energía para los IBS
que opera en la base de las bandas pero que incorpora completamente la composición
orbital y las simetrías de las excitaciones de baja energía. Esta descripción, originalmente
propuesta en [26,27], reveló una precisa dependencia orbital de las fuctuaciones de espín.
La descripción en términos de fuctuaciones de espín con selección orbital conserva la
simplicidad de los modelos basados en las bandas, pero tiene en cuenta el grado de libertad
orbital. Al igual que en la descripción multibanda, la aparición de las fases ordenadas puede
explicarse analizando la interación entre espines y sus fuctuaciones en varios órdenes; con
este modelo, sin embargo, las fuctuaciones de espín proporcionan además, una selección
orbital lo que tiene profundas consecuencias. Esta propuesta ofrece un marco común que
tiene en cuenta la relación entre el espín y el orbital y que también puede explicar el origen
y la relación de las distintas fases de los IBS.

A lo largo de esta Tesis, comparamos la física del OSSF model con las descripciones
obtenidas con los modelos multibanda y multiorbitales para resaltar las ventajas de un
análisis teórico basado en el modelo OSSF. La descripción de baja energía dada por
el OSSF model nos permite calcular de manera factible funciones respuesta que pode-
mos comparar con los resultados experimentales. También podemos obtener resultados
analíticos en ciertos límites que nos proporcionan resultados físicamente comprensibles
que se pueden interpretar fácilmente y nos proporcionan una mayor comprensión de la
fenomenología de los IBS. Además el modelo se puede adaptar fácilmente para analizar la
fenomenología de las diferentes familias de los IBS.

Esta Tesis cuenta con seis capítulos. Los dos primeros contienen un resumen de los
resultados experimentales y teóricos obtenidos para los IBS en la literatura. El resto de la
Tesis contiene el trabajo original llevado a cabo durante este programa de doctorado.

En el Capítulo 1 damos una visión general de los IBS, resaltando los aspectos experi-
mentales y teóricos que han servido como motivación para este trabajo. Primero resumimos
la fenomenología de los IBS y discutimos sus propiedades electrónicas enfatizando el ca-
rácter multiorbital de estos sistemas. Luego introducimos los enfoques teóricos usados en
la descripción de la física de baja energía de los IBS dentro de un escenario impulsado por
el espín: los modelos multibanda y multiorbitales. Mostramos como es necesario un mode-
lo efectivo de baja energía que incluya el grado de libertad orbital para reproducir toda
la compleja fenomenología de los materiales basados en hierro y proporcionar una visión
unifcada de los diferentes miembros de las familias de los IBS. En el Capítulo 2 revisamos
los pasos necesarios para la derivación del modelo OSSF y lo comparamos con los modelos
de bandas de baja energía para demostrar como la inclusión del grado de libertad orbital
afecta cualitativamente al resultado del análisis. También discutimos como el parámetro
de orden espín-nemático en el modelo OSSF está defnido de manera inequívoca y tiene
una interpretación física clara, en comparación con el parámetro de orden espín-nemático
defnido en el análisis multiorbital.

Los capítulos siguientes contienen el trabajo original llevado a cabo durante esta
Tesis. El objetivo principal de este trabajo es entender el diagrama de fases de las diferentes
familias de IBS dentro de un mismo marco común dado por el modelo OSSF.
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Empezamos analizando, en el Capítulo 3, la excitacion magnética y la superconduc-
tividad mediada por espines en el modelo OSSF con un análisis RPA. Primero, calculamos
explícitamente la dependencia orbital de la susceptibilidad de espín magnética para una
superfcie de Fermi típica de un IBS. Luego, asumiendo que las fuctuaciones de espín me-
dian la superconductividad, analizamos el vértice superconductor y las ecuaciones del gap.
Nuestros resultados son comparados con el análisis RPA análogo para un modelo multior-
bital y mostramos como la selectividad orbital, codifcada en el modelo OSSF, simplifca
sustancialmente el análisis permitiendo un tratamiento analítico de éste, al tiempo que
conserva todas las características principales de tanto las excitaciones de espín como de las
ecuaciones del gap calculadas en un modelo multiorbital.

En el Capítulo 4 analizamos la anisotropía en las propiedades electrónicas de los
IBS en la fase nemática. En particular, calculamos analíticamente y numéricamente la
anisotropía en la conductividad dc en la fase nemática usando parámetros realistas para
reproducir varias familias de los IBS. Con ello queremos abordar dos preguntas principales:
Primero, ¿cómo afecta la anisotropía de las fuctuaciones de espín con selección orbital, en
el origen de la nematicidad, a la resistividad dc? En segundo lugar, ¿podemos reconciliar
en un sólo marco teórico toda la variedad de diferentes anisotropías que se encuentra
experimentalmente para los distintos materiales de las diversas familias de IBS? Calculando
explícitamente la función respuesta de la corriente en el modelo OSSF podemos demostrar
que gracias a la interacción entre el espín y el orbital, codifcada en nuestra descripción, la
anisotropía de las fuctuaciones de espín con selección orbital afecta de manera anisotrópica
tanto a la velocidad como al tasa de dispersión de los electrones. Este resultado difere
cualitativamente del obtenido en un modelo impulsado por el espín multibanda, en el que
solo la tasa de dispersión de los electrones se ve renormalizada. A continuación hacemos un
analisis profundo de los resultados de nuestros cálculos para las diferentes familias de IBS.
Gracias a este análisis podemos clarifcar los diferentes grados de libertad que afectan al
resultado y nos permite conciliar las observaciones experimentales reportadas en diferentes
familias de IBS dentro de un mismo marco teórico.

El modelo OSSF ha estudiado el modelo de cuatro áreas que es representativo de la
mayoría de IBS. Sin embargo, para llevar a cabo un análisis completo de los IBS se requiere
un modelo de cinco áreas. Esta área extra difere entre los compuestos y depende del dopaje
o de la presión aplicada. En el Capítulo 5 extendemos el análisis del modelo OSSF al caso
de una superfcie de Fermi con cinco áreas. Generalizando lo que se hizo anteriormente para
un modelo de cuatro áreas, derivamos la acción efectiva en términos del grado de libertad
del espín y defnimos el modelo OSSF para el caso de cinco áreas. Luego discutimos la
física nueva que emerge de esta generalización comparando los resultados obtenidos en
este modelo con los obtenidos con un modelo de tres o cuatro áreas.

En el capítulo fnal de esta Tesis, Capítulo 6, exponemos nuestras conclusiones y
proporcionamos algunas de las posibles vías de investigación que se podrían seguir a partir
de esta Tesis.
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1 
Iron-based Supercondutors

Iron-based superconductors were discovered in 2008 when Hosono and coworkers
reported the observation of a superconducting transition below Tc = 26K in LaOFeAs
under F-doping [12]. Since then, several members of the iron-based superconductors (IBS)
family have been identifed [9, 10]. All IBS present a similar layered structure whose
common building block is the Fe-atoms square lattice. Ab initio band structure calculations
including all the fve Fe-d orbitals qualitatively reproduce the Fermi Surface experimentally
observed, with several hole- and electron-like bands crossing the Fermi level in di˙erent
parts of the Brillouin zone [16–20].

The multiband character of the electronic structure has been immediately recognized
as an unavoidable ingredient of any theoretical description of the unconventional IBS su-
perconductivity. Already in 2008, indeed, it was proposed that pairing could be mediated
by the exchange of repulsive spin fuctuations between the hole and electron bands, con-
nected at the Fermi level by the same wave-vector characteristic of the spin modulations of
the magnetic phase [19, 20]. However, within this scenario, the Fermi Surface geometry of
a system should rule completely its phenomenology; on the contrary, we fnd a huge variety
of phase diagrams associated to materials characterized by similar Fermi Surface. In that
respect, it has been recently proposed that the orbital composition of the bands connected
by the spin fuctuations could play an essential role and determining which instability is
realized at low-temperature [26, 27]. This proposal requires to revise the standard spin-
fuctuations low-energy model originally discussed in [28] including the orbital degree of
freedom in the low-energy description of both the IBS bands and the spin excitations.

In what follows we provide a brief overview of the IBS phenomenology, we discuss
explicitly as the multiband/multiorbital physics is accounted in theoretical approaches
based on a spin-fuctuations scenario for IBS and show how the orbital selectivity of the
spin-excitations naturally emerges in a description that incorporate the orbital degree of
freedom in a low-energy multiband modeling.

1.1. Materials and Structure

The crystal structures of all IBS is characterized by the presence of a tetrahedral
Fe-pnictides/chalcogen layers in which the iron ions form a planar square lattice, while
the pnictogen (P, As) or chalcogen (S, Se, Te) ions are located at the center the squares,
alternatively above or below the Fe-planes. Depending on the family, we fnd the tetra-
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Figure 1.1: (a) Crystallographic structures of various families of iron-based superconductors.
(b) Tetrahedral structure of the Fe-pnictide/chalcogen common to all superconducting compounds
(iron in red, pnictogen/chalcogen in gold). Adapted from [29].

hedral Fe-pnictide/chalcogen layer separated by alkali, or rare-earth and oxygen/fuorine
blocking layers. In Figure 1.1 some of the common structures are shown: 1111 are com-
pounds with alternating FeAs and RE(O,F) sheets (RE= Rare Earth= La,Nd,Ce,etc.); 122
systems have two FeAs layers sandwiched between A (=Ba,Sr,K) layers; 111 as LiFeAs and
NaFeAs are compounds with a single layer in between the FeAs plane: and 11, as FeSe,
has the simplest structure as it does not have any fller species in between the iron-based
layer.

1.2. Phase Diagram and tuning parameters

Superconductivity is only one of the several quantum phases of the matter that can be
found in IBS. In Figure 1.2 we report the temperature-doping phase diagrams for di˙erent
systems: (a) 1111 F-doped LaOFeAs [30] (b) 122 P-doped BaFe2As2 [31] and (c) 11 S-doped
FeSe [32]. Electron/hole doping, isovalent chemical substitutions or intercalations, and
external pressure are typical tuning parameters that drives superconductivity [10,11,33].

In most IBS, the parent compounds is characterized by a spin-density wave (SDW)
i.e. a metallic antiferromagnetic phase. The SDW transition is often coupled with a struc-
tural transition from a high-temperature tetragonal to a low-temperature orthorhombic
phase. The region enclosed between the structural transition and the magnetic one is
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(a) (b) 

(c) 

Figure 1.2: Phase diagrams for the x-doped systems (a) 1111 LaO1 −x Fx FeAs [30], (b) 122
BaFe2 (As1 −x Px )2 [31] and (c) 11 FeSe1 −x Sx [32].

the so-called nematic phase. This phase is characterized by a strong x/y anisotropy of
the electronic properties of the system. The SDW and superconducting state are intim-
ately related by either closely neighbouring (as in LaOFeAs and CeFeAsO systems), or
interpenetrating to each other (as in K-doped BaF e2As2). The normal phase from which
superconductivity emerges at low-temperature is a metallic paramagnetic state character-
ized by strong correlations (bad metal). It is worth noticing that, even if IBS share similar
crystal structures, their phenomenology can be very di˙erent as in the case of FeSe for
which a nematic state, realized at TS ∼ 90K, evolves in a superconducting phase below
Tc = 9K without the emergence of long-range magnetism.

We further discuss the instability and features of the ordered phases of IBS and the
di˙erent phenomenology of FeSe vs 122 systems in Section 1.4.

1.3. Electronic Structure

Density Functional Theory (DFT) and local density (LDA) calculations [16–20] pre-
dicts a semimetallic behaviour for the parent compound with the density of states around
the Fermi level dominated by the Fe–pnictogen (or chalcogen) planes. In undoped com-
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pounds, Fe is in a (3d)6 valence state and the crystal feld between the orbitals is much
smaller than the bandwidth. This implies that all the d-orbitals participate to the forma-
tion of the low-energy electronic bands. Most IBS present two sets of disconnected Fermi
surface sheets with two or three hole-pockets centered at the Brillouin zone center (Γ-
point) and two electron-pockets near the zone boundary. Mainly three orbital, dxz, dyz,
dxy, participate to the formation of pocket at the Fermi level. Notice that because of the
tetragonal symmetry the yz/xz orbitals are locally degenerate.

As mentioned above, while the Fe-ions sit on a planar two-dimensional square lattice,
the pnictide/chalcogen ions are located alternatively above or below the Fe-plane. As a
consequence the unit cell contains two inequivalent Fe positions. For many IBS, for the
kz = 0 plane, there is a rigorous procedure of exact “unfolding” of bands to a reciprocal
space corresponding to a single Fe atom per unit cell [34, 35]. In Figure 1.3 we show a
sketch of the crystallographic unit cell contains the 1-Fe/2-Fe in real space (a) and the
correspondent unfolded/folded Brillouin zone (b) for a generic IBS. One can discuss much
of the essential physics in the 1-Fe unit cell in the unfolded Brillouin zone, this is the
notation we use throughout this thesis unless mentioned otherwise.

Figure 1.3: 1-Fe (red) and 2-Fe (blue) unit cells in (a) real and (b) momentum space. In (a),
gray denotes Fe-atoms and purple denotes the pnictogen/chalcogen-atoms in staggered positions
above and below the Fe-plane. In (b), the corresponding unit-cells in momentum space are shown
with schematic Fermi surfaces overlaid. Adapted from [36].

From Figure 1.3 we can learn another important feature associated to the IBS Fermi
surface: hole- and electron-pockets can be matched via a translation by momentum vector
Q = (π, 0)/(0, π), which is the same wave-vector defning the periodicity of the IBS mag-
netic ordered state. This e˙ect of nesting between matching Fermi surface can drives the
system into certain particle-hole instabilities, e.g. the SDW.

The presence of multiple disconnected Fermi surfaces predicted by ab initio calcu-
lations has been widely confrmed by experiments. Well-defned Fermi surfaces having
hole/electron character have been observed both in the parent compounds and doped
IBS by quantum oscillations (QO) [37–44] and angle-resolved photoemission spectroscopy
(ARPES) experiments [45–50] that also provide an experimental observation of the con-
ditions of the Q = (π, 0)/(0, π) nesting between hole and electron pockets [51–53]. The
multiorbital character of the Fermi surface has also been widely experimentally investig-
ated e.g. using the polarization-sensitivity of the orbitals in ARPES to identify the orbital
characters of band structure [21].
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Although the qualitative agreement between ab initio calculations and experimental
fndings, two main discrepancies can be observed. First, by comparing ab initio bands
with ARPES and QO measurements, a large band renormalization factor > 3 can be
estimated (see e.g. [42–44, 46, 54–56]), i.e. ab initio calculations consistently give bands
that are more dispersive than the measured ones. This is a clear indication that electron-
electron correlations are important in IBS, although their metallic behaviour [57,58]. The
second discrepancy is found at low-energy, i.e. around the Fermi level, where we fnd a
substantial shrinking of the experimental Fermi pockets with respect to the ones predicted
by LDA [37, 40, 41, 59]. Such a discrepancy is quite large in some cases as e.g. in FeSe,
where of the two hole-pockets predicted by DFT at Γ, only one is experimentally found
crossing the Fermi level [55, 60]. This e˙ect has been theoretically analyzed in terms of
self-energy renormalizations induced by repulsive interband spin-fuctuations [60–62] as we
will discuss in Section 2.3.

Figure 1.4: Schematic plot showing (a) band structure along kx direction and (b) corresponding
Fermi surface of a generic IBS in the 1-Fe BZ. The dashed lines represent DFT-predicted Γ-centered
holes (blue) and X/Y -centered electron (green) bands. The solid lines represent the renormalized
bands, as observed in dHvA and ARPES experiments, with energy shifts giving rise to a Fermi
pocket shrinkage. Adapted from [62].

1.4. Instabilities and ordered phases

Magnetism The parent compounds of many IBS develop below TN a metallic long-range
SDW order, whose magnetic arrangement can vary depending on the material [11, 22, 63].
In many IBS the long-range order is a columnar SDW, with two interpenetrated Néel
spin lattices such that antiferromagnetic stripes form along one direction which ferromag-
netic stripes along the perpendicular direction. Notice that the columnar SDW ground
state is actually doubly degenerated i.e. the Q = (π, 0) magnetic order in which we
have antiferromagnetic order in the x-direction and ferromagnetic in the y-direction of the
Fe-Fe frst neighbours direction is degenerate with the Q = (0, π) in which the ferromag-
netic/antiferromagnetic arrangement is realized along the perpendicular directions. Notice
that this SDW is characterized by the same wave vector of the nesting match.
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Two opposite view can be used as starting point of a theoretical description of mag-
netism in IBS: an itinerant view in which electrons are delocalized and a strong coupling one
in which electrons are localized on the atomic lattice and can be consider as localized spins.
The itinerant approach was supported by the metallicity of the parent compounds, the low
magnetic moment, and the apparent nesting on the Fermi surface with a wave-vector. The
strong coupling approach was motivated by the observed band renormalization, the bad
metallicity and later by the discovery of families of IBS whose magnetic order could not
be explained by Fermi surface nesting [22].

In what follows we will perform our theoretical analysis starting from an itinerant
description of the electrons in which the e˙ect of the band renormalization is taking into
account phenomenologically to describe the IBS phase diagram.

Superconductivity Since the discovery of IBS, various experimental probes [45,48,64–
68] indicate that quite di˙erent symmetries of the superconducting order parameter can
be realized in IBS. Nowadays there is a general consensus, based on nuclear magnetic
resonance (NMR) [68, 69] and inelastic neutron scattering (INS) [67] experiments, that
in moderated doped IBS the gap symmetry is s± (see Figure 1.5): a gap function which
changes sign between electron and hole pockets but not necessarily within the same pocket.
Notice that this implies that the electron/hole gap is s-wave but can present accidental
nodes [34,70].

In Figure 1.5 we show two other states that have also been proposed for at least some
IBS: one is a conventional s-wave state where the gap function has the same sign over the
whole Brillouin Zone (s++) [29]; the other is the dx2−y2 -wave [71], where the interpocket
repulsion between two electron pockets become dominant over other interactions in the
Brillouin Zone.

Figure 1.5: Di˙erent gap symmetry (s-wave and d-wave) and structure in IBS represented in the
1-Fe Brillouin zone. Di˙erent colors stands for di˙erent signs of the gap. Adapted from [34].

To determine the structure and symmetry of the superconducting order parameter is
crucial to get information about the microscopic pairing interaction in IBS [72]. As already
mention, IBS are unconventional superconductors since the calculated electron-phonon
coupling can not account for the high values of Tc [73]. That leaves a nominally repulsive
screened Coulomb interaction as the most likely source of the pairing. The excitations
that pair electrons are now those of the electronic medium itself, either spin or charge
fuctuations. Those, however, mediate pairing in di˙erent channels: a sign-preserving s++ 
s-wave state is expected from orbital-fuctuation mediated pairing [74,75], whereas a s± or
a d-wave state is promoted by spin-fuctuation mediated pairing [19, 70,76].
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In this Thesis, we do not investigate di˙erent pairing channels. We assume spin-
fuctuation mediating the pairing and analyze the relevance of the orbital-degree of freedom
in determining the main features of the superconducting gap functions.

Nematicity The term nematic frst appears in the context of isotropic liquid crystals
as a phase characterized by a broken rotational symmetry and an unbroken translational
symmetry [77, 78]. In crystalline solids, being in a lattice, the rotational and translational
symmetries are always broken. In this context we use the term nematic to indicate a
phase in which the point group symmetry of the lattice is reduced from tetragonal to
orthorhombic, i.e. a phase characterized by a C4 → C2 breaking symmetry, whereas
translational symmetry is preserved (for further details see Appendix A).

Nematic states have been reported in many IBS [11, 29, 79]. A structural transition
from a high-temperature tetragonal phase to an orthorhombic one spontaneously breaks
the discrete fourfold rotational symmetry of the lattice, making the x/y directions of the
Fe-Fe plane non-equivalent. The nematic state, can be interpreted as a regular structural
transition driven by the vibrations of the ions of the lattice [80] (see Figure 1.6a). However,
several experimental probes highlight a much larger anisotropy in the electronic properties
of the system than expected from the structural changes alone [81–83] (see Figure 1.6b).

(a) 
(b) 

Figure 1.6: (a) Structural distortion from a tetragonal (dashed line) to an orthorhombic (solid
line) unit cell. Adapted from [23]. (b) Temperature dependence of the in-plane resistivity of under-
doped Ba(Fe1−xCox)2As2, x = 0.016. Solid and dashed vertical lines mark critical temperatures
for the structural and magnetic phase transitions TS and TN respectively. The parallel (ρa) and
perpendicular (ρb) components of the in-plane resistivity start to di˙erentiate already before TS 
and remain di˙erent until reach very low temperatures where they drop due to the superconducting
transition. Adapted from [84].

This observation suggests an electronic origin of the nematic transition, however
does not provide a clear indication about which electronic degree of freedom drives the
transition [23]. Within a spin-fuctuation driven scenario, the nematic phase is a precursor
e˙ect of the SDW order that usually emerges at lower temperature by selecting an ordering
wave vector along the x direction. In this scenario, the static spin susceptibility becomes
di˙erent along the qx and qy directions of the Brillouin zone before the conventional SDW
state develops. Within an orbital-fuctuation scenario, nematicity is driven by the charge
unbalance created by a di˙erent occupation nxz/nyz of the xz/yz orbitals. As orbital
and spin degrees of freedom are strongly entangled, it is not easy to discriminate their
respective role. The fact that both those quantities, spin-fuctuations along x/y and xz/yz 
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polarization, are anisotropic in the nematic phase leads to a typical ‘chicken and egg
problem’.

In that respect, it is relevant to to ask a more general question: should we expect to
fnd the same mechanism driving the nematic instability in di˙erent materials, or should we
invoke di˙erent fuctuation mechanisms? It could seems, in fact, hard to develop a unifed
picture that could account for the variety of the di˙erent realization of nematicity in
di˙erent family of IBS. For example, in 122 the nematic instability is always found slightly
above the magnetic transition, making the spin-driven mechanism the main candidate for
explaining the origin of nematicity. On the other hand, the lack of magnetic order in FeSe
and the orbital ordering measured by ARPES experiments [85,86], seem to support model
for nematicity as due to orbital ordering [87–93]. Another aspect that seems diÿcult to
reconcile assuming nematicity driven by a common mechanism in IBS is the variety of
anisotropy in the electronic properties found for di˙erent compounds. For example, if we
analyze the dc resistivity anisotropy in the nematic phase of IBS we fnd that the anisotropy
measured in 122 hole-doped systems [94] and FeSe [95] is opposite with respect to the one
fnd in the electron-doped 122 [82].

In this Thesis we do not investigate the origin of the nematic phase. We adopt a
spin-nematic view [23] and address the question whether it is possible to reconcile within a
single theoretical framework the variety found in the realization of nematicity in di˙erent
family of IBS.

1.5. Modeling iron-based superconductors within a spin-
driven scenario

In this section we provide a compact overview of theoretical models used to described
the low-energy physics of IBS, highlighting the di˙erences between orbital- and band-based
modelings. The scope of this review is to point out the main advantages/disadvantages of
multiorbital/multiband descriptions and introduce the Orbital Selective Spin-Fluctuations
(OSSF) model used in this Thesis.

As already mentioned, in what follows we adopt an itinerant view. We use e˙ect-
ive low-energy models that capture the electronic states near the Fermi level and their
interactions, to describe the properties of the ordered phases appearing in the phase dia-
gram. However, this weakly electron correlated view is not completely appropriated. In
fact, extensive theoretical and experimental studies in IBS have highlighted the relevance
of electron correlations driven by local interactions and there is now a general consensus
that the bad metallic behavior of the normal state can be described in terms of the Hund’s
metal physics [57, 58]. At the same time, the interplay between those electronic correla-
tions and low-energy fuctuating modes is still poorly investigates. Recent analysis [96,97]
show that Hund’s driven correlations could potentially enhance the tendency of the system
towards certain instabilities, e.g. superconductivity. Although extremely promising, the
analysis of electronic correlations from local interactions and their e˙ects at low-energy is
beyond the scope of this Thesis. In what follows we adopt an e˙ective approach in which
the renormalization of the bands due to local interactions is already taken into account
and projected into a low-energy e˙ective interaction.
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1.5.1. Multiband models

Within a spin-fuctuation driven scenario, all the instabilities observed in the phase
diagram of IBS follows from the near nesting between hole-like and electron-like Fermi
surfaces. Multiband models are band-basis low-energy model with phenomenologically-
derived interactions between low-energy electronic states. They o˙er an appealing and
simple framework to study magnetism, superconductivity and spin-nematic order. They
ignore, however, the orbital content of the low-energy states, and as such they are generally
blind to phenomena involving orbital physics. Multiband models has been extensively stud-
ied using a variety of methods involving di˙erent approximations e.g. mean-feld, random
phase approximation (RPA) calculations, Ginzburg-Landau analysis and renormalization
group (RG) [25, 98–101].

In order to illustrate the strengths and weaknesses of this approach, we consider
a minimal model with three-band, one hole band centered in Γ, and two electron bands
centered in X and Y . The non-interacting Hamiltonian in the band basis readsXX 

Hband † = �k 
m c cmkσ (1.1)0 mkσ 

m kσ 

where m = Γ, X, Y labels the hole/electron bands. c † is the fermionic operator thatmkσ 
creates an electron in the band m with spin σ and momentum k. The band dispersions, �m 

k ,
are parametrized as simple tight-binding or parabolic dispersions, with no reference to their
orbital content. The typical Fermi surface described by Eq. 1.1 is sketched in Figure 1.7a.
Multiband models of interacting Hamiltonian containing all possible interactions between
the low-energy electronic states can be studied via e.g. RG [98]. Here, we focus on
interactions in the spin channel only and we explicitly consider the exchange of spin-
fuctuations between nested Fermi surface i.e. with momenta near QX = (π, 0) and QY = 
(0, π) X� � 

Hband 
int = − 

1 
uspin S~ 

q 
X · S~ 

− 
X 
q + S~ 

q 
Y · S~ 

− 
Y 
q , (1.2)

2 
qX 

X/Y †Γ X/Y ~with S = c ~ 0 c (1.3)q ks σss k+qs0 
0kss 

~Here uspin is the coupling constant, σss0 the Pauli matrices and Sq 
X/Y is the interband spin

operator that describes the spin exchange between the hole pocket at Γ and the electron
pocket at X/Y . The consequences of nesting can be illustrated already considering the

X/Y X/Y ~ ~bare static spin-susceptibility, χX/Y (q) = hSq Sq i, associated to the spin-exchange
at QX/Y . This can be rewritten as

X f(�
X/Y 

) − f(�Γ)k+q k
χX/Y (q) = (1.4)

k �
X/Y − �Γ 
k+q k 

where f(�m) are the Fermi distribution function for the m-band and q indicates the smallk 
momentum around QX/Y . In the presence of nesting between the bands, i.e. �Γ = −�X/Y ,k k 
the χX/Y (q = 0) diverges logarithmically. Notice that the susceptibility develops initially
two equivalent peaks at QX/Y (see Figure 1.7b) with the system eventually ordering along
one of the two stripe magnetic ordering vectors below the Néel temperature TN (not shown).
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(a) 
(b) 

Figure 1.7: (a) Fermi surface for three-band model with a circular hole pocket at Γ and two
elliptical electron pockets at X and Y connected by the vectors QX = (π, 0) and QY = (0, π). (b)
Static magnetic susceptibility χ(q) across the Brillouin zone lowering the temperature from above
to below the structural transition temperature TS . Adapted from [28].

Moving away from perfect nesting the divergence of χX/Y (q = 0), Eq. 1.4, is not
realized i.e. the magnetic instability is suppressed, however the exchange of magnetic ex-
citation between the hole and electron pockets can mediate an e˙ecting pairing interaction
at low-energy [19, 20,98]. The BCS equation in this case readsX Veff (k − k0)

Δk = − Δk0 (1.5)
2Ek0 

k0 

where k0 −k is the transferred momentum and Veff the e˙ective pairing interaction. Given
the repulsive and interband character of the spin interaction mediating the pairing we can
assume Veff (k − k0) to be a constant for k0 − k ∼ QX/Y and vanish at other momentum,
i.e. Veff (QX/Y ) = V > 0. As a consequences we get a set of coupled BCS equation for the
gap functions of the di˙erent pocket. As one can see from Eq. 1.5 a gap function having a
preserving sign s-wave symmetry is not a solution. However, if the gap function changes
sign between the nested hole and electron Fermi surfaces, ΔΓ = −ΔX , as in a s± or d-wave
symmetry, then a solution is is allowed.

The three-band model also o˙ers a suitable platform to study the onset of nematic
order [23,28]. Within this approach, nematicity is a precursor e˙ect of the stripe magnetic
order. The idea is illustrated schematically in Figure 1.7b. At high temperatures, above
the structural transition TS , spin-fuctuations near the two stripe magnetic ordering vectors
QX/Y are equally strong hS~2 i = hS~2 i and the system has tetragonal symmetry C4. BelowX Y 
TS the system spontaneously selects one direction along which fuctuation becomes stronger

~lowering the symmetry from C4 to C2. This means that hS~2 i =6 hS2 i before the long-rangeX Y 
stripe order is established below TN . In that respect the nematic instability is described
in terms of a spontaneous symmetry breaking in which a nematic order parameter, φ = 

~S~2 SY 
2 , acquires a fnal mean-feld value across the nematic transition temperature,− 

defned by the divergence of the nematic susceptibility (see also discussion in Appendix A).
We will revise in more details the emergence of nematicity within the three-band model in
Section 2.1.

A similar multiband model has been used to explain the phenomenon of the Fermi
pocket shrinkage, illustrated in Figure 1.4 in Section 1.3. This e˙ect is explained, in [61],
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in terms of renormalization e˙ects induced by repulsive interband interactions. These
e˙ects are computed within an Eliashberg framework via a self-energy function for each
band. Due to the multiband character of the electronic structure and the strong particle-
hole asymmetry of the IBS bands the real part of the self-energy is fnite and renormalize
the low-energy bands leading to the shrinking of the Fermi Surface. We will revise the
derivation of [61] in Section 2.3.

Working in the band-basis representation simplifes substantially the modeling of
IBS. As we summarize above, minimal three-band models can successfully reproduce a
number of experimental features of IBS e.g. emergence of stripe magnetism, s± supercon-
ductivity, nematicity as precursor of magnetism and Fermi pocket shrinkage. However, this
description does not include information about the orbital composition of the low-energy
bands, thus within a multiband modeling we cannot study phenomena involving orbital
physics nor spin-orbital interplay.

A frst consequence of the lack of spin-orbital interplay in multiband approach is the
diÿculty to reproduce the angular modulation of the superconducting gap functions. As
already discussed in Section 1.4, in fact, the gap functions in IBS can present di˙erent
structures (with or without accidental nodes) depending on the specifc compound, despite
the s± symmetry. Using a multiband description the exchange of spin-fuctuations is
homogeneous along the Fermi surfaces at perfect nesting and any angular dependence
follows from a deviation from that condition, such modulations are however quite small
and cannot reproduce the experimental fndings. This was early noticed already in 2009,
e.g. in [102], where it is discussed as the orbital make-up of the states on the Fermi surface
together with the momentum dependence of the fuctuation-exchange pairing interaction
play a key roles in favouring an anisotropic gap.

Another consequence of the lack of orbital information within a multiband approach
is that band nesting is the only model parameter controlling the phenomenology of the
system. Thus, we cannot explain how systems with similar band structure can present a
very di˙erent realization of nematicity. For example, FeSe presents a single hole-pocket
at Γ nested with electron X/Y -pockets. A similar situation is realized in underdoped 122
compounds where, although two hole bands cross the Fermi Level, only the inner hole-band
presents a good nesting with the electron pockets. Despite the similarity of the electronic
structure the nematic instability is realized slightly above the magnetic transition in 122,
while a much stronger nematicity without magnetism is found in FeSe. Another example
is the variety of dc-resistivity anisotropy found in the nematic phase of IBS that can have
di˙erent signs and magnitude depending on the compound under study.

In the next Chapters we show that the inclusion of the orbital degrees of free-
dom within a low-energy modeling is the key solve those discrepancies. In particular,
in Chapter 2 we review the results discussed in [27] that demonstrates that the inclusion of
the orbital information allows us to discriminate between similar band structures and that
di˙erent phenomenology is expected based on the orbital composition of the nested bands.
In Chapter 3 we show that, once the orbital physics is taken into account, the orbital
composition of the nested Fermi surface introduces an additional angular modulation in
the spin-fuctuations and as a consequence in the various observable e.g. superconducting
gaps. In Chapter 4 we study, instead, the anisotropy of the dc resistivity in the nematic
phase of IBS [103] and show that the spin-nematic scenario driven by orbital-selective
spin-fuctuations can reconcile the experimental observations reported in di˙erent families
of IBS within a single picture due to the orbital-spin interplay encoded in the model.
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1.5.2. Multiorbital Hubbard models

As discussed in Section 1.3, DFT calculations fnd the density of states of IBS dom-
inated by the Fe-d orbitals. States due to the pnictogen/chalcogen orbitals are located at
much higher energy (approximately 2eV ) below the Fermi level. Nonetheless, the pnicto-
gen/chalcogen orbitals allow for hybridization with the Fe-d states, therefore, an e˙ective
Fe-Fe hopping Hamiltonian on a square lattice defned by the Fe-sites can be constructed,
provided the symmetries of the entire Fe-pnictogen/chalcogen layer are respected.

The observation that mainly three of the fve Fe-d orbitals (xz, yz, xy) contribute to
the Fermi surface, motivated early two/three-orbital tight-binding models [104–106]. How-
ever, it was soon realized the minimal tight-binding model that respect all the symmetries
of the Fe-pnictogen/chalcogen plane and correctly reproduce the geometry of the Fermi
surface requires to include all the fve Fe-3d orbitals [25,76,107,108]. In Figure 1.8 we show
the bands for the tight-binding model for iron-pnictides proposed in [109]. The electron
pockets at X/Y formed by xy and yz/xz orbitals and the two hole-pockets at Γ given by
an opposite arrangement of the yz/xz orbital. Notice that the third hole xy-pocket at the
M -point is parameter sensitive (i.e. not common to all IBS families).

Figure 1.8: Five-orbital tight-binding model for iron-pnictides from [109]. Fermi surface in the
1-Fe BZ (left panel) and bands dispersion (right panel). The bands are colored according to the
orbital that contributes the largest spectral weight. Adapted from [25].

The non-interacting tight-binding Hamiltonian readsXX XX 
Horb ηη0 † = t d dη0jσ + �ηnηiσ. (1.6)0 ij ηiσ 

ijσ ηη0 iσ η 

η, η0 = {1, 2, 3, 4, 5} are orbital indices for the Fe-d orbitals (dxz, dyz, dxy, d 2 , d3z 2 ),x2−y 2−r 
ηη0 tij are the tight-binding hopping parameters from the η orbital on site i to the η0 orbital
on site j, �η the on-site energy of the η orbital and nηiσ = d† dηiσ the occupation numberηiσ 

with d† is the fermionic creation. By diagonalizing Eq. 1.6 we obtain the quasiparticleηiσ 
dispersions (as shown in Figure 1.8). The orbital spectral weights are defned by the

ηmatrix elements am(k) = mk|η associated with the rotation from the orbital to the
band space.

24



Chapter 1. Iron-based Supercondutors

In frst approximation, the electron-electron interactions are assumed to be heavily
screened and therefore can be approximated as local. The interacting Hamiltonian for
multiorbital models readsX X X X 
Horb ~ † † 
int = Unηi↑nηi↓ + U 0 nηiσnη0iσ − J Sηi · S~ 

η0i + J 0 d d dη0i↓dη0i↑ηi↑ ηi↓ 
iη iσ,η0<η i,η0=6 η i,η0 6=η 

(1.7)
and can be generated using a Hubbard-type approach [110–112]. Here, ~ = 1 d†Sηi 2 ηiσ ~σσσ0 dηiσ0 

is the intraorbital spin operator in the orbital basis, U is the Hubbard repulsion between
electrons on the same orbitals, U 0 is the onsite repulsion between electrons on di˙erent
orbitals, J is the Hund’s exchange that tends to align spins at di˙erent orbitals and J 0 

another exchange term usually called a pair-hopping term. Notice that interactions are
assumed to be independent on orbitals. The number of independent parameters can be
further reduced assuming J 0 = J and U 0 = U − 2J the last condition is exact in the case
of spin-rotational invariance [113].

Multiorbital models described by Eqs. 1.6 and 1.7 have been extensively studied
using di˙erent methods. In what follows we focus on the results provided by RPA. For
magnetism, such analysis revealed magnetic instabilities towards a SDW order with mo-
mentaQX orQY , as well as a subleading instability towards a Neel order with QM = (π, π) 
order [76, 114, 115]. Assuming that the pairing interaction responsible for the occurrence
of superconductivity in IBS arises from the exchange of spin and charge fuctuations,
the pairing vertex can be computed using the fuctuation exchange approximation [116].
Within the range of parameters typical of underdoped IBS, RPA studies fnd an anisotropic
sign-changing s-wave state and a nearly degenerate dx2−y2 [76]. The orbital information
included in the model and the momentum dependence of the spin-interactions lead to an
anisotropic solution for the gap even in the s-wave case [34,102]. In Section 3.2 we review
the main steps of the RPA analysis and the results for magnetism and superconductivity
within a fve-orbital model.

The main issue with microscopic multiorbital descriptions is that they do not distin-
guish high-energy and low-energy states, which makes it diÿcult to implement methods
beyond RPA [25]. This is particularly important if we want to study the nematic phase,
in fact, in contrast to usual electronic instabilities, such as magnetic and charge order,
this fuctuation-driven phenomenon cannot be captured by the standard RPA method and
requires the inclusion of fuctuations beyond RPA in the multiorbital interacting model.

