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We consider Banach spaces of analytic functions in the unit 
disc which satisfy a weighted conformal invariance property, 
that is, for a fixed α > 0 and every conformal automorphism 
ϕ of the disc, f → f ◦ ϕ(ϕ′)α defines a bounded linear 
operator on the space in question, and the family of all 
such operators is uniformly bounded in operator norm. Many 
common examples of Banach spaces of analytic functions like 
Korenblum growth classes, Hardy spaces, standard weighted 
Bergman and certain Besov spaces satisfy this condition. 
The aim of the paper is to develop a general approach 
to the study of such spaces based on this property alone. 
We consider polynomial approximation, duality and complex 
interpolation, we identify the largest and the smallest as well 
as the “unique” Hilbert space satisfying this property for a 
given α > 0. We investigate the weighted conformal invariance 
of the space of derivatives, or anti-derivatives with the induced 
norm, and arrive at the surprising conclusion that they depend 
entirely on the properties of the (modified) Cesàro operator 
acting on the original space. Finally, we prove that this last 
result implies a John-Nirenberg type estimate for analytic 
functions g with the property that the integration operator 
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f →
∫ z

0 f(t)g′(t)dt is bounded on a Banach space satisfying 
the weighted conformal invariance property.

© 2021 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Conformal invariance plays a crucial role in the theory of Banach spaces of analytic 
functions on the unit disc D. In particular, it turns out to be a powerful tool in un-
derstanding analytic functions with bounded mean oscillation on the boundary [8], or 
Bloch functions [22]. These ideas led to the rich theory of the so-called Qp-spaces (see 
Xiao’s book [21]) and their natural generalization, the QK-spaces introduced by Essén 
and Wulan (see [11], [12]). All of the spaces mentioned here can be defined following 
a common pattern, that is, using a conformally invariant seminorm. More precisely, let 
Aut(D) be the group of conformal automorphisms of the unit disc in the complex plane, 
i.e. linear fractional maps of the form

ϕ(z) = λ
z + a

1 + az
, z ∈ D, a ∈ D, |λ| = 1,

mapping the unit disc onto itself. Following the ideas in [4], let X be a Banach space of 
analytic functions in D which contains the constants and is invariant under the operators 
of composition with ϕ ∈ Aut(D), and set

M0(X) = {f ∈ X : ‖f‖0 = sup
ϕ∈Aut(D)

‖f ◦ ϕ− f ◦ ϕ(0)‖X < ∞}, (1)

and ‖f‖M0(X) = |f(0)| + ‖f‖0. Then it turns out that BMOA = M0(H2), the Bloch 
space satisfies B = M0(A2

0), Qp = M0(D2,p), p ∈ (0, 1), where H2 is the Hardy space, 
A2

0 the Bergman space and D2,p denotes the standard weighted Dirichlet space (see 
Section 2 for the definitions of these spaces). Finally, QK is constructed in the same 
way starting with the weighted Dirichlet space with weight K. There are a number of 
interesting results concerning such Möbius invariant spaces. For example, Rubel and 
Timoney [17] showed that the Bloch space is the largest space defined this way and 
Arazy, Fisher and Peetre [7] proved that the smallest is the Besov space B1 consisting 
of analytic functions in D whose second derivative is integrable with respect to area 
measure. Arazy and Fisher [6] proved that, up to equivalence of norms, the unweighted 
Dirichlet space is the only Hilbert space which occurs this way.

The present paper continues the investigation along this line, but using the weighted 
conformal invariance instead, that is, invariance under the weighted composition f →
f ◦ ϕ(ϕ′)α, where α > 0 is fixed. We should point out from the beginning that weighted 
conformal invariance is completely different from the property described above. This 
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type of condition is related merely to the growth than to the oscillation of functions. In 
fact, according to Remark 1 c), Section 2, the spaces mentioned above cannot satisfy our 
conditions for weighted conformal invariance.

One motivation for our study is the fact that most common examples of Banach spaces 
of analytic functions in D like Korenblum growth classes, standard weighted Bergman 
and Besov spaces and Hardy spaces satisfy this property for a fixed α > 0, and it turns 
out that this type of conformal invariance is responsible for a number of their common 
properties. For example, another important source of inspiration for the present work 
are the recent results in [5] where it is shown that for spaces satisfying the weighted 
conformal invariance condition for some α ∈ (0, 1) the usual Hilbert matrix (acting on 
the sequence of Taylor coefficients) induces a bounded linear operator whose spectrum 
is completely determined by α.

In order to give a precise definition of the objects involved in this paper, let Hol(Ω)
denote the locally convex space of analytic functions in the open set Ω ⊂ C.

We consider Banach spaces X consisting of analytic functions in the unit disc D with 
the following properties:

1) X is continuously contained in Hol(D).
2) X contains Hol(ρD), for all ρ > 1.
3) There exist constants α = α(X), K = K(X) > 0, such that for every ϕ ∈ Aut(D), the 

linear map defined by Wα
ϕ f = f ◦ ϕ(ϕ′)α, is bounded on X and satisfies ‖Wα

ϕ ‖ ≤ K.

Throughout in what follows, a space X with the properties 1)-3) will be called a con-
formally invariant of index α = α(X). The aim of this paper is to investigate examples, 
methods of construction, as well as to establish some of the basic properties of such 
spaces and of some operators acting on them. The paper is organized as follows.

Section 2 contains a list of natural spaces which fulfil the axioms 1)-3).
Section 3 begins by emphasizing some natural objects related to such spaces, like the 

pointwise multipliers or their weak products (projective tensor products) and their rela-
tion to weighted conformal invariance. Other interesting objects related to these spaces 
are two abelian groups of operators emerging from 3), namely the group of composition 
with rotations {Rt : t ∈ [0, 2π)} with Rtf(z) = f(eitz), the representation on B(X) of 
the hyperbolic group {Wα

ψa
: a ∈ (−1, 1)}, where ψa(z) = z+a

1+az , a ∈ (−1, 1), together 
with the semigroup of dilations defined for r ∈ [0, 1] by Drf(z) = f(rz). The bounded-
ness of Dr, r ∈ [0, 1] follows directly from 2). In general, none of these groups is strongly 
continuous on the spaces in question, while the semigroup is not necessarily strongly 
continuous at r = 1.

Assuming only the uniform boundedness of {Rt : t ∈ [0, 2π)} in B(X) instead of 3), 
we arrive at the interesting result (Theorem 1) that the density of the polynomials in X
is equivalent to any of the following statements:
a) The strong continuity of t → Rt, t ∈ [0, 2π),
b) The strong continuity of r → Dr at r = 1 (from the left).
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A sufficient condition for this is that point evaluations are dense in the dual of X
(Theorem 2). At its turn, this result implies that polynomials are dense in X whenever 
the space is reflexive.

When X is conformally invariant of index α > 0, and polynomials are dense in X, 
the full group {Wα

ϕ : ϕ ∈ Aut(D)} becomes strongly continuous with respect to the 
relative topology of Hol(D) on Aut(D). Moreover, we can represent the dual of X as a 
conformally invariant space of the same index. This is achieved using the pairing induced 
by the Hilbert space Hα determined by the reproducing kernel kα(z, w) = (1 − wz)−2α

(Theorem 3).
In Section 4 we determine the largest and smallest conformally invariant Banach 

space of a given index α > 0, which extends the results in [17] and [7] to this context. 
The largest space is the Korenblum growth class A−α while the smallest is either a 
weighted Bergman or a weighted Besov space. However, the main result of the section 
is the appropriate version of the Arazy-Fisher theorem [6] in this context. In Theorem 5
we prove that, up to equivalence of norms, the Hilbert space Hα defined above is the 
unique conformally invariant Hilbert space of index α > 0. It is easy to see that Hα is a 
weighted Bergman space when α > 1

2 , H 1
2

is the Hardy space H2, while for α < 1
2 , Hα

is a weighted Dirichlet (Besov) space. A related result has been proved in [15], showing 
that under certain assumptions the unique Hilbert spaces that have a unitary weighted 
composition operator are these Hα and such operators are our Wα

ϕ in 3). Considering 
unitary operators immediately implies an identity for the reproducing kernel of the space 
which becomes a powerful tool in that proof. Without this assumption the approach is 
considerably more involved and is somewhat related to the idea in [6] where the key 
step is the amenability of the hyperbolic group. In our proof this property is only partly 
used, since our argument is essentially based on asymptotic estimates of ‖Wα

ψa
ζn‖ when 

a → 1−.
Section 5 contains two applications of the previous results. We focus first on the 

analogue of (1), i.e. for a given Banach space X satisfying 1) and 2) we consider the 
subspace Mα(X) consisting of f ∈ X with Wα

ϕ f ∈ X, ϕ ∈ Aut(D),

‖f‖Mα
= sup

ϕ∈Aut(D)
‖Wα

ϕ f‖X < ∞.

It turns out that Mα(X) has a tractable structure in the case when the original space X
is itself conformally invariant of index β > 0. In this case, Mα(X) is either trivial, equal 
to X, or it is a space of pointwise multipliers. On the other hand, if X is not conformally 
invariant, we show by an example that Mα(X) may have a very complicated structure 
which differs from the examples presented in Section 2. The second topic is complex 
interpolation. We only consider the pair given by the largest and smallest conformally 
invariant spaces of a given index α > 0 and use the classical idea of E.M. Stein [19] to 
show that this chain of spaces consists of weighted Bergman and for α < 1, weighted 
Besov spaces. Surprisingly enough the Hardy spaces are excluded from the chains.
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Section 6 is devoted to three types of operators acting on conformally invariant Banach 
spaces: differentiation, taking the anti-derivative and general integration operators of the 
form f → Tgf , where Tgf(z) =

∫ z

0 f(t)g′(t)dt. Here the symbol g ∈ Hol(D) is fixed. In 
the first two cases we consider the ranges of these operators with the induced norm. 
The common intuition based on the so-called Littlewood-Paley identity (estimate) in 
weighted Berman spaces, or H2, suggests that if X is conformally invariant of index 
α > 0, then:
(i) The space of derivatives D(X) = {f ′ : f ∈ X} with the induced norm is conformally 
invariant of index α + 1,
(ii) When α > 1, the space of anti-derivatives A(X) = {f : f ′ ∈ X} with the induced 
norm is conformally invariant of index α− 1.

