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Abstract
Wegive criteria, followingHaymanandBáez-Duarte, for non-vanishing functionswith
non-negative coefficients to be Gaussian and strongly Gaussian. We use these criteria
to show in a simple and unified manner asymptotics for a number of combinatorial
objects, and, particularly, for a variety of partition questions like Ingham’s theorem on
partitions with parts in an arithmetic sequence, orWright’s theorem on plane partitions
and, of course, Hardy–Ramanujan’s partition theorem.

Keywords Khinchin families · Hayman admissible functions · Asymptotic
formulae · Partitions · Analytic combinatorics
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1 Introduction

Walter Hayman, in A generalisation of Stirling’s formula, [16], introduced what are
now called Hayman (admissible) functions, a concept which has become a cornerstone
of asymptoticmethods inAnalyticCombinatorics. ThenotionofHayman functionmay
at first glance appear as too specific and tailor-made for saddle point approximation
and for the Laplace method to be applicable. But the Hayman class is a rich collection
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of functions, closed under certain operations (exponentials of Hayman functions are
Hayman) and small perturbations (the product of a polynomial times a function in
the Hayman class returns a function in the Hayman class); its usefulness in Analytic
Combinatorics derives mostly from facts like those.

A few years later, following an idea of Khinchin, Paul Rosenbloom [25] intro-
duced in Complex Analysis a family of probability distributions, which we term here
aKhinchin family, associated to any given power series with non-negative coefficients.
In this probabilistic framework, he interpreted Hayman functions as power series with
Gaussian Khinchin families (see Definition 3.1) and as a show of its fruitfulness,
Rosenbloom proved the Wiman–Valiron theorem on the maximal term of entire func-
tions, essentially by applying Chebyshev’s inequality to the corresponding Khinchin
family.

Luis Báez-Duarte [2] added to this circle of ideas the notion of strongly Gaussian
power series (see Definition 3.4) and a basic substitution theorem (see Theorem C in
Sect. 3.2.1) quite useful for asymptotic purposes. Products of power series become,
in the Khinchin family side, sums of independent random variables, and by appealing
to Lyapunov’s approach to the central limit theorem, Báez-Duarte was able to show
that the function

∏∞
j=1(1 − z j )−1 is strongly Gaussian, and to deduce the classical

Hardy–Ramanujan partition theorem. See also Candelpergher–Miniconi, [6].
In this paper we follow this thread of Hayman, Rosenbloom and Báez-Duarte.
We take full advantage of the notion of strong gaussianity and go back to Hayman’s

basic function theoretical ideas to extract a direct and purely function theoretical
criterion (Theorem 4.1) for belonging to the Hayman class—and so, being strongly
Gaussian—for power series which do not vanish in their disk of convergence.

We use this criterion, combined with Hayman’s asymptotic formula of Theorem B,
to derive in a simple and unified manner asymptotics for the enumeration of an assort-
ment of combinatorial objects.

Further, we use Theorem 4.1 to show, with no intervention of the central limit
theorem or the circle method, that generating functions of partitions, standard or with
a variety of restrictions on parts, are in the Hayman class, and then with the additional
and crucial contribution of Theorem C we derive asymptotic formulas for partitions
with parts in an arithmetic sequence (Ingham’s theorem), plane partitions (Wright’s
theorem), or colored partitions and, of course, Hardy–Ramanujan’s partition theorem.

We should emphasize that the general approach of Khinchin families and Hayman
class functions aims to give first order asymptotic formulae, but not full asymptotic
expansions.

In forthcoming work, we plan to extend this approach of Khinchin families and
apply it to further asymptotic estimations of coefficients like those of infinite products,
of large powers of power series, of generating functions of a variety of trees, etc.

As it turns out, [16] is one of themost cited papers ofHayman and, as far aswe know,
he did not pursue its topic any further. The present paper is a natural continuation of [16]
once you have at your disposal the Khinchin families framework and the contributions
of Báez-Duarte [2].

This paper is dedicated to the memory of Walter Hayman. Maybe, he would have
been pleased with the extra range of direct applications, which the present paper
contains, of his A generalisation of Stirling’s formula, [16].
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Plan of the paper. Section 2 expounds the basic theory of Khinchin families. In
Sect. 3, the notions of Gaussian and strongly Gaussian power series are introduced,
their probabilistic and asymptotic implications, like Hayman’s asymptotic formula,
TheoremB, are analyzed, and theHayman class of functions is presented. In this Sect. 3
we present basic criteria for non-vanishing functions to be Gaussian, Theorem 3.2,
and to be strongly Gaussian, Theorem 4.1. This last theorem is applied in Sect. 4 to
verify that a number of exponential functions, mostly of combinatorial interest, are
strongly Gaussian and to obtain asymptotic formulae for their coefficients. Theorem
4.1 is also the basic tool for the analysis of asymptotic formulae for the number of
partitions of various kinds which, with the help of Theorem C, is carried out in Sect. 6.

Notations. For positive sequences (an), (bn), the notation an ∼ bn as n → ∞ means
that limn→∞ an/bn = 1; and we refer to that as an asymptotic formula. With an � bn

we abbreviate that c ≤ an/bn ≤ C for positive constants c, C . Analogous notations
are used for positive functions. � denotes the distribution function of the standard
normal. With ‘ogf’ and ‘egf’ we abbreviate, respectively, ordinary and exponential
generating function. The disk of center z ∈ C and radius r > 0 is denoted D(z, r).
The unit disk D(0, 1) is denoted simply by D. E(Z) and V(Z) are reserved for the
expectation (mean) and variance of the random variable Z . If X and Y are random

variables, with X
d= Y we signify that X andY have the same distribution.Wewrite {x}

for the fractional part of the real number x . The Bernoulli numbers are denoted by B j ,
for j ≥ 0 (note that B1 = −1/2), while B j (x), for j ≥ 0, stands for the Bernoulli
polynomials. For f ∈ Ck[0, N ], with k ≥ 1, the Euler summation formula of order
k reads:

N∑

j=0

f ( j) =
∫ N

0
f (t) dt

+ 1

2
f (0) + 1

2
f (N ) +

k−1∑

j=1

(−1) j+1 B j+1

( j + 1)!
(

f ( j)(N ) − f ( j)(0)
)

+ (−1)k+1
∫ N

0
f (k)(t)

Bk({t})
k! dt . (1.1)

We will frequently refer to the comprehensive treatise Analytic Combinatorics [9]
by Flajolet and Sedgewick for background on combinatorial issues.

2 Khinchin Families

We denote by K the class of non-constant power series

f (z) =
∞∑

n=0

anzn,
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with positive radius of convergence, which have non-negative Taylor coefficients and
such that a0 > 0. These are the power series of interest in this paper. Observe that f (t)
is increasing for t ∈ [0, R), and, since f (0) > 0, we have f (t) > 0, for t ∈ [0, R).

Definition 2.1 TheKhinchin family of a power series f inKwith radius of convergence
R > 0 is the family of random variables (Xt )t∈[0,R) with values in {0, 1, . . .} and with
mass functions given by

P(Xt = n) = an tn

f (t)
, for each n ≥ 0 and t ∈ (0, R) ,

while X0 ≡ 0.

Any Khinchin family is continuous in distribution in [0, R). No hypothesis upon
joint distribution of the variables Xt is considered: families, not processes.

2.1 Basic Properties

2.1.1 Mean and Variance Functions

For the mean and the variance of Xt we reserve the notations m(t) = E(Xt ) and
σ 2(t) = V(Xt ), for t ∈ [0, R). In terms of f , the mean and variance of Xt may be
written as

m(t) = t f ′(t)
f (t)

, σ 2(t) = tm′(t) , for t ∈ [0, R) . (2.1)

For each t ∈ (0, R), the variable Xt is not a constant, and so σ 2(t) > 0. Conse-
quently, m(t) is strictly increasing in [0, R), though, in general, σ(t) is not increasing,
like in the case of polynomials. We denote

M f = lim
t↑R

m(t) . (2.2)

2.1.2 The CaseMf = ∞

This case M f = ∞, quite relevant in what follows, holds except in some exceptional
cases, which we now specify.

Let f ∈ K with radius of convergence R > 0 and assume that M f < ∞. Then

(�) m(t) =
∑∞

n=0 nantn

∑∞
n=0 antn

= t f ′(t)
f (t)

≤ M f , for t ∈ (0, R) .

For any fixed t0 ∈ (0, R), we then have upon integration in (�) that

(��) ln

(
f (t)

f (t0)

)

≤ M f ln

(
t

t0

)

, for t ∈ [t0, R) .
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Khinchin Families and Hayman Class 855

Let us distinguish now between radius of convergence R being finite or not.
• If R < +∞ and M f < ∞, then (��) implies that limt↑R f (t) < ∞ and then∑∞
n=0 an Rn < ∞. And, besides, from (�) we deduce also that

(�)

∞∑

n=0

nan Rn < ∞ .

And, conversely, if (�) holds and f in K has radius of convergence R, then

M f =
∑∞

n=0 nan Rn

∑∞
n=0 an Rn

< ∞ .

• If R = ∞ and M f < ∞, then (��) implies that f is a polynomial. And conversely,
for a polynomial f in K of degree N , one actually has M f = N .

In summary,

Lemma 2.2 For f (z) = ∑∞
n=0 anzn in K with radius of convergence R > 0, we have

M f < ∞ if and only if R < ∞ and
∑∞

n=0 nan Rn < ∞, or if R = ∞ and f is a
polynomial.

In the first case, we have M f = (
∑∞

n=0 nan Rn)/(
∑∞

n=0 an Rn). For a polynomial
f ∈ K, we have M f = deg( f ).

In all forthcoming applications, the exceptional cases above will not appear and we
will always have M f = +∞.

Important notation: If M f = ∞, we denote by tn the unique value t ∈ [0, R) such
that m(tn) = n.

Observe that the tn verify that limn→∞ tn = R.

2.1.3 Normalization and Characteristic Functions

For each t ∈ (0, R), we denote the normalization of Xt by X̆t :

X̆t = Xt − m(t)

σ (t)
for t ∈ (0, R) .

The characteristic function of Xt may be written in terms of the power series f as

E(eıθ Xt ) =
∞∑

n=0

eınθ P(Xt = n) = 1

f (t)

∞∑

n=0

antneınθ

= f (teıθ )

f (t)
, for t ∈ (0, R) and θ ∈ R ,

(2.3)

while for its normalized version X̆t we have

E(eıθ X̆t ) = E(eıθ(Xt −m(t))/σ (t))

= E(eıθ Xt /σ(t)) e−ıθm(t)/σ (t) , for t ∈ (0, R) and θ ∈ R ,
(2.4)
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and so,

∣
∣
∣E(eıθ X̆t )

∣
∣
∣ =

∣
∣
∣E(eıθ Xt /σ(t))

∣
∣
∣ , for t ∈ (0, R) and θ ∈ R .

2.1.4 Scale

Let f ∈ K have radius of convergence R and Khinchin family (Xt )t∈[0,R). Fix an
integer m ≥ 1 and let gm(z) be the power series defined by gm(z) = f (zm). Then gm

is also in K and gm has radius of convergence R1/m .
Let (Yt )t∈[0,R1/m ) be the Khinchin family of gm . We have

Yt
d= m Xtm , for 0 ≤ t < R1/m .

For, if f (z) = ∑∞
n=0 anzn , then gm(z) = ∑∞

k=0 ak zkm and for each k ≥ 0 and each
0 ≤ t < R1/m , we have that

P(Yt/m = k) = P(Yt = km) = aktkm

gm(t)
= aktkm

f (tm)
= P(Xtm = k) .

2.1.5 Auxiliary Function F

The function f does not vanish on the real interval [0, R). And so, it does not vanish in
some simply connected region containing that interval. There we may consider ln f ,
a branch of the logarithm of f which is real on [0, R), and define the function

F(z) = ln f (ez),

which is holomorphic in a region containing (−∞, ln R).
If f does not vanish anywhere in the diskD(0, R), then the auxiliary function F(z)

is defined in the whole half plane Rez < ln R. In general, the auxiliary function F(z) is
defined and holomorphic in the half band-like region � f = {s + ıθ : s < ln R, |θ | <√
2/σ(es)}. This follows, for instance, see [3, Prop. 7.8], from the following lemma.

Lemma 2.3 If Y is a random variable and E(eıθY ) = 0, then θ2 V(Y ) ≥ 2.

Combining this lemma and formula (2.3), we deduce that f (teıθ ) = 0, if |θ | <√
2/σ(t), and so f (es+ıθ ) = 0, if |θ | <

√
2/σ(es), for s < ln R. Therefore, f (ez)

vanishes nowhere in � f .

Proof of Lemma 2.3 By considering Y − E(Y ), we may assume that E(Y ) = 0. For a
complex valued C2 function h defined in R, we have that

h(y) − h(0) − h′(0)y =
∫ y

0

∫ u

0
h′′(v) dvdu .
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Khinchin Families and Hayman Class 857

Applying this identity to h(y) = eıφy , we see that the inequality

|eıφy − 1 − ı yφ| ≤ φ2y2

2

holds for y, φ ∈ R. Substituting Y for y, and θ for φ and taking expectations, we
conclude that 1 ≤ θ2 E(Y 2)/2 = θ2 V(Y )/2.

In termsof the auxiliary function F , themean andvariance functions of theKhinchin
family of f , given by (2.1), may be expressed as follows:

m(t) = F ′(s) and σ 2(t) = F ′′(s) , fort = es and s < ln R . (2.5)

2.1.6 Some Basic Examples

We now exhibit explicit formulas for the mean and variance functions and for the
characteristic functions of some basic examples.

