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a b s t r a c t

The black holes that have been detected via gravitational waves (GW) can have either astrophysical
or primordial origin. Some GW events show significant spin for one of the components and have been
assumed to be astrophysical, since primordial black holes are generated with very low spins. However,
it is worth studying if they can increase their spin throughout the evolution of the universe. Possible
mechanisms that have already been explored are via multiple black hole mergers and gas accretion.
We propose here a new mechanism that can occur in dense clusters of black holes: the spin up of
primordial black holes when they are involved in close hyperbolic encounters. We explore this effect
numerically with the Einstein Toolkit for different initial conditions, including variable mass ratios.
For equal masses, there is a maximum spin that can be induced on the black holes, χ = a/m ≤ 0.2.
We find however that for large mass ratios one can attain spins up to χ ≃ 0.7, where the highest
spin is induced on the most massive black hole. For small induced spins we provide simple analytical
expressions that depend on the relative velocity and impact parameter.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The first gravitational wave detection in 2015 by the LIGO–
irgo collaboration [1] has opened up a new window for our
nderstanding of black holes in the Universe. In particular, the
W190521 event detected in the O3 run of both Advanced
IGO [2] and Advanced Virgo [3] has attracted a lot of attention,
ince assuming that it comes from a black hole merger leads
o estimated masses of 91 M⊙ and 67 M⊙ for the progenitor
lack holes [4]. The probability that at least one of them is in
he range 65 − 120 M⊙ is 99.0% [5], where there should be a
ap in the black hole mass distribution due to pair-instability
upernovae [6]. There are several explanations that have been
roposed [5], such as a hierarchical merger scenario or that a
tar with an over-sized hydrogen envelope with respect to its
elium core could give rise to such massive black holes. Other
ossibilities include eccentric mergers, high-mass black hole-disk
ystems [7] or that the black holes involved have a primordial
rigin [8–10], which is the scenario that we will focus on in this
aper.
The main problem to this explanation is that primordial black

oles (PBHs) are initially generated with low spin [11]. Therefore,
t is interesting to study whether there are spin induction mech-
nisms for these PBHs, which would then provide a satisfactory
xplanation for these intermediate mass black holes. In [12], for
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instance, it is argued that PBHs could explain the GW190521
signal if they accrete efficiently before the reionization epoch.

One of the possibilities for a Schwarzschild black hole to
acquire spin is that it interacts with another one in a close
hyperbolic encounter. A numerical exploration of this effect was
done by Nelson et al. in Ref. [13], proving that the induced spin
could be relevant and reach at least χ ≈ 0.2 for equal-mass cases.

We will explore this spin induction effect by studying what
happens for different masses. In addition, we will study the trends
when we increase the impact parameter and eccentricity, and
also when we vary the mass ratio. Finally, we will compare them
to what we might expect from a simple analytical approach to
this effect.

The layout of this work is as follows. In Section 2, we describe
the setup that was used for the simulations within the Einstein
Toolkit. Later, in Section 3, we provide the numerical results for
the different initial conditions that were treated. A special case
of the numerical simulations is the one with mass ratio of 0.1,
which is described in Section 4. Finally, in Section 5, we compare
the trends for the induced spins with some analytical estimations
derived in the Appendix. We conclude with some final remarks
in Section 6.

Throughout this text, we will work in geometrized units, G =

c = 1.

2. Grid structure and initial conditions

In order to simulate black hole hyperbolic encounters in full
GR, we have made use of the latest (2020) version of the Einstein
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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Fig. 1. Initial conditions in our simulations with Einstein Toolkit, where m1 ≥

m2 and p⃗1 = −p⃗2 .

Toolkit software [14,15]. In particular, the Cactus Computational
Toolkit [16,17] was used, as well as the adaptive mesh refine-
ment (AMR) grid infrastructure provided by Carpet [18,19]. The
initial two black hole data was generated with the TwoPunctures
module [20] with optimized spectral interpolation [21]. The evo-
lution of the BSSN equations was performed with the McLachlan
module [22–24]. Finally, the AHFinderDirect module [25,26] was
used to track the centroids and circumferences of the horizons,
the black hole spins were measured with the QuasiLocalMeasures
module [27] and the complex Weyl scalar Ψ4 was determined
from the WeylScal4 module [28].

For this section, whenever we talk about mass, we mean bare
mass, as opposed to the ADM mass, which is related but also
involves the distance between black holes and initial momenta.
The total bare mass M = m1 + m2 in all the simulations will
be one, as the software demands, which, together with setting
G = c = 1, completely defines the unit system. We will
therefore sometimes omit these quantities, generally keeping the
total mass in the expression (e.g. the Schwarzschild radius of a
black hole of mass m will be RS = 2m).

2.1. Equal mass case

The parameter file that has been used is based on the one
used in Ref. [13]. It is similar to the examples for binary black
holes provided with the Einstein Toolkit, but with some key
modifications that allow increasing the initial separation up to
100 GM/c2. For equal masses (m1 = m2 = M/2 ≡ m), this is a
separation of 100 Schwarzschild radii.

For the equal mass case, the initial conditions consist on two
black holes located at x = ±50M , y = z = 0, with certain initial
momenta ±p⃗ that in practical terms are controlled via a modulus
p = |p⃗| and angle θ . The symmetry of the momenta makes sure
that the center of mass always lies at the coordinate origin. The
situation is depicted in Fig. 1.