The remarkable fact revealed by Theorem 7 which may be seen as the main result of 
this paper, is that under the assumption the polynomials are dense in X, both assertions 
above depend entirely on the properties of the linear map which acts on the sequence of 
Taylor coefficients by taking the Cesàro means, or more precisely the modified version

C

⎛
⎝∑

n≥0
fnζ

n

⎞
⎠ =

∑
n≥0

ζn+1

(
1

n + 1

n∑
k=0

fk

)
⇔ Cf(z) =

z∫
0

f(t)
1 − t

dt.

It turns out that (i) holds true if and only if C ∈ B(X). Moreover, in this case (ii) holds 
true if and only if IX − C is invertible on X.

Theorem 7 has an interesting application regarding the integration operators defined 
above. There is a vast literature on the subject (see for example, [1]). Even in this 
generality, the boundedness of Tg can be characterized in terms of g (see Proposition 6). 
Here we are concerned with an idea of Pomerenke [16] who used the resolvent of such 
operators to derive the well-known John-Nirenberg inequality for BMOA functions. We 
show that a similar inequality holds in the general context as well. More precisely, we 
prove that if Tg is bounded on the conformally invariant Banach space X then there 
exists δ > 0 such that {exp[λ(g ◦ ϕ − g ◦ ϕ(0))] : |λ| ≤ δ, ϕ ∈ Aut(D)} is a bounded 
subset of X.

2. Examples

The purpose of this section is to list a number of examples of conformally invariant 
Banach spaces in the unit disc. Before doing so, we make some remarks which follow 
directly from the axioms and will be used frequently in what follows.

Remark 1.

a) From 2) we have by the closed graph theorem that for every ρ > 1, the inclusion map 
from Hol(ρD) into X is continuous.

b) The bounded operators considered in 3) are invertible, (Wα
ϕ )−1 = Wα

−1 .
ϕ
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c) The number α(X) in 3) is unique. Indeed, if Wα
ϕ , W

β
ϕ , ϕ ∈ Aut(D) are uniformly 

bounded and, say, α < β, then by 2), Wα
ϕW

β
ϕ−11 = (ϕ′)α−β is uniformly bounded in 

X which leads to a contradiction since the values at the origin of these functions are 
unbounded when ϕ ∈ Aut(D). The same argument shows that the spaces M0(X)
defined by (1) are not conformally invariant of index α > 0 unless they are trivial.

We now turn to the examples.

Example 1. In many cases the operators defined in 3) are isometries on the spaces in 
question and this property follows by a straightforward change of variable. Such examples 
are the usual Hardy spaces Hp, p ≥ 1, with α(Hp) = 1

p , the Korenblum growth classes

A−γ = {f ∈ Hol(D) : ‖f‖A−γ = sup
|z|<1

(1 − |z|2)γ |f(z)| < ∞},

or their “little oh” version

A−γ
0 = {f ∈ A−γ : lim

|z|→1
(1 − |z|2)γ |f(z)| = 0},

with α(A−γ) = γ > 0. The same holds for the standard weighted Bergman spaces

Ap
β =

⎧⎨
⎩f ∈ Hol(D) : ‖f‖p

Ap
β

=
∫
D

|f(z)|p(1 − |z|2)βdA(z) < ∞

⎫⎬
⎭ ,

with α(Ap
β) = 2+β

p . Here A denotes the normalized area measure on D.
Of course, any Banach space X satisfying 1)-3) can be endowed with the equivalent 

norm

‖f‖α = sup
ϕ∈Aut(D)

‖Wα
ϕ f‖,

which makes these operators isometric.

Example 2. The Banach space

Alog = {f ∈ Hol(D) : ‖f‖Alog = sup
|z|<1

1
log 2

1−|z|2
|f(z)| < ∞},

satisfies 1) and 2), but fails to satisfy 3) for any α > 0. Indeed, for ϕ ∈ Aut(D) and 
ψ = ϕ−1,

‖Wα
ϕ f‖Alog = sup

|z|<1

1
log 2

2

|f(ϕ(z))||ϕ′(z)|α

1−|z|
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= sup
|w|<1

1
log 2

1−|w|2
|f(w)|

log 2
1−|w|2

log 2
1−|ψ(w)|2

|ψ′(w)|−α,

and for fixed w ∈ D,

sup
ψ∈Aut(D)

log 2
1−|w|2

log 2
1−|ψ(w)|2

|ψ′(w)|−α = ∞,

which implies that supϕ∈Aut(D) ‖f ◦ ϕ(ϕ′)α‖Alog = ∞, for all nonzero f ∈ Alog.

Example 3. The standard weighted Besov spaces Bp,β, p ≥ 1, β > −1 consist of analytic 
functions in D whose derivative belongs to Ap

β and are normed by

‖f‖Bp,β = |f(0)| + ‖f ′‖Ap
β
.

When p = 2 B2,β is also called a weighted Dirichlet space and is denoted by D2,β . They 
satisfy 1)-3) if p < β + 2 and in this case α(Bp,β) = β+2

p − 1. The assertion will follow 
from a more general result, Theorem 7 below. The condition p < β + 2, is essential here. 
For example, B2,0 = D2,0 does not satisfy 3) for any α > 0.

Example 4. Let β > −1, 0 < γ ≤ 1, β − γ + 2 > 0, p ≥ 1, and consider the space Qp,β,γ , 
consisting of analytic functions f in D such that

‖f‖pQp,β,γ
= sup

h∈(0,1)
t∈[0,2π]

h−γ

∫
Sh(t)

|f(z)|p(1 − |z|2)βdA(z) < ∞,

where Sh is the usual Carleson box Sh(t) = {reis : 0 ≤ 1 − r ≤ h, |t − s| ≤ h}. The 
“little oh” version Q0

p,β,γ consists of analytic functions f in D such that

lim
h→0

h−γ sup
t∈[0,2π]

∫
Sh(t)

|f(z)|p(1 − |z|2)βdA(z) = 0,

and is a closed subspace of Qp,β,γ . Then Qp,β,γ , Q0
p,β,γ satisfy 1)-3) with α = β−γ+2

p .
Indeed, by a standard estimate (see [13, p. 239, Lemma 3.3] and its proof) we have

‖f‖pQp,β,γ
∼ sup

a∈D
(1 − |a|2)γ

∫
D

|f(z)|p
|1 − az|2γ (1 − |z|2)βdA(z).

Moreover, for every ϕ ∈ Aut(D) we have

1
|1 − az|2γ = |ϕ′(a)|γ |ϕ′(z)|γ

2γ
.

|1 − ϕ(a)ϕ(z)|
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Thus, with α as above we can use the fact that Wα+ γ
p

ϕ is an isometry on Ap
β to obtain

‖Wα
ϕ f‖pQp,β,γ

∼ sup
a∈D

(1 − |a|2)γ |ϕ′(a)|γ
∫
D

|Wα+ γ
p

ϕ f(z)|p

|1 − ϕ(a)ϕ(z)|2γ
(1 − |z|2)βdA(z)

= sup
a∈D

(1 − |ϕ(a)|2)γ
∫
D

|f(z)|p

|1 − ϕ(a)z|2γ
(1 − |z|2)βdA(z)

∼ ‖f‖pQp,β,γ
.

The condition 0 < γ ≤ 1 only ensures that Qp,β,γ is not a growth class. For 0 < β ≤ 1, 
the spaces Q2,β,β consist of derivatives of functions in the standard Qβ-spaces [21]. In 
particular, Q2,1,1 consists of derivatives of BMOA-functions. The norms are equivalent 
to the original ones modulo constants.

The above example can be somewhat refined as we shall see in the next section.

3. Basic properties

3.1. Standard objects emerging from the definition

Multipliers and weak products. Let us recall first two standard notions regarding Ba-
nach spaces satisfying 1).

Definition 1. Given two Banach spaces X, Y with the property 1), the space Mult(X, Y )
consists of analytic functions u in D with uX ⊂ Y with the norm

‖u‖Mult(X,Y ) = sup
f∈X

‖f‖X≤1

‖uf‖Y .

The functions in Mult(X, Y ) are usually called pointwise multipliers from X into Y . 
By the closed graph theorem each u ∈ Mult(X, Y ) defines a bounded multiplication 
operator Mu : X → Y, Muf = uf , and ‖u‖Mult(X,Y ) equals the operator norm of Mu. 
In particular, it follows that Mult(X, Y ) is a Banach space.

Definition 2. Given two Banach spaces X, Y with the property 1), their weak product 
X � Y consists of analytic functions f in D which can be represented in the form

f =
∑
n≥1

gnhn, gn ∈ X, hn ∈ Y,
∑
n≥1

‖gn‖X‖hn‖Y < ∞. (2)

The norm of f ∈ X � Y is defined by
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‖f‖X�Y = inf
∑
n≥1

‖gn‖X‖hn‖Y ,

where the infimum is taken over all representations of f in the form (2).

This can be identified with the projective tensor product X⊗̂Y , and thus it is a Banach 
space [18] which obviously satisfies 1) and if X or Y satisfies 2) then X�Y also satisfies 
it. Some elementary properties of the spaces defined above are given by the following 
result.

Proposition 1. Let X, Y be conformally invariant Banach spaces of indices α, respec-
tively β.

(i) If α > β, then Mult(X, Y ) = {0}.
(ii) If α < β and Mult(X, Y ) satisfies 2), then it is conformally invariant of index 

β − α.
(iii) X � Y is conformally invariant of index α + β.

Proof. (i) If u ∈ Mult(X, Y ) we have

sup
ϕ∈Aut(D)

‖W β
ϕuW

α
ϕ−11‖Y < ∞,

hence by 1),

sup
ϕ∈Aut(D)

|W β
ϕuW

α
ϕ−11(0)| < ∞.

In particular, for the choice ϕ(z) = z+a
1+az , a ∈ D, we get

sup
a∈D

|u(a)|(1 − |a|2)β−α < ∞.

Then the maximum principle implies that u = 0.
(ii) A similar computation gives for f ∈ X

W β
ϕuf = W β−α

ϕ uWα
ϕ f.

Since Wα
ϕ is invertible on X, it follows that W β−α

ϕ uX ⊂ Y .
(iii) Is immediate from Remark 1. �
Remark 2.