(a) Let f (z) = 1 + z. In this case R = ∞, and the mean and variance functions,
given by (2.1), are m(t) = t/(1 + t) and σ 2(t) = t/(1 + t)2. For each t > 0, the
variable Xt is a Bernoulli variable with parameter t/(1+ t), and its characteristic
function is, see formula (2.3),

E(eıθ Xt ) = f (teıθ )

f (t)
= 1 + teıθ

1 + t
, for θ ∈ R and t > 0 ,

and thus, using formula (2.4),

E(eıθ X̆t ) = teıθ/
√

t + e−ıθ
√

t

1 + t
, for θ ∈ R and t > 0 . (2.6)

(b) Let f (z) = 1/(1 − z). In this case R = 1, and the mean and variance functions
are m(t) = t/(1− t) and σ 2(t) = t/(1− t)2. For each t ∈ (0, 1), the variable Xt

is a geometric variable (number of failures until first success) of parameter 1 − t ,
and its characteristic function is, see formula (2.3),

E(eıθ Xt ) = f (teıθ )

f (t)
= 1 − t

1 − teıθ
, for θ ∈ R and t ∈ (0, 1) ,

and thus, using formula (2.4), we have that

E(eıθ X̆t ) = 1 − t

1 − teıθ(1−t)/
√

t
e−ıθ

√
t

= 1 − t

eıθ
√

t − teıθ/
√

t
, for θ ∈ R and t ∈ (0, 1) . (2.7)
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(c) Let f (z) = ez . In this case R = ∞, and the mean and variance functions are
m(t) = t and σ 2(t) = t . For each t > 0, the variable Xt in its Khinchin family
follows a Poisson distribution with parameter t , and its characteristic function is,
see formula (2.3),

E(eıθ Xt ) = f (teıθ )

f (t)
= et(eıθ−1) , for θ ∈ R and t > 0 ,

and thus, using formula (2.4), we have that

E(eıθ X̆t ) = exp

(

t

(

eı(θ/
√

t) − 1 − ıθ√
t

))

, for θ ∈ R and t > 0 · (2.8)

(d) Let

f (z) = exp(ez − 1) �
∞∑

n=0

Bn

n! zn , for z ∈ C ,

where Bn (not to be confused with the nth Bernoulli number Bn) is the nth Bell
number, which counts the number of partitions of the set {1, . . . , n}; see [9, p. 109].
Then R = ∞, and the mean and variance functions are m(t) = tet and σ 2(t) =
t(t + 1)et . The characteristic function is given by,

E(eıθ Xt ) = f (teıθ )

f (t)
= exp

(
eteıθ − et

)
, for θ ∈ R and t > 0 ,

and thus, using formula (2.4), we have that

E(eıθ X̆t ) = exp

(

eteıθe−t/2/
√

t(t+1) − et − ıθ

√
t

t + 1
et/2

)

, for θ ∈ R and t > 0 .

The asymptotic formula for the Bn , due to Moser and Wyman [22], is dealt with
in Sect. 5.2.

2.1.7 Partition Functions

We next turn our attention to generating functions of partition of integers, standard
and with a variety of restrictions on the admitted parts. These examples of functions in
K are quite relevant in this paper. Asymptotic formulas of their coefficients are dealt
with in Sect. 6.

The mean and variance functions or the characteristic function of the Khinchin
family of these partitions functions are not as direct as in the previous examples.
Closed formulas of their mean and variance functions involving series are presented
in Sect. 2.2.1, and convenient approximations are exhibited in Sect. 2.2.1.
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(e) The ogf of partitions, the partition function, given by

P(z) =
∞∏

j=1

1

1 − z j
=

∞∑

n=0

p(n) zn , for z ∈ D ,

is in K.
The ogf Q(z) of partitions into distinct parts (which is also the ogf of partitions
into odd parts),

Q(z) =
∞∏

j=1

(1 + z j ) =
∞∏

j=0

1

1 − z2 j+1 =
∞∑

n=0

q(n) zn , for z ∈ D ,

is also in K. Observe that

Q(z) = P(z)

P(z2)
, for z ∈ D . (2.9)

For integers a ≥ 1, b ≥ 1, the infinite product

Pa,b(z) =
∞∏

j=0

1

1 − zaj+b
, for z ∈ D ,

the ogf of the partitions whose parts lie in the arithmetic progression {aj +b : j ≥
0}, is also in K. Observe that P1,1 ≡ P and that P2,1 ≡ Q.

(f) For integers a ≥ 1, b ≥ 0, the infinite product W b
a (z) given by

W b
a (z) =

∞∏

j=1

(
1

1 − z ja

) jb

, for z ∈ D,

is also in K. We have W 0
1 ≡ P . Also, W 1

1 (z), known as the MacMahon func-
tion [20], turns out to be the ogf of plane partitions; see [9, p. 580], and
Bender–Knuth [4], for a simple proof of this fact.

Besides, W 0
a (z) is the ogf of partitions with parts which are ath powers of positive

integers.
In general, W b

a (z) is the ogf of partitions with parts which are ath powers of positive
integers and with number of colors jb for part ja , for j ≥ 1. See Remark 2.4 for the
terminology.

Remark 2.4 (Colored/weighted partitions) Given a sequence (b j ) j≥1 of integers b j ≥
0, the infinite product

∞∏

j=1

(
1

1 − z j

)b j
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is the ogf of colored partitions with coloring sequence (b j ) j≥1. A colored partition
of n with the above coloring sequence is an array of integers n( j, k) ≥ 0 with j ≥ 1
and 1 ≤ k ≤ b j , and n = ∑

j≥1;1≤k≤b j
n(k, j), i.e., of partitions whose part j may

come in b j different colours. In the case of W b
1 , the coloring sequence is b j = jb, for

j ≥ 1.
The colored partitions with the above coloring sequence are partitions in which

the part j may appear in any of b j available colors, with the order of the colors not
mattering.

These colored partitions are also called weighted partitions; the weights being
the b j . See Granovsky–Stark [11], and Granovsky et al. [12], where asymptotics
about these (quite general) partitions are approached elegantly and systematically via
Meinardus’ theorem, [21], and Khinchin families.

2.1.8 Products and Independence

If f , g ∈ K, then the product h = f · g is also in K. If both f and g have radius of
convergence at least R, then the product h has radius of convergence at least R. If the
respective Khinchin families of f , g and h are (Xt )t∈[0,R), (Yt )t∈[0,R) and (Zt )t∈[0,R),
then the law of Zt is the law of the independent sum Xt ⊕ Yt of the laws of Xt and Yt :

P(Zt = n) =
n∑

k=0

P(Xt = k)P(Yt = n − k) , for each n ≥ 0 .

Thus, products of functions of K become, on the Khinchin family side, sums of
independent variables.

2.1.9 Convergence

Let ( fk)k≥1 be a sequence of functions in K, all of them with radius of convergence
at least R > 0, which converges uniformly on compacts sets of D(0, R) to a function
f ∈ K. Let (X [k]

t )t∈[0,R) and (Xt )t∈[0,R) be the Khinchin families of fk , for k ≥ 1,
and, respectively, of f .

Then, for each t ∈ [0, R), we have that (X [k]
t )k≥1 converges in distribution to Xt

as k → ∞.
Also, for any moment, say, of order q ≥ 1, we have limk→∞ E((X [k]

t )q) = E(Xq
t ),

since if D is the operator D = z(d/dz), then E(Xq
t ) = Dq( f )(t)/ f (t).

In particular, for each t ∈ [0, R), we have that limk→∞ mk(t) = m(t) and that
limk→∞ σ 2

k (t) = σ 2(t), where mk(t), σ 2
k (t) and m(t), σ 2(t) are, respectively, the

mean and variance functions of fk and f .
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2.2 Infinite Products

Let ( f j ) j≥1 be a sequence of functions in K all with radius of convergence at least
R > 0. Assume that the infinite product

f (z) =
∞∏

j=1

f j (z)

converges absolutely and uniformly on compact subsets of D(0, R).
The product f has non-negative Taylor coefficients. Since f j (0) = 0, for each j ,

we have f (0) = 0, and actually, f (0) > 0. Moreover, from

∞∑

j=1

f ′
j (t)

f j (t)
= f ′(t)

f (t)
, for t ∈ [0, R) ,

we see that f the infinite product is non-constant. Thus the product function f is inK
and its power series has radius of convergence at least R.

Let (Xt )t∈(0,R) be the Khinchin family of f and let m(t) = E(Xt ) and σ 2(t) =
V(Xt ) be its mean and variance functions. For each j ≥ 1, the Khinchin family of
f j (z) is denoted by X j,t and its mean and variance functions by m j (t) and σ 2

j (t), for
t ∈ [0, R).

Since
∏N

j=1 f j (z) converges uniformly as N → ∞ on compact subsets ofD(0, R),

we have that, for each t ∈ (0, R), the sum
⊕N

j=1 X j,t converges in law to Xt , as
N → ∞, and that for the means and variances we have

m(t) =
∞∑

j=1

m j (t) and σ 2(t) =
∞∑

j=1

σ 2
j (t), for each t ∈ [0, R).

2.2.1 Partition Functions as Infinite Products

As an illustration of the above, we consider now partitions and partitions into distinct
parts.

Consider first the partition function

P(z) =
∞∏

j=1

1

1 − z j
, for |z| < 1.

Let (Xt )t∈[0,1) be its Khinchin family. And let (Yt )t∈[0,1) be the Khinchin family of
1/(1 − z). Because of scaling properties, see Sect. 2.1.4, we have that

Xt
d=

∞⊕

j=1

jYt j , for t ∈ (0, 1) ,
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and each Yt j is a geometric variable with parameter 1− t j . For its mean and variance
functions, m(t) and σ 2(t), we have that

m(t) =
∞∑

j=1

j t j

1 − t j
and σ 2(t) =

∞∑

j=1

j2t j

(1 − t j )2
, for t ∈ (0, 1) .

We will obtain closed form approximations of m(t) and σ 2(t) as t ↑ 1 in Sect. 6.1.
If (Xt )t∈[0,∞) is the Khinchin family of the ogf

Q(z) =
∞∏

j=1

(1 + z j )

of partitions into distinct parts, we then have, because of scaling properties, see
Sect. 2.1.4, that

Xt
d=

∞⊕

j=1

jYt j , for t > 0 ,

and each Yt j is a Bernoulli variable with parameter t j/(1 + t j ). For its mean and
variance functions we have that

m(t) =
∞∑

j=1

j t j

1 + t j
and σ 2(t) =

∞∑

j=1

j2t j

(1 + t j )2
, for t ∈ (0, 1) .

Analogous expressions for the mean and variance functions of other partition func-
tions like Pa,b or Wa,b will appear later in Sect. 6.1.

2.3 Hayman’s Identity

For f (z) = ∑∞
n=0 anzn ∈ K, Cauchy’s formula for the coefficient an in terms of the

characteristic function of its Khinchin family (Xt )t∈[0,R) reads

an = f (t)

2π tn

∫

|θ |<π

E(eıθ Xt ) e−ıθn dθ , for each t ∈ (0, R) and n ≥ 1 .

In terms of the characteristic function of the normalized variable X̆t , it becomes,
for each t ∈ (0, R) and n ≥ 1,

an = f (t)

2π tn σ(t)

∫

|θ |<πσ(t)
E(eıθ X̆t ) e−ıθ(n−m(t))/σ (t) dθ .
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If M f = ∞, we may take for each n ≥ 1 the (unique) radius tn ∈ (0, R) so that
m(tn) = n, to write

an = f (tn)

2π tn
n σ(tn)

∫

|θ |<πσ(tn)

E(eıθ X̆tn ) dθ , for each n ≥ 1 , (2.10)

which we call Hayman’s identity.
If we write this identity (2.10) as

an2π tn
n σ(tn)

f (tn)
=

∫

|θ |<πσ(tn)

E(eıθ X̆tn ) dθ

we see that an asymptotic formula for an follows if one is able to determine the
behaviour of E(eıθ X̆t ) as t → R. (Recall that tn → R, as n → ∞, see Sect. 2.1.2.)

Of course, once that has been achieved one still needs to determine the tn and also
appropriate expressions for the f (tn) and the σ(tn), which, in general, is not so direct.
In any case, the plan above is actually the route to go.

3 Gaussian Khinchin Families

In this section we discuss the notions of Gaussian and strongly Gaussian Khinchin
families, obtain Hayman’s asymptotic formula for its coefficients and, finally, intro-
duce the class of Hayman functions, which amounts to a criterion for being strongly
Gaussian.

As we have seen, Theorem A, strongly Gaussian power series are Gaussian; and as
we shall see, Theorem 3.8, power series in the Hayman class are strongly Gaussian.

3.1 Gaussian Khinchin Families

Definition 3.1 (Gaussian power series) A power series f ∈ K and its Khinchin family
(Xt )t∈[0,R) are termed Gaussian if X̆t converges, as t ↑ R, in distribution to the
standard normal or, equivalently, if

lim
t↑R

E(eıθ X̆t ) = e−θ2/2 , for each θ ∈ R .

For the exponential function f (z) = ez , we deduce directly by taking the limit as t ↑
∞ in formula (2.8) of the characteristic function of its normalized family, with θ ∈ R

fixed, that ez is Gaussian. This fact means in particular that the normalized version of
the Poisson random variable Xt , that is, (Xt − t)/

√
t , converges in distribution to the

standard normal.
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The function f (z) = 1/(1 − z) is not Gaussian. By taking limits in formula (2.7)
as t ↑ 1, with θ ∈ R fixed, we obtain that

lim
t↑1 E(eıθ X̆t ) = e−ıθ

1 − ıθ
, for each θ ∈ R .

This actually means that X̆t converges in distribution towards a variable Z , where
Z + 1 is an exponential variable of parameter 1.

The function f (z) = 1+ z is not Gaussian, either. By taking limits in formula (2.6)
as t ↑ ∞, with θ ∈ R fixed, we obtain that

lim
t↑∞E(eıθ X̆t ) = 1 , for each θ ∈ R ,

In other terms, X̆t converges in distribution towards the constant 0.

3.1.1 A Criterion for Gaussianity

The following simple criterion for gaussianity of functions f ∈ K non-vanishing in
D(0, R), and in terms of the auxiliary function F of Sect. 2.1.5, is implicit inHayman’s
paper, see [16, Lem. 4].

Theorem 3.2 (A criterion for gaussianity) If f ∈ K has radius of convergence R > 0
and vanishes nowhere in D(0, R), and if for the auxiliary function F one has

lim
s↑ln R

supφ∈R |F ′′′(s + iφ)|
F ′′(s)3/2

= 0 , (3.1)

then f is Gaussian.

