Biblos-e Árchivo
 Repositorio Institucional UA

Repositorio Institucional de la Universidad Autónoma de Madrid https://repositorio.uam.es

Esta es la versión de autor del artículo publicado en:
This is an author produced version of a paper published in:

Journal of Mathematical Analysis and Applications 492.1 (2020): 124357

DOI: https://doi.org/10.1016/j.jmaa.2020.124357

Copyright: © 2020 Elsevier Inc. This manuscript version is made available under the CC-BY-NC-ND 4.0 licence http://creativecommons.org/licenses/by-nc-nd/4.0/

El acceso a la versión del editor puede requerir la suscripción del recurso
Access to the published version may require subscription

Spaces invariant under unitary representations of discrete groups

Davide Barbieri, Eugenio Hernández, Victoria Paternostro

July 9, 2020

Abstract

We investigate the structure of subspaces of a Hilbert space that are invariant under unitary representations of a discrete group. We work with square integrable representations, and we show that they are those for which we can construct an isometry intertwining the representation with the right regular representation, that we call a Helson map. We then characterize invariant subspaces using a Helson map, and provide general characterizations of Riesz and frame sequences of orbits. These results extend to the nonabelian setting several known results for abelian groups. They also extend to countable families of generators previous results obtained for principal subspaces.

1 Introduction

The-study-of-properties-of-invariant-subspaces-started-with-the-results-of-Wiener-[32]-and-Srvinivasan-[29]-showing-that-a-subspace- V of- $L^{2}(\mathbb{T})$-is-invariant-under-multiplication- by- exponentials- of- the- form- $e^{2 \pi i k x}, k \in \mathbb{Z}$ if- and- only- if- $V=-$ $\left\{f \chi_{E}:-f \in L^{2}(\mathbb{T})\right\}$ for-some-measurable-set- $E \subset \mathbb{T}$.- The-subject-is-the-main object-of-study-of-the-book-of-H.-Helson-[17].-

Strongly- connected-with- these-objects-are-shift-invariant-spaces- which-are-subspaces- of- $L^{2}\left(\mathbb{R}^{d}\right)$-invariant- under-integer-translations.- Their-structure-was-studied- in- $[14,-13,-28,-8]$.- The- extension-to-LCA- groups- and their- countable-discrete-subgroups-was-given-in-[10,-24],-while-co-compact-subgroups-were-con-sidered-in-[9].- Other-actions-than-translations-were-considered-in-[2,-21],-where-the-Zak-transform-is-used-to-study-the-structure-of-spaces-invariant-under-the-action- of- an-LCA-group-on-a- σ-finite-measure-space.- The-setting- of-compactgroups ${ }^{-}$was-then-treated-in-[22].-

A- general- framework-that-includes-the-invariant-spaces-described-above-is-the- one-that-we- consider-in-this- paper-where-we-have- unitary-representations-of-a-countable-discrete,-not-necessarily-abelian,-group- $\boldsymbol{\Gamma}^{-}$- - - - -separable-Hilbert-space- \mathcal{H}.- We-will-treat-the-class-of-square-integrable-representations,-or,-equiv-alently,- those-for-which-a-bracket-map- $[\cdot, \cdot]:-\mathcal{H} \times \mathcal{H} \rightarrow L^{1}(\mathcal{R}(\Gamma)$)-can-be-found-(see-Definition-6),- that- are-called-dual- integrable.- Since- we-shall- work- in- the-nonabelian-setting,- the-dual- group- of- Γ^{-}- which- plays-an-important- role- in- the-abelian-case,- will-be-replaced-by-the-group-von-Neumann-algebra- $\mathcal{R}(\Gamma)$.- This-approach-was-started-in-[1].-

The-purpose-of-this-paper-is-to-study-subspaces-invariant-under-dual-inte-grable-representations.- We-will-analyze-their-structure-and-study-the-reproduc-ing- properties of countable-families- of- orbits.- In- the-following- paragraphs- we-describe-in-detail-the-content-and-structure-of-this-paper.-

After-describing-in-Section- 2 - the-tools-needed-in-the-paper,-we-introduce-in-Section-3-the-notion-of-a-Helson-map- $\mathscr{T}:-\mathcal{H} \rightarrow L^{2}\left((\mathcal{M}, \nu), L^{2}(\mathcal{R}(\Gamma))\right)$-associated-to-a-unitary-representation,-where- (\mathcal{M}, ν)-is-a- σ-finite-measure-space.- We-prove-that- the-existence-of-such-a-map-is-equivalent-to-dual-integrability.- Moreover,-a^{-}constructive-procedure-is-given-to-obtain-Helson-maps-from-brackets-and-vice-versa.-