1) If X is conformally invariant of index α > 0, Mult(X) = Mult(X, X) is invari-
ant under composition with conformal automorphisms. Indeed, if the multiplication 
operator Mu is bounded on X, then Wα

ϕMuW
α
−1 = Mu◦ϕ.
ϕ



10 A. Aleman, A. Mas / Journal of Functional Analysis 280 (2021) 108946
2) The spaces Mult(Bp,β, Ap
β), 1 ≤ p < β + 2, β+2

p − 1 = γ+2
p , are of particular interest. 

They consist of analytic functions f with the property that |f |p(1 −|z|2)βdA is a Car-
leson measure for Bp,β. Such spaces are not completely understood in this generality. 
If f ∈ Mult(Bp,β , Ap

β), it follows that its primitive belongs to Q′
p,β,β+2−p. However, 

it is known [2] that when p = 2, 0 < β < 1, this inclusion is strict.

One-parameter abelian operator groups. The group Aut(D) contains several abelian one-
parameter subgroups. The generic examples are the group of rotations {ϕt : ϕt(z) =
eitz, t ∈ [0, 2π)}, and the hyperbolic group {ψa : ψa(z) = z+a

1+az , a ∈ (−1, 1)}. Of 
course when X is conformally invariant of index α > 0, the corresponding operators 
{Wα

ϕt
: t ∈ [0, 2π)}, {Wα

ψa
: a ∈ (−1, 1)} form one-parameter abelian groups of 

operators, but in general, these groups fail to be strongly continuous. Another important 
object related to approximations is the semigroup of dilations {Dr : r ∈ [0, 1]} defined 
by

Drf(z) = f(rz). (3)

Sometimes we shall write Drf = fr. By 2) and the closed graph theorem it follows that 
each Dr, r > 0 is bounded on X and the semigroup is strongly continuous on [0, 1). 
The question of main interest is whether it is strongly continuous from the left at r = 1. 
Again, this property fails to hold in full generality.

An example for the above assertions is the space X = A−1. If f(z) = (z − i)−1, 
it follows easily that the functions t → Wα

ϕt
f, a → Wα

ψa
f, r → Drf are not norm-

continuous in A−1 on [0, 2π), (−1, 1), or [0, 1].
Under the additional assumption that polynomials are dense in the space, the whole 

group {Wα
ϕ : ϕ ∈ Aut(D)}, as well as the above semigroup become strongly continuous. 

For the semigroup {Dr : r ∈ [0, 1]} the assertion is immediate from 2), while for the 
group it is proved below.

Proposition 2. Assume that X is conformally invariant of index α > 0, and that poly-
nomials are dense in X. If (ϕn) is a sequence in Aut(D) which converges uniformly on 
compact subsets of D to ϕ ∈ Aut(D), then Wα

ϕn
converges strongly to Wα

ϕ .

Proof. From ϕn(0) → ϕ(0), ϕ′
n(0) → ϕ′(0) it follows that (ϕn) converges to ϕ uniformly 

in ρD, for some ρ > 1. Then for every polynomial f , Wα
ϕn

f → Wα
ϕ f uniformly in ρD, 

hence Wα
ϕn

f → Wα
ϕ f in X by 2). Since polynomials are dense in X and the operator 

norms ‖Wα
ϕn

‖B(X) are bounded above, the result follows. �
If polynomials are dense in X, the one-parameter abelian groups considered above 

have densely defined, closed infinitesimal generators. They are given by

Aαf = d
Wα

ϕ f |t=0, Aαf(z) = izf ′(z) + iαf(z), (4)

dt t



A. Aleman, A. Mas / Journal of Functional Analysis 280 (2021) 108946 11
Dαf = d

da
Wα

ψa
f |a=0, Dαf(z) = (1 − z2)f ′(z) − 2αzf(z). (5)

The infinitesimal generator of {Dr : r ∈ [0, 1]} is −iA0. All of these unbounded operators 
are considered on their maximal domain of definition. D 1

2
plays a crucial role in the 

description of the spectrum of the Hilbert matrix on conformally invariant spaces of 
index α ∈ (0, 1) obtained in [5].

3.2. Polynomial approximation

This is a central question regarding Banach spaces of analytic functions in D, and 
in many cases it is addressed with help of the dilation semigroup. In the frame-
work considered here, this is intimately related to the rotation group given by Rt =
e−iαtWα

ϕt
, ϕt(z) = eitz, t ∈ [0, 2π]. The results below (partially related to the work of 

A.E. Taylor [20]) hold for any Banach space X which satisfies 1), 2) and the weaker 
condition

3’) Rt ∈ B(X), and ‖Rt‖ is uniformly bounded in t ∈ [0, 2π].

Recall from the previous paragraph that by 2) the semigroup of dilations {Dr : r ∈ [0, 1]}
defined by (3) is contained in B(X) and is strongly continuous on [0, 1).

Theorem 1. Let X satisfy 1), 2) and 3’). The following are equivalent:

(i) t → Rt is strongly continuous in [0, 2π],
(ii) r → Dr is strongly continuous from the left at r = 1,
(iii) Polynomials are dense in X.

Proof. (i) ⇒ (ii). For r ∈ (0, 1), let Pr(eit) = 1−r2

|eit−r|2 be the Poisson kernel at r ∈ (0, 1). 
Then for f ∈ X, t → Pr(eit)Rtf is a continuous X-valued function on [−π, π], and its 
Bochner integral satisfies for all z ∈ D,

⎛
⎝ 1

2π

π∫
−π

Pr(eit)Rtfdt

⎞
⎠ (z) = f(rz) = Drf(z),

i.e.

1
2π

π∫
−π

Pr(eit)Rtfdt = Drf.

Then from the standard estimates for such integrals we obtain for every δ > 0,
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‖Drf − f‖ ≤ 1
2π

π∫
−π

Pr(eit)‖Rtf − f‖dt

≤ sup
|t|<δ

‖Rtf − f‖ +

(
1 + supt∈[0,2π] ‖Rt‖

)
‖f‖

2π

∫
|t|>δ

Pr(eit)dt.

Given ε > 0 we choose δ > 0 such that sup|t|<δ ‖Rtf − f‖ < ε and let r → 1− in the 
above inequality to obtain

lim sup
r→1−

‖Drf − f‖ ≤ ε,

i.e. Drf → f in X. (ii) ⇒ (iii). From 2) it follows immediately that for fixed r ∈ (0, 1), 
fr = Drf can be approximated by polynomials in X, which gives (iii). (iii) ⇒ (i). 
Again by 2) we conclude that t → Rtf is strongly continuous in [0, 2π], whenever f is a 
polynomial, hence by (iii) this holds true for any f ∈ X. �

There is an important sufficient condition for the density of polynomials in such spaces. 
The result is interesting in its own right as well as its applications. Throughout in what 
follows we shall denote by X ′ the dual of the Banach space X and by T ′ the transpose 
of T ∈ B(X), T ′l(f) = l(Tf), f ∈ X, l ∈ X ′.

Theorem 2. Let X satisfy 1), 2) and 3’). If the linear span of point evaluations lw(f) =
f(w), f ∈ X, w ∈ D, is dense in X ′, then polynomials are dense in X.

Proof. Note first that for fixed w ∈ D, we have R′
tlw = leitw, and that t → R′

tlw is 
continuous on [−π, π]. Indeed, using 1) we have for f =

∑
n≥0 fnζ

n,

|f(eitw) − f(eisw)| ≤ |t− s|
∑
n≥0

n|w|n|fn| ≤ |t− s|cw‖f‖,

with cw > 0 independent of f . In other words, ‖R′
tlw−R′

slw‖X′ ≤ cw|t −s|, which proves 
the claim. Now 3’) together with the density of span{lw : w ∈ D} in X ′ imply that 
t → R′

t is strongly continuous on [−π, π]. Thus the Bochner integral

Trl = 1
2π

π∫
−π

Pr(eit)R′
tldt,

defines a bounded linear operator on X ′ which obviously satisfies

Trlw = 1
2π

π∫
Pr(eit)R′

tlwdt = 1
2π

π∫
Pr(eit)leitwdt = lrw = D′

rlw.
−π −π
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Thus, {D′
r : r ∈ [0, 1]} is bounded in B(X ′), and D′

rlw → lw, r → 1−, for any fixed 
w ∈ D. This proves that Drf → f, r → 1−, weakly in X and using again 2) we conclude 
that polynomials are weakly dense in X. The result follows. �

In general, the density of polynomials in X does not imply that the linear span of 
point evaluations is dense in X ′. The weighted Bergman spaces A1

β, β > −1, provide 
such examples. A direct application of Theorem 2 is as follows.

Corollary 1. Assume that X satisfies 1), 2) and 3’). If X is reflexive then polynomials 
are dense in X.

Proof. If Λ ∈ X ′′ annihilates all point evaluations, from reflexivity we have Λ(l) = l(f), 
for some f ∈ X, and since Λ(lw) = f(w) = 0, w ∈ D, it follows that f = 0, hence Λ = 0. 
Thus the linear span of point evaluations is dense in X ′ and Theorem 2 gives the desired 
result. �
3.3. Duality

It is a well-known fact that if X is a Banach space of analytic functions in D containing 
the polynomials as a dense subset, then its dual X ′ can be represented as a Banach 
space of analytic functions as well. We are interested in a representation which preserves 
conformal invariance of index α which can be achieved with a suitable pairing. Given 
α > 0, let Hα denote the Hilbert space with reproducing kernel

kα(z, w) = (1 − wz)−2α, z, w ∈ D.

When α > 1
2 we have Hα = A2

2α−2, H 1
2

= H2, and when α < 1
2 , we have Hα = D2,2α. 