Proof. Since f vanishes nowhere in D(0, R), the auxiliary function F(z) = ln f (ez)

is defined and is holomorphic in the whole half-plane {z ∈ C : Rez < ln R}. We have,
for s < ln R and θ ∈ R, that

∣
∣
∣
∣F(s + ıθ) − F(s) − F ′(s)ıθ + F ′′(s)θ

2

2

∣
∣
∣
∣ ≤ sup

φ∈R

∣
∣F ′′′(s + iφ)

∣
∣ |θ |3

6
·

Since F ′(s) = m(es) and F ′′(s) = σ 2(es) for each s < ln R, writing es = t and
substituting θ by θ/σ(t) we deduce that

∣
∣
∣
∣ln f (teıθ/σ(t)) − ln f (t) − ı

m(t)

σ (t)
θ + θ2

2

∣
∣
∣
∣ ≤ supφ∈R

∣
∣F ′′′(s + iφ)

∣
∣

σ 3(t)

|θ |3
6

,

or, equivalently, for t = es with s < ln R and θ ∈ R,
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∣
∣
∣
∣lnE(eıθ X̆t ) + θ2

2

∣
∣
∣
∣ ≤ supφ∈R

∣
∣F ′′′(s + iφ)

∣
∣

F ′′(s)3/2
|θ |3
6

· (3.2)

3.1.2 Some Applications of the Use of the Criterion of Theorem 3.2

Recall the auxiliary function F(z) = ln f (ez) from Sect. 2.1.5.
For the exponential function f (z) = ez , the auxiliary function is given by F(z) =

ez , and the gaussianity of f follows readily from Theorem 3.2.
Similarly, if R(z) = ∑N

j=0 b j z j is a polynomial of degree N such that eR(z) ∈ K,

then eR(z) is Gaussian. For in this case F(z) = R(ez), and for z = s + ıφ we have
that

|F ′′′(z)| =
∣
∣
∣
∣
∣
∣

N∑

j=0

b j j3e jz

∣
∣
∣
∣
∣
∣
≤

N∑

j=0

|b j | j3e js = O(eNs) ,

while

(�) F ′′(s) =
N∑

j=0

b j j2e js ∼ bN N 2eNs as s ↑ ∞ ,

and gaussianity follows from Theorem 3.2. Observe that (�) implies that bN is real
and bN > 0; besides, since eR ∈ K, the coefficients of the polynomial R must be real
numbers.

For the partition function P(z) = ∏∞
j=1 1/(1 − z j ), the auxiliary function F may

be written as

F(z) =
∑

j,k≥1

1

k
ek jz , for Rez < 0 .

For z such that Rez < 0 and integer q ≥ 1, the qth derivative of F is given by

F (q)(z) =
∑

j,k≥1

kq−1 jq ek j z .

For z = s + ıφ, with s < 0 and φ ∈ R, we then have that

∣
∣F ′′′(s + ıφ)

∣
∣ ≤

∑

j,k≥1

k2 j3ek js = F ′′′(s) .

Condition (3.1) requires one to check that

lim
s↓0

F ′′′(−s)

F ′′(−s)3/2
= 0 .
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Let us see. For s > 0 and integer q ≥ 1, we have that

sq+1F (q)(−s) =
∑

k≥1

kq−1 s
∑

j≥1

( js)q e−k( js) ,

and so

lim
s↓0 sq+1F (q)(−s) =

∑

k≥1

kq−1
∫ ∞

0
xqe−kx dx =

∑

k≥1

1

k2

∫ ∞

0
yqe−ydy

= ζ(2)�(q + 1) ,

and, thus,

F (q)(−s) ∼ ζ(2)�(q + 1)
1

sq+1 , as s ↓ 0 . (3.3)

In particular,

F ′′′(−s)

F ′′(−s)3/2
∼ 3√

2ζ(2)
s1/2 , as s ↓ 0 .

We conclude that the partition function P is Gaussian.
Likewise, one readily verifies that the ogfs Q and Pa,b are Gaussian.
For the infinite product W b

a (z) with a ≥ 1, b ≥ 0, let Fa,b(z) be the corresponding
auxiliary function. The following asymptotic formula for the qth derivative of Fa,b:

F (q)
a,b (−s) ∼ 1

a
ζ

(

1 + b + 1

a

)

�

(

q + b + 1

a

)
1

sq+(b+1)/a
, as s ↓ 0 , (3.4)

may be obtained with an argument very much like the one above for the partition
function P . We deduce that

F ′′′
a,b(−s)

F ′′
a,b(−s)3/2

� s(b+1)/(2a) , as s ↓ 0 ,

thus showing that each W b
a , with a ≥ 1, b ≥ 0, is Gaussian.

3.1.3 A Criterion of Gaussianity for f = eg in Terms of g

Not unusually, we start with a power series g with non-negative coefficients and are
actually interested in its exponential f = eg .

The symbolic method of Combinatorics, see Flajolet–Sedgewick [9, Ch. II], gives
that if g is the exponential generating function (egf) of a combinatorial class G of
labelled objects with g(0) = 0, then eg is the egf of the class of sets formed with the
objects of G. For instance,
• eez−1 is the egf of the class of sets of non-empty sets (or partitions of a set), see
[9, p. 107], to be discussed in Sect. 5.2.1,
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• ezez
is the egf of the class of sets of pointed sets (or idempotent functions), see [9,

p. 131], to be discussed in Sect. 5.2.2,
• ez/(1−z) is the egf of the class of sets of permutations (or ‘fragmented permuta-
tions’), see [9, p. 125], to be discussed in Sect. 5.3.

Observe that in the first two instances R = ∞, while in the last one, R = 1.
The following theorem, a consequence of Theorem 3.2, exhibits conditions on g

which imply that f = eg is Gaussian.

Theorem 3.3 (A criterion of gaussianity for f = eg in terms of g) Let f ∈ K be such
that f = eg, where g has radius of convergence R > 0 and non-negative coefficients.
If g is a polynomial of degree 1 or g satisfies

lim
t↑R

g′′′(t)
g′′(t)3/2

= 0 , (3.5)

then f is Gaussian.

The three examples above are readily seen to be Gaussian as a consequence of
Theorem 3.3.

Proof Wewill assume that g is not a polynomial of degree 1 and that (3.5) is satisfied.
The auxiliary function F is given by F(z) = ln f (ez) = g(ez), for Rez < ln R.

Write g(z) as g(z) = ∑∞
n=0 bnzn , with bn ≥ 0, for |z| < R.

For an integer j ≥ 1, we have that F ( j)(z) = ∑∞
n=1 n j bnenz , for Rez < ln R. If

we write t = es , with s < ln R, and let φ ∈ R, by using that n3 ≤ 9
2n(n − 1)(n − 2)

for n ≥ 3, we have that

|F ′′′(s + ıφ)| ≤
∞∑

n=1

n3bntn ≤ b1t + 8b2t2 + 9

2
t3

∞∑

n=3

n(n − 1)(n − 2)bntn−3

≤ b1t + 8b2t2 + 9

2
t3 g′′′(t) ,

and by observing that n2 ≥ n(n − 1), also that

F ′′(s) ≥ t2g′′(t) .

Therefore,

(�)
supφ∈R |F ′′′(s + ıφ)|

F ′′(s)3/2
≤ b1t + 8b2t2 + 9

2 t3 g′′′(t)
t3 g′′(t)3/2

.

If R = ∞, condition (3.1) of Theorem 3.2 follows from (�), hypothesis (3.5) and
the fact that limt↑R g′′(t) > 0.

If R < +∞, then (�) limt↑R g′′(t) = +∞. For otherwise, because of (3.5), we
would have that limt↑R g′′′(t) = 0, so that g′′′ ≡ 0 and g would be a polynomial of
degree at most 2 and R = ∞. From (�), (�) and condition (3.5), we conclude that
condition (3.1) of Theorem 3.2 is satisfied.
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3.2 Strongly Gaussian Khinchin Families

FollowingBáez-Duarte [2], we introduce the notion of stronglyGaussian power series.

Definition 3.4 (Strongly Gaussian power series) A power series f ∈ K with radius
of convergence R and its Khinchin family (Xt )t∈[0,R) are termed strongly Gaussian
if

(a) lim
t↑R

σ(t) = +∞ and (b) lim
t↑R

∫

|θ |<πσ(t)

∣
∣
∣E(eıθ X̆t ) − e−θ2/2

∣
∣
∣ dθ = 0 .

The exponential function f (z) = ez is strongly Gaussian. Recall that in this case
σ(t) = √

t . Strong gaussianity of ez follows from its gaussianity and dominated
convergence using the bound

∣
∣
∣E(eıθ X̆t )

∣
∣
∣ = et(cos(θ/

√
t)−1) ≤ e−2θ2/π2

, for θ ∈ R, t > 0 such that |θ | < π
√

t .

Theorem A below is both a local and a non-local central limit theorem satisfied by
stronglyGaussian power series. It appears inHayman’s [16] asTheorem I andTheorem
II under the stronger hypothesis that f is in the Hayman class (to be discussed shortly
in Sect. 3.3), but the proofs in [16] work for strongly Gaussian power series.

Theorem A (Hayman’s central limit theorem) If f (z) = ∑∞
n=0 anzn in K is strongly

Gaussian, then

lim
t↑R

sup
n∈Z

∣
∣
∣
∣
antn

f (t)

√
2πσ(t) − e−(n−m(t))2/(2σ 2(t))

∣
∣
∣
∣ = 0 . (3.6)

Besides,

lim
t↑R

P(X̆t ≤ b) = �(b) , for every b ∈ R .

And so, X̆t converges in distribution towards the standard normal, and f is Gaussian.

In this statement an = 0, for n < 0. By considering n = −1 in (3.6), it follows
that limt↑R(m(t)/σ (t)) = +∞. In particular, this means that M f given by (2.2) is
M f = ∞ for every f ∈ K that is strongly Gaussian.

Theorem B (Hayman’s asymptotic formula) If f (z) = ∑∞
n=0 anzn in K is strongly

Gaussian, then

an ∼ 1√
2π

f (tn)

tn
n σ(tn)

, as n → ∞ , (3.7)

where tn is given by m(tn) = n, for each n ≥ 1.

123



Khinchin Families and Hayman Class 869

This asymptotic formula is obtained by using Hayman’s identity (2.10) as follows.
Write

√
2πantn

n σ(tn)

f (tn)
− 1 = 1√

2π

∫

|θ |<πσ(tn)

E(eıθ X̆tn ) dθ − 1

= 1√
2π

∫

|θ |<πσ(tn)

(
E(eıθ X̆tn ) − e−θ2/2

)
dθ − 1√

2π

∫

|θ |≥πσ(tn)

e−θ2/2 dθ,

and observe that conditions b) and a), respectively, of strong gaussianity (Defini-
tion 3.4), show that the first and second terms of the expression above tend to 0 as
n → ∞.

Actually, if ωn is a good approximation of tn , in the sense that

lim
n→∞

m(ωn) − n

σ(ωn)
= 0 ,

then

an ∼ 1√
2π

f (ωn)

ωn
n σ(ωn)

, as n → ∞ . (3.8)

Formula (3.8) (and also formula (3.7)) follows immediately from (3.6) of Theo-
rem A.

For the exponential f (z) = ez one has m(t) = t and σ(t) = √
t , for t ≥ 0, and

tn = n for n ≥ 1. The asymptotic formula above gives

1

n! ∼ 1√
2π

en

nn
√

n
, as n → ∞ ,

that is Stirling’s formula.

Remark 3.5 The function f (z) = ez2 isGaussian, because of Theorem3.3. Its variance
function σ 2(t) = 4t2 tends towards∞ as t ↑ ∞, but f is not strongly Gaussian, since
its Taylor coefficients of odd order are null and do not satisfy the asymptotic formula
(3.7).

3.2.1 Báez-Duarte Substitution

In general, precise expressions for the tn are rare, since invertingm(t) is usually compli-
cated. But, fortunately, in practice, one can dowith a certain asymptotic approximation
due to Báez-Duarte [2]. This is the content of Theorem C below.

Suppose that f ∈ K is strongly Gaussian. Assume that m̃(t) is continuous and
monotonically increasing to +∞ in [0, R), and that m̃(t) is a good approximation
of m(t) in the sense that

lim
t↑R

m(t) − m̃(t)

σ (t)
= 0 . (3.9)

Let τn be defined by m̃(τn) = n, for each n ≥ 1.
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Theorem C (Substitution) With the notations above, if f (z) = ∑∞
n=0 anzn in K is

strongly Gaussian and (3.9) is satisfied, then

an ∼ 1√
2π

f (τn)

τ n
n σ(τn)

, as n → ∞ .

Moreover, if σ̃ (t) is such that σ(t) ∼ σ̃ (t) as t ↑ R, we may further write

an ∼ 1√
2π

f (τn)

τ n
n σ̃ (τn)

, as n → ∞ . (3.10)

Theorem C follows readily from (3.8).
In Sect. 6.1, we will exhibit appropriate approximations m̃ and σ̃ 2 of the mean and

variance functions m and σ 2 of the ogfs of partitions P , Q, Pa,b and W b
a , satisfying

in each case condition (3.9).

3.3 Hayman Class

Strongly Gaussian functions in K have excellent asymptotic properties: the central
limit TheoremA and the asymptotic formula (3.7) for its coefficients. Thus far, f (z) =
ez is the only strongly Gaussian function encountered here.

The class of Hayman consists of power series f in K which satisfy some concrete
and verifiable conditions which imply that f is strongly Gaussian, see Theorem 3.8.