In-Section-4-we-study- the-structure- of- subspaces- of $\ell_{2}(\Gamma)$ - that-are-invari-ant-under-the-left-regular-representation,-giving-a-characterization-in-Theorem-17.- This- allows- us- to- extend - to- the- noncommutative- setting- the- previously-mentioned-results-of-Wiener-and-Srinivasan.-

A-characterization-of-invariant-subspaces-under-a-dual-integrable-represen-tation-is- given-in-Section- 5,- Theorem-20,- by- means- of- the-Helson-map.- Such-characterization- is- more- explicit-for-principal- invariant-subspaces,- see-Propo-sition-22,- or-for-finitely- generated- ones,- see-Corollary-23.- As-a-consequence,-existence- of- biorthogonal- systems- of- orbits- of- a- single- element- under- a^{-}dual-integrable-representation- is-characterized-by-a-property-of-the-bracket-map-in-Proposition-24.-

Section-6 is-dedicated to-study reproducing propertiesof-orbitsof-a-countable-family-of-elements-of- \mathcal{H}.- The-reproducing-properties-we-have-in-mind-are-those-of-being-Riesz-or-frame-sequences.- We-will-prove-existence-of-Parseval-frames-of-orbits,-and-characterize families whose-orbits-generate frames-or-Riesz sequences.-

Several-examples-are-given-in-Section-7-to-illustrate-our-results:-
1.- For- the- case- of- integer- translations- in- $L^{2}(\mathbb{R})$ - the- so-called- fiberization-mapping-can-be-obtained-from-our-Helson-maps.-
2.- A-Helson-map-is-obtained,-in-the-form-of-a-Zak-transform,-for-any-repre-sentation-arising-from-an-action-of-a-discrete-group-on-a- σ-finite-measurespace.
3.- Subspaces- of- $\ell_{2}(\Gamma)$ - generated-by $-f=-a \delta_{\gamma_{1}}+-b \delta_{\gamma_{2}}$ under- the-left-regular-representation-are-studied-as-an-example.-
4.- We-compute-the-bracket-and-a-Helson-map-for-the-action-of-the-dihedral-group- \mathbf{D}_{3} on $-L^{2}\left(\mathbb{R}^{2}\right)$.
5.- The-setting- of- $[4,-5]$ - for-translates- in- number-theoretic- groups- is- shown-to- fit- our-general-scheme.- This- allows- us- to- extend- the-results- in- [5]- to-several-generators.

Acknowledgements:- This- project-has-received- funding- from- the- European-Union's- Horizon- 2020- research- and- innovation- programme- under- the- Marie-Skłodowska-Curie-grant-agreement-No-777822.- In-addition,-D.-Barbieri-and-E.-Hernández-weresupported-by-Grant-MTM2016-76566-P-(Ministerio-de-Economía-y-Competitividad,-Spain),-and-V.-Paternostro-was-supported-by-Grants-UBA-CyT-20020170200057BA,-CONICET-PIP-11220150100355,-MINCyT-PICT-2014-1480-and-2016-2616-(Joven).-

2 Preliminaries

The- aim- of- this- section- is- to- introduce- the- basic- objects- and- notations- that-we- will- use- throughout- the- paper.- We- recall- here- the- concept- of- invariant-subspaces,- frames- and-Riesz- sequences.- Additionally,- we- revise- a- notion- of-Fourier- duality-based- on- the- right- regular- representation- $25,-23,-1$ - and - the-definition- of- noncommutative- L^{p} spaces,- and- provide- introductory- details- on-weighted-noncommutative- L^{2} spaces.

Some-general-notation-we-shall-use-is-the-following.- The-set-of-all-bounded-and-everywhere-defined-linear-operators-on-a-Hilbert- \mathcal{H} will-be-denoted-by- $\mathcal{B}(\mathcal{H})$ and - the-subset of $-\mathcal{B}(\mathcal{H})$ - of- unitary-operator-will-be-denoted-by- $\mathcal{U}(\mathcal{H})$.- For-an-operator- T defined-on- \mathcal{H},-not-necessarily-bounded,- we-denote- by- $\operatorname{Ran}(T)$ - and-$\operatorname{Ker}(T)$-its-range-and-its-kernel,-respectively.-An-orthogonal-projection-onto-the-closed-subspace- $W \subset \mathcal{H}$ will-be-denoted-by- \mathbb{P}_{W}.