Let 〈·, ·〉α be the scalar product induced by the kernel kα. The reason for choosing this 
kernel (pairing) is the obvious identity

(1 − wz)−2α = ϕ′ α (w) ϕ′ α (z)(1 − ϕ(w)ϕ(z))−2α, z, w ∈ D, ϕ ∈ Aut(D), (6)

which says that Wα
ϕ is unitary on Hα. Note that

kα(z, w) = 1 +
∑
n≥1

2α · · · (2α + n− 1)
n! wnzn, (7)

and that for fixed w ∈ D, the series on the right converges in any Banach space X
which satisfies 1) and 2). Indeed, 2) implies that Hol(ρD) is continuously contained in 
X, ρ > 1, in particular, if ζ(z) = z, lim supn→∞ ‖ζn‖ 1

n = 1 (here we have used also 1)). 
Consequently, we obtain that if l ∈ X ′, the function

Ul(w) = l (kα(·, w)) = l
(
(1 − wζ)−2α) , w ∈ D,
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is analytic in D. In fact, from (7) we have

Ul(w) = l(1) +
∑
n≥1

2α · · · (2α + n− 1)
n! wnl(ζn), (8)

and from lim supn→∞ ‖ζn‖ 1
n = 1 we see that the series converges uniformly on each 

compact subset of D.
This gives a linear map U : X ′ → Hol(D). We shall denote by X ′

α its range, X ′
α =

UX ′.

Theorem 3. Let X be conformally invariant of index α > 0, and assume that polynomials 
are dense in X. Then with respect to the norm ‖Ul‖ = ‖l‖, X ′

α becomes a Banach space 
of analytic functions which is conformally invariant of index α. Moreover, every l ∈ X ′

can be represented in the form

l(f) = lim
r→1−

〈fr, gr〉α, f ∈ X,

with g = Ul ∈ X ′
α.

Proof. If polynomials are dense in X then U is injective, since by (8) Ul = 0, implies 
that l(ζn) = 0, n ≥ 0, i.e. l = 0. Then ‖Ul‖ = ‖l‖ defines a norm on X ′

α which becomes 
isometrically isomorphic to X ′, in particular, it is a Banach space. The fact that X ′

α

satisfies 1) follows also directly from (8). To verify 2), let ρ > 1, let g ∈ Hol(ρ2D), and 
set g∗(z) = g(z). Then the dilation g∗ρ ∈ Hα, and by 1), f → f 1

ρ
defines a bounded linear 

map from X into Hα. Thus

l(f) = 〈f 1
ρ
, g∗ρ〉α, f ∈ X

defines an element l ∈ X ′, and a direct calculation gives Ul(w) = g(w). To see 3) we use 
the identity (6) in the form

kα(z, w) = ϕ′ α (w) ϕ′ α (z)(1 − ϕ(w)ϕ(z))−2α, z, w ∈ D, ϕ ∈ Aut(D).

If z = ϕ−1(λ), from ϕ′(z)(ϕ−1)′(λ) = 1 and the above equality, we get

Wα
ϕ−1kα(·, w)(λ) = (ϕ∗)′α(w)(1 − ϕ∗(w)λ)−2α, λ, w ∈ D,

where, as before, ϕ∗(w) = ϕ(w). This leads to

Wα
ϕ∗Ul = U(Wα

ϕ−1)′l,

and the result follows from the fact that X satisfies 3). Finally, (8) together with another 
direct computation gives for f =

∑
n≥0 fnζ

n, r ∈ (0, 1),
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〈fr, (Ul)r〉α =
∑
n≥0

r2nfnl(ζn) = l(fr2).

Thus, by Theorem 1,

lim
r→1−

〈fr, (Ul)r〉α = l(f),

and the result follows. �
4. The largest and the smallest space. The Hilbert space case

In this section we show that there is a largest and a smallest Banach space of analytic 
functions in D, conformally invariant of a given index α > 0, and that amongst such 
spaces there exists a unique Hilbert space.

4.1. Largest and smallest space

If X is conformally invariant of index α > 0, it contains the constants, hence by 3)

sup
ϕ∈Aut(D)

‖Wα
ϕ 1‖ = sup

ϕ∈Aut(D)
‖(ϕ′)α‖ < ∞. (9)

Thus, a good candidate for the smallest space with this property is

Xmin
α =

⎧⎨
⎩f ∈ Hol(D) : f =

∑
j

aj(ϕ′
j)α, ϕj ∈ Aut(D), aj ∈ C,

∑
j

|aj | < ∞

⎫⎬
⎭ ,

(10)
with the norm

‖f‖ = inf

⎧⎨
⎩
∑
j

|aj | : f =
∑
j

aj(ϕ′
j)α

⎫⎬
⎭ .

This space obviously satisfies 1) and 3) and by (9), it is continuously contained in any 
conformally invariant space of index α. It turns out that Xmin

α can be identified either 
with a weighted Bergman space, or a weighted Besov space.

Lemma 1. If α > 1, then Xmin
α = A1

α−2, and if α ≤ 1, Xmin
α = B1,α−1. In all cases the 

norms are equivalent.

Proof. A standard estimate (see [14], Chapter I) shows that {(ϕ′)α : ϕ ∈ Aut(D)} is 
bounded in A1

α−2, when α > 1, and in B1,α−1, when α ≤ 1. Thus Xmin
α is continuously 

contained in the space indicated in the statement. The reverse (continuous) inclusion 
follows directly from the general atomic decomposition theorem proved in [10]. �
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With the lemma in hand we can prove the main result of the paragraph.

Theorem 4. If X is conformally invariant of index α > 0, then X is continuously con-
tained in Xmax

α = A−α, and Xmin
α is continuously contained in X.

Proof. We have already seen at the beginning of the paragraph that Xmin
α is continuously 

contained in X. For the remaining part, let ϕa(z) = a−z
1−az , a, z ∈ D, and use 1) and 3) 

to conclude that there exists K1 > 0, such that for all f ∈ X,

sup
a∈D

|Wα
ϕa

f(0)| = sup
a∈D

(1 − |a|2)α|f(a)| ≤ K1‖f‖,

which completes the proof. �
4.2. The Hilbert space case

We shall prove that the only Hilbert space which is conformally invariant of index 
α > 0 is the space Hα introduced in §3.3, i.e. Hα = A2

2α−2 when α > 1
2 , H 1

2
= H2, and 

Hα = D2,2α when α < 1
2 .

We begin with a useful observation derived from the results in §3.2.

Lemma 2. If X is a conformally invariant Hilbert space of index α > 0, then there 
exists a scalar product on X which induces an equivalent norm and has the property that 
monomials form an orthogonal basis in X.

Proof. X is reflexive, hence polynomials are dense in X, by Corollary 1. Consequently, 
by Theorem 1 (i), the group {Rt : t ∈ [0, 2π]} is strongly continuous. Set

‖f‖2
1 =

2π∫
0

‖Rtf‖2dt.

Clearly, ‖ · ‖1 is equivalent to the original norm. The induced scalar product is

〈f, g〉1 =
2π∫
0

〈Rtf,Rtg〉dt,

hence for n �= m,

〈ζn, ζm〉1 =
2π∫
0

ei(n−m)t〈ζn, ζm〉dt = 0,

which completes the proof. �
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Using the equivalent norm given by Lemma 2, it follows that X consists of all analytic 
functions f =

∑
n≥0 fnζ

n in D with

‖f‖2 =
∑
n≥0

|fn|2vn < ∞, (11)

where vn = ‖ζn‖2 > 0. From (7) we have that Hα consists of all analytic functions 
f =

∑
n≥0 fnζ

n in D with

‖f‖2
Hα

=
∑
n≥0

|fn|2vn,α < ∞,

where

v0,α = 1, vn,α = n!
2α · · · (2α + n− 1) , n ≥ 1. (12)

Here is a simple observation regarding the weights vn, n ≥ 0.

Lemma 3. There exists c > 0 such that

n∑
k=0

vk
v2
k,α

≤ c(n + 1)2α,

for all n ≥ 0.

Proof. With the rotationally invariant norm considered above, the estimate

sup
ϕ∈Aut(D)

‖(ϕ′)α‖ = sup
ϕ∈Aut(D)

‖Wα
ϕ 1‖ ≤ sup

ϕ∈Aut(D)
‖Wα

ϕ ‖v
1
2
0 = c1,

translates to

sup
a∈(0,1)

(1 − a2)2α
∞∑
k=0

vk
v2
k,α

a2k ≤ c21.

Then for a2 = 1 − 1
n+1 we have

1
(n + 1)2α

n∑
k=0

vk
v2
k,α

≤ c2 sup
a∈(0,1)

(1 − a2)2α
∞∑
k=0

vk
v2
k,α

a2k ≤ c21c2. �

For a ∈ (0, 1), let ψa(z) = z+a
1+az , z ∈ D. We shall use some identities and estimates 

for the scalar products

Cn,k,α(a) = 〈Wα
ψ ζn, ζk〉Hα

= vk,α
[ψn

a (ψ′
a)α](k)(0)

. (13)

a k!
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Lemma 4. (i) Cn,k,α(a) ∈ R, k, n ≥ 0, a ∈ (0, 1), and for fixed n ≥ 0, a ∈ (0, 1), 
|Cn,k,α(a)|, | d

daCn,k,α(a)| = o(bk), k → ∞ for any b ∈ (a, 1), while for fixed k, n ≥ 0, 
lima→1− Cn,k,α(a) = 0.
(ii) If 1 ≤ n ≤ k, a ∈ (0, 1), we have

Cn,k+1,α(a) = −aCn,k,α(a) + n(1 − a2) 1
2

2α Cn−1,k,α+ 1
2
(a).

(iii) For k, n ≥ 1 a ∈ (0, 1),

Cn,k,α(a) − k + 1 + 2α
k + 1 Cn,k+2,α(a) = −1 − a2

k + 1
d

da
Cn,k+1,α(a).

(iv) Consequently, for 1 ≤ n ≤ k, a ∈ (0, 1)

C2
n,k,α(a) − C2

n,k+2,α(a) ≤ n2(1 − a2)
4α2a2 C2

n−1,k,α+ 1
2
(a) + 1

a(k + 1)
d

da
[(1 − a2)C2

n,k+1,α(a)]

+ 2
k + 1C

2
n,k+1,α(a) − 4α

a(k + 1)Cn,k+1,α(a)Cn,k+2,α(a).

Proof. (i) follows directly from the definition together with the fact that Wψa
ζn con-

verges weakly to 0 in Hα when a → 1−. (ii) Since ψa(z) = a + (1−a2)z
1+az , it follows for any 

f ∈ Hα,

〈ψn
a (ψ′

a)α, f〉Hα
=

n∑
j=0

(
n

j

)
an−j(1 − a2)j+α

〈
ζj

(1 + aζ)j+2α , f

〉
Hα

.