Definition 3.6 (Hayman class) A power series f ∈ K is in the Hayman class if

(variance condition) : lim
t↑R

σ(t) = ∞ , (3.11)

and if for a certain function h : [0, R) → (0, π ], which we refer to as the cut (between
a major arc and a minor arc), there hold

(major arc) : lim
t↑R

sup
|θ |≤h(t)σ (t)

∣
∣
∣E(eıθ X̆t ) eθ2/2 − 1

∣
∣
∣ = 0, (3.12)

(minor arc) : lim
t↑R

σ(t) sup
h(t)σ (t)<|θ |≤πσ(t)

|E(eıθ X̆t )| = 0 , (3.13)

The cut h of a f in the Hayman class is not uniquely determined.
The functions in the Hayman class are called admissible by Hayman [16]; they are

also called Hayman-admissible, or just H -admissible.
Unlike other accounts (including Hayman’s), we do not allow a finite number of

the coefficients of the power series to be negative.
For f in the Hayman class, the characteristic function of X̆t is uniformly approxi-

mated by e−θ2/2 in the major arc, while it is uniformly o(1/σ(t)) in the minor arc.
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Observe that condition (3.13) may be written in terms of f or Xt as the requirement
that

lim
t↑R

σ(t) sup
h(t)<|θ |≤π

| f (teıθ )|
f (t)

= 0 or lim
t↑R

σ(t) sup
h(t)<|θ |≤π

∣
∣
∣E(eıθ Xt )

∣
∣
∣ = 0 .

Lemma 3.7 If f ∈ K is in the Hayman class with cut h, then

lim
t↑R

h(t)σ (t) = ∞ .

Proof For θt = h(t)σ (t), condition (3.12) implies that limt↑R E(eıθt X̆t ) eθ2t /2 = 1;

while condition (3.13) implies that limt↑R σ(t)E(eıθt X̆t ) = 0 .Thus, limt↑R eθ2t /2/σ(t)
= ∞ . As limt↑R σ(t) = ∞, the conclusion follows.

The conditions for a power series to be in the Hayman class amount to a criterion
to be strongly Gaussian:

Theorem 3.8 Power series in the Hayman class are strongly Gaussian.

Proof Let us denote

It =
∫

|θ |<πσ(t)

∣
∣
∣E(eıθ X̆t ) − e−θ2/2

∣
∣
∣ dθ , for t ∈ (0, R) .

Divide the integral It into an integral Jt over the major arc and an integral Kt over the
minor arc:

Jt =
∫

|θ |≤h(t)σ (t)

∣
∣
∣E(eıθ X̆t ) − e−θ2/2

∣
∣
∣ dθ,

Kt =
∫

h(t)σ (t)<|θ |≤πσ(t)

∣
∣
∣E(eıθ X̆t ) − e−θ2/2

∣
∣
∣ dθ .

Bound Kt as

Kt ≤ 2πσ(t)

(

sup
h(t)σ (t)<|θ |≤πσ(t)

∣
∣
∣E(eıθ X̆t )

∣
∣
∣

)

+
∫

|θ |≥h(t)σ (t)
e−θ2/2 dθ .

The first summand of the bound of Kt tends to 0, as t ↑ R, because of the hypoth-
esis (3.13), while the second summand tends to 0, as t ↑ R, since, as Lemma 3.7
dictates, limt↑R h(t)σ (t) = +∞.

Bound Jt as

Jt =
∫

|θ |≤h(t)σ (t)
e−θ2/2

∣
∣
∣E(eıθ X̆t ) eθ2/2 − 1

∣
∣
∣ dθ

≤
(∫

R

e−θ2/2 dθ

)

sup
|θ |≤h(t)σ (t)

∣
∣
∣E(eıθ X̆t ) eθ2/2 − 1

∣
∣
∣ .
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This bound of Jt tends to 0 as t ↑ R, by virtue of the hypothesis (3.12).

As a consequence of Theorem 3.8, for asymptotic estimation of coefficients of func-
tions of the Hayman class, one may use the more flexible asymptotic formula (3.10)
of Báez-Duarte instead of the proper Hayman’s asymptotic formula (3.7). This fact
will be crucial later, particularly for the arguments pertaining the partition functions
of Sect. 6.

3.3.1 Combination and Perturbation of Functions of Hayman Class

Maybe the reason for the relevance of the Hayman class in combinatorial questions is
that it enjoys some closure and small perturbation properties.

For instance, see, of course, Hayman [16]:

(a) If f and g are in the Hayman class, then the product f · g is in the Hayman class,
see [16, Thm. VII].

(b) If f is in the Hayman class, then e f is in the Hayman class, see [16, Thm. VI].
(c) If f is in the Hayman class and if R is a polynomial in K, then the product R · f

is in the Hayman class, see [16, Thm. VIII].
(d) Let B(z) = ∑N

n=0 bnzn be a non-constant polynomial with real coefficients such
that for each d > 1 there exists m, not a multiple of d, such that bm = 0, and such
that if m(d) is the largest such m, then bm(d) > 0. If eB is in K, then eB is in the
Hayman class, see [16, Thm. X].

4 Exponentials and Hayman Class

Let g be a non-constant power series with non-negative coefficients and radius of
convergence R > 0. The exponential f = eg of such a g is inK. As mentioned above,
see Sect. 3.1.3, this setting is quite usual in combinatorial questions.

Write g(z) = ∑∞
n=0 bnzn , with bn ≥ 0 for n ≥ 0, and let f ∈ K be given by

f = eg .
We will exhibit in Theorem 4.1 below conditions on the function g which ensure

that f is in the Hayman class so that we can obtain an asymptotic formula for its
coefficients.

Equipped with Theorem 4.1 below and the substitution Theorem C, we will discuss
in Sects. 5.1, 5.2 and 5.3 a number of asymptotic formulae for coefficients, mostly
(but not only) of combinatorial interest, for functions f of the form f = eg with
non-constant g with non-negative coefficients.

Let (Xt )t∈[0,R) be the Khinchin family of f . The mean and variance functions of f ,
written in terms of g, are

m(t) = tg′(t) and σ 2(t) = tg′(t) + t2g′′(t) , for t ∈ (0, R) .

Since g has non-negative coefficients, the variance function σ 2(t) of f is increasing
in [0, R). The auxiliary function F of f is the function F(z) = g(ez), for z such that
Rez < ln R.
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The variance condition (3.11) for belonging to the Hayman class in terms of g
becomes

lim
t↑R

(
tg′(t) + t2g′′(t)

)
= +∞ .

We want a cut function h for f .
Let us start with the major arc. The bound (3.2) gives that

∣
∣
∣
∣lnE(eıθ X̆t ) + θ2

2

∣
∣
∣
∣ ≤ supφ∈R

∣
∣F ′′′(s + ıφ)

∣
∣

σ 3(t)

|θ |3
6

, for t = es and s < ln R .

The proof of Theorem 3.3 gives also that

|F ′′′(s + ıφ)| ≤ b1t + 8b2t2 + 9

2
t3g′′′(t) , for t = es, s < ln R and φ ∈ R .

Define

ωg(t) = b1t + 8b2t2 + 9

2
t3g′′′(t) , for t ∈ (0, R) . (4.1)

Consider a potential cut function h : [0, R) → (0, π ]. Using that |ez − 1| ≤ |z|e|z|
for all z ∈ C, we obtain that

sup
|θ |≤h(t)σ (t)

∣
∣
∣E(eıθ X̆t ) eθ2/2 − 1

∣
∣
∣ ≤ �(t) e�(t),

where �(t) is given by

�(t) = 1

6
ωg(t) h(t)3 , for t ∈ (0, R) .

So, for h to fulfill condition (3.12) on the major arc, it is enough to have that

lim
t↑R

ωg(t) h(t)3 = 0 .

In terms of h and g, condition (3.13) on the minor arc becomes

lim
t↑R

σ(t) exp

(

sup
h(t)≤|θ |≤π

Reg(teıθ ) − g(t)

)

= 0 .

Thus,

Theorem 4.1 Let g be a non-constant power series with radius of convergence R and
non-negative coefficients satisfying the variance condition

(variance condition) : lim
t↑R

(
tg′(t) + t2g′′(t)

)
= +∞ . (4.2)
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If there is a cut function h : [0, R) → (0, π ] satisfying

(major arc) : lim
t↑R

ωg(t) h(t)3 = 0 , (4.3)

and

(minor arc) : lim
t↑R

σ(t) exp

(

sup
h(t)<|θ |≤π

Reg(teıθ ) − g(t)

)

= 0 , (4.4)

then f = eg is in the Hayman class.

The function ωg appearing in the major arc condition is given by the formula (4.1).

Regarding the variance condition. For finite R, the variance condition (4.2) becomes
limt↑R g′′(t) = ∞.

For R = ∞, the variance condition (4.2) is always satisfied, since otherwise we
would have that limt→∞ g′(t) = 0 and g would be constant.

Regarding the major arc condition. For finite R, the major arc condition (4.3) becomes
limt↑R g′′′(t) h(t)3 = 0.

For R = ∞, if g(z) is not a polynomial, the condition on the major arc (4.3)
reduces to

lim
t→∞ t3g′′′(t) h(t)3 = 0 ,

while if g is a polynomial of degree k ≥ 2, then (4.3) reduces to

lim
t→∞ tkh(t)3 = 0 .

4.1 Some Lemmas for Minor Arc Estimates

In applications of Theorem 4.1, the variance and major arc condition for a cut for
f = eg are usually straightforward to verify. It is always the minor arc which requires
the most work.

We collect next a few elementary estimates for the functions 1/(1− z)k on |z| = t
for t ∈ (0, 1) and integer k ≥ 1 which will prove useful in a number of verifications
of the minor arc condition (4.4) of Theorem 4.1.

Lemma 4.2 For t ∈ (0, 1) and θ ∈ R,

∣
∣
∣
∣

1 − t

1 − teıθ

∣
∣
∣
∣

2

= (1 − t)2

(1 − t)2 − 2t(cos θ − 1)
=

(

1 + 4t sin2 θ
2

(1 − t)2

)−1

.
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Lemma 4.3 Let ω ∈ (0, π) and t ∈ (0, 1). Then

sup
ω≤|θ |≤π

Re

(
1 − t

1 − teıθ

)

= Re

(
1 − t

1 − teıω

)

and sup
ω≤|θ |≤π

∣
∣
∣
∣

1 − t

1 − teıθ

∣
∣
∣
∣ =

∣
∣
∣
∣

1 − t

1 − teıω

∣
∣
∣
∣ .

Proof The Möbius transformation T (z) = 1/(1 − z) carries the circle |z| = r , with
r ∈ (0, 1), onto the circle orthogonal to the positive real axis through 1/(1 + r) and
1/(1 − r). For each r ∈ (0, 1), we have that Re((1 − r)/(1 − reıφ)) decreases from
1 to (1 − r)/(1 + r) as φ increases from 0 to π (and as φ decreases from 0 to −π ).

Monotonicity of modulus follows from Lemma 4.2.

Lemma 4.4 Let h(t) be defined in the interval (0, 1) with values in (0, π) and such
that limt↑1 h(t)/(1 − t) = 0. Let k be an integer k ≥ 1. Then we have

lim
t↑1

(1 − t)2

h(t)2

(∣
∣
∣
∣

1 − t

1 − teıh(t)

∣
∣
∣
∣

k

− 1

)

= −k

2
·

Proof. Lemma 4.2 and limt↑1 h(t) = 0 give that

(�) lim
t↑1

∣
∣
∣
∣

1 − t

1 − teıh(t)

∣
∣
∣
∣ = 1 .

Lemma 4.2 gives that

(��) 1 −
∣
∣
∣
∣

1 − t

1 − teıh(t)

∣
∣
∣
∣

2

∼
4t sin2

(
h(t)
2

)

(1 − t)2
, as t → 1 .

The case k = 2 follows from (��). The general case follows from combining (�), the
case k = 2 and that

lim
y→1

yk − 1

y2 − 1
= k

2
·

5 Some Examples of Exponentials in the Hayman Class

In this section we verify that relevant examples of f = eg are in the Hayman class.
Some of them have been mentioned already, see the discussion of Sect. 3.1.3, like
g(z) = ez −1 (for non-empty sets) or g(z) = zez (for pointed sets). We shall consider
too the example of a polynomial g with non-negative coefficients or the case g(z) =
(1 + z)/(1 − z).

The function g in all these cases has a closed formula which facilitates the verifi-
cation of the conditions of Theorem 4.1, and thus the corroboration that f is in the
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Hayman class and that Hayman’s asymptotic formula (3.7) applies. Besides, the mean
function m(t) and the variance function σ(t) have as well, in all these cases, closed
formulas, and the asymptotic behaviour of tn

n and f (tn) and σ(tn) appearing is (3.7)
is quite direct.

5.1 Exponential of a Polynomial

Let B(z) = ∑N
n=0 bn zn be a polynomial of degree N ≥ 1 with non-negative coef-

ficients. Assume further that gcd{1 ≤ n ≤ N : bn > 0} = 1. We will check that
f = eB is in the Hayman class. For this aim, we could appeal to the general result
d) of Hayman of Sect. 3.3.1. But the present case of non-negative coefficients may be
neatly cast as a consequence of Theorem 4.1, and we include a proof.

Proposition 5.1 Let B(z) = ∑N
j=0 b j z j be a polynomial of degree N ≥ 1 with non-

negative coefficients and such that

q � gcd{1 ≤ n ≤ N : bn > 0} = 1 . (5.1)

Then, f (z) = eB(z) is in the Hayman class.

Condition (5.1) is indispensable. In fact, if q > 1, then f = eB is not strongly
Gaussian, since then f (z) = H(zq), for a certain entire power series H , and the coef-
ficients of f can not satisfy Hayman’s asymptotic formula (3.7) as strongly Gaussian
functions do.

Proof As mentioned above, since the radius of convergence of B(z) is R = ∞, the
variance condition (4.2) is satisfied.

We verify next that h(t) given by h(t) = min{π/N , t−α}, with α ∈ (N/3, N/2),
satisfies conditions (4.3) and (4.4) of Theorem 4.1 for a cut. Fix α in that interval.

Condition (4.3) on the major arc reduces, as we have mentioned above, to

lim
t→∞ t N h(t)3 = 0 ,

which is satisfied since α > N/3.
Now, the minor arc. Notice that

ReB(teıθ ) − B(t) =
N∑

n=1

bntn (cos(nθ) − 1) .