2.1 Invariant subspaces

We-will-work-with-subspaces-of-a-Hilbert-spaces- \mathcal{H} that-are-invariant-under-the-action-of-a-group.- To-be-precise,-we-start-by-recalling-that,-given- Γ-a-countable-and-discrete-group-an-a-Hilbert-space- \mathcal{H}, a-unitary representation of Γ^{-}on \mathcal{H} is-a-homomorphism- $\Pi^{-} \because \Gamma^{-} \rightarrow \mathcal{U}(\mathcal{H})$.

Definition 1. Let $\Pi-b e$ a unitary representation of a discrete and countable group Γ-on a separable Hilbert space \mathcal{H}. We say that a closed subspace $V \subset \mathcal{H}$ is Π-invariant if and only if $\Pi(\gamma) V \subset V$ for all $\gamma \in \Gamma$.

Given-a-countable-family- $=-\left\{\psi_{i}\right\}_{i \in \mathcal{I}} \subset \mathcal{H}$,-the-closed-subspace- V definedby $-V=-\overline{\operatorname{span}\left\{\Pi(\gamma) \psi_{i}:-\gamma \in \Gamma, i \in \mathcal{I}\right\}}{ }^{\mathcal{H}}$ is- Π-invariant.- It is-called-the- Π-invariant-space-generated-by- $=-\left\{\psi_{i}\right\}_{i \in \mathcal{I},- \text { and }}{ }^{-}$we-will-see-that-any- Π-invariant-subspace-is- of - this- form- (see-e.g.- Lemma-11).- When- contains- only-one- element- ψ, we- will-simply- use- the- notation $\langle\psi\rangle_{\Gamma}=\overline{\operatorname{span}\{\Pi(\gamma) \psi\}_{\gamma \in \Gamma}} \mathcal{H}$ and- we- call- $\langle\psi\rangle_{\Gamma}$ principal Π-invariant-space.-

2.2 Frame and Riesz sequences

We-briefly-recall-the-definitions-of-frame-and-Riesz-bases.-For-a-detailed-expo-sition-on-this-subject-we-refer-to-[11].-

Let- \mathcal{H} be-a-separable-Hilbert-space,- \mathcal{I} be-a-finite-or-countable-index-set-and$\left\{f_{i}\right\}_{i \in \mathcal{I}}$ be-a-sequence-in- \mathcal{H}. The-sequence- $\left\{f_{i}\right\}_{i \in \mathcal{I}}$ is-said-to-be-a-frame for- \mathcal{H} if-there-exist- $0-<A \leq B<+\infty$ such-that-

$$
A\|f\|^{2} \leq \sum_{i \in \mathcal{I}}\left\langle\left.\left\langle f, f_{i}\right\rangle\right|^{2} \leq B\|f\|^{2}\right.
$$

for-all $-f \in \mathcal{H}$.- The-constants- A and $-B$ are-called-frame bounds. - When- $A=-B=-$ $1,-\left\{f_{i}\right\}_{i \in \mathcal{I}}$ is-called-Parseval frame.-

The-sequence- $\left\{f_{i}\right\}_{i \in \mathcal{I}}$ is-said- to-be-a-Riesz basis for- \mathcal{H} if-it-is-a-complete-system-in- \mathcal{H} and-if-there-exist- $0-<A \leq B<+\infty$ such-that-

$$
A \sum_{i \in \mathcal{I}}\left|a_{i}\right|^{2} \leq\left\|\sum_{i \in \mathcal{I}} \not a_{i} f_{i}\right\|^{2} \leq B \sum_{i \in \mathcal{I}}\left|a_{i}\right|^{2}
$$

for-all-sequences- $\left\{a_{i}\right\}_{i \in \mathcal{I}}$ of-finite-support.-

The-sequence- $\left\{f_{i}\right\}_{i \in \mathcal{I}}$ is-a-frame (or Riesz) sequence,-if-it-is-a-frame-(or-Riesz-basis)-for-the-Hilbert-space-it-spans,-namely- $\overline{\operatorname{span}\left\{f_{i}\right\}_{i \in \mathcal{I}}}{ }^{\mathcal{H}}$.-