The parameters p/M and θ are related to the usual hyperbolic
parameters b (impact parameter) and eccentricity e. If the initial
momenta were instantaneously translated into initial velocities,
we could compute the initial relative speed measured from the
rest frame of one of the black holes V , as well as the distance d′

and angle θ ′, where we should account for the Lorentz contraction
and time dilation. In this case, one can show that

b/M =
(d′/M)V√
V 2 −

2
d′/M

sin θ ′. (1)

√
e2 − 1 = (d′/M)V

√
V 2 −

2
d′/M

sin θ ′. (2)

However, given that the initial momenta take their time to
propagate to the metric quantities and, as a result, to the black
2

hole speeds, we cannot establish such a direct correspondence.
Nevertheless, we can interpret an increase in θ as an increase
in both the eccentricity and impact parameter, as the previous
equations show.

In order to accommodate these initial conditions, the spatial
region is increased to the cube x, y, z ∈ [−768M, 768M]. Keeping
the resolution while increasing the box size drastically increases
the number of divisions, which is not desired. Therefore, it is more
reasonable to modify the AMR grid.

Each grid (there is one per black hole) uses half-lengths of
0.75 × 2n, for n = 0, 1, . . . , 6, 8, 9, 10. The corresponding steps
are 2n

× ∆xmr , now for n = 0, 1, . . . , 9, where ∆xmr is the size
of the most refined grid. Adopting the notation in [13], we will
refer to ∆xmr = (1/56)M as ‘‘low’’, (3/200)M ≈ (1/66.7)M as
‘‘medium’’ and (3/256)M ≈ (1/85.3)M as ‘‘high’’ resolutions.

The time step is initially determined as the spatial step of the
bigger grid times a factor dtfac (one of the parameters of the
Carpet infrastructure), which we set to 0.05625. Then, this value
is divided by a different number on each refinement level, which
is controlled via the time_refinement_factors array, which
we set as [1, 1, 1, 1, 2, 4, 8, 16, 32, 64]. This way, the coarsest
four grids are updated at the same rate, and then any finer grid
is updated twice as fast as the previous one.

Finally, we can use two symmetries to speed up the code, the
most obvious one being the reflection symmetry across the z-
plane, which is the orbital plane. In addition, for the equal-mass
case, the rotating symmetry of 180◦ in the z plane with respect
to the origin is also present. Both symmetries reduce the spatial
domain by a factor of 4.

2.2. Changing the mass ratio

Throughout this article, we will mainly work with 0.7 ≤ q ≤ 1,
where q = m2/m1 ≤ 1 (m1 ≥ m2). We do this in order to
test how the spin induction varies if we do not exactly have the
same mass in both black holes, but keeping the ratio close to 1
not to significantly alter the grid structure and the analysis of the
problem. The main issues arising for smaller mass ratios will be
addressed in Section 4.

Generalizing the previous setup for mass ratios of 0.7 ≤ q ≤ 1
is not very difficult, but there are some things that we have to
take into account.

First of all, for a mass ratio of 1, each black hole has half the
total mass, which in code units is 0.5. The previous resolutions
mean that, per Schwarzschild radius (1 in code units), we have
1/∆xmr (56, 66.7, 85.3) divisions. However, if we keep the struc-
ture for a mass ratio of 0.7, for instance (Schwarzschild radii of
1.18 and 0.82), the number of divisions per Schwarzschild radius
is reduced by a factor 1/0.82 ≈ 1.22 for the smaller black hole.

Therefore, what we do is adding an extra refinement level for
the smallest black hole, in order for its resolution to be better than
for the equal mass case. This makes sure that our results are, at
least, as good as the equivalent resolution for the q = 1 case. Also,
in order to check that this asymmetry in the extra refinement
levels does not introduce errors in the simulation, we have run
a few examples with the extra refinement for the q = 1 case.
For the low resolution, the discrepancies between both spins and
with respect to the non-refined case are less than 1%, which is
the typical error involved in simulations with this resolution.

Another thing that is different from the symmetric case is that
we must disable the 180◦ rotating symmetry, which essentially
doubles the needed computational resources and makes these
simulations more time expensive.

Finally, the initial positions are also set to y = z = 0,
with the x so that the initial center of mass is the coordinate
origin. We also set p⃗ = −p⃗ , as before, to try to keep the
1 2
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enter of mass constant. However, due to the mass difference
nd the fact that the momentum takes some time to stabilize,
t is not always satisfied that m1v⃗1 + m2v⃗2 = 0, which implies
that the center of mass 1

M (m1 r⃗1 + m2 r⃗2) is not completely fixed
and moves a bit from the origin. This offset is found to be more
relevant for lower values of q and greater values of the initial
momentum, as it is reasonable to think. In our case, the center of
mass is displaced from the origin, at most, around 5.5M during
he strong interaction. This does not compromise the final spin
easurements, but could have an impact on Weyl scalar-related
uantities, such as the gravitational wave strain or the radiated
nergy. It is, in any case, another reason to be modest with the
alue of the mass ratio.