All the summands above are non-positive. We distinguish now between θ ’s close to
and away from the N th roots of unity.

Denote T = {eıθ : θ ∈ R} = ∂D.
For t > 0 and 1 ≤ j < N , define the arcs in T

I j (t) =
{

eıθ ∈ T :
∣
∣
∣
∣θ − 2π j

N

∣
∣
∣
∣ < h(t)

}

.
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and for t > 0 define also

I0(t) = {
eıθ ∈ T : |θ | < h(t)

}
.

These I j (t), 0 ≤ j < N are arcs in T of length 2h(t) around the N th roots of unity.
I0 is the major arc. Since h(t) ≤ π/N , the arcs I j (t) are disjoint.

Denote also by Î0(t) the arc Î0(t) = {
eıθ ∈ T : |θ | < Nh(t)

}
.

Let N = {1 ≤ n ≤ N : bn > 0}. We will use that, since gcd(N ) = 1, no eıθ with
θ ∈ R, except eıθ = 1, is simultaneously a nth root of unity for all n ∈ N .

For each 1 ≤ j < N , there is n j ∈ N so that eı2π j/N , the center of the arc I j (t), is
not a n j th root of unity. Since limt↑∞ h(t) = 0, there is t0 > 1 and, for each 1 ≤ j<N ,
a δ j > 0, so that

bn j (cos(n jθ) − 1) ≤ −δ j , for eıθ ∈ I j (t) and t ≥ t0 .

Let � = min{δ j , 1 ≤ j < N } and M = minN . Then

bn j tn j (cos(n jθ) − 1) ≤ −�t M , for eıθ ∈ I j (t) and 1 ≤ j < N and t ≥ t0 .

For eıθ ∈ T \
(⋃N−1

j=1 I j (t) ∪ I0(t)
)
we have that eı Nθ ∈ T \ Î0(t) and, thus, using

the inequality 1 − cos x ≥ 2x2/π2, valid for x ∈ [−π, π ], that

cos(Nθ) − 1 ≤ − 2

π2 N 2h(t)2 ,

and so that

bN t N (cos(Nθ) − 1) ≤ −� t N h(t)2 ,

with � = (2/π2)N 2bN .
Therefore, if h(t) ≤ |θ | ≤ π and t > t0, we have that

ReB(teıθ ) − B(t) =
N∑

n=1

bntn (cos(nθ) − 1) ≤ max
{
−�t M , −�t N h(t)2

}
.

Since σ(t) grows just as a power of t , condition (4.4) on the minor arc is satisfied
since α < N/2. We conclude that eB is in the Hayman class.

5.1.1 Frequency of Permutations of Given Order

As a first example of the efficient alliance of strong gaussianity with the substitution
Theorem C, we now give, for any fixed integer k ≥ 1 and as n → ∞, an asymptotic
formula for the number Ak(n) of permutations σ ∈ Sn such that σ k is the identity.
Observe, for instance, that A2(n) is the number of involutions in Sn . The particular
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cases k = 2 and k prime of this asymptotic formula are due toMoser–Wyman, [23,24].
For general k, the formula is essentially due to Wilf [28].

The permutations counted by Ak(n) are those σ ∈ Sn so that all the cycles in its
cycle decomposition have lengths which divide k. Thus, the symbolic method, see [9,
p. 124], gives us that the egf Ik(z) of these permutations is

Ik(z) =
∞∑

n=0

Ak(n)

n! zn = exp

⎛

⎝
∑

1≤d|k

1

d
zd

⎞

⎠ .

Denote

Rk(z) =
∑

1≤d|k

1

d
zd .

As Ik(z) is the exponential of the polynomial Rk(z) and gcd{d ≥ 1 : d | k} = 1, we
have by Proposition 5.1 that Ik(z) is in the Hayman class and, in particular, that Ik(z)
is strongly Gaussian.

By applying the asymptotic formula (3.10) of the substitution Theorem C, we will
obtain the asymptotic formulae (5.2) and (5.3) for Ak(n), distinguishing between k
odd or k even.

Denote by mk(t) and σ 2
k (t), for t > 0, the mean and variance functions of the

Khinchin family of Ik(t). Observe that

mk(t) =
∑

1≤d|k
td and σ 2

k (t) =
∑

1≤d|k
dtd , for t > 0 .

We take σ̃k(t) = √
k tk/2, for t > 0. Observe that σk(t) ∼ σ̃k(t), as t → ∞.

To properly define an approximation m̃k(t) ofmk(t), we distinguish between k even
and k odd.

(a) Case k odd. The divisors d of k, different from k, satisfy d ≤ k/3. Thus mk(t) =
tk + O(tk/3), as t → ∞, and if we define m̃k(t) = tk , then

mk(t) − m̃k(t) = O(tk/3) = o(̃σk(t)) , as t ↑ ∞ .

For n ≥ 1, we take τn = n1/k , so that m̃k(τn) = n. Strong gaussianity and the
substitution Theorem C give for k ≥ 1, odd and fixed, that

Ak(n)

n! ∼ 1√
2π

1√
k

eRk (n1/k )

nn/k
√

n
, as n → ∞ . (5.2)

(b) Case k even. Now a divisor of k is k/2, which is the order of σk(t). We have
mk(t) = tk + tk/2 + O(tk/3), as t ↑ ∞, and we take

m̃k(t) =
(

tk + tk/2 + 1

4

)

=
(

tk/2 + 1

2

)2

, for t > 0 .

123



Khinchin Families and Hayman Class 879

Thus,

mk(t) − m̃k(t) = O(tk/3) = o(̃σk(t)) , as t ↑ ∞ .

Define τn = (
√

n − 1/2)2/k , so that m̃k(τn) = n, for each n ≥ 1. Since

n ln

(√
n − 1

2

)

= n ln
√

n + n ln

(

1 − 1

2
√

n

)

= n

2
ln n − n

(
1

2
√

n
+ 1

8n
+ O

(
1

n3/2

))

= n

2
ln n −

√
n

2
− 1

8
+ o(1) , as n → ∞ ,

and so
(√

n − 1

2

)n

∼ nn/2 e−√
n/2e−1/8 , as n → ∞ ,

we have that

τ n
n ∼ nn/ke−√

n/ke−1/(4k) , as n → ∞ .

Besides,

σ̃k(τn) = √
k τ

k/2
n ∼ √

k
√

n , as n → ∞ .

Strong gaussianity and substitution give for k ≥ 1, even and fixed, that

Ak(n)

n! ∼ 1√
2π

e1/(4k)

√
k

e
√

n/k eRk ((n−√
n+1/4)1/k)

nn/k
√

n
, as n → ∞ . (5.3)

Using (5.2) and (5.3), ones sees that if q > k, then

ln

(
Ak(n)

Aq(n)

)

=
(
1

q
− 1

k

)

n ln n + O(n) , as n → ∞ ,

and, thus, irrespective of the parity of q and k,

(�) lim
n→∞

Ak(n)

Aq(n)
= 0 ,

Besides, limn→∞ Ak(n)/n! = 0 and limn→∞ Ak(n) = ∞.
For the number Bk(n) of permutations of (1, . . . , n) whose order is exactly k, one

obtains via Möbius inversion and (�), see Wilf [28], that

Bk(n) ∼ Ak(n) , as n → ∞ .
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5.2 Entire Functions: Bell Numbers and Idempotent Functions

We apply next Theorems 4.1 and C to the egfs of the Bell numbers and of the number
of idempotent functions, which are both entire functions.

5.2.1 Bell Numbers

Consider first the function f (z) = eez−1, the egf of the Bell numbers Bn described
above in Sect. 2.1.6. Result b) of Hayman in Sect. 3.3.1 already gives that f is in the
Hayman class, but let us see now how this fact follows most easily from Theorem 4.1
on our way to obtain the Moser–Wyman asymptotic formula (5.5) below for the Bell
numbers, [22].

For f (z) = eez−1, we have that m(t) = tet and that σ 2(t) = t(t + 1)et . In the
notation of Theorem 4.1, the function g is g(z) = ez − 1.

For a potential cut h, condition (4.3) for the major arc requires that

lim
t↑∞ t3et h(t)3 = 0 .

For the minor arc, using that

et cos θ − et ≤ − 1

2π2 et θ2 , for any t ≥ 1 and |θ | < π , (5.4)

we obtain, for t ≥ 1, that

Reg(teıθ ) − g(t) ≤ |eteıθ | − et = et cos θ − et ≤ − 1

2π2 et θ2 .

And so

exp

(

sup
h(t)≤|θ |≤π

Reg(teıθ ) − g(t)

)

≤ exp

(

− 1

2π2 et h(t)2
)

.

With h(t) = e−αt , for t > 0 and fixed α ∈ (1/3, 1/2), both conditions (4.3)
and (4.4) are satisfied, and we conclude that eez−1 is in the Hayman class.

The tn for f are such that m(tn) = tnetn = n. Thus tn = W (n), where W is the
Lambert function. Since f is strongly Gaussian, formula (3.7) gives that

Bn

n! ∼ 1√
2π

eeW (n)−1
√

W (n)(W (n) + 1)eW (n) W (n)n
, as n → ∞ , (5.5)

which is the asymptotic formula for the Bell numbers of Moser–Wyman, [22].
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5.2.2 Counting Idempotent Functions

Consider now the function

f (z) = ezez =
∞∑

n=0

Un

n! zn ,

which turns out to be the egf of idempotent functions. That is, Un denotes the number
of idempotent functions u of {1, . . . , n} into itself, i.e., functions u such that u ◦u ≡ u.
See [9, p. 571].

We will verify shortly that f is in the Hayman class, towards proving the Harris–
Schoenfeld ([14,15]) asymptotic formula (5.6) below for the Un .

For that aim we could appeal to the combination of results b) and c) of Hayman of
Sect. 3.3.1, but we favour a direct proof via Theorem 4.1.

For f (z) = exp(zez), we have that m(t) = (t2 + t)et and σ 2(t) = (t3 +3t2 + t)et ,
for t > 0. The function g is, in this case, g(z) = zez .

For a potential cut h towards applying Theorem 4.1, observe that condition (4.3)
for the major arc requires that

lim
t↑∞ t4et h(t)3 = 0 .

For the minor arc, using again (5.4), we have, for t > 1, that

Reg(teıθ ) − g(t) ≤ |teıθ et cos θ eıt sin θ | − tet = tet cos θ − tet ≤ − 1

2π2 tet θ2 ,

so that

exp

(

sup
h(t)≤|θ |≤π

Reg(teıθ ) − g(t)

)

≤ exp

(

− 1

2π2 tet h(t)2
)

, for t > 1 .

As before, with α ∈ (1/3, 1/2) and h(t) = e−αt , for t > 0, both (4.3) and (4.4)
are fulfilled, and we deduce from Theorem 4.1 that f is strongly Gaussian.

We now obtain the promised asymptotic formula for the Un . Since f is strongly
Gaussian, we obtain, with tn given by m(tn) = tn(tn + 1)etn = n, for each n ≥ 1, that

Un

n! ∼ 1√
2π

1

etn/2 tn+3/2
n

exp

(
n

1 + tn

)

, as n → ∞ , (5.6)

the asymptotic formula due to Harris–Schoenfeld [14,15].
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5.3 Functions inD: Cover Map of {z ∈ C : |z| > 1}

Consider now

f (z) = exp

(
1 + z

1 − z

)

=
∞∑

n=0

An zn , for z ∈ D .

This function f is a universal cover of {z ∈ C : |z| > 1}.
In this case R = 1, and the function g is given by g(z) = (1 + z)/(1 − z), for

z ∈ D. The mean and variance functions of f are given by

m(t) = 2t

(1 − t)2
and σ 2(t) = 2t(1 + t)

(1 − t)3
for t ∈ (0, 1) .

The variance condition (4.2) is clearly satisfied.
Now we look for a cut function h of the form h = (1 − t)α with some appropriate

α > 0, towards applying Theorem 4.1. The condition on the major arc (4.3) reduces
to limt↑1 h(t)3/(1 − t)4 = 0. For the exponent α, this translates into requiring that
α > 4/3.

For the minor arc, we start by writing g as

g(z) = 2

1 − z
− 1 .

If the exponent α in the definition of h satisfies α > 1, then limt↑1 h(t)/(1 − t) = 0,
and then Lemmas 4.3 and 4.4 give that

lim sup
t↑1

(1 − t)3

h(t)2
sup

h(t)≤|θ |≤π

Re
(
g(teıθ ) − g(t)

)

≤ 2 lim
t↑1

(1 − t)3

h(t)2

(∣
∣
∣
∣

1

1 − teıh(t)

∣
∣
∣
∣ − 1

1 − t

)

= −1 .

And so, for some t0 ∈ (0, 1) and δ > 0, we have that

sup
h(t)≤|θ |≤π

Re(g(teıθ ) − g(t)) ≤ −δ
h(t)2

(1 − t)3
, for t ∈ (t0, 1) .

Since σ(t) � 1/(1 − t)3/2, as t ↑ 1, we deduce that (4.4) is satisfied as long as
α < 3/2.

Thus, with α ∈ (4/3, 3/2) for the cut function, we conclude that f is in the Hayman
class.

Next, by appealing to the substitution Theorem C, we obtain an asymptotic formula
for the Taylor coefficients An of f (z).
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Define m̃(t) = 2/(1 − t)2 and σ̃ (t) = 2/(1 − t)3/2, for t ∈ (0, 1), and observe
that

σ(t) ∼ σ̃ (t) , as t ↑ 1 ,

and that

m̃(t) − m(t) = 2

1 − t
= o(σ (t)) , as t ↑ 1 ,

and, thus, that condition (3.9) is satisfied.
For each n ≥ 1, take τn given by 1 − τn = √

2/n. Since

τ−n
n = exp

(

n ln

(
1

1 − √
2/n

))

= exp
(√

2n + 1 + o(1)
)

, as n → ∞ ,

by virtue of formula (3.10) we deduce that

An ∼ 1√
2π

1

21/4
e2

√
2
√

n

n3/4 , as n → ∞ .