2.3 Noncommutative setting

Let- Γ^{-}be- a-discrete-and-countable-group.- The-right-regular-representation- of-Γ-is-the-homomorphism- $\rho: \Gamma^{-} \rightarrow \mathcal{U}\left(\ell_{2}(\Gamma)\right.$)-which-acts-on-the-canonical-basis-of-$\ell_{2}(\Gamma),-\left\{\delta_{\gamma}\right\}_{\gamma \in \Gamma,},-$ as $^{-}$

$$
\rho(\gamma) \delta_{\gamma^{\prime}}=-\delta_{\gamma^{\prime} \gamma^{-1}} \quad \gamma, \gamma^{\prime} \in \Gamma^{-}
$$

or,- equivalently,- such- that $-\rho(\gamma) f\left(\gamma^{\prime}\right)=-f\left(\gamma^{\prime} \gamma\right)$ - for $-f \in \ell_{2}(\Gamma)$ - and $-\gamma, \gamma^{\prime} \in \Gamma^{-}-$ Analogously,- the- left- regular- representation- is- the- homomorphism- $\lambda: \Gamma^{-} \rightarrow$ $\mathcal{U}\left(\ell_{2}(\Gamma)\right)$-which-acts-on-the-canonical-basis-as-

$$
\lambda(\gamma) \delta_{\gamma^{\prime}}=-\delta_{\gamma \gamma^{\prime}} \quad \gamma, \gamma^{\prime} \in \Gamma^{-}
$$

or,-equivalently,-such-that- $\lambda(\gamma) f\left(\gamma^{\prime}\right)=-f\left(\gamma^{-1} \gamma^{\prime}\right)$-for $-f \in \ell_{2}(\Gamma)$-and- $\gamma, \gamma^{\prime} \in \Gamma$.-
The-right-von-Neumann-algebra-of- Γ-is-defined-as-(see-e.g.- [12,-Section-43,-Section-12,-Section-13]-or-[31,-Section-3,-Section-7])-

$$
\mathcal{R}(\Gamma)=-{\overline{\operatorname{span}\{\rho(\gamma)\}_{\gamma \in \Gamma}}}^{\text {woт }},
$$

where-the-closure-is-taken-in-the-weak-operator-topology-(WOT).-The-left-von-Neumann-algebra- $\mathscr{L}(\Gamma)$-of- Γ-is-defined-analogously-in-terms-of-the-left-regular-representation-and-we-recall-that-

$$
\begin{equation*}
\mathcal{R}(\Gamma)=-\mathscr{L}(\Gamma)^{\prime}=-\{\lambda(\gamma):-\gamma \in \Gamma\}^{\prime}=-\{\rho(\gamma):-\gamma \in \Gamma\}^{\prime \prime} \tag{1}
\end{equation*}
$$

where-if $\mathcal{S} \subset \mathcal{B}(\mathcal{H}),-\mathcal{S}^{\prime}=-\{T \in \mathcal{B}(\mathcal{H}):-T S=-S T, \forall S \in \mathcal{S}\}$,- the-commutant-of-$\mathcal{S}$.-

Given- $F \in \mathcal{R}(\Gamma)$,-let $-\tau$ be-the-standard-trace-given-by-

$$
\tau(F)=-\left\langle F \delta_{\mathrm{e}}, \delta_{\mathrm{e}}\right\rangle_{\ell_{2}(\Gamma)},
$$

where-e-is-the-identity-of- Γ.- Recall-that- τ is-normal,-finite-and-faithful.- More-over,- it- has- the- tracial property which- means- that $\tau(F G)=-\tau(G F)$ - for- all$F, G \in \mathcal{R}(\Gamma)$.-

For- $f, g \in \ell_{2}(\Gamma)$, the-convolution- $g * f$ is-the-element-of- $\ell_{\infty}(\Gamma)$-given-by-

$$
\begin{equation*}
g * f(\gamma)=\sum_{\gamma^{\prime} \in \Gamma} f\left(\gamma^{\prime}\right) g\left(\gamma \gamma^{\prime-1}\right)=-\sum_{\gamma^{\prime} \in \Gamma}\left(g\left(\gamma^{\prime}\right) f\left(\gamma^{\prime-1} \gamma\right), \quad \gamma \in \Gamma .\right. \tag{2}
\end{equation*}
$$

By-[12,-Proposition-43.10],-we-have-that-the-elements-of-the-group-von-Neumann-algebra- $\mathcal{R}(\Gamma)$-are-bounded-convolution-operators-on- $\ell_{2}(\Gamma)$.- More-precisely,- $F \in$ $\mathcal{R}(\Gamma)$-if-and-only-ifthere-exists-a-(unique)-convolution-kernel- $f \in \ell_{2}(\Gamma)$-such-that$F g=-g * f$.- We-will-use-this- correspondence-as-our-notion-of-Fourier-duality:-for- $F \in \mathcal{R}(\Gamma)$,-we-will-call-Fourier coefficients of F the-values-of-its-convolution-kernel- f,- and-denote-it-with $-f=-\widehat{F}=-\{\widehat{F}(\gamma)\}_{\gamma \in \Gamma}$.- Therefore-

$$
\begin{align*}
& F g=g * \widehat{F} \tag{3}\\
& f-\tau \text { and-using }(2),- \text { we-have- }
\end{align*}
$$

