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Abstract

Abstract — Software product lines are a method for creating a family of products that
share a typical managed set of features, satisfy the precise needs of a selected domain,
and provide an improved quality of software systems by systematically reusing software
artefacts at reduced cost and time. A feature model represents the space of all possible and
allowed confgurations of all products in an SPL. Various predefned feature combinations
enable the product to be personalized based on specifc user requirements. However,
because some features are interdependent and the feature models may have many options,
users must understand the implications of selecting the correct feature combinations for
the product derivation. Chatbot support can address this challenge by guiding the user
through a suitable set of features for the product confguration process. Users can interact
with a chatbot using natural language in a familiar environment like Telegram, Slack, or
Facebook. In this work, we propose chatbots in the confguration of software product lines
based on feature models and present SPLBOT, an approach for SPLs chatbot generators.
The methodology relies on Eclipse, FeatureIDE, and CONGA (for Dialogfow chatbot
generation). Furthermore, we present an evaluation of our approach’s e˙ectiveness and
scalability using three practical examples.

Key words — Software Product Lines, Feature Model, Confguration, Chatbot,
FeatureIDE
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1 
Introduction

Software Product Lines (SPLs) have been predominant in the derivation of software
products within a well-defned application domain [1]. A SPL refers to a collection
of software-intensive products that share a typical managed set of features, satisfy the
precise needs of a selected market segment (domain), and are developed from a common
set of Core Assets in a prescribed way. A well known approach to understand and defne
commonalities and variabilities in software product lines and to support product derivation
is by means of Feature Modelling (FM) [2, 3, 4, 5, 6, 7].

A feature model is a way to represent the space of possible and allowed confgurations
of all products in an SPL [8, 3]. It defnes the domain, product model constraints, and
which features are present in the fnal products. Feature modelling (FM) and product
confguration are central parts of software product line development [9]. The majority of
the existing FM approaches are practically derived from the work on Feature-Oriented
Domain Analysis (FODA) method in [10].

Product confguration and generation are usually a˙ected by the qualitative feature
models. A correct and desired feature model is the basis for all subsequent stages in
product line development. Feature modelling and product confguration, however, are
manual and thus error-prone tasks [9, 11]. A feature model may have many features
and interdependencies, potentially ensuing in a few inconsistencies in the feature model.
These inconsistencies can lead to a confguration that does not permit the creation of a
valid feature combination. As the confguration of SPLs may be diÿcult for large and
complex feature models, the integration of the stakeholders and users in the confguration
process can improve the handling of the feature selection problem [12].

A chatbot also known as conversational agent, is designed to produce an impression
of interacting with a human, because chatbots use natural language [13, 14, 15, 16, 17].

Automated synthesis of chatbots for confguring software product lines 1



CHAPTER 1. INTRODUCTION

Users can chat through text or voice input over an interface with chatbot text output
or audio/voice output. Chatbots are increasingly used to facilitate software engineering
activities [13, 18], as a customer service agent SPLBOT[13, 19, 20, 21], virtual support
agents, virtual sales agents, provide specifc information and guidance through a website,
help to solve frequently asked questions, or as a learning tutor [13, 16]. Modelling chatbots
can be embedded in social networks (like Facebook [22, 23], Slack [18, 23], Twitter [24] or
Telegram [25]) to support collaboration between di˙erent stakeholders in a natural way,
so that non-technical stakeholders can actively participate in model creation [26].

Due to the growing interest in chatbots, many chatbot development tools have
emerged, such as DialogFlow1 , the IBM Watson Assistant2 , or the Microsoft Bot
Framework3 . Some of these tools o˙er a cloud based development environment that
supports the design of chatbots, from the application of natural language (NL) processing
to the deployment of chatbots in social networks.

In this work, we use chatbots in the confguration of software product lines based
on feature models and present an approach for chatbot generators called SPLBOT for
SPLs. Our intended goal is to bring in automated support for the feature selection
process through the application of synthesized chatbots based on feature models. Product
confguration is error prone, and may be diÿcult if FMs have many options. Therefore, it
is important to correctly select the right feature combinations for the product derivation.
Clearly, the method to select these features should rely on a measure of the error-free
feature model that represents the desired product. The chatbot support is required to
handle the resulting complexity of product confguration, by NL.

Our approach provides a system for ensuring confgurations that conform to the feature
model and ensures the quality of implementation of the product line. To achieve the aim
of this study, the following measures are taken:

(i). The availability of a feature model specifying the features, their relationships, and
the constraints of feature selection for product confguration in software product
lines (confguration space).

(ii). Mapping of a feature model to its corresponding bot.

(iii). Providing a set of algorithms tailored to the feature modelling domain that can be
used to provide automated support for product confguration.

(iv). A confguration plan that describes the confguration tasks and the order in which
they should be carried out.

(v). Application of natural language processing (NLP) and conversational agents to
safely guide stakeholders and users during the confguration process with the help
of the conversation fow plan.

1https://dialogfow.com/
2https://www.ibm.com/cloud/watson-assistant/
3https://dev.botframework.com/
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CHAPTER 1. INTRODUCTION

(vi). Automatic generation of a chatbot supporting features over instances of a given
feature model.

The evaluation is based on a study with feature models from Eclipse FeatureIDE4 and
the online repository SPLOT5 .

The rest of the thesis is structured as follows: Chapter 2 reviews some basic concepts
used in the thesis and sets the background knowledge for the next chapters. Chapter 3
presents details of our approach. Chapter 4 describes the prototype tool support.
Chapter 5 reports on the evaluation of the proposal. Finally, Chapter 6 concludes and
provides some lines for future work.

This work has been funded by Universidad Complutense de Madrid within the
framework of the Learn Africa Programme launched by the Women for Africa Foundation.

4https://featureide.github.io/
5http://www.splot-research.org/
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2 
Preliminaries

This chapter introduces the main concepts about software product lines (section 2.1). In
section 2.2, we introduce feature modelling, an approach to capturing variabilities and
commonalities in software product lines. Finally, in section 2.3, we present an overview
of the working scheme of a chatbot and how the chatbot design concepts are realized in
DialogFlow.

2.1 Software Product Lines 

Software Product Lines is a modern approach to software development that utilizes
similarities and variations within a family of systems in a specifc domain of interest
to provide an improved quality of software systems by systematically reusing software
artefacts at reduced cost and time [27, 28].

According to [29], two key processes of software product line engineering are domain
engineering and application engineering. Domain engineering is the process in which the
commonality and variability of the product line are defned and realised (establishing
the reusable platform). Application engineering is the process in which applications of
the product line are built by reusing domain artefacts and exploiting the product line
variability (deriving product line applications from the platform established in domain
engineering) [29].

In SPL practice, the two life cycles, domain engineering and application engineering,
di˙er from single system software development [30], as illustrated in Figure 3.1. Domain
engineering centers on a family of systems and is concerned with developing for reuse [31].
Application engineering uses integrated information and specializes according to the

Automated synthesis of chatbots for confguring software product lines 5
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needs of a specifc service request. The process of domain engineering and application
engineering (Figure 3.1) as described in [30] includes three major activities. The activities
performed during domain engineering are domain analysis (determines what the family is
about), domain design (deciding which platform components are needed), and domain
implementation (building and purchasing components and supporting infrastructure).
Accordingly, application engineering also requires three activities, application analysis,
application design, and application implementation. As seen in [30], a feature model that
captures services provided by the applications in a domain in an abstract form can be
used to e˙ectively plan and consider reusability during the early phases of the software
life cycle and throughout the development process.

Figure 2.1: Domain and application engineering phases in SPL development

The main idea in SPL is to start with families, identify what is common and what
is variable, create an environment including architecture, defnitions, tools for producing
members of a Product Line and then produce Product Line members according to the
wishes of the marketplace. SPL engineering is about producing a family of similar systems
rather than the production of individual systems [9, 32]. In a product line, there is a need
to plan and enforce reuse by specifying the architecture for the reuse of the components
and enforce that all products use the same architecture. The key to the product line is the
ability to predict likely changes in the product in the future and across the marketplace.
Product lines have been found to bring in improvements to software development in terms
of cost, time to market, and productivity [1].

2.2 Feature Modelling 

Feature modelling is a feature-oriented approach to commonality and variability analysis
and has been widely used for product line engineering [10, 33]. The feature modelling task
involves identifying the commonalities and variabilities of the products of a product line
based on features and arranging them into a feature model. The term feature is used as
an abstraction for core assets and as building blocks for the identifcation of products in

Master Thesis6
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the product line. This implies that each product is represented by a specifc combination
of features. Feature models (FM) are visually represented by means of a feature diagram.
The notion of representing feature models as a feature diagram was proposed by [10].
Several di˙erent studies [9, 28, 34, 35, 36] describe a feature diagram as a tree structure
that represents the variability of the product line (i.e., the feature model).

Figure 2.2: A sample feature model specifed using FeatureIDE

As an example, Figure 2.2 depicts a sample feature model of a car product line using
Eclipse and FeatureIDE (an eclipse based IDE that supports all phases of feature oriented
software development for the development of SPLs) [37, 38, 39]. The relationships between
a parent (or compound feature) node and its child nodes (sub-features) largely fall into
the following categories:
Mandatory relationship: a mandatory relationship is one in which the child feature
must be added in all the products in which the parent feature appears (e.g., each instance
of "Car" must have Transmission). The mandatory relationship is represented by a simple
edge from the parent (P) node to the child node that ends with a flled circle.
Optional relationship: an optional relationship indicates that the child feature is
optionally included in all products in which the parent feature appears (e.g., with the
car product line example, every instance of Car may have Entertainment, KeylessEntry
or PowerLock). This relationship is represented by a simple edge from the parent node
to the child node that ends with an empty circle.
Alternative relationship (xor-relationship): an alternative relationship is described
when only one child can be chosen when the parent feature is part of the product (e.g.,
manual or automatic, but not both). The nodes of a set of alternative features are
connected by an empty arc.
Or relationship: the “or” relationship is defned when one or more children may be
selected when their parent feature is part of the product (e.g., at least one of radio and
cd). The nodes of a group of "or" features are connected by a flled arc.