Furthermore,

〈
1

(1 + aζ)2α , f
〉

Hα

= f(−a),

and if j ≥ 1,

〈
ζj

(1 + aζ)j+2α , f

〉
Hα

= (−1)j

2α · · · (2α + j − 1)
dj

daj

〈
1

(1 + aζ)2α , f
〉

Hα

= 1
2α · · · (2α + j − 1)f

(j)(−a).

Thus for f = ζk, since k ≥ n, we obtain

Cn,k,α(a) =
n∑(

n

j

)
(−1)k−jan+k−2j(1 − a2)j+α

∏ k − l

2α + l
,

j=0 0≤l<j
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where, as usual we set the product over the empty set to be 1, i.e. the first term in the 
above sum is (−1)kan+k(1 − a2)α. This implies

Cn,k+1,α(a) = −aCn,k,α(a)

+
n∑

j=1

(
n

j

)
(−1)k+1−jan+k+1−2j(1 − a2)j+α

⎛
⎝ ∏

0≤l<j

k + 1 − l

2α + l
−

∏
0≤l<j

k − l

2α + l

⎞
⎠ .

Now with the above convention it is easy to verify that for j ≥ 1, we have

∏
0≤l<j

k + 1 − l

2α + l
−

∏
0≤l<j

k − l

2α + l
=

⎛
⎝ ∏

0≤l<j

1
2α + l

∏
0≤l<j−1

(k − l)

⎞
⎠ ((k + 1) − (k − j + 1))

= j

2α
∏

0≤l<j−1

k − l

2α + 1 + l
.

This leads to

Cn,k+1,α(a) = −aCn,k,α(a)

+ n(1 − a2) 1
2

2α

n∑
j=1

(
n− 1
j − 1

)
(−1)k−j+1an−1+k−2(j−1)(1 − a2)j−1+α+ 1

2
∏

0≤l<j−1

k − l

2α + 1 + l

= −aCn,k,α(a) + n(1 − a2) 1
2

2α Cn−1,k,α+ 1
2
(a),

which proves the identity in the statement.
(iii) Recall that {Wα

ψa
: a ∈ (−1, 1)} is a unitary group on Hα with infinitesimal 

generator Dα given by (5). Then iDα is selfadjoint on Hα, i.e. D∗
α = −Dα on this 

space. Moreover, taking into account the parametrization of the group, or by a direct 
calculation, it follows that

DαW
α
ψa

f = Wα
ψa

Dαf = (1 − a2) d

da
Wα

ψa
f,

whenever f is in the domain of Dα, in particular, when f is a polynomial. Since Dαζ
k+1 =

(k + 1)ζk − (k + 1 + 2α)ζk+2, k ≥ 1, we obtain

Cn,k,α(a) − k + 1 + 2α
k + 1 Cn,k+2,α(a) = 1

k + 1 〈W
α
ψa

ζn,Dαζ
k+1〉Hα

= − 1
k + 1 〈DαW

α
ψa

ζn, ζk+1〉Hα
= −1 − a2

k + 1 〈 d

da
Wα

ψa
ζn, ζk+1〉Hα

= −1 − a2

k + 1
d

da
Cn,k+1,α(a).
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(iv) An elementary computation yields

C2
n,k,α(a) − C2

n,k+2,α(a) = 2Cn,k,α(a)(Cn,k,α(a) − Cn,k+2,α(a)) − (Cn,k,α(a) (14)

− Cn,k+2,α(a))2 = 2(Cn,k,α(a) + 1
a
Cn,k+1,α(a))(Cn,k,α(a) − Cn,k+2,α(a))

− 2
a
Cn,k+1,α(a)(Cn,k,α(a) − Cn,k+2,α(a)) − (Cn,k,α(a) − Cn,k+2,α(a))2

≤ (Cn,k,α(a) + 1
a
Cn,k+1,α(a))2 − 2

a
Cn,k+1,α(a)(Cn,k,α(a) − Cn,k+2,α(a)).

By (ii) we have Cn,k,α(a) + 1
aCn,k+1,α(a) = n(1−a2)

1
2

2αa Cn−1,k,α+ 1
2
(a), and by (iii),

Cn,k+1,α(a)(Cn,k,α(a) − Cn,k+2,α(a))

= Cn,k+1,α(a)
(
Cn,k,α(a) − k + 1 + 2α

k + 1 Cn,k+2,α(a)
)

+ 2α
k + 1Cn,k+1,α(a)Cn,k+2,α(a)

= −1 − a2

k + 1 Cn,k+1,α(a) d

da
Cn,k+1,α(a) + 2α

k + 1Cn,k+1,α(a)Cn,k+2,α(a)

= − 1
2(k + 1)

d

da
[(1 − a2)C2

n,k+1,α(a)] − a

k + 1C
2
n,k+1,α(a)

+ 2α
k + 1Cn,k+1,α(a)Cn,k+2,α(a).

By replacing these in the last line of (14), we obtain the desired inequality. �
We can now turn to our result about conformally invariant Hilbert spaces.

Theorem 5. Let X be a Hilbert space which is conformally invariant of index α > 0. 
Then X = Hα and the corresponding norms are equivalent.

Proof. Without loss of generality, we can assume that X is equipped with the norm 
given by Lemma 2. As above, let vn = ‖ζn‖2, and let vn,α be given by (12). It will be 
sufficient to show that there exists η > 0, depending only on X, such that

vn ≤ ηvn,α, n ≥ 0. (15)

Indeed, a straightforward argument shows that X ′ consists of all analytic functions 
f =

∑
n≥0 fnζ

n in D with

‖f‖2
X′ =

∑
|fn|2

v2
n,α

vn
< ∞.
n≥0
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If (15) holds for any space X as in the statement, it holds for X ′ as well, which implies 
v2
nα

vn
≤ η′vnα for all n, that is,

1
η′
vnα ≤ vn ≤ ηvnα, n ≥ 0,

and the result follows.
To verify the claim (15), we consider the disc-automorphisms ψa(z) = z+a

1+az , z ∈
D, a ∈ (0, 1), and use the conformal invariance of X to conclude that

vn = ‖ζn‖2 ≤ c1‖Wα
ψa

ζn‖2 = c1

∞∑
k=0

C2
n,k,α(a) vk

v2
k,α

, a ∈ (0, 1), (16)

where Cn,k,α(a) are given by (13). For n ≥ 2, a ∈ (0, 1), let

Sn(a) =
∞∑

k=n

(C2
n,k,α(a) − C2

n,k+2,α(a))
k∑

j=n

vj
v2
j,α

.

By Lemma 3 and Lemma 4 (i), for fixed a ∈ (0, 1) we can interchange the order of 
summation and obtain,

Sn(a) =
∞∑
j=n

vj
v2
j,α

∑
k≥j

(C2
n,k,α(a) − C2

n,k+2,α(a))

=
∞∑
j=n

vj
v2
j,α

(C2
n,j,α(a) + C2

n,j+1,α(a))

=
∞∑
j=0

vj
v2
j,α

(C2
n,j,α(a) + C2

n,j+1,α(a)) −
n−1∑
j=0

vj
v2
j,α

(C2
n,j,α(a) + C2

n,j+1,α(a)).

Thus by another application of Lemma 4 (i) we conclude that

vn = ‖ζn‖2 ≤ c1

∞∑
k=0

C2
n,k,α(a) vk

v2
k,α

≤ c1Sn(a) + o(1), a → 1−. (17)

In order to estimate Sn(a) when a → 1−, for k ≥ n, let

Bn,k,α(a) = n2(1 − a2)
4α2a2 C2

n−1,k,α+ 1
2
(a) + 1

a(k + 1)
d

da
[(1 − a2)C2

n,k+1,α(a)]

+ 2
k + 1C

2
n,k+1,α(a) − 4α

a(k + 1)Cn,k+1,α(a)Cn,k+2,α(a),

and use the inequality in Lemma 4 (iv) to obtain
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Sn(a) ≤
∞∑

k=n

Bn,k,α(a)
k∑

j=n

vj
v2
j,α

. (18)

We want to use the estimate in Lemma 3, but at this stage it cannot be applied since 
the numbers Bn,k,α(a) might be negative. However, it turns out that their (weighted) 
averages can be controlled. If a ∈ (0, 1), then

1
a− a2

a∫
a2

sBn,k,α(s)ds = n2

4α2(a− a2)

a∫
a2

(1 − s2)
s

C2
n−1,k,α+ 1

2
(s)ds

+ 1
(k + 1)(a− a2)

a∫
a2

d

ds
[(1 − s2)C2

n,k+1,α(s)]ds

+ 2
(k + 1)(a− a2)

a∫
a2

sC2
n,k+1,α(s)ds

− 4α
(k + 1)(a− a2)

a∫
a2

Cn,k+1,α(s)Cn,k+2,α(s)ds.

Note that

a∫
a2

d

ds
[(1 − s2)C2

n,k+1,α(s)]ds ≤ (1 − a2)C2
n,k+1,α(a),

and

−
a∫

a2

Cn,k+1,α(s)Cn,k+2,α(s)ds ≤
a∫

a2

|Cn,k+1,α(s)Cn,k+2,α(s)|ds.

From (18) we infer that

1
a− a2

a∫
a2

sSn(s)ds ≤
∞∑

k=n

k∑
j=n

vj
v2
j,α

1
a− a2

a∫
a2

sBn,k,α(s)ds,

where the interchange of the sum and the integral is justified by Lemma 4 (i) and 
Lemma 3. Now use the above estimates in order to replace 1

a−a2

∫ a

a2 sBn,k,α(s)ds by a 
sum of four nonnegative terms, and then apply Lemma 3 to arrive at

1
a− a2

a∫
sSn(s)ds ≤ c

1
a− a2

a∫ (
SI
n(s) + SII

n (s) + SIII
n (s)

)
ds + cSIV

n (a), (19)

a2 a2
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where c is the constant in Lemma 3, and

SI
n(s) = n2(1 − s2)

4α2s

∞∑
k=0

(k + 1)2αC2
n−1,k,α+ 1

2
(s),

SII
n (s) = 2s

∞∑
k=0

(k + 1)2α−1C2
n,k+1,α(s),

SIII
n (s) = 4α

∞∑
k=0

(k + 1)2α−1|Cn,k+1,α(s)Cn,k+2,α(s)|,

SIV
n (a) = 1 − a2

(a− a2)

∞∑
k=0

(k + 1)2α−1C2
n,k+1,α(a).