This asymptotic formula is Theorem XIII of Hayman’s [16]. See also Wright [30] and
Macintyre–Wilson [19].

For the closely related egf

exp

(
z

1 − z

)

=
∞∑

n=0

In

n! zn

of the number In of fragmented permutations of (1, . . . , n) we have, with a similar
argument, that ez/(1−z) is in the Hayman class and that

In

n! ∼ 1

2
√

e
√

π

1

n3/4 e2
√

n , as n → ∞ .

See [9, p. 563].

Remark 5.2 For the functions

f (z) = 1

(1 − z)β
exp

(

γ
1

1 − z

)

, for z ∈ D ,

with integers β ≥ 0 and γ ≥ 1, considered by Wright [30] and Macintyre–Wilson
in [19] (both with more general β and γ ), Theorem 4.1 gives us that f is strongly
Gaussian. The function g(z) is in this case

g(z) = β ln
1

1 − z
+ γ

1

1 − z
·
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For the estimate of the minor arc, just observe that

Reg(teıθ ) − g(t) ≤ γ

(

Re
1

1 − teıθ
− 1

1 − t

)

.

Appropriate approximations m̃ and σ̃ 2 are

m̃(t) = γ

(1 − t)2
and σ̃ 2(t) = 2γ

(1 − t)3
,

which satisfy condition (3.9). For the coefficients an of f (z) we have

an ∼ 1√
2π

γ 1/4−β/2 eγ /2

√
2

1

n3/4−β/2 e2
√

γ
√

n , as n → ∞ .

The functions f (z) = exp(1/(1 − z)ρ), for integer ρ > 0, also considered by
Wright [32] (with more general exponents ρ), are also strongly Gaussian. A cut
function h(t) = (1 − t)α , for α > 0, satisfies the condition on the major arc if
3α > ρ + 3. Using Lemmas 4.3 and 4.4 with k = ρ, we see that h satisfies the
condition on the minor arc if 2α < 2 + ρ.

With tn given byρtn/(1−tn)ρ+1 = n (so that 1−tn ∼ (ρ/n)1/(1+ρ), as n → ∞),we
have an asymptotic formula for the coefficients of f , but unless ρ = 1, the substitution
Theorem C is of no avail for simplifying the resulting expression.

6 Partitions

Next we discuss ogfs f of different sorts of partitions: P for usual partitions, Q for
partitions with distinct parts, Pa,b for partitions with parts in an arithmetic sequence,
or W 1

1 , which codifies plane partitions, or W b
1 for colored partitions.

As in Sect. 5, we will use Theorem 4.1 to verify that all these partition functions
are strongly Gaussian and then use (3.10) to provide asymptotic formulas for their
coefficients.

But in sharp contrast to the power series dealt with in Sect. 5, the corresponding
functions g do not have closed formulas and the verifications of the conditions of
Theorem 4.1 are more involved. In addition, the mean and variance functions do not
have closed formulas either and this requires obtaining suitable approximations of
these functions to find an approximation τn of tn . And, finally, a proper asymptotic
formula for the an requires, in this setting, determining the asymptotic behaviour of f
on (0, R) in order to be able to get an asymptotic formula for f (tn).

The variance condition and the major arc requirement of Theorem 4.1 are quite
direct; it is the minor arc condition which requires more work.

We will obtain the needed approximations of means and variances in Sect. 6.1,
the asymptotic expressions on (0, 1) in Sect. 6.2 and, finally, we will discuss strong
gaussianity and asymptotic formulae of their coefficients in Sect. 6.3.
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These asymptotic formulae of coefficients an of partition functions turn out to be
always of the form

an ∼ α
1

nβ
eγ nδ

, as n → ∞ ,

for appropriate α, β, γ, δ > 0.

6.1 Approximation of Means andVariances

We collect here convenient approximations of the mean and variance functions, satis-
fying in each case condition (3.9) of Theorem C, of the Khinchin families of a number
of partition functions.

Consider first the partition function

P(z) =
∞∏

j=1

1

1 − z j
, for |z| < 1 ,

with Khinchin family (Xt )t∈[0,1) and mean and variance functions

m(t) =
∞∑

j=1

j t j

1 − t j
and σ 2(t) =

∞∑

j=1

j2t j

(1 − t j )2
, for t ∈ (0, 1) .

The precise values of the integrals in the following lemmawill be invoked frequently
in the rest of the paper.

Lemma 6.1

a)
∫ ∞

0
su ln

1

1 − e−s
ds = ζ(u + 2)�(u + 1) , for u > −1 ,

b)
∫ ∞

0
su e−s

1 − e−s
ds = ζ(u + 1)�(u + 1) , for u > 0 ,

c)
∫ ∞

0
su e−s

(1 − e−s)2
ds = ζ(u)�(u + 1) , for u > 1 .

It is convenient to consider m(e−s), for s > 0, and then s ↓ 0. We have

m(e−s) = 1

s

∞∑

j=1

js
e− js

(1 − e− js)
·

Let φ be the function

φ(x) = xe−x

1 − e−x
, for x > 0 .
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Ifwe setφ(0) = 1, thenφ ∈ C∞[0,+∞) and
∫ ∞
0 φ(s)ds = ζ(2), by b) ofLemma6.1.

In addition, we have that limt→∞ φ(t) = 0 and
∫ ∞
0 |φ′(s)|ds < +∞. From the Euler

summation formula (1.1) applied to φ, we get that

s m(e−s) − ζ(2)

s
= O(1) , as s ↓ 0 . (6.1)

and, therefore, that lims↓0 s2m(e−s) = ζ(2), and so

m(e−s) ∼ ζ(2)

s2
, as s ↓ 0 . (6.2)

If we define m̃(e−s) = ζ(2)/s2, for s > 0, we have that m(t) ∼ m̃(t), as t ↑ 1.
For the variance function σ 2(t) we obtain analogously, using Lemma 6.1, that

σ 2(e−s) ∼ �(3)ζ(2)

s3
, as s ↓ 0 . (6.3)

Moreover, if we define σ̃ 2(e−s) = π2/(3s3), for s > 0, we have that

σ(t) ∼ σ̃ (t) , as t ↑ 1 ,

and also, using (6.1), that

m(e−s) − m̃(e−s)

σ̃ (e−s)
= O(

√
s) = o(1) , as s ↓ 0 .

Next, we turn to Q, the ogf of partitions with distinct parts. For the mean and
variance functions of its Khinchin family, using Lemma 6.1 again, plus the identity
ln(1 + x) = ln(1 − x2) − ln(1 − x) for x ∈ (0, 1), and its first two derivatives, we
obtain that, as s ↓ 0,

m(e−s) =
∞∑

j=1

j
e− js

1 + e− js
∼ ζ(2)

2s2
� m̃(e−s),

σ 2(e−s) =
∞∑

j=1

j2
e− js

(1 + e− js)2
∼ ζ(2)

s3
� σ̃ 2(e−s);

(6.4)

and, also, that

m(e−s) − m̃(e−s)

σ̃ (e−s)
= O(

√
s) = o(1) , as s ↓ 0 .
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For the ogf of Pa,b with parts in the arithmetic progression {aj + b; j ≥ 0}, with
integers a, b ≥ 1, we have analogously that, as s ↓ 0,

m(e−s) =
∞∑

j=0

(aj + b)
e−(aj+b)s

1 − e−(aj+b)s
∼ ζ(2)

as2
� m̃(e−s),

σ 2(e−s) =
∞∑

j=0

(aj + b)2
e−(aj+b)s

(1 − e−(aj+b)s)2
∼ 2ζ(2)

as3
� σ̃ 2(e−s);

(6.5)

and, also,

m(e−s) − m̃(e−s)

σ̃ (e−s)
= O(

√
s) = o(1) , as s ↓ 0 .

For integers a ≥ 1 and b ≥ 0, consider the infinite product

W b
a (z) =

∞∏

j=1

(
1

1 − z ja

) jb

, for z ∈ D .

Let m(t) and σ(t) be the mean and variance functions of the Khinchin family of W b
a .

Consider the real function

φ(x) = xb xa e−xa

1 − e−xa , for x ≥ 0 ,

whose derivatives of order less than b vanish at x = 0 and x = +∞, and is such that

∫ ∞

0
φ(x) dx = 1

a
ζ

(

1 + b + 1

a

)

�

(

1 + b + 1

a

)

.

Arguing as above for the case of regular partitions, using φ and Euler’s summation of
order b + 1, we get that

m(e−s) = m̃(e−s) + O

(
1

s

)

, as s ↓ 0 ,

where

m̃(e−s) = 1

a
ζ

(

1 + b + 1

a

)

�

(

1 + b + 1

a

)
1

s1+(b+1)/a
· (6.6)

Analogously,

σ 2(e−s) ∼ 1

a
ζ

(

1 + b + 1

a

)

�

(

2 + b + 1

a

)
1

s2+(b+1)/a
� σ̃ 2(e−s) , as s ↓ 0 .

(6.7)
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Observe that

m(e−s) − m̃(e−s)

σ̃ (e−s)
= O(s(b+1)/2a) = o(1) , as s ↓ 0 . (6.8)

6.2 Asymptotics of Partition Functions on (0, 1)

We start with the ogf of partitions P; an instance we will built upon.
For the partition function P we have the well-known asymptotic formula in the

interval (0, 1):

ln P(e−s) = ζ(2)

s
+ 1

2
ln s − ln

√
2π + o(1) , as s ↓ 0 ,

and, thus,

P(e−s) ∼ 1√
2π

√
s eζ(2)/s , as s ↓ 0 . (6.9)

See Hardy–Ramanujan [13, Sect. 3.2] (the formula for g(x) there should have a factor
(1−x)3/2 instead of

√
1 − x). See also de Bruijn [8, Ch. 3, Ex. 3] or even Báez-Duarte

[2, (2.21)]. We provide a proof since its ingredients are to be used below to handle
other partition functions.

Fix s > 0 and apply Euler’s summation of order 2 to the function f (x) = − ln(1−
e−sx ). Observe that limx→∞ f (x) = limx→∞ f ′(x) = 0. Write

ln P(e−s) =
∞∑

j=1

f ( j) =
∫ ∞

1
f (x)dx + 1

2
f (1) − 1

12
f ′(1) −

∫ ∞

1
f ′′(x)

B2({x})
2! dx .

where B2(y) is the second Bernoulli polynomial.
Now, using a) in Lemma 6.1 we have that

∫ ∞

1
ln

1

1 − e−sx
dx = 1

s

∫ ∞

s
ln

1

1 − e−x
dx

= 1

s

∫ ∞

0
ln

1

1 − e−x
dx − 1

s

∫ s

0
ln

1

1 − e−x
dx

= ζ(2)

s
+ ln s − 1 + O(s) , as s ↓ 0 .

Also,

1

2
f (1) − 1

12
f ′(1) = −1

2
ln s + 1

12
+ O(s), as s ↓ 0,

and

∫ ∞

1
f ′′(x)

B2({x})
2! dx =

∫ ∞

1

(sx)2esx

(esx − 1)2
B2({x})

2!
1

x2
dx .
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Since the function y �→ (y2ey)/(ey − 1)2 is bounded in [0,+∞) and tends to 1 as
y ↓ 0, dominated convergence gives that

∫ ∞

1
f ′′(x)

B2({x})
2! dx =

∫ ∞

1

B2({x})
2!

1

x2
dx + o(1) , as s ↓ 0 .

Thus,

ln P(e−s) = ζ(2)

s
+ 1

2
ln s − 1 + 1

12
−

∫ ∞

1

B2({x})
2!

1

x2
dx + o(1) , as s ↓ 0 .

We may identify the constant term of the above expression by using analogous
Euler’s summation of order 2 between 1 and N for the function ln x , to obtain Stirling’s
approximation in the following precise (and standard) form

ln N ! = N ln N − N + 1 + 1

2
ln N + 1

12

(
1

N
− 1

)

+
∫ N

1

B2({x})
2!

1

x2
dx ,

and thus deduce that

1 − 1

12
+

∫ ∞

1

B2({x})
2!

1

x2
dx = ln

√
2π .

The same argument gives for the ogf Q of partitions into distinct parts that

Q(e−s) ∼ 1√
2
exp

(
ζ(2)

2s

)

, as s ↓ 0 . (6.10)

and for the ogf Pa,b of partitionswith parts in the arithmetic progression {aj+b; j ≥ 0}
with integers a, b ≥ 1, that

Pa,b(e
−s) ∼ 1√

2π
�

(
b

a

)

(as)b/a−1/2 exp

(
ζ(2)

as

)

, as s ↓ 0 . (6.11)

Recall that P1,1 ≡ P and P2,1 ≡ Q. The asymptotic formula for Q may be obtained
from the identity (2.9) and the corresponding asymptotic formula (6.9) for P .

Now we turn to the ogf W b
a , with integers a ≥ 1 and b ≥ 0.

Fix s > 0. We will apply Euler’s summation of order b + 2 to the function

f (x) = xb ln
1

1 − e−sxa , for x > 0 .

Note that

ln W b
a (e−s) =

∞∑

j=1

f ( j) .
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Observe that

∫ ∞

1
f (x)dx = 1

a

1

s(b+1)/a

∫ ∞

s
y(b+1)/a ln

1

1 − e−y

dy

y

= 1

a

1

s(b+1)/a

∫ ∞

0
y(b+1)/a ln

1

1 − e−y

dy

y

− 1

a

1

s(b+1)/a

∫ s

0
y(b+1)/a ln

1

1 − e−y

dy

y

= 1

a
ζ

(

1 + b + 1

a

)

�

(
b + 1

a

)
1

s(b+1)/a

− 1

b + 1
ln

1

s
− a

(b + 1)2
+ O(s) .

For the function f at ∞, we have that limx→∞ f ( j)(x) = 0, for j ≥ 0.
We need the values of f and its derivatives up to order b + 1 at x = 1. We have

f (1) = ln
1

1 − e−s
= ln

1

s
+ O(s) .

Write

f (x) = 1

sb/a
g(s1/a x),

where

g(y) = yb ln
1

1 − e−ya = yb+a + yb ln
ya

eya − 1︸ ︷︷ ︸
=ω(y)

− a (yb ln y)
︸ ︷︷ ︸

=η(y)

.