According to [33], the structural relationship of feature models is described as
commonalities among all products of a product line modelled as common features, while
variabilities among products modelled as variable features, from which product specifc

Automated synthesis of chatbots for confguring software product lines 7
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features is selected for a specific product.

The sets of all valid products of the car feature model in Figure 2.2 are:
P1{Car, Transmission, Manual}
P2{Car, Transmission, Automatic}
P3{Car, Transmission, Manual, Entertainment, CD}
P4{Car, Transmission, Manual, Entertainment, Radio}
P5{Car, Transmission, Manual, Entertainment, CD, Radio}
P6{Car, Transmission, Automatic, Entertainment, CD}
P7{Car, Transmission, Automatic, Entertainment, Radio}
P8{Car, Transmission, Automatic, Entertainment, CD, Radio}
P9{Car, Transmission, Manual, KeylessEntry, PowerLock}
P10{Car, Transmission, Automatic, KeylessEntry, PowerLock}
P11{Car, Transmission, Manual, Entertainment, CD, KeylessEntry, PowerLock}
P12{Car, Transmission, Manual, Entertainment, Radio, KeylessEntry, PowerLock}
P13{Car, Transmission, Manual, Entertainment, CD, Radio, KeylessEntry, PowerLock}
P14{Car, Transmission, Automatic, Entertainment, CD, KeylessEntry, PowerLock}
P15{Car, Transmission, Automatic, Entertainment, Radio, KeylessEntry, PowerLock}
P16{Car, Transmission, Automatic, Entertainment, CD, Radio, KeylessEntry, Power-
Lock}
P17{Car, Transmission, Manual, PowerLock}
P18{Car, Transmission, Automatic, PowerLock}
P19{Car, Transmission, Manual, Entertainment, CD,PowerLock}
P20{Car, Transmission, Manual, Entertainment, Radio, PowerLock}
P21{Car, Transmission, Entertainment, CD, Radio, PowerLock}
P22{Car, Transmission, Automatic, Entertainment, CD, PowerLock}
P23{Car, Transmission, Automatic, Entertainment, Radio, PowerLock}
P24{Car, Transmission, Automatic, Entertainment, CD, Radio, PowerLock}

Feature diagrams can be expressed in terms of logic. To represent the semantics of a
feature diagram using logic (i.e., translating every kind of feature relationship into logic),
some formal definitions will be introduced.

Definition 1 (Feature model). A feature model FM = (F, ) consists of a set of
propositional variables F = {ƒ1, . . . .ƒn}∀called features, and a propositional formula  
over the variables in F.

The propositional formula  in the feature model is used to determine the possible and
allowed combinations of feature values which make the formula true. The set of selectable
features from a feature model should be based on its semantics [35, 40]. A feature model
shows not only the features, feature attributes, structural relationships and dependencies,
but also the overall constraints (typically inclusions or exclusion statements). In a feature
diagram, one way to define constraints is by using its hierarchy. This kind of constraints
is also called tree constraints as they are expressed by the tree structure [9]. For the basic
tree constraints, the root feature must be included in all products. Also, the selection
of a feature implies the selection of its parent features (parent-child relationship). In
addition, cross-tree constraints (arbitrary propositional formula based on a set of existing
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features) can be used to express relationships between features that are not related by a
parent-child relationship.The use of cross-tree constraints further restrains configuration
options.

Definition 2 (Constraint). Constraints are defined as propositional formulas, using
the following regular connectives: (∧∀(conjunction), ∨∀(disjunction), ∨∀(exclusiveor), ∧̄ 
(nand), =⇒ (implication), ⇐⇒ (equivalence), and ¬(negation) [35, 34, 41].

Cross-tree constraints relate features in different levels and are typically the Requires or
Exclusion statements [41], but can be any formula. Requires constraint is used if a feature
A requires a feature B. The inclusion of feature A in a product implies the inclusion of
feature B (e.g., keylessEntry→power-lock). For the car example, the keylessEntry feature
requires the feature power-lock. Exclusion constraint is applied if a feature A excludes
a feature B. Both features cannot be a part of the same product. The typical symbols

Table 2.1: Expressing a feature diagram with logic

Automated synthesis of chatbots for configuring software product lines 9
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for types of feature relationships between a parent and a child node; and the cross-tree
constraints are as shown in Table 3.1. The PL mapping column illustrates how the
different types of relationships can be expressed with logic and the car example column
translates the car feature model example into logic.

Definition 3 (A valid configuration). A subset P ⊆ F is a valid product of a feature
model if it includes the root feature and satisfies all feature dependencies in the FM. A
valid configuration of the feature model reflects any assignment of boolean values to all
features that satisfies the propositional formula [42, 35, 43].
Let (a,b) ∈ A denote a dependency between feature a and b, the predicates, mandatory,
optional, and, or, xor, requires and excludes represents the relationships between a parent
(or compound) feature and its child features (or subfeatures)

mandatory(a, b): a ∈ P implies that b ∈ P.
optional(a, b): a ∈ P implies that either b ∈ P or b ∈/ P.
and(a, Y): a ∈ P implies that b ∈ Y : b ∈ P 
or(a, Y): a ∈ P implies that ∃∀b ∈ Y : b ∈ P 
xor(a, Y): a ∈ P implies that (|Y ∩ P| = 1).
requires(a, b): a ∈ P implies that b ∈ P and a != parent(b).
excludes(a, b): a ∈ P implies that b ∈/ P 

A feature configuration is allowed by a feature model if and only if it does not
violate constraints imposed on the model. The semantics of a feature model is the set of
feature configurations that the feature model permits [38]. Each feature corresponds to a
boolean variable and the semantics is captured as a propositional formula. The resulting
propositional formula from conjoining the propositional formula from each construct
(Table 3.2) in the feature model (Figure 2.2), all cross tree constraints and a formula
requiring the root feature describes the semantics of the feature model [38], i.e the valid
combinations of features. As seen in Table 3.2, P represents a compound feature with the
subfeatures C1, C2, ...., Cn.

Table 2.2: Feature model translation to propositional formulas

Feature Relationship Propositional formula
Optional feature (C) C =⇒ P
Mandatory feature (C) (C =⇒ P)∧(P =⇒ C)∨
Or-group P ⇐⇒ C∨ 1≤≤n 
Alternative (P ⇐⇒ )∧∧ 1≤≤n C 

<j(¬C ∨¬Cj)

Using the notations and feature names abbreviations (Table 2.3), we give the
corresponding propositional formula for our example feature model as:

ϕcrPL =
( t =⇒ c) ∧∀( c =⇒ t) ∧∀(e =⇒ c) ∧∀(k =⇒ c) ∧∀(p =⇒ c) ∧∀(t ⇐⇒ m ∨∀a )
∧∀(¬∀m ∨ ¬∀a) ∧∀(e ⇐⇒ r ∨∀d ) ∧∀( k =⇒ p) ∧∀c
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Table 2.3: Sample car feature model abbreviation.

Feature name Abbreviation
Car c
Transmission t
Entertainment e
Manual m
Automatic a
Radio r
CD d
KeylessEntry k
PowerLock p

By Defnition 1, FM = (car, transmission, entertainment, manual, automatic, . . . ,
(‡c‰rPL )).

As shown earlier in Figure 2.2, the root feature “Car” is a common feature among
all products of the car product line. All cars in our car product line must include a
mandatory feature “Transmission”, and may include an optional feature “Entertainment,
KeylessEntry or PowerLock”. Transmission is categorized into “Manual and Automatic”,
and only one of these can be selected (alternative). Entertainment can have “Radio and/or
CD (or)”.

To aid in the management of variability in an SPL, feature modelling tools are used.
These tools support the representation and management of reusable artifacts. A feature
model editor, automated analysis of feature models, product confguration, and tool
notation are some of the common functionalities provided by feature modelling tools.
With respect to these functionalities, [5] conducted a detailed qualitative analysis of two
feature modelling tools, SPLOT1 and FeatureIDE [37].

2.3 Chatbots 

A chatbot is a computer program designed to simulate conversation with human users [44],
especially over the internet. As seen in [45], chatbots have the ability to interact with
humans and generate reasonable responses. Fundamentally, a chatbot allows a form of
interaction between a human and a machine via written messages or voice. It can answer
questions formulated to it in Natural Language [14] and comes up with its answers through
a combination of predefned scripts and machine learning [23, 44]. The responses may also
be generated by combining data coming from calling external information systems [15].
Over time, and multiple interactions, the chatbot gradually gains in scope and relevance.
Chatbots have proven useful in automating tasks and improving user experience and
productivity [18]. Also, software development support bots (DevBots) are seen as a

1http://www.splot- research.org/
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promising approach to dealing with the ever-increasing complexities of modern software
engineering and development [13]. Examples of some popular chatbots include Amazon’s
Alexa, Apples Siri, Microsoft’s Cortana, etc.

Chatbots are more commonly adopted due to signifcant progress in the development
of platforms and frameworks [23]. Likewise, instant messaging platforms have been widely
adopted as one of the main technologies to communicate and exchange information [18,
24]. Chatbots can be integrated in several social networks like Facebook [22, 23],
Telegram [18], Twitter [24], Slack [18, 23] or Skype [46]. Examples of some of the tools
that have emerged for the development of chatbots (Table 2.4), include DialogFlow2 ,
the IBM Watson Assistant3 , or the Microsoft Bot Framework4 . Some o˙er cloud-based
environments to describe the di˙erent aspects of the chatbot [47].