An early attempt to describe nematicity within a multiorbital description has been
proposed in [26]. Here one starts from a multiorbital interacting Hamiltonian of Eq. 1.7
and, after projecting it at low energy, i.e. considering only electronic states around the
high-symmetry points, derives the e˙ective action in term of the QX/Y spin-excitations up
to the quartic order. This allows the analysis of the spin-mediated nematicity retaining the
information of the orbital degree of freedom. This study analyzed for the frst time the role
of the orbitals in the nematic instability driven by spin-excitations and found out a number
of outcomes of the model that are qualitatively di˙erent with respect to the results obtained
within a band-basis description. It was shown, for example, how the orbital symmetry
of the bands connected by spin-fuctuations a˙ects the attractive/repulsive character of
the nematic coupling and how the orbital-weights of the low-energy states a˙ects the
momentum dependence of the spin-fuctuations peaked at QX /QY . Moreover, this analysis
provided a theoretical frame to study the spin-orbital interplay showing explicitly how the
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anisotropy of the spin-fuctuations refects in the break of the xz/yz symmetry in the
charge-orbital sector.

Such analysis, however, is remarkably complex given the number of orbitals involved.
The nematic order parameter is now a matrix in the orbital space,

φµν = Sµ SX
ν − Sµ Sν (1.8)X Y Y 

and, as a consequence, the nematic susceptibility is a tensor χµνρη ∝ hφµν φρηi. The
same defnition of the nematic order parameter and susceptibility is found in [117], where,
following the same strategy of [26], the free energy up to the quartic order for the orbital-
dependent spin-fuctuations is derived and the orbital components of the nematic suscept-
ibility tensor are numerically studied.

1.5.3. Orbital selective nature of the spin excitations

A way to deal with the complexity given by the multiorbital description is to reduce
the number of orbitals included in the calculation. For example, one can starts from the
fve-orbital Hamiltonian of Eq. 1.6 and restrict the analysis to the subspace of the two
or three orbitals that dominate the low-energy states near the high-symmetry points. By
diagonalizing the quadratic Hamiltonian, one obtains the dispersion of low-energy states in
the band basis in terms of the original tight-binding parameters of the multiorbital model.
The low-energy fermionic operator defned via the diagonalization are used to build up
the orbital-dependent spin-excitations connecting the hole and electron bands. This idea
has been implemented in [26], in which the analysis is restricted to the xz − yz orbital
subsector. This approximation made possible analytical calculations and highlighted a
crucial feature of the spin-nematic model in the orbital basis. In fact, by projecting the
microscopic interaction of Eq. 1.7 on the low-energy state of xz −yz orbitals only, one fnds
that spin fuctuations at di˙erent Q-vectors become orbital selective, i.e. they involve only
a specifc orbital.

The drawback of this procedure is that one builds up the spin-excitations using
the low-energy states obtained from the truncated tight-binding model. These do not
respect all the symmetries of the system and can actually di˙ers from the actual low-
energy dispersions, e.g. extracted from ARPES experiments, due to interaction-driven
renormalizations not accounted within this procedure. To overcome these limitations we
need to project the interacting Hamiltonian into a symmetry adapted low-energy model as
the one derived [118] exploiting the symmetry properties of the Fe-layer and constructing
a minimal model using the Luttinger’s method of invariants. This strategy has been
implemented in Ref. [27] and led to the defnition of the Orbital Selective Spin-Fluctuations
(OSSF) model used in this Thesis.

In [27] the low-energy e˙ective description derived in [118] has been used as the
starting Hamiltonian for the derivation of the spin-nematic action in the orbital-basis. By
projecting the general microscopic interaction of Eq. 1.7 on the low-energy multiorbital
model of [118] one derives an e˙ective spin-nematic action that respects all the symmetry
of the systems while retaining the orbital information of the low-energy excitations using
only three orbitals. This description not only reproduce the orbital-selective nature of the
spin-fuctuation already found in [26], but also leads to a new defnition of the nematic
order parameter

φ = SyzSyz − SxzSxz (1.9)X X Y Y 
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that is now a scalar and formally equivalent to the nematic order parameter defned in the
band basis. Notice that the tensorial form of the nematic order parameter, Eq. 1.8 defned
in [26, 117] does not contain this result, which in turn is dictated by the only possible
nematic contribution to the quartic order action of the model.

We will discuss more the nature of the nematic order parameter defned within
the OSSF model in Chapter 2 where we derive and discuss the OSSF model reviewing
the results of [27, 60]. In Chapter 3, instead, we will focus on the analysis of the spin-
excitations of the OSSF model and on the superconductivity mediated by orbital selective
spin-fuctuations within RPA and compare our results to analogous calculations performed
within microscopic fve-orbital models. We will show that the orbital selectivity, encoded
in the OSSF model, simplifed substantially the analysis, allowing for analytical treat-
ments while retaining the main features of the spin-excitations computed using fve-orbital
models.

The body of work collected in Chapter 2 and Chapter 3 aims to provide both a
complete description of the OSSF model and an extensive comparison of the model with
multiorbital and multiband descriptions. We will show that the OSSF o˙ers a theoretical
frame in which the simplicity of multiband models merges with the orbital information
characteristic of multiorbital descriptions and it allows us to gain a deeper understanding
of the IBS physics.
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Orbital Selective Spin Fluctuation (OSSF) Model

In this Chapter we provide a general description of the OSSF model. First, we review
the main steps of the derivation of the spin-nematic model in the band-basis [28]. We then
analyze how the phenomenology of the model changes once the orbital degree of freedom
is taken into account [26] and introduce the Orbital Selective Spin-Fluctuations (OSSF)
model [27]. Finally, we discuss the self-energy corrections due to spin-fuctuations both in
the paramagnetic and nematic phase of IBS. Also in this case, we start by briefy reviewing
the derivation obtained in the band-basis and summarizing the results of [61], in which the
idea of shrinking of the Fermi pockets as due to self-energy e˙ects was originally proposed.
We then derive the self-energy corrections within the OSSF model and discuss the orbital-
selective shrinking of the Fermi Surface analyzed in [60]. The self-energy corrections from
OSSF will be used in Chapter 4 as input for the calculation of the anisotropy of the
dc-conductivity in the nematic phase of IBS.

2.1. Spin-nematic model in the band-basis

As we discussed in Section 1.5.1, within a multiband description, the three-band
model provides the minimal low-energy model to explain the emergence of striped magnet-
ism, s± superconductivity and nematicity within a spin-driven scenario. In this context,
the nematic state is a precursor of magnetism that is realized when the system spontan-
eously breaks the Z2-symmetry of the lattice, while still preserving the O(3) spin-rotational
symmetry (see also Appendix A). This idea has been originally discussed in [28] in which
the low-energy e˙ective action for the collective magnetic excitations has been derived. In
what follows we review the main steps of this analysis.

The derivation of the e˙ective action in terms of the spin fuctuations requires the
standard implementation of the Hubbard-Stratonovich (H-S) method [119]. Starting from
a microscopic generic Hamiltonian Ĥ[ci(τ)], the microscopic action is defned asZ β 

†S[ci(τ)] = dτc (τ)[∂τ − µ]ci(τ) + Ĥ[ci(τ )] (2.1)i 
0 

with τ the imaginary time and β = 1/T . The partition function of the system can be
computed as the integral over Grassmann variables asZ 

−S[ci(τ )]Z = Dc e (2.2)
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The H-S transformation allows us to decouple the interacting term of S[ci(τ)], i.e. the
quartic term in the fermionic operators, by using the functional identityZ 

2 2 
(− y 

e 
ax 
2 = Dye 2a +yx) a > 0. (2.3)

with y an auxiliary variable, i.e. the H-S feld associated to the bilinear fermionic operator
x. After performing the H-S transformation, the action becomes quadratic with respect
to the fermionic operators, so that we can integrate out the fermions from Eq. 2.2. The
results of this operation is recast back into the exponent, and the partition function is
expressed in terms of the e˙ective action Seff [y] Z 

−Seff [y]Z = Dye . (2.4)

We now apply this machinery to the low-energy three-band model discussed in Sec-
Hband + Hbandtion 1.5.1. We report here for simplicity the model Hamiltonian Hband = 0 int 

given in Eqs. 1.1 - 1.2XX 1 X� � 
Hband † = �k 

m c mkσcmkσ − uspin S~ 
q 
X · S~ 

− 
X 
q + S~ 

q 
Y · S~ 

− 
Y 
q . (2.5)

2 
m kσ q 

~with m = Γ, X, Y , �m the band dispersions, uspin the coupling constant and Sq 
X/Y 

= P k 
†Γ X/Y 

0 c ~ 0 c 0 the interband electronic spin operator that describes the spin-exchangekss ks σss k+qs 
between hole and electron pockets connected by QX = (π, 0) and QY = (0, π). We

(†)introduce the six-dimensional destruction (creation) operator Ψk 

† †Γ †Γ †X †X †Y †YΨ = (c c c c ) (2.6)k k↑ ck↓ ck↑ k↓ k↑ k↓ 

~ ~ ~and the auxiliary bosonic feldsMX/Y (q) coupled to S~ 
q 
X/Y . MX andMY are the H-S felds

and play the role of the magnetic order parameters in the Landau functional. Applying
the H-S transformation, Eq. 2.3, the partition function readsZ 

−Sband[Ψ,MX ,MY ]Z = DMX DMY DΨ e (2.7)

with Z Z 
2 

Sband[Ψ, †M~ 
X , M~ 

Y ] = (MX 
2 (q) + MY 

2 (q)) + ΨkÂkk0 Ψk0 . (2.8)
uspin q k,k0 

We use here k − k0 = q, with k = (ωn, k), q = (Ωm, q). ωn and Ωm are the fermionic and
bosonic Matsubara frequencies respectively. The Âkk0 matrix is composed by the blocks

ˆ = −Ĝ−1Ak,k0 |mm mkk0 δkk0 (2.9)

Â 
k,k0 |Γ X/Y = −M̂ 

X/Y (q) (2.10)

ˆ ˆwhere we use a compact notation for the spin sector defning Ĝmk = GmkI and MX/Y = 
M~ 
X/Y ·~σ. Here Gmk = (iωn −ξk 

m)−1 is the non-interacting single-particle Green’s function,
ξm = �m − µ, Î and σi are the identity and the Pauli matrices in the spin-space.k k 
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By integrating out the fermions from Eq. 2.7 we obtain the e˙ective action in terms
of the H-S felds only Z � � 

Sband ~ ˆ[M~ 
X ,MY ] =

2 
(MX 

2 (q) + MY 
2 (q)) + Tr ln Akk0 (2.11)eff uspin q 

where the integral and the trace act over momentum, frequency, and spin indices. It is
convenient decompose the second term of Eq. 2.11 by separating in Eqs. 2.9 - 2.10 the part
with the explicit structure of δkk0 from the rest Â 

kk0 = −Ĝ−1 + M̂ 
kk0 . This separation0 

allow us to rewrite in our action h i 
Tr ln Akk0 = Tr ln Ĝ−1 + Tr ln 1̂ − Ĝ0M̂ (2.12)0 

Now we separate the H-S felds MX/Y (q) = MX/Y (0) + δMX/Y (q) in its homogeneous and
constant part and its fuctuating part. By minimizing the action with respect to MX/Y (0) 
we obtain the mean-feld equations of the magnetic problem that admit two degenerate non
trivial solutions with fnite magnetization, hMX/Y i, below a critical temperature, TN . We
are interested into the analysis of the nematic phase, thus we have to study the fuctuations
of the spin-felds in the paramagnetic phase above TN , i.e. for hMX/Y i =0. To do that we
need to expand the e˙ective action, Eq. 2.11, up to quartic order in δMX/Y . It is easy to
verify that h i X 1

Tr ln 1̂ − Ĝ0M̂ = Tr(Ĝ0M̂)n 
n 

n 

By using the above expansion up to n = 4 and performing the traces, we are left withX X 
Sband 
eff [M

~ 
X , M~ 

Y ] = χ− 
0,i 
1Mi 

2 + uij Mi 
2Mj 

2 (2.13)
i=X,Y i,j=X,Y 

where the Gaussian propagator χ−1 and the quartic coeÿcients uij are defned as0,i Z Z 
2 

χ−1 = + 2 GΓkGi,k, uij = GΓ
2 
kGi,kGj,k. (2.14)0,i uspin k k 

and we simplifed a bit the notation using δMX/Y → MX/Y , dropping the k, q dependencies
of the variables and focusing only on the q = 0 contributions. The multiband model is
invariant under π/2- rotation so that χ−1 = χ−1 = χ−1 and uXX = uY Y . We diagonalize0,X 0,Y 0 
the quartic term of the action and rewrite Eq. 2.13 as

Sband ~ λψ λφ 
eff [M

~ 
X ,MY ] = χ−1(MX 

2 + MY 
2 ) + (MX 

2 + MY 
2 )2 + (MX 

2 − MY 
2 )2 (2.15)0 2 2 

where we defned λψ = uXX + uXY and λφ = uXX − uXY . The magnetic instability
is controlled by the Gaussian propagator χ−1 that diverges at the Néel temperature TN .0 
λψ and λφ are the couplings of the x/y isotropic and anisotropic fuctuations of the spin-
excitations. The coeÿcient of the action explicitly read:Z 

2 
χ−1 = + 2 GΓkGXk (2.16)0 uspin kZ 

1 
λψ = GΓ

2 
k(GXk + GY k)2 (2.17)

2 Zk 

λφ =
1 

GΓ
2 
k(GXk − GY k)2 (2.18)

2 k 

31



Chapter 2. Orbital Selective Spin Fluctuation (OSSF) Model

From Eq. 2.15 one immediately sees that a nematic instability is possible only for
λφ < 0 when making the spin fuctuations along x/y di˙erent lowers the energy of the sys-
tem. Notice that λφ ∼ GX − GY , thus it vanishes within a parabolic band approximation
in which the two electron bands are completely degenerate, i.e. G0 = G0 = G0 . However,X Y 
if one takes into account the ellipticity of the electron pockets the result changes. In frst
approximation we can account for the ellipticity perturbatively, i.e. we can approximate
the electron Green’s functions as GX/Y = G0(1   δe cos(2θ)G

0), with the ellipticity para-
meter δe ∼ (mx − my)/(2mxmy). By substituting the elliptical Green’s functions GX/Y 
in Eq. 2.18 and performing the integral, we fnd that λφ ∼ −δ2 . That means, we havee 
an attraction in the nematic channel. This implies that within the spin-nematic model in
the band-basis the ellipticity of the electron pockets is a necessary condition for nematicity.

In order to analyze the nematic instability, we need to perform a second H-S trans-
formation on the e˙ective action of Eq. 2.15 using as auxiliary felds ψ and φ associated
to MX 

2 + M2 and M2 − M2 respectively. The action now readsY X Y Z 
φ2 ψ2 

Sband[ ~ ~ (M2MX ,MY , φ, ψ] = χ−1 
X + MY 

2 ) + ( − ) + eff 0 2λφ 2λψZ Z 
+ ψ(MX 

2 + MY 
2 ) + φ(MX 

2 − MY 
2 ) (2.19)

ψ gives an isotropic correction to the magnetic susceptibility, while φ is the nematic feld
that renormalizes in an anisotropic way the X/Y spin propagators. Both these e˙ects can
be seen explicitly by integrating out the spin degree of freedom MX and MY . In this way
the action reads

Sband[φ, ψ] = eff 
φ2 

2λφ 
− 

ψ2 

2λψ 
+ 

h3 
(χ−1ln 02 

i 
+ ψ)2 − φ2 (2.20)

This means that once the nematic order parameter φ acquires a fnite value the static
~ ~susceptibilities for MX and MY become non-equivalent

1 1 
χX (q = 0) = , χY (q = 0) = (2.21)

χ̃−1 − hφi χ̃−1 + hφi 

where we defne χ̃−1 = χ−1 + hψi, i.e. we included the isotropic correction given by the0 
ψ feld in the defnition of the propagator. Eq. 2.21 represents the main result of [28].
From this we understand that (i) the nematic phase is a precursor state of magnetism:
before the divergence of the magnetic susceptibility, when the long-range magnetic order
is not developed hMX/Y i = 0, the di˙erence between the spin propagators in the x/y-
direction makes the spin fuctuations along x/y inequivalent, i.e. hM2 i 6= hM2 i; (ii) theX Y 
nematic order selects a preferred direction and decides along which direction the striped
magnetism is eventually established; (iii) when hφi 6= 0 the magnetic transition occurs in

χ−1the X/Y channel at ˜ = |φ|, i.e. at a temperature larger than before. This means the
nematic transition may occur just before that the magnetic transition takes place as indeed
experimentally found in many IBS.
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2.2. Spin-nematic scenario driven by orbital selective spin-
fuctuations

The main limitation of a spin-nematic model in the band-basis is the absence of the
information of the orbital composition of the low-energy states. As a consequence, the band
nesting of the Fermi surfaces is the only parameter controlling the phenomenology of the
system and compounds with similar band structures and nesting conditions are expected
to display a close phenomenology. However, as we already mentioned, it is experimentally
found that di˙erent compounds can present a very di˙erent realization of nematicity despite
having similar band structures. In what follows we will explicitly show how by taking into
account the orbital make-up of the low-energy states near the Fermi level we can reconcile
within a single theoretical frame the variety of the nematic realization in IBS.

The idea proposed in [26] is that one can derive a spin-nematic action that retains the
orbital information by projecting the multiorbital interacting Hamiltonian at low-energy
energy and then deriving the e˙ective action following the same strategy used in the band
spin-nematic model [28] discussed in the previous section. A remarkable feature of this
theoretical description is unveiled by the low-energy projection that shows a strong orbital
selectivity of spin-fuctuations at QX/Y , i.e. spin-fuctuations at di˙erent momenta involve
only specifc orbitals.

The orbital selective nature of the spin-fuctuations is a robust feature of the modeling
and does not depend on the particular procedure implemented to derive the spin-nematic
action. On the other hand, the low-energy model one uses to perform the projection can
a˙ect the defnition of the nematic order parameter and the symmetries incorporated into
the model. In particular, in Section 1.5.3 we showed that by using as starting point a
symmetry adapted low-energy model, e.g. [118], one obtains a defnition of the nematic
order extremely elegant and simple that makes the physical interpretation of the results
straightforward while allowing for analytical treatment. Thus, in what follows we focus on
the Orbital Selective Spin Fluctuations (OSSF) model derived in [27] using the symmetry
adapted low-energy model of [118].

2.2.1. Model Hamiltonian

We consider a general four-pocket model with two hole pockets at Γ, Γ± and two
electron pockets at X and Y , that can be easily adapted to describe di˙erent compounds
among the 122 and 11 families. In Figure 2.1 we show a sketch of the orbital content of
the Fermi surface for a generic IBS. Mainly three orbitals participate the formation of the
Fermi surfaces, yz and xz orbitals at Γ and yz/xz and xy orbitals at X/Y .

Symmetry adapted low-energy model

The kinetic Hamiltonian is derived adapting the low-energy model considered in
[118], where the electronic states around the high-symmetry points l = Γ, X, Y are de-
scribed using a spinor representation in the pseudo-orbital spaceX 

H l †l Ĥ l = ψ 0kψk 
l
σ. (2.22)0 kσ 

k,σ 
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yz X/Y yz/xz xyxzHere ψΓ = (c , c ), ψ = (c , c ) and Ĥ l = hl τ̂0 + ~hl · ~τ̂  with τ̂  the Paulikσ kσ kσ kσ kσ kσ 0k 0k k 
matrices representing the orbital isospin. Diagonalizing Ĥ 

0 
l we fnd the dispersion relations

and the orbital composition for the bandsX 
H l †l Λ̂l = φ 0kφ

l 
kσ. (2.23)0 kσ 

k,σ 

with φl = Û lψl the fermionic operator in the band basis and Λ̂l = Û lĤ l Û l−1 
= 0 

diag(El+ , El− ) the diagonal matrix containing the band dispersions El± = h0 
l ± hl with

hl ~ U l= |hl|. The components of the unitary matrix ˆ , that connect the orbital-space to the
band-space, are the coherence factors that represent the orbital content of the l±-pockets.
All the above quantities still depends on momentum and spin, we drop those labels to
make the equations more readable.

Explicitly, for l = Γ for example, the fermionic operator in the band basis reads! ! ! 
Γ Γ yz h+ u −v c 

φΓ = = (2.24)∗Γ ∗Γ xzh− v u c 

and analogous expressions can be derived for the X/Y pockets, provided that the corres-
ponding orbital spinors and Ĥ X/Y are used (full expression are available in Appendix B.1).0 
Notice that at X/Y only the EX/Y + band crosses the Fermi level, so in the following we
will use eX/Y for the corresponding fermionic operators and EX/Y for the bands dropping
the + subscript.

XΓ

Y

0

π

π0 kx

k y

xy

yz
xz

Γ+

-

Figure 2.1: General sketch of the Fermi surface for a generic four-pocket model for IBS. The
orbital composition of the pockets is shown using the color code: red for xz, green for yz and blue
for xy. The arrows show the spin-fuctuation exchange between the nested Fermi surfaces. The
color code represents the orbital selectivity of the spin-fuctuations having yz character along x 
direction and xz character along y.

~The explicit expressions of (hl 0, hl) that reproduce a four-pocket model as the one
shown Figure 2.1 are detailed in Appendix B.1. Notice that in order to lift the degeneracy
of the inner and outer xz/yz pockets at Γ we need to account for the spin-orbit couplingp
in the Hamiltonian. We added it explicitly by replacing hΓ → (hΓ)2 + λ2/4 in the
expression for EΓ± .
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Gl
−1The the non-interacting Green’s functions in the orbital space are given by ˆ = 

Gl
−1 U l−1 

ω1̂ − Ĥ l and we can express them via the band Green’s functions using ˆ = ˆ (ω1̂ −0 
Λ̂l)Û l that reads explicitly ! ! 

l)2 l l l)2 l l(u u v (v −v ul+ l−Ĝl = g l l l)2 + g l l l)2 (2.25)
v u (v −u v (u 

l± l±where we defned g = (iωn − E )−1 .(k,iωn) k 

Interacting Hamiltonian

We consider the full multiorbital Hubbard Hamiltonian defned by Eq. 1.7 in Sec-
tion 1.5.2. By transforming by Fourier and considering only the spin channel of the inter-
actions we fnd

1 X 
Sη

0 
Hint = − Uηη0 S~

η(q) · ~ (−q). (2.26)
2 

q 

Here, η, η0 = yz, xz, xy are the orbital indices and Uηη0 ∼ Uδηη0 + J(1 − δηη0 ) the e˙ective
coupling, with U and J being the Hubbard and Hund’s couplings. Notice that Eq. 2.26P η† η~contains only spin operators with intraorbital character Sη(q) = 0 c ~ 0 c 0 withkss ks σss k+qs 
σss0 the Pauli matrices for the spin operator. This choice is motivated by the general
fnding that intraorbital magnetism is the dominant channel in IBS [22, 76,120–122].

We project the interacting Hamiltonian, Eq. 2.26, into the low-energy model defned
by Eqs. 2.23 - 2.24 focusing on spin-excitations with momentum close to QX /QY only.
The low-energy projection establishes a precise correspondence between the orbital and

η~ ~the momentum character of the spin operators S ≡X/Y Sη(q = QX/Y ):X 
S~yz Γh† Γh† X = (u + v −) ~σ uX eX + 

kX 
S~xz Γh† Γh† Y = (−v + u −) ~σ uY e (2.27)Y + 

k 

As a consequence, the interacting Hamiltonian of Eq. 2.26 simplifes substantially and once
the spin-exchange interaction is projected at low energy it reduces to

Ũ
Syz Syz Sxz SxzHint = − (~ · ~ + ~ · ~ ) (2.28)X X Y Y2 

where Ũ is the intraorbital interaction renormalized at low energy.
This is a crucial result of the OSSF model [27]: the projection of the generic interac-

tion Hamiltonian into the low-energy model, Eq. 2.23, generates a one to one correspond-
ence between momentum QX/Y and orbital character yz/xz of the spin-fuctuations. In
fact, as one can see also from Figure 2.1, at low energy the yz/xz-fermionic states exist

η η~ ~only around QX /QY , thus spin operators S with η =6 yz and S with η =6 xz are absentX Y 
in Eq. 2.28.

The orbital selective character of the low-energy spin-excitations makes the interact-
ing Hamiltonian for the spin-channel, Eq. 2.28, considerably simpler than the one obtained
within a fve-orbital tight-binding model, Eq. 2.26. As a matter of fact, Eq. 2.28, while re-
taining the orbital dependence of the spin excitations does not acquire a complex tensorial
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form and is instead formally equivalent to the spin-spin interacting Hamiltonian written
in the band-basis, Eq. 1.2. This implies that in order to derive the e˙ective action we
can simply use the derivation of [28] that we revised in Section 2.1. Notice that although
formally equivalent to a band-model, the OSSF model allows the analysis of orbital phys-
ics and as we will discuss, it is able to describe a much richer phenomenology due to the
spin-orbital interplay encoded in the model.

2.2.2. E˙ective action for orbital selective spin excitations

We exploit the orbital-selective character of the OSSF model that makes the model
Hamiltonian, Eqs. 2.23 and 2.28, formally equivalent to the multiband model, Eq. 2.5,

M~ yz M~ xzand decouple the interaction term by means of two H-S feld and following theX Y 
same derivation of Section 2.1. The e˙ective action up to quartic order becomes! ! ! !� � χ−1 Myz � � (Myz)20 

Myz Mxz X X (Myz)2 (Mxz)2 u11 u12 XSe˙ = X Y χ−1 Mxz + X Y (Mxz)20 Y Y u12 u22 Y . 

(2.29)
yz/xz Here χ−1 = 1/2Ũ + Π is the Gaussian susceptibility that controls the magneticX/Y X/Y 

yz/xz instability, with Ũ the e˙ective interactions between low-energy quasiparticles, and ΠX/Y 
the propagator in the long-wavelength and zero-frequency limitX 

Πyz 2 2 2 2 = 2T (uΓuX g+gX + vΓuX g−gX ), (2.30)X 
k,iωnX 

Πxz 2 2 2 
Y = 2T (vΓuY g+gY + uΓ)2 uY g−gY ). (2.31)

k,iωn 

The coeÿcients of the quartic part of the action in Eq. 2.29 areX 
2 2 2 u11 = T (uX gX )

2(uΓg+ + vΓg−)2 , (2.32)
k,iωnX 

2 2 2 u22 = T (uY gY )
2(vΓg+ + uΓg−)2 , (2.33)

k,iωnX 
2 2 2 2 u12 = T uX gX uY gY uΓvΓ(g+ − g−)2 . (2.34)

k,iωn 

Notice that as a consequence of the orbital selectivity of the low-energy spin-excitations,
we fnd the same fermionic loops found in e˙ective action derived in the band basis given

l lby Eqs. 2.14 weighted by the coherence factors u , v defning the orbital content of each
l lpocket. It is easy to verify, in fact, that if we neglect the orbital weight, i.e. set u = v = 1 

in Eq. 2.32 -2.34, we recover indeed the expressions, Eqs. 2.14, obtained in the band-basis.
Since u11 = u22 due to C4 symmetry, the quartic part of the action, Eq. 2.29 can be

simply diagonalized as
S
(4) 

= λψψ2 + λφφ2 (2.35)e˙

where in analogy with the band case we have defne λψ and λφ and ψ and φ as
1 � 

(Myz � 
ψ = √ )2 + (Mxz)2 , λψ = u11 + u12 (2.36)X Y

2 
1 � � 

(Myz)2 − (Mxz)2φ = √ X Y , λφ = u11 − u12. (2.37)
2 
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It is worth noticing again that the tensorial forms of the nematic order parameter pro-
posed in [26, 117] do not contain the result of Eq. 2.37, which in turn is dictated by the
only possible nematic contribution in Eq. 2.29 for the OSSF model (see also discussion in
Section 1.5.3).

To compute the nematic transition temperature we have to perform a second H-S
and study the divergence of the nematic susceptibility. However, as we already pointed
out in the previous section, a necessary condition to have nematicity is to have attraction
in the nematic coupling i.e. λφ < 0. While in the band spin-nematic model this is only
controlled by the shape of the electron pockets, here the orbital composition of the nested
band plays an important role. This feature allows us to explain why systems having similar
band structure can display a very di˙erent realization of nematicity as we shown in the
next section.

2.2.3. Role of the orbital nesting in the OSSF model

To make a frst estimate of the role of the orbital weights in a˙ecting the magnetic
and nematic instabilities we consider the simple case where the hole and the electron
pockets are perfectly nested circular Fermi surface, so that the orbital weights and the
Green’s functions reduce to

uΓ = uY = vX = cos θ, vΓ = vY = uX = sin θ (2.38)

g+ = g− = gh = (iωn + �)−1 gX = gY = ge = (iωn − �)−1 (2.39)

with � = −�0 + k2/2m − µ. �0 is the o˙-set energy, m the parabolic band mass and µ the
chemical potential (further details in Appendix B.2). Within this approximation we can
carry out explicitly the integration in Eqs. 2.30 -2.34 using the usual decompositionZ Z ZX d2k 2π 

= = 
dθ 

d�NF (2.40)
(2π)2 2πBZ 0k 

where θ the azimuthal angle and NF = m/2π is the two-dimensional density of state per
spin at the Fermi level. In fact, the coherence weights, Eq. 2.38, depend on θ only, and the
Green’s functions, Eq. 2.39, only on �. For what concerns the magnetic instability, the spin-Pyz/xz fuctuations bubbles Π , Eqs. 2.30-2.31, are both proportional to Πeh = T geghX/Y k,iωn 

that lead to the usual log divergence: Πeh ∼ −NF log ω0/T where NF is the density of
states and ω0 an upper cut-o˙. On the other hand, the orbital renormalization of the
(4)

Se˙ action is much more severe. Indeed, considering two hole pockets of same size, one
immediately fnds from Eq. 2.33 that u12 = 0. This leads to a large positive nematic
eigenvalue λφ in Eq. 2.37, which prevents the occurrence of nematicity, in agreement with
renormalization group studies on the four-pocket model [123].

To simulate the case of specifc compounds we consider two three-pocket models in
which a single hole pocket at Γ is well-nested with the elliptical electron pocket

(a) The 3p+ model which reproduces FeSe (see Figure 2.2a), where only the outer pocket
Γ+ crosses the Fermi level while the inner pocket Γ− sinks below it before the nematic
transition [32, 60].

(b) The 3p− model which simulate 122 systems (see Figure 2.2b), where the outer pocket
Γ+ is much larger than the electron ones, so it weakly contributes to the nesting [45].
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Notice that these two cases are completely equivalent and indistinguishable within a band-
based description. On the contrary, within the OSSF model, they are di˙erent as the
orbital composition of the hole pocket is opposite in the two case, as one can see from
Figure 2.2. As a consequence the two systems are characterized by a di˙erent degree of
orbital nesting. In fact, by translating the Fermi surfaces of QX/Y we observe the orbitals
matching between the hole and electron pocket of the 122 system, while in the FeSe case
there is a clear orbital mismatch.

Figure 2.2: Sketch of the orbital content of the Fermi surface for (a) FeSe in which only the
outer hole pocket is present. A clear orbital mismatch between the hole and electron pocket is
shown. (b) 122 in which the outer hole pocket is much larger than the inner hole pocket, so it can
be neglected in frst approximation. An orbital matching between the inner hole and the electron
pockets is shown and thus a robust orbital nesting. Adapted from [27].

We focus frst, on a perfect nested parabolic band approximation, see Eqs. 2.38 - 2.39.
0 0In the 3p+ model for FeSe it is easy to verify from Eqs. 2.32 - 2.34 that u = u12, and thus11 

0Γ+XY the nematic coupling λ = 0. In the 3p− model for 122 instead, thanks to the perfectφ 
2 2orbital nesting, we have u11 ∼ sin8θge 

2g while u12 ∼ sin4cos4θge 
2gh. As a consequence,h 

once performed the angular integration we fnd that u11 is much larger than the u12, so
0Γ−XY that λ > 0 is fnite and positive, preventing a nematic transition.φ 
We can go beyond this approximation and account for the ellipticity of the electron

pockets, as done in the analysis of spin-nematic model in the band basis. We introduce
the ellipticity δe at a perturbative level, and approximate the electron Green’s functions as
gX/Y = ge(1   δe cos(2θ)ge) with δe = �0m(mx − my/2mxmy). As one can see, we can still
analytically compute Eqs. 2.30 - 2.37 as each additional term due to the ellipticity go with a
cos(2θ)ge factor that can be integrated analytically over θ and �. By explicitly performing
the computation of each terms we fnd that the nematic couplings for the three-pocket
models are � � 

b δ2 25 b δ2 
3p+ e 3p− eλ = −K(T ) λ = K(T ) 16 − , (2.41)φ T 2 φ 2 T 2 

with K(T ) = 7NF ζ(3)/(8
3π2T 2), b > 0 [27]. As one can see, as soon as a fnite ellipticity

is included, we have in both cases a negative correction to results obtained within the
parabolic approximation. This means that in the 3p+ model for FeSe λφ < 0 at any
temperature, while for the 3p+ model for 122, λ3p− changes sign only below a temperatureφ 
T ∗ ∼ δe [27]. A quantitative analysis for δe = 0.55�0 is shown in Figure 2.3b.
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The orbital composition of the nested bands also a˙ects the magnetic instability.
Already within the parabolic band approximation one can verify the magnetic tendency is
enhanced in presence of a good orbital nesting. In fact, the magnetic transition is pushed
to higher temperatures within the 3p− model for 122 with respect to the 3p+ case [27].
The magnetic susceptibility for FeSe and 122 system is shown in Figure 2.3a.

yz/xz Figure 2.3: (a) χX/Y spin susceptibilities and (b) λφ nematic couplings for the 3p− and 3p+ 
p−model. The Néel temperature for the 3p− model is T = 110K and for the 3p+ model isN 

p+ p−T = 24K. The change of sign of λ occurs around 112K. Adapted from [27].N φ 

The main result of [27], is that despite being formally equivalent to the spin-nematic
model in the band-basis, the OSSF model is able to explain the di˙erent phenomenology
displayed by systems having similar band structures. In fact within the OSSF model,
orbital nesting is equally important as band nesting to determine the magnetic and nematic
properties of a system. In particular, in systems in which the nested pockets have a
good orbital nesting, as 122, the coherence factors favour magnetism while suppressing
nematicity, so that the nematic channel becomes attractive only at temperature close to
the magnetic transition. On the contrary, the orbital mismatch of the nested bands boosts
nematicity and is detrimental for magnetism. This is the case of FeSe.

As argued in [27], this result o˙ers also a possible explanation for the suppression
of nematicity in FeSe under internal and external pressure. Indeed, it has been reported
that sulphur isoelectronic substitution [32, 124] brings back the inner hole pocket above
the Fermi level. This fnding is also supported by ab-initio calculations, which usually miss
the experimental position of the Fermi level but report in general an increase of the hole-
pockets size with pressure [125]. The emergence of the inner hole pocket changes the FS
topology of FeSe towards the more symmetric four-pocket model, which has been shown
before to be detrimental for nematicity. On the other hand, the same mechanism could
also enhance magnetism, as observed.

In Chapter 5 we extend the analysis of the spin-nematic model due to OSSF to a
fve-pockets model, in order to be able to study the phenomenology of the 1111 IBS family.
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2.3. Self-energy corrections from interband spin-fuctuations

In a quantum system the low-energy interaction between particles results in a renor-
malization of the particle properties that can a˙ect for example the electronic and transport
properties of the system. We defned self-energy corrections the e˙ects that renormalize the
single-particle properties (i.e. the single particle Green’s function) and vertex corrections
the renormalization of the two-particle interaction.

In what follows we will compute self-energy due to spin-fuctuations following
Ref.s [60, 61] in which the spin-propagator is assumed momentum-independent. In this
case self-energy are momentum independent too and vertex corrections vanish identically.
We will use this self-energy in Chapter 4 where we consider its e˙ects in the nematic phase
of IBS to analyze the anisotropy of the dc resistivity in 122 and FeSe compounds. Notice
that the choice of neglecting the e˙ects of vertex corrections is justifed by the analysis
performed in [126] in which the momentum dependence of the spin-mode is taken into
account and the e˙ects of the vertex renormalizations on the dc resistivity is found to be
negligible with respect the self-energy renormalizations.

2.3.1. Self-energy e˙ects due to spin-fuctuation in a multiband model

We consider the three-band spin-nematic model described in Section 1.5.1 and Sec-
tion 2.1. The self-energy due to the spin-fuctuation exchange between the hole and electron
pockets in the Matsubara space readsX X 

ΣΓ(k) = Vs ~hSi(q) · ~Si(−q)iGi(k − q) 
q i=X,Y X 

Σi(k) = Vs ~hSi(q) · ~Si(−q)iGΓ(k − q) (2.42)
q 

~where i = X, Y , SX/Y is the spin-operator that connects the hole pocket at Γ and the
2electron pockets at X/Y , Vs ∝ uspin is the interband coupling and GΓ/X/Y are the local

Green’s function. Notices that given the interband nature of the spin-interaction, in
Eq. 2.42 the self-energy of the hole-band depends on the electron Green’s functions and
vice versa.