. Numerical results

First of all, we have run some simulations with equal masses,
onsisting in different initial incidence angles θ for the four
nitial momenta (p/M = 0.245, 0.3675, 0.49, 0.75 per black
ole) considered in Ref. [13]. For each case, the smallest angle
hat we consider, θmin, is the one that produces the maximum
pin-up according to this article, which is the boundary between
yperbolic and non-hyperbolic events (e ≈ 1).
In addition, for these four momenta and their corresponding

aximum spin-up incidence angles θ , we have run a series of
simulations for 0.7 ≤ q ≤ 1, which is the only parameter that
e vary. In particular, we should note that, due to the change in
ass while fixing the momenta, the smallest black hole will be

aster for q ̸= 1 than in the equal-mass case, both with respect
o the center of mass and to the other black hole.

The dimensionless spin χ = a/m is computed by using
he QuasiLocalMeasures module, which provides the coordinate
pin and mass of the black hole. In order to check the consis-
ency of this measurement, we double-check it by comparing to
he Christodolou spin, as it is done in [13]. We find that both
easurements coincide for late times in all cases.
Before showing the results, we will first address their preci-

ion.

.1. Error analysis

The differences between the low, medium and high resolu-
ions for the equal mass case were already treated in [13]. We
ave double-checked it for some of the highest values of the
ncidence angle θ , which they do not treat. In particular, the
ifferences between low and medium resolution up to θ = 4◦

re < 0.5% for p/M = 0.49, but for θ = 5.7◦ they rise to ∼ 6%.
his is probably due to the low induced spin, which begins to be
oo close to zero (∼0.0004) and, therefore, the absolute errors
nvolved start to become higher in relative terms. Therefore, the
ow resolution is enough as long as we take the very low spin
alues with this caution.
The q < 1 cases are a bit more complicated for the error

nalysis. From running simulations of low and medium resolution
nd both with and without extra refinement level, we can see
hat the spin measurement of the most massive black hole is very
obust (<2% differences for all cases), but the smallest black hole
eeds, at least, either medium resolution or the extra refinement
evel not to present relevant errors (up to ∼ 9% discrepancies).
herefore, we have preferred to generate all the results both with
edium resolution and the extra refinement level.
In addition, in order to have an idea of the error of these

imulations, we have run the q = 0.7, p/M = 0.245, 0.75
ith high resolution, for which we find maximum differences
f order 0.2%. This fact, together with the q = 1 error analysis

one in Ref. [13], tells us that the differences are smaller than g

3

Fig. 2. Strain of the emitted gravitational wave from the l = k = 2 multipole
upper panel) and spin evolution (lower) during a hyperbolic encounter with
/M = 0.49, q = 1 and θ = 3.12◦ .

.6%. Therefore, these will be the typical errors involved in our
imulations with varying q.
Another thing to mention is that we have also monitored

ariables that give an idea of whether the simulation is correct
r not, such as the Hamiltonian constraint. Due to the enormous
torage weight of all the 3D values, we have monitored the
verage and norms. The results for the Hamiltonian constraint
re values of order 10−6 at most for the 2-norm,1 10−8 for the
-norm and 10−10 for the average. This is coherent with what is
btained for the cases in [13] and better than the results for the
BH parameter example of the Einstein Toolkit, which reinforces
he idea that the computations are rather accurate.

.2. General behavior of the simulations

If we take a look at the time evolution of the spin in any of the
imulations, we can see three separate regions. In the first one,
e can observe a spin value of approximately zero for both black
oles. This is the region where the initial conditions progressively
ropagate to the metric quantities (the shift is initially zero) as
he black hole speeds grow and stabilize, while both black holes
rogressively get closer.
When both black holes are close enough, they begin to

trongly interact and we can see a drastic change on the spins, as
ell as some oscillations. During this period, some of the energy
nd angular momentum are radiated away as gravitational waves.
e can see that in Fig. 2. The strain amplitude, which will be
enoted by hlk (l ≥ 0, |k| ≤ l), has been derived from the Weyl
calar on the sphere of radius R = 67.88M , and has been shifted
to compensate for the propagation time to the detector, ∆t = −R.
We have used PostCactus [29] for this purpose, which computes
the strain by using fixed frequency integration and from the
expression

hlk
+
(r, t) − ihlk

×
(r, t) =

∫ t

−∞

du
∫ u

−∞

dv Ψ lk
4 (r, v). (3)

On the final region, we can see that there is a constant, non-
zero spin: the initially non-spinning black holes are now rotating.
We measure the final spin at t = 250M , which is enough for it
to have stabilized for all the simulations considered.

1 The n-norm is defined by ∥A∥n = (
∑

|A(i, j, k)|n/N)1/n , with i, j, k the spatial
rid indices and N the total number of points.
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able 1
anges of θ considered for each initial momentum, as well as the equivalent
inimum distances and fitted impact parameters and eccentricities.
p/M θ (deg) rmin/M b/M e

0.245 3.47 – 4.58 1.98 – 4.63 6.28 – 8.30 2.15 – 2.71
0.3675 3.13 – 4.58 1.62 – 4.90 5.72 – 8.37 1.84 – 2.48
0.490 3.12 – 5.73 1.48 – 6.79 5.78 – 10.6 1.64 – 2.63
0.750 3.42 – 5.73 1.50 – 6.36 6.61 – 11.0 1.38 – 1.94

Fig. 3. Spin evolution during a hyperbolic encounter with p/M = 0.49, q = 1
nd different values of θ .