Table 2.4: Chatbot creation tools
Tool DialogFlow Rasa Microsoft bot framework IBM Watson Chatterbot Chatfuel FlowXO
Type platform Framework Framework platform Library Platform Platform

Multi-language yes yes yes yes yes yes yes
NLP yes yes yes yes yes yes no

Support for intents yes yes yes yes no no yes
Entity support yes yes yes yes yes no yes

Specifying bot responses yes yes yes yes no yes yes
Patterns no no yes yes no no yes

Speech recognition yes yes yes yes
Social networks integraton/ websites yes yes yes yes yes yes yes

Development expertise low high high low high low low

Table 2.4 compares some chatbot creation tools. These tools fall into the following
categories, Platform, Framework and Library. ChatterBot is a Python library designed
specifcally for building chatbots. Dialogfow, IBM Watson, Chatfuel and FlowXO
are chatbot builder platforms. Platforms permit developers and businesses to create
bots e˙ortlessly, even with minimal coding basics and bots deployment support. Rasa
is an open-source machine learning framework for building chatbots. Overall, these
chatbot tools are very powerful. Some like Microsoft Bot Framework, IBM Watson,
etc., allow defning patterns or regular expressions for matching user utterances. Others
like Dialogfow, chatterbot, IBM Watson or Rasa, require declaring training phrases and
apply NLP techniques. Intents, entities, and responses are also supported by some of
these tools.

Given the di˙erent approaches used by these tools, ranging from low-code form-
based platforms to frameworks for programming languages and libraries, it is diÿcult to
determine which tool is suitable for building a specifc chatbot, as not every tool supports
every possible feature (e.g., only a few provide NLP, multi-language, social network and
website integration or speech recognition support). Selecting the most appropriate tool is
still a daunting task. In [48], a model-driven engineering approach to chatbot development
was proposed. The study describes a neutral meta-model and a domain-specifc language
(DSL) for the description of chatbots and a platform recommender. The key to selecting
the desired tool is awareness and understanding of the technological and operational

2https://dialogfow.com/
3https://www.ibm.com/cloud/watson-assistant/
4https://dev.botframework.com/
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capabilities of the chatbot creation tool.

On the whole, the architecture and technology of chatbots are similar. Figure 2.3
shows the technical process of a chatbot operation, built over a set of users intentions.
The process begins with a user’s request (1), by means of a messenger app like Facebook,
Slack, Skype, or text or speech input app like Amazon Echo [15]. For example, with some
chatbot creation tools like DialogFlow or Rasa that require declaring training phrases, by
applying natural language processing techniques, the chatbot attempts to match (2) the
user utterances (user’s input) with the corresponding intents (a generalized form of an
utterance).

Figure 2.3: Chatbot working scheme [49]

Identifying the intent that conforms to an utterance includes the training phrases
(di˙erent ways of expressing an intention). Several utterances can lead to the same intent,
for example, the utterances “what types of transmission do you have?” and “what are the
available transmission?” from the user will match the intent “Transmission”.

The chatbot examines the utterance and aims to identify appropriate keywords.
Among keywords are some with special meaning for the dialog; these are called entities.
Entities are used to add details to intents. It defnes a list of possible values (e.g.,
transmission, entertainment along with synonymns) and are therefore important to the
chatbot when deciding on an appropriate response.

Consequently, if a matching intent is found, the chatbot will extract the parameters of
interest from the utterances (e.g., types of transmission, (3)). Parameters may be typed
by entities (a piece of information that has a specifc meaning within a user utterance),
which can be either predefned (e.g., dates, colour, currency, email addresses, number,
etc.) or user-defned (e.g., transmission type, entertainment type). Also, if the utterance
lacks some expected parameters, the chatbot can be confgured to prompt the user for the
required input. In the event where no matching intent is found, a default fallback intent
approach could be adopted.

The chatbot can perform di˙erent actions (4) depending on the intent, such as calling
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an external service (5) and sending a response to the user (6). The basic response format
is text, but some platforms for the deployment of chatbots like telegram and twitter, also
support images, URLs, videos or buttons [49].

2.3.1 Natural Language Processing

Natural Language Processing is a branch of computer science, artifcial intelligence,
and linguistics that enables computers to understand, interpret and manipulate human
language (speech or text) [50, 51, 52, 53]. NLP is centered on the aspect of human
computer interaction [52]. NLP process and analyze written or spoken text by breaking
it down, comprehending its meaning, and determining the appropriate action. It involves
parsing, sentence breaking, and stemming and many more tasks.

Some of the researches done in NLP include information extraction, text summariza-
tion, tokenization, topic extraction, named entity recognition, parsing, speech recognition,
speech generation, language modelling and many other language-related tasks [54, 53, 50].

According to [24], advances in NLP have enabled the proliferation of chatbots that
run on social networks and o˙er services to users upon NL requests, thereby mimicking
human responses. Natural Language Processing is what allows chatbots to understand
user utterances and respond accordingly.

2.3.2 DialogFlow

Dialogfow provides a cloud-based development environment to describe chatbots with
voice and text-based conversational interfaces, as well as support for NL processing in
more than 20 languages [47]. It uses machine learning to understand what users are
saying5 and is focused on domain knowledge. Dialogfow provides a framework to build
conversational experience powered by artifcial intelligence. It has automated support
for deploying the bot in mobile apps, web applications, device (such as mobile phones,
wearables and other smart devices), interactive voice response systems6 , many di˙erent
social networks, integration with external services, and support for uploading chatbot
description in JSON format (Figure 2.4).

The typical communication pattern for a chatbot implemented in Dialogfow is as
described in Section 2.3 and as illustrated in Figure 2.3. Designing a chatbot in Dialogfow,
requires the following basic components:

Intent defnition: intent is the idea or message that a user intends to convey to the
chatbot. An intent matches the user’s interaction with an intention. A basic intent is
defned by training phrases (di˙erent ways of expressing an intent), parameters (pieces
of information that the application needs to work), actions (used to trigger specifc logic
in services) and responses (return responses after the intent is matched). For example,

5https://cloud.google.com/dialogfow/es/docs/agents-settings
6https://cloud.google.com/dialogfow/docs
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Figure 2.4: A sample screenshot of Dialogfow

if a chatbot receives the user’s utterance “what type of entertainment is available?”, a
chatbot for the sample car product line would recognize that the user intention is obtaining
information about the availability of some kind of entertainment, and would reply with a
list of entertainment types.

A more complex intent may contain contexts (stores information about a conversation
state; such as the values of parameters, in order to reuse it in subsequent intents, e.g., the
desired type of entertainment) and events (triggers intents directly by using fulflment or
API without matching training phrases within the conversation). Each intent is assigned
possible responses based on keywords. Each intent may have an input and output context
which lasts for a specifed period (by default, it expires automatically after 20 minutes).
However, the life span of the context can be modifed.

Intents may have zero or more follow-up intents that can only be activated right after
the parent intent has been activated [47]. A fallback intent is usually triggered if a user’s
input does not match any of the available intents, with a predefned set of responses
typically pointing the user to available alternatives. A follow-up intent uses context to
connect two intents. In this case, the input context of a follow-up intent is the same as the
parent intent’s output context. It is only matched after the initial intent is being matched
and can be used to match a yes or no answer to some specifc questions. By making
follow-up intents specifc to a single intent, it prevents the accidental matching of any yes
or no answer given elsewhere in the conversation. In order for the bot to identify and
process the intent that corresponds to the utterance, it would require intent defnition,
entity defnition and bot training with training phrases.
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Entity defnition: An entity is like an enumeration, and provides a type for the
parameters expected by intents in user utterances. it is the major data of intent. Entities
are the mechanism used by Dialogfow to identify and extract data from the users’ NL
inputs [47]. In Dialogfow, training phrases may contain parameters, whose types are given
by entities. In the example training phrase, “what type of entertainment is available?”,
entertainment is the parameter. Entities automatically identify and extract the type of
information (parameters) from user utterances. Whatever the user says that triggers
the entity becomes the parameter value. Entities can be either predefned (e.g., name,
number, text, date, time, colour, etc.) or chatbot-specifc. Some entity entries may have
several words or phrases that are considered equivalent; one reference value and one or
more synonyms for these entity entries.

Action defnition: A bot can perform several actions such as sending a text message,
sending an image, database queries or doing an external HTTP service request. The
action defnition, assists in executing logic in the user defned service. Whenever an
intent is matched at runtime, Dialogfow provides the action value to fulflment webhook
(an HTTP request that is sent automatically whenever certain criteria is fulflled) request
or API interaction response. This can be used to trigger specifc logic in the user defned
sevice.

Fulflment: Fulflment is a code that is deployed as a webhook; allowing Dialogfow
agents to call business logic on an intent-by-intent basis. A more dynamic response to a
matched intent can be obtained by using fulflment. When fulflment is enabled for an
intent, Dialogfow responds to the intent by communicating with the server or database
to generate dynamic responses. Whenever an intent with fulflment enabled is matched,
Dialogfow sends a request to a webhook service with information about the matched
intent, the action, the parameters, and the response defned for the intent. A webhook
is essentially an HTTP push API or web call back, providing an eÿcient connection and
communication between the bot and the web services. The service performs the required
actions and sends a webhoook response message to Dialogfow. Dialogfow then sends the
response to the end-user.

Flow defnition: Dialogfow uses the concept called context to understand which
question is being answered and the direction of the conversation fow. It represents the
current state of a user’s request and allows the agent to carry information from one intent
to another. A context acts as a flter and applies a bias to intent matching. For each
intent, multiple input and outputs context can be defned.

2.4 CONGA DSL 

CONGA (ChatbOt modelliNg lanGuAge) is a textual DSL for chatbot modelling, that
was designed based on an analysis of 15 popular chatbot development tools [48]. Chatbot
modelling and validation are possible with the CONGA DSL, which is independent of any
development platform.