We follow the derivation from [61] where the momentum dependence of the interac-R 
tion is neglected and the spin-mode propagator is modelled as D(ωn) = dΩ2ΩB(Ω)/(Ω2+ 
ω2 ), where B(Ω) is the density of the states of the bosonic excitations. Eqs. 2.42 can ben 
rewritten as X 

V l,l
0 

Σl(iωn) = −T D(ωn − ωm)Gl
0 
(iωm) (2.43)

m,l0 

where l, l0 are band indices and V l,l0 > 0 is the multiband interaction and Gl0 (iωm).
The dressed Green’s functions for each band are obtained via the Dyson equation

Gl
−1 
(k, iωn) = Gl−1 

(k, iωn)−Σl(iωn) whereGl
−1 
(k, iωn) = (iωn−ξk) is the non-interacting0 0 

Green’s function. The self-energy Eq. 2.43 is a complex quantity. The real part ReΣl(iωn) 
renormalize the band dispersion and the imaginary part ImΣl(iωn) renormalizes the scat-
tering rate.
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Chapter 2. Orbital Selective Spin Fluctuation (OSSF) Model

Fermi surface shrinking in IBS The multiband character of IBS and the strong
particle-hole asymmetry of the bands allow for a peculiar self-energy e˙ect that concerns
the real part of the self-energy and is usually neglected in the Eliashberg approach for a
single particle-hole symmetric band [61]. As discussed in Section 1.5.1, the self-energy cor-
rection induced by repulsive interband spin-fuctuations in IBS, has been used to explain
the shrinking of the Fermi surfaces found when comparing the experimentally measured
Fermi surfaces to the one expected by LDA [37,40,41,59].

In the conventional Eliashberg analysis [127], is usually assumed that the distance
of the chemical potential µ from the band edges is much larger than the typical boson
energy scale, and thus one can safely assume the system to be particle-hole symmetric.
In this way the Matsubara self-energy, Eq. 2.43 is purely imaginary. In systems in which
the particle-hole symmetry is not fulflled (for example if we are far from half flling) the
situation changes. By taking into account the particle-hole asymmetry in a single-band
system, the self-energy acquires a fnite real part that can be adsorbed in a redefnition of
the chemical potential. However, in multiband systems, like IBS, the self-energy acquires
a fnite real part generally di˙erent for each band. In this case, we cannot simply redefne
the chemical potential as we need to account for a relative change in the bands. The sign
of the energy dependent shifts of the various bands with respect to the Fermi level depends
on the repulsive/attractive nature of the bosonic mode and in the case of an interband
spin-mode leads to a shrinking of the non-interacting Fermi surface [61].

A simple way to understand this e˙ect is to compute explicitly the self-energy for
a system of two parabolic bands, an electron band and a hole one. We consider a two-
dimensional system, this means that given the top for band for hole band we fx the lower
edge from the density of states N l = 1/(El 

min) knowing that N l− El = m/π (vice versamax 
for the electron band). We compute the self-energy at the lowest order in the perturbation
theory, i.e. we replace Gl0 (iωm) with the non-interacting one in Eq. 2.43. We also consider
an Einstein mode B(Ω) = (ω0/2)δ(Ω − ω0). Within these approximations we can derive
an analytical expression for the real part of the self-energy

ω0 X ω0 − µ + El0 ω0 X El
0 − µ

V l,l
0 
N l0 max V l,l

0 
N l0 maxReΣl = − ln ≈ − ln (2.44)

El
02 ω0 + µ − El0 2 − µ

l0 min l0 min 

where we also assumed T ≈ 0 and used that the exchanged boson-energy is negligeble
with respect the rest. In a particle-hole symmetric system, ReΣl = 0 as |El0 − µ| = max 
|El0 − µ|. On the contrary, in a particle-hole asymmetric system, this correction ismin 
fnite and has opposite sign for hole and electron bands. In fact, in an electron-like band
|El0 − µ| > |El0 − µ| thus the energy shift is negative (downward), while for a hole-max min 
like band |El0 − µ| < |El0 − µ| and the renormalization produces a positive shiftmax min 
(upward). Therefore, Eq. 2.44, describes a shrinking of the Fermi surfaces in agreement
with experiments in IBS. Notice that, while within the analytical calculation of Eq. 2.44
the correction reduces to a constant, in the full numerical evaluation of Eq. 2.43 performed
in [61] this is an energy-dependent renormalization, ReΣl(ω), whose e˙ect cannot be simply
reproduced by rigid shift of the bands.
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2.3.2. Self-energy e˙ects in the OSSF model

Here we discuss the self-energy due to OSSF following the derivation performed
in [60]. We show that those corrections lead to a renormalization of the scattering rates
and the band dispersions analogous to the ones found in the multiband approach. However,
due to the spin-orbital interplay encoded in the OSSF model, those also a˙ect the shape
and orbital content of the Fermi surface. All these e˙ects will be accounted in the analysis
of the dc-resistivity contained in Chapter 4.

At the end of this section we also summarized the main results of [60], in particular
(i) the orbital ordering resulting from the orbital-selective shrinking in the nematic phase
of IBS and (ii) the interplay between spin and orbital in the OSSF model that makes
possible, via the analysis of the Fermi surface reconstruction in the nematic phase, to
establish the sign of the anisotropy of the spin-fuctuations.

The spin fuctuation exchange and the associated self-energy corrections must pre-
serve the orbital character of the electrons, thus within the OSSF model they both become
orbital selective. In particular, as one can see from Eq. 2.28, we have a single orbital
component for the spin-fuctuation connecting hole and electron pockets Γ−X/Y i.e. Syz 

X 
and Sxz . As a consequence, only the intraorbital components of the self-energy Σl areY yz/xz 
defned. In the Matsubara space the orbital selective self-energies readX 

Syz Syz ΣΓ (k) = Vs h~ (q) · ~ (−q)iGX (k − q)yz X X yzyz Xq 
ΣΓ S~xz Sxz(k) = Vs h (q) · ~ (−q)iGY (k − q)xz Y Y xzxz 

qX (2.45)
Syz Syz ΣX (k) = Vs h~ (q) · ~ (−q)iGΓ (k − q)yz X X yzyz Xq 

ΣY S~xz Sxz(k) = Vs h (q) · ~ (−q)iGΓ (k − q)xz Y Y xzxz 
q 

yz/xz yz/xz ~where hS · S~ i is the propagator of the spin-fuctuations connecting hole and elec-X/Y X/Y 
tron pockets along x/y, Vs ∝ Ũ 2 and Gl is the ηη-intraobital component of the Green’sηη 
functions Ĝl given in Eq. 2.25.

In what follows we use the same approximation of [61], and neglect the momentum
dependence of the spin propagator. The self-energy for each band can be written as
matrices in the orbital space ! 

ΣΓ (ω) 0 
Σ̂Γ(ω) = yz = Σ0

Γ(ω)τ̂0 +Σ3
Γ(ω)τ̂3, (2.46)

0 ΣΓ (ω)xz ! 
X/Y 

Σ̂X/Y (ω)
Σyz/xz(ω) 0 X/Y X/Y 

= = Σ (ω)τ̂0 +Σ (ω)τ̂3 (2.47)0 3
0 0 

with ΣΓ
0 (ω) = [ΣΓ (ω) + ΣΓ (ω)]/2 and ΣΓ

3 (ω) = [ΣΓ (ω) − ΣΓ (ω)]/2 for the holes andyz xz yz xz 
X/Y X/Y X/Y X/Y 

Σ (ω) = Σ (ω) = Σ (ω)/2 for the electrons where the Σxy (ω) = 0 as a con-0 3 yz/xz 
sequence of the lack of a xy orbital component on the hole pockets.
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The local Green’s functions are given by the corresponding Dyson equation for each
pocket as

Ĝl
−1 

Ĝl
−1 

(k, ω) = (k, ω) − Σ̂ l(ω), (2.48)R 

Gl
−1with ˆ = ω1̂ − Ĥ l the non-interacting Green’s function and Σ̂l(ω) = Σl 0(ω)τ̂0 +(k,ω) 0k 

Σl 3(ω)τ̂3 the orbital selective self-energy given in the Eqs. 2.46 and 2.47.
By rotating the orbital Hamiltonian into the band basis we can write

U l−1 
Ĝl = Û l [ω1̂ − Λ̂l ]−1 ˆ (2.49)R(k,ω) R(k,ω) R(k,ω) R(k,ω) 

where Λ̂l = diag(El+, El−) with E
l± the renormalized quasiparticle energy and Û l theR R R R R 

corresponding rotation matrix. Both the τ̂0 and τ̂3 components of the self-energy renor-
malize the quasiparticle energy of the lth pockets asq 

ER
l± = h0 

l +Σl 0 ± hRl = hl 0 +Σ0 
l + ± (h1 

l )2 + (h2 
l )2 + (h3 

l +Σ3 
l )2 (2.50)

where the real part of the self-energy corrections renormalizes the band dispersion as

l± l±� = ReE (2.51)R R 

and the imaginary part renormalizes the scattering rate as

l± l±Γ = δΓ + |ImE | (2.52)R R 

with δΓ a residual constant broadening term. Notice that within the OSSF model, the
self-energy changes also the orbital composition of the bands. In fact, the unitary matrix
Û l that diagonalizes the bare Hamiltonian is di˙erent from Û 

R
l . This means that also the

coherence factors ul and vl are renormalized.
The e˙ect of the orbital selective self-energy corrections is analyzed in Chapter 4,

where the anisotropy of the dc conductivity is computed in the tetragonal and nematic
phase of IBS. In what follows we discuss the orbital selective shrinking due to OSSF as
discussed in [60].

Orbital Selective Shrinking: the FeSe case As in the multiband case discussed
previously, the real part of the self-energy leads to a shrinking of the bands that, in this
case, inherits the orbital selectivity of the self-energy (Eq. 2.45) and thus, gives rise to an
orbital selective shrinking of the pockets. This e˙ect renormalizes not only the size, but
also the shape of the Fermi surfaces, due to the orbital dependence of the shrinking and
the orbital composition of the Fermi surface, due to a change in the orbital weights. All
these e˙ects are linked to the spin-orbital interplay encoded in the OSSF model and could
not be analyzed within a multiband approach.

In Ref. [60] the temperature evolution of the Fermi surface of FeSe has been studied
both experimentally via ARPES and theoretically within the OSSF model. The theoretical
description starts from a four-pocket model adapted from [118] and compute the e˙ect of
the self-energy both in the tetragonal and the nematic phase.

In the tetragonal state, above the structural transition TS , the spin fuctuations along
x and y directions are isotropic

hSyz · Syzi = hSxz · Sxz 
X X Y Y i ⇒ Σyz 

Γ (ω) = Σxz 
Γ (ω) and Σyz 

X (ω) = Σxz
Y (ω). (2.53)
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This leads to equivalent self-energies for the C4 symmetric xz/yz orbitals with opposite
signs for the hole and electron pockets. Notice that Eq. 2.53 can be rewritten as

ΣΓ
3 (ω) = 0, ΣX 

3 (ω) = ΣY 
3 (ω) (2.54)

This means that both Γ± pockets are shifted by the ΣΓ part of the self-energy modifying0 
their size, but not their circular shape, as ΣΓ = 0. The electron pockets in addition to be3 
shifted by Σ

X/Y , also become more elliptical, in agreement with experiments. Notice that0 
the combined e˙ect of the spin-orbit coupling that lifts the degeneracy in the hole sector
and a sizeable correction due to ΣΓ we fnd that the inner hole pocket is pushed below the0 
Fermi level already in the tetragonal phase (see Figure 2.4a).

In the nematic phase, the anisotropy of the spin fuctuations induces a x/y di˙eren-
tiation in the self-energy

hSyz · Syz = hSxz · Sxz 
X X i 6 Y Y i ⇒ Σyz 

Γ (ω) 6= Σxz 
Γ (ω) and Σyz 

X (ω) 6= Σxz
Y (ω). (2.55)

Due to the spin-orbital entanglement, taken into account within the OSSF model, the
anisotropy of the spin-fuctuations refects in anisotropic Fermi surface shrinking in which
the degeneracy of the yz/xz orbitals in the charge sector is broken via orbital-selective
self-energy corrections. Eq. 2.55 can be written as

ΣΓ
3 (ω) 6= 0, ΣX 

3 (ω) =6 Σ3 
Y (ω), (2.56)

i.e. all the pockets are modifed in size, shape and orbital content (see Figure 2.4b). Notice
that the orbital-dependent renormalization of the quasiparticle energy (∼ τ̂3) due to the
OSSF in the C2 phase can be interpreted as an e˙ective yz/xz crystal feld. This is one
of the main results of [60] and explains why a soft nematic transition can give rise to an
order-parameter like behavior of the electronic structure. This result reconciles within a
spin-driven scenario the experimental observations of orbital-ordering in the nematic phase
of FeSe [86, 90,128–132].

Figure 2.4: FeSe Fermi surfaces at kz = 0. (a). Paramagnetic phase. (b). Nematic phase. The
colors represent the main orbital character of the Fermi surface. The green/red arrows denote the
OSSF, connecting hole and electron pockets at di˙erent momenta. The spin fuctuations along ΓX 
and ΓY are equivalent in the paramagnetic phase and become stronger along x in the nematic one.
Adapted from [133].
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Ref. [60] also contains a quantitative analysis to reproduce in details the experimental
ARPES data. In order to do that the spin-mode is modeled in analogy to [61] as

1 ωω0
BX/Y (ω) = , (2.57)

π (ωX/Y (T ))2 +Ω2 

where ω0 is a constant while ωX/Y (T ) is the characteristic energy scale of spin modes. The
self-energy functions are then computed asX 

ΣΓ (iωn)yz = −V T DX (ωn − ωm)g X (k, iωm) (2.58)
k,mX 

ΣΓ (iωn)xz = −V T DY (ωn − ωm)g Y (k, iωm) (2.59)
k,m R 

where DX/Y (ωn) = dΩ 2ΩBX/Y (Ω)/(Ω
2 + ω2 ) is the propagator for the spin-mode alongn 

x/y, BX/Y is its spectral function given by Eq. 2.57 above, V is the strength of the
coupling and gl± (k, iωm) denotes the Greens function of the E± band at l. Analogous
expressions hold for the electron pockets. To reproduce quantitatively the experimental
data, the spectral functions are computed by using as ftting parameter the splitting of the
spin-fuctuation energies ωX/Y (see Figure 2.5).

Figure 2.5: Evolution of the spin fuctuation with temperature. (a) Temperature evolution of the
spin-fuctuations energies ωX/Y across the nematic transition. (b) Spin-fuctuations propagator
above and below the structural transition TS . Notice that in the nematic phase (T < TS ) the spin
propagator along x and y becomes di˙erent due to the di˙erentiation of ωX/Y . Adapted from [60].

We refer the reader to [60] for further details. Here we, only point out that the
crucial prediction of [60] is that, given the experimentally observed nematic Fermi surfaces
reconstruction in FeSe, one can establish the sign of the anisotropy of the spin-fuctuations
below TS . In fact, in order to reproduce shape and orbital content of the ARPES Fermi
surface one need to assume

h (Syz)2 i > h (Sxz)2 iX y 

i.e. spin-fuctuations along x are larger with respect to spin-fuctuations along y. This
is a result that one can only get accounting for the spin-orbital entanglement into the
spin-nematic approach. This prediction has been confrmed later by neutron scattering
experiment in FeSe [134] and it is consistent with the analysis of the superconductivity
mediated by nematic OSSF [133] in which the specifc nematic orbital ordering induced by
the nematic OSSF (with the elliptical Gamma pocket almost completely xz at the Fermi
level See Figure 2.4) makes necessary to invoke a very strong nematic pairing with the
superconducting coupling along x much stronger than the one along y.
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3 
Magnetic excitations and superconductivity in the

OSSF model

3.1. Introduction

The discovery of iron-based superconductors (IBS) raised immediate questions about
the nature of the superconducting state and the pairing mechanism. From the very begin-
ning it was proposed that pairing could be unconventional [19,20]. This proposal has been
triggered, from one side, by the small estimated value of the electron-phonon coupling [73],
and, from the other side, by the proximity in the phase diagram of a magnetic instability
nearby the superconducting one. As discussed in Section 1.5.1, within an itinerant-electron
picture pairing is provided by repulsive spin-fuctuations between hole and electron pockets,
connected by the same wavevector characteristic of the spin modulations in the magnetic
phase [98, 99, 101, 135–137]. Given the repulsive and interband character of the interac-
tion the expected symmetry for the gap function is the so-called s±, i.e. an isotropic
s-wave on each pocket with opposite sign between hole and electron pockets. This picture
has been discussed within a more realistic description for IBS using multiorbital Hubbard
model [34,76,98,108,109,114] that provide a quantitative estimate of the superconducting
properties starting from RPA-based description of the spin-susceptibility. As we discussed
in Section 1.5.2, the inclusion of the orbital degree of freedom in the analysis open the pos-
sibility to fnd anisotropic s± gap functions, in which the amplitude of the angular modu-
lation and the presence of accidental nodes depends on the system parameters [34,76,102].

As we widely discuss in Section 1.5.2, the main issue with multiorbital models is
that the implementation of these methods is complicated due to the number of the orbitals
considered so that analytical treatments of the problems are often unattainable. Moreover
the inclusion of fuctuations beyond RPA to describe spin-nematicity is not straightforward
as instead in the band-language. In the previous Chapter, we discuss the Orbital Selective
Spin Fluctuations (OSSF) model as the minimal model to describe the spin-nematic phase
within a simple multiband language while at the same time retaining the orbital inform-
ation. We showed that the orbital-selectivity makes the model extremely simple as the
spin-fuctuation along x/y are given by a single orbital component yz/xz.

In this Chapter we aim to discuss in detail the magnetic excitations of the OSSF
model and of the superconductivity mediated by OSSF. The main question we want to
address is: Is it possibile within the OSSF to reproduces the main features of the spin-
excitations computed within microscopic fve-orbital models? In Sections 3.2 - 3.3 we prove
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that the OSSF qualitatively reproduce all the relevant features characterizing the RPA
spin susceptibilities obtained within microscopic multiobital models. This is a remarkable
results, especially considering that the OSSF is based on the symmetric adapted model
derived in [118] that only involved three orbitals, and that the orbital-selectivity of the spin-
fuctuation reduces the computation of the spin susceptibility to a few scalar components.

A direct consequence of the orbital selectivity then, is that it makes possible to per-
form analytical calculations that allows us to easily interpret our results. A clear example
of this is the momentum dependence of the RPA spin-susceptibility that is found within
both microscopic fve-orbital models and OSSF model. Within the OSSF the modulation
can be directly linked to the orbital nesting properties of the low energy states connected
by orbital-selective interband interaction.

In Section 3.4 we compute the superconducting vertex mediated by the spin fuc-
tuations obtained in Section 3.3 and show how the pairing vertex inherits the orbital
modulation given by the orbital-selective spin fuctuations. By solving the the correspond-
ing gap equations, we fnd gap function characterized by anisotropic s± gap functions that
can also present accidental nodes when the interaction between electron pockets is taking
into account in agreement with results obtained for a multiorbital Hubbard model [102].
A main result of the gap analysis is that the simplifed description provided by the OSSF
model unveils the dominant role of the orbital nesting over the band nesting in establishing
the hierarchy of the band gaps.

3.2. Magnetic excitations and superconductivity in the mul-
tiorbital Hubbard model

The non-interacting tight-binding Hamiltonian for a fve orbital model in the orbital
basis takes the following form XX XX 

Horb ηη0 † = t d �ηnηiσ (3.1)0 ij ηiσdη0jσ + 
ijσ ηη0 iσ η 

with the orbital indices η, η0 = {1, 2, 3, 4, 5} denoting the fve di˙erent Fe-d orbit-
ηη0 als (dxz, dyz, dxy, dx2−y2 , d3z2−r2 ), tij the tight-binding one-electron hopping paramet-

†ers [18,76] from the η orbital on site i to the η0 orbital on site j, d the creation operatorηiσ 
of an electron in η orbital on the i site with spin σ = {↑, ↓}, �η the site energy of the η 
orbital and nηiσ = d† dηiσ the occupation number.ηiσ 

Within standard RPA analysis [20,34,76,108], the pairing is assumed to be mediated
by spin and charge fuctuations. It has been shown [76], that the charge susceptibility is
more than one order of magnitude smaller than the spin susceptibility, therefore hereafter
we focus on the spin channel only.

ηη0 The spin susceptibility is a four orbital indices tensor, χδδ0 (q, Ω). This is obtained
from the analytical continuation iΩm → Ω + i0+ of the Matsubara spin-spin correlation
function Z β � � 

ηη0 iΩmτ Sη
0δ0 ~ ~χδδ0 (q, iΩm) = dτ e Tτ S

ηδ(q, τ ) (−q, 0) (3.2)
0 

where q is the momentum vector, β = 1/kBT is the inverse temperature, τ is the imaginary
time and Ωm = 2mπkBT is the bosonic Matsubara frequency. The spin operator in the
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orbital space for the η, δ orbitals is defned asX 
~ η† 

0 dδSηδ(q, τ) = dks ~σss k+qs0 (3.3)
kss0 

with ~σss0 the Pauli matrices for the spin operator being s, s0 spin indices. Using this explicit
defnition given by Eq. 3.3 and applying the Wick’s theorem to Eq. 3.2 the non-interacting
spin susceptibility can be rewritten asX h i1ηη0 )Gδ

0η0 χ ) = − Tr Gδη(k, iωn (k + q, iωn + iΩm) (3.4)δδ0 (q, Ωm 
β 

k,n 

where the spectral representation of the Green’s function is given by the rotation to the
orbital basis of the non-interacting Green’s function in the band basisX aδ (k)am

η∗ (k)mGδη(k, iωn) = (3.5)
iωn − Em(k)m 

ηwhere ωn = (2n + 1)πkB T is the fermionic Matsubara frequency and am(k) the matrix
elements connecting the orbital (η) and the band space (m) determined by diagonalization
of the tight-binding Hamiltonian, Eq. 3.1. Performing the Matsubara frequency summation
and setting Ω → 0, the static spin susceptibility for a generic multiorbital system is given
by

η0X δ η∗ δ0∗ a (k)am (k)an (k + q)a (k + q)ηη0 m nχ f(En(k + q)) − f(Em(k)) (3.6)δδ0 (q) = − 
En(k + q) − Em(k)

k,mn 

with f(Em(k)) the Fermi distribution function. The RPA spin-fuctuation is given in the
form of Dyson-type equation

ηη0 

ηη0 χδδ0 (q)(χS (3.7)RP A)δδ0 (q) = 
ηη0 ηη0 1 − (US)δδ0 χδδ0 (q) 

with (US )
ηη0 the non-zero components of the interaction spin matrix ÛS in terms of theδδ0 

interaction parameters [20,76].
The singlet pairing vertex driven by spin-fuctuation is a four orbital indices tensor

and can be computed on the low-energy sector in terms of the RPA spin susceptibility
[76,138] as

ηη0 ηη0 

ηη0 1 ηη0 3 (US 
2)δδ0 χδδ0 (k − k0) 1 ηη0 3 ηη0 = (χS(ΓRP A)δδ0 (k, k

0) = (US )δδ0 + 
ηη0 ηη0 

(US)δδ0 + RP A)δδ0 (k−k0). 
2 2 2 21 − (US )δδ0 χδδ0 (k − k0) 

(3.8)
Notice that the variety of possible diagrams given by Eq. 3.8 makes it unfeasible to draw
the possible Feynman’s diagrams up to orders larger than one.

The gap equation for the multiorbital model can be computed numerically by taking
into account the singlet pairing vertex given by Eq. 3.8 as a eigenvalue problem in which
the largest eigenvalue will lead to the highest transition temperature and its eigenfunction
determines the symmetry of the gap (see e.g. [34,76,108,139]). The main result is that an
anisotropic sign changing s-wave s± state is found as the dominant symmetry (for system
parameters compatible with moderated-doped IBS), in agreement to experiments [67–69].
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3.3. Magnetic excitations in the OSSF model: RPA analysis

We now compute the spin-excitation of the OSSF model within an RPA approach
and compare our results to the ones obtained within the analysis of microscopic fve-orbital
model and three-band spin-nematic model. For that purpose, we focus on the tetragonal
phase of the OSSF four-pocket model discussed in Section 2.2.

Within our OSSF model, the situation is substantially simplifed as compared with
the fve-orbital tight-binding RPA approach due to the orbital-selective nature of the spin-
fuctuations. Within the OSSF model we assume the spin operator to be intraorbital.
Notice that this already reduces the spin-susceptibility of Eq. 3.2 to a two-orbital indices
matrix Z β � � 

χηη
0 iΩmτ ~ S~η

0 
(q, iΩm) = dτ e Tτ S

η(q, τ) (−q, 0) (3.9)
0 P η† η~with Sη(q, τ ) = 0 c ~σss0 c the intraorbital spin operator. Moreover, the low-kss ks k+qs0 

energy projection further simplifed the spin-susceptibility structure as the low-energy
states are defned only around high symmetry point and have a well defned orbital char-
acter described by Eq. 2.23. As a consequence also the Green’s functions are defned
only for l = Γ, X, Y as Gl(k, iωn) = Û l(k, iωn)diag(gl+ (k, iωn), gl− (k, iωn))Û l

−1 
(k, iωn).

Here Û l are the matrices that diagonalize the l-Hamiltonian given by Eq. 2.24 and
gl±(k, iωn) = (iωn − El±)−1 the Green’s functions in the band basis. Substituting thek 

~intraorbital spin operator Sη(q, τ) and applying Wick’s theorem to Eq. 3.9, the intraor-
bital spin susceptibility in the low-energy projection can be read as

1 
χll

0 
(q, iΩm) = − 

β 
X h i 

ˆ Gl
0 

T r Gl(k, iωn) ˆ (k + q, iωn + iΩm) (3.10)
k,n 

0Eq. 3.10 represents the spin susceptibility between two pockets l and l and depends on
the transferred momentum q = k0 − k and the external frequency Ω.

q

k

k+q

q

Figure 3.1: Intraorbital non-interacting spin susceptibility with transferred momentum q in the
OSSF model. The solid line represents an electron particle and the dashed line a hole particle.

In Figure 3.1 it is shown the Feynman’s diagram representation for the intraorbital
non-interacting spin susceptibility given by Eq. 3.10 within the OSSF model. The low
energy spin susceptibility connects an electron (solid line) with a hole (dashed line) with
the same orbital content, that is, it is an interpocket and intraorbital spin susceptibility.
Performing the Matsubara frequency summation and setting Ω → 0 in Eq. 3.10, we fnd
the static susceptibility for the l± l 

0 pockets in terms of the Fermi distribution function± 
l±f(E ) and the matrix element of each pocket |(u/v)l(k)| connecting the orbital and thek 
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band space is
± l±X f(� l
0 

) − f(� )l±l±
0 

k+q k
χη (q) = |(u/v)l k|2|(u/v)l

0 |2 (3.11)
l0 k+q 

k � ± − �l± 
k+q k 

which has a much simpler expression than for the multiorbital model given in Eq. 3.6.
Within the OSSF model, we only consider magnetic fuctuations close to momenta

QX = (π, 0) and QY = (0, π), so the two most relevant spin susceptibilities for a four-
pocket model will involve the yz orbital coming from the interaction between the Γ± 
holes with the X electron pockets, and the xz orbital coming from the Γ± holes with
the Y electron pockets near QX and QY respectively. The spin susceptibility around
QM = (π, π) that involves the xy orbital from the interaction between the X and Y 
electron pockets is also taken into account in order to better compare with the results
for the multiorbital model in which all fve orbital contributions are considered. Notice
that the inclusion of the QM = (π, π) susceptibility within the OSSF is straightforward
due to the orbital selectivity of the spin fuctuation involved in the exchange process. In
Appendix C.1.1 are shown all the details about the computation of Eq. 3.11.

The RPA spin susceptibilities are obtained in the form of Dyson-type equations as
l±l0 ± 

l±l0 χη (q)
χ ± (q) = (3.12)ηRPA l±l0 

1 − Uχ˜ 
η 

± (q) 

±with Ũ the intraorbital e˙ective coupling and χη
l±l0 

(q) the non-interacting spin susceptib-
ility given by Eq. 3.11. Notice that, due to the orbital selectivity of the spin fuctuations,
the expressions for the spin susceptibility given by Eq. 3.11 and the RPA spin susceptib-
ility given by 3.12, acquire a scalar structure in the orbital basis. This will be crucial in
order to compute analytically in the following Sections 3.4 and 3.3 the pairing vertex and
superconducting gaps respectively, making the computations much more manageable than
for the multiorbital models.

To get insight into the previous result, we perform a numerical estimate for the
RPA spin susceptibility given by Eq. 3.12 for a four-pocket model in the tetragonal phase.

Γ+X Γ−XFigure 3.2 shows the χ (q), χ (q) and χXY (q) orbital components of the RPAyzRP A yzRP A xyRP A 
spin susceptibility, providing a signifcant qualitative insight into the role of the orbital
degrees of freedom. In the upper panel we 3D color maps in qx, qy. In the bottom panel
of we show the qx, qy 2D cuts. The middle point for all the 2D plots is QX = (π, 0) for
the electron-hole spin susceptibilities and QM = (π, π) for the electron-electron one. The

±right part of each graphics represents the χ l±l
0 

by moving from the center of the 3D plotsηRP A 
in the qx momentum, maintaining qy constant and analogously on the other side. This
representation makes easier to compare the relative weight of the di˙erent susceptibilities.

The specifc expressions of the non-interacting and the RPA spin susceptibility for
the di˙erent pockets are given in Appendix C.1.2. Notice that the contributions of the Y 
pocket (not shown) are equivalent to those for the X pockets with a π/2 rotation, since in
the tetragonal phase the susceptibility is isotropic in both directions. From Figure 3.2 we
can highlight some main results:

(i) The orbital-selective RPA spin susceptibilities peaked at QX andQM show a clear
momentum-dependent structure of the peaks. This can be explained due to the degree of
orbital nesting between pockets. The orbital nesting indicates the relative orbital compos-
ition between the two pockets involved in the spin-exchange mechanism. In Figure 3.2 we
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Figure 3.2: RPA spin susceptibility for a four-pocket model in the tetragonal phase in 3D (upper
panel) and 2D cuts (bottom panel) around the high symmetry points X for the hole-electron
sector and M for the electron-electron sector. The right-hand part of the 2D cuts represents the
qx direction and the left-hand part the qy direction starting from X = (π, 0) orM = (π, π) points.

can see that when there is an orbital mismatch, as is the case of Γ+ and X pockets, the
spin susceptibility develops two incommensurate peaks around QX . In contrast, if there
is an orbital match between pockets, i.e. the case of Γ− and X, the spin susceptibility
develops a single commensurate peak at the QX = (π, 0). For the χXY (q) suscept-xyRP A 
ibility there is a total mismatch between the xy orbital of the electrons pockets. Thus,
the spin susceptibility is totally incommensurate and develops four symmetric peaks that
correspond with the overlap of the xy orbital contribution around the M = (π, π) point.

(ii) From Figure 3.2 we can see that the RPA spin susceptibility at QX is greater by
moving in the qx direction than in the qy. This is due to the orbital selectivity of the spin
fuctuation that connects the Γ± with the X. Notice that for the QM spin susceptibility we
get a symmetric contributions in both directions qx and qy due to the equal contribution
from the xy orbital.

(iii) The main contribution to the spin susceptibility comes from the QX spin-mode,
Γ±X Γ±Yi.e. χ (q) (and analogously the χ (q)) contributions are much greater (fouryzRP A xzRP A 

times greater) than the electron-electron exchange χXY (q). Among the two hole pock-xyRP A 

ets, we fnd that the commensurate peak coming in χ
Γ−X 

(q) is bigger than the non-yzRP A 

commensurate one in χΓ+X 
(q). This can also be explained thanks to the better orbitalyzRP A 

nesting in the former case.
We now compare our results obtained within the OSSF model with a numerical

calculation of the RPA spin susceptibility for a fve-orbital tight-binding four-pocket model
building on Eq. 3.6 and 3.7. By tuning the flling and the crystal feld we consider two
di˙erent cases: the frst one corresponding to a four-pocket model with better nesting
between the Γ− and the electron pockets, and the second case is appropriate to describe a
four-pocket model with better nesting between the Γ+ and the X/Y pockets. We obtained
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for the frst case a commensurability of the RPA spin susceptibility at the QX = (π, 0).
Whereas in the second case we get an non-commensurate peaks around QX = (π, 0).
Therefore, the same orbital modulation for the momentum dependence of the RPA spin
susceptibility is obtained with both di˙erent models. We also compute the RPA spin
susceptibility coming from the electron-electron sector within the fve-orbital model. We
obtain that the contribution from this sector is negligible in comparison with the one for
the hole-electron sector. This result is also in agreement with other di˙erent studies of the
RPA spin susceptibility within a multiorbital models given by Ref. [20, 76,139].

Notice that, the orbital modulation of the RPA spin susceptibility is an e˙ect that
comes directly from taking into account the orbital degree of freedom of IBS. Within a
low-energy multiband model, which is blind to the orbital content of the system, the spin
susceptibility give to two equivalents peaks with the same commensurable narrow structure
(see Figure 1.7b). Therefore, within this model is not possible to appreciate the orbital
modulation in the momentum dependence of the spin susceptibility.

Our results are particularly important. In fact, while a generic correlation between
the orbital-make up of the Fermi surface and the momentum-dependent structure of the
RPA spin excitation has been already highlighted within multiobital models (e.g. [102]), the
explicit link and precise relationship between orbital nesting and momentum dependence
of the spin-susceptibility is a new results of the RPA analysis within the OSSF model.

(a) OSSF model (b) Five-orbital model

Figure 3.3: Cuts of the total RPA spin susceptibility along the high symmetry directions ΓXMΓ 
in the Brillouin zone within the (a) OSSF model (b) fve-orbital tight-binding model. The interac-
tion parameters have been chosen for (a) as Ũ = 1eV and (b) as U = 1.2eV. Notice for the OSSF
model the discontinuity of the susceptibility is due to the OSSF model is a low energy model and
we only get the contribution near the Fermi surface around the high symmetry points Γ, X, M .

To conclude our comparative analysis, in Figure 3.3 we compare the cuts along
the main symmetry directions of the RPA spin susceptibility (included the intraband
ones) computed within the OSSF model and within the fve-orbital tight-binding model.
The calculation performed within the OSSF model reproduce remarkably well the overall
momentum-dependence of the spin-spectrum as well as the relative height and width of
the various peaks.

The comparative analysis performed in this Section is extremely encouraging as it
proves that we can still obtain reliable description of the spin spectrum within the OSSF
model of Eq. 3.11, without dealing with the tensorial form of the spin susceptibility given
in the fve-orbital model, Eq. 3.6.
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3.4. Superconductivity mediated by the OSSF

Assuming that same spin fuctuations responsible for the magnetism, represented in
Figure 3.1, are also responsible for the superconductivity in the IBS, in the present section
we compute the pairing interaction that arises from the exchange of the spin fuctuations
discussed in the previous section and the correspondent gap equations for a four-pocket
model. We compare the results with the fve-orbital microscopic model.

3.4.1. Superconducting vertex: RPA analysis

To determine the superconducting vertex in the random phase approximation, we
draw in Figure 3.4 all Feynman’s diagrams that contains only the (scalar) spin susceptibil-
ities up to fnite order in perturbation of Ũ for electrons of opposite spin and momentum.
From Figure 3.4 we can draw some relevant conclusions:

+ + +

++++

Figure 3.4: Pairing vertex in random phase approximation up to ffth order within the OSSF
model.

(i) As we discussed in Section 3.2, within the fve-orbital model to draw analytically
all the Feynman’s diagrams involved in the pairing interaction vertex is something almost
unfeasible due to the large number of di˙erent possible diagrams. This is due to the
complex tensorial structure of the pairing vertex, Eq. 3.8. On the contrary, given the
scalar character of the low-energy orbital-selective spin susceptibility we can easily draw
analytically all the possible diagrams.

(ii) Due to the simple orbital structure of the pairing vertex within the OSSF model,
the diagrams involved represented in Figure 3.4 may look similar to those in the original
spin fuctuation single-orbital Hubbard model to pattern the cuprates [140]. It is important
to notice that only the mathematical treatment for the diagrams is similar between these
two models, because the physical meaning is completely di˙erent. In the OSSF model the
starting point is a three-orbital low energy model where the exchanged spin fuctuations
come from the low energy-bands. In contrast, within the Hubbard model the full bands
are taking into account.

(iii) As a consequence of the projection to a constrained orbital space within the
OSSF model, the diagrammatic for the RPA pairing vertex is formally equivalent to the
one for the band-basis model which does not contain the orbital information of the spin-
fuctuations exchange. Within the multiband model the RPA pairing vertex is composed
by the exchange of spin fuctuations connecting an electron pocket with a hole pocket.
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While within the OSSF model, the essential di˙erence is that the low energy exchanged
spin fuctuations connect a hole with an electron pocket with the same orbital content yz or
xz. In this way, we retain the simplicity of the analysis of the Feynman’s diagrams within
the multiband model and, at the same time, we account the orbital degree of freedom of
the system.

By applying the RPA approach and symmetrizing the singlet pairing interaction
vertex given in Figure 3.4, we get that the leading RPA diagrams for the vertex within the
OSSF model can be read as

2l±l0 l±l0 
l±l±

0 
˜ Ũ 3χη 

± (q) Ũ 2χη 
± (q)

Γη (q) = U + 2 + (3.13)
l±l0 l±l0 ± 1 − ˜ (q)1 − Ũ2χη (q) Uχη 

± 

where q = k0 − k is the transferred momentum, Ũ is the intraorbital e˙ective coupling
l±l0 and χη 

± (q) the intraorbital susceptibility given in formula Eq. 3.11. In Section C.2.1 the
detailed computation of the RPA pairing vertex within the OSSF model is shown.

As follows, we perform a numerical estimates for the four-pocket model. We get the
RPA vertex is proportional to the spin susceptibility and thus preserves the orbital depend-
ence and all the physical properties as the RPA spin susceptibility given by Eq. 3.12. For
instance, we get the same criterion of commensurability or incommensurability depending
on the orbital nesting between pockets. In the same way, we also obtained that the dom-
inant contribution to the RPA pairing vertex is given by the spin-fuctuations exchange

Γ±X Γ±Ybetween hole-electron pockets, i.e. the Γyz (q) and Γxz (q) contributions, being the
Γη 
Γ−l(q) the greater.