.3. Equal masses, varying θ

First, we treat the four cases p/M = 0.245, 0.3675, 0.49, 0.75
or q = 1 and different values of θ , between the maximum spin-
p incidence angle and an upper bound θ ≤ 5.73◦. In order to
ive an idea of these parameters, we have fit an initial part of
he trajectory (from t/M = 30 to t/M = 80) to a hyperbola.
n Table 1, we provide the ranges of impact parameters b and
ccentricities e for the considered cases, as well as the distance of
losest approach rmin. Note that the latter can reach values below
M , which would correspond to the sum of the Schwarzschild
adii of both black holes, since the apparent horizons of two
nteracting, rotating black holes are typically smaller, especially
hen they get close to each other. For these simulations, we get
pparent horizon radii of order RS/2 before the strong interac-
ion and RS/3 during it, similarly to what can be seen in other
umerical simulations like the one in Fig. 13 in Ref. [14].
Before comparing the final spins in all the cases, we first show

he spin evolution versus the time for p/M = 0.49 in Fig. 3.
e note that the induced spin decreases with growing θ . This

s expected, since the closest distance between the black holes
ncreases with the incidence angle, which makes the encounter
eaker.
For the four considered initial momenta, we show the final

pins versus θ in Fig. 4. In particular, one thing we note is that
hey are reasonably well fitted by a power law. For the p/M =

.49 case, the power law also fits well the other points that
re shown in Fig. 4a in [13], where this spin variation with the
ncidence angle was already described.

The results of the power law fits are given in Table 2. These
ere done by linearly fitting the log–log plot, in order to give each
oint the same importance in terms of relative weight. By doing
least square error fitting to a power law, the smaller values of

he spin would have had little impact on the fit.
Finally, in order to better compare these trends, we show the

ame results in Fig. 5, but now with all the curves normalized by
4

Table 2
Fitted parameters for Fig. 4 to a power law χ = (θ/θ0)n , as well as θmin for
reference and the linear correlation coefficient r2 for the (log(θ ), log(χ )) data to
the corresponding linear function.
p/M n θ0 (deg) θmin (deg) r2

0.245 −14.8 2.62 3.47 0.9936
0.3675 −11.0 2.40 3.13 0.9982
0.490 −9.0 2.42 3.12 0.9997
0.750 −7.7 2.79 3.42 0.9989

Fig. 4. Final spin for hyperbolic encounters with different momenta and q = 1
versus θ , as well as their fit to a power law.

Fig. 5. Same as Fig. 4, with the curves normalized by the maximum spin-up
value and subtracting θmin to θ .

the maximum spin-up value and subtracting θmin to the incidence
angles so that all the curves start from the same point.

3.4. Varying the mass ratio

We will now show the results for the 0.7 ≤ q < 1 simulations.
In Fig. 6, we plot the time evolution of the spin in simulations of
different mass ratio, with p/M = 0.49. Note how each black hole
now gets a different spin, where the highest value is obtained for
the most massive black hole. It is also notorious how the difference
between both spins is increased as q gets smaller, as well as the
increase of the highest spin and decrease of the smallest one with
decreasing q.
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Fig. 6. Spin evolution during a hyperbolic encounter with p/M = 0.49, θ =

.12◦ and different values of q.

Fig. 7. Final spin for hyperbolic encounters with different initial momenta and
corresponding to the q = 1 highest spin-up versus the black hole mass, as
ell as their linear fits.

A similar behavior is observed for the other values of the initial
omentum. The final spins are shown in Fig. 7. They are plotted
ith respect to the masses to avoid having two points per value
f the x magnitude, as we would have if we plotted with respect
o the mass ratio. Note that the pairs of masses that add up to
ne come from the same simulation. We can see that they adapt
easonably well to linear fits.

In order to better check and visualize how different the trend
s for the different initial momenta, we can divide the results
y the central value, getting Fig. 8. In this case, since the point
/M = 0.5, χ (q)/χ (q = 1) = 1 is common for all the cases, we

impose that the linear fits must go through this point and just fit
the slope.

We can see that the relative increase between the different
values of q is bigger for the smallest values of p/M . In addition,
he linear fit is generally good, but for the p/M = 0.245 case is
orse than for the other cases. The information about the fits in
ig. 8 is provided in Table 3, as well as the spin of the q = 1
ases, which can be used to derive the equivalent slope for the
vs m/M fit. Here, we can see how the slope decreases with

ncreasing p/M .
5

Fig. 8. Same as Fig. 7, where we have divided each value of χ by the one
orresponding to the same initial momentum and q = 1. The points are now
pen in order to better see the overlapping values, and the linear fits now have
he restriction to pass through the central, common point.

able 3
itted parameters for Fig. 8, with their linear correlation coefficient r2 and values
f the central spin.
p/M θ (deg) slope r2 χ (q = 1)

0.245 3.46 5.7 0.979 0.0186
0.3675 3.13 4.9 0.997 0.0596
0.490 3.12 4.0 0.989 0.109
0.750 3.42 2.8 0.997 0.200

4. Towards lower mass ratios: the case of q = 0.1

Finally, we have run a simulation with q = 0.1, p/M = 0.49
nd θ = θmin ≈ 3.12◦. In order to compensate for the loss of

(relative) resolution for the smallest black hole, we have added
four extra refinement levels to its grid. We have also decided
to fix medium resolution. As a result of this configuration, the
simulation is much slower than the previous ones.

Unlike the other simulations with p/M = 0.49 and θ = 3.12◦,
which are hyperbolic, this one ends up producing a merger. One
of the possible explanations is that the small black hole starts
from a high initial speed, since it has the same momentum as the
black holes in other simulations but much smaller mass (m ≈

0.091), which would imply more energy loss until its encounter
with the heavier black hole. Another possible explanation is a
stronger dynamics for q < 1.