CONGA DSL also provides an extensible recommender that analyzes the chatbot
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model and other requirements to generate a ranked list of appropriate development tools,
making it easier to choose a development tool for implementing a particular chatbot
model. Also, the CONGA DSL’s code generator synthesizes chatbot implementations
from chatbot models for specifc development tools (for example, JSON confguration
fles for Dialogfow or Python programs and confguration fles for Rasa) [48]. Finally, the
generated chatbots can then be deployed and made available to users on various platforms
(for example, Telegram, Twitter, or Slack).

CONGA supports creation of multi-language chatbots and the defnition of intents,
entities, and actions, as well as the use of fows to structure conversations. In
CONGA, intents can be defned using regular expressions or by a set of training phrases
demonstrating common ways for users to express the intention. Training phrases may
include Parameters (relevant data that the chatbot requires).

Parameters are formally declared by providing a name, a type, can be a list, can
be required, and may defne a list of prompts to ask for a value when the parameter is
required but the user utterance does not include its value. [55].

Parameters are typed by entities, which can be predefned entities (like “date”,
“number”, or “time”) or chatbot-specifc ones (class Entity). Chatbot-specifc entities can
be simple entities, which are defned as a list of words and their synonyms, or composite
entities, which are made up of other entities and text [48].

Chatbots can perform a variety of actions, including sending a Text response to the
user, which requires specifying the actual text for each chatbot language; sending an Image
identifed by its URL; performing a HttpRequest to a given URL, optionally providing
some headers and data; and sending to the user a HttpResponse for a previous http
request. In CONGA, these actions can be confgured in the "actions" section.

Finally, the “fows” section allows for the defnition of the conversation fows. These
are sequences of user intents that are followed by chatbot actions. Flows can be of any
length, and there may be multiple user continuations following a chatbot action.

2.5 Related Work 

In the confguration of software product lines, the complexity of variability handling poses
a signifcant challenge. As a result, several works [56], [57], [58], [59], [60], [61], [62], [63], [64],
[12], [65], [66], [67], have proposed various approaches to reducing the complexity of the
confguration process by automating the feature model confguration activity. This section
discusses a number of related works in this feld.

Visualization. Pleuss et al. [57] presented visual and interactive techniques for
reducing (cognitive) complexity and assisting users during the product confguration. The
visualized data is the variability. The visualization method is dependent on the underlying
data and the task to be supported. Clustering, decision trees, tree-maps, cone trees,
tables, fow maps, and UML diagrams are examples of visualization techniques that have
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been used or investigated in product confguration in PLE. Other visualization techniques
(Data Maps, Cause-e˙ect Chains, Flow Charts, Elastic Lists, Semantic Networks, Venn
Diagrams, Cheops, EncCon Trees, Space Trees, and Hyperbolic Trees) that could be useful
to support product confguration but have not yet been tested were also proposed.

The strength and weakness of the visualization technique were measured by the
dominant aspects it visualizes and the emphasis placed on these aspects [57]. However, no
optimal technique was identifed based on ratings of how well they support various aspects
of variability models relevant for visualization (a) representing hierarchy, (b) visualizing
cross-cutting dependencies, (c) visualizing attributes, and (d) visualizing the confguration
workfow.

Similarly, Pereira et al. [56] proposed and integrated a set of interelated visualizations
to improve the eÿciency of product confguration as part of the FeatureIDE tool. Their
approach was found to reduce the confguration e˙ort and the complexity of decision
making by providing a restricted view of the confguration space and by assisting the
decision-makers to reason on a focused set of relevant information about features and
non-functional properties.

Interaction. Botterweck et al. [60], [68] designed the S2T2 feature confguration tool,
which combines a visual interactive representation of the feature model with a formal
reasoning engine that calculates the consequences of the user’s actions and provides formal
explanations. The reasoning engine uses the mappings between visual elements and their
corresponding formal representations to calculate consequences and explanations, which
are then communicated in the interactive representation.

Pleuss et al. [58] builds on previous approaches to visualization and interaction by
providing a concept for interactive visual tool support for system confguration using
feature models and discussed techniques for interactive confguration support based on
a reasoning engine, which, for example, ensures the validity of confgurations. Their
fndings were illustrated by the S2T2 Confgurator. The primary focus of their interactive
support is visualization. The interaction method has a signifcant impact on visualization
eÿciency [57], [61].

Collaboration. Chen et al. [69] introduced the use of negotiation as a new methodology
for facilitating interactive decision making in product confguration. The confguration
process was modelled as a collaborative design problem, and negotiation support system
functionality was incorporated into the confgurator design.

Pereira [70] proposed a collaborative-based runtime approach that relies on recom-
mender techniques to provide users with accurate and scalable confgurations. The pro-
posed approach takes advantage of a simplifed view of the confguration space by dy-
namically predicting the importance of the features and employs a collaborative-based
recommender system that learns about the relevant features from the confgurations of
other users. The set of interactive and automatic visual mechanisms assists users in
making valid confguration decisions.

Feature Extraction Approaches From Natural language Specifcation. Finally,
several authors proposed feature model extraction from documents written in natural
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language [71], [40]. These approaches provide a set of possible solutions to extract (a)
only features [72],[71], (b) only relationships (detecting binary constraints among features,
which identifes only requires or excludes relationships among pairs of features) [73] and
(c) both feature and feature relationships (candidate feature models) [74], [40], [75],
from the requirements documents.

Sree-Kumar et al [40], identifed some limitations in previous work on feature model
extraction and addressed them with the proposed framework (FeatureX), for extracting
FMs from natural language specifcations of software product lines. The proposed
framework improved recall (the absence of false positives) while maintaining a comparable
level of precision (detecting the most relevant features).

Our approach focuses on using chatbots to e˙ectively guide the confguration process
using natural language.
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3 
Approach

The main concepts and approach proposed in this work will be explained in this chapter.
Section 3.1 looks into the general approach to chatbot synthesis for software product line
confguration. Section 3.2 describes how to map a feature model to a corresponding bot,
and Section 3.3 describes the conversation fow plan.

3.1 General Approach 

In this project, we propose the use of conversational agents in the confguration of software
product lines based on feature models, and we present an approach for chatbot generators
for SPLs, based on the motivation presented in chapter 1. The scheme of our proposal is
as shown in Figure 3.1. To begin, a feature model is provided (like the one in section 2.2).
Then, to map a feature model to a bot, we developed a set of feature modelling specifc
algorithms as well as heuristics for defning confguration tasks and conversation fow
plans that can be used to provide automated product confguration support. The root
node and all features from the input feature model must frst be identifed. Candidate
relationships among the features are also identifed, allowing for the distinction between a
parent feature and its child features. Additionally, any cross-tree constraints between the
extracted features are identifed. Using the relationship types Mandatory, Optional, And,
Alternative/XOR, Or, Include/Require, and Exclude, the information retrieval technique
detects meaningful relationships in the context of feature models.

Based on the mapping rules in section 3.2, an output bot model is created using the
information extracted from the input (feature model). Intents, entities, actions, and fows
are the main components of the bot model, as shown in Figure 3.1.
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We rely on FeatureIDE for loading a feature model, information extraction, and
analysis on feature models.

The CONGA DSL is used to generate a Dialogfow chatbot, according to the bot
defnition. Finally, the generated chatbots can then be deployed and made available to
users on various platforms (for example, Telegram, Twitter, or Slack).

Figure 3.1: Overview of our proposal

3.2 Feature Model Mapping to Corresponding Chatbot 

As we discussed in chapter 2, a feature model specifes the domain, product model
constraints, and which features are included in the fnal products. We also discussed
the semantics of FM and the structural relationship categories of a typical FM in
section 2.2. We now adhere to its layout to realize the feature model mapping to a
bot. The candidate features relationship type, parent-child hierarchy between features,
and available constraints are identifed and extracted from the loaded feature model.
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Table 3.1, displays the data obtained from the implemented interfaces for the sample car
feature model and associated rules from section 2.2. The information extracted from the
feature model is critical for the bot model and the implementation corresponds to the sets
and algorithm we defned.

Table 3.1: Information Extraction
Feature Node Type Relationship Constraints

Car Root Mandatory
Transmission Parent Mandatory, Alternative

Entertainment Parent Optional, Or
KeylessEntry Child (of root) Optional Requires PowerLock

PowerLock Child (of root) Optional
Manual Child (of transmission) Alternative

Automatic Child (of transmission) Alternative
Radio Child (of Entertainment) Optional

CD Child (of Entertainment) Optional

Algorithm 1 describes the steps for extracting features and relationships heuristics
for intent generation. Detecting the intents to be created and what kind of phrases to
generate is based on the position of the occurrence of the features, the hierarchy, and
the relationship between the features. Intents are generated for the nodes that are linked
to the starting node (root). These are the frst-level nodes (these include nodes with
sub-features and leaf nodes). Intents are also created for any subsequent node that is not
an end-node. As a result, intents will be generated for the Transmission, Entertainment,
KeylessEntry, and PowerLock nodes, but not for the automatic, manual, cd, and radio
nodes.