3.4.2. Superconducting gaps

In this section we solve the BCS gap equation mediated by the orbital selective spin
fuctuation exchanged computed in the previous section for a four pocket model within the
OSSF model. Let’s consider frst the pairing Hamiltonian involving only the yz and xz 
orbital contributions X h i 

Hpairing Γ+X Γ +† +† X X X = − Γ (uk)
2h h (uk )

2 ek0 e−k0yz,xz yz kk0 k −k 
k,k0 X h i 

Γ−X Γ −† −† X X X− Γ (vk )
2h h (uk )

2 ek0 e yz kk0 k −k −k0 

k,k0 X h i 
Γ+Y Γ +† +† Y Y Y− Γ (vk )

2h h (uk )
2 ek0 e−k0xz kk0 k −k 

k,k0 X h i 
Γ−Y Γ −† −† Y Y Y− Γ (uk)

2h h (uk )
2 ek0 e−k0 + h.c. xz kk0 k −k 

k,k0 

(3.14)

where Γ l±l±
0 

with η = yz/xz is the RPA pairing vertex given by Eq. 3.13 for the di˙erentη kk0 

l lpockets l±l±0 . The coeÿcient (u )2 and (v )2 are the coherence factors that connect thek k 
orbital and the band basis and account for the pockets orbital character.
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The pairing Hamiltonian given by Eq. 3.14 is solved in the mean feld approxim-
ation by defning the orbital dependent superconducting order parameters for the hole
sector (Δ+ , Δ− , Δ+ , Δ− ) and for the electron sector (Δe+ , Δe− , Δe+ , Δe−). The preciseyz yz xz xz yz yz xz xz 
defnition of these parameter is shown in Appendix C.2.2.

The resulting linearized gap equations at T=0 read asX Γ
Γ+X h i 
yzkk0 X X XΔ+ = − (uk )

2 (uk )
2Δe+ + (uk )

2Δe− (3.15)yzk0 X yzk yzk|v |F kk X Γ−X h iΓ yzkk0 X X XΔ− = − (uk )
2 (uk )

2Δe+ + (uk )
2Δe− (3.16)yzk0 X yzk yzk|v |F kk X Γ

Γ+Y h i 
xzkk0 Y Y YΔ+ = − (uk )

2 (uk )
2Δe+ + (uk )

2Δe− (3.17)xzk0 Y xzk xzk|v |F kk X Γ−Y h iΓ xzkk0 Y Y YΔ− = − (uk )
2 (uk )

2Δe+ + (uk )
2Δe− (3.18)xzk0 Y xzk xzk|v |F kk X Γ

Γ+X h i 
yzkk0 Γ Γ ΓΔe+ = − (uk)

2 (uk)
2Δ+ + (vk )

2Δ+ (3.19)yzk0 h+ yzk xzk|v |k F k X Γ−X h i 
Δe− Γ yzkk0 Γ Γ Γ = − (vk )

2 (vk )
2Δ− + (uk)

2Δ− (3.20)yzk0 h− yzk xzk|v |k F k X Γ+Y h i 
Δe+ Γ xzkk0 Γ Γ Γ = − (vk )

2 (uk)
2Δ+ + (vk )

2Δ+ (3.21)xzk0 h+ yzk xzk|v |k F k X Γ−Y h iΓ 
Δe− xzkk0 Γ 

k 
Γ)2Δ− 

k 
Γ)2Δ− = − (uk)

2 (v + (u (3.22)xzk0 h− yzk xzk|v |k F k 

lwith v = ∂k(�l±) the Fermi velocity for the pocket l. Eqs. 3.15 - 3.22 represent the orbitalF k k 
components for each gap. Then, we defne the total low-energy band gaps Δl 

k as
Γ+ Γ ΓΔ = (uk)

2Δ+ + (vk )
2Δ+ (3.23)k yzk xzk 

Γ− Γ ΓΔ = (vk )
2Δ− + (uk)

2Δ− (3.24)k yzk xzk 
X XΔX = (uk )

2Δe+ + (uk )
2Δe− (3.25)k yzk yzk 

Y YΔY = (uk )
2Δe+ + (uk )

2Δe− (3.26)k xzk xzk 

where each low-energy band gap involves the sum of the di˙erent orbital contributions
weighted by the correspondent coherent factors of the pocket. The gap functions Δl 

k,
given by the set of coupled equations in 3.23 - 3.26, contain information on the spatial and
orbital structures of the pairs.

To get insight into these results, we solve numerically the linearized gap equations for
a four pocket model given by Eqs. 3.15 - 3.22, by searching for the largest eigenvalue that
corresponds to the leading instability of the system. Then, we calculate the eigenfunction
corresponding to the leading instability that determines the symmetry and the structure
of the gap function. In Figure 3.5 the solution for the low-energy band gaps functions Δl 

k 
given by Eqs. 3.23 - 3.26 is shown.
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(a) 
(b) 

Figure 3.5: (a) Gap function plotted on the Fermi surfaces (red positive and black negative values)
and orbital content of the Γ± (green and orange) X (yellow) and Y (blue) pockets a function of the

l langle θ in the tetragonal phase. Solid and dashed lines represent the u and v orbital coherencek k 
factor respectively. (b) Angular dependence of the superconducting band gaps given in Eqs. 3.23 -
3.26. An anisotropic s-wave symmetry is obtained within the OSSF model. The band parameter
are specifed in Appendix B.3 and Ũ = 1eV.

In Figure 3.5 the band gaps symmetry and structure and the orbital composition for
a four-pocket model are shown within our OSSF model. The following results are drawn:

(i) In the frst panel in Figure 3.5a, the RPA band gaps (Eqs. 3.23 - 3.26) are plotted
on the Fermi surface. From it we can read that the gap in the hole pocket sector is
positive sign (red color), while the gap for the electron sector is negative sign (black color).
Therefore, we obtain a sign changing s-wave gap between the hole and the electron pockets
in agreement with fve-orbital tight-binding model where a s± symmetry is also achieved
[76,102] and as also expected for low-energy multiband models [19, 20,98].

(ii) Besides that, we show in Figure 3.5b the angular dependence of the supercon-
ducting RPA band gaps (Eqs. 3.23 - 3.26). Therefore, we get an anisotropic momentum s± 
gap symmetry. The momentum dependence can be explained as in terms of the orbital

l lcontent of the Fermi surface u and v (plotted in Figure 3.5a) and the orbital nestingk k 
in the superconducting order parameters (given in Eqs. 3.15 - 3.22). This result is again
in agreement with multiorbital models [102], but it cannot be reproduce within a perfect
nested multiband model due to the lack of spin-orbital interplay.

(iii) Another interesting related result concerns the orbital momentum modulation
of the gap bands. In Figure 3.5b it is shown that the maximum and the minimum values
for the angular dependence of the di˙erent pockets correspond exactly with the angular
position where there are better orbital nesting between the holes and the electrons. Thus,
for the Γ sector, the maximum values for the angular dependence band gaps are located
at the θ = (0, π/2, π, 3π/2) angular positions corresponding with the position of the yz 
and xz orbitals. While for the electron sector X/Y the maximum values of the band gaps
correspond to the yz/xz orbitals position at θ = (π/2, 3π/2) and θ = (0, π) for the X/Y 
pockets respectively and it is zero where the xy orbital is placed.

In conclusion, from the analysis of Figure 3.5 we get that within the OSSF model
applied to a prototypical four-pocket model for IBS we fnd an anisotropic sign changing

57



Chapter 3. Magnetic excitations and superconductivity in the OSSF model

s-wave gap symmetry, i.e., a s± s-wave band gap. This result is in agreement with cal-
culations performed within fve-orbital tigh-binding models in which the gap anisotropy
found for the s± s − wave state in RPA spin fuctuations is discussed in Ref. [76,102]. We
illustrate that the overall momentum dependence of the band gaps is determined by the
momentum-dependence of the pairing vertex and the orbital-make of the Fermi surface. A
key parameter that control the angular modulation of the gap is the orbital nesting between
the low-energy states connected by the spin-fuctuations that determine the structure of
the spin-susceptibilities (and thus of the pairing vertex).

To provide a quantitaive analysis to these results, we compare them with the ones
obtained in Ref. [102], where the anisotropy of the gaps for a fve-orbital model is discussed
in detail by using RPA calculations for the exchange of spin and charge fuctuations. The
authors conclude that the anisotropy of the gap on the di˙erent Fermi surfaces has been
shown to arise from an interplay of the orbital make-up of the states on the Fermi surface
together with the momentum dependence of the fuctuation-exchange pairing interaction.
Moreover, to minimize the repulsion between the electron Fermi surfaces, the electron can
present accidental nodes.

To provide a more accurate comparison we use a set of band parameters to generate
similar Fermi surface to the ones used in [102] (see Appendix C.2.3).

We also take into account the pairing mediated by xy-spin-fuctuation peaked at
QM . This means that we have to add to the pairing Hamiltonian, Eq. 3.27 the xy-pairing
term X h i 

Hpairing ΓXY X X X Y Y Y 
xy = − xy kk0 (vk )

2 ek0 e−k0 (vk )
2 ek0 e−k0 + h.c. (3.27)

k,k0 

where ΓXY is the RPA pairing vertex given by Eq. 3.13 for the electron pockets X andxykk0 

Y around QM = (π, π).
By defning the new orbital dependent superconducting order parameters for the

electron sector (ΔeY , ΔeX ) (see Appendix C.2.2) and then by solving the pairing Hamilto-xy xy 
nian given in Eqs. 3.14 and 3.27 in a mean feld approximation, the resulting linearized
gap equations at T=0 read as

X Γ
Γ+X h i 
yzkk0 X X X XΔ+ = − (uk )

2 (uk )
2Δe+ + (uk )

2Δe− + (vk )
2ΔeX (3.28)yzk0 X yzk yzk xyk|v |F kk X Γ−X h iΓ yzkk0 X X X XΔ− = − (uk )

2 (uk )
2Δe+ + (uk )

2Δe− + (vk )
2ΔeX (3.29)yzk0 X yzk yzk xyk|v |F kk X ΓXY h i 

xykk0 X X X XΔeY = − (vk )
2 (uk )

2Δe+ + (uk )
2Δe− + (vk )

2ΔeX (3.30)xyk0 X yzk yzk xyk|v |F kk X Γ+Y h i 
Δ+ Γ xzkk0 Y Y Y Y = − (uk )

2 (uk )
2Δe+ + (uk )

2Δe− + (vk )
2ΔeY (3.31)xzk0 Y xzk xzk xyk|v |F kk X Γ−Y h iΓ xzkk0 Y Y Y YΔ− = − (uk )

2 (uk )
2Δe+ + (uk )

2Δe− + (vk )
2ΔeY (3.32)xzk0 Y xzk xzk xyk|v |F k X ΓXY h i 

ΔeX xykk0 Y Y Y Y 

k 

= − (vk )
2 (uk )

2Δe+ + (uk )
2Δe− + (vk )

2ΔeY (3.33)xyk0 Y xzk xzk xyk|v |F kk 
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where we only report the equations that changed due to the xy-pairing channel, while the
rest are identical to Eqs. 3.19 - 3.22. Notice that two new gaps equations Eqs. 3.33 and 3.30
are taking into account due to the inclusion of the XY pairing vertex ΓXY Moreover,xykk0 .
the orbital components for the gap equations for the hole sectors is modifed by a new term
coming from the new order parameters for the electron sector given by (ΔeY , ΔeX ).xy xy 

Then, we defne the total low-energy band gaps Δl 
k as

Γ+ Γ ΓΔ = (uk)
2Δ+ + (vk )

2Δ+ (3.34)k yzk xzk 
Γ− Γ ΓΔ = (vk )

2Δ− + (uk)
2Δ− (3.35)k yzk xzk 

ΔX X X X = (uk )
2Δe+ + (uk )

2Δe− + (vk )
2ΔeX (3.36)k yzk yzk xyk 

Y Y YΔY = (uk )
2Δe+ + (uk )

2Δe− + (vk )
2ΔeY (3.37)k xzk xzk xyk 

where each low-energy band gap involves the sum of the two di˙erent orbital contributions
weighted by the correspondent coherent factors of the pocket.

In Figures 3.6a and 3.7a the Fermi surface used for the OSSF model and for the
multiorbital model [102] are shown respectively. Notice that the electron Fermi surfaces
are much bigger than the holes and there is a better band nesting between the Γ+ and the
X/Y pocket than for the Γ−.

(a) (b) 

Figure 3.6: RPA gap function within the OSSF model (a) plotted on the Fermi surfaces (red
circles positive and black circles negative), (b) plotted as a function of angle from 0 to 2π. The
band parameter are specifed in Appendix C.2.3

Results for the gap function are summarized in Figures 3.6 and 3.7. From the
comparison we fnd:

(i) The inclusion of the charge channel within the RPA analysis of the fve-orbital
model. In the fve-orbital model [102] does not change qualitatively the results. We
still fnd a good agreement within the OSSF model calculation in which only the spin-
channel is considered and the microscopic model in which the charge channel is considered
in the RPA resummation. This confrms that the spin channel provides the dominant
pairing contribution and that this is well described within the OSSF model which is able
to reproduce in a much simpler way the same results.
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(a) (b) 

Figure 3.7: RPA gap function within the fve-orbital model (a) plotted on the Fermi surfaces
(red/solid circles positive and blue/open circles negative), (b) plotted as a function of angle from
0 to 2π. Adapted from [102].

(ii) An anisotropic s-wave sign changing band gaps are obtained within both models
with the same modulation in momentum. We already discussed in the previous section as
the modulation is a direct consequences of the orbital composition of the nested pockets.

Γ− Γ+(iii) We reproduce the correct hierarchy of the band gap |Δ | > |Δ |. It isk k 
interesting that the larger gap is found for the Γ− pocket despite the stronger band nesting
of the Γ+ with the electron pockets. The result can be easily interpreted within the OSSF
modeling as a consequence of the orbital matching between the Γ− and the electron Fermi
surfaces. This fnding show that the orbital nesting (more than the band nesting) controls
the strength of the pairing.

(iv) When the interaction between the electron pockets X and Y is taken into ac-
count, we fnd accidental nodes for the electron gaps ΔX and ΔY in agreement with thek k 
microscopic analysis. As explained in [102] this is a way to reduces the e˙ects of the
repulsive scattering between the electron-sheets.

3.5. Conclusion Chapter 3

In Chapter 3 we show that the OSSF model provide a reliable description of the
magnetic excitations and pairing interactions. We compare our results with the fve-orbital
tight-binding RPA model and with the three-band spin-nematic model.

In Section 3.3 we compute the spin susceptibility for a four pocket model in the
tetragonal phase and we compare the results with the ones obtained for a fve-orbital tight-
binding RPA model. One of the most relevant results, is that depending on the degree
of orbital nesting between pockets, we get an orbital modulation of the spin susceptibility
that rises to commensurate or incommensurate peaks in the spin susceptibility when there
is an orbital match or mismatch between the holes and the electrons respectively. Moreover
we see that the main contribution to the spin susceptibility is given by the spin-fuctuation
exchange between hole and electron pockets and the the larger contributions comes for
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the hole pocket whose orbital composition match better the orbital composition of the
electrons.

We also compare the total spin susceptibility and plot it along the high-symmetry
points. The OSSF reproduces qualitatively well the overall momentum dependence and
the relative heights and widths of the peaks located at di˙erent momenta. This is a
remarkable result considering that the OSSF model is a low-energy e˙ective model that
only consider the yz, xz, xy orbitals and we compare with results obtained within the
microscopic fve-orbital model.

Within a spin-driven scenario, in Section 3.4, we compute the RPA pairing vertex
and the correspondent gap equation for a four pocket model. The RPA pairing interaction,
estimated in Section 3.4.1, is given by the irreducible particle-particle vertex that can be
computed from all possible Feynman’s diagrams containing the orbital selective spin fuc-
tuation exchanged susceptibilities. It is interesting to notice that within the OSFF model
it is possible to draw analitically all the Feynman’s diagrams involved in the pairing vertex,
something which is almost unfeasible within the fve-orbital model due to the large number
of di˙erent possible diagrams. As a result, the same features of the spin susceptibilities
are transmitted to the pairing vertex obtaining commensurate or incommensurate peaks
depending on the degree of orbital nesting. In Section 3.4.2 we solve the BCS gap equa-
tions mediated by the RPA pairing vertex computed in Section 3.4.1. We analyse the gap
symmetry and structure of the band gaps for the di˙erent pockets and we compare with
the results obtained for a fve-orbital model. We fnd an anisotropic s± gap function due
to the orbital degree of freedom.

A deep analysis of the bands gap structure shows that the angular dependence and
the magnitudes of the di˙erent gaps depend directly on the degree of orbital nesting
between the holes and the electrons pockets, and what is more important, that the de-
gree of orbital nesting is a stronger condition than the degree of band nesting between the
di˙erent Fermi surfaces. This result proves that a minimal theoretical model to understand
superconductivity in IBS has to account for the spin-orbital interplay. In that respect, the
OSSF model is a perfect candidate.

Despite is simplicity, the OSSF model is able to reproduce qualitatively well all the
relevant features of the spin-excitations and pairing interactions of the multiorbital descrip-
tion. It allows for analytical treatment making easy and straightforward the interpretation
of the results. Moreover, due to the orbital-selectivity of the spin-fuctuations, it allows to
include in a very simple way additional interacting channel, as we showed explicitly by con-
sidering the electron-electron interaction beside the hole-electron spin-exchange. Also in
this case we fnd a perfect agreement with the multiorbital analysis in which it was shown
as the presence of an electron-electron interaction leads to the appearance of accidental
nodes in the electron gap bands.
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4 
Anisotropy of the dc conductivity in the nematic

phase

4.1. Introduction

Resistivity anisotropy is a hallmark of nematicity in iron-based superconductors
(IBS). As discussed in Section 1.4 the experimental evidences appear extremely puzzling
and diÿcult to be explained using a single theoretical frame. In fact, the dc-resistivity
anisotropy measured in the nematic phase of IBS can have di˙erent signs and magnitude
depending on the compound.

In detwinned electron-doped 122 compounds Δρ = ρx − ρy < 0 is found below
the structural transition [82,141–144] while detwinned hole-doped compounds present the
opposite anisotropy [94]. There is an on-going debate in the literature on whether the
observed dc anisotropy is due to the anisotropy in the scattering rate or to the anisotropy
in Fermi surface parameters [95,145–152]. In principle, within an orbital-ordering scenario
the di˙erent occupation of the various orbitals a˙ects mainly the Fermi surface [74, 153,
154], while within a spin-driven scenario the largest e˙ect is expected to come from an
anisotropy in the inelastic scattering rate [145, 155–158]. Specifcally, in the band spin-
nematic scenario, depending on the Fermi surface shape and size, the band nesting is active
at the so called hot spots on the Fermi surface, where the scattering rate is maximum. It
has been argued that the location of the hot spots could explain the di˙erent signs between
electron-doped compounds and hole-doped compounds [94] in pnictides. Besides the spin-
nematic or orbital order scenario, further attempts to explain the dc anisotropy in pnictides
taking into account the spin-orbital interplay has been performed using e˙ective spin-
fermion model [159] or multiorbital microscopic model in the magnetic phase [22,160,161].
Experiments in FeSe have found the opposite anisotropy with respect to the electron-doped
122 compounds [162], i.e. Δρ = ρx − ρy > 0. The signifcant Fermi surface reconstruction
observed in the nematic phase of FeSe [24, 32], suggests that both scattering rate and
velocity could play a role in contributing to the anisotropy of the dc resistivity, in particular
in the light of the results obtained in [60] in which the temperature evolution of the Fermi
Surface (size, shape and orbital composition) of FeSe across the nematic transition has been
quantitatively explained within the orbital selective spin-fuctuations (OSSF) scenario.

In this Chapter, which is based on [103], we analyze the anisotropy of the dc resistivity
in the nematic phase of IBS within the theoretical frame of the OSSF model presented in
Chapter 2. The model, due to the spin-orbital entanglement encoded in the theory, is
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able to account for the di˙erent phenomenology of 122 and FeSe regarding magnetism
and nematicity [27] and provides a simple scheme to understand both nematicity and
superconductivity of FeSe [60, 133].

To compute the conductivity of the system, we implement a quantum feld theory
approach as discussed in Section 4.2 starting from the defnition of the current-current
correlator in the bare bubble approximation. This means we account for self-energy e˙ects
only. As we already discussed in Section 2.3, the OSSF self-energy we use do not depend
on momentum, thus vertex corrections vanish identically. However, our results do not
depend crucially on this approximation and are expected to hold even in a calculation
in which the self-energy is given by spin-mode having a momentum dependence. This
idea is supported by the work performed in [126, 163], where it is shown that self-energy
corrections to resistivity are dominant (over the vertex ones) in IBS.

We focus in the analysis of the nematic phase where the OSSF self-energy are not
longer degenerate for the xz/yz orbital as consequences of the x/y anisotropy of the spin-
fuctuations. The analysis in contained in Section 4.3. To gain physical insight and dis-
entangle the e˙ects of anisotropy coming form scattering rate or velocity, we frst perform
analytical calculation using the perfectly-nested parabolic-band approximation and treat-
ing the nematic order parameter perturbatively. This analysis allow us to defne simple a
analytical equation for the dc conductivity anisotropy of each band. We fnd that, in con-
trast to the band spin-nematic scenario [23, 28] where just the scattering rate contributes
to the dc anisotropy, also the velocity contributes. The contribution of the scattering rate
to the resistivity anisotropy is dominated by the location of the cold spots where the scat-
tering rate is minimum, which, within our model, is determined by the orbital composition
of the Fermi surface and by the spin-orbital interplay of the OSSF. The contribution of
the velocity to the resistivity anisotropy is counter-intuitive and opposite to the one of the
scattering rate. We fnd indeed that the conductivity is larger in the direction where the
self-energy is also larger. This interesting new e˙ect is due to an orbital character exchange
in the pockets arising from the OSSF self-energy in the nematic phase.

To check the validity of the analytical approximation, we compute numerically the
dc conductivity using realistic band parameters for 122 compounds and FeSe compounds,
i.e. accounting for spin-orbit coupling elliptical electron pockets. We verifed that for 122
compounds due to a smaller spin-orbital coupling and a weaker nematic order numerical
results are very close to the analytical ones, while more important deviation from the
analytical analysis are found in FeSe.

Last, in Section 4.4 we discuss our results and put them in the context of experiments
in IBS. Our study shows that the sign of the anisotropy of the dc conductivity depends
on whether scattering rate or velocity anisotropy dominates on each pocket, as well as
other parameters such as the ellipticity and the quasiparticle renormalization due to local
interactions. Thus, di˙erent experimental results among the various families of IBS can be
explained within the same OSSF scenario.

4.2. Conductivity in the OSSF model: a quantum feld theory
approach

Consider a system of electrons subjected to an external electromagnetic feld. In
linear response theory, the conductivity tensor σ is the proportionality function between
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the induced electric density J and the applied external electric feld E 

Ji(q, Ω) = σij (q, Ω)Ej (q, Ω) (4.1)

with i = {x, y, z} the spatial coordinate and q and Ω the transferred momentum and
frequency respectively. The spatial components of the conductivity tensor σij are defned
as

ie2 � � 
σij (q, Ω) = − Πij (q, Ω) − hτiiiδij (4.2)

V Ω 
where V is the unit-cell volume, Πij is the current-current correlation function and τii is
the diamagnetic tensor, where the current operator and the diamagnetic term are given byX X1 † 1 ∂2�k

ji(q) = v(k)ck−qσckσ and τii = nk,σ (4.3)
N N ∂ki 

2 
k,σ k,σ 

with N the number of unit cells, v(k) = ∂�k/∂ki the velocity, �k the band dispersion and
nk,σ the electron density. Eq. 4.2 represents a powerful result that defnes the electromag-
netic response of the system.

The q → 0 limit of Eq. 4.2 defnes the optical conductivity in which the o˙-diagonal
component of the conductivity tensor vanish by symmetry (if the system is time-reversal
symmetric e.g. in the absence of magnetic feld). The real and the imaginary part of the
conductivity represent the dissipative and the absorptive part respectively. The optical
properties of the system are expressed through the optical response functions which are
determined by the real part of the optical conductivity tensor given by

2e ImΠα(q = 0, Ω)
Reσα(Ω) = , (4.4)

V Ω 

where we simplifed the notation α ≡ ii = {x, y}. The dc conductivity is defned as the
Ω → 0 limit of the longitudinal optical conductivity

2e ImΠα(q = 0, Ω)
σdc α = limΩ→0 (4.5)

V Ω 

Therefore, the conductivity of a given system reduces to the computation of the current-
current correlation function Πα.

In what follows we summarize the main step of the computation the current-current
correlation function and dc conductivity within the OSSF model. We refer the reader to
Appendix D.1.1 and D.1.2 for the complete derivation.

4.2.1. Current-current correlation function

The current-current correlation function Πα can be evaluated as usual from the
standard analytic continuation iΩm → Ω+ iη of the equivalent correlation function in the
Matsubara formalism as Z βT 

Πij (q, iΩm) = dτeiΩmτ hTτ ji(q, τ )jj (−q, 0)i (4.6)
N 0 

with τ the imaginary time, Ωm = 2πmT the bosonic Matsubara frequency and ji(q, τ ) 
is the current operator given by Eq. 4.3. According the diagrammatic technique this can
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be decomposed in a series of diagrams with increasing numbers of single-particle Green’s
functions and interactions lines [164]. If we consider a non-interacting electron system we
have X 

Πij (q, iΩm) = 2 Tr{Ĝl(k − q/2, iωn)V̂ l Ĝl(k + q/2, iωn + iΩm)V̂ l } (4.7)ki kj 
lkn 

where the factor 2 is due to the spin summation and we are summing over l = Γ, X, Y . Here
ωn = 2π(n + 1/2)T the fermionic Matsubara frequency, Ĝl(k, iωn) is the non-interacting
Green’s function fro the OSSF model, Eq. 2.25, and V̂ l = ∂ki Ĥ

 l are the bare velocity in theki 
direction i = {x, y}. As soon as interactions are present in the system, we have to consider
their e˙ect on Πij (q, iΩm). It is easy to demonstrate [164] that one can perform a partial
summation of diagrams to all orders by replacing in Eq. 4.7 each bare Green’s function
by the full Green’s function defned by the Dyson equation Eq. 2.48. The current-current
correlation function computed within this approximation is the so-called bare-bubble. In
what follows we work within this approximation and compute the current-current correlator
from Eq. 4.7 in which we dress the bare Green’s functions with the OSSF self-energy as
discussed in Section 2.3.

When can now set q = 0 and use that Ĝl(k, iωn) = Û l (k, iωn)[iωn1̂ −R 
Λ̂l (k, iωn)]−1Û l−1 

(k, iωn) (Eq. 2.49). By using the cyclic property of the trace, Eq. 4.6R R 
can be rewritten asX 

ˆ Λl ]−1V̂ l Λl ]−1V̂ lΠij (iΩm) = 2 Tr{[iωn1−ˆ 
R(k,iωn) R(kiiωn) [(iωn + iΩm)1̂−ˆ 

R(k,iωn+iΩm) R(kj iωn+iΩm)}
lkn 

(4.8)
with the renormalized velocity matrix defned as

V̂ l = Û l−1 
(k, iωn)V̂ l Û 

R
l (k, iωn + iΩm) (4.9)R(ki,iωn) R ki 

Û l−1where (uR, vR) is the rotation matrix with uR and vR the renormalized coherenceR 
factors Eq. D.22. Notice that the renormalized velocities are a˙ected by the self-energy
via the coherence factors. Notice that those depend on both the internal (ωn) and external
(Ωm) frequencies. This e˙ect does not enter in our calculation as we focus on the dc
conductivity, but could be important in the analysis of the optical conductivity.

We replace the expressions for the velocity, Eq. 4.9, and the renormalized Green’s
functions Ĝl(k, iωn) = [iωn1̂ −Λ̂l (k, iωn)]−1 = diag(g+(k, iωn), g−(k, iωn)) in Eq. 4.8. ByR 
evaluating the trace over the orbital basis the current-current correlation function can be
rewritten as

Πl11++Πij (iΩm) = +Πl11+− +Πl22−+ +Πl22−− = ij(iΩm) ij(iΩm) ij(iΩm) ij(iΩm)X�h i 
+ V l11 + V l11 + V l12 − V l21= 2 g g + g +iωn R iωn+iΩm R iωn R,ωgiωn+iΩm R h lkn i� 

− V l21 + V l12 − V l22 − V l22+ g g + g g (4.10)iωn R iωn+iΩm R iωn R iωn+iΩm R 

where we drop the k dependence. Notice that in Eq. 4.10, Πl11++ and Πl22−− rep-ij(iΩm) ij(iΩm) 

resent intraband terms and Πl11+− and Πl22−+ interband contributions to the opticalij(iΩm) ij(iΩm)
conductivity given by Eq. 4.4.

++/−−We are interested in the intraband terms given by the Πij as we focus on the
analysis of the dc conductivity and hereafter we use the compact notation α = ii = {x, y} 
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4.2.2. Dc conductivity

++/−−In order to compute the Π terms, we express the Green’s functions g±(iωn)α=ii 
in terms of the spectral functions Al± (ω). After performing the Matsubara sum we cank 
replace the current-current correlator in Eqs. 4.4 and 4.5. The dc conductivity for each
pocket is then given by

∞2πe2 XZ 
∂f(ω) � �2� �2l± l±σα

l± = dω(− ) VRkα 
(ω) Ak (ω) . (4.11)

N ∂ω −∞k 

where f(ω) the Fermi distribution function and the spectral function reads

1 Γ
l± (ω)l± RkA (ω) = (4.12)k l± l±π [Γ (ω)]2 + [ω − � (ω)]2 

Rk Rk 

The total dc conductivity is defned by the sum over the pockets l± = {Γ+, Γ−, X, Y }P l±as σdcα = l± 
σα . By direct inspection of Eq. 4.11 we see that the dc conductivity

within the bare-bubble approximation depends on the self-energy via: (i) the renormalized
energy dispersions and scattering rate contained in the spectral function Eq. 4.12 (ii) the
renormalized velocity.

The dispersions and scattering rate for the interacting system, derived in Section 2.3,
are given by

l± l±� (ω) = ReE (ω) (4.13)Rk Rk 
l± l±Γ (ω) = δΓ + |ImE (ω)| (4.14)Rk Rk 

where El± (ω) isRk q
l±E (ω) = h0 

l +Σl 0k(ω) ± (hl )2 + (hl )2 + (hl +Σl (ω))2 (4.15)Rk 1k 2k 3k 3k 

derived in Eq. 2.50 in Section 2.2.1.
l±VRkα, Eq. 4.9, is the bare velocity operator rotated (using the rotation matrix of

the interacting system) into the band basis. We take the Ω → 0 limit and consider the
intraband component only

V l± = V l11 |u lR|2 ± V l12 ∗l
R 
∗l ± V l21 l 

R
l + V l22 |vRl |2 (4.16)Rkα kα kα uR v kα uRv kα 

V lηη0 are the ηη0 component of the velocity, (u/v)lR are the renormalized coherence factorskα 
and hereafter we omit the dependence on the internal frequency ω for simplicity. V l± 

Rkα 
depends on the self-energy via the coherence factors. It is worth noticing that Eq. 4.16 show
a dependence on the orbital τ̂3 component of the self-energies, Σl 3(ω) that mixes the orbital
content of each pocket. This can be easily check by looking at the analytical expressions
for uR/vR that can be derive within the parabolic approximation (see Appendix D.2) as! 

l 2ReΣ3 
l 

|uR|2 =|u l|2 1 + |v l|2 ,
hl ! (4.17)

2ReΣl |vRl |2 =|v l|2 1 − 3 |u l|2 
hl 
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In the T → 0 limit we can approximate the Fermi function with a δ(ω) which selects
only states at the Fermi level ω = 0. Moreover, we assume Γ

l± to be small so that� R�2l± 1 l±A → δ(� ) and the pocket conductivity reduces tok l± Rk2πΓRk 

l±2e X (V )2 
Rkα l±σα

l± = 
l± 

δ(�Rk). (4.18)
N Γk Rk 

In the next Section we will perform analytical and numerical analysis of Eq. 4.18 to
analyze the dc conductivity in the nematic phase of IBS. Further details can be found in
Appendix D.2.

4.3. 122 and FeSe dc conductivity within the OSSF model

The general sketch of the orbital content of the Fermi surface for a generic four-pocket
model for IBS is shown in Figure 4.1.

XΓ

Y

0

π

π0  kx

 k
y

xy

yz
xz

Γ+
-

Figure 4.1: General sketch of the orbital content of the Fermi surface of the 4 pocket model for
IBS. The green and red arrows show the OSSF with yz content in the x-direction and xz content in
the y-direction. Cold spots, where the scattering rate is minimum, are shown by a circle and they
are found on the xy and xz orbitals in the nematic phase due to anisotropic self-energy corrections.

The qualitative behavior of the self-energies in the nematic phase allows us to easily
l±localize the minimum value of Γ on the Fermi surface (FS), i.e. the cold spots shown inR 

Figure 4.1. As is discussed in Ref. [60], within the OSSF model, the reconstruction of the
FS below TS is consistent with the spin-fuctuations being bigger at QX than at QY . This
implies that self-energy corrections are stronger on the yz orbital than on the xz one. As a
consequence on the hole pockets the smaller scattering rate corresponds to the xz orbital.
On the electron pockets instead, the smaller scattering rate is found for the xy orbital,
given the absence of xy-SF within our model. The result is an example of the spin-orbital
interplay retained by the OSSF approach that allows us to directly link the cold spots
position with the FS orbital character and is not present in the band-based spin-nematic
scenario [28].
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4.3.1. Analytical estimate of the dc-conductivity anisotropy

To gain physical insight on the dc anisotropy and disentangle the e˙ect of the velocity
and scattering rate in Eq. 4.18, we estimate analytically σα. In order to do that we
performed two main approximations. First, we approximate the hole and electron bands
with perfectly nested parabolic bands (see also Appendix B.2). Second, with respect to
the self-energy, we defne the nematic splitting as symmetric around the isotropic value Σl 0 
of the tetragonal phase and assume that the nematic order is small enough to allow for a
perturbative expansion of the renormalized energy El± given in Eq. 4.15.R 

By expanding El± at frst order in the ˆ self-energy component we can estimateR τ3 
l± l± l±analytically for each pocket VRkα, � and Γ via Eqs. 4.13 and 4.14.R Rk 

Renormalized velocity By neglecting the imaginary part of the self-energy in the co-
herence factors (u/v)lR, it is easy to check the velocity given in Eq. 4.16 can also be written
as the derivative of the renormalized dispersion relation

l± l±V = ∂� (k)/∂kα. (4.19)Rkα R 

Let’s perform explicitly the derivation for one pocket. Deriving, for example with respect
kx the renormalized energy of the pocket Γ+ we fnd

k cos θΓ+ 
3 sin θ2 k cos θ 

V = − + 4 ReΣΓ (4.20)Rkx Γ+m k2 

where mΓ+ is the bare mass of the Γ+ pocket whose defnition in terms of the Hamiltonian
parameters. The frst term on the right hand side of Eq. 4.20, is the α component of
the bare velocity, while the second term O(ReΣl 3) is an additional contribution due to the
orbital mixing induced by the nematic order as expected from the (u, v)l coherence factorsR 
in Eq. 4.16. The expression of the renormalized velocities for the di˙erent pockets in the
kx and ky directions are specifed in Appendix D.2.

To compute the k integration in Eq. 4.18 we will use the delta function and evaluate
Γ+ Γ+V at the renormalized Fermi surface. Notice that, in the nematic phase k (θ) is noRkx F 

longer constant but gets deformed because of the anisotropic self-energy renormalization.
This e˙ect is also of order O(ReΣl 3) and has to be taken into account.

We estimate the change in the Fermi wave vector at the frst order in the self-energy.
Replacing the expression of kΓ+ (θ) into Eq. 4.20 we fndF � � 

Γ+ ReΣΓ ReΣΓ 
Γ+ 3 3V = V0kx 1 + cos 2θ − 4 sin2 θ (4.21)Rkx 2�h 2�h 

0 0 

Γ+ Γ+where �h 
0 = �Γ + ReΣΓ

0 and V0kx = −k0Fx 
/mΓ+ are the x component of the bare velocityq 

in the tetragonal state with k0
Γ+ = �Γ/(2mΓ+ ).F 0 

From Eq. 4.21, one sees that the bare Fermi velocity in the nematic phase has two
l±contributions O(ReΣl 3) opposite in sign: the frst one is due to the change in kF , while

the second one comes from the orbital mixing produced by the nematic order.
Analogous calculation of the velocity contributions along ky for the Γ+ as well as for

the other pockets lead to similar expressions (see Appendix D.2) with the band velocity
of the tetragonal phase renormalized by two additional contributions O(ReΣl 3) of opposite
sign.
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Renormalized scattering rate The scattering rate is analytically estimated from
Eq. 4.14 using again the expansion of EΓ+ at the frst order in ΣR 

Γh 
0 

Γ
3 

Γ
Γ+ = R + cos 2θ|ImΣΓ

3 | (4.22)

where we separate the tetragonal phase scattering rate, Γh 

angular dependent correction due to the nematic e˙ect ∼ ImΣ 
0 δΓ + |ImΣ 

.Γ3 

Γ
0 |, from the

By looking Eq. 4.22
= 

and comparing it with Figure 4.1, is easy to understand where are the minimum values of
the scattering rate at the Fermi surface, that is, where are the cold spot located in each
pocket. Analogous calculation of the renormalized scattering rate for the Γ−, X, Y pockets
are specifed in Appendix D.2.

dc conductivity By replacing the analytical expressions found for the velocity, Eq. 4.21,
and for the scattering rate, Eq. 4.22 in Eq. 4.18 the expression of the Γ+ pockets dc
conductivity read as

| 
� �

Γ
3 

Γ
3 

Γ
3 

0 

|ImΣ 
2Γh � 

ReΣ ReΣ 
σΓ+ σh = 1 ±x     = 

002�h �h 

Φh Φh ΔΓh
� 

σh (4.23)
00 

1 − + − 
2�h �h = 

02Γh 

are respectively the Fermi energy, the scatteringh/e 
0 0where �h , Γh /(2π~)Γh 

rate and the dc conductivity in the tetragonal phase for the hole pocket. We also defned
the real and imaginary part of the nematic order parameter (Φh , ΔΓh) for the hole pocket
as

00 and σh = e2� 

Φh ≡ −ReΣΓ
3 , ΔΓh ≡ |ImΣΓ

3 |, (4.24)

taking also into account that stronger spin-fuctuation at QX implies ReΣΓ
3 < 0, so that

000 

now the nematic order parameters are positive defned. Via analogous calculations we
derive the dc conductivities along x and y for each pockets.