4.1. Issues with the Weyl scalar

One of the issues that arise in this simulation is the fact that
the center of mass is displaced with respect to the origin. We
already mentioned that the maximum deviation for 0.7 ≤ q < 1
was found to be around 5.5M , but, in this case, it is around 24M .
This is a problem for the measurements of the Weyl scalar, which
are taken at spheres centered at the coordinate origin and, in our
case, with radius r = 67.88M . As a result, computing the strain
amplitude of the emitted gravitational wave or its radiated power
is also complicated.

This effect has been corrected via a transformation of the Weyl
scalar from the sphere centered at the origin (S0) to the sphere
centered at r⃗CM(t − R/c) (SCM) for each time t . In order to do this
transformation, one has to:

• Convert the available Ψ4 multipoles (in our case, up to l = 4)
to a scalar field defined at S .
0
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Fig. 9. All the relevant points and quantities involved in the transformation of
the Weyl scalar from the sphere S0 to the sphere SCM , for an arbitrary space–time
oint p3 = (t, r⃗3), r3 ∈ SCM(t −R). The dotted line represents the light ray which
asses through the three relevant points pi , i = 1, 2, 3.

Fig. 10. Strain amplitudes of the q = 0.1 simulation for the modes l = k ≤ 4
upper panel), together with the spin evolution (lower), where the first black
ole is the most massive one. The dashed, vertical lines separate the periods
efore and after the merger.

• For each (t, p⃗(t)), with p⃗(t) ∈ SCM, get the light ray that
originated at (t−R/c, r⃗CM(t−R/c)) and passes through p⃗ and
take the value rΨ4 when it passes through S0. Then, divide
by R to get the value of Ψ4 at the desired point.

• Convert the resulting scalar field at SCM back into multipoles.

In practice, we have a grid (t, θ, ϕ) for SCM and need the
equivalent points (θ ′, ϕ′) at S0, its radius r ′ with respect to SCM
and the time at which the light ray passes through it, t−(r ′

−R)/c .
he situation is depicted in Fig. 9.
Note, however, that this correction is far from perfect. First,

his assumes that a light ray exactly propagates through the
oordinates at speed c = 1, while the space–time curvature can
low down this speed. In addition, we have only produced up to
he l = 4 multipole, which is enough for a sphere centered at the
rigin but, in this case, the contribution of the multipoles l ≥ 5

measured at S0 could be non-negligible even for multipoles l ≤ 4
t SCM.
Correctly measuring the Weyl scalar is important to determine

ome gravitational wave-related quantities, such as its strain
mplitude. We show the amplitudes for the modes l = k ≤ 4
n Fig. 10, with the corresponding time shift of −R, together with
he spin evolution.
 s
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4.2. The spins

Even if this simulation ends up in a merger, we can observe
the spin evolutions and draw some conclusions. First, we can
see how the spin-induction phenomenon works in the same way
as in other cases: higher spin is induced on the heaviest black
hole. This can be observed in the lower panel of Fig. 10, which
represents the temporal spin evolution.

In this figure, we have drawn two dashed, vertical lines. The
first of them marks the moment when the centroids of both
apparent horizons are at a distance equal to the sum of their
mean radii. This means that both black holes are already too
close to continue tracking each of them separately. The second
vertical line marks the moment from which the joint horizon can
be followed.

One of the main conclusions that should be drawn from this
simulation is that two initially non-spinning black holes involved
in a hyperbolic encounter that ends in merger can naturally ac-
quire a relevant spin while they approach each other. In practice,
this means that, if we observe only the last oscillations of a
merger through its emitted gravitational waves, and estimate
their initial spins from an inspiral waveform template, we cannot
assume that they had this large spin asymptotically away from the
merger. If they started as a hyperbolic event, they could have
acquired their spin as they scattered off each other, emitting
gravitational waves and becoming a bounded system that finally
merged in a few oscillations.

5. Comparison with analytic expressions

The problem of analytically deriving the induced spins in a
close hyperbolic encounter is not trivial. In fact, in order to
accurately predict the results of our simulations, one would have
to get to, at least, PPN(4) order [30]. This strong field interaction
cannot definitely be modeled with weak field approximations, as
the minimum separations of order 1–7M in Table 1 show.

Nevertheless, one can take some naive approaches to this
question in order to, at least, see whether we can qualitatively
predict the trends or not. This is what we try to do in this section
with the two expressions derived in the Appendix, namely (A.8)
and (A.26), (A.27).

5.1. Trend for varying θ

First of all, we will study what happens with θ . If we convert
the spin expressions as functions of v∞ = v0

√
(e − 1)/(e + 1),

which can be assumed to be common for equal values of p/M
and q = 1, we get

χ = f ×
(e + 1)1/2

(e − 1)5/2
v5

∞
, (4)

where v∞ is the asymptotic velocity between both black holes at
infinity and with f given by

fring =
16
5

η (5)

for the ring expression and by

f1.5PN,1 =

[
4
5
η +

6
5
(1 −

√
1 − 4η)

]
m1

M
, (6)

f1.5PN,2 =

[
4
5
η +

6
5
(1 +

√
1 − 4η)

]
m2

M
(7)

for the PPN(1.5) approximation.
In order to relate the previous expressions with θ , we can

se the expression (2). By neglecting the Lorentz contraction and
ince the constants involved are the same for all the cases with
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ixed initial momentum, we conclude that sin θ ∝
√
e2 − 1.