The purpose, or goal, expressed in a user’s utterance is represented by an intent.
The intent should be a concise method of categorizing the utterance tasks. To assign
some example utterances to intents, the possible user utterances were generated based
on the keywords or intents. The manually entered phrases by the developer become the
set of predefned phrases for the intents. Some of the intents required concatenating the
phrases with the extracted feature names. Several example phrases that mean the same
thing were used as training phrases for each intent. The intent of the utterances "I want
Manual" and "Give me Automatic," for example, is to choose a transmission feature;
thus, a Transmission intent related to these utterances is defned in the bot description.
Furthermore, the relationship type (AND, OR, and XOR) infuences the type of phrases
generated. An optional or mandatory relationship with a set of features is represented by
an AND connection by default in the FeatureIDE tool [37].
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Algorithm 1 Intent generation
Input: A feature model
Output: A bot fle with Sets of Intent defnitions
1: for each ƒ ∈ FM do
2: ƒ ← −dent„ƒyC‰nd„d‰teFe‰t”res . detect feature names
3: if ƒ 6= Root then
4: IdentifyCandidateRelationship(Alt, or, and)
5: TF ← AddPredeƒ „nedTr‰„n„ngPhr‰ses(ƒ ) 
6: P ← AddP‰r‰meter 
7: if ƒ = P‰rent(ƒp) then
8: for each c ∈ ƒp do
9: TFc ← AddPredeƒ „nedTr‰„n„ngPhr‰ses 

10: end for each
11: if ƒ 6= m‰nd‰tory then
12: TF ← AddPredeƒ „nedTr‰„n„ngPhr‰ses . optional features
13: end for each

Algorithm 2 Entity generation
Input: A feature model
Output: A bot fle with Sets of Entity defnitions
1: for each ƒ ∈ FM do
2: IdentifyCandidateRelationship(Alt, or, and)
3: if ƒ = P‰rent(ƒp) then
4: ENT ← SetS„mp“eEnt„ty 
5: for each c ∈ ƒp do
6: Generate Entity with synonyms
7: end for each
8: end for each

Algorithm 2 provides the steps for generating simple entity defnitions. User-defned
entities were used. Entities were created to automatically identify and extract the type
of information (parameters) from user utterances. A list of words or phrases that fts
the given context was provided from the extracted features, and synonyms assigned
to the lists. To create an entity for any feature, WordNet (a database of words and
synonyms) [76] is queried for synonyms, and if none are found, the original word is
returned.

For each set of features that are children of the same parent feature, a simple entity
is generated. For example, simple entity transmission is generated for manual and
automatic, since they are both children of transmission. Furthermore, using the CONGA
syntax, the manual and automatic entities in the simple entity transmission example
in Listing 3.1 can be viewed as specifc instances of a general transmission entity. The
synonyms are generated automatically using the dictionary, WordNet.
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1 entities : 
2 Simple entity " transmission ": 
3 inputs in en { 
4 "Manual " synonyms "MT ", "manual gearbox " 
5 " Automatic " synonyms " auto ", " automatonlike " 
6 } 
7 

8 Simple entity " entertainment ": 
9 inputs in en { 

10 "CD " synonyms "compact disk ", "compact disc " 
11 "Radio " synonyms "radio receiver ", "radio set ", "tuner " 
12 } 
13 

14 Simple entity " powerlock ": 
15 inputs in en { 
16 " PowerLock " 
17 } 
18 

19 Simple entity " keylessentry ": 
20 inputs in en { 
21 " KeylessEntry " 
22 } 

Listing 3.1: Entity defnition

Chatbots, as described in section 2.3, can perform a variety of tasks. Corresponding ac-
tions are defned in response to user input. The actions and text responses indicate
whether the relationship is required or optional, as well as whether it is AND, OR, or
Alternative. In comparison to the mandatory feature, the text responses for optional
features do not express obligation. The Transmission and Entertainment features text
responses example exemplifes this. The standard action (text response) for the required
Transmission feature is "Transmission must be confgured. Please choose only one of the
following features: Manual or Automatic" (Listing 3.2). However, for the optional feature
Entertainment, it is "Do you want to add any of these optional features: Entertainment..?
(Listing 3.3). The response for Entertainment, which is an "Or" feature, is "You can select
one or more of the following features: CD, Radio" (Listing 3.4).

1 actions: 
2 text response TransmissionType: 
3 inputs{ 
4 "Transmission must be configured. 
5 Please choose only one of the following features: 
6 Manual , Automatic " 
7 } 

Listing 3.2: Compound Mandatory Feature Response
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1 actions: 
2 text response OptSelectPrompt: 
3 inputs { 
4 "Do you want to add any of these Optional Features: 
5 KeylessEntry , Entertainment , PowerLock ?" 
6 } 

Listing 3.3: Optional Feature Response

1 actions: 
2 text response EntertainmentType: 
3 inputs{ 
4 "You can choose one or more of the following features: 
5 CD , Radio " 
6 } 

Listing 3.4: Compound Or Response

There are also phrases to inform users about feature dependencies (cross-tree
constraints). The predeterminer "all" is used to represent an implication [40]. If
KeylessEntry is selected, for example, the corresponding action is: "PowerLock is
generally provided for all cars with KeylessEntry feature." The word "all" denotes an
implication in this context. This indicates a "requires" relationship between PowerLock
and KeylessEntry.

Finally, in this work, conversation fows (i.e., sequences of user and chatbot
interactions) have been divided into three paths: confguration, analysis, and help as
shown in Figure 3.2). When a user initiates a conversation with the bot, it responds
with the bot’s functionalities, which are confguration, help, and analysis. After the
user agrees to proceed with the confguration, the bot walks the user through the feature
selection process, starting with the core features and working its way down to the optional
features. Section 3.3 describes how the chatbot aids in the feature selection process.
Listing 3.5, 3.6, 3.7, 3.8 3.9 and 3.10 demonstrate how to confgure the feature model
using conversations (user utterances and bot responses).

Listing 3.5, 3.6, 3.7, 3.8, and 3.9 are general intents created for initiating a conversation
with the bot. These intents are di˙erent from the specifc intents generated from the
feature model. The conversation begins with a greeting from the user, as shown in
Listing 3.5. The bot responds with a welcome message (Listing 3.6) and a follow-up
response (Listing 3.7), inquiring if the user wants to proceed with the confguration
process. Listing 3.8 shows the utterances for proceeding with the confguration process,
and Listing 3.9 provides information about the confguration process. Listing 3.10 is an
example of a specifc intent with some information from the feature model (automatically
selected features).
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1 intents : 
2 Greeting : 
3 inputs { 
4 " Howdy ", 
5 " Hi ", 
6 " Hello ", 
7 " Hey ", 
8 " Heya ", 
9 " hey there ", 

10 " good morning ", 
11 " good afternoon ", 
12 " good evening " 
13 } 

Listing 3.5: User Initiates Conversation

1 actions: 
2 text response GreetingRes: 
3 inputs { 
4 "Hello there! I am here to help you with configuring your software 

,→ product line." , "Hi , welcome to SPLBot!" , "Hello there! I am here 
,→ to help you with configuring your software product line. To get 
,→ information about this SPL , enter help for more detail ." 

5 } 

Listing 3.6: Bot Welcome Response

1 text response StartRes: 
2 inputs { 
3 "Would you like to proceed to product configuration ?" , "Would you like 

,→ to proceed to feature selections ?" , "Would you like to select a 
,→ configuration ?" 

4 } 

Listing 3.7: Bot Follow-up Respone

1 Config: 
2 inputs { 
3 "Yes ", 
4 "yes I want to select a configuration ", 
5 "yes I would like to choose a configuration ", 
6 "ys what features do you have ", 
7 "yes what features are available ", 
8 "yes I’d love to ", 
9 "why not ", 

10 "yes I do " 
11 } 

Listing 3.8: User Accepts Confguration Request
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1 text response ConfigRes: 
2 inputs { 
3 "Great! 
4 Please note that the "Root " and "Core features " are automatically 

,→ selected , but you will have the option to select from the 
,→ available optional features ." 

5 } 

Listing 3.9: Bot Confguration Response

1 text response PreSelectRes: 
2 inputs { 
3 "The pre -selected features are: Car , Transmission " 
4 } 

Listing 3.10: Bot Confguration Response Follow-up

The next step is to create a bot fle, which includes the bot language and
name defnition, intents, entities, actions, and fows defnition. CongaDSL can then
automatically process the generated bot fle to generate a Dialogfow chatbot.

Master Thesis28



CHAPTER 3. APPROACH
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conversation
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No

Display list of automatically selected core features

Prompt user to configure required feature
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If additional action is required

Display list of optional features and prompt user to make desired selection(s)

makes selection(s) No selection

Display selected optional features

If additional action is required

Prompt user to configure required feature
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Display selected features
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Query feature modelAsk for help

Yes

Configuration

Figure 3.2: Conversation fow
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3.3 Heuristics 

The conversation fow plans are divided into three categories: confguration, general help,
and analysis. The mandatory and optional feature categories are used to defne the
confguration fow plan. The chatbot facilitates the confguration tasks by guiding the user
through the mandatory and optional feature selections. We use the hierarchical structure
of the FM, as well as the relationship between the features, exactly as they appear in
the model, for the confguration fow. We can extract the parent-child relationship in
this manner. The core assets for any feature must be present in all products of an SPL,
whereas the optional features are optionally included in all products. As a result of this
analogy, the core features become the confguration’s defning point.

The relationship type rule di˙erentiates between required and optional features. The
core features that have been automatically selected are presented to the user frst, based
on the mandatory and optional features identifed, the position of occurrence, and the
presence of compound features. The user is then required to make a secondary selection
for frst-level compound core features. These are parent features that necessitate the
selection of additional child features (Alt, Or, And). For example, because Transmission
is both a preselected and a compound feature, a user would be required to select one
of transmission’s child features. After completing all mandatory selections, the user
is presented with a list of optional features from which to choose. All automatically
selected and user selected features are displayed as text responses after a user is done
with selections and prompted to save confguration.

3.4 Additional Functionalities 

The chatbot is also able to provide support for analysis using FeatureIDE’s analysis
services functionality. This is done during the code generation process, and presented as
possible queries (intents) and corresponding bot responses. The various analyses that this
chatbot can perform are detailed in Table 3.2.

Listing 3.11 and Listing 3.13 are example query structure to obtain the number of
features in the FM and possible confgurations. Listing 3.12 and Listing 3.14 are sample
responses. The results of the queries can be viewed by sending a text message to the
Telegram chat and other platforms. For “All products” output which are sometimes very
long, they will be sent in a text fle to the conversation.