Observe that

f ( j)(1) = 1

s(b− j)/a
g( j)(s1/a), for j ≥ 1.

The function ω is holomorphic near 0, and its Taylor expansion starts with
(1/2)yb+a , while

η( j)(y) = yb− j b!
(b − j)!

⎛

⎝ln y +
j∑

i=1

1

b + 1 − i

⎞

⎠ , for 1 ≤ j ≤ b and y > 0 .

Also, η(b+1)(y) = b!/y and η(b+2)(y) = −b!/y2, for y > 0. And, also,

f (b+1)(1) = s1/ag(b+1)(s1/a) = s1/aω(b+1)(s1/a) − as1/aη(b+1)(s1/a)

= −b! a + O(s) .
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With all this in mind, we have that

1

2
( f (1) + f (∞)) +

b+1∑

j=1

(−1) j+1 B j+1

( j + 1)! ( f ( j)(∞) − f ( j)(1))

= 1

2
ln

1

s
+

⎛

⎝
b∑

j=1

(−1) j+1 B j+1

( j + 1)!
b!

(b − j)!

⎞

⎠ ln s

+ a
b∑

j=1

(−1) j+1 B j+1

( j + 1)!
b!

(b − j)!
j∑

i=1

1

b + 1 − i
+a(−1)b+2 Bb+2

(b + 2)!b! + O(s) .

Applying Euler’s summation of order b + 1 to xb, with b ≥ 1, just in the inter-
val [0, 1], and taking into account that its bth derivative is a constant (b!, actually), we
deduce that

1 = 1

b + 1
+ 1

2
+

b−1∑

j=1

(−1) j+1 B j+1

( j + 1)!
b!

(b − j)! .

Thus,

b∑

j=1

(−1) j+1 B j+1

( j + 1)!
b!

(b − j)! = (−1)b+1 Bb+1

b + 1
+ 1

2
− 1

b + 1
,

for b ≥ 1, and for b = 0 also.
So, we may simplify and write

1

2
( f (1) + f (∞)) +

b+1∑

j=1

(−1) j+1 B j+1

( j + 1)! ( f ( j)(∞) − f ( j)(1))

=
(

− 1

b + 1
+ (−1)b+1 Bb+1

b + 1

)

ln s

+ a
b∑

j=1

(−1) j+1 B j+1

( j + 1)!
b!

(b − j)!
j∑

i=1

1

b + 1 − i
+ a(−1)b+2 Bb+2

(b + 2)!b! + O(s) .

Finally,

(−1)b+3
∫ ∞

1
f (b+2)(x)

Bb+2({x})
(b+2)! dx

= (−1)b+3
∫ ∞

1
(s1/a x)2g(b+2)(s1/a x)

Bb+2({x})
(b+2)!

dx

x2
.
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The function y �→ y2g(b+2)(y) is bounded in (0,∞) and as y ↓ 0 tends to b! a. We
deduce from dominated convergence that, as s ↓ 0,

(−1)b+3
∫ ∞

1
f (b+2)(x)

Bb+2({x})
(b + 2)! dx = (−1)b+3b! a

∫ ∞

1

Bb+2({x})
(b + 2)!

dx

x2
+ o(1) .

From this, we have

ln W b
a (e−s) = 1

a
ζ

(

1 + b + 1

a

)

�

(
b + 1

a

)
1

s(b+1)/a
+ (−1)b+1 Bb+1

b + 1
ln s

− a

(b + 1)2
+ a

b∑

j=1

(−1)b+1 B j+1

( j + 1)!
b!

(b − j)!
j∑

i=1

1

b + 1 − i

+ a(−1)b+2 Bb+2

(b + 2)!b! + (−1)b+3b! a
∫ ∞

1

Bb+2({x})
(b + 2)!

dx

x2
+ o(1) .

The constant term of the above expression may be written more compactly by
appealing to the so called (generalized) Glaisher–Kinkelin constants appearing in (in
fact, defined by) the asymptotic formula of (generalized) hyperfactorials.

If we apply Euler’s summation of order b + 2 to the function xb ln x between 1
and N , we obtain that

(‡)

N∑

n=1

nb ln n = 1

b + 1
N b+1 ln N − 1

(b + 1)2
N b+1 + 1

2
N b ln N

+
b∑

j=1

(−1) j+1 B j+1

( j + 1)!
b!

(b − j)! N b− j ln N

+
b−1∑

j=1

(−1) j+1 B j+1

( j + 1)!
b!

(b − j)! N b− j
j∑

i=1

1

b − i + 1

+ (−1)b+1 Bb+1

b + 1
Hb + 1

(b + 1)2
−

b∑

j=1

(−1) j+1 B j+1

( j + 1)!
b!

(b − j)!
j∑

i=1

1

b − i + 1

− (−1)b+2 Bb+2

(b + 2)!b! − (−1)b+3
∫ ∞

1

b!
(b + 2)! Bb+2({x})dx

x2
+ O

(
1

N

)

.

Here, Hb denotes the bth harmonic number.
This expression (‡) is the analogue of Stirling’s formula but now for the hyper-

factorials
∏N

j=1 j jb
of order b; the factorials being the case b = 0. The constant

term (the sum of the terms not depending on N ) in the above expression is ln GKb.
These GKb, b ≥ 1 are the generalized Glaisher–Kinkelin constants introduced by
Bendersky, [5], and identified in the following closed form:

(�) ln GKb = (−1)b+1Bb+1

b + 1
Hb − ζ ′(−b) , for b ≥ 1 ,
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by Choudhury [7], and Adamchik [1]. See also Wang [27]. The proper (original)
Glaisher–Kinkelin constant is GK1. By taking H0 = 0, formula (�) is also valid for
b = 0. The constant GK0 is actually

√
2π .

With this notation, we have that, as s ↓ 0,

ln W b
a (e−s) = 1

a
ζ

(

1 + b + 1

a

)

�

(
b + 1

a

)
1

s(b+1)/a
−ζ(−b) ln s+a ζ ′(−b)+o(1),

(6.12)
where for compactness we have used that ζ(−b) = (−1)b Bb+1/(b + 1), for b ≥ 0.

6.3 Hayman Class and Coefficients of Partition Functions

Let us apply Theorem 4.1 to check that these partition functions, P , Q, Pa,b and
Wb

1, are in the Hayman class and, thus, that they are strongly Gaussian. The variance
and major arc conditions of Theorem 4.1 are obtained quite directly in each case.
As usual, the minor arc estimates demand more attention. Recall that in Sect. 6.1 we
have obtained, for these partition functions, suitable approximations of their mean
and variance functions all satisfying condition (3.9) of Theorem C, and that we have
just described in Sect. 6.2 appropriate asymptotics of these partition functions in the
interval (0, 1).

6.3.1 Partition Function P. Theorem of Hardy–Ramanujan

We start, as usual, with the case of the partition function P .

Theorem 6.2 The partition function P is in the Hayman class.

Proof We check that P satisfies the conditions of Theorem 4.1.
For the variance function we have, see (6.3), that

(�) σ 2(e−s) ∼ �(3)ζ(2)

s3
, as s ↓ 0 .

Thus, the variance condition of Theorem 4.1 is satisfied.
We have that P(z) = eg(z), for z ∈ D, where g is the function

g(z) =
∞∑

j=1

ln
1

1 − z j
=

∑

j,k≥1

z jk

k
=

∞∑

k=1

1

k

zk

1 − zk
, for z ∈ D

(g has non-negative Taylor coefficients, as the second expression above shows).
Next we search for a cut function h so that conditions (4.3) and (4.4) of Theorem 4.1

are satisfied. We will take h(t) = (1− t)α , for t ∈ (0, 1), for an appropriate α > 0 to
be specified shortly.

Let F be the auxiliary function of P . Now,

t3g′′′(t) ≤ F ′′′(−s) , for t = e−s and s > 0 ,
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and so, because of the asymptotic formula (3.3), we have that

t3g′′′(t) = O

(
1

(1 − t)4

)

, as t ↑ 1 .

Thus, if α > 4/3, the cut function h satisfies the major arc condition (4.3).
For the minor arc, write for z = teıθ , with t ∈ (0, 1) and θ ∈ R

Re(g(teıθ )) − g(t) =
∞∑

k=1

1

k

(

Re

(
zk

1 − zk

)

− tk

1 − tk

)

.

All the summands in the series above are non- positive, so that keeping only the term
corresponding to k = 1, we deduce that

Re(g(teıθ )) − g(t) ≤ Re

(
z

1 − z

)

− t

1 − t
= Re

(
1

1 − z

)

− 1

1 − t
·

Because of Lemma 4.3, we have that

sup
h(t)≤|θ |≤π

Re(g(teıθ )) − g(t) ≤ Re

(
1

1 − teıh(t)

)

− 1

1 − t
≤

∣
∣
∣
∣

1

1 − teıh(t)

∣
∣
∣
∣ − 1

1 − t
·

And thus, from Lemma 4.4 we deduce, for some δ > 0 and some t0 ∈ (0, 1), that

sup
h(t)≤|θ |≤π

Re(g(teıθ )) − g(t) ≤ −δ
h(t)2

(1 − t)3
, for t0 < t < 1 .

Finally, from the moderate growth of σ(t) given by (�), we conclude that condi-
tion (4.4) on the minor arc is amply satisfied as long as α < 3/2.

In conclusion, by taking α so that 4/3 < α < 3/2, all the conditions of Theorem 4.1
are satisfied, and P is in the Hayman class.

We can nowdeduce the asymptotic formula for p(n), the coefficients of the partition
function P . From (6.2) and (6.3) we know that we can take m̃(e−s) = ζ(2)/s2 and
σ̃ 2(e−s) = �(3)ζ(2)/s3 satisfying (3.9).

Thus with τn = e−sn and sn = √
ζ(2)/n, for n ≥ 1, by appealing to formula (3.10)

and the asymptotics (6.9) of P on (0, 1), we deduce that

p(n) ∼ 1

4
√
3

1

n
eπ

√
2/3

√
n , as n → ∞; (6.13)

the Hardy–Ramanujan partition theorem, [13].
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6.3.2 Function Q

For the ogf Q of partitions with distinct parts given by

Q(z) =
∞∑

n=0

q(n)zn =
∞∏

j=1

(1 + z j ) =
∞∏

j=0

1

1 − z2 j+1 , for z ∈ D ,

we have Q = exp(g), where

g(z) =
∑

k, j≥1

(−1)k+1

k
zk j =

∑

k≥1; j≥0

1

k
zk(2 j+1) , for z ∈ D .

The second expression shows that g has non-negative coefficients.
As in the case of P , we have g′′′(t) = O(1/(1 − t)4), as t ↑ 1. Thus, for a cut

h(t) = (1 − t)α , we just need α > 4/3 to fulfill condition (4.3) for the major arc of
Theorem 4.1.

Now, the minor arc. For z = teıθ with t ∈ (0, 1) and θ ∈ R we have that

∣
∣
∣
∣
1 + teıθ

1 + t

∣
∣
∣
∣

2

= 1 + 2t(cos θ − 1)

(1 + t)2
≤ 1 + t

2
(cos θ − 1) ≤ e(t/2(cos θ−1) = e(Rez−|z|)/2 ,

and, so,

|Q(z)|
Q(|z|) ≤ exp

(
1

4

(

Re
z

1 − z
− t

1 − t

))

= exp

(
1

4

(

Re
1

1 − z
− 1

1 − t

))

,

and, consequently,

Reg(z) − g(|z|) = ln
|Q(z)|
Q(|z|) ≤ 1

4

(

Re
1

1 − z
− 1

1 − t

)

.

With this and the same argument as in the case of P , we see that the cut function
h(t) = (1− t)α with α < 3/2 satisfies the condition for the minor arc of Theorem 4.1.
Thus, with α such that 4/3 < α < 3/2, we conclude that:

Theorem 6.3 The partition function Q (of partitions with distinct parts) is in the
Hayman class.

The approximations m̃ and σ̃ 2 for the mean and variance functions of the Khinchin
family of Q given in formula (6.4), and the asymptotics (6.10) of Q in the interval
(0, 1), plus strong gaussianity and Theorem C, allow us to derive the asymptotic
formula for the number q(n) of partitions of n with distinct parts, see [13]:

q(n) ∼ 1

4 · 31/4
1

n3/4 eπ
√
1/3

√
n , as n → ∞ .
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6.3.3 Function Pa,b: Theorem of Ingham

We consider now, for integers a, b ≥ 1, the ogf

Pa,b(z) =
∞∏

j=0

1

1 − zaj+b
, for z ∈ D ,

of partitions with parts in the arithmetic progression {aj + b : j ≥ 0}.
If gcd(a, b) = d > 1, then Pa,b is not strongly Gaussian (although it is Gaussian),

since we can write Pa,b(z) = G(zd), where G is a holomorphic function in D, and
thus the coefficients of Pa,b satisfy no asymptotic formula; see Remark 6.6 below.

We will verify by means of Theorem 4.1 that if gcd(a, b) = 1, then Pa,b is strongly
Gaussian. The condition that a and b are relatively prime is used exclusively to verify
the minor arc condition of Theorem 4.1.

We have already obtained, see formula (6.5), convenient approximations m̃ and σ̃ 2

of the mean and variance functions of the Khinchin family of Pa,b, and an appropriate
asymptotic formula (6.11) of Pa,b on the interval (0, 1).

We can write Pa,b = exp(g), where

g(z) =
∑

k≥1; j≥0

1

k
zk(aj+b) =

∞∑

k=1

1

k

zbk

1 − zak
=

∞∑

k=1

1

k
U (zk) , for z ∈ D ,

where U is the rational function

U (z) = zb

1 − za
,

holomorphic in D. Observe that the Taylor coefficients of U around z = 0 are non-
negative.

We search now for a cut function h(t) = (1 − t)α with appropriate α > 0. Since
g′′′(t) = O(1/(1 − t)4), as t ↑ 1, the condition (4.3) of Theorem 4.1 for the major
arc is satisfied if α > 4/3.