Therefore, for low values of θ , we can use θ ∝
√
e2 − 1.

By neglecting the missing factors, we can assume that θ ≪ 1
implies e ≳ 1, which implies treating the e+1 factors as constants.
By doing this, we find that our equations can explain a trend
χ ∼ θ−5. This is not enough to predict the exponents that we
observe in the results (Table 2), but the difference could be easily
explained as the missing strong field interaction that we do not
take into account, which underestimates the spin for lower θ
(lower impact parameter and eccentricity).

5.2. Trend for varying q

According to the ring expression (A.8), we would not expect
different final spins for both black holes of a given simulation.
However, the PPN(1.5) expressions (A.26), (A.27) do predict dif-
ferent spins. In fact, they accurately predict the fact that the
greater spin is induced in the most massive black hole.

Another success of the PPN(1.5) approximation is that it pre-
dicts that the induced spin on a given black hole is directly
proportional to its mass. This is what we see in the results,
particularly in Figs. 7 and 8. By dividing by the central spin, as
in this second figure, and assuming that the relative speed is the
same in all the cases, we can cancel out some constants and get
a straight line with slopes
4
7

[
2η + 3

(
1 −

√
1 − 4η

)]
m1, (8)

4
7

[
2η + 3

(
1 +

√
1 − 4η

)]
m2, (9)

for the most and least massive black holes, respectively. For
q ∼ 1, both slopes are 1, which at least reproduces the order
of magnitude of the slopes in Table 3, but the difference is clear.
Again, this can be explained because our approximation does not
tackle strong-field interactions.

Also, this time, there is another source of error, which is that
the numerical constants that we pretend to get rid of by dividing
by the central spin do not disappear. Since they involve speeds,
they are different for each value of q, which could impact the
trends.

6. Conclusions

Following the work of Ref. [13], we have shown that it is
possible to induce spins in two initially non-spinning, equal-
mass black holes. They are larger for higher initial velocities and
smaller values of the impact parameter.

In addition, we have studied hyperbolic encounters where the
two black holes have different masses and found that, for a given
impact parameter and initial relative velocity, the highest spin is
induced on the most massive black hole. In particular, we find
that the spin induction effect can be significantly enhanced for
the most massive black hole when the mass ratio becomes large.
This new result suggests a viable mechanism for significant spin
induction in PBHs, contrary to the case of gas accretion where the
induced spins cannot acquire large values.

Furthermore, we are able to qualitatively predict the trends of
the spin with varying impact angle and mass-ratio with simple
weak-field approximations. However, in order to get more accu-
rate predictions of the induced spins, one would have to resort to
higher orders of the PPN formalism. This is left for future work.

With our expressions for the induced spins, we might expect
more accurate predictions for more modest values of the involved
parameters (weaker interaction). However, they are difficult to
generate with the Einstein Toolkit, since the errors involved in
low spin measurements are higher in relative terms. Also, the in-

teraction times could get significantly bigger and we would need t

7

larger separations, which might be problematic from a technical
point of view. Nevertheless, with enough computing power and
time, these simulations are possible and should be explored in
the future.

Finally, we have found that two initially non-spinning black
holes involved in a hyperbolic encounter with intermediate mass
ratio (q ∼ 0.1) that ends in a merger, can naturally acquire a
relevant spin, χ ≃ 0.8, for the more massive black hole. This
result is relevant for the interpretation of some of the events like
GW190521 found by LIGO/Virgo, since the progenitors could have
started being very massive but spinless primordial black holes.

We note that most of the hyperbolic encounters in dense
PBH clusters occur at large impact parameters (many times their
Schwarzschild radius) and small relative velocities (v0 ≪ c), and
herefore the induced spin will be negligible for the majority of
he black holes in the cluster. However, from time to time, a
yperbolic encounter between a large-mass-ratio pair will spin-
p the more massive PBH to values of χ significantly different
rom zero, up to χ ≤ 0.2. This could explain why we observe in
IGO/Virgo GW events [31] a distribution of spins peaked around
ero with dispersion ∆χ ∼ 0.2. A more refined study taking
nto account the distribution of eccentricities, impact parameters
nd relative velocities in dense PBH clusters [32] should give us
prediction for the expected spin distribution depending on the
ass and compactness of the cluster. We leave this for a second
ublication.
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ppendix. Analytic estimate of the induced spins

Estimating the spin induced on the black holes participating
n a close hyperbolic encounter is a complicated issue. In order
o get an accurate analytical estimation, one would have to get
o, at least, PPN(4) in the post-Newtonian formalism.

However, we can approach this problem by addressing the
rame dragging involved in this dynamics. The precession vectors
an be interpreted as the angular speeds that are induced on
he corresponding inertial frames. Therefore, they will be our
est guess to estimate induced spins without resorting to higher
rders in the PPN formalism.