1 QFeatureNum: 
2 inputs { 
3 "What is the total number of features?" , 
4 "How many features are available ?" , 
5 "How many features do you have ", 
6 "How many features ?" 
7 } 

Listing 3.11: Number of features Intent
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Table 3.2: Sample Analysis Queries on FM
Input: Feature Model
Void/valid features model
Query: is the feature model valid?

This query returns a value indicating
whether or not the input feature model
is void.

Number of products
Query: What is the number of products?

This query returns the number of prod-
ucts represented by the input feature
model.

All products
Query: List products

The output of this query is a text fle
containing a list of all the products
represented by the feature model.

Core Features
Query: What are the core features?

Returns the set of features common to
all products in the software product
line.

Variant/Optional features
Query: What are the optional features?

Returns the set of variant features in
the model (i.e those features that do
not appear in all the products of the
SPL.

Number of features
Query: What is the number of features?

This query returns the number of fea-
tures in the input feature model.

1 text response QNoOfFeatRes: 
2 inputs { 
3 "There are 9 features in the feature model " 
4 } 

Listing 3.12: Bot Response to Number of features Query

1 QConfigNum: 
2 inputs { 
3 "What is the possible number of configuration ?" , 
4 "How many configurations are possible?" , 
5 "How many configurations can I get?" , 
6 "Number of valid configurations ?" , 
7 "number of configurations ", 
8 "How many configurations are possible?" , 
9 "How many configuration ?" , 

10 "How many products ?" 
11 } 

Listing 3.13: Number of Possible Confgurations

Automated synthesis of chatbots for confguring software product lines 31



CHAPTER 3. APPROACH

1 All Products: 
2 P1: Car , Transmission , Manual 
3 P2: Car , Transmission , Automatic 
4 P3: Car , Transmission , Manual , Entertainment , CD 
5 P4: Car , Transmission , Manual , Entertainment , Radio 
6 P5: Car , Transmission , Manual , Entertainment , CD , Radio 
7 P6: Car , Transmission , Automatic , Entertainment , CD 
8 P7: Car , Transmission , Automatic , Entertainment , Radio 
9 P8: Car , Transmission , Automatic , Entertainment , CD , Radio 

10 P9: Car , Transmission , Manual , KeylessEntry , PowerLock 
11 P10: Car , Transmission , Automatic , KeylessEntry , PowerLock 
12 P11: Car , Transmission , Manual , Entertainment , CD, KeylessEntry , 

,→ PowerLock 
13 P12: Car , Transmission , Manual , Entertainment , Radio , KeylessEntry , 

,→ PowerLock 
14 P13: Car , Transmission , Manual , Entertainment , CD, Radio , KeylessEntry , 

,→ PowerLock 
15 P14: Car , Transmission , Automatic , Entertainment , CD , KeylessEntry , 

,→ PowerLock 
16 P15: Car , Transmission , Automatic , Entertainment , Radio , KeylessEntry , 

,→ PowerLock 
17 P16: Car , Transmission , Automatic , Entertainment , CD , Radio , 

,→ KeylessEntry , PowerLock 
18 P17: Car , Transmission , Manual , PowerLock 
19 P18: Car , Transmission , Automatic , PowerLock 
20 P19: Car , Transmission , Manual , Entertainment , CD ,PowerLock 
21 P20: Car , Transmission , Manual , Entertainment , Radio , PowerLock 
22 P21: Car , Transmission , Entertainment , CD, Radio , PowerLock 
23 P22: Car , Transmission , Automatic , Entertainment , CD , PowerLock 
24 P23: Car , Transmission , Automatic , Entertainment , Radio , PowerLock 
25 P24: Car , Transmission , Automatic , Entertainment , CD , Radio , PowerLock 

Listing 3.14: Confgurations Response

The user can seek assistance from the chatbot. Listing 3.15 depicts possible user
utterances. The format for the bot’s assistance is as follows: frst, it explains how to
select a confguration, and then it explains with examples how to query the bot about the
feature model analysis.

1 Help: 
2 inputs { 
3 "Can you help me ", 
4 "I need help ", 
5 "what can you do " 
6 } 

Listing 3.15: Help
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4 
Architecture and Tool

This chapter describes the architecture of SPLBOT (section 4.1), as well as how to use
the tool (section 4.2) on Telegram.

4.1 Architecture 

SPLBOT has been implemented in Java. Figure 4.1 depicts the various components of
SPLBOT that will be discussed in this section. The implementation relies on FeatureIDE
libraries for information extraction from feature models and the analysis on feature
models, as well as on the CONGA DSL for the synthesis of the chatbot using DialogFlow.
The bot model was created using the described mapping rules (section 3.2) and fow
heuristics (section 3.3).

The defnition of the chatbot model should be consistent with the CONGA DSL
model [48]. The output bot fle can then be processed by the CONGA DSL to generate
a Dialogfow chatbot.

Nodejs was used to create the server. The chatbot employs a webhook architecture.
Dialogfow is in charge of processing the user’s natural language utterances. When
Dialogfow receives user input, it interprets it and sends it to the server in the form
of a POST request. These interpretations are analyzed on the server, and appropriate
responses are sent to Dialogfow, which is then sent to Telegram.
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Figure 4.1: Architecture of SPLBOT

4.1.1 FeatureIDE

The FeatureIDE libraries [77], are used to load the feature model as objects in memory
and to extract the necessary information from the feature model. The interfaces
IFeatureModel, IFeature, and IConstraint are used to identify and extract the candidate
feature names, features relationship type, parent-child hierarchy between features, and
available constraints from the loaded feature model. FeatureIDE encourages the use of
external feature model implementations by providing interfaces to FeatureIDE’s classes
for feature model, feature, and constraint, as well as a factory framework for creating
concrete instances.

To use an external feature model, feature, or constraint within FeatureIDE, the cor-
responding interfaces was implemented. As well as a factory implementing IFeature-
ModelFactory that instantiates the corresponding classes. Additionally, FeatureIDE was
made aware of the new classes before the classes were used. FeatureIDE’s fm.core plug-in
was added and the factories were added programmatically during runtime by calling the
method addExtension of the factory manager and an instance of the implemented factory
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was provided. During runtime, additional associations of factories to fle paths or fle
formats were created and modifed during runtime. The FeatureIDE was also used for the
automated analysis of feature models support. The operation takes a set of parameters
as input and returns a result as output.

4.1.2 CONGA for Chatbot Synthesis from Feature Model

This section explains the structure of the generated CONGA chatbots.

1 Chatbot CarBot language: en 
2 

3 intents: 
4 Greeting: 
5 inputs { 
6 "Howdy ", 
7 "Hi ", 
8 "Hello ", 
9 "Hey ", 

10 "Heya ", 
11 "hey there ", 
12 "good morning ", 
13 "good afternoon ", 
14 "good evening " 
15 } 
16 Help: 
17 inputs { 
18 "Can you help me ", 
19 "I need help " 
20 } 
21 ConfigureIntent: 
22 inputs { 
23 "Yes ", 
24 "yes I want to select a configuration ", 
25 "yes I would like to choose a configuration ", 
26 "ys what features do you have ", 
27 "yes what features are available ", 
28 "yes I’d love to ", 
29 "why not ", 
30 "yes I do " 
31 } 

Listing 4.1: Intent defnition

The declared language for this work is English (en), but multi-language chatbots are
also possible with CONGA. The frst line defnes the chatbot name (CarBot in Listing 4.1)
and the supported languages (English). The name of the bot is defned by the root node
(Car), which represents the concept that the feature model is characterizing.

Chatbots can defne intents, entities, actions and fows (to structure the conversation).
In CONGA, intents can be defned using regular expressions or a set of training phrases
demonstrating common ways for users to express the intention. Listing 4.1 (lines 4–15,
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16-20, and 21-31) shows intent defnition examples for the generated bot.

Training phrases may contain parameters, which are relevant data that the chatbot
requires, such as the entertainment and transmission (“entertainment_type” and
“transmission_type” in Listing 4.2, lines 1-2 and 24-25). Lines 11-22 defne an intent
named “Get_Transmission” with a set of training phrases. The intent defnes the
parameters in lines 24-25. The training phrases can refer to them (for example,
[Transmission_type] in line 25) and assign a value to them in the context of the phrase
(e.g., automatic in line 19).

1 parameters: 
2 Entertainment_type: entity entertainment , isList , required , prompts [" 

,→ What type of Entertainment ?"]; 
3 

4 Transmission: 
5 inputs { 
6 "I want to know the type of Transmission that is available ", 
7 "Transmission ", 
8 "See available Transmission ", 
9 "what Transmission type is available " 

10 } 
11 Get_Transmission: 
12 inputs { 
13 

14 (" Manual ")[Transmission_type], 
15 "I want " (" Manual ")[Transmission_type], 
16 "I ’ll go with " (" Manual ")[Transmission_type], 
17 "Give me " (" Manual ")[Transmission_type], 
18 (" Automatic ")[Transmission_type], 
19 "I want " (" Automatic ")[Transmission_type], 
20 "I ’ll go with " (" Automatic ")[Transmission_type], 
21 "Give me " (" Automatic ")[Transmission_type] 
22 } 
23 

24 parameters: 
25 Transmission_type: entity transmission , required , prompts [" What type of 

,→ Transmission ?"]; 

Listing 4.2: Sample parameters for intent defnition

Each parameter is formally declared by specifying its name, type, can be optional or
required, can be a list, and may defne a list of prompts to ask for a value when the
parameter is required but the user utterance lacks its value (lines 2 and 15).

Parameters are typed by entities. CONGA supports both predefned entities and
chatbot-specifc entities. Chatbot-specifc entities can be simple entities, which are defned
as a list of words and their synonyms, or composite entities, which are made up of other
entities and text. The defnitions of the simple entities “transmission,” “entertainment,”
“powerlock,” and “keylessentry” are shown in Listing 3.1. This declares the admissible
transmission, entertainment, powerlock, and keylessentry together with their synonyms.