From the obvious estimate (k+1)2α ≤ c2 min{v−1
k,α+ 1

2
, (k+1)v−1

k+1,α, (k+1)v−1
k+2,α}, valid 

for some fixed constant c2 > 0 and all integers k ≥ 0, we conclude that

SI
n(s) ≤ c2

n2(1 − s2)
4α2s

∞∑
k=0

v−1
k,α+ 1

2
C2

n−1,k,α+ 1
2
(s) = c2

n2(1 − s2)
4α2s

‖Wα+ 1
2

ψa
ζn−1‖2

H
α+ 1

2

= c2
n2(1 − s2)

4α2s
vn−1,α+ 1

2
,

and similarly,

SII
n (s) ≤ 2c2‖Wα

ψa
ζn‖2

Hα
= 2c2vn,α, SIII

n (s) ≤ c24α‖Wα
ψa

ζn‖2
Hα

= c24αvn,α,

SIV
n (a) ≤ c2

1 + a

a
‖Wα

ψa
ζn‖2

Hα
= c2

1 + a

a
vn,α

where in the estimate of SIII
n (s) we have used the Cauchy-Schwartz inequality. In par-

ticular, lima→1−
1

a−a2

∫ a

a2 S
I
n(s) ds = 0, and there exists c3 > 0 such that

1
a− a2

a∫
a2

SII
n (s) ds, 1

a− a2

a∫
a2

SIII
n (s) ds, SIV

n (a) ≤ c3vn,α,

for all n ≥ 2 and all a ∈ (1
2 , 1). Thus from (17)

vn = ‖ζn‖2 ≤ 3c1
1

a− a2

a∫
a2

sSn(s)ds + o(1) ≤ c4vn,α + o(1), a → 1−,

and the claim (15) follows by letting a → 1−. This completes the proof of the theo-
rem. �
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5. Applications

5.1. Conformally invariant subspaces

Following the idea in [4] we attempt to construct a conformally invariant space starting 
with an arbitrary Banach space X of analytic functions in D which satisfies 1) and 2). 
We simply set for α > 0,

Mα(X) = {f ∈ X : (ϕ′)α f ◦ ϕ ∈ X, ϕ ∈ Aut(D), ‖f‖Mα
= sup

ϕ∈Aut(D)
‖Wα

ϕ f‖X < ∞}.

(20)
Clearly, Mα(X) ⊂ X, with equality if and only if X is conformally invariant of index α. 
Moreover, Mα(X) is a Banach space satisfying 1) and 3), but it is not clear whether it 
satisfies the condition 2).

Proposition 3. Let X be a Banach space satisfying 1) and 2). Then Mα(X) is con-
formally invariant of index α if and only if supϕ∈Aut(D) ‖(ϕ′)α‖X < ∞. Moreover, if 
A−α ⊂ X then Mα(X) = A−α

Proof. This is a direct application of Theorem 4. The condition supϕ∈Aut(D) ‖(ϕ′)α‖X <

∞, is equivalent to Xmin
α ⊂ Mα(X). If it holds, then Mα(X) satisfies 2) because Xmin

α

does. Conversely, if Mα(X) satisfies 2), it is conformally invariant of index α, hence 
it must contain Xmin

α . If A−α ⊂ X, the inclusion is continuous by the closed graph 
theorem, hence A−α ⊂ Mα(X). Thus, Mα(X) is conformally invariant of index α, and 
by Theorem 4 we have A−α = Mα(X). �

Some interesting examples occur this way.

Example 5. If p ≥ 1, and α < 1
p , a direct computation based on a change of variable 

reveals that Mα(Hp) consists of f ∈ Hp with

sup
a∈D

(1 − |a|2)1−αp

2π∫
0

|f(eit)|p
|eit − a|2−2αp dt < ∞.

If arcs on the unit circle are denoted by I, and their length by |I|, the above condition 
is equivalent to

sup
I

|I|αp−1
∫
I

|f(eit)|pdt < ∞.

In a similar way it follows for p ≥ 1, β > −1, and β+1
p ≤ α < β+2

p , that Mα(Ap
β) =

Qp,β,β+2−αp.
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Let us also note that for γ > 0, we have Mα(A−γ) = {0}, when α > γ, 
Mγ(A−γ) = A−γ , and Mα(A−γ) = A−α, when 0 < α < γ. All these examples are 
actually consequences of a general fact which is proved below.

Proposition 4. Let X be conformally invariant of index γ > 0. Then Mα(X) = {0}, 
when α > γ, Mγ(X) = X, and when 0 < α < γ, Mα(X) = Mult(Xmin

γ−α, X).

Proof. Let α > γ, and let ϕa(z) = a−z
1−az , a, z ∈ D. If f ∈ Mα(X) and z ∈ K, with K a 

compact subset of D, by 1)

sup
a∈D

(1 − |a|2)γ−α|f(z)| � sup
a∈D

|(ϕ′
a(z))γ−αf(z)| = sup

a∈D
|W γ

ϕa
Wα

ϕa
f(z)|

� sup
a∈D

‖W γ
ϕa

Wα
ϕa

f‖X � sup
a∈D

‖Wα
ϕa

f‖X ≤ ‖f‖Mα(X).

Hence, f = 0. If 0 < α < γ, note that rotations are bounded in X and for f analytic in 
D we have

W γ
ϕa

(f(ϕ′
a)γ−α) = Wα

ϕa
f.

If f ∈ Mult(Xmin
γ−α, X), then the left hand side is bounded in X, uniformly in ϕ ∈ Aut(D), 

which gives f ∈ Mα(X). Conversely, if f ∈ Mα(X), then the right hand side is bounded 
in X, uniformly in ϕ ∈ Aut(D), and by 3), the same holds for f(ϕ′)γ−α, which gives 
f ∈ Mult(Xmin

γ−α, X), by (10). �
The situation is more complicated in the case when X is not conformally invariant. 

We close the paragraph with an example of this type.

Example 6. Let

A1
log−2 =

⎧⎨
⎩f ∈ Hol(D) : ‖f‖A1

log−2
=

∫
D

|f(z)| 1
log2 2

1−|z|2
dA(z) < ∞

⎫⎬
⎭ .

Then:
a) A1

log−2 is not conformally invariant of any index α > 0,
b) Mα(A1

log−2) = 0, when α > 2, and Mα(A1
log−2) = A−α when 0 < α ≤ 1,

c) If 1 < α ≤ 2 we have for every ε > 0,

Mult(Xmin
2−α, A

1
0) ⊂ Mα(A1

log−2) ⊂ Mult(Xmin
2−α+ε, A

1
ε) 1 < α < 2,

A1
0 ⊂ Mα(A1

log−2) ⊂ Mult(Xmin
ε , A1

ε) α = 2.

It is easily seen that the multiplier spaces which appear in c) are strictly contained in 
the corresponding growth class A−α. We were not able to relate the formal definition of 
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Mα(A1
log−2) to standard objects in this area, for example those considered in Section 2. 

It remains a challenging question to do so. For this reason, we have appealed to the 
obvious fact that there exists C > 0, and for every ε > 0 there exists Cε > 0, such that 
for all g ∈ Hol(D), we have

‖g‖A1
ε
≤ Cε‖g‖A1

log−2
and ‖g‖A1

log−2
≤ C‖g‖A1

0
. (21)

To sketch a proof of these assertions, note that for 0 < α ≤ 1, we have A−α ⊂ A1
log−2 , so 

that Proposition 3 gives the second part of b). Since A1
ε is conformally invariant of index 

2 + ε (see Example 1), the other part of b) follows by (21) together with Proposition 4
by choosing ε < α− 2. c) follows by the same argument. Finally, note that by (21) and 
Proposition 4, c) implies a).

5.2. Interpolation

Interpolating between conformally invariant Banach spaces of analytic functions is 
certainly meaningful and might lead to interesting examples. In view of 1), any pair of 
such spaces is compatible in the sense of interpolation theory (see [9]), but, in general, 
describing the intermediate spaces is a difficult task. We shall consider the extreme 
case, that is, we are going to apply the complex interpolation method to the couple 
(Xmax

α , Xmin
α ), α > 0. Our result is essentially based on the following lemma which is 

actually a well known result. Given a positive measurable function v on D we denote by 
Lp(v) = Lp(vdA), 1 ≤ p < ∞, and L∞(v) = v−1L∞(dA).

Lemma 5. Let γ > −1, δ > 0, p ∈ [1, ∞). For β > max{γ, δ}, f ∈ L1((1 − |ζ|2)β), and 
z ∈ D, define

Pβf(z) = (β + 1)
∫
D

f(w)
(1 − wz)β+2 (1 − |w|2)βdA(w), Qβf(z) = Pβ(f(1 − |ζ|2))(z).

Then Pβ is a bounded projection from L∞((1 −|ζ|2)δ) onto A−δ, and from Lp
(
(1 − |ζ|2)γ

)
onto Ap

γ . Moreover, Qβ extends to a continuous bijection from A−δ−1 onto A−δ, from 
Ap

γ onto Ap
γ−p, when γ > p − 1, and from Ap

γ onto Bp,γ , when γ ≤ p − 1.

Proof. The proof of the assertions regarding Pβ can be found, for example, in the first 
chapter of [14]. Using also the equality

(Qβf)′ = (β + 1)Pβ+1ζf,

we conclude from the first part that Qβ is a bounded linear operator between the spaces in 
the statement. Its injectivity is obvious, since if f belongs to the spaces in the statement, 
and Qβf = 0, then all Taylor coefficients of f must vanish. To see the surjectivity, note 
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that from the above equality it follows by a straightforward calculation that whenever 
uζ−1 ∈ L∞((1 − |ζ|2)δ+1), or uζ−1 ∈ Lp

(
(1 − |ζ|2)γ

)
, we have

(β + 1)Pβ+1u = (Qβζ
−1

u)′ = (β + 1)Pβ+1ζPβ+1ζ
−1

u = (QβPβ+1ζ
−1

u)′

Therefore, if f ∈ A−δ−1, or f ∈ Ap
γ with f(0) = 0, we have

(β + 1)f = (QβPβ+1ζ
−1

f)′.