.1. Ring approximation

From the rest frame of a black hole, a close encounter with
nother one with a certain mass m is just a point mass current
ollowing a certain trajectory r⃗(t), which is exactly a hyperbola
n the Keplerian limit. This situation is analogous to a black hole
ocated at the center of a massive ring of mass m, with a time-
arying radius following the equation R(t) = |r⃗(t)| and rotating
o that the speed of each of its points matches the velocity that

he point mass would have.
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To simplify things, we will assume that the induced spin on
he central black hole has the same order of magnitude if we take
he stationary situation where R and ω are constant, with their
alues corresponding to the point of closest approach.
First of all, we consider a thin ring of certain mass m1 and

adius R, which rotates around its axis at a certain angular speed
. By going through the PPN(1.5) formalism, one can show that
he central black hole undergoes a certain precession given by the
ector

⃗ =
2
r3

J⃗, (A.1)

here J⃗ is the angular momentum of the ring. It is interesting to
ote that this expression exactly matches the one for the preces-
ion of the orbital angular momentum of a test particle orbiting
rotating black hole, an effect which is known as Lense–Thirring
recession [33].
For a thin ring, the moment of inertia with respect to the

enter is just I = m1R2. Therefore,

Ω⃗ =
2
r3

J⃗ =
2
R3m1R2ω⃗ =

2m1

R
ω⃗, (A.2)

hich relates the angular speed of the ring with that of the
nduced inertial frame at its center. The same relation between Ω⃗

and ω⃗ can be obtained from the equations in [34] in the thin-ring
approximation.

We can now compute the dimensionless spin that would cor-
respond to a black hole of certain mass m2 located at the center of
the ring. For this purpose, we will assume that the frame-dragging
speed Ω is completely transferred to the central black hole, which
rotates with this angular speed. If we take the black hole to be a
solid sphere whose radius coincides with its Schwarzschild radius
RS,2, its moment of inertia would be

I2 =
2
5
m2R2

S,2 =
2
5
m2(2m2)2 =

8
5
m3

2. (A.3)

With this, we can get the dimensionless spin,

=
a
m2

=
J
m2

2
=

I2Ω
m2

2
=

16
5

m1m2

R
ω. (A.4)

Finally, we want to extrapolate this result to the hyperbolic
otion of a black hole of mass m1 around a black hole of mass
2. For this purpose, we will express ω and R in terms of two pa-
ameters which characterize the hyperbolic motion: the velocity
t the point of closest approach, v0, and the eccentricity of the
rbit, e.
First of all, we take the radius of the ring, R, to be the distance

etween both black holes at the moment of closest approach. In
yperbolic motion, this distance is given by R = a(e−1), where a
s the semimajor axis of the hyperbola and must not be confused
ith the dimensionless spin a.
Second, when we substitute the ring by a black hole, we keep

he same angular momentum. Therefore,

ring = LBH ⇒ m2R2ω = m2Rv0 ⇒ ω = v0/R. (A.5)

We can also express the semimajor axis in terms of v0. First,
we can write (take e.g. [35,36])

bv2
∞

= M
√
e2 − 1, (A.6)

here b is the impact parameter (b = a
√
e2 − 1) and M the total

ass of the system, M = m1 + m2. By conservation of angular
omentum,

0 = L∞ ⇒ a(e − 1)v0 = bv∞ ⇒ v0 = v∞

√
e + 1
e − 1

⇒ a2v4
0 =

b2
v4

∞

(e + 1)2
= M2 (e + 1)2

. (A.7)

e2 − 1 (e − 1)2 (e − 1)2
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Putting all this together, we get

χ =
16
5

m1m2

R2 v0 =
16
5

m1m2

a2(e − 1)2
v0

=
16
5

m1m2

M2

1
(e + 1)2

v5
0 . (A.8)

For the particular case m1 = m2, the previous expression is
just

χ =
4
5

1
(e + 1)2

v5
0 . (A.9)

For the next case, it is useful to note that, in order to convert
rom Ω to χ , we have just multiplied by a factor
χ

Ω
=

I
m2

2
=

8
5
m2. (A.10)

.2. Mass current

Another possible approach to compute the spin is introduc-
ng a mass m1 current at a position ˜⃗r with speed ˜⃗v. We start
y writing the angular velocity of an inertial frame within the
ravitational potentials φ and g⃗ , which can be taken from the
quation (9.6.12) in Ref. [37],

⃗ = −
1
2
∇ × g⃗ −

3
2
v⃗ × ∇φ. (A.11)

he second term corresponds to the de Sitter effect, coming from
he gravitoelectric part of the potential. If we assume that the
ass current is symmetrically distributed within a ring, then the
otential φ at the center is constant and we can safely ignore this
omponent.
Therefore, we just have to compute g⃗ , which can be done with

he expression

⃗ = −4G
∫

d3 r⃗ ′
ρ(r⃗ ′)v⃗(r⃗ ′)

|r⃗ − r⃗ ′|
. (A.12)

We will now substitute ρ and v⃗ by the ones corresponding
to a point mass current at position ⃗̃r(ϕ), where ϕ is an angular
variable that parametrizes the trajectory. Distributing this mass
within a ring at the same distance does not have an effect over
the first term in (A.11), which is a vector parallel to the symmetry
axis. We would just have to keep the integral for longer.

g⃗ = −4G
∫

d3 r⃗ ′
m1δ

3(r⃗ ′ − ⃗̃r(ϕ))⃗̃v(ϕ)

|r⃗ − r⃗ ′|

= −
4Gm1 ⃗̃v(ϕ)

|r⃗ − ⃗̃r(ϕ)|
. (A.13)

We now use Eq. (A.11), first noting that

∇ ×

(
⃗̃v(ϕ)

|r⃗ − ⃗̃r(ϕ)|

)
= −⃗̃v(ϕ) × ∇ ·

(
1

|r⃗ − ⃗̃r(ϕ)|

)

= ⃗̃v(ϕ) ×
r⃗ − ⃗̃r(ϕ)

|r⃗ − ⃗̃r(ϕ)|
3 , (A.14)

here the first equality comes from the vectorial identity ∇ ×

f a⃗) = (∇f ) × a⃗ + f (∇ × a⃗), where in this case the second term
is zero.