The dc conductivity components for the hole pocket at Γ point read as

Γ+ = σh 
� 

Φh Φh ΔΓh � 
σ 1   ±   ,x/y 2�h �h 2Γh � � (4.25)

00 

Φh Φh ΔΓh 

2�h 2Γh 
Γ− = σh 1 ±σ 

0 
 ± 
�hx/y 

0In the absence of spin-orbit interaction the hole pockets have the same �h 

also have the same conductivity σh in the tetragonal phase. Additional terms proportional
to Φh and ΔΓh arise in the nematic phase and make the conductivity di˙erent for the two
hole pocket.

As discussed within the calculation of the velocity operator for the Γ± pocket in
Eq. 4.21, the nematic order has two opposite e˙ects O(Φh) in the velocity and this is
refected into the pocket dc conductivity anisotropy as one sees from Eq. 4.25. The frst
correction comes directly from the kΓ± changes due to the nematic Fermi surface recon-F 
struction, while the second one, opposite in sign, is due to the orbital mixing. Notice that
this last term also determine the overall sign of the correction ∼ Φh in each pocket.

, so they
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Chapter 4. Anisotropy of the dc conductivity in the nematic phase

Due to the xz/yz orbital arrangement of the Γ± Fermi surface, the two hole pockets
contribute with opposite sign to the conductivity anisotropy i.e. in Eq. 4.25 we fnd the
same sign of the nematic terms in the conductivity along x of the Γ+ pocket and in the
conductivity along y of the Γ− one. In particular, the opposite sign of the contribution
O(ΔΓh) giving negative/positive anisotropy for the Γ+/− pocket is a direct consequence of
the cold spots physics, Figure 4.1, from where we can easily infer the sign of the anisotropic
contribution for Γ± having in mind that lower scattering implies a bigger conductivity.

By computing the hole dc conductivity anisotropy as the di˙erent of the dc conduct-
Γ± Γ±ivity in the x and y directions Δσh± ≡ σx − σy , we fnd! 

Δσh+ =σh Φh 

�h 
0 
− 

ΔΓh 

Γh 
0 

, ! (4.26)
Φh ΔΓh 

Δσh− =σh − + 

0 

0Γ
h 

0 

Within a parabolic band approximation, neglecting the e˙ect of the spin-orbit coupling
the hole pockets are completely degenerated, thus is no surprising to fnd that by summing
up Δσ for the two hole pockets their anisotropic contributions cancel out. Therefore the
sign of the anisotropy of the total dc conductivity is in this case completely controlled by
the electron pockets.

The dc conductivity components for the electron pocket at X read as� � 
ReΣX |ImΣX |yx yz 

σX =σe 1 − + ,x 4�e 4Γe 

h�0 

� � (4.27)

00 

3ReΣX |ImΣX |yx yz − 
4�e 4Γe σX 

y =σe 1 + . 

where we used that σe = σe as within the parabolic approximation we neglect thex/y 
ellipticity of the electron pockets. Same expressions hold for the Y pocket once replaced
ΣX → ΣY and kx → ky. This imply that X/Y pockets contribute with opposite sign toyz xz 
the overall dc conductivity.

We defne the real and imaginary part of the nematic order parameter for the electron
pockets (Φe , ΔΓe) as

Φe ≡ 
ReΣX 

yz − ReΣY 
xz 
,

2 
ΔΓe ≡ 

|ImΣX | − |ImΣY |yz xz

2 
(4.28)

which are all positive defned.

00 

By using Eq. 4.28 we can write the electronic dc conductivity anisotropy Δσe ≡ 
ΔσX +ΔσY as ! 

Φe ΔΓe 
Δσe = σe − + (4.29)

�e Γe 

0 

Also for the electron pockets we fnd that the renormalized velocity and the scattering rate
contribute with opposite sign to the dc conductivity anisotropy. The balance between the
two e˙ects is controlled by the nematic order parameters normalized to the Fermi energy

vs ΔΓe/Γe 
0and isotropic scattering rate, respectively, i.e. Φe/�e 
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Chapter 4. Anisotropy of the dc conductivity in the nematic phase

In conclusion, we computed analytically the anisotropy of the dc conductivity of the
various pockets using the parabolic-band approximation Eq. 4.26 and 4.29 and treating
the nematic order perturbatively. In each pocket, we fnd that the anisotropy of the dc
conductivity is given by a contribution O(ReΣl) and another O(ImΣl), opposite in sign
with respect to each other, whose relevance is controlled by the relative values of Φh/e/�h/e 

0 
vs ΔΓh/e/Γ

h/e . Summing up the hole and electron pockets Δσh/e we fnd that the sign of0 
the anisotropy of the total dc conductivity is controlled by the electron contribution and
depends on which among X/Y -pocket contributes more to the total conductivity and on
which e˙ect, among the scattering rate and velocity renormalization, dominates.

The cancellation of the hole-contribution is an artifact of the approximation used in
the calculation. In order to consider realistic system, we need to account for the presence
of the spin-orbit interaction that splits the hole pockets at Γ and mixes their orbital
content at the Fermi surface already in the tetragonal phase. Moreover, the parabolic
band approximation is particularly inaccurate for the electron pockets that are strongly
elliptical in IBS. Furthermore, especially for FeSe, the nematic self-energy components Σl 3 
are not small [60], thus the expansion of the renormalized energy in Σl performed above3 
is not longer justifed.

For realistic cases then, we cannot use the analytical expressions for the renormalized
velocity Eq. 4.21 and scattering rate Eq. 4.22, and we need to compute the dc conductivity
from Eq. 4.18 using a numerical estimate of the velocity and scattering rate from Eqs. 4.13-
4.15.

4.3.2. Numerical estimate of the dc-conductivity anisotropy

We perform a numerical estimate of the conductivity anisotropy using realistic para-
meters for 122 and FeSe systems in order to assess the limits of validity of the analytical
expressions Eq. 4.26 and 4.29 and qualitatively discuss our results in the context of the
experimental outcomes found for 122 pnictides and FeSe.

We assume for both 122 and FeSe equivalent bare band structure parameters and
real part of the self-energy caplable of reproducing the 122 tetragonal Fermi surface shown
in Figure 4.1. The Fermi surface topology of FeSe with just the outer hole pocket crossing
the Fermi level at Γ already in the tetragonal phase is achieved in the calculation using
a larger value of the spin-orbit interaction as well as a larger values of the real part of
the self-energy renormalizations in agreement with previous analysis [60]. The numerical
values of the parameters used in the following are detailed in Appendix D.3.

122 pnictides

In Figure 4.2 we show for each pockets the Fermi surface wave-vectors and velocities
along x/y computed by Eq. 4.16. To better appreciate the changes induced by the nematic
order we plot in the frst row the results for the tetragonal phase and in the second ones
the results obtained in the nematic phase assuming Φh = Φe = 4 meV.

The shrinking acts isotropically in the tetragonal phase, i.e. the hole pockets are
still circular and kF is constant. However due to the orbital-selectivity of the shrinking in
the OSSF model, they are weakly deformed in the nematic phase (4.2a-d). The changes in
the velocities for the Γ± pockets appear to be quite small and do not follow monotonously
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Figure 4.2: Numerical computation of FS wavevectors and velocity components for 122 system
parameters in the tetragonal and nematic phase. Φh = Φe = 4 meV, the spin-orbit interaction
is 5 meV, other band parameters are detailed in Appendix B.3. The kF are measured in units
1/a ∼ 0.375 Å, where a = aF eF e is the lattice constant of the 1-Fe unit cell. Velocities are in eV.
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Figure 4.3: Renormalized scattering rate (in meV) computed using realistic 122 system paramet-
ers. Here Γh = 3 meV and Γe = 2 meV. We fx ΔΓh and ΔΓe considering the imaginary part of0 0 
the self-energy for each pocket changing proportionally to the real part in the nematic phase (see
Appendix D.3).

the renormalization of the Fermi vectors as one could have naively expected (4.2e-f). This
is in agreement with the analytical calculation (see Eq. 4.21), where we found that the
renormalization of the velocities is given by the combination of two opposite contributions,
one due to the orbital mixing and the other from the shrinking (Fermi vector renormaliz-
ation), reducing the overall anisotropic e˙ect on the velocity. Due to the ellipticity of the
Fermi surface, the electron pockets have anisotropic velocities already in the tetragonal
phase (4.2b-c) with the X/Y pockets showing larger velocity along y/x. No qualitatively
changes are visible in the nematic phase (4.2e-f).
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Chapter 4. Anisotropy of the dc conductivity in the nematic phase

In Figure 4.3 we show for each pocket the scattering rate obtained from Eq. 4.14. In
the three panels we show the tetragonal value, Γ0, the nematic one ΓR and their di˙erence.

We fnd again a good agreement between the analytical calculations and the numer-
ical results for the hole pockets. As in Eq. 4.22 the angular dependence of the correction
Γ± Γ±Γ − Γ goes almost as a cos 2θ, even if the weak ellipticity of the hole Fermi surfaceR 0 

induced by the nematic order causes minor deviations, e.g. the correction vanishes for the
Γ+/Γ− slightly before/after π/4. No renormalizations are found along x/y for the X/Y 
pockets since, within our model, no scattering is allowed in the xy channel (Figure 4.1).
The location of the so-called cold spots i.e. the position of the minima of the scattering
rate for both hole and electron pockets, does not change once a realistic Fermi surfaces are
considered and corresponds to the ones shown in Figure 4.1.
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Figure 4.4: Numerical computation of the velocity contribution to the dc conductivity anisotropy
ΔσV and of the total dc conductivity anisotropy Δσ for realistic parameter for 122. In panels a-b we

l± (Φh/erenormalized the pocket contributions to their value in the tetragonal phase i.e. Δσ = 0)V 
and analogously in panels d-e. In c and f panels instead we renormalize the hole and electron

= σV (Φ
h/e = σ(Φh/econtributions to the total tetragonal values, i.e. σV tot = 0) and σtot = 0).

We can disentangle the e˙ect of the velocity and of the scattering rate on the dc
anisotropy by computing Eq. 4.18 using a constant scattering rate. This result just account
for the anisotropic e˙ects coming from the velocity so we will refer to it as ΔσV . In
Figure 4.4 we show for each pockets ΔσV 4.4a-c and the complete conductivity anisotropy
Δσ 4.4d-f as a function of Φh/e. To easily compare the results of the numerics with the
analytical estimate of Eq. 4.26 and 4.29 we renormalized the h±/e pocket anisotropy in
4.4a-b and 4.4d-e to their value in the tetragonal phase. In 4.4c and 4.4f we renormalize
instead the hole and electron anisotropy to the total values of σV and σ obtained summing
all the pockets contributions in the tetragonal phase.
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Chapter 4. Anisotropy of the dc conductivity in the nematic phase

From the analysis of ΔσV we fnd that the sign of the anisotropic contribution pro-
portional to Φh/e found in Eq. 4.26 and 4.29 is robust, with the Γ+/− and the Y/X 
pockets contributing with positive/negative terms to the dc conductivity anisotropy (see
panels 4.4a-b and inset of 4.4b). The hole pockets anisotropy due to the velocity, panels
4.4a-c, are opposite in sign and grows as Φh/�h in agreement with the analytical expecta-0 
tion. Even if the Γ± are not longer equivalent due to a small spin-orbit interaction their
anisotropic contributions almost cancel out so that the negative anisotropy of the electron
pocket is the one that determines the fnal results. Once the e˙ect of the scattering rate
is included in the calculation we see in 4.4d a reduction of the conductivity anisotropy for
the hole pocket that however still sum up to an anisotropic conductivity terms close to
zero (4.4f). In contrast a change of sign in the overall electronic term is observed due to
the larger positive contribution ΔσY of the Y pocket once that the anisotropic scattering
rate is correctly taken into account. For the set of parameters used, thus, we fnd a fnal
Δσ > 0. The result comes from the change in the relative weight of the contribution of
the X and Y pockets in the electron term due to the di˙erent scattering rate Γ

X/Y .R 
The fnal outcome is thus particularly sensitive to the Γe and ΔΓe used and could0 

be strongly a˙ected by any mechanism (temperature, disorder, interactions, ect.) a˙ecting
their absolute values.

FeSe

We repeat the numerical analysis considering the case of FeSe. In Figure 4.5 we
show the pockets Fermi surface wavevectors and velocities both in the tetragonal and in
the nematic phase assuming Φh = Φe = 15 meV.
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Figure 4.5: Numerical computation of the tetragonal and nematic Fermi surface and Fermi
velocity components for FeSe parameters. Φh = Φe = 15 meV, the spin-orbit interaction is 20 
meV, the other band parameters are detailed in Appendix B.3.
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Figure 4.6: Renormalized scattering rate for FeSe. hΓ0 0 = 5 meV and Γe = 2.5 meV. ΔΓh and
ΔΓe are considered as proportional to the nematic variation of the real parts (App. D.3)

With respect to the previous case, here we clearly see that the outer hole pocket,
the only one crossing the Fermi level, becomes strongly elliptical in the nematic phase due
to the large nematic order which also makes the X/Y pockets consistently di˙erent in
size (4.5a-d). The changes in the velocities (4.5e-f panels) are similar to the ones observed
for the 122 case but quantitatively more pronounced here due to the larger value of the
nematic order parameters.

The scattering rates for all the pockets are shown in Figure 4.6. For all the pockets
we fnd a clear deviation of the renormalized scattering rate from the analytical estimate.
In particular, the angular dependence of the Γ+ scattering rate is very weak and does
not resemble the cos 2θ predicted by Eq. 4.14. This is a consequence of the Fermi surface
nematic reconstruction of FeSe. In fact, the nematic order not only makes the Γ+ pocket
elliptical but also a˙ect its orbital content that becomes almost completely xz at the
Fermi level [60, 86, 128]. As a consequence, the cold spots of the outer pocket shown in
Fig. 4.1 do not represent anymore a minimum of the scattering since the Γ+ Fermi surface
is mostly xz also at θ = 0.

We study also in this case for each pocket the behaviour of ΔσV and Δσ as a function
of Φh/e, Figure 4.7. We use the same renormalizations used in Figure 4.4.

The analysis of the velocity contribution reveals that the sign of the Φh/e terms of
Eq. 4.26 and 4.29 is robust also in this case. We are no longer in the perturbative regime
as one can see from the non-linear behaviour of Δσh+ , shown in 4.7a, where the Γ+ pocketV 
anisotropy contribution grows much faster than what expected from the linear dependence
in Eq. 4.26. The fnal anisotropy of ΔσV is the result of the competition between the hole
and electron terms.

The inclusion of the scattering rate in the calculation strongly a˙ect the electron
pockets contribution while leaving Δσh+ almost unchanged. As a matter of fact, the
scattering rate of the outer hole pocket ΓΓ+ is almost isotropic, see Figure 4.6, so that theR 
anisotropic velocity is the only factor which contributes to the dc anisotropy of the Γ+ 
pocket.
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Figure 4.7: Numerical computation of the velocity contribution to the dc conductivity anisotropy
and of the total dc conductivity anisotropy for realistic parameter for FeSe. All the pockets show
consistent deviations of the dc anisotropy with respect the analytical expectations Eq. 4.26 and 4.29.

The fnal result for the dc conductivity strongly depends on the set of Γh/e and ΔΓh/e 
0 

used. In 4.7d-f, we show a case in which the inclusion of the scattering rate enhances the
relative weight of the electron contribution with respect the hole term, so that overall the
negative anisotropy of the electron part, due to the X pocket, determines the fnal results
shown in 4.7f.

High-energy renormalization and nesting

An e˙ect neglected in the above calculation is the renormalization of the quasiparticle
due to local electronic interactions. It is well established that in IBS the high-energy
renormalizations of the quasiparticle Zorb coming from local interactions are quite strong
and orbital-dependent [57, 58]. The high-energy renormalizations have noticeable e˙ects
on the optical conductivity in the tetragonal phase of IBS, as discussed in Ref. [165] and
should be included in the above calculation.

In order to assess the importance of this e˙ect, we repeted the numerical analysis in-
cluding phenomenologically the orbital renormalizations into the coherence factors (u/v)l R 
entering in Eq. 4.16. As expected, the inclusion of a severe reduction of the coherence
of the xy orbital (Zxy ∼ 0.3), that is the most correlated orbital in all IBS, leads to the
suppression of the V x/y contributions enhancing the dc anisotropy in the electron pock-X/Y 
ets. Moreover, the small di˙erentiation (∼ 10%) of the quasiparticle masses for the xz/yz 
orbitals in the nematic phase [97] contributes to enhance the di˙erentiation of the Γ± and
X/Y pockets. However, the sign of the velocity contribution to the dc anisotropy is robust
within the set of Zorb considered. The quasiparticle renormalizations a˙ect also the con-
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ductivity via the renormalized scattering rate, however their relevance strongly depends
on the set of parameters used, whose analysis goes beyond the scope of the present work.

Finally, it is worth noting that the analysis presented here does not include the
physics of the band-nesting e˙ects, which are the only ones to determine the location
of the hot-spots in the band-based description [94, 155]. In particular the ellipticity of
the X/Y pockets suggests that the scattering rate is maximum at the location where the
nesting with the hole pockets is realized. Within the OSSF both, the orbital character and
the degree of band nesting will contribute to the hot-spot location. Recent multiorbital
RPA calculation in the paramagnetic state support the idea that the dominant e˙ect in
determining the scattering rate is still the orbital character of the Fermi surface [121,166].
How these results evolve below TS within an orbital selective spin-nematic scenario is still
an open question which certainly deserves further investigation.

4.4. Discussion and comparison with experiments

In the previous section we computed numerically the dc anisotropy for realistic para-
meters of 122 pnictides and FeSe. The values of the band structure parameters and self-
energies used in the calculations quantitatively reproduce the main features of the Fermi
surface, including the Fermi surface shrinking and the orbital Fermi surface reconstruction
experimentally observed in the nematic phase of 122 and FeSe.

In 122, where the nematic order parameters Φh/e are small, the hole pockets contri-
bution to the dc conductivity anisotropy is well approximated by the analytical estimate
Eq. 4.26, while we observe consistent deviations in FeSe. Nonetheless, for both 122 and
FeSe systems the sign of the anisotropic contribution coming from the renormalized velo-
city, ΔσV , is robust. In both cases considered in Section 4.3.2 we managed to match the
experimental result, Δσdc(F eSe) < 0 and Δσdc(122) > 0, once the renormalization of the
scattering rate is included in the calculation. As already mentioned, the fnal result is still
somehow sensitive to the set of parameters used. Thus, in this last section we discuss in
general which are the possibilities to match the experimental results regardless the precise
choice of parameters used in Section 4.3.2.

Concerning 122 systems, as long as the hole pockets contributions to the dc aniso-
tropy cancel out, the fnal result is controlled by the electron pockets. Since they have
a strong elliptical deformation, their overall contribution to the dc anisotropy cannot be
predicted from the analytical result Eq. 4.29, and the fnal outcome depends on the relat-
ive weight of the X and Y pockets and on the relevance of the scattering rate anisotropy
over the contribution ΔσV

e . Even in doped 122 compounds the hole pocket contributions
cancellation still occurs since the relatively small value of the spin-orbit splitting at Γ guar-
antees that the Fermi energy is the same for the hole pockets. However, doping changes
both the size of the pockets and the degree of nesting between hole and electron pockets.
Both e˙ects contribute to change the relative weight of the X/Y electron pockets as well
as the balance between the velocity vs scattering rate anisotropic contributions and can be
at the origin of the di˙erent sign of Δσdc experimentally observed between the hole and
electron doped side of 122 phase diagram.

For what concerns FeSe, the presence of a single hole pocket and its strong orbital
reconstruction lead to rather di˙erent physics. In particular, since the nematic Fermi
surface reconstruction makes the whole Γ+ Fermi surface mostly xz even at θ = 0, the
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expected anisotropy of the renormalized scattering rate is absent, see Figure 4.6. As
a consequence the Γ+ anisotropic contribution is more likely controlled by the velocity
anisotropy. This result should be contrasted with the outcomes of Ref. [167], where the
di˙erence between 122 and FeSe is fully ascribed to a di˙erent behavior of the scattering-
rate anisotropy in the two compounds. In our picture the FeSe dc conductivity anisotropy
emerges from a subtle interplay between the competing e˙ects coming from the scattering
rate and the velocity, as it has been recently suggested by optical conductivity experiments
in FeSe [168].

It is worth noting that recent ARPES experiments reveal a strong kz dependence of
the orbital composition of the Γ+ Fermi surface [169], with the Fermi surface a kz = π 
recovering yz-character at θ = 0. As a consequence, also the scattering rate anisotropy
on Γ+ is expected to be larger at kz = π and its e˙ect on the dc conductivity aniso-
tropy can possibly compete with the velocity term at this kz. This observation calls for a
more complete analysis of the dc anisotropy involving also the kz-dependence of the Fermi
surface.

4.5. Conclusion Chapter 4

In conclusion, in the present Chapter we computed the dc-conductivity anisotropy
in the nematic phase of IBS using the orbital selective spin-nematic scenario that accounts
for the orbital content of the Fermi surface [26, 27]. In this scenario, the dc anisotropy
of the nematic phase of IBS depends on the scattering rate and velocity renormalizations
due to self-energy corrections. Both scattering rate and velocity are a˙ected by the Fermi
surface nematic reconstruction.

The scattering rate is strongly a˙ected by the orbital content of the Fermi surface,
and the location of its minima on the Fermi surface is found in correspondence of the less
renormalized orbitals giving rise to cold spots. The velocity renormalization is sensitive
both to the orbital mixing and to the shrinking of the Fermi surface induced by the nematic
order, with the former e˙ect dominating over the latter. Due to this e˙ect we fnd the
unexpected result that the conductivity increases in the direction in which the self-energy
is larger and the shrinking is stronger.

For both, hole and electron carriers the contribution of the velocity to the dc aniso-
tropy is opposite in sign to the one of the scattering rate. This is in agreement with optical
conductivity experiment in FeSe [168] where it is shown that scattering rate and velocity
contribute to the conductivity anisotropy with opposite signs.

Our results naturally follows from the spin-orbital entanglement implicit in the OSSF
model and are new results in contrast to the band spin-nematic scenario [23, 28]. In
particular we demonstrated that the usual expectation of anisotropic magnetic fuctuations
giving rise only to an anisotropy in the inelastic scattering rate [155] is not longer valid
once the orbital degree of freedom is taken into account in the theoretical description.

We performed numerical calculation for representative parameters for 122 pnictides
and FeSe. We verifed that for 122 system the analytical estimate represents a good approx-
imation of the numerical with the overall hole pockets contribution vanishing even once
a fnite spin-orbit splitting at Γ is considered. Numerical results for FeSe instead deviate
from the analytical expectations due to the huge nematic Fermi surface reconstruction.
We also discuss how the conductivity anisotropy depends on the system parameters. It

79



Chapter 4. Anisotropy of the dc conductivity in the nematic phase

can be dominated by either electron or hole pocket conductivity and depends on ellipticity
and high-energy renormalizations.

The OSSF scenario provides then a suitable framework where the same mechan-
ism due to orbital-spin interplay can reconcile the experimental observations reported in
di˙erent families of iron-based superconductors.
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5 
OSSF within a fve-pockets model

5.1. Introduction

The Orbital Selective Spin Fluctuation (OSSF) model has been derived in [27] within
a four-pocket model representative for IBS. This model o˙ers the possibility to study
qualitatively the di˙erent phenomenology of FeSe and 122 systems [27, 103] and it has
been exploited to perform quantitative analysis of the nematic and superconducting phase
of FeSe [60, 133].

In order address within a realistic calculation di˙erent compounds we need to con-
sider the most general fve-pockets that counts an additional pocket at theM = (π, π) point
with xy orbital content. The analysis of this pocket is interesting as it has been shown that
magnetic and superconducting properties vary with the size of this extra pocket [120,139].
One well-known explanation for the change of the size of the M pocket is given in terms
of the angle formed by the Fe-As bonds and the Fe-plane [107]. This angle di˙ers among
compounds [170, 171], and depends on doping [170,172,173] or applied pressure [174].

In the present Chapter we extend the OSSF model and generalize it to a fve-pocket
model. In Section 5.2 we introduce the extended OSSF model presenting the fve-orbital
kinetic and interacting Hamiltonian by adding the M hole pocket. The projection of the
interaction into the low-energy fve-pocket model unveils the orbital-selective character of
the spin-fuctuations with yz/xz spin-fuctuations connecting the hole-pockets in Γ and
the electron pockets in X/Y and xy spin-fuctuations connecting the hole-pockets in M 
with the X/Y electron pockets.

In Section 5.3, we derive the e˙ective action for the fve-pocket spin-nematic model
following the same procedure discussed in Chapter 2 and we discuss the contribution to the
magnetic and nematic instabilities coming from the Γ-X/Y sector and from the M -X/Y
sector.

In order to analyse the e˙ects on magnetism and nematicity due to the inclusion of
the M hole pocket in the low-energy model, in Section 5.4 we perform a preliminary study
of the three-band model MXY . The analysis represents an easy way to study the physics
associated to the xy OSSF coming in absence of coupling with the Γ−XY sector. The
analysis is also motivated by the results of renormalization group study of the fve-pocket
model that show that such a three-band model represents a fx-point of the low-energy
theory [123].
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5.2. Model Hamiltonian

5.2.1. Kinetic Hamiltonian

We consider a general fve-pocket model with two hole pockets, Γ+ and Γ−, centered
at the Γ = (0, 0) point, two electron pockets, X and Y , centered at X = (π, 0) and
Y = (0, π) points respectively and a M hole pocket located at the M = (π, π) point. In
Figure 5.1 it is shown a schematic representation of the orbital content of the Fermi surface
for a generic fve-pockets model for IBS. As within the four-pocket model, the hole pockets
at Γ and the electron pockets at X/Y are composed by yz − xz orbitals and yz/xz − xy 
orbitals respectively. The ffth pocket at M pocket is composed exclusively of dxy orbital.

Figure 5.1: General sketch of the orbital content of the Fermi surface of the fve-pocket model
for IBS. The three dominant orbital weights, dxz , dyz and dxy, are taking into account. The green
and red arrows show the OSSF carrying yz content in the x direction and xz content in the y 
direction, which connects the Γ hole pocket with an electron X and Y pocket respectively. The
blue arrows show the OSSF carrying xy content in the x and y directions connecting the M hole
pocket with both electron pockets X and Y .

The low-enegy bands are modelled by the kinetic part of the HamiltonianX 
†lH l = ψ Ĥ 

0 
l 
kψ

l (5.1)0 kσ kσ 
k,σ 

where l = Γ, X, Y, M and the spinors around the high-symmetry points are defned as
yz X/Y yz/xz xy xyxzψΓ = (ckσ, c ), ψ = (c , c ) and ψM = ckσ. As the hole pocket M is exclusivelykσ kσ kσ kσ kσ kσ 

composed by the xy orbital, the corresponding fermionic operator has only one component.
The diagonalization of the Ĥ l leads to the band dispersion for the di˙erent pockets.0k 

The same rotation matrices that defnes the bands for the four-pocket model diagonalize
yz xzthe l = Γ, X, Y Hamiltonian. For the Γ hole sector the fermionic spinor ψΓ = (c , c )kσ kσ kσ 
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Γ 
rotates via the unitary matrix Ûk as! ! ! 

Γ Γ yz h+ u −v c 
h− = Γ Γ xz (5.2)

v u c 

X/Y yz/xz xyand for the X/Y electron sector the fermionic spinor ψ = (c , c ) rotates via thekσ kσ kσ 

unitary matrix Ûk 
X/Y 

as ! ! ! 
X/Y+ X/Y X/Y yz/xz e u −v c 

= (5.3)X/Y − X/Y X/Y xye v u c 

xyĤ M only has one component thus does not require any rotation and we can use ψM = c0k kσ kσ 
and

hxy xy= c (5.4)

5.2.2. Interacting Hamiltonian

The interacting Hamiltonian, as for the four-pocket model (Eq. 2.26), is given by

1 X 
Sη

0 
Hint = − Uηη0 S~

η(q) · ~ (−q) (5.5)
2 

q 

with η, η0 = yz, xz, xy the orbital indices and Uηη0 ∼ Uδηη0 + J(1 − δηη0 ), with U and J 
being the usual Hubbard and Hund couplings. We again consider only spin operators withP 

Sη(q) = η† η 
0intraorbital character ~ 0 c ~σss0 c 0 with σss the Pauli matrices for the spinkss ks k+qs 

operator and peaked at (π, 0)/(0, π) momenta. By projecting the interacting Hamiltonian
Eq. 5.5 into the low-energy model Eqs. 5.2 - 5.4, the low-energy intraorbital spin operators
are given by X 

S~yz Γh† Γh† X = (u + v −)~σu
X e (5.6)X + 

kX 
S~xz Γh† Γh† Y = (−v + u −)~σu

Y e (5.7)Y + 
kX 

S~xy X = (h† )~σ(−v e X ) (5.8)Y xy 
kX 

S~xy Y = (h† )~σ(−v e Y ) (5.9)X xy 
k 

As already discuss within the analysis of the four-pocket model, the low-energy
projection unveils a strong orbital-selectivity of the spin-fuctuations. The inclusion into
the low-energy multiband description of the xy-hole pocket at M leads to the emergence
of a spin-fuctuating mode connecting the hole pocket at M and the electron pockets at
X/Y having xy character.

Consequently, the low energy for the fve-pocket interacting Hamiltonian Eq. 5.5
reduces to

Ũ 
S~yz Syz Sxz Sxz Sxy Sxy Sxy SxyHint = − ( · ~ + ~ · ~ + ~ · ~ + ~ · ~ ) (5.10)X X Y Y X X Y Y2 
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where Ũ is the intraorbital interaction renormalized at low energy.
Due to the orbital-selectivity of the spin-fuctuation the inclusion of the xy-hole

pocket at M in the OSSF model does not a˙ect the interacting Hamiltonian describing
the yz/xz spin-fuctuation exchange between Γ-X/Y and only appears via and additional
interacting term representing the exchange of spin-fuctuation having xy character between
the M hole pocket and the X/Y electrons. A schematic representation of the model is
sketched in Figure 5.1.

5.3. E˙ective action for the fve-pocket spin-nematic model

In this Section we derive the e˙ective action for the fve-pocket spin-nematic model
using the same machinery discussed in Section 2.1 exploiting the Hubbard-Stratonovich
(H-S) transformation to decouple the spin-spin interacting term Eq. 5.10.

yz/xz ~We introduce the H-S felds MX/Y coupled to the OSSF connecting Γ-X/Y having
xy/xy ~ 

Mfyz/xz character and coupled to the OSSF connecting M -X/Y having xy characterX/Y ⎛ ⎜⎜⎜⎝ 
⎛ ⎜⎜⎜⎝ 

⎞ ⎟⎟⎟⎠ 
⎞ ⎟⎟⎟⎠ 

χ−1 
X 

ff 
MX 

MX 

MY 

0 0 0 � fMX MY
fMY 

� χ−1 
Y 0 0 MY0 

Se˙ = MX 0 0 eχ−1 
X 

0 0 0 e 0 
χ−1 
Y ⎞ ⎟⎟⎟⎠ff ee ee 

ffMX )
2 MY )

2 (5.11)
u11 u12 MX )

2 

u12 u22 MY )
2 

We are using a notation in which the terms related to the xy OSSF are defned using a
tilde˜character. Herafter we refer toM -X/Y sector to indicate those quantities and Γ-X/Y
sector for the other. Notice that the quartic order expansion contains coupling terms k12/21 
that connect the Gaussian fuctuation of the yz/xz spin-mode along x with the xy along
the same direction (idem along y).

Quadratic terms

The Gaussian part of the action Eq. 5.11 is given by the magnetic susceptibilities
yz/xz xy/xy 

χ−1 χ−1 = 1/2Ũ + Π and e = 1/2Ũ + Πe , where Ũ is the e˙ective interactionsX/Y X/Y X/Y X/Y 
yz/xz xy/xy between low-energy quasiparticles, and Π and Πe are the propagators in the zero-X/Y X/Y 

⎛ ⎜⎜⎜⎝ 
⎛ ⎜⎜⎜⎝ 

⎞ ⎟⎟⎟⎠ 
(MX )

2 u11 u12 0 k12� 
2(M )+ X 

� (MY )
2 u12 u22 k21 0 

(MY )
2 ( ( 

0 k21 ( 
k12 0 ( 
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frequency limit given by X 
Πyz 2 2 2 2 = 2T (uΓuX g+gX + vΓuX g−gX ), (5.12)X 

k,iωnX 
Πxz 2 2 2 2 
Y = 2T (vΓuY g+gY + uΓuY g−gY ), (5.13)

k,iωnX 
ΠxyeX = 2T 2 vY gM gY , (5.14)

k,iωnX 
ΠxyeY = 2T 2 vX gM gX . (5.15)

k,iωn 

Notice that the two frst equations 5.12 and 5.13, are the same than Eqs. 2.30 and 2.31
for the four pocket model analyzed in Chapter 2 and represent the spin exchange of yz/xz 
spin-fuctuations between the Γ-X/Y sector. On the other hand, Eq. 5.14 and Eq. 5.15 are
the magnetic propagators in the zero-frequency limit coming from the xy spin-fuctuation
exchange between the M -X/Y

Quartic terms

The coeÿcients of the quartic part of the action Eq. 5.11 are given byX 
2 2 2 u11 = T (uX gX )

2(uΓg+ + vΓg−)2 , (5.16)
k,iωnX 

2 2 2 u22 = T (uY gY )
2(vΓg+ + uΓg−)2 , (5.17)

k,iωnX 
2 2 2 2 u12 = T uX gX uY gY uΓvΓ(g+ − g−)2 , (5.18)

k,iωnX 
2 ue11 = T (vY gY gM )

2 , (5.19)
k,iωnX 

2 ue22 = T (vX gX gM )
2 , (5.20)

k,iωnX 
2 2 2 ue12 = T vX gX vY gY gM , (5.21)

k,iωnX 
2 2k12 = T (uX vX gX )

2 gM (uΓg+ + vΓg−), (5.22)
k,iωnX 

2 2k21 = T (uY vY gY )
2 gM (vΓg+ + uΓg−). (5.23)

k,iωn 

The expression for the quartic order coeÿcients relative to the Γ-X/Y sector Eqs. 5.16 -
5.18, are the same found for the four pocket model Eqs. 2.32 - 2.34. Analogous expressions
are found for the M -X/Y sector, Eqs. 5.19 - 5.21. The mixed contribution connect the
two sector by combining the spin-fuctuation along x/y weighted with the correspondent
orbital factors, Eq. 5.22 and 5.23.

In what follows we perform analytical calculation of the coeÿcients of the e˙ective
action frst within the perfect nested parabolic band approximation and then accounting
perturbatively deviation from the perfect nesting conditions. We refer to Appendix E.1
for further details of the analytical computation.
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5.3.1. Perfect circular nested Fermi surfaces

To make a frst estimate of the new physics coming from the inclusion of the M 
pocket in the OSSF model, we start considering the simple case where the hole and the
electron pockets are described by perfect nested circular Fermi surfaces.

In this approximation the orbital weights and pocket Green’s functions reduce to

uΓ = uY = vX = cos θ, vΓ = vY = uX = sin θ (5.24)

g+ = g− = gM = gh = (iωn + �)−1 gX = gY = ge = (iωn − �)−1 (5.25)

with � = −�0 + k2/2m − µ. �0 is the o˙-set energy, m the parabolic band mass and µ 
the chemical potential and ωn = (2n + 1)πkBT is the fermionic Matsubara frequency (see
Appendix E.1.1). Notice that Eq. 5.24 are the same used for the analysis of the four-pockets
OSSF model given by Eq. 2.38 and describe the orbital composition of the Γ, X, Y pockets.
The M hole-pocket has purely xy orbital character so there is no angular modulation in
the orbital composition.