Moreover, since Qβζ
n = cnβζ

n, with cnβ �= 0, the range of Qβ contains all polynomials 
of first degree. Thus, the range of Qβ contains all anti-derivatives of functions in A−δ−1, 
respectively in Ap

γ . Then the surjectivity of Qβ follows from standard results (see again 
[14]). �

For a compatible pair of Banach spaces (X, Y ) we shall denote by [X, Y ]θ, θ ∈ (0, 1), 
the corresponding complex interpolation space.

Theorem 6. For 0 < θ < 1 if α > θ, then [Xmax
α , Xmin

α ]θ = A
1
θ
α
θ −2, and if α ≤ θ, then 

[Xmax
α , Xmin

α ]θ = B
1
θ ,

α+1
θ −2.

Proof. We want to find [A−α−1, A1
α−1]θ, θ ∈ (0, 1). By the Stein interpolation theorem 

[19], if θ ∈ (0, 1)

[L∞((1 − |ζ|2)α+1), L1((1 − |ζ|2)α−1)]θ = L
1
θ ((1 − |ζ|2) 1−θ

θ (α+1)+α−1)

= L
1
θ ((1 − |ζ|2)α+1

θ −2).

Since A−α−1 ⊂ L∞((1 − |ζ|2)α+1), A1
α−1 ⊂ L1 ((1 − |ζ|2)α−1), it follows by definition 

that for θ ∈ (0, 1)

[A−α−1, A1
α−1]θ ⊂ [L∞((1 − |ζ|2)α+1), L1((1 − |ζ|2)α−1)]θ = L

1
θ ((1 − |ζ|2)α+1

θ −2).

Moreover, since [A−α−1, A1
α−1]θ ⊂ A−α−1, it consists of analytic functions in D, hence 

[A−α−1, A1
α−1]θ ⊂ A

1
θ
α+1
θ −2. On the other hand, by standard interpolation theory (see 

Theorem 4.1.2 in [9]) and Lemma 5, for β > max{α + 1, α+1
θ − 2} we have that

Pβ : [L∞((1 − |ζ|2)α+1), L1((1 − |ζ|2)α−1)]θ = L
1
θ ((1 − |ζ|2)α+1

θ −2) → [A−α−1, A1
α−1]θ,

is bounded for all θ ∈ (0, 1). Since Pβ is onto, we obtain hence [A−α−1, A1
α−1]θ ⊃ A

1
θ
α+1
θ −2. 

The fact that the norms on these two spaces are equivalent follows by the closed graph 
theorem.

Finally another application of Lemma 5 and Theorem 4.1.2 in [9] shows that Qβ is 
an invertible linear operator from [A−α−1, A1

α−1]θ onto [Xmax
α , Xmin

α ]θ for all θ ∈ (0, 1), 
hence the result follows from Lemma 5. �
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6. Derivatives, anti-derivatives and integration operators

6.1. Spaces of derivatives and anti-derivatives

Let X be a conformally invariant space of index α > 0. We are interested in the spaces

D(X) = {f ′ : f ∈ X}, A(X) = {f ∈ Hol(D) : f ′ ∈ X}.

They are endowed with the norms

‖g‖D(X) = ‖G‖X , G(z) =
z∫

0

g(w)dw, ‖g‖A(X) = |g(0)| + ‖g′‖X .

The norm on D(X) is actually equivalent to the standard one ‖g‖D(X),1 = infc∈C ‖G +
c‖X , where g, G are related as above. The following observation is entirely based on 
standard estimates and we omit its proof.

Proposition 5. D(X), A(X) satisfy 1), 2) and D(A(X)) = A(D(X)) = X. Moreover,
(i) Xmin

α+1 ⊂ D(X) ⊂ Xmax
α+1 = A−α−1, and the inclusions are continuous.

(ii) For α > 1, Xmin
α−1 ⊂ A(X) ⊂ Xmax

α−1 = A−α+1, and the inclusions are continuous.

The purpose is to investigate the conformal invariance of these spaces. For the stan-
dard examples we have (see for example [14])

D(A−γ) = A−γ−1, D(Ap
β) = Ap

β+p, p ≥ 1, β > −1,

and

A(A−γ) = A−γ+1, γ > 1, A(Ap
β) = Ap

β−p, p ≥ 1, β > p− 1,

or A(Ap
β) = Bp,β , p ≥ 1, β ≤ p − 1. In other words (assuming for the moment the 

assertions in Example 3), if X is any of the spaces listed above and α > 0 is its index 
of conformal invariance, then D(X) is conformally invariant of index α + 1 and when 
α > 1, A(X) is conformally invariant of index α− 1.

It turns out that the result continues to hold for many other conformally invariant 
spaces. Surprisingly enough, this property is closely related to the behaviour on the 
spaces in question of the modified Cesàro C, operator, formally defined by

Cf(z) =
z∫

0

f(w)
1 − w

dw, f ∈ Hol(D).

Our result is as follows.



A. Aleman, A. Mas / Journal of Functional Analysis 280 (2021) 108946 29
Theorem 7. Let X be a conformally invariant space of index α > 0, such that polynomials 
are dense in X.
(i) D(X) is conformally invariant of index β > 0, if and only if β = α+1 and C ∈ B(X).
(ii) Assume that C ∈ B(X). Then A(X) is conformally invariant of index β > 0, if and 
only if α > 1, β = α− 1, and IX − C is invertible.

Note that part (ii) implies the assertions in Example 3. Indeed, it is known that C is 
bounded on Ap

β, p ≥ 1, β > −1, and its resolvent set consists of points λ ∈ C \ {0}, such 

that (1 − ζ)− 1
λ ∈ Ap

β (see [3], Theorem 5.2). In particular, I − C is invertible on Ap
β if 

and only if β + 2 > p. In this case, by part (ii) of the above theorem Bp,β is conformally 
invariant with index β+2

p − 1.
Our argument involves two families of linear operators formally defined for a ∈ D by

Caf(z) =
z∫

0

f(w)
1 − aw

dw, Taf(z) = 1
1 − az

z∫
0

f(w)dw, z ∈ D, f ∈ Hol(D). (22)

Their relation to the modified Cesàro operator C is explained in the next two lemmas.

Lemma 6. Let σ ∈ {0, 1} and let X be conformally invariant of index α > σ, such that 
polynomials are dense in X. For f ∈ Hol(D) and a ∈ D let

T σf(z) = (1 − z)−σ

z∫
0

f(w)
(1 − w)1−σ

dw, T σ
a f(z) = (1 − az)−σ

z∫
0

f(w)
(1 − aw)1−σ

dw.

Then the following are equivalent:

i) T σ ∈ B(X).
ii) T σ

a ∈ B(X) for all a ∈ D and supa∈D ‖T σ
a ‖B(X) < ∞.

iii) There exists δ ∈ (0, 1) such that T σ
a ∈ B(X) for all a ∈ D with δ ≤ |a| < 1 and 

supδ≤|a|<1 ‖T σ
a ‖B(X) < ∞.

Proof. i) ⇒ ii) For every f ∈ Hol(D) and a ∈ D we have

T σ
a f(z) = 1

2π

π∫
−π

Pa(eit)e−itRtT
σR−tf(z)dt,

where Pa(eit) = 1−|a|2
|a−eit|2 is the Poisson kernel at a. If T σ ∈ B(X), then, by Theorem 1, 

t → Pa(eit)RtT
σR−t is strongly continuous on [−π, π], hence for f ∈ X the right hand 

side becomes a Bochner integral. Thus
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T σ
a f = 1

2π

π∫
−π

Pa(eit)e−itRtT
σR−tfdt, f ∈ X, a ∈ D,

and

‖T σ
a f‖ ≤ 1

2π

π∫
−π

Pa(eit)‖RtT
σR−tf‖dt ≤ ( sup

t∈[−π,π]
‖Rt‖B(X))2‖T σ‖B(X)‖f‖X ,

for all f ∈ X and a ∈ D.
ii) ⇒ iii) It is trivial.
iii) ⇒ i) Assume that there exists δ ∈ (0, 1) such that {Tσ

a : δ ≤ |a| < 1} is bounded in 
B(X). The boundedness of T σ will follow directly from the closed graph theorem once 
we show that T σf ∈ X, whenever f ∈ X. To this end, we verify that DTσ = {f ∈
X : T σf ∈ X}, is both closed and dense in X.

To prove that DTσ is closed, we use the equality

(T σf)r(z) = (1 − rz)−σ

1∫
0

rzf(srz)
(1 − srz)1−σ

ds = rT σ
r fr(z). (23)

Let (fn) be a sequence in DTσ , f ∈ X with ‖fn − f‖ → 0. Given ε > 0, choose 
nε ≥ 1, such that ‖fn − fm‖ < ε, n, m > nε. For such m, n use Theorem 1 to find 
r = r(m, n) ∈ (δ, 1), with

‖T σfn − (T σfn)r‖ < ε, ‖T σfm − (T σfm)r‖ < ε.

By another application of Theorem 1, there exists c > 0, independent of m, n, r such 
that ‖(fn)r − (fm)r‖ ≤ c‖fn − fm‖ < cε. Thus by (23)

‖T σfn − T σfm‖ < 2ε + ‖(T σfn)r − (T σfm)r‖ = 2ε + r‖T σ
r (fn)r − T σ

r (fm)r‖
≤ 2ε + c sup

ρ∈(δ,1)
‖T σ

ρ ‖B(X)‖fn − fm‖ < (2 + c sup
ρ∈(δ,1)

‖T σ
ρ ‖B(X))ε,

i.e. (T σfn) is Cauchy in X. Since T σfn(z) → T σf(z), z ∈ D, we obtain that f ∈ DTσ , 
that is, DTσ is closed.

To verify that DTσ is dense in X, set

D0 = {f ∈ ∪ρ>1Hol(ρD) : f(1) = 0} , D1 =

⎧⎨
⎩f ∈ ∪ρ>1Hol(ρD) :

1∫
0

f(w)dw = 0

⎫⎬
⎭ ,

and observe that if f ∈ Dσ, then T σf ∈ ∪ρ>1Hol(ρD) ⊂ X, i.e. f ∈ DTσ . We claim that 
Dσ is a dense subspace of X. Indeed, if l ∈ D⊥

σ , and g ∈ ∪ρ>1Hol(ρD), then if σ = 0,
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l(g) = l(g(1) + g − g(1)) = l(1)g(1),

and similarly, if σ = 1,

l(g) = l

⎛
⎝ 1∫

0

g(w)dw + g −
1∫

0

g(w)dw

⎞
⎠ = l(1)

1∫
0

g(w)dw.