Taking this into account, we can use the Eq. (A.11) to get

Ω⃗ = 2m1∇ ×

(
⃗̃v(ϕ)

|r⃗ − ⃗̃r(ϕ)|

)

= 2m1 ⃗̃v(ϕ) ×
r⃗ − ⃗̃r(ϕ)

3 . (A.15)

|r⃗ − ⃗̃r(ϕ)|
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We can now get rid of the r⃗ by staying at the coordinate origin,
= 0, and thus get (dropping the tildes and the ϕ dependence)

⃗ = 2m1
r⃗ × v⃗

r3
. (A.16)

We will now make use of several equations from hyperbolic
otion, namely

= a(e cosh(E) − 1), r⃗ × v⃗ = a(e − 1)v0, (A.17)

where the second expression comes from angular momentum
conservation and E is the eccentric anomaly, related to the true
anomaly by

tan2
(

ϕ − ϕ0

2

)
=

e + 1
e − 1

tanh2
(
E
2

)
. (A.18)

As a result,

Ω⃗ = 2m1
(e − 1)v0

a2(e cosh(E) − 1)3

=
2m1

M2

1
(e cosh(E) − 1)3

(e − 1)3

(e + 1)2
v5
0 . (A.19)

If we impose E = 0, corresponding to the point of closest
pproach, ϕ = ϕ0, and compute χ , we get

=
8
5
m2

2m1

M2

1
(e + 1)2

v5
0 =

16
5

m1m2

M2

1
(e + 1)2

v5
0, (A.20)

hich is, remarkably, the same expression we have obtained for
he ring case, Eq. (A.8).

.3. From spin–orbit equations at PPN(1.5)

Alternative to the previous approaches, we can use some equa-
ions from Ref. [38]. In this paper, the spins of two black holes in
yperbolic motion both follow precession dynamics given by the
ectors

⃗ i =
k̂
M

ξ
5/3√

e2t − 1
(et cosh(E) − 1)3

δi, (A.21)

or i = 1, 2, where k̂ is the unit vector perpendicular to the orbital
angular momentum and

ξ = Mn, δ1,2 =
η

2
+

3
4
(1 ∓

√
1 − 4η), (A.22)

η = m1m2/M2, m1 ≥ m2, (A.23)

with n being the mean motion of the hyperbolic orbit and E its
ccentric anomaly. Both et and n are deviations of the Keplerian
ase, taken at PPN(1.5) order. In our case, we will take them as if
hey were the exact Newtonian values: n = n, et = e. In standard
hyperbolic motion, n is given by the expression n2a3 = M .

If we now substitute these expressions, we get

i =
1
M

(M/a)5/2
√
e2 − 1

(e cosh(E) − 1)3
δi

=
1
M

√
e2 − 1

(e cosh(E) − 1)3
(e − 1)5/2

(e + 1)5/2
δiv

5
0

=
1
M

1
(e cosh(E) − 1)3

(e − 1)3

(e + 1)2
δiv

5
0, (A.24)

hich is somewhat similar to the expression (A.19). The differ-
nce is a factor
M

δi. (A.25)

2mi
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Fig. 11. Factor f versus mass ratio q = m2/m1 (m2 ≤ m1). The trends for
q → 0, 1 are also provided for each curve.

We can now compute the dimensionless spins, which in this
case we have to split into two separate expressions. We also
evaluate at E = 0:

χ1 =

[
4
5
η +

6
5

(
1 −

√
1 − 4η

)] m1

M
1

(e + 1)2
v5
0, (A.26)

2 =

[
4
5
η +

6
5

(
1 +

√
1 − 4η

)] m2

M
1

(e + 1)2
v5
0 . (A.27)

The comparison with the ring expression is difficult, due to
actors dependent on the masses that were not present before.
owever, for the case m1 = m2, both spins are equal and we get

χ =
7
10

1
(e + 1)2

v5
0, (A.28)

hich is formally identical to the ring case but with a factor 7/8
ifference.

.4. Differences between the two expressions

In order to better understand the differences between the
hree expressions (A.8), (A.26) and (A.27), we can plot the factors
that appear in these expressions before the v5

0/(e + 1)2, which
re given by Eqs. (A.8), (A.26) and (A.27). These values are shown
n Fig. 11.

We have also plotted the asymptotic values to which each
urve tends to for q → 0. These can easily be found from the
xpressions of each factor in the limit q ≪ 1,

ring, f1.5PN,1 →
16
5

q, f1.5PN,2 →
12
5

q. (A.29)

Interestingly, for the PPN(1.5) approximation, the induced spin
on the most massive black hole approaches the same trend as that
of the ring. Also, in the PPN(1.5) case, the highest spin is induced
on the most massive black hole.

Fig. 11 also shows that the order of magnitude of the com-
puted spins is essentially the same, independent of the method
that we use. In particular, the maximum difference between the
different cases is a factor 4/3.
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