Quadratic terms

Within the perfect nested parabolic band approximation the quadratic terms for a
fve-pocket model given by Eqs. 5.12 - 5.15 becomeX 

Π0 
X = 2T (cos θ2 sin θ2 ghge + sin θ2 sin θ2 ghge), (5.26)

k,iωnX 
Π0 
Y = 2T (sin θ2 cos θ2 ghge + cos θ2 cos θ2 ghge), (5.27)

k,iωnX eΠ0 
X = 2T sin θ2 ghge, (5.28)

k,iωnX eΠ0 
Y = 2T cos θ2 ghge (5.29)

k,iωn 

It easy to verify that within this approximation all the components of the propagator
reduce to the same expression once performed angular integration over θ. By evaluating
the sum over the Matsubara frequency ωn we fnd

Π0 = Πe0 = Πeh (5.30)X/Y X/Y P R 
where we defne Πeh ≡ TNF iωn 

d� gegh = −NF (ln(ω0/T ) + const) that leads to the
usual logarithmic divergence. As a consequence the magnetic susceptibility associated to
yz/xz OSSF exchange between ΓXY and the one relative to xy OSSF exchange between
MXY n are equivalent � � 

χ0 −1 
χf0 

−1 T 
X/Y (q = 0) = X/Y (q = 0) = NF ln (5.31)

TN 

where the Neél temperature is

ω0 −(1/(2NF Ũ))TN = e . (5.32)
kB 
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Quartic terms

The quartic coeÿcients involving the Γ-X/Y sector (Eqs. 5.16 - 5.18) are given by

0 0 48 NF 
u = u = A(T ) (5.33)11 22 128 
0 u = = 0 (5.34)12 

7ζ(3)with A(T ) ≡ coming from the integration of the hole and electron Green’s func-
8π2T 2 

tions computed in detail in Appendix E.1.2.
The quartic terms for the M -X/Y sector are

48 NF0 0 u u11 

0 u12 

e 

0 0We fnd that the diagonal components u and ue are equal for both sectors, whileii ii 
0 0the o˙-diagonal components are di˙erent. ue is fnite, u instead vanishes for the Γ-X/Yij ij 

sector due to the contribution from Γ± pockets that cancel each other within the parabolic

e
e 

band approximation.
Notice that already within the parabolic band approximation the Γ-X/Y and the

M -X/Y sectors are coupled at quartic level by

16 NF
k0 = k0 = A(T ) (5.37)12 21 128 

0that assumes the same value of ue12 term given in Eq. 5.36.

0 0 0 0Within the perfect nested parabolic case using that u = 0 and u = ue = ue12 11 1211, k0 
12,

we can rewrite

A(T ), (5.35)= = 22 128 
16 NF A(T ) (5.36)= = 
128 

S0quartic 
e˙ = 

⎛ ⎜⎜⎜⎝ 
e 
ee 
0u12 
0 
0u12 
0u11 

⎞ ⎟⎟⎟⎠ (5.38)

0 eee 
0 0 

0u12 
0u11 
0u12 

u11 
00 u11 e0u12 
0e 0 

0u12 

with the quartic terms di˙erent from 0 given by a similar analytical expressions that only
vary in the numerical factors (Eqs. 5.33 - 5.37).

To study the magnetic and the nematic instabilities, we have to defne the analogous
of the ψ and φ order parameters for the four-pocket model given in Eq. 2.36 and 2.37
respectively and then, perform a second Hubbard-Stratonovich transformation by diagon-
alizing the quartic term of the e˙ective action given by Eq. 5.38. Despite the complication
due to the additional M -X/Y sector appearing in the e˙ective action of the OSSF model
for fve-pockets, the computation of the eigenvalues and the corresponding eigenvectors is
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still treatable analytically. The eigenvalues of Eq. 5.38 are given by

√1 NF
λ0 = u (1 − 5)ue = c1 A(T )1 11

0 +
2 12

0 
16 

1 √ 
0 0 NF

λ0 = u (1 + 5)ue = c2 A(T )2 11 − 122 16 
√ 

0 1 0 NF
λ03 = u11 + (1 + 5)ue12 = c3 A(T )

2 16 
√ 

0 0 NF
λ04 = u11 − 

1
(1 − 5)ue12 = c4 A(T ) (5.39)

2 16 

where ci > 0 are positive numerical factors. The corresponding eigenvectors are�� � � �� 
ρ1 =

1 
a(MX )

2 + (MY )
2 − (MfX )

2 + a(MfY )
2 

A�� � � �� 
1 

ρ2 = a(MX )
2 − (MY )

2 − (MfX )
2 − a(MfY )

2 
A�� � � �� 
1 

ρ3 = (MX )
2 − a(MY )

2 + a(MfX )
2 − (MfY )

2 
A�� � � �� 
1 

ρ4 = (MX )
2 + a(MY )

2 + a(MfX )
2 + (MfY )

2 (5.40)
A 

√ 
1where a = ( 5 − 1). Notice that in Eq. 5.40 we separated the contribution of the Γ-X/Y2 

sector given by MX/Y from the contribution of the M -X/Y sector given by Mf X/Y . The
specifc computation of Eqs. 5.39 and 5.40 is shown in Appendix E.2.

As one can see from Eq. 5.40, ρ1 and ρ4 are the eigenvectors describing isotropic
contributions to the magnetic fuctuations along the x/y directions, while ρ2 and ρ3 describe
anisotropic fuctuations which are related with the nematic order. From Eq. 5.39 we see
that for the perfect nested band approximation, all the eigenvalues are positive, this means
that analogously to what found for the four-pocket model, the interaction in the nematic
channel is always repulsive.

5.3.2. E˙ect of the ellipticity in the model

In this Section we include at perturbative level the electron pockets ellipticity δe and
the deviations from perfect circular nesting for the hole sector δm±,M in order to study
a more realistic case in which the form and size of the pockets are di˙erent. We follow
the same strategy of Chapter 2 and analyze how the Fermi surface shapes a˙ect to the
quadratic and quartic terms of the e˙ective action for the fve-pocket model.

In this approximation, the pockets Green’s function are

g±,M = gh(1 + δm±,M gh) 
gX/Y = ge(1   δe cos(2θ)ge). (5.41)

with gh and ge the perfect nested circular Green’s function given by Eq. 5.25. The e˙ect
of the ellipticity for the electron pockets is included in the perturbative parameter δe =� � mx−my�0 m . We account for a deviation from the perfect circular nesting condition (as2mxmy 

�0(
m±/M−mresults of doping for example) defning a perturbative parameter δm±,M = )m 
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term, where subscript m±/M refers to the Γ±/M hole pockets. To reduce the number of
parameters and make the result more readable for simplicity we set here δm+ = 0 as it
is only necessary one δm to di˙erentiate the two gamma pockets. See Appendix E.1.1 for
further details of the elliptical approximation.

Quadratic term

The quadratic term for the Γ-X/Y sector is given by

ΠX/Y = Πeh + 
NF A(T ) δm− δe (5.42)
2 

and for the M -X/Y sector is

NF
Πe X/Y = Πeh − 

2 
A(T ) δM δe (5.43)

Notice that the corrections ∼ δeδm±,M appear in the propagator with same numerical
coeÿcient but opposite sign for the two sectors. This is a direct consequence of the angular
integration of the cos(2θ) angular factor coming from the δe expansion Eq. 5.41 multiplied
by the orbital weights (u/v)l that are di˙erent from the Γ-X/Y sector and the M -X/Y
sector.

As consequence, the magnetic susceptibility is now di˙erent for the yz/xz OSSF of
the Γ-X/Y sector and the xy OSSF of the M -X/Y sector� � � � 

T 7NF ζ(3) 1 1 
χX/Y 

−1(q = 0) = NF ln − δm− δe − (5.44)
TN 
∗ 16π2 TN 

∗2 T 2 

� � � � 
T 7NF ζ(3) 1 1 

χ−1e (q = 0) = NF ln + δM δe − (5.45)X/Y T ∗ T ∗2 
N 16π2 

N T 2 

where T ∗ is the new Néel temperature that is still the degenerate for the yz/xz and xyN 
OSSF. Notice that the corrections ∼ δeδm±,M di˙erentiate the two subsectors for T > T ∗ 

N 
and vanish approaching TN 

∗ .

Quartic terms

The quartic terms for the Γ-X/Y sector are� � � � 
u11 = u22 = 

NF 
48 A(T ) + B(T ) 35δm 

2 
− + 28δe 

2 + 120 C(T ) δm− δe (5.46)
128 

u12 =
2 NF C(T )δ2 (5.47)
128 m− 

with
7ζ(3) 31ζ(5) 93 ζ(5)A(T ) ≡ , B(T ) ≡ − and C(T ) ≡ − 
8π2T 2 64π4 T 4 128π4 T 4 

the di˙erent temperature dependence factors that come from the di˙erent Green’s function
integrals.
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The quartic terms involving the M -X/Y are given by� � � � 
ue11 = ue22 = 

NF 
48 A(T ) + B(T ) M + 28δe 

2 − 128 C(T ) δM δe (5.48)48δ2 
128� � �� 

M − 4δ2 ue12 = 
NF 

16 A(T ) + B(T ) 16δ2 (5.49)e128 

where the δM δe term appears with opposite sign respect to the Γ-X/Y sector given by
Eq. 5.46. The mixing terms are� � � � 

k12 = k21 = 
NF 

16 A(T ) + B(T ) 8δM δm− + 4δ2 + 4 C(T ) δm− δe (5.50)e128 

where an extra δM δm− term that connects the Γ-X/Y sector and the M -X/Y sector is
obtained.

In Table 5.1 we summarize the di˙erent contributions for the quadratic and quartic
terms in the perfect circular nested Fermi surfaces and elliptical approximation are shown.

Five-pocket model: Γ+Γ−XY M 
Quadratic terms

From Γ-X/Y sector From M -X/Y sector
Π0 e, Π0 
X/Y X/Y Πeh Πeh eΠX/Y , ΠX/Y +NF /2Aδm− δe −NF /2Aδm− δe 

Quartic terms
From Γ-X/Y sector From M -X/Y sector

0 0u , eu11/ eNF 11/ eNF 48A 48A 
u11/ eNF , eu11/ eNF +B(35δ2 + 28δ2) + 120Cδm− δem− e +B(48δ2 + 28δ2) − 128CδM δeM e 
0 0u , eu12/ eNF 12/ eNF 0 16A 
u12/ eNF , eu12/ eNF +2Cδ2 

m− +B(16δ2 − 4δ2)M e 

From mixed Γ-X/Y and M -X/Y sectors
k0 
12/ eNF 16A 
k12/ eNF +B(8δM δm− + 4δ2) + 4Cδm−e δe 

Table 5.1: Quadratic and quartic terms for the fve-pockets model for the perfect circular nested
Fermi surfaces and the case for elliptical electrons and deviated hole pockets from the perfect nested
approximation. The quantities coming from the Γ-X/Y and M sectors are represented without or
with a tilde˜respectively.

The analytical computation of the eigenvalues and the corresponding eigenvectors for
the quartic term of the e˙ective action as a function of the ellipticity and pocket size is still
working in progress. To gain physical in what follows we study two complementary three-
band model Γ−XY and MXY . The analysis of the three-pocket model MXY represents
an easy way to study the physics associated to the xy OSSF coming from the presence of
the M pocket in a simplifed frame in which there is no coupling with the xz/yz OSSF of
the Γ-XY sector. The analysis is also motivated by the results of renormalization group
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study of the fve-pocket model that show that such a three-band model represents a fx-
point of the low-energy theory [123]. We compare the results of the MXY model with
the results of the Γ−XY that present the same degree of orbital nesting (good matching
between the orbitals in the nested hole and electron pockets) and has been already studied
in [27].

5.4. Orbital selectivity in the Γ−XY vs MXY pocket model

5.4.1. Γ−XY model

As we discussed in Section 2.2.2, the Γ−XY model is a prototypical three-pocket
model in which the hole Γ− pocket has optimal orbital yz/xz nesting with the electron
pockets.

The interacting Hamiltonian for the Γ−XY model is given by

Ũ 
yz/xz yz/xz ~ · ~Hint = − S S (5.51)X/Y X/Y 2 

Myz Mxz~ ~By decoupling the interacting term 5.51 by means of two vectorial H-S felds andX Y 
Syz Sxz~ ~associated with the collective magnetic degree of freedom and given by Eqs. 5.6X Y 

and 5.7 respectively setting h† = 0, the e˙ective action for the Γ−XY model is+ ! ! ! !� � χ−1 Myz � � (Myz)2 
Γ−XY 

Myz Mxz X 0 X (Myz)2 (Mxz)2 u11 u12 XSe˙ = X Y χ−1 Mxz + X Y (Mxz)20 Y Y u12 u11 Y 

(5.52)

with χ−1 (q = 0) = χΓ−XY −1 
(q = 0) the static magnetic susceptibility equivalent for bothX/Y 

directions X/Y given by � � � � 
3NF T 7NF ζ(3) 1 1 

χΓ−XY −1 
(q = 0) = ln − δm− δe − (5.53)∗Γ−XY ∗Γ−XY 4 TN 

16π2 
(TN )2 T 2 

The coeÿcients of the quartic part of the action in Eq. 5.52 are� � � � 
Γ−XY NF 49δe 

2 
u = 35 A(T ) + B(T ) 35δ2 + + 112 C(T ) δm− δe , (5.54)11 m−128 2� � �� 

δ2 
Γ−XY NF e u = 3 A(T ) + B(T ) 3δ2 − (5.55)12 m−128 2 

Γ−XY Γ−XY Γ−XY Thus, the nematic coupling for Γ−XY model the is defning as λ = u − uφ 11 12 
and is given by � � 

Γ−XY NF
λ = 32 A(T ) + B(T )(32δ2 + 25δ2) + 112 C(T ) δm− δe (5.56)φ m− e128 

which depends on both, the ellipticity of the electrons δe and the deviation from perfect
nested Γ− Fermi surfaces δm− .

91



    

Chapter 5. OSSF within a fve-pockets model

5.4.2. MXY model

We perform the same analysis for the MXY model, in which the only the M hole is
taken into account. The low-energy projection in this model leads to interacting Hamilto-
nian

Ũ 
xy/xy xy/xy ~ · ~Hint = − S S (5.57)X/Y X/Y 2 

in which the spin-fuctuations connecting theM hole pocket and the X/Y electron pockets
Mxy~ are fully xy. By decoupling the interacting term 5.57 by means of two H-S felds andX 

Mxy Sxy Sxy~ ~ ~associated with magnetic degree of freedom and given by Eqs. 5.8 and 5.9Y X Y 
respectively, the e˙ective action for the MXY model is

! ! ! !� � Mxy � � Mxy 
SMXY Mxy Mxy χeX 

−1 0 f 
X Mxy Mxy ue11 ue12 ( f X )

2 
= f f + ( f )2 ( f )2 

e˙ X Y χ−1 
Mfxy X Y e e Mxy)20 e u12 u11 ( f Y Y Y 

(5.58)

χ−1 χMXY −1
with eX/Y (q = 0) = e (q = 0) the static magnetic susceptibilities for the X/Y 
directions are given by � � � � 

T 7NF ζ(3) 1 1 
χMXY −1 e (q = 0) = NF ln + δM δe − (5.59)

T ∗MXY (T ∗MXY T 216π2 )2 
N N 

Given the orbital composition of the M-pocket the angular integral makes the MXY spin-
propagator larger than the one for the three pocket model Γ−XY . This leads to a higher
instability temperature for the xy OSSF of theMXY model with respect to the the xz/yz 
OSSF of the Γ−XY . Notice that the term proportional to δM δe is equal to the term
proportional to δm− δe for the Γ−XY model given in Eq. 5.53 but it contributes to the total
static spin susceptibility with opposite sign.
The coeÿcients of the quartic part of the action in Eq. 5.58 are� � 

MXY u = 
NF

M + 28δ2 , (5.60)48 A(T ) + B(T )(48δ2 ) − 128 C(T ) δM δe11 e128� � 
MXY NF 
u = M − 4δ2) (5.61)16 A(T ) + B(T )(16δ2 
12 e128 

MXY MXY The nematic coupling for the MXY model λMXY = u − u is given byφ 11 12 � � 
λMXY NF 

= 32 A(T ) + B(T )(32δ2 ) − 128 C(T ) δM δeM + 32δ2 (5.62)φ e128 

where, as in the quadratic term, the term proportional to δM δe contribute with opposite
sign in comparison with the Γ−XY model term to the nematic coupling.
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5.4.3. Γ−XY model vs MXY model

E˙ect of the ellipticity: δe 6= 0, δm− = δM = 0 

We frst consider the case in which only the electron pocket shapes are modifed from
the perfect nested condition.

(a) (b) 

Γ− XY 
χMXY Figure 5.2: (a) Static spin susceptibilities χ (q = 0), e (q = 0) and (b) nematic coup-0 0 

0Γ−XY , λ0MXY lings λ for the two three-pocket models Γ−XY and MXY respectively. The Néelφ φ 
Γ−XY temperature is T = 110K and T MXY = 132K. The deviation of the hole pockets from theN N 

perfect nested Fermi surfaces is set to δm− = δM = 0. The ellipticity of the electron pockets is
δe = 0.55�0. In the inset of (a) is shown the perfect nested hole pocket (orange) in comparison
with the elliptical electron one (blue).

The ellipticity of the electron pocket does not a˙ect the hierarchy of the magnetic
χMXY instability and we still fnd the divergence of e (q = 0) at higher temperature than0 

the one for χΓ−XY 
(q = 0). As we mentioned before this is the result of angular integration0 

over the di˙erent orbital weights for the hole band. In fact, while the Γ− hole pocket has
an angular orbital modulation given by h− = sin θcyz − cos θcxz, the M pocket does not

xypresent orbital modulation since it is made exclusively of xy orbital component hxy = c 
(Eq. 5.4).

In Figure 5.2b the nematic coupling for the two three-band model taking into ac-
count elliptical electron Fermi surface is shown. The nematic coupling is positive at high

0Γ−XY temperature and changes sign lowering T . While λ changes sign slightly above theφ 
Γ−XY [27], λ0MXY T is always positive for any T > T MXY and changes sign slightly belowN φ N 

the T MXY , this means that the nematic channel is always repulsive. Notice that, the ho-N 
mogeneous orbital modulation of the M pocket that appeared to boost magnetism appear
detrimental for nematic instability.

E˙ect of the deviation from perfect nesting: δm− = δM 6= 0, δe =6 0 

We consider δm− = δM =6 0 for the three-band models, Γ−XY and MXY, taking into
account the same e˙ect of the ellipticity δe = 0.55�0 than in the previous case. We show
the results for two di˙erent set of parameters δm− = δM = {0.07�0, 0.1�0}.
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1. δm− = δM = 0.07�0, δe = 0.55�0 

(a) (b) 

Figure 5.3: (a) Static spin susceptibilities (q=0) and (b) nematic couplings for the two three-
pocket models Γ−XY and MXY. Solid lines represent these quantities by taking into account the
deviation of the hole pockets from the perfect nested Fermi surfaces δm− = δM = 0.07�0 and the
ellipticity of the electron pockets δe = 0.55�0. Dashed lines represent the previous case where
δm− = δM = 0 and δe = 0.55�0 in order to compare them. In the inset of (a) is shown the e˙ect of
the deviation δm−/M 6= 0 (solid orange line) from the perfect nested hole pocket (dashed orange
line) in comparison with the elliptical electron one (blue).

The Fermi surface for this range of parameters are shown in the inset panel of the
Figure 5.3a in comparison with the perfect nested hole pocket.

The small variation in size of the hole-pocket does not introduce strong variation in
the temperature behaviour of the magnetic susceptibility, Figure 5.3a. The hierarchy of
the the Néel temperatures is the same as the parabolic approximation and the corrections
proportional to δeδm/M , opposite in signs for the two models, vanish when approaching
the instability temperature as shown in Eqs. 5.53 and 5.59.

On the contrary, the nematic coupling is strongly a˙ected by small variations of
the hole-pockets sizes. In Figure 5.3b it is shown the results for the nematic coupling
(Eqs. 5.56 and 5.62) represented by solid lines in comparison with the previous result for
δm− = δM = 0 represented by dashed lines. As one can reads from Eqs. 5.56 and 5.62 the
term proportional to δm−/M δe contributes with opposite sign to the nematic coupling of
the two models under exam. Nematicity in the Γ−XY model is favoured by the variation of
the hole-pocket size i.e. the nematic coupling changes sign for higher temperature compare
to the case δm− = 0. For the MXY model, instead we fnd the opposite results with the
nematic coupling changing sign at even lower temperature.

2. δm− = δM = 0.1�0, δe = 0.55�0 

The above results are made more striking by the analysis of a slightly larger variation
of the hole-pocket size δm− = δM = 0.1�0 ( Fermi surface shown in the inset of Figure 5.4a)

While the the magnetic susceptibility shown in Figure 5.4a are robust with respect
variation of the hole-pocket size, the nematic couplings, Figure 5.4b , are extremely sensit-
ive to δm−/M variations. Again the two model are a˙ected by the pocket size variation in a
opposite way with the interaction in the nematic channel attractive over a wider range of
temperature for the Γ−XY model and the nematic coupling for the MX/Y model found
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(a) (b) 

Figure 5.4: (a) Static spin susceptibilities (q=0) and (b) nematic couplings for the two three-
pocket models Γ−XY and MXY. Solid lines represent these quantities by taking into account
δm− = δM = 0.1�0 and δe = 0.55�0. Dashed lines represent the case where δm− = δM = 0 and
δe = 0.55�0. In the inset of (a) is shown the e˙ect of the deviation δm− /M =6 0 (solid orange line)
from perfect nested hole pocket (dashed orange line) in comparison with the electron one (blue).

out to be always repulsive.

From the previous analysis we can obtain the following results:
(i) Given two system with similar band and orbital nesting the magnetic transition

is higher in system in which the angular integral is maximize by the orbital composition
of the pockets, in our case, be the homogeneous composition of the M pocket.

(ii) Magnetism is robust and is not strongly not a˙ected by deviation from the perfect
nesting of the hole pockets.

(iii) The nematic coupling is very sensitive to to small variation of the hole-pocket
size. Notice, that when increasing the value of the δm−/M 6= 0 parameter, it a˙ects in an
opposite way to the orbital nesting for the Γ−-X/Y or M -X/Y models. When δm− > 0 we
are moving away from the perfect orbital matching between Γ− and the electron pockets.
That means δm− > 0 values are detrimental for magnetism but enhance the appearance of
the nematic instability. However, for theMXY moving away from δM = 0 implies a better
orbital nesting with the elliptical electron pockets due to the position of the xy orbitals
(see inset of Figure 5.4b). Therefore, when δM > 0 magnetism is enhanced and nematicity
is suppressed.

5.5. Conclusion Chapter 5

In this Section we analyze the e˙ective action up to the quartic order for the fve-
pocket model. The low-energy projection unveil within low-energy model the existence of
two OSSF, one, having yz/xz character, describes the spin-exchange between the two-hole
pockets at Γ and the X/Y electron pockets, the other, having xy character, describes
the spin-exchange between the xy-hole pocket at M and the X/Y electron pockets. The
two OSSF are decoupled at Gaussian level, while the quartic term of the action present
coupling terms that combine the xz/yz OSSF and the xy OSSF along x and along y.
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Within the perfect nested parabolic band approximation we fnd that the magnetic
yz/xz susceptibility associated to the spin fuctuation exchange between Γ± and X/Y in
the four-pocket subsector and the xy susceptibility associated to the M -X/Y pockets are
equivalent as naively expected given the orbital composition of the hole-pockets involved.
As mentioned at the OSSF are coupled at the quartic order and the analysis of the nematic
instability cannot be performed studying the four-pocket yz/xz systems and the xy three-
pocket separately. Diagonalizing the quartic action we fnd indeed a set of order parameters
that contain a linear combination of the spin-fuctuations of the two subsectors. We identify
the nematic order parameters as the two eigenvector having x/y anisotropic character
and by analyzing the corresponding coupling we fnd that the nematic channel is always
repulsive within the perfected nested parabolic band approximation.

We include perturbatively the ellipticity of the electron pocket δe, and consider a
deviation from the perfect nesting condition assuming a variation in the size of the hole
pocket δm−,M . The variation of the hole-pockets size can be the results for example of
doping or pressure. We fnd that the correction proportional to δm−,M δe appear with
opposite sign in the Γ-X/Y and M -X/Y subsectors. This is a direct consequence of the
di˙erent orbital character of the hole pockets, this in fact a˙ect the orbital weight factors
appearing in the calculations.

The analysis of the nematic instability within the full model accounting for ellipticity
and doping is still work in progress.

In order to gain physical insight we study two complementary three-band model
Γ−XY and MXY . The analysis of the three-pocket model MXY represents an easy way
to study the physics associated to the xy OSSF coming from the presence of the M pocket
in a simplifed frame in which there is no coupling with the xz/yz OSSF of the Γ-XY
sector. The analysis is also motivated by the results of renormalization group study of the
fve-pocket model that show that such a three-band model represents a fx-point of the
low-energy theory [123]. We compare the results of the MXY model with the results of
the Γ−XY model which both present the same degree of band and orbital nesting (good
matching between the orbitals in the nested hole and electron pockets). We fnd:

(i) The orbital modulation of the hole pocket is an essential element in order to
understand the magnetic instability. Given the same degree of band and orbital nesting the
MXY band model present a stronger magnetic tendency as a consequence of homogeneous
orbital composition of the M pocket. Notice that this result does not change even when
ellipticity and variation of the hole-pocket size (that a˙ect the degree of band and orbital
nesting) are taken into account. This results is consistent with [120, 139] where the M
pockets is considered as a key piece for the appearance of magnetism in 1111 systems.

(ii) The nematic channel is much more sensitive to deviation from the parabolic
approximations and the MXY and the Γ−XY models are a˙ected by elliptivity and
hole-pocket size variation in an opposite way. For the MXY model, nematicity is under-
mined and even is not realized, while for the Γ−XY model, nematicity is boosted as we
move away from the optimal orbital matching. The competition between this two kind of
nematicity could be at the origin of the more elusive nematic phase recently observed in
1111 compounds [175, 176].
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We leave for further work the study of magnetic and nematic instabilities for a
realistic fve-pockets model. With the analysis of the two three-pockets models Γ−XY
and MXY we study two limits cases which contain the relevant orbital information of the
general fve-pocket model. Thus, we could expect that when the study of the complete
fve-pocket model is done, a competition between the Γ-X/Y and M -X/Y hole sectors in
the nematic transition will take place.
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6 
Conclusions

This Thesis focuses on iron-based superconductors (IBS). The physics of these
materials is so rich that it has placed their theoretical understanding as one of the most
interesting open puzzles in the feld of superconductivity. The phase diagram of IBS exhib-
its a wide range of di˙erent phases including the magnetic, nematic and superconducting.
In these materials antiferromagnetism appears in the proximity of superconductivity sug-
gesting that spin-fuctuations might play an important role in mediating pairing. Another
key feature is the multiorbital character of their electronic structure at low-energy. There
are two main theoretical approaches that have been use to explain the complex phenomen-
ology of IBS in the spin-fuctuation driven scenario: multiband and multiorbital models.
Multiband descriptions lack the information of the orbital degree of freedom of the system,
while the complexity given by the inclusion of the multiorbital structure makes diÿcult to
address the spin-orbital interplay in multiorbital models. In this Thesis we have studied
the following issues: (i) can we describe the magnetic, nematic and superconducting phases
of iron-based materials using a single modeling? (ii) can this theoretical frame account for
the di˙erent phenomenology of the diverse compounds? and (iii) how does emerges and
what are the e˙ects of the spin-orbital interplay in the physics of IBS?.

We addressed these questions using the Orbital Selective Spin-Fluctuation (OSSF)
model. The OSSF model is a minimal low-energy model for IBS that operates in the
band basis but fully incorporates the orbital information of the low-energy excitations.
The projection of the orbital information at low-energy unveils a non trivial spin-orbital
interplay that results in a strong orbital selectivity of the Spin Fluctuations: Spin Fluc-
tuations peaked around the QX /QY vectors involve only the yz/xz orbitals, respectively.
The description of the physical phenomena in terms of OSSF retains the simplicity of the
band basis models, but fully account for the orbital degree of freedom.

We frst analyzed the magnetic and the superconducting phases in a Random Phase
Approximation (RPA) for a generic four-pocket model: Γ+, Γ−, X and Y , within the
OSSF scenario. The orbital selectivity, encoded in our model, simplifed substantially
the analysis, allowing for analytical treatments, while retaining the main features of the
spin-excitations computed using fve-orbital models. The OSSF model in fact, reproduces
qualitatively well the overall momentum dependence and the relative heights and widths
of the peaks located at di˙erent momenta. This is a remarkable result considering that
the OSSF model is a low-energy e˙ective model that only consider the yz, xz, xy orbitals.
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Another important result follows from the observation that the momentum-
dependence of the peak of the RPA susceptibility depends on the degree of orbital nest-
ing between the nested pockets: we fnd a commensurate/incommensurate peaks in the
spin susceptibility depending if there is orbital match/mismatch between the nested pock-
ets. Moreover we see that the main contribution to the spin susceptibility comes from
the spin-fuctuations exchange between the hole and electron pockets and that the larger
contributions comes from the hole pocket whose orbital composition match better the or-
bital composition of the electrons. Notice that, while a generic correlation between the
orbital-make up of the Fermi surface and the momentum-dependent structure of the RPA
spin excitation has been already highlighted within multiobital models, the explicit link
and precise relationship between orbital nesting and momentum dependence of the spin-
susceptibility is a new results obtained from the RPA analysis within the OSSF model.

We analyzed the pairing interaction of IBS assuming that the same orbital selective
spin-fuctuations responsible for magnetism are also responsible for superconductivity. We
studied the superconducting pairing vertex and the resulting gap equations for these ma-
terials. Thanks to the orbital selectivity, the diagrammatic for the pairing vertex within the
OSSF model become treatable via analytical computation and all the Feynman’s diagrams
can be explicitly drawn in an easy way in contrast to the complex diagrammatic of the
full multiorbital description. We showed that both the pairing vertex and the band gaps
inherit the orbital modulation in momentum given by the spin susceptibilities. Therefore,
we obtained an anisotropic sign changing s-wave gap symmetry, i.e., a s± s-wave band gap,
in agreement with the experiments and multiorbital models. A deep analysis of the bands
gap structure shows that the angular dependence and the magnitudes of the di˙erent gaps
depend directly on the degree of orbital nesting between the holes and the electrons pock-
ets, and what is more important, that the degree of orbital nesting (more than the band
nesting) controls the strength of the pairing. This result proves that a minimal theoretical
model to understand superconductivity in IBS has to account for the spin-orbital interplay.
In that respect, the OSSF model is a perfect candidate.

We then analyzed the nematic phase of IBS by studying analytically and numerically
the DC conductivity within the orbital-selective spin fuctuation scenario. Within this
approach, the anisotropy of spin fuctuations below the spin-nematic transition at TS is
also responsible for the orbital ordering, induced by nematic self-energy corrections to the
quasiparticle dispersion. As a consequence, the anisotropy of the DC conductivity below
TS is determined not only by the anisotropy of the scattering rates as expected within
a spin-nematic scenario, but also by the modifcation of the Fermi velocity due to the
orbital reconstruction (change in size, shape and orbital composition of the pockets). This
is a remarkable example of the spin-orbital interplay in these systems. More interestingly,
it turns out that these two e˙ects contribute to the DC conductivity anisotropy with
opposite signs. By using realistic band-structure parameters we compute the conductivity
anisotropy for both 122 and FeSe compounds, discussing the possible origin of the di˙erent
DC conductivity anisotropy observed experimentally in these two families of iron-based
superconductors. We reproduced the experimental sign of the DC conductivity anisotropy
for the 122 ΔσDC (122) > 0 and for the FeSe ΔσDC (F eSe) < 0 when taking into account
shrinking and the orbital reconstruction of the Fermi surface of those materials.

The OSSF model has been extensively studied to analyze the phenomenology of
three- and four-pocket. In this Thesis we extended the OSSF model to the analysis of
a more realistic fve-pockets model, in which we account for the xy-hole pocket M at
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QM = (π, π). We have derived the e˙ective action in terms of the spin excitation up to
the forth order following the same strategy used to analyze the four-pocket model. Our
analysis for the fve-pocket model shows that also in this case the projection of the orbital
information at low-energy unveils a strong orbital selectivity of the spin fuctuations. We
found, in fact, two additional spin excitations connecting the M hole pocket with the X/Y
electron pockets, having xy-orbital character. We showed how the spin-fuctuations in
this model contribute within two di˙erent coupled subsectors: Γ-X/Y and M -X/Y, that
give opposite contributions to the magnetic- and nematic-channel of the total e˙ective
action. In order to understand how the inclusion of the ffth pocket a˙ects the magnetic
and nematic instabilities, we perform a preliminary study of two limit cases in which
we consider the two subsectors fully decoupled: in one case we consider only the yz/xz 
spin-fuctuations of the Γ-X/Y sector, while in the other case we only account for the xy 
spin-fuctuations connecting the M -X/Y sector. This analysis is also motivated by the
result of renormalization group study of the fve-pocket models that found the three-band
M -XY model as a fxed point of the theory at low energy. By comparing these two limit
cases, we are able to gain physical insight on the new physics arising from the presence
of the extra pocket. The contribution to magnetism and nematicity of the xy OSSF of
the M -X/Y appears to be in competition with the one coming from the yz/xz OSSF
of the Γ-X/Y. We realized that this e˙ect can be understood in terms of the orbital
degree of nesting between the hole and the electron pockets, which is again more e˙ective
than the band nesting of the Fermi surfaces in controlling the instabilities realized in the
system. The competition between OSSF belonging to di˙erent subsectors could explain
why di˙erent realizations of nematicity are found in di˙erent members of the IBS family,
with certain compounds as e.g. 1111 showing more elusive nematicity with respect FeSe.
In order to fully address this issue, we need to understand how the competition between
the OSSF of the Γ-X/Y and M -X/Y sectors evolves once considered the full fve-pockets
model in which the two are coupled. This will be the subject of further investigation.

To conclude, in this Thesis we have shown how the diverse phenomenology of various
families of IBS can be understood within a common framework: the Orbital Selective Spin
Fluctuation scenario. We have seen that, thanks to the orbital selectivity of the magnetic
excitations of the system, a spin-orbital interplay arises in the magnetic susceptibility,
superconducting gaps and velocity and the scattering rate in the nematic phase of IBS.
Given the success of the model, it could be used to make a complete study of most of
the IBS phenomenology. In this respect, a complete study of the fve-pocket model to
analyze, magnetic, nematic and superconducting phases in di˙erent IBS compounds is
already work in progress. In the next future, one could compute other response functions
in order to compare with available experiments, e.g. the dynamical susceptibility in order to
compare with Inelastic Neutron Scattering (INS) and Nuclear Magnetic Resonance (NMR)
experiments. Another possible direction could be the extension of the analysis of the pairing
vertex performed for the tetragonal phase into the nematic one. As the nematicity is an
e˙ect beyond RPA, this calculation would require to perform self-consistent calculations of
the pairing vertex and superconducting gaps. Finally, orbital selectivity might also appear
in other compounds in which the multiorbital character plays an important role. Without
doubt, there are numerous avenues where orbital selectivity may play an important role,
leaving many possibilities to be explored.
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Conclusiones

Esta Tesis se ha centrado en los superconductores basados en hierro (IBS). La
física de estos materiales es tan rica que ha situado su comprensión teórica como uno de
los rompecabezas más interesantes en el campo de la superconductividad. El diagrama
de fases de los IBS exhiben un gran rango de fases diferentes incluyendo la magnética,
nemática y superconductora. En estos materiales el antiferromagnetismo aparece en las
proximidades de la superconductividad sugiriendo que las fuctuaciones de espín podrían
jugar un papel importante en el mecanismo de la superconductividad. Otro factor clave
es el carácter multiorbital de su estructura electrónica a baja energía. Hay dos principales
propuestas teóricas que son usadas para explicar la compleja fenomenología de los IBS en
el escenario mediado por fuctuaciones de espín: los modelos multibanda o multiorbitales.
A los modelos multibanda les falta la información sobre el grado de libertad orbital del
sistema, mientras que la complejidad al considerar estructuras multiorbitales hace difícil
abordar la interacción entre el espín y el orbital en los modelos multiorbitales. En esta
Tesis hemos estudiado los siguientes problemas: (i) ¿podemos describir la fase magnética,
nemática y superconductora de los materiales basados en hierro usando un solo modelo?
(ii) ¿puede este marco teórico explicar la diferente fenomenología entre los diversos com-
puestos? (iii) ¿cómo surge y cuáles son los efectos de la interacción entre el espín y el
orbital en la física de los IBS?

Abordamos esas preguntas usando el modelo de Fluctuaciones de Espín con Selec-
ción Orbital (OSSF). El modelo OSSF es un modelo de baja energía que opera en la base
de las bandas pero incorpora completamente la información orbital de las excitaciones de
baja energía. La proyección del contenido orbital a baja energía descubre una relación no
trivial entre el espín y el orbital que resulta en una fuerte selectividad orbital dada por
las fuctuaciones de espín: las fuctuaciones de espín se vuelven máximas alrededor de los
vectores QX /QY involucrando a los orbitales yz/xz respectivamente. La descripción de
los fenómenos físicos en términos de OSSF conserva la simplicidad de los modelos basados
en la banda, pero teniendo además en cuenta el grado de libertad orbital.

Primero hemos analizado la fase magnética y superconductora en una Aproxim-
ación de Fase Aleatoria (RPA) un modelo genérico de cuatro áreas: Γ+, Γ−, X y Y en
un escenario OSSF. La selectividad orbital, codifcada en nuestro modelo, simplifca sub-
stancialmente el análisis, permitiendo tratamientos analíticos mientras se conservan las
características principales de las excitaciones de espín calculadas usando un modelo de
cinco orbitales. El modelo OSSF de hecho, reproduce cualitativamente bien la dependen-
cia general del momento y las relativas alturas y anchuras de picos localizados en momentos
diferentes. Esto es un resultado remarcable considerando que el modelo OSSF es un modelo
efectivo a baja energía que solo considera los orbitales yz, xz, xy.

Otro resultado importante viene de la observación de que la dependencia en mo-
mento del pico de la susceptibilidad RPA depende del grado de coincidencia orbital entre
las diferentes áreas: encontramos picos conmensurados/inconmensurados en la susceptib-
ilidad de espín dependiendo de si hay buen grado de coincidencia orbital entre las áreas
relacionadas. Además, vimos que la principal contribución a la susceptibilidad de espín
viene del intercambio de fuctuaciones de espín entre las áeras de huecos y de electrones
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siendo la mayor contribución la de el área de huecos con mejor coincidencia orbital con las
áreas de electrones. Es importante darse cuenta de que mientras la correlacción genérica
entre la composición orbital de las superfcies de Fermi y la estructura dependiente del mo-
mento en las excitaciones de espín en RPA ya ha sido destacado en modelos multiorbitales,
el vínculo explícito y la relación precisa entre la coincidencia orbital y la dependencia en
momento de la susceptibilidad de espín es un resultado nuevo obtenido desde el análisis
RPA dentro del modelo OSSF.