Next, the minor arc. This is where we use the condition gcd(a, b) = 1. We have

Reg(z) − g(|z|) =
∞∑

k=1

1

k

(
ReU (zk) − U (|z|k)

)
≤ ReU (z) − U (|z|) , for z ∈ D .

The inequality holds since all the summands in the series above are non-positive.
The function U (z) has simple poles at the ath roots of unity: γ j = e2π ı j/a , with

0 ≤ j < a. The residue of U at γ j is −γ b+1
j /a.

Let us denote by R j the region R j = {z = reıφ : 1/2 ≤ r < 1, |φ − 2π j/a| ≤
π/a}, and let R̃ = ⋃a−1

j=1R j ; observe that we do not include R0 in R̃.
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For a certain constant M > 0 we have that

(�)

∣
∣
∣
∣
∣
U (z) + γ b+1

j

a(z − γ j )

∣
∣
∣
∣
∣
≤ M , for z ∈ R j and 0 ≤ j < a .

We start analyzing ReU (z) for z ∈ R̃.

Lemma 6.4 For 0 < j < a, we have that

lim sup
t↑1

sup
z∈R j ;

t≤|z|≤1

Re

(

U (z)
1 − |z|a

|z|b
)

≤ 1

2

(

1 + cos

(

2π j
b

a

))

.

Moreover, for certain δ ∈ (0, 1) and t0 ∈ (1/2, 1) we have that

ReU (z)
1 − |z|a

|z|b ≤ δ , for every z ∈ R̃ with |z| > t0 .

Proof Fix 0 < j < a and z ∈ R j . Let w ∈ R0 such that z = γ jw. By appealing
to (�) we have that

(��) ReU (z)
1 − |z|a

|z|b ≤ 1 − |z|a
a(1 − |z|)|z|b Re

(

γ b
j
1 − |w|
1 − w

)

+ M
1 − |z|a

|z|b .

Now, for every w ∈ D one has that

1 − |w|
1 − w

∈ D

(
1

2
,
1

2

)

∪ {1} ,

and, in particular,

Re

(

eıη 1 − |w|
1 − w

)

≤ 1

2
(1 + cos(η)) , for all η ∈ R and w ∈ D .

Therefore, we obtain from (��) that

(���) Re

(

U (z)
1 − |z|a

|z|b
)

≤ 1 − |z|a
a(1 − |z|)|z|b δ j + M

1 − |z|a
|z|b .

with δ j = 1
2 (1 + cos(2π ı jb/a)) .

This bound (���) gives the lim sup of the statement. The bound now follows since
gcd(a, b) = 1 and 0 < j < a imply that cos(2π ı jb/a) < 1.

As a consequence of Lemma 6.4, we have

(�) ReU (z) − U (t) ≤ (δ − 1)U (t) ≤ −1 − δ

a

tb
0

1 − t
, for z ∈ R̃ with |z| = t ∈ (t0, 1) .
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It remains to analyze ReU (z) in the region R0. For z ∈ R0, we have that

∣
∣
∣
∣U (z) − 1

a(1 − z)

∣
∣
∣
∣ ≤ M ,

and, therefore, for z ∈ R0 with |z| = t , we have that

ReU (z) − U (t) ≤ M + 1

a

(

Re
1

1 − z
− 1

1 − t

)

+ 1

a(1 − t)
− tb

(1 − ta)
·

Now,

1

a(1 − t)
− tb

(1 − ta)
≤ b

a
, for each t ∈ (0, 1),

and thus from Lemmas 4.3 and 4.4, arguing as in the case above of P and Q, and
increasing the t0 above if necessary, we deduce that for certain δ > 0,

(��) sup
z=teıθ∈R0;

h(t)≤|θ |

(ReU (z) − U (t)) ≤ M + b

a
− δ

h(t)2

(1 − t)3
, for t ∈ (t0, 1) .

The minor arc for {|z| = t} comprises R̃∩{|z| = t} (where we have the bound (�))
and the two subarcs in R0 ∩ {|z| = t} of those z = teıθ where |θ | ≥ h(t).

From (�) and (��) and themoderate growth ofσ , see (6.5),we conclude thatα < 3/2
suffices to guarantee the minor arc condition of Theorem 4.1, and consequently that:

Theorem 6.5 If gcd(a, b) = 1, Pa,b is in the Hayman class.

The approximations m̃ and σ̃ 2 for the mean and variance functions of the Khinchin
family of Pa,b given in (6.5) and the asymptotics (6.11) of Pa,b in the interval (0, 1),
plus stronggaussianity andTheoremC, allowus to derive Ingham’s theorem, originally
in [17], see also Kane [18]: for integers a, b ≥ 1 with gcd(a, b) = 1, the number of
partitions pa,b(n) of n ≥ 1 in parts drawn for the arithmetic sequence {aj +b : j ≥ 0}
satisfies that, as n → ∞,

pa,b(n)∼
[

1√
2 2π

�

(
b

a

)

ab/(2a)−1/2
(

π2

6

)b/(2a)
]

1

n1/2+b/(2a)
exp

(

π

√
2

3a

√
n

)

.

(6.14)

Remark 6.6 If gcd(a, b) = d > 1, then we have

Pa,b(z) = Pa′,b′(zd) , for z ∈ D ,
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where a′ = a/d and b′ = b/d. Observe that gcd(a′, b′) = 1. We deduce from (6.14)
that, as n → ∞,

coef[nd] Pa,b = coef[n] Pa′,b′

∼ d

[
1√
2 2π

�

(
b

a

)

ab/(2a)−1/2
(

π2

6

)b/(2a)
]

× 1

(nd)1/2+b/(2a)
exp

(

π

√
2

3a

√
nd

)

.

All the coefficients of Pa,b(z) whose indices are not multiples of d are 0.

6.3.4 Plane and Colored Partitions: Wright’s Theorem

We deal here with W b
1 , where b ≥ 0, the ogf of colored partitions with coloring

sequence ( jb) j≥1.
First we discuss the case W 1

1 and then we describe the minor changes to approach
the general case b ≥ 1.

a) Plane partitions. The MacMahon function

W 1
1 (z) =

∞∏

j=1

(
1

1 − z j

) j

�
∞∑

n=0

Mnzn

codifies plane partitions: Mn is the number of plane partitions of the integer n, for
n ≥ 1, with M0 = 1.

Wehave alreadyobtained, see (6.6) and (6.7), convenient approximations, m̃ and σ̃ 2,
of the mean and variance functions of the Khinchin family of W 1

1 :

m̃(e−s) = ζ(3)�(3)
1

s3
and σ̃ 2(e−s) = ζ(3)�(4)

1

s4
, as s ↓ 0 ,

which satisfy condition (3.9).
We also have at our disposal, see equation (6.12), a suitable asymptotic formula for

W 1
1 on the interval (0, 1):

W 1
1 (e−s) ∼ eζ ′(−1) s1/12 eζ(3)/s2 = e1/12

GK1
s1/12 eζ(3)/s2 , as s ↓ 0 . (6.15)

We apply now Theorem 4.1 to verify that W 1
1 is strongly Gaussian. The variance

condition is clearly satisfied. We look now for a cut function h(t) = (1 − t)α , with
α > 0 to be specified.

Let g(z) = ln W 1
1 (z) in D. We have

g(z) =
∑

l, j≥1

j

l
(zl) j =

∞∑

l=1

1

l
K (zl) , for z ∈ D ,
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where K is the Koebe function:

K (z) = z

(1 − z)2
= 1

4

(
1 + z

1 − z

)2

− 1

4
, for z ∈ D .

Observe, in particular, that the coefficients of g are all non-negative.
As g′′′(t) = O(1/(1− t)5), as t ↑ 1, see (3.4), the condition on the major arc (4.3)

is readily satisfied if α > 5/3.
Now, the minor arc. For z = teıθ with t ∈ (0, 1) and θ ∈ R, we have that

Reg(z) − g(t) =
∞∑

l=1

1

l

(
ReK (zl) − K (t l)

)
≤ ReK (z) − K (t)

= 1

4

(

Re

(
1 + z

1 − z

)2

−
(
1 + t

1 − z

)2
)

,

since the summands above are all non-positive, and, thus, that

Reg(z) − g(t) ≤ 1

4

(∣
∣
∣
∣
1 + z

1 − z

∣
∣
∣
∣

2

−
(
1 + t

1 − t

)2
)

≤ 1

4
(1 + t)2

(
1

|1 − z|2 − 1

(1 − t)2

)

≤ 1

4

(
1

|1 − z|2 − 1

(1 − t)2

)

= 1

4

1

(1 − t)2

(∣
∣
∣
∣

1 − t

1 − teıθ

∣
∣
∣
∣

2

− 1

)

.

Appealing to Lemma 4.4 we deduce that for t ≥ t0 and some δ > 0 we have that

sup
|θ |≥h(t)

(Reg(z) − g(t)) ≤ −δ
h(t)2

(1 − t)4
,

and conclude that condition (4.4) on the minor arc is satisfied whenever α < 2. Thus,
specifying α ∈ (5/3, 2), we conclude that:

Theorem 6.7 The MacMahon function W 1
1 is in the Hayman class.

For each n ≥ 1, take τn = e−sn with sn = (ζ(3)�(3)/n)1/3, so that m̃(τn) = n.
Plugging τn in the asymptotic formula (3.10) and using (6.15) we obtain

Mn ∼
[

eζ ′(−1)

√
12π

ζ(3)7/36225/36
]

1

n25/36
exp

(
3(ζ(3)/4)1/3n2/3

)
, as n → ∞ ,

(6.16)
which is Wright’s asymptotic formula for plane partitions, [29].

b) Colored partitions. Fix an integer b ≥ 1. The argument which follows to han-
dle W b

1 is just an extension of the one above for plane partitions, W 1
1 ; first, strong

gaussianity via Theorem 4.1 and then asymptotics of coefficients via Theorem C.

Theorem 6.8 For b ≥ 1, the function W b
1 is in the Hayman class.
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Proof Introduce the power series Qb and Rb given by

Qb(w) =
∞∑

j=1

jbw j and Rb(w) =
∞∑

j=b

j !
( j − b)! w j = b! wb

(1 − w)b+1 ,

and observe that

g(z) = ln W b
1 (z) =

∞∑

j,k

jb 1

k
zk j =

∞∑

k=1

1

k
Qb(z

k) .

For z = teıθ ∈ D, we have that

Reg(z) − g(t) ≤ ReQb(z) − Qb(t)

≤ b!
(

Re
zb

(1 − z)b+1 − tb

(1 − t)b+1

)

≤ b! tb
(

1

|1 − z|b+1 − 1

(1 − t)b+1

)

.

For a potential cut function h(t) = (1 − t)α , with α > 0, we have, because of
Lemmas 4.3 and 4.4, that for some δb > 0,

lim sup
t↑1

(1 − t)(b+1)+2

h(t)2

(

sup
h(t)≤|θ |≤π

Reg(teıθ ) − g(t)

)

≤ −δb < 0 .

Thus, condition (4.4) on the minor arc of Theorem 4.1 is satisfied as long as α <

1 + (b + 1)/2.
From (3.4), we deduce that g′′′(t) = O(1/(1− t)(b+1)+3), as t ↑ 1, and, thus, that

condition on the major arc is satisfied whenever α > 1 + (b + 1)/3.

Now from the approximation of moments of the Khinchin family of W b
1 given

by (6.6), (6.7) and (6.8), and the asymptotics of W b
1 on the interval (0, 1), we deduce

from Theorem C the following asymptotic formula for the coefficients an of W b
1 :

an ∼ αb
1

nβb
eγb n(b+1)/(b+2)

, as n → ∞ , (6.17)

where

αb = 1√
2π

eζ ′(−b) 1√
b + 2

[�(b + 2)ζ(b + 2)](−2ζ(−b)+1)/(2(b+2)) ,

βb = −2ζ(−b) + b + 3

2(b + 2)
, γb = b + 2

b + 1
(�(b + 2)ζ(b + 2))1/(b+2) .

Formula (6.17) reduces to (6.13) when b = 0, usual partitions, and to (6.16) when
b = 1, plane partitions.
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6.3.5 GeneralWb
a

For a ≥ 1, b ≥ 0, general, the ogfs W b
a (z) are all Gaussian.

We do have appropriate approximations of the mean and variance functions given
by (6.6), (6.7) and (6.8), satisfying condition (3.9) towards applying Theorem C, and
also a convenient asymptotic formula in the interval (0, 1) given by (6.12).

Besides, aiming at applying Theorem 4.1 and verifying the strong gaussianity
of W b

a , for a potential cut function h(t) = (1− t)α , with α > 0, we do have, because of
(3.4), that condition (4.3) on the major arc is satisfied as long as α > 1+ (b+1)/(3a).

But, alas, we have not been able to stretch the simple estimates above, for the
case a = 1, to verify the minor arc condition (4.4), which should be satisfied if
α < 1 + (b + 1)/(2a).

If that were the case, all the ogfs W b
a would be in the Hayman class, and theefore

theywould be stronglyGaussian. And from all the above, wewould have the following
asymptotic formula for the coefficients an of W b

a :

an ∼ αa,b
1

nβa,b
eγa,b n(b+1)/(b+1+a)

, as n → ∞,

where

αa,b = 1√
2π

√
a

a + b + 1
eaζ ′(−b) C (a−2aζ(−b))/(2(a+b+1))

a,b ,

βa,b = −2aζ(−b) + 2a + b + 1

2(a + b + 1)
, γa,b =

(
a + b + 1

b + 1

)

Ca/(a+b+1)
a,b ,

with

Ca,b = 1

a
ζ

(

1 + b + 1

a

)

�

(

1 + b + 1

a

)

.

For asymptotic formulae (and further asymptotic expansions) in the cases W 0
2

and W 0
a , of partitions into squares and ath powers, obtained via the circle method,

we refer to Vaughan [26], Gafni [10] and the primordial Wright [31].
It would be nice to know whether the ogf W 0

a , with a ≥ 2, of partitions into powers
of a is in the Hayman class.
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