Listing 4.3 illustrates action defnition and text responses (TransmissionRes, Enter-
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tainmentRes, TransmissionType, EntertainmentType...). Parameter values can be used
in text responses. For example, [“Get_Transmission.Transmission_type”] in line 5 for
Transmission selection and [“Get_PowerLock.PowerLock_type”] in line 33 for powerLock
selection.

1 actions: 
2 text response TransmissionRes: 
3 inputs { 
4 "Selected feature: " 
5 [" Get_Transmission . Transmission_type "] 
6 } 
7 

8 text response TransmissionType: 
9 inputs{ 

10 "Transmission must be configured. Please choose only one of the 
,→ following features: 

11 Manual , Automatic " 
12 } 
13 text response EntertainmentRes: 
14 inputs { 
15 "Selected feature: " 
16 [" Get_Entertainment . Entertainment_type "] 
17 } 
18 

19 text response EntertainmentType: 
20 inputs{ 
21 "You can choose one or more of the following features: 
22 CD , Radio " 
23 

24 } 
25 

26 text response PowerLockRes: 
27 inputs { 
28 "Selected feature: " 
29 [" Get_PowerLock . PowerLock_type "] 
30 } 
31 

32 text response OptSelectPrompt: 
33 inputs { 
34 "Do you want to add any of these Optional Features: KeylessEntry , 

,→ Entertainment , PowerLock ?" 
35 } 

Listing 4.3: Action defnition

Finally, a chatbot can defne conversation Flows (i.e., sequences of user and chatbot
interactions). A fow is made up of UserInteraction objects that are linked to an intent
and BotInteraction objects that include one or more actions. A fow must begin with
a user interaction, followed by a bot interaction, which may be followed by more user
interactions, and so on. Listing 4.3 is an example of a conversation fow. It specifes a
number of fows, each of which must begin with a user interaction and the associated
intent. When the user utterance matches the Greeting intent, the fow in line 2-19 occurs,
and the chatbot asks for confrmation to proceed or not to proceed with the confguration.
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The fow is divided based on the user’s response (yes or no). When the user utterance
matches the Help intent, the fow in lines 22 occurs, and the chatbot provides a response
to the user.

1 flows: 
2 - user Greeting => chatbot GreetingRes , StartRes{ 
3 => user Config => chatbot ConfigRes , PreSelectRes ,Type{ 
4 

5 => user "Mandatory " => chatbot CoreFeatSelectRes , TransmissionType{ 
6 => user "Get_Transmission " => chatbot TransmissionRes , OptSelectPrompt 

,→ { 
7 => user OptYes => chatbot OptYesRes; 
8 => user OptNo => chatbot SaveConfigRes{ 
9 => user SaveYes => chatbot SaveRes; 

10 => user SaveNo => chatbot NoConfigRes; 
11 }; 
12 

13 }; 
14 }; 
15 

16 }; 
17 => user NoConfig => chatbot NoConfigRes; 
18 

19 }; 
20 

21 

22 - user "Help " => chatbot HelpCRes , HelpARes; 
23 

24 - user "QFeatureNum " => chatbot QNoOfFeatRes; 
25 

26 - user "QOpt " => chatbot QOptFeatRes; 
27 

28 - user "QCore " => chatbot QCoreFeatRes; 
29 

30 - user "QConfigNum " => chatbot QConfigRes; 
31 

32 - user "QProducts " => chatbot QProductsRes; 
33 

34 - user "QCoreIsValid " => chatbot QIsValidRes; 

Listing 4.4: Flows defnition

The fow in line 24 occurs when the user utterance matches the QFeatureNum intent,
in which case the chatbot executes the QNoOfFeatRes action defned in Listing 4.5, lines
6-9. When the user utterance matches the QOpt intent, the fow in line 26 occurs, and
the chatbot executes the QOptFeatRes action defned in Listing 4.5, lines 14-17. The
fow in line 28 occurs when the user utterance matches the QCore intent, in which case
the chatbot executes the QCoreFeatRes action defned in Listing 4.5, lines 10-13. When
the user utterance matches the QConfgNum intent, the fow in line 30 occurs, and the
chatbot executes the QConfgRes action defned in lines 18-22.
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1 text response ConfigRes : 
2 inputs { 
3 " Great ! 
4 Please note that the " Root " and " Core features " are automatically 

,→ selected , but you will have the option to select from the 
,→ optional features ." 

5 } 
6 text response QNoOfFeatRes : 
7 inputs { 
8 " There are 9 features in the feature model " 
9 } 

10 text response QCoreFeatRes : 
11 inputs { 
12 " The following features are automatically selected : Car , Transmission " 
13 } 
14 text response QOptFeatRes : 
15 inputs { 
16 " You can select any of these Optional Features : KeylessEntry , 

,→ Entertainment , PowerLock " 
17 } 
18 text response QConfigRes : 
19 inputs { 
20 " There are 24 possible configurations . 
21 The possible solutions are : [Car , Transmission , Manual ], [ Entertainment 
22 } 

Listing 4.5: Responses

The DSL code generator [48] is used to generate the Dialogfow platform’s codes. Java
was used to implement this. The fle structure is made up of Json fles that defne the
intents, entities, and conversation fow. The generated fles are then uploaded as a zip fle
to the Dialogfow platform. The chatbot is then integrated into the Telegram platform.
Finally, the bot was deployed on the Telegram platform.

4.1.3 Dialogfow

This section, show Dialogfow screenshots of some of the generated intents (general and
specifc) for the chatbot. Each intent serves a distinct purpose and displays sample
user utterances in the Training phrases (Figure 4.2) section of Dialogfow, as well as
the associated Text response (Figure 4.3) in the Response section. When a user types a
query, Dialogfow detects the intent and responds appropriately.

After the user has agreed to proceed with the confguration, the generated intent
provides the user with information on the feature to be confgured. The response
exemplifes both the obligatory and alternative relationships, as well as the parent-
child relationship. In Figure 4.3, the response “the pre-selected features are Car and
Transmission” illustrates that the root node and the mandatory children of the root node
have to be selected.
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Figure 4.2: Training Phrases of the “Confg Intent”

Figure 4.3: Bot Response for the “Confg Intent”

The “Get_Transmission” intent, for example, recognizes the user’s intention to select
a transmission type. The context(Figure 4.4) is used to store the user’s choices, followed
by the training phrases(Figure 4.5), the intent parameter (Figure 4.6), and fnally the
bot’s responses (Figure 4.7).

The Action and parameter section of the intent in Figure 4.6 captures the defned
parameters in the Entities, “@transmission”. These are the set of keywords that can be
extracted as a parameter. This is useful for obtaining specifc data from a user’s utterance
and is selected from the Entity-type that best meets the requirements.
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Figure 4.4: Context for the “Get_Transmission Intent”

Figure 4.5: Training Phrases of the “Get_Transmission Intent”

The defned entity in Figure 4.5 is “transmission,” with the entry “manual” and the
defned synonyms manual, MT. Another entry is “automatic,” with synonyms auto and
AT defned. When the user says, “I want manual,” Dialogfow recognizes the reference and
extracts the parameter as “Transmission type,” which is then displayed in the response,
as shown in Figure 4.7. With Fulfllment and webhook enabled, a service was deployed
to respond to some of the user inquiries. A URL for the back-end is provided in the
Webhook section, and Dialogfow sends the user’s query and Parameters to the back-end
as a POST request.

Automated synthesis of chatbots for confguring software product lines 41



CHAPTER 4. ARCHITECTURE AND TOOL

Figure 4.6: Parameter of the “Get_Transmission Intent”

Figure 4.7: Bot Response for the “Get_Transmission Intent”

4.2 Tool 

This section describes how users interact with the generated chatbot through a social
network. The user will converse in English using the Telegram messaging application.

4.2.1 Using the generated chatbot in Telegram

Telegram is a cloud-based messaging service. Users can interact in private chats with
an individual, bot, or group with up to 200,000 members. Telegram has a Bot API, a
developer platform that enables anyone to build specialized tools (e.g., bots) for Telegram
and integrate any services. Bots can be run directly within Telegram using the Telegram
Bot API. The generated chatbot integrated into Telegram allows users to use natural
language to converse with and confgure a software product line. It also supports queries,
enabling users to obtain necessary information about the SPL. Here are some user-bot
interaction examples on the Telegram platform.
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Figure 4.8: Beginning of conversation with the bot

Figure 4.9: Interaction with chatbot for selection of features

Figure 4.8 depicts how the user initiates the interaction with the bot. Then, Figure 4.9
illustrates the way in which the user enters the feature to be selected for core features
requiring additional feature selection. In Figure 4.10, the user begins selection of optional
features.

Finally, once the user has completed the feature selections, the resulting confguration
fle in XML format (compatible with FeatureIDE) can be downloaded.
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Figure 4.10: User makes optional feature selection

Figure 4.11: User Completes feature selection
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Figure 4.12: User Interaction with chatbot to Request Help

Figure 4.13: User queries chatbot for the number of features

Figure 4.12 shows how the user requests help from the bot, while Figure 4.13 and
Figure SPLBOT4.14 depict how the user queries the bot for information on feature model
analysis. Figure 4.14 displays the results, along with a link to the text fle. The contents
of the fle are depicted in Figure 4.15.

Our approach reduces confguration e˙ort and complexity by providing conversational
guidance support throughout the confguration process. Furthermore, users can interact
with the chatbot using natural language in a familiar environment such as Telegram,
Facebook, or Slack without having to install any additional software, as is required with
FeatureIDE. A non-technical user can interact with the chatbot to confgure the product
with little or no training.
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Figure 4.14: User queries chatbot for all possible confgurations

Figure 4.15: File content
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5 
Evaluation

To assess our approach, we present the fndings of an experiment required to address the
following two research questions (RQs):
RQ1: (E˙ectiveness). Is the proposed automated chatbot synthesis from feature models
capable of assisting in the confguration of realistic Product Lines?
RQ2: (Scalability). Is our approach suitable for large feature models?