If l(1) �= 0 we see in both cases that the restriction of l to the bounded set {(ϕ′)α : ϕ ∈
Aut(D)} ⊂ X is unbounded, which is a contradiction. Hence l(1) = 0 which implies that 
l = 0 since it annihilates all polynomials.

Finally, to see that the graph of T σ is closed, assume ‖fn − f‖ → 0, ‖T σfn − g‖ → 0, 
with fn, f, g ∈ X. Then T σfn(z) → T σf(z), z ∈ D, i.e. T σf = g. �
Lemma 7. Let X be conformally invariant of index α > 1, such that polynomials are dense 
in X, and assume that C ∈ B(X). Then IX − C is invertible if and only if Ta ∈ B(X)
for all a ∈ D and supa∈D ‖Ta‖B(X) < ∞.

Proof. With the notation in Lemma 6 we have Ta = T 1
a , a ∈ D. Using integration by 

parts we obtain the identity

T 1Cf = T 1f − Cf = CT 1f, f ∈ Hol(D),

or equivalently,

(IHol(D) + T 1)(IHol(D) − C) = (IHol(D) − C)(IHol(D) + T 1) = IHol(D). (24)

If IX − C is invertible, then by (24) it follows that (IX − C)−1 = IX + T 1. In particular, 
T 1 ∈ B(X), and by Lemma 6, {Ta : a ∈ D} is bounded in B(X). Conversely, if 
{Ta : a ∈ D} is bounded in B(X), by Lemma 6 we have that T 1 ∈ B(X), and by 
(24) we obtain IX + T 1 = (IX − C)−1. �
Proof of Theorem 7. (i) Assume that D(X) is conformally invariant of index β > 0. Then

sup
ϕ∈Aut(D)

‖(ϕ′)β‖D(X) < ∞.

By Proposition 5 D(X) is continuously contained in A−α−1, hence

sup
ϕ∈Aut(D)

‖(ϕ′)β‖A−α−1 < ∞,

which implies that β ≤ α + 1. On the other hand,

sup ‖((ϕ′)α)′‖D(X) < ∞,

ϕ∈Aut(D)
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and D(X) is continuously contained in A−β, hence

sup
ϕ∈Aut(D)

‖((ϕ′)α)′‖A−β < ∞,

which implies α + 1 ≤ β, i.e. β = α + 1.
For ϕ = λϕa ∈ Aut(D), with ϕa = a−z

1−az and f ∈ X we have

(Wα
ϕ f)′ = Wα+1

ϕ f ′ + ((ϕ′)α)′f ◦ ϕ = Wα+1
ϕ f ′ + ((ϕ′)α)′

(ϕ′)α Wα
ϕ f,

which can be rewritten as

Wα+1
ϕ f ′ = (Wα

ϕ f)′ − 2aα(CaW
α
ϕ f)′. (25)

Now replace f ∈ X by Wα
ϕ−1f to obtain

Wα+1
ϕ (Wα

ϕ−1f)′ = f ′ − 2aα(Caf)′.

Since D(X) is conformally invariant of index α + 1, the left hand side stays bounded 
in D(X) when ϕ ∈ Aut(D) and f ∈ X with ‖f‖X ≤ 1. This implies that, setting 
δ ∈ (0, 1), ‖(Caf)′‖D(X) stays bounded when ϕ, f are as above and δ ≤ |a| < 1, i.e. 
supδ≤a<1 ‖Ca‖B(X) < ∞. By Lemma 6 with σ = 0 we obtain C ∈ B(X). Conversely, if C
is bounded on X, use again Lemma 6 with σ = 0, to conclude that the second term on the 
right hand side of (25) stays bounded in D(X) when ϕ ∈ Aut(D) and f ∈ X, ‖f‖ ≤ 1, 
which implies that ‖Wα+1

ϕ ‖B(D(X)) stays bounded when ϕ ∈ Aut(D).
(ii) Assume that A(X) is conformally invariant of index β > 0 and that C ∈ B(X). If 
α ≤ 1, by direct integration we see that A(X) is continuously contained in the growth 
class Alog from Example 2. But then we can easily verify that

sup
ϕ∈Aut(D)

‖(ϕ′)β‖A(X) = ∞,

which is a contradiction. Thus, α > 1. The proof of the equality β = α − 1 is identical 
to the corresponding argument in the proof of (i) and will be omitted. The remaining 
part of the proof is similar to the above as well. For f ∈ A(X), ϕ = λϕa ∈ Aut(D), with 
ϕa = a−z

1−az and ϕ−1 = μϕb, write

(Wα−1
ϕ f)′ = Wα

ϕ f
′ + ((ϕ′)α−1)′(f ◦ ϕ− f(0)) + f(0)((ϕ′)α−1)′.

A direct calculation gives

Wα
ϕ−1((ϕ′)α−1)′(f ◦ ϕ− f(0)) = −2b(α− 1)f − f(0) = −2b(α− 1)Tbf

′,
1 − bζ
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hence the above equality becomes

(Wα−1
ϕ f)′ = Wα

ϕ f
′ − 2b(α− 1)Wα

ϕ Tbf
′ + f(0)((ϕ′)α−1)′. (26)

Let f(0) = 0 and apply Wα
ϕ−1 on both sides to obtain

Wα
ϕ−1(Wα−1

ϕ f)′ = f ′ − 2b(α− 1)Tbf
′.

By assumption, the left hand side stays bounded in X when ϕ ∈ Aut(D), and 
‖f‖A(X) ≤ 1, f(0) = 0, and so does the first term on the right. Since the condition 
on f is equivalent to ‖f ′‖X ≤ 1 it follows that setting δ ∈ (0, 1), Tb ∈ B(X), δ ≤ |b| < 1, 
and supδ≤|b|<1 ‖Tb‖B(X) < ∞. Thus by Lemma 6 with σ = 1 and Lemma 7, IX − C
is invertible on X. To see the converse, use first Proposition 5 (ii) to conclude that 
|Wα−1

ϕ f(0)| and |f(0)|‖((ϕ′)α−1)′‖X stay bounded when ϕ ∈ Aut(D) and ‖f‖A(X) ≤ 1. 
If C ∈ B(X), and IX − C is invertible, then by Lemma 7 we have supa∈D ‖Ta‖B(X) < ∞
and we conclude that the right hand side of (26) stays bounded in X when ϕ ∈ Aut(D)
and ‖f‖A(X) ≤ 1. Thus, Wα−1

ϕ ∈ B(A(X)) and supϕ∈Aut(D) ‖Wα−1
ϕ ‖B(A(X)) < ∞, which 

completes the proof. �

6.2. Integration operators

We shall apply our results to investigate a class of integration operators containing 
the modified Cesàro operator from the previous paragraph. These operators are formally 
defined by

Tgf(z) =
z∫

0

f(w)g′(w)dw, f ∈ Hol(D),

where the symbol g ∈ Hol(D), is fixed. There is a vast literature on the subject concerning 
boundedness and compactness of such operators, and more recently, even their spectral 
properties (see for example, [1] [3] and the references therein). Here we shall only discuss 
boundedness in the general context of conformal invariant Banach spaces of analytic 
functions. We start with a simple result whose statement is self-explanatory. However, in 
many cases it turns out to be an important observation related to the characterization 
of the symbols g which generate bounded operators Tg. We shall use the notations in 
the previous paragraph for arbitrary Banach spaces satisfying 1) and 2).

Proposition 6. Let X, Y be Banach spaces satisfying 1) and 2). Then Tg : X → Y is 
bounded if and only if g′ ∈ Mult(X, D(Y )), and the norms ‖Tg‖B(X,Y ), ‖g′‖Mult(X,D(Y ))
are equivalent.
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Proof. By the closed graph theorem Tg ∈ B(X, Y ) if and only if Tgf ∈ Y whenever 
f ∈ X, or equivalently, g′f ∈ D(Y ) whenever f ∈ X. The remaining part is also 
straightforward. �
Remark 3. If X, D(Y ) are conformally invariant of indices α > 0, respectively β > α and 
Tg ∈ B(X, Y ), then by Proposition 1 it follows that the integration operators generated 
by gϕ =

∫ z

0 W β−α
ϕ g′(w)dw, ϕ ∈ Aut(D) are uniformly bounded in B(X, Y ).

We shall be concerned with the case when X = Y . The following result provides a 
nice necessary condition for boundedness of such operators.

Corollary 2. Let X be conformally invariant of index α > 0 such that polynomials are 
dense in X. Assume also that C ∈ B(X). If Tg ∈ B(X), then there exist c, δ > 0 such 
that for all λ ∈ C, |λ| ≤ δ, and all ϕ ∈ Aut(D), exp(λ(g ◦ ϕ − g ◦ ϕ(0))) ∈ X, with

‖ exp(λ(g ◦ ϕ− g ◦ ϕ(0)))‖X ≤ c.

Proof. By Theorem 7, D(X) is conformally invariant of index α + 1 Then Remark 3
applies and we obtain that the family {Tgϕ : ϕ ∈ Aut(D)} is bounded in B(X), where

Tgϕf(z) =
z∫

0

f(w)(g ◦ ϕ)′(w)dw, z ∈ D, f ∈ X.

Choose δ > 0, such that

δ‖Tgϕ‖B(X) <
1
2 , ϕ ∈ Aut(D).

Differentiating and solving an ordinary linear differential equation of first order we obtain 
that the unique solution fλ of

f − λTgλf = 1,

is given by fλ = exp(λ(g ◦ ϕ − g ◦ ϕ(0))). Now for |λ| < δ, IX − λTgϕ is invertible with 
‖(IX − λTgϕ)−1‖B(X) < 2, so that,

‖fλ‖X = ‖(IX − λTgϕ)−11‖X < 2‖1‖X ,

and the result follows. �
The idea of exponentiating via the resolvents of Tg is due to Pomerenke [16]. When 

X = H2, one can use it to prove the John-Nirenberg inequality for BMO (see [13]). In 
the general context considered here, necessary condition for boundedness of Tg provided 
by Corollary 2 is probably not sufficient.
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