Hemos analizado también el vértice de interacción de los IBS asumiendo que las
mismas fuctuaciones de espín con selección orbital responsables del magnetismo, también
son responsables de la superconductividad. Estudiamos el vértice superconductor y las
ecuaciones de gap resultantes para estos materiales. Gracias a la selección orbital, los dia-
gramas de Feynman’s asociados al vértice de interacción se pueden tratar de forma analítica
y se pueden representar de forma fácil en comparación con la compleja diagramática de la
descripción en el modelo multiorbital. Demostramos que tanto el vértice superconductor
como los gaps de las bandas heredan la modulación orbital en momento dada por las sus-
ceptibilidades de espín. Por lo tanto, obtuvimos un gap anisotrópico con una simetría de
onda-s con cambio de signo, es decir, un gap de banda s±, de acuerdo con los experimentos
y con los modelos multiorbitales. Haciendo un análisis más profundo de la estructura de los
gaps de banda, demostramos que la dependencia angular y las magnitudes de los diferentes
gaps dependen directamente del grado de coincidencia orbital entre las áreas de huecos y
las de electrones, y lo que es más importante, que el grado de coincidencia orbital (más
que el de coincidencia de banda) es el que controla la fuerza del vértice superconductor.
Este resultado es una prueba de que el modelo mínimo teórico usado para entender la
superconductividad en IBS tiene que tener en cuenta la relación entre el espín y el orbital.
En lo que respecta, el modelo OSSF es un candidado perfecto.

Después, analizamos la fase nemática de los IBS estudiando analíticamente y
numéricamente la conductividad dc dentro del OSSF escenario. Bajo este enfoque, la
anisotropía de las fuctuaciones de espín por debajo de la transición de espín nemática
a TS es también responsable del ordenamiento orbital, inducido por las correcciones de
autoenergía nemáticas inducidas a la dispersión de la cuasipartícula. Como consecuencia,
la anisotropía de la conductividad dc por debajo de TS está determinada no sólo por la
anisotropía en la tasa de dispersión de los electrones, sino que también está determinada
por la modifcación en la velocidad de Fermi debida a la reconstrucción orbital (cambio en
tamaño, forma y composición orbital de las áreas). Esto es un ejemplo remarcable de la
interacción entre el espín y el orbital en estos sistemas. Y lo que es más interesante, esto
lleva a que los dos efectos contribuyan a la anisotropía en la conductividad dc con signos
opuestos. Usando parámetros de banda realistas, calculamos la anisotropía en la conduct-
ividad para el FeSe y los compuestos 122, discutiendo el posible origen de la anisotropía
en la conductividad dc observada experimentalmente en estas dos familias de supercon-
ductores basados en hierro. Logramos reproducir el signo experimental de la anisotropía
en la conductividad dc para los 122 ΔσDC (122) > 0 y para el FeSe ΔσDC (F eSe) < 0 
cuando tenemos en cuenta la disminución y la reconstrucción orbital de la superfcie de
Fermi de esos materiales.

El modelo OSSF ha sido extensamente estudiado para analizar la fenomenología de
los sistemas de tres y cuatro áreas. En esta Tesis extendemos el modelo OSSF para el
análisis de systemas más realistas de cinco áreas, en los que tenemos en cuenta el área de
huecos M con xy localizada en QM = (π, π). Derivamos la acción efectiva en términos de
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las excitaciones de espín hasta cuarto orden siguiendo la misma estrategia que se hizo para
analizar el modelo de cuatro áreas. Nuestro análisis del modelo de cinco áreas, muestra que
también en ese caso la proyección del contenido orbital a baja energía descubre una fuerte
selección orbital de las fuctuaciones de espín. De hecho, encontramos dos fuctuaciones de
espín adicionales que conectan el área de huecos M con el área de electrones X/Y teniendo
contenido orbital xy. Demostramos como las fuctuaciones de espín en este modelo con-
tribuyen a dos subsectores diferentes acoplados: el sector Γ-X/Y y el sector M -X/Y, que
dan lugar a contribuciones opuestas en el canal magnético y nemático en la acción efectiva
total. Para entender como afecta la inclusión de la quinta área a las inestabilidades
magnéticas y nemáticas del sistema, llevamos a cabo un estudio preliminar de dos casos
límites en los que considerados los dos subsectores completamente desacoplados: en un
caso considerados solo las fuctuaciones de espín yz/xz del sector Γ-X/Y, mientras que en
el otro caso sólo tenemos en cuenta las fuctuaciones de espín xy que conectan el sector
M -X/Y. Este análisis está motivado también por el resultado del estudio del caso de
cinco áreas en grupo de renormalización donde se encuentra que el modelo de tres bandas
M − XY tiene un punto fjo de la teoría a baja energía. Comparando estos dos casos
límites, somos capaces de adquirir conocimientos físicos sobre la nueva física que surge de
la presencia de está área extra. La contribución al magnetismo y a la nematicidad de las
xy OSSF en el sector M -X/Y parece competir con la que proveniente de las yz/xz OSSF
en el sector Γ-X/Y. Nos dimos cuenta que ese efecto podía ser entendido en términos del
grado de coincidencia orbital entre las áreas de huecos y las de electrones, el cúal una
vez más era más importante que el grado de coincidencia de banda de las superfcies de
Fermi a la hora de controlar las inestabilidades que se llevaban a cabo en el sistema. La
competición entre las OSSF que pertenecen a los diferentes subsectores podría explicar
por qué se encuentran diferentes realizaciones de la nematicidad en distintos miembros
de las familias de IBS, en ciertos compuestos como por ejemplo los 1111, mostrando una
nematicidad más vaga respecto al FeSe. Para poder abordar de manera completa este
hecho, necesitamos entender como evoluciona la competición entre las OSSF de los sectores
Γ-X/Y y M -X/Y una vez consideremos el caso completo de cinco áreas en el que los dos
sectores están acoplados. Esto será objeto de una mayor investigación.

Para concluir, en esta Tesis hemos demostrado que la diversa fenomenología de las
diferentes familias de los IBS puede ser entendida con un marco común: el escenario de
Fluctuaciones de Espín con Selección Orbital. Hemos visto que, gracias a la selectividad
orbital de las excitaciones magnéticas del sistema, surge una relación entre el espín y el
orbital en la susceptibilidad magnética, los gaps superconductores y en la velocidad y en la
tasa de dispersión de los electrones en la fase nemática de los IBS. Dado el éxito del mod-
elo, podría ser usado para hacer un estudio completo de la mayoría de la fenomenología de
los IBS. En lo que respecta, un estudio completo del modelo de cinco áreas para analizar
la fase magnética, nemática y susperconductora en diferentes compuestos de los IBS es ya
un trabajo en proceso. En el futuro cercano, uno podría calcular también otras funciones
respuesta para comparar con experimentos disponibles como, por ejemplo, la susceptib-
ilidad dinámica para comparar con experimentos de Dispersión Inelástica de Neutrones
(INS) y con experimentos de Resonancia Magnética Nuclear (NMR). Otra dirección pos-
ible podría ser la extensión del análisis del vértice superconductor llevado a cabo en la fase
tetragonal, a la fase nemática. como la nematicidad es un efecto más allá de RPA, este
cálculo requeriría llevar a cabo cálculos autoconsistentes del vértice y de los gaps supercon-
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ductores. Finalmente, la selectividad orbital debe aparecer también en otros compuestos
en los que el carácter multiorbital juega un papel importante. Sin duda alguna, existen
numerosas vías en las que la selectividad orbital puede desempeñar un papel importante,
dejándonos muchas posibilidades que explorar.
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A 
Spin-driven nematic transition as spontaneous

Z2-symmetry breaking

We look into the concept of the nematic phase using symmetries arguments. The
present discussion is mainly based on Ref.s [79] and [177].

When we study a spontaneous symmetry breaking we start from a disordered phase
(such a paramagnetic phase) and we end in a ordered magnetic phase (such a magnetic
SDW phase). In a paramagnetic phase, all the spins are indistinguishable, so the system
has O(3) spin rotational symmetry. To end in an ordered magnetic phase, the system has
to break at least, the O(3) spin rotational symmetry. To the O(3) symmetry breaking
corresponds also a translational symmetry breaking, due to the increase in the size of
the crystalline unit cell in the magnetically ordered phase. This is, indeed, the case of
many antiferromagnets in which the symmetry that is broken at the magnetic transition
temperature is the O(3) spin-rotational symmetry. However, in IBS the situation is more
involved. In fact, the magnetically ordered state for most IBS is a SDW phase, that is
actually doubly degenerate, as it is characterized by magnetic stripes of parallel spins along
either the y axis with an ordering vector QX = (π, 0) or the x axis with an ordering vector
QY = (0, π). This two degenerate ground states correspond to a Z2 (Ising-like) symmetry
(see Figure A.1). In this case, thus, the system has to break not only the O(3) spin-
rotational symmetry, but it also has to choose between one of the two degenerate ground
states and thus has to break the Z2 symmetry. In real space, the Z2 symmetry breaking
corresponds to a broken rotational symmetry of the lattice.

Symmetry-based discussion

A generic d-dimensional rotation symmetry is represented by the rotational group
O(d). Although the rotational symmetry in crystalline solids is always broken, the point
group of the symmetry, that is a subgroup of O(d), is preserved. For a 2-dimensional
systems, the point group that represents the n-fold rotational symmetry groups are the Cn 
cyclic groups. The Cn groups represent the discrete rotational symmetry of the nth order
with respect to a particular point, that means a rotation by an angle of 360◦/n leaves the
system invariant.

In crystalline solid, the point group symmetry for a 2-dimensional lattice with rota-
tional symmetry is the C4 group. That means the system is invariant under all rotations
given by an angle of 360◦/4 = 90◦ which represents a tetragonal structure of the lattice.

109



Appendix A. Spin-driven nematic transition as spontaneous Z2-symmetry breaking

Figure A.1: The transition from the disordered phase to the SDW phase breaks an O(3) × Z2 
symmetry. The O(3) symmetry refers to rotations in spin space while the Z2 symmetry refers to the
two degenerate ground states of magnetic stripes with parallel spins along the y axis with ordering
vector QX = (π, 0) or along the x axis with ordering vector QY = (0, π). Adapted from [79].

The C4 group is, therefore, the cyclic group of order n = 4, that contains four elements,
iπ/2 i2πwhich can be represented as C4 = {1, e , e , ei3π/2} referred to the lattice rotations by

a π/2 angle.
Let us now introduce the quotient group of the C4 as C4/C2 with C2 the normal

group of C4. It can be shown that the quotient group C4/C2 is isomorphic to Z2, that is
C4/C2 =∼ Z2. Here, the C2 and Z2 groups are the same cyclic group of order 2 (Ising-like),
but we call it di˙erent because the Z2 group is referred to the two degenerated ground
states and the C2 is referred to the lattice rotations by a π angle with C2 = {1, eiπ}. What
does the isomorphism C4/C2 ∼= Z2 mean? On one hand, it means that a Z2 symmetry
breaking corresponds to a C4 symmetry breaking, and thus a rotational symmetry breaking
of the lattice. On the other, the isomorphism C4/C2 =∼ Z2 also means that the remained
symmetry of the lattice after such symmetry breaking is a C2 rotational symmetry.

This is the defnition of the nematic phase: a broken rotation symmetry of the lattice
C4 → C2, but unbroken translational symmetry, i.e. unbroken spin rotational symmetry
O(3).

Physical interpretation

In the disordered phase of a 2-dimensional crystalline solid the system preserves
spin-rotational symmetry O(3) and rotational symmetry C4 of the lattice. That is, the
total symmetry of the system is O(3) × C4. On the other hand, to end in a SWD phase,
the system has to break the O(3) spin rotational symmetry, in order to acquires long-
range magnetic order, and the Z2 rotational symmetry, in order to choose one of the two
degenerated SWD ground states. So, in the SDW phase the system breaks O(3) × Z2 
symmetry (see Figure A.1). Since this is a discrete symmetry, the Z2-symmetry breaking
is expected to be less a˙ected by magnetic fuctuations than the continuous O(3) symmetry
breaking, and that suggest the possibility of the former happening before the latter. This
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is just the idea of behind the Ising-nematic state: an intermediate phase preceding the
SDW state, where the Z2 symmetry is broken but the O(3) symmetry is not.

Figure A.2: The O(3) × Z2 symmetry can be broken in two steps. First, only the Z2 symmetry
is broken. The system is still paramagnetic since hSii = 0 (gray double arrow on top of the spins),
but the spin correlations break the tetragonal symmetry, hSi · Si+xi = −hSi · Si+yi (red and blue
bonds, respectively). In the second step, the O(3) symmetry is broken and the system acquires
long-range magnetic order with ordering vector QX = (π, 0). Adapted from [79].

Figure A.2 show a schematic of the transition from a disordered paramagnetic phase
to a SDW through a nematic phase. Left-hand side of Figure A.2 represents the disordered
paramagnetic phase. The symmetry of the system in this phase is O(3) × C4: we have
translational symmetry O(3), i.e. we do not have a long range magnetic order hSii = 0 and
at the same time we have a rotational symmetry C4, so the spin correlations preserve the
tetragonal symmetry hSi · Si+xi = hSi · Si+yi. In the nematic phase, middle of Figure A.2,
magnetic fuctuations spontaneously lead the system to choose one of the two degenerated
possible states and thus to break the Z2 symmetry. Therefore a Z2 breaking occurs already
in the non-magnetic phase by making the spin correlations non equivalents along x/y, i.e.
hSi · Si+xi 6= hSi · Si+yi. As the Z2 symmetry breaking corresponds to a broken C4 
tetragonal symmetry, the symmetry that survives is just the C2 orthorhombic symmetry.
It means that the system in the nematic phase is invariant under lattice rotations given by
a π angle. On the other hand, the translational O(3) symmetry is still preserved, and thus
the system does not develop a long range magnetic order hSii = 0. The total symmetry of
the system in the nematic phase is O(3)×C2. It means in the nematic phase the rotational
symmetry of the crystal is broken, going from tetragonal to orthorhombic C4 → C2, but
the translational symmetry O(3) is not. Last, on the right-hand side of Figure A.2 we have
the ordered SDW phase. The translational O(3) symmetry of the system is not preserved
anymore and the system develops a long-range magnetic order hSii 6= 0 with an ordering
vector QX = (π, 0) (or QY = (π, 0)).
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B 
Kinetic model for IBS

B.1. Symmetry adapted low-energy model for the four-
pocket model

The kinetic Hamiltonian is derived adapting the low-energy model considered in
[118], where the electronic states around the high-symmetry points l = Γ, X, Y are de-
scribed using a spinor representation in the pseudo-orbital spaceX 

†lH l = ψ Ĥ 
0 
l 
kψk 

l
σ. (B.1)0 kσ 

k,σ 

yz xz X/Y yz/xz xy H l = hl τ̂0 + ~hl ~Here ψk 
Γ 
σ = (ckσ, c ), ψ = (c , c ) and ˆ 

0k τ̂  with τ̂  Pauli matriceskσ kσ kσ kσ 0k k · 
~representing the orbital isospin. The (hl 0, h
l) components of the Hamiltonian at Γ are

Γk2hΓ = �0Γ − a ,0k 

hΓ = −2bΓkxky, (B.2)1k 

hΓ = bΓ(k2 − ky 
2),3k x 

at X read

= (hyz + hxyhX )/20k k k 

hX = vky (B.3)2k 

= (hyz − hxyhX )/2 − b(k2 − ky 
2)3k k k x 

= −�yz = −�xy xyk2 ~hY )where hyz 
k +ayzk2 and hxy +a . Analogous expressions hold for (h0 

Y ,k 
by exchanging kx by ky and yz/xz.

The band dispersion and their orbital composition are obtained by diagonalizing the
Hamiltonian, Eq. 2.22. For the hole sector Γ we haveX X

†Γ †ΓHΓ = ψ Ĥ 
0
Γ 
kψ

Γ = φ Λ̂ 
k 
ΓφΓ (B.4)0 kσ kσ kσ kσ 

k,σ k,σ 

Γˆwhere φΓ = (h+ , h− ) are the fermionic operator for the Γ± bands obtained by the Ukkσ kσ kσ 
rotation of the orbital spinor ψΓ 

kσ ! ! ! 
Γ Γ yz h+u −v c 

φΓ = ÛΓψΓ = ∗Γ ∗Γ xz = 
h− (B.5)

v u c 

113



   

  

Appendix B. Kinetic model for IBS

where we omit the momentum and spin dependence for convenience. The components of
the rotation matrix ÛΓ are given by r 

Γ 1 h3
Γ 

u = √ 1 + ,
hΓ2 r (B.6)

Γ 1 h3
Γ 

v = √ sgn(hΓ1 ) 1 − 
hΓ . 2 

and defne the coherence factors representing the orbital content of the Γ-pockets. Λ̂Γ = 
diag(EΓ+ , EΓ− ) is diagonal in the band space and contains the expression for the disper-
sions q 

EΓ± 
= hΓ0 ± hΓ = h0Γ ± (hΓ)2 + (hΓ)2 + λ2/4 (B.7)1 3 q 

Here we accounted explicitly the spin-orbit coupling λ by replacing |h~Γ| = |h~Γ|2 + λ2/4.
This lifts the xz/yz degeneracy of the inner/outer pockets at Γ.

Analogously we derive the band dispersions and the orbital content at X and Y . We
fnd ! ! ! 

X X yz X+u −v c e 
φX = ÛX ψX = ∗X ∗X xy = X− (B.8)

v u c e 

where we again drop the momentum and spin dependence for convenience. The rotation
matrix ÛX is defned around X as r 

1 hX 
u X = √ 1 + 3 ,

hX2 r (B.9)
∗X 3v = √ 1 

isgn(h2 
X ) 1 − 

hX 
. 

hX2 

and the band dispersions q 
EX

± 
= hX ± hX = hX ± (hX )2 + (hX )2 (B.10)0 0 2 3 

where hX 
2 , hX and hX are given by Eq. B.3. Eqs. B.8 - B.10 are also valid for the Y3 

electron pocket by substituting the X pocket index by the Y and the yz orbital label by
the xz. Notice that since only the EX/Y + 

band in Eq. B.10 crosses the Fermi level at X/Y 
points, we drop the + subscript from the electron pockets band dispersion EX/Y and from
the fermionic operator eX/Y .

The the non-interacting Green’s functions are given by

Gl
−1ˆ = ω1̂ − Ĥ l (B.11)0 

with Ĥ l the non-interacting Hamiltonian and ω the fermionic frequency. By rotating it0 
Gl

−1 to the pocket basis we get the non-interacting pocket Green’s function is given by ˆ = 
U l−1ˆ (ω1̂ − Λ̂l)Û l , so that ! ! 

l l l l(ul)2 u v (vl)2 −v u 
Ĝl = g l+ 

l l l)2 + g l− 
l l l)2 (B.12)

v u (v −u v (u 

l± l±where we introduced the pocket’s Green’s function as g = (iωn − E )−1 .(k,iωn) k 
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B.2. Perfect circular nested and elliptical Fermi surfaces

Perfect circular nested Fermi surfaces

A useful approximation that allows for analytical treatment is to approximate any
low-energy dispersion as a parabola and to assume a condition of perfect nesting between
the hole and electron pockets.

~Within the parabolic approximation we can rewrite the (hl 0, h
l) components given in

Eqs. B.2 - B.3

hΓ = �Γ − ak2 ,0 

hΓ = −bk2 sin(2θ), (B.13)1 

hΓ = bk2 cos(2θ)3 

and

= −�X/Y h
X/Y 

+ ak2 ,0 

h
X/Y 

= bk2 sin(2θ), (B.14)
2 

h
X/Y 

=  bk2 cos(2θ)3 q 
with θ = arctan ky/kx the polar angle and k = kx 

2 + ky 
2 the modulus of the momentum

vector k = (kx, ky). The non-interacting energy for a pocket l is given by El± 
= h0 

l ± hl q 
with hl = (hl )2 + (hl )2 + (hl )2, while the coherence factors reduce to1 2 3 

|u Γ|2 = |u Y |2 = |v X |2 = cos θ2 , 
(B.15)

|v Γ|2 = |v Y |2 = |u X |2 = sin θ2 

Notice that the orbital content of the four-pocket model is still well described within the
perfect nested parabolic bands approximation.

The non-interacting pocket Green’s functions are given by

g+ = g− = gh = (iωn + �)−1 (B.16)
gX = gY = ge = (iωn − �)−1 (B.17)

where � is the parabolic dispersion � = −�0 + k2/2m, with �0 is the o˙-set energy with
respect to the chemical potential, put conventionally to zero, and m the parabolic band
mass. Notice that for a perfect nested Fermi surface, the Green’s function of the system
is only di˙erentiate between the hole and electron sector, but inside each sector all the
hole/electron pockets have the same energy.
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Elliptical approximation

We account for the deviations from the perfectly nested parabolic band approxima-
tion perturbatively. One can describe the ellipticity of the electronic band dispersion
as �mx − my � 

EX/Y ' �   δe cos 2θk, δe = �0 m , (B.18)
2mxmy 

where δe accounts for the ellipticity of the electron pocket via the x/y anisotropy of the
masses with respect the parabolic band mass m. The expressions in Eqs. B.18 correctly
reproduces the opposite ellipticity of the X/Y pockets. For the sake of completeness we
also consider the deviation from perfect nesting due to, such as for example, a mass, o˙
set energy, spin-orbit coupling mismatch of the hole pockets via� � 

m± − m 
EΓ± ' −� + δm± , δm± = �0 . (B.19)

m 

These perturbations can be included in the estimate of the quadratic and quartic terms of
the action by expanding the Green functions for small δe, δm± 

g± = gh(1 + δm± gh) 
gX/Y = ge(1   δe cos(2θk)ge). (B.20)

In principle the perturbations δe and δm± a˙ect also the angular orbital factors, which
should deviate from the cos θ/ sin θ expressions of Eq. B.15. However in frst approximation
we will neglect these modifcations and we will retain only the e˙ects of δe and δm± on the
Green’s functions.

B.3. Model parameters for the kinetic Hamiltonian

The parameters for the kinetic part of the Hamiltonian for a generic four-pocket
model are given in Table B.1

Γ X/Y
�Γ 
aΓ 
bΓ 

46
263
182

�xy 
axy 
b 
v 

72
93

154
144

�yz/xz 
ayz/xz 

55
101

Table B.1: Model parameters for a generic four-pocket system. All the parameters are in meV.

The spin-orbit interaction for the 122 is set to λ = 5 meV and for the FeSe λ = 20 meV.
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C.1. Magnetic excitations in the OSSF model: RPA analysis

C.1.1. Computation of the spin susceptibility

In this appendix we compute the spin susceptibility induced by the orbital selective
spin fuctuations within the OSSF model from the expression of the spin susceptibility in
terms of the intraorbital Matsubara spin-spin correlation function given in Eq. 3.9 from
the main text Z β � � 

χηη
0 iΩmτ ~ S~η

0 
(q, iΩm) = dτ e Tτ S

η(q, τ) (−q, 0) (C.1)
0 P η† η~where Sη(q, τ) = 0 c ~σss0 c 0 is the intraorbital spin operator. As we discussed inkss ks k+qs 

Section 3.3, the low-energy projection simplifed considerably Eq. C.1 and thus substituting
~the intraorbital spin operator Sη(q, τ) and applying Wick’s theorem the spin susceptibility

reads as X h i 
χll

0 ˆ )Ĝl
0 

(q, iΩm) = − 
1 

Tr Gl(k, iωn (k + q, iωn + iΩm) (C.2)
β 

k,n 

where the Green’s function for the l pocket Ĝl(k, iωn) are defned only around the high
symmetry points Γ, X, Y (Eq. 3.10 from the main text). The Green’s functions in the
orbital basis Ĝl(k, iωn) can be written in terms of the rotation matrices Û l that diagonalize
the l-Hamiltonian and in terms of the Green’s functions in the band basis g l± as(k,iωn) 

l+(k,iωn) l−(k,iωn))−1Û l−1 
Ĝl = Û l (diag(g , g = (k,iωn) (k,iωn) (k,iωn)! ! ! 

l l l+ ∗l l (C.3)u −v g 0 u v 
= ∗l ∗l l− ∗l lv u 0 g −v u 

Then, by substituting in Eq. C.2 the expression for the orbital Green’s functions given by
Eq. C.3 we get the spin susceptibility read as

χll
0 
(q, iΩm) = ! ! ! ! ! !X l l l+ ∗l l l0 l0 l0 ∗l0 l01 u −v g 0 u v u −v g 0 u v 

= − Tr ∗l ∗l l− ∗l l ∗l0 ∗l0 
+ 

l0 ∗l0 l0 β v u 0 g −v u v u 0 g − −v u 
k,n 

(C.4)
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where we have omitted the momentum and frequency dependence for convenience but can
be read from the l pocket which has the implicit dependence (k, iωn)l and from the l0 

pocket which has the implicit (k + q, iωn + iΩm)l dependence. Operating Eq. C.4 and
evaluating the trace over the orbital-basis, the spin susceptibility for a generic l, l 0 pockets
can be expressed as Xh � �1 l0 l0 ∗l0 ∗l0 l0 l0 l0 χll

0 
(q, iΩm) = − g l+ g + |u l|2|u |2 + u l v l u v + u ∗l v ∗l u v + |v l|2|v |2 + 

β 
k,n � � 

+ g l+ g l
0− |u l|2|v l

0 |2 − u l v l u ∗l
0 
v ∗l

0 − u ∗l v ∗l u l
0 
v l

0 
+ |v l|2|u l

0 |2 + � � 
l− l0 + l0 l l ∗l0 ∗l0 ∗l ∗l l0 l0 l0 + g g |v l|2|u |2 − u v u v − u v u v + |u l|2|v |2 + � �i 
l− l0− l0 l l ∗l0 ∗l0 ∗l ∗l l0 l0 l0 + g g |v l|2|v |2 + u v u v + u v u v + |u l|2|u |2 

(C.5)

Selecting the intraorbital contribution for each term of Eq. C.5, i.e. the frst and the latest
terms for each summand, we get the intraorbital spin susceptibility can be expressed in a
general way as X � � � �1 l0 l0 l0 l0 l0 l0 χll

0 
(q, iΩm) = − g l+ g + |u l|2|u |2 + |v l|2|v |2 + g l+ g − |u l|2|v |2 + |v l|2|u |2 + 

β 
k,n � � � � 

l0 l0 l0 l0 l0 l0 + g l− g + |v l|2|u |2 + |u l|2|v |2 + g l− g − |v l|2|v |2 + |u l|2|u |2 

(C.6)

We can rewrite Eq. C.6 renaming each term as

χll
0 
(q, iΩm) = χl+l+ 

0 
(q, iΩm) + χl+l−

0 
(q, iΩm) + χl−l+ 

0 
(q, iΩm) + χl−l

0
− (q, iΩm) (C.7)

where the individuals terms of Eq. C.7 can be written as
l±l0 l±l0 

χl±l
0 ± ±± (q, iΩm) = χη (q, iΩm) + χη0 (q, iΩm) (C.8)

Notice the two di˙erent contribution to the pocket susceptibility χl±l
0 

) come from± (q, iΩm 
di˙erent orbitals η and η0 , since they correspond to the frst and the latest terms for each
summand of Eq. C.5 which carry on the orbital information from the rotation matrix Û l 
being di˙erent for each pocket l.

Last but not least, performing the Matsubara frequency summation with ωn = (2n+ 
1)πkB T the fermionic Matsubara frequency and setting the external frequency Ω → 0, we
fnd the static intraorbital susceptibility has the following expression

± l± 
l±l±

0 X f(�k 
l0 

+q) − f(�k ) 
χη (q) = |(u/v)l k|2|(u/v)l

0 |2 (C.9)
l0 k+q
± l± 

k � − �k+q k 

with f(�l ) = (e�
l 
kβ + 1)−1 the Fermi distribution function. Eq. C.9 is just Eq. 3.11 fromk 

the main text.
The RPA spin susceptibilities are obtained in the form of Dyson-type equations

(Eq. 3.12 from the main text) as
l±l0 ± 

l±l0 χη (q)
χ ± (q) = (C.10)ηRP A 

1 − ˜ 
η
l±l0 

(q)Uχ ± 
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±with Ũ is the intraorbital e˙ective coupling and χη
l±l0 

(q) the intraorbital spin susceptibility
given in Eq. C.9.

C.1.2. Four pocket model susceptibilities

Let us apply the current derivation for a four-pocket model Γ+, Γ−, X, Y . Within
the OSSF model the spin fuctuations are orbital selective, so the two more relevant spin
fuctuation propagators are around QX = (π, 0) (involving the yz orbital component) and
around QY = (0, π) (involving the xz orbital component). If we apply Eq. C.9 we will get
for those two propagators the following contributions χΓ+X (q) and χΓ−X (q) referred toyz yz 
the yz orbital component and χΓ+Y (q) and χΓ−Y (q) referred to the xz orbital component.xz xz 
Still the spin susceptibility around Q = (π, π) χXY (q), that represent the contribution ofxy 
the xy orbital component is also computed for completeness.

X f(�X ) − f(�Γ+ 
) 

χΓ+X (q) = k+q k |u Γ 
k|2|u X |2 

yz k+q
�X − �Γ+ 

k k+q k X f(�X 
k+q) − f(�k 

Γ− 
) 

χΓ−X (q) = |vk 
Γ|2|u X |2 

yz k+q
�X − �Γ− 

k k+q k X f(�Y ) − f(�Γ+ 
) 

χΓ+Y (q) = k+q k |vk 
Γ|2|u Y |2 

xz k+q
�Y − �Γ+ 

k k+q k X ) − f(�Γ− 

χΓ−Y (q) = 
f(�Y 

k+q k ) |u Γ 
k|2|u Y |2 

xz k+q
�Y − �Γ− 

Rk k+q k X f(�Y ) − f(�X ) 
χXY (q) = k+q k |vk 

X |2|v Y |2 (C.11)xy k+q�Y − �X 
k+q kRk 

where we have simplifed the notation (X/Y )+ as X/Y due to the (X/Y )− contribution
is not in the Fermi level for the electron pockets. Notice that for a three pocket model (for
example simulating the FeSe case) the Γ− contributions, i.e. χΓ−X (q) and χΓ−Y (q), areyz xz 
absent.

The RPA spin susceptibilities for the FeSe and 122 systems are obtained in the form
of Dyson-type equations based on Eq. C.10 with Eq. C.11 as

Γ±X Γ±Y χXY 
Γ±X χyz (q) Γ±Y χxz (q) xy (q)

χXY χ (q) = χ (q) = yzRP A Γ±X xzRP A Γ±Y xyRP A(q) = 
UχXY 1 − ˜ 

yz (q) Uχxz (q) 1 − ˜ 
xy (q)Uχ 1 − ˜ 

(C.12)

Eqs. C.12 are exactly those represented in Fig. 3.2 from the main text.

C.2. Superconductivity mediated by OSSF

C.2.1. Computation of the RPA pairing vertex

The RPA pairing interaction is given by the irreducible particle-particle vertex that
can be computed from all possible Feynman’s diagrams containing the orbital selective spin
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susceptibility. In Figure C.1, that corresponds to Figure 3.4 in the main text, we draw
again for convenience all Feynman’s diagrams that contains only the spin susceptibilities
up to fnite order in perturbation of Ũ for electrons of opposite spin and momentum.

+ + +

++++

Figure C.1: Pairing vertex in random phase approximation up to ffth order in the OSSF model.

At frst order perturbation in Ũ , we fnd only one diagram given by

± ˜Γ l±l
0 
(k, k0) = U (C.13)0 

At higher orders we can di˙erentiate between ladder diagrams or bubble diagrams. The
ladder diagrams (frst line in Figure C.1) can be expressed as

±Γ l±l
0 

(k, k0) = Ũ 3χl±l±
0 2(k0 + k) + Ũ5χl±l±

0 4(k0 + k) + O(Ũ7) (C.14)ladder 

Eq. C.14 can be rewrite using a geometrical series as

l±l0 Ũ 3χl±l±
0 2(k0 + k)±Γ (k, k0) = (C.15)ladder 

1 − Ũ 2χl±l±
0 2(k0 + k) 

The bubble diagrams (second line in Figure C.1) can be expressed as

± U2χl±l
0 

U3χl±l
0 

Γ l±l
0 

(k, k0) = ˜ ± (k0 − k) + ˜ ±2(k0 − k) + O(Ũ 4) (C.16)bubble 

and it can be rewrite using a geometrical series as

l±l0 Ũ 2χl±l±
0 
(k0 − k)±Γ (k, k0) = (C.17)bubble 

1 − ˜ ± (k0 − k)Uχl±l
0 

So, the singlet pairing vertex can be expressed as the sum of this three contribution like
l±l0 l±l0 l±l0 

Γl±l
0 ± ± ±± (k, k0) = Γ (k, k0) + Γ (k, k0) + Γ (k, k0) (C.18)0 ladder bubble 

Symmetrizing Eq. C.18 due to the k → −k invariance of the gap, we get that in the weak
coupling limit, the leading RPA diagrams for vertex in the OSSF model pairing interaction
can be expressed

2l±l0 l±l0 ± ± 
l±l0 η (q) η (q)± Ũ 3χ Ũ 2χ 

Γη (q) = Ũ + 2 + (C.19)
l±l0 l±l0 ±

1 − Ũ2χη 
± (q) 1 − Uχ˜ 

η (q) 

which is just Eq. 3.13 in the main text where q = k0 −k and χη
l±l±

0 
(q) the spin susceptibility

given in formula Eq. C.9. Notice that in Eq. C.19 we recover the orbital dependant notation
and also we simplify it by calling η to ηη indices.
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C.2.2. Orbital-dependent superconducting order parameters

In order to reduce the two-particle operators to single-particle operators we ap-
ply mean feld theory to Eq. 3.14 from the main text. The mean-feld equations for the
mean feld Hamiltonian, can be easily derived by defning the orbital-dependent supercon-
ducting order parameters for the hole sector (Δ+ , Δ− , Δ+ , Δ− ) and the electron sectoryz yz xz xz 
(Δe+ , Δe− , Δe+ , Δe−) asyz yz xz xz 

Δ+ 
yzk0 = −Γ+e X X X 

k )
2 e yzkk0 h(u k e−ki 

Δ− 
yzk0 = −Γ−e X X 

k )
2 e X ke yzkk0 h(u −ki 

Δ+ 
xzk0 = −Γ+e Y Y 

k )
2 e Y ke xzkk0 h(u −ki 

Δ− 
xzk0 = −Γ−e Y Y Y 

k )
2 e xzkk0 h(u k e−ki 

Δe+ −Γ+e ∗Γ)2h+h+ 
yzk0 = yzkk0 h(uk k −ki 

Δe− −Γ−e Γ h− = k )
2h− i yzk0 yzkk0 h(v k −k 

Δe+ −Γ+e ∗Γ)2h+h+ 
xzk0 = xzkk0 h(vk k −ki 

Δe− Γ = −Γ−e 
k)

2h−h− i xzk0 xzkk0 h(u k −k 
(C.20)

The superscript l = +/− is referred to the hole pockets Γ+ or Γ− respectively and the
superscript e is referred to the electron pockets X or Y .

By considering the electron-electron interaction we can defne the xy order paramet-
ers (ΔeY , ΔeX ) as:xy xy 

ΔeY −ΓXY X X X 
xyk0 = xy kk0 h(vk )

2 ek e−ki 

ΔeX −ΓXY Y Y = xy kk0 h(vk )
2 e Y ke−ki xyk0 

(C.21)

with which we then solve the mean-feld equations for the xy pairing Hamiltonian given in
Eq. 3.27 from the main text.

C.2.3. Band parameters to reproduced the multiorbital model

The modifed parameters for reproduce the four pockets Fermi surface in [102] are
given in Table B.1

Γ X/Y
�Γ 
aΓ 
bΓ 

10
150
50

�xy 
axy 
b 
v 

72
93

154
144

�yz/xz 
ayz/xz 

55
101

Table C.1: Low-energy model parameters used in Fig. 3.6. All the parameters are in meV.

The spin-orbit interaction is set to λ = 0 meV.
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D.1. Computation of the dc conductivity from the optical
conductivity in the OSSF model

D.1.1. Current-current correlation function

In this Appendix we perform the complete derivation for the current-current correla-
tion function within the OSSF model. We start from the expression of the current-current
correlation function in the Matsubara formalism Πα (Eq. 4.6 from the main text)Z βT 

Πij (q, iΩm) = dτeiΩmτ hTτ ji(q, τ )jj (−q, 0)i (D.1)
N 0 

with τ the imaginary time, β = 1/T and Ωm = 2πmT the bosonic Matsubara frequency.
In the bubble approximation, the current-current correlation function D.1 can be

expressed as X 
V l ˆ V lΠij (q, iΩm) = 2 Tr{Ĝl(k − q/2, iωn) ˆ Gl(k + q/2, iωn + iΩm) ˆ } (D.2)ki kj 

lkn 

with l = Γ, X, Y denoting the pocket index, ωn = 2π(n + 1/2)T the fermionic Matsubara
frequency and the factor 2 is due to the spin summation.

In Eq. D.2, Ĝl(k, iωn) is the renormalized Green’s function from the OSSF (defned in
Eq. 2.48 in the main text) and V̂ l are the velocity operator in the direction i = {x, y}. Sinceki 
the self energy corrections computed within an Eliashberg-like treatment are momentum
independent, V̂ 

k 
l 
i 
= ∂ki Ĥ

 l = ∂ki (Ĥ
 
0 
l +Σ̂l) = ∂ki Ĥ

 
0 
l = V̂ 

0 
l 
ki 

so that vertex corrections vanish
identically and the interacting velocity is the same than the bare velocity.