5.1 Experiment set-up 

We compare the chatbots generated by our tool using (a) one of our feature models and (b)
two feature models from http://www.splot-research.org/. SPLOT is a web-based feature
modelling tool [5] that puts Software Product Lines research into practice by providing
cutting-edge online tools to academics and practitioners in the feld. It supports real-time
feature model editing, debugging, analysis, confguration, sharing, and downloading 1 .

The Car feature model has 9 features, two of which are mandatory, three of which are
optional, one of which is an alternative feature, one of which is an or feature, and one of
which is a constraint. The Mobilephone 2 feature model has ten features, two of which
are mandatory, two of which are optional, one alternative feature, one or feature, and
two constraints. The MyDental 3 feature model has 12 features, 5 mandatory features,
1 optional, and 2 Or feature. Table 5.1 shows a summary of the feature models. All the

1http://www.splot-research.org/
2http://ec2-54-213-92-199.us-west-2.compute.amazonaws.com:8080/SPLOT/models/model_ 

20120110_139114401.xml 
3http://ec2-54-213-92-199.us-west-2.compute.amazonaws.com:8080/SPLOT/models/model_ 

20140403_1425048263.xml 
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Feature model properties
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Car 9 2 3 1 1 1 24
Mobilephone 10 2 2 1 1 2 14
MyDental 12 5 1 2 42
eLearning 24 5 8 1 3 2 4608

Table 5.1: Size of the feature models

experiments were carried out on an Intel Core @2.4GHz with 4GB of RAM.

5.2 Evaluation Description 

For each of the feature models, we created the corresponding chatbots. We collected the
size of the feature models, the number of generated intents, entities, chatbot size, and
chatbot generation time during our evaluation.

Table 5.2 summarizes the assessment metrics of the generated chatbots to provide an
understanding of the synthesized chatbots. CarBot is used to confgure a car product line;
MobilephoneBot is used to confgure a mobile phone product line; ELearningBot is used
to confgure an eLearning System product line; and MyDentalBot is used to confgure a
dental MyDental product line. The CarBot, with a feature model of 985bytes, generated a
chatbot with a size of 99,139bytes and a generation time of 5338ms. The MobilephoneBot,
with a feature model of 1.082bytes, generated a chatbot size of 39,021bytes in 4928ms. The
MyDentalBot, with a feature model of 936bytes, generated a chatbot size of 30,129bytes
in 4916ms. This demonstrates the e˙ectiveness of our tool.

Two aspects, however, required manual intervention. First, referencing contexts from
other intents; some chatbot responses rely on parameter values, which CONGA does
not currently support. Second, the Dialogfow agents had Nodejs backends that were
integrated with Dialogfow. These situations necessitated manual intervention. Our fow
approach did not favor large feature models because the generated chatbots could not be
imported into Dialogfow because the length of the display name exceeded the Dialogfow
limit (100). This provides an answer to our second research question about the scalability
of our approach. In future work, we intend to conduct additional research with large
feature models to overcome this limitation.
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CarBot 985 25 6 99,139 5338
MobilephoneBot 1.082 25 6 39,021 4928
MyDentalBot 936 27 7 30,129 4916

Table 5.2: Generated chatbots

5.3 Discussion and Threats to Validity 

There are several validity threats to the design of this evaluation. In terms of internal
validity, we identify the characteristics of the feature models used to assess the eÿciency
of our approach. We used feature models designed in FeatureIDE and publicly available
feature models on SPLOT. The corresponding Dialogfow chatbots for product line
confguration were generated automatically from the input feature models.

Our conversation fow options for the product confguration are limited to a single
fow pattern. In addition, the fow path for the optional and mandatory features, which
required multiple sequences of user-bot interactions, was observed to have impacted the
size of the chatbot. We should consider more conversation fow approaches and feature
models of varying sizes to expand on this work. It would provide more data and allow
for better and more detailed analysis with broader and more realistic coverage of feature
model sizes in SPLs.

Our experiments to check the scalability of our approach rely on the size and
characteristics of the feature models and the generated bots. These factors could have
infuenced the outcome. To strengthen this approach, we need to run more experiments
with larger feature models using at least two other conversation fow approaches to see
how they a˙ect the outcome.

Another limitation of this study is that CONGA currently does not support contexts
referenced within another intent. Some contexts have to be set in the Dialogfow console
to preserve the parameter values of the user-selected features to overcome this limitation.

Furthermore, the generated Dialogfow chatbot is not deployed automatically; neither
is the Telegram bot. The chatbot must be imported into Dialogfow and integrated with
a Telegram bot through the Dialogfow console. Also, using the Telegram bot called
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BotFather, the Telegram bot is created. However, a guide for importing the Dialogfow
agent into the Dialogfow console and creating a bot in Telegram is required to overcome
this limitation.
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6 
Conclusion and Future Work

This chapter ends the thesis with the conclusions (Section 6.1) and open lines for future
work (Section 6.2).

6.1 Conclusion 

An approach for automated synthesis of chatbots for confguring software product lines
has been proposed for this work. By interacting with the conversational agent, we guide
the user through the product confguration process. SPLBOT creates a bot model from
a given feature model, and CONGA creates a Dialogfow agent that is imported into
Dialogfow and deployed on Telegram.

This approach makes use of Dialogfow’s natural language processing capabilities,
the widespread use of social networks, and the growing use of chatbots for a variety
of purposes. The Dialogfow bot is deployed on Telegram to accomplish the confguration
process. Other social networks, such as Twitter, Facebook, and Line, can be integrated
as well.

By providing conversational guidance support throughout the confguration process,
we reduce confguration e˙ort and complexity while also assisting users in making valid
confguration decisions. Furthermore, users can interact with the chatbot using natural
language in a familiar environment such as Telegram, Facebook, or Slack without the need
to install any additional software, as is required with FeatureIDE. A non-technical user
can converse with the chatbot to confgure the product with little or no technical training.
Through these chatbots, users can ask questions about the product line. The recognized
query types are those that have been predefned for the chatbot. Our experimental results
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show that the proposed method is e˙ective.

6.2 Future Work 

The following are the points that are going to be worked on to improve and complete the
project:

Explore the use of buttons to select between various feature options and signifcantly
improve the user experience by specifying responses instantly without the need to type.
The current version of CONGA does not support button responses, but it is presently
under development for the next update.

Add a help function that notifes the user of features that have been confgured and
those that are yet to be confgured. Thus, providing the user with an overview of the
confguration process and the number of decisions to make.

Experiment with deploying chatbots on intelligent speakers (such as Google Home) to
allow for voice interaction.

Use machine learning to analyse sets of confguration fles and recommend selecting some
further confgurations based on the user’s current selections.

Improve the conversation fow approach to support large feature models and draw
conclusions about our approach’s scalability.

Formally examine the confguration fles for correctness and completeness, thereby
providing feedback to the user on any violations.

Finally, perform a user study to evaluate the usability of the conversational product
confguration process.
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A 
Create and import an agent in Dialogfow

console

This appendix provides a guide to importing the generated chatbot into Dialgfow and
integrating it with Telegram.

A. Create a Dialogfow Agent.

(i). Open any browser and navigate to https://dialogfow.cloud.google.com

(ii). Sign in with a Google account. If none exists, there will be a need to create one in
order to use the Dialogfow console.

(iii). Access is granted to the Dialogfow console once logged in.
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(iv). Create a Dialogfow Agent and Import agent from zip fle.

(a) Enter a name for the agent, select the language (English), and then click
"Create."

(b) Import the Dialogfow generated chatbot.

(c) To access the agent’s confguration, navigate to "Settings" on the left hand
side panel of the Dialogfow console.
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(d) Select “Export and Import” from the list of menus at the top.

(e) Click "Import from zip" in the "Export and Import" section. Choose the
chatbot-generated zip fle, type “IMPORT,” and click the import button. Then
wait for the training of the agent to be completed.

B. Integrate the agent with the Telegram bot.

(i). From the left hand side panel of the console, click on "integrations"
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(ii). Under "integrations," look for "Text-based" integration and select "Telegram."

(iii). Enter the token of the Telegram bot (obtained from the last step as shown in
Appendix B) to which we want to connect the Dialogfow agent, and then click
"START" to connect it to the Telegram bot.

The agent is now ready for use via the Telegram bot to which it is linked.
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B 
Create a bot for Telegram

This appendix demonstrates how to build a Telegram bot.

(i). Log into Dialogfow account.

(ii). Launch Telegram (from any device with Telegram installed).

(iii). Start a dialogue with BotFather.

(iv). Enter "BotFather" in the "Search box" at the top left of the page and select
BotFather (the frst option) to begin a conversation.
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(v). Bot Father initiates a conversation and provides instructions on how to proceed.

(vi). Converse with BotFather and provide all of the information required to build the
new bot.

(vii). Enter "newbot" or display the command list and select "newbot." This command
initiates a conversation in order to create a new bot.

(viii). BotFather requests that you provide a name for the bot that is being created.
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(ix). You must now select a nickname for the bot and send it. The nickname must end
in "bot" and be unique. If another bot with the same nickname already exists,
BotFather will notify you so that you can choose another one.

(x). The bot responds with a message that says, "Done! Congratulations on your new
bot", provides a direct link to the bot, instructions on how to fnd the bot, and
other information on bot customization.

(xi). The token required to access the new bot created via the Telegram HTTP API is
also provided as shown above. It is a private code that will grant access to the bot
in order to communicate with it, modify it, read messages, or connect it to other
services.

(xii). Enter the Telegram BotFather token into the Dialogfow console integration section
for telegram, as shown in Appendix A, and then click "START" to connect it to
your Telegram bot.
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