As we are interested in the dc conductivity, we set q = 0 in Eq. D.2X 
Πij (iΩm) = 2 Tr{Ĝl(k, iωn)V̂ 

k 
l 
i 
Ĝl(k, iωn + iΩm)V̂ 

k 
l 
j 
} (D.3)

lkn 

We rotate Eq. D.3 into the band basis Ĝl(k, iωn) = Û 
R
l (k, iωn)[iωn ̂  − 
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Λ̂l (k, iωn)]−1Û l−1 
(k, iωn) and we get the current-current correlation is given byR R X 

Πij (iΩm) =2 Tr{Û 
R
l (k, iωn)[iωn1̂ − Λ̂ 

R
l (k, iωn)]−1Û 

R
l−1 

(k, iωn)V̂ l 
ki 

lkn 

Û 
R
l (k, iωn + iΩm)[(iωn + iΩm)1̂ − Λ̂ 

R
l (k, iωn + iΩm)]−1Û l−1 

(k, iωn + iΩm)V̂ l }R kj 

(D.4)

Using the cyclic property of the trace allows us to defne the renormalized velocity matrix
V̂ l and redefne Eq. D.4 asR(ki,iωn) X 
Πij (iΩm) = 2 Tr{[iωn1̂−Λ̂l ]−1V̂ l [(iωn+iΩm)1̂−Λ̂l ]−1V̂ l }R(k,iωn) R(kiiωn) R(k,iωn+iΩm) R(kj iωn+iΩm) 

lkn 
(D.5)

with the renormalized velocity matrix defned as

U l−1 
V̂ l = ˆ (k, iωn)V̂ l Û 

R
l (k, iωn + iΩm),R(ki,iωn) R ki (D.6)

U l−1 
V̂ l = ˆ (k, iωn + iΩm)V̂ l Û 

R
l (k, iωn)R(kj iωn+iΩm) R kj 

If we substitute the unitary matrix Û l (k, iωn), the explicit result for the renormalizedR 
velocity matrix is !l !l !l !l 

V 11 V 12 ∗ V 11 V 12u vR uR −vRV̂ l R R R 
R(ki,iωn) = 

V 21 V 22 = ∗ V 21 V 22 ∗ ∗ (D.7)−v uR v uR R R R R
ki (k,iωn) ki (k,iωn+iΩm) 

with uR and vR the renormalized coherence factors defned in Eq. D.22. Operating Eq. D.7
we get that, as a consequence of the orbital structure, the explicit components of V̂ l 

R(ki,iωn) 
read as

V l11 =V l11 ∗l l l l ∗l ∗l l ∗l 
R uRωuRω+Ω + V l21 vRωuRω+Ω + V l12 uRωvRω+Ω + V l22 vRωvRω+Ω, 

V l21 = − V l11 ∗l l l l ∗l ∗l l ∗l 
R vRωuRω+Ω + V l21 uRωuRv+Ω − V l12 vRωvRω+Ω + V l22 uRωvRω+Ω, (D.8)
V l21 = − V l11 ∗l l l l ∗l ∗l l ∗l 
R uRωvRω+Ω − V l21 vRωvRω+Ω + V l12 uRωuRω+Ω + V l22 vRωuRω+Ω, 

V l22 =V l11 ∗l l l l ∗l ∗l l ∗l v u v uR RωvRω+Ω − V l21 
RωvRω+Ω − V l12 

RωuRω+Ω + V l22 
RωuRω+Ω 

where we have dropped the k indices and we call ω to the Matsubara frequency iωn 
for simplicity. Analogous expressions for the V̂ l and its components hold, byR(kj iωn+iΩm) 
replacing ki by kj and exchanging iωn by iωn + iΩm in Eq. D.7 and Eq. D.8.

By using Eq. D.7, the current-current correlation function D.5 can be rewritten as!l !l !l !lX + V 11 V 12 + V 11 V 12g 0 g 0R R R RΠij (iΩm) = 2 − V 21 V 22 − V 21 V 22 (D.9)
0 g 0 gR R R Rlkn (k,iωn) ki (k,iωn+iΩm) kj 

with Ĝl(k, iωn) = [iωn1̂−Λ̂l (k, iωn)]−1 = diag(g+(k, iωn), g−(k, iωn)) as the renormalizedR 
Green function.

Operating the trace over the orbital basis we geth i h i 
Πl11 Πl22Πij (iΩm) = (iΩm) + (iΩm) = ij ijX�h i 

+ V l11 + V l11 + V l12 − V l21= 2 g g + g +iωn R iωn+iΩm R iωn R,ωgiωn+iΩm R (D.10)h lkn i� 
− V l21 + V l12 − V l22 − V l22+ g g + g giωn R iωn+iΩm R iωn R iωn+iΩm R 
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We can write Eq. D.10 in a simple way as

) = Πl11++ +Πl11+− +Πl22−+ +Πl22−− (D.11)Πij (iΩm ij(iΩm) ij(iΩm) ij(iΩm) ij(iΩm) 

where explicity the components of Πij (iΩm) are given byX 
Πl11++ + V l11 + V l11= 2 gij(iΩm) iωn R,ωgiωn+iΩm R,ω+Ω, 

lknX 
Πl11+− + V l12 − V l21= 2 gij(iΩm) iωn R,ωgiωn+iΩm R,ω+Ω, 

lknX (D.12)
Πl22−+ − V l21 + V l12= 2 gij(iΩm) iωn R,ωgiωn+iΩm R,ω+Ω, 

lknX 
Πl22−− − V l22 − V l22= 2 gij(iΩm) iωn R,ωgiωn+iΩm R,ω+Ω 

lkn 

In Eq. D.12, Πl11++ and Πl22−− are the intraband terms and Πl11+− and Πl22−+ theij(iΩm) ij(iΩm) ij(iΩm) ij(iΩm)
interband terms.

D.1.2. Dc conductivity

We start from the expression of the dc conductivity (Eq. 4.5 from the main text), as
the Ω → 0 limit of the longitudinal optical conductivity given by

2e ImΠα(q = 0, Ω)
σdc α = limΩ→0 (D.13)

V Ω 

Therefore, we are interested in the intraband terms given by the Π++/−− components of
Eq. D.12 and also in the diagonal terms of the current-current function Πii which we call
as Πα with α = {x, y} equivalent to the index ii = {xx, yy}.

++/−−In order to compute the Π terms, we express the Green’s functions g±(iωn)ii 
in terms of the spectral functions Al± (ω) in Eq. D.12, by introducing the spectral repres-k 
entation Z 

A±(z) 
g ±(iωn) = dz (D.14)

iωn − z 
Then, we perform the Matsubara sum, take the imaginary part of the current-current
diagonal terms and take the Ω → 0 limit and we fnally arrive to the pocket dc conductivity

l±expression σα . The α = {x, y} component of the dc conductivity in the band basis is
obtained from the sum over all the pockets l± = {Γ+, Γ−, X, Y }X 

σdcα = σl± (D.15)α 
l± 

The pocket conductivity is Z ∞2πe2 X ∂f(ω) � �2� �2l± l±σl± = dω(− ) V (ω) A (ω) . (D.16)α Rkα kN ∂ω −∞k 

where f(ω) the Fermi distribution function. In this basis the spectral function is diagonal

1 Γ
l± (ω)l± RkA (ω) = (D.17)k l± l±π [Γ (ω)]2 + [ω − � (ω)]2 

Rk Rk 
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with the renormalized energy dispersion relation as

l± l±� (ω) = ReE (ω) (D.18)Rk Rk 

and the renormalized scattering rate as

l± l±Γ (ω) = δΓ + |ImE (ω)| (D.19)Rk Rk 

The eigenvalue matrix El± (ω) is given byRk q
l±E (ω) = h0 

l +Σl 0k(ω) ± (hl )2 + (hl )2 + (hl +Σl (ω))2 (D.20)Rk 1k 2k 3k 3k 

V l± is the bare velocity operator rotated into the band basis. As we take the Ω → 0Rkα 
limit and we only consider the intraband component, the velocity given by Eq. D.8 reduces
to

l± l ∗l ∗l l l lV = V l11 |uR|2 ± V l12 uR vR ± V l21 uRvR + V l22 |vR|2 (D.21)Rkα kα kα kα kα 

Hereafter we omit the dependence on ω for simplicity. V lηη0 are the ηη0 component of thekα 
velocity and (u/v)lR are the renormalized coherence factors which are renormalized by the
self-energy correction ass s 

1 hl +Σl 1 hl 1 + ihl hl +Σl l 3 3 ∗l 2 3 3uR = √ 1 + , vR = √ q 1 − (D.22)
hl hl2 R 2 (hl )2 + (hl )2 R

1 2 

In the T → 0 limit we can approximate the Fermi function −∂f(ω) → δ(ω) which∂ω 
selects only states at the Fermi level ω = 0.X2πe2 

l± 
� l± 

�2
σl± = (V )2 A (D.23)α Rkα kN 

k 

l± l±By further assuming Γ to be small Γ → 0, we can also approximate the spectralR R� �2l± 1 l±function as A → l± δ(� ) and the pocket conductivity reduces tok Rk2πΓRk 

l± 
e2 X (V )2 

Rkα l±σl± = δ(� ). (D.24)α Rkl±N Γk Rk 

which is Eq. 4.18 from the main text.
Moreover, if we express the delta in energy δ(�l± ) in terms of the momentum we getRk Z l±2 )2 e dk2 (V δ(k − kF )

σl± = Rkα (D.25)α l± l±N (2π)2 
Γ | 5 � |Rk Rk 

l± l± l± l±where the gradient |5� | = |(V )2 +(V )2| is di˙erent to the velocity term (V )2 inRk Rkx Rky Rkα 

the numerator given by Eq. D.21 which is in the direction of the dc conductivity α = {x, y}.
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D.2. Analytical computation of the anisotropy of the dc con-
ductivity for the 122 and FeSe

D.2.1. Perfect nested circular Fermi surfaces

To allow analytical treatment for the renormalized system in the parabolic approx-
imation, we assume that the self-energy correction Σ3 is small enough to allow one for a
perturbative expansion up to frst order in Σ3. The imaginary part of the self-energy is
neglected since it goes to zero at low ω and T = 0. Thus, the dressed coherence factors
(u/v)l in the analytical approach becomeR ! 

l 2ReΣ3 
l 

|uR|2 =|u l|2 1 + |v l|2 ,
hl ! (D.26)

l 2ReΣ3 
l 

|vR|2 =|v l|2 1 − |u l|2 
hl 

l lwith u and v the bare coherence factors appearing in Eq. B.15. From Eq. D.26 we can
see that the correction term ReΣl mixes the orbital character in each pocket, that is,3 

l lcontribute to u with a term proportional to v and vice versa. This e˙ect of the OSSFR 
self-energy in the coherence factors will have important consequences for the renormalized
velocities in the nematic phase as we show below.

l± l±The dressed dispersion relations � = ReE is given byR R 

hl l± 3� = �l± + ReΣl 0 ± ReΣl 3. (D.27)R hl 

Replacing the values for the case of circular Fermi surface given in Eq. B.13 and Eq. B.14
we get

�Γ± �h = 0 ± cos 2θReΣΓ
3 ,R (D.28)

X/Y X/Y 
� = −�e 

0   cos 2θReΣ ,R 3 

where we defned the tetragonal band energy for the hole pockets as �h = �Γ + ReΣΓ 
0 0 

and �e = �e − ReΣX/Y for the electron pockets. For simplicity we further assume that0 0 
�X ≡ �Y ≡ �e .

l±The scattering rate Γl± = δΓ + |ImE | acquires the expressionR 

l± hl 3Γ ≈ δΓ + |ImΣ0 
l | ± |ImΣ3 

l |, (D.29)R hl 

Replacing Eq. B.13 and Eq. B.14 we get

Γ± ΓhΓ = 0 ± cos 2θ|ImΣΓ
3 |,R (D.30)

X/Y X/Y 
ΓeΓ = 0   cos 2θ|ImΣ |,R 3 

where we have separated the angular dependent renormalization ∼ |ImΣl 3| from the tet-
h/e Γ/eragonal constant part, Γ = δΓ + |ImΣ |. From Eq. D.30 it is very easy to fnd0 0 

analytically the locations of the cold spots on the Fermi surface by substituting the ImΣl 0 
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and ImΣl expressions in terms of its orbital components. Thus, the minimum value of the3 
scattering rate for each pocket is found at

π 
ΓΓ+(θ = ) = δΓ + |ImΣΓ |,R xz2 
ΓΓ−(θ = 0) = δΓ + |ImΣΓ |, (D.31)R xz 

ΓXR (θ = 0) = ΓYR(θ = 
π 
) = δΓ 

2 

The qualitative behavior of the self-energies in the nematic phase allows us to easily localize
the minimum value of Γl± on the Fermi surface, that is, the cold spots.R 

As it is discussed in Ref. [60], the reconstruction of the Fermi surface below TS is
consistent with the Ising-nematic spin-fuctuations being bigger at QX than at QY . This
implies that self-energy corrections are stronger on the yz orbital than on the xz one.
As a consequence for the holes, the smaller scattering rate corresponds to the xz orbital.
Instead for the electrons, the smaller scattering rate is found for the xy orbital, given the
absence of xy spin fuctuation between hole and electron pockets.

This result analysed in Chapter 4, is an example of the spin-orbital interplay retained
by the OSSF approach that allows us to directly link the cold spots position with the Fermi
surface orbital character and is not present in the band-based spin-nematic scenario.

D.2.2. Anisotropy of the dc conductivity

In order to gain physical insight on the DC anisotropy given by Eq. D.25 we compute
in this Appendix the expression for the renormalized velocity and scattering rate for each
pocket l± = {Γ+, Γ−, X, Y }.

Renormalized velocity
By neglecting the imaginary part of the self-energy in the coherence factors (u/v)l R 

given by Eq. D.26, it is easy to check the velocity given in Eq. D.21 can also be written as
the derivative of the renormalized dispersion relation

l± l±V = ∂� (k)/∂kα. (D.32)Rkα R 

Explicitly for the hole pockets at Γ we have h ihΓ hΓ hΓ hΓ hΓ 
Γ± 1 3 1 1 3VRkα = ∂kα h0

Γ ± ∂kα h1
Γ ± ∂kα h3

Γ ± ReΣ3
Γ ∂kα h3

Γ − ∂kα h1
Γ (D.33)

hΓ hΓ (hΓ)2 hΓ hΓ 

and analogous expressions V X and V Y for the electron pockets. The frst three termsRkα Rkα 
in Eq. D.33 corresponds to the bare velocity, while the term multiplied by ReΣΓ accounts3 
for the renormalization in the velocity due to OSSF self-energy corrections.

Using the explicit defnition of hl 0 and hl given by Eq. B.13 and Eq. B.14 in the
analytical approximation, and deriving with respect to kx and ky, the velocities for the
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di˙erent pockets read as

k cos θΓ±V = − ± 4 ReΣΓ
3 sin θ2 k cos θ

,Rkx Γ±m k2 

k sin θΓ±V = −   4 ReΣΓ
3 cos θ2 k sin θ

,Rky Γ±m k2 
(D.34)

X/Y k cos θ X/Y 
sin θ2 k cos θ 

V =   4 ReΣ ,Rkx X/Y 3 k2m 
X/Y k sin θ X/Y 

cos θ2 k sin θ 
V = ± 4 ReΣRky X/Y 3 k2m 

where ml± is the bare mass of the l± pocket whose defnition in terms of the Hamiltonian
Γ± X/Y eparameters is given by m = 2(a   b)−1 and m = m = 2(a + b)−1 .

The frst term on the right hand side of Eq. D.34, is the α component of the bare
velocity, while the second term O(ReΣl 3) is an additional contribution due to the orbital
mixing induced by the nematic order as expected from the (u, v)l coherence factors inR 
Eq. D.21.

To compute the k integration in Eq. D.25 we will use the delta function and evaluate
l± l±V at the renormalized Fermi surface. Notice that, in the nematic phase k (θ) is noRkα F 

longer constant but gets deformed because of the anisotropic self-energy renormalization.
This e˙ect is also of order O(ReΣl 3) and has to be taken into account.

We estimate the change in the Fermi wave vector at the frst order in the self-energy.
Replacing the expression of kl± (θ) into Eq. D.34 we fndF � � 

ReΣΓ ReΣΓ 
Γ± Γ± 3 3V =V0kx 1 ± cos 2θ   4 sin2 θ ,Rkx 2�h 2�h � 0 0 � 

ReΣΓ ReΣΓ 
Γ± Γ± 3 3VRky 

=V0ky 1 ± cos 2θ ± 4 cos2 θ ,
2�h 2�h 

0 0� X/Y X/Y � (D.35)
ReΣ ReΣX/Y X/Y 3 3V =V0kx 1 ± cos 2θ   4 sin2 θ ,Rkx X/Y X/Y 
2� 2� � 0 0 �X/Y X/Y 

X/Y X/Y ReΣ3 ReΣ3V 1 ± cos 2θ ± 4 cos2 θRky 
=V0ky X/Y X/Y 

2� 2�0 0 

where �h = �Γ + ReΣΓ and �e = �e − ReΣX/Y are the Fermi energy in the tetragonal state0 0 0 0 
Γ± Γ± X/Y eand V0kα = −k0 /mΓ± and V0kα = k0 are the α component of the bareFα q Fα/m

e 

lvelocity in the tetragonal state with k0 = �l /(2ml).F 0 

From Eq. D.35, one sees that the bare Fermi velocity in the nematic phase has two
l±contributions O(ReΣl 3) opposite in sign: the frst one is due to the change in kF , while

the second one comes from the orbital mixing produced by the nematic order.

Renormalized scattering rate
The scattering rate is analytically estimated from Eq. D.19 using again the expansion

of ER
l± at the frst order in Σl 3 

Γ± ΓhΓ = 0 ± cos 2θ|ImΣ3
Γ|,R (D.36)

X/Y X/Y 
ΓeΓ = 0   cos 2θ|ImΣ |R 3 

129



Appendix D. Appendix Chapter 4

|, from the= 
.

where we separate the tetragonal phase scattering rate, Γl δΓ + |ImΣl 0 

DC conductivity

l±evaluate the norm of the pocket velocity | 5 � | which is di˙erent to the pocket velocityRk 
in a given direction x/y given by Eq. D.35.

By replacing all the analytical expressions found for the velocities, Eq. D.35, and

3 

l± 

0 
langular dependent correction due the nematic e˙ectto ∼ ImΣ 

Last, in order estimate analytically the conductivity Eq. D.25 also needto towe,

the scattering rate, Eq. D.36 in Eq. D.25 and computing the term, the pockets dc| 5 |�

3 

Rk 

3 

Γ
3 

Γ
3 

0 

0 

0 

0 

conductivities read as

|ImΣ |
h2Γ 

3 

3 

0 

0 

|ImΣ |
2Γh 

X X|ReΣ ImΣ 

3 

0 

�e 2Γe 

ReΣY ReΣY |ImΣY 

2�e �e 2Γe 

� �
Γ
3 

Γ
3ReΣ ReΣΓ+ =σh 1 ±    σ ,x/y 2�h 

ReΣ 
0 �h 

0 

0 

ReΣ 
�h 

� �
Γ
3 

Γ
3Γ− =σh 1   ± ±σ ,x/y 2�h 

0

0 

2�e 

XReΣ3 
(D.37)� � 

|
σX =σe 1 ±x/y   ± , � � 

|
σY =σe 1  x/y ±   

h/e h/ewhere σh/e = e2� is the dc conductivity in the tetragonal phase for the/(2π~)Γ0 0 
hole/electron pocket.
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D.3. Model parameters for FeSe and 122 systems

To perform the numerical analysis discussed in the main text we used the set of band
parameters given in and self-energies corrections which reproduce the 122 and FeSe systems.
The parameters of the static self-energies (ω = 0) used in the numerical calculation to
simulated the FeSe and 122 materials in the tetragonal and nematic phases in Chapter 4
are shown in Table D.1

122 FeSe

ΣΓ 
yz 

ΣΓ 
xz 

ΣX 
yz 

ΣY 
xz 

ΣΓ 
yz 

ΣΓ 
xz 

ΣX 
yz 

ΣY 
xz 

(-15,-2)
(-15,-2)
(15,-2)
(15,-2)

(-19, -2.67)
(-11, -1.73)
(19, -2.67)
(11, -1.73)

Tetragonal phase

Nematic phase

ΣΓ 
yz 

ΣΓ 
xz 

ΣX 
yz 

ΣY 
xz 

ΣΓ 
yz 

ΣΓ 
xz 

ΣX 
yz 

ΣY 
xz 

(-55, -4)
(-55, -4)
(30, -3)
(30, -3)

(-70, -4.27)
(-40, -3.73)
(45, -3.5)
(15, -2.50)

Table D.1: Self-energies correction parameters for FeSe and 122 system in the tetragonal and
nematic phases. All the parameters are in meV.

For the 122 the nematic phase is computed with a symmetric nematic splitting of
Φh = Φe = 4 meV. For the FeSe nematic order parameter resulting in Φh = Φe = 15 
meV. We fx the background scattering to δΓ = 1 meV. The scattering rates used in the
tetragonal phase for 122 are ImΣΓ = ImΣ

X/Y 
= −2 meV, while for the FeSe case weyz/xz yz/xz 

X/Y used ImΣΓ = −4 meV and ImΣ = −3 meV. In both cases their variations of theyz/xz yz/xz 
imaginary part of the self-energies in the nematic phase are assumed to be proportional
to the variation of their real parts, i.e. ΔΓh ∼ ch(Φh/ReΣΓ

0 ) and ΔΓe ∼ ce(Φe/ReΣ
X/Y 

)0 
with ch/e arbitrary coeÿcients.
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E.1. Estimation of the quadratic and quartic terms of the
e˙ective action for the fve-pocket model

In this Appendix we discuss how to compute the quadratic and quartic coeÿcients
of the e˙ective action for the fve-pocket model for two cases: one with perfect circular
nested Fermi surfaces and other with elliptical electron Fermi surfaces. For that purpose,
in Appendix E.1.1 we frst introduce the expressions for the Green’s functions within the
two di˙erent cases, and then, in Appendix E.1.2 we evaluate the sum over the Matsubara
frequency and momentum for some relevant expressions involving the di˙erent pocket
Green’s functions.

E.1.1. Perfect circular nested and elliptical Fermi surfaces

Perfect circular nested Fermi surfaces

To make a frst estimate we consider the simple case where the electron and hole
pockets are perfectly nested circular Fermi surfaces. The orbital weights (as we discussed
in Section B.2 in Appendix B) simply become

|u Γ|2 = |u Y |2 = |v X |2 = cos θ2 , 
(E.1)

|v Γ|2 = |v Y |2 = |u X |2 = sin θ2 � � 
with θ = arctan ky/kx . The pocket Green’s function are given by

g+ = g− = gM = gh = (iωn + �)−1 

gX = gY = ge = (iωn − �)−1 (E.2)

where � is the parabolic dispersion � = −�0 + k2/2m, with �0 is the o˙-set energy with
respect to the chemical potential, put conventionally to zero, and m the parabolic band
mass. Eqs. E.1 and E.2 are Eqs. 5.24 and 5.25 from the main text. For a perfect nested
Fermi surface, the Green’s function of the system is only di˙erentiate between the hole
and electron sector, but inside each sector all the hole/electron pockets have the same
energy.
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Elliptical approximation

We account for the deviations from the perfectly nested parabolic band approxima-
tion perturbatively. One can describe the ellipticity of the electronic band dispersion
as �mx − my � 

EX/Y ' �   δe cos 2θk, δe = �0 m , (E.3)
2mxmy 

where δe accounts for the ellipticity of the electron pocket via the x/y anisotropy of the
masses with respect the parabolic band mass m. The expressions in Eqs. E.3 correctly
reproduces the opposite ellipticity of the X/Y pockets. For the sake of completeness we
also consider the deviation from perfect nesting due to, such as for example, a mass, o˙set
energy, spin-orbit coupling mismatch of the hole pockets via� � 

m±/M − m 
EΓ±,M ' −� + δm±,M , δm±,M = �0 . (E.4)

m 

These perturbations can be included in the estimate of the quadratic and quartic terms of
the action by expanding the Green functions for small δe, δm±,M 

g±,M = gh(1 + δm±,M gh) 
gX/Y = ge(1   δe cos(2θk)ge). (E.5)

In general we set δm+ = 0 because it is only necessary one δm to di˙erentiate the two
gamma pockets, so we choose a fnite δm− . Eqs. E.5 and E.5 are Eqs. 5.41 and 5.41 from
the main text.

In principle the perturbations δe and δm±,M a˙ect also the angular orbital factors,
which should deviate from the cos θ/ sin θ expressions of Eq. E.1. However in frst approx-
imation we will neglect these modifcations and we will retain only the e˙ects of δe and
δm± on the Green’s functions.

E.1.2. Evaluation of the sum over frequency and momenta

To compute the sum over Matsubara frequency and momenta we will use the usual
decomposition Z Z ZX d2k 2π 

= = 
dθ 

d�NF (E.6)
(2π)2 2πBZ 0k 

where � is the energy, θ the azimuthal angle NF = m/2π is the density of state per spin
at the Fermi level in 2D. In this way the only di˙erence between the various models is in
the angular integration of the orbital factors. Let us then discuss briefy the remaining
common integrals over energy and the Matsubara sums.

Starting from the Gaussian term within the perfectly nested parabolic band approx-
imation we need to compute the Πeh bubble ZX 

Πeh ≡ TNF d� gegh (E.7)
iωn 

By performing the energy integration via the calculus of the residua of the Green functions
poles we found ZX X Xπ 1 

T d� gegh = −2 = − (E.8)
ωn (n + 1/2)

iωn n≥0 n≥0 
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where we used that ωn = 2πT (n + 1/2). The calculation of the above sum can be carried
out in terms of Euler digamma functions

∞X 
ψ(N)(z) = (−1)N+1N !

1 
. (E.9)

(n + z)N+1 
n=0 

The logarithmic divergence at the upper limit (ψ(0)(z >> 1) ∼ ln(z)) is cut-o˙ by the ω0 
typical energy scale of the spin mode and one gets� � � � �� 

1 ω0 1 
ψ(0) − ψ(0)Πeh = −NF + 

2 2πT 2� � 
= −NF ln(ω0/T ) + ln(2/π) + CE � � 
= −NF ln(ω0/T ) + const (E.10)

where we used that ψ(0)(1/2) = −CE −2ln(2) with CE being the Euler-Mascheroni constant
and we called const = ln(2/π) + CE .

In order to compute the quartic terms within the perfectly nested parabolic band
approximation we need to compute ZX X π2T d� g2 g = T (E.11)e h ωn 3 

iωn n≥0 

while beyond such approximation the Green functions expansion lead to:ZX X 
2T d� g4 g = −T π 

e h 2 ωn 5 
iωn n≥0ZX X 

3T d� ge 
3 gh = −T 

4

3 
ω

π 
n 

(E.12)
5 

iωn n≥0 

2 4and analogously for the g g case. It is easy to verify that the integrals of combinatione h 
2m2+1(gegh)

m1 ge/h with odd unpaired powers of the electron/hole Green’s functions vanish,
since the contribution coming from Matsubara frequency with positive n exactly cancels
out with the contribution of the negative ones. Using that ωn = 2πT (n + 1/2), one
can recognize in Eqs. E.11 - E.12 the Euler digamma functions, Eq. E.9 for z = 1/2 and
N = 2, 4. For z = 1/2 one can express ψ(N)(1/2) in terms of the Riemann ζ(n) functions
as

ψ(N)(1/2) = (−1)N+1N ! (2N+1 − 1)ζ(N + 1) 

Using these defnitions in Eqs. E.11 - E.12 we obtainZX 
2 7ζ(3)

T d� g2 g = ≡ A(T ) (E.13)e h 8π2T 2 
iωn ZX 

2 31ζ(5)
T d� g4 g = − ≡ B(T ) (E.14)e h 64π4 T 4 
iωn ZX 

3 93 ζ(5)
T d� g3 g = − ≡ C(T ) (E.15)e h 128π4 T 4 
iωn 

where ζ(3) ∼ 1.202 and ζ(5) ∼ 1.037.
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E.2. Magnetic and nematic couplings and order parameters:
eigenvalues and eigenvectors of the quartic term of the
e˙ective action

In the present Appendix we frst review in Section E.2.1 the calculation of the mag-
netic and nematic couplings and order parameters for the three and four-pocket models
which correspond to the eigenvalues and eigenvectors of the quartic term of the e˙ective
action given in Eq. 2.29. Then, in Section E.2.2 we try to derive the magnetic and nematic
order parameters and couplings for the case of the fve-pocket model. We show that in
this case, even for the perfect circular nested case, the defnition of these quantities is not
unique and the analytical calculation becomes very complex due to the higher form of the
e˙ective action matrix given in Eq. 5.11.

E.2.1. Three and four-pockets models

Eigenvalues and eigenvectors
The quartic term matrix (Eq. 2.29) for three and four-pockets models is written as! 

u11 u12A = (E.16)
u12 u11 

Therefore the eigenvalues are given by

λ1 = u11 + u12 (E.17)
λ2 = u11 − u12 (E.18)

and the corresponding normalized eigenvectors are:

v1 = √ 1 
(1, 1) (E.19)

2 

v2 = √ 1 
(1, −1) (E.20)

2 

New eigenvectors: magnetic and nematic order parameters
Now we can related the old eigenvectors with the new one performing a simple change

of basis. We want to get a quartic e˙ective action of this form! !� � 
quartic u11 u12 (MX )

2 
S = (MX )

2 (MY )
2 = (E.21)e˙ (MY )

2u12 u11 ! !� � λψ 0 ψ 
= ψ φ (E.22)

0 λφ φ 

quartic So, we want to get an Se˙ expressed in terms of the new feld ψ and φ. With λψ = λ1 
and λφ = λ2 and the new corresponding eigenvectors ψ and φ. The change of basis matrix
will be just the matrix with the normalized old eigenvectors as columns so! ! ! 

1 1 1 (MX )
2 ψ√ = (E.23)

2 1 −1 (MY )
2 φ 
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So we get the new eigenvectors with is corresponding eigenvalues are:� � 
1 

ψ = √ (MX )
2 + (MY )

2 , λψ = u11 + u12 (E.24)
2 � � 

φ = √ 1 (MX )
2 − (MY )

2 , λφ = u11 − u12 (E.25)
2 

(E.26)

where we can call ψ the magnetic and φ the nematic order parameters and λψ and λφ the
magnetic and nematic couplings.

E.2.2. Five pockets model

In this Section we try to perform the same procedure than for the three and four-
pocket models to obtain the magnetic and nematic order parameters and couplings.

Eigenvalues and eigenvectors
The quartic term matrix (Eq. 5.11) for the fve pocket model is given by⎛ ⎞ 

u11 u12 0 k12⎜ ⎟⎜u12 u11 k12 0 ⎟
A = ⎜ ⎟ (E.27)⎝ 0 k12 ue11 ue12⎠ 

k12 0 ue12 ue11 

The general form for the eigenvalues for the fve pocket case is given by

1 
λ1 = (u11 + u12 + ue11 + ue12) − 

2q 
− (u11 + u12 + ue11 + ue12)2 + 4[k122 − (u11 + u12)(ue11 + ue12)] 

1 
λ2 = (u11 − u12 + ue11 − ue12) − 

2q 
− u12)2 + 4[k2(u11 − u12 + ue11 − e 12 − (u11 − u12)(ue11 − ue12)] 

1 
λ3 = (u11 + u12 + ue11 + ue12) + 

2q 
+ u12)2 + 4[k2 − (u11 + u12)(e u12)](u11 + u12 + ue11 + e 12 u11 + e 

1 
λ4 = (u11 − u12 + ue11 − ue12) + 

2q 
+ (u11 − u12 + ue11 − ue12)2 + 4[k2 − (u11 − u12)(ue11 − ue12)] (E.28)12 

As we can see the defnition for the eigenvalues of the quartic term acquires a very complex
structure and it is very diÿcult to defne in a proper way the corresponding eigenvectors.
To gain insight into the problem we analyse down below a perfect nested case and try to
compute the eigenvectors of the fve-pocket system.
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Perfect nested parabolic band approximation

0For the perfect case we have u = 0 and u1112 u11, k12 u12, so that the ei-
genvalues given by Eq. E.28 slightly simplify and the computation of the corresponding
eigenvectors can be treated analytically.

e 

Eigenvalues and eigenvectors
The eigenvalues in Eq. E.28 simplify as

√1 NF
λ01 = u11 + (1 − 5)ue12 = c1 A(T )

2 16 
1 NF 

e 

√ 
λ0 = u11 − (1 + 5)ue12 = c2 A(T )2 2 16 

1 NF√ 
λ03 = u11 + (1 + 5)ue12 = c3 A(T )

2 16 
√1 

λ04 = u11 − (1 − 5)ue12 = 
NF 

c4 A(T ) (E.29)
2 16 

√ √ √7ζ(3)with A(T ) = defned in Eq. E.13 and c1 = (7 + 5), c2 = (5 + 5), c3 = (7 − 5),
8π2T 2√ 

c4 = (5 − 5) where ci > 0 with i = {1, 2, 3, 4}.
The corresponding normalized eigenvectors are�

1 

= = 

�√ √11 1
(a, a, 1, 1) (E.30)( 5 − 1), ( 5 − 1), 1, 1p √v1 = = 

2 2 A5 − 5� �√ √11 1 1 
(b, −b, −1, 1) (E.31)5 + 1), − ( 5 + 1), −1, 1(p √v2 = = 

2 2 B5 + 5� �√ √11 1 1 
(−b, b, 1, 1) (E.32)− ( 5 + 1), − ( 5 + 1), 1, 1p √v3 = = 

2 2 B5 + 5� �√ √11 1 1
(−a, a, −1, 1) (E.33)− ( 5 − 1), ( 5 − 1), −1, 1p √v4 = = 

2 2 A5 − 5 p p√ √ √ √ 
5 − 5, a = 1 

2 ( 5 + 5, b = 1 
2 ( 5 + 1).with A = 5 − 1) and B It is very inter-= 

esting to realize that a/A = 1/B and b/B = 1/A, so we will use that fact in the next section.

New eigenvectors: magnetic and nematic order parameters
Now we can related the old eigenvectors with the new one performing a simple change

ee ee 

⎛ ⎜⎜⎜⎝ ff 
of basis. We want to get a quartic e˙ective action of this form:

u11 u12 0 k12 

MX )
2 MY )

2 
u11 u12 
u12 u11 

⎛ ⎜⎜⎜⎝ 
⎞ ⎟⎟⎟⎠ 

⎞ ⎟⎟⎟⎠ =ff 
(MX )

2 

MX )
2 

MY )
2 

�� (MY )
2 u12 u11 k12 0quartic = e˙ (MX )

2 (MY )
2S ( ( 

0 k12 ( 
k12 0 ( 

�� 
= ρ1 ρ2 ρ3 ρ4 

⎛ ⎜⎜⎜⎝ 
λ1 0 0 0 
0 λ2 0 0 
0 0 λ3 0 

⎛ ⎜⎜⎜⎝ 
⎞ ⎟⎟⎟⎠ 

ρ1 
ρ2 
ρ3 

⎞ ⎟⎟⎟⎠ (E.34)

0 0 0 λ4 ρ4 

quartic So, we want to get an S expressed in terms of the new felds ρi with i = {1, 2, 3, 4}.e˙
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Appendix E. Appendix Chapter 5

The change of basis matrix will be just the matrix with the normalized old eigenvectors
as columns so

1 
A 

⎛ ⎜⎜⎜⎝ 
⎛ ⎜⎜⎜⎝ 
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where we use the relation between the normalization and the coeÿcients a/A = 1/B and√ √ 
1

p 
= 1/A and with A = 5 − 5 and a = 5 − 1).
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The new eigenvectors are:�� �� �� 
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ρ3 + a(= 
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1

(MX )
2 + a(MY )

2ρ4 + a(= 
A 

As we can see from Eq. E.39 there are many forms to "regroup" the di˙erent terms to get
a magnetic and nematic vectors. Therefore, even for the perfect circular nested case, the
defnition of the magnetic and nematic order parameters is not unique. The form to defne
in a proper way the order parameters and couplings is an open problem that we are going
to analysis in depth in the near future.

E.3. Parameters for the quantitative analysis for the Γ−XY
and MXY models

We consider the same band-structure parameters than in Ref. [27], which are appro-
priate for 122 iron-based compounds e.g. BaF e2As2. For the spin fuctuations we refer
to [67] and use ω0 ∼ 18meV .

χMXY −1
To compute the static q=0 magnetic susceptibilities χΓ−XY −1 

and e , Eq. 5.53
and 5.59 respectively from the main text, we need frst consider the di˙erence in Néel
temperatures, TN , for the two the three-pocket models, Γ−XY and MXY. To determine
the Néel temperature we need the value of the low-energy coupling Ũ . We choose this value
in order to reproduce, within the Γ−XY model, the experimental value T Γ−XY 

= 110KN 
found for weakly doped BaF e2As2 compounds [29]. Keeping then all the parameters fxed
we can estimate NF Ũ and use this value to compute the TN for the MXY model. In this
way we get that T MXY = 132K.N 

For the band structure we choose again parameters appropriate for weakly-doped
122 compounds: we set �0 = 90meV and 1/(2m) ∼ 60meV , (NF ∼ 1.3eV −1) for the
perfect parabolic case. With these parameters we have circular Fermi pockets of radius
k0 ∼ 0.31 in π/a unit, with a ∼ 3.96A the lattice parameter. Then, beyond the parabolic-F 
band approximation we further consider the ellipticity of the electron pockets assuming

x/y y/x 
δe = 0.55�0. This defne electronic elliptical Fermi pockets with k ∼ 0.39 and k ∼ 0.21F F 
for the X/Y pockets respectively.
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