Note-that,-by-definition-of- τ and-using-(2),-we-have-

$$
\widehat{F}(\gamma)=-\tau(F \rho(\gamma)), \forall \gamma \in \Gamma
$$

Conversely,-if- $f \in \ell_{2}(\Gamma)$-is-such- that- $f=-\widehat{F}$ for-some- $F \in \mathcal{R}(\Gamma)$,- we- will-call- F the-group Fourier transform of f,-which-is-a-bounded-operator-given-by-

$$
\mathcal{F}_{\Gamma} f=-F=-\sum_{\gamma \in \Gamma}\left(f(\gamma) \rho(\gamma)^{*}\right.
$$

where-convergence-is-intended-in-the-weak-operator-topology.- Observe-that-theysatisfy $-f=-\widehat{\mathcal{F}_{\Gamma} f}$, or $-F=-\mathcal{F}_{\Gamma} \widehat{F}$.-

Given-two-operators- $F, G \in \mathcal{R}(\Gamma)$,-their-composition-can-be-written-in-terms-of-this-Fourier-duality-as-

Indeed,-

$$
\begin{equation*}
F G=-\mathcal{F}_{\Gamma}(\widehat{G} \psi \widehat{F})^{\prime}(\tag{4}
\end{equation*}
$$

$$
\begin{aligned}
F G & =-\left(\not \mathcal{f}_{\Gamma} \widehat{F}\right)\left(\not \boldsymbol{\gamma}_{\Gamma} \widehat{G}\right)\left(=-\left(\sum_{\gamma^{\prime} \in \Gamma} \widehat{F}\left(\gamma^{\prime}\right) \rho\left(\gamma^{\prime}\right)^{*}\right)\left(\sum_{\gamma^{\prime \prime} \in \Gamma} \widehat{G}\left(\gamma^{\prime \prime}\right) \rho\left(\gamma^{\prime \prime}\right)^{*}\right)\right. \\
& =\sum_{\gamma^{\prime}, \gamma^{\prime \prime} \in \mathbb{F}}\left(\widehat{F}\left(\gamma^{\prime}\right) \npreceq\left(\gamma^{\prime \prime}\right) \rho\left(\gamma^{\prime \prime} \gamma^{\prime}\right)^{*}=-\sum_{\gamma \in \Gamma}\left(\sum_{\gamma^{\prime} \in \Gamma} \widehat{F}\left(\gamma^{\prime}\right) \widehat{G}\left(\gamma \gamma^{\prime-1}\right)\right) \phi(\gamma)^{*}\right. \\
& =\sum_{\gamma \in \Gamma}(\widehat{G} * \widehat{F})(\gamma) \rho(\gamma)^{*}=-\mathcal{F}_{\Gamma}(\widehat{G} * \widehat{F}) .
\end{aligned}
$$

For-any-1- $\leq p<\infty$ let- $\|\cdot\|_{p}$ be-the-norm-over- $\mathcal{R}(\Gamma)$-given-by-

$$
\|F\|_{p}=\tau\left(|F|^{p}\right)^{\frac{1}{p}},
$$

where- $|F|$ is- the- selfadjoint- operator- defined ${ }^{-}{ }^{-}{ }^{-}|F|=-\sqrt{F^{*} F}$ and ${ }^{-}$the- p-th-power-is-defined-by-functional-calculus- of- $|F|$.- Following- [26,-27,-1],- we-define-the-noncommutative- $L^{p}(\mathcal{R}(\Gamma))$-spaces-for $1-\leq p<\infty$ as-

$$
L^{p}(\mathcal{R}(\Gamma))=-\overline{\operatorname{span}\{\rho(\gamma)\}_{\gamma \in \Gamma}}\|\cdot\|_{p}
$$

while-for $-p=-\infty$ we-set $-L^{\infty}(\mathcal{R}(\Gamma))^{-}=-\mathcal{R}(\Gamma)$-endowed-with-the-operator-norm.-
A-densely-defined-closed-linear-operator-on- $\ell_{2}(\Gamma)$-is-said-to-be-affiliated-to-$\mathcal{R}(\Gamma)$-if-it-commutes-with-all-unitary-elements-of- $\mathscr{L}(\Gamma)$.- When- $p<\infty$,-the-ele-ments-of- $L^{p}(\mathcal{R}(\Gamma))$-are-the-linear-operators-on- $\ell_{2}(\Gamma)$-that-are-affiliated-to- $\mathcal{R}(\Gamma)$ -whose- p-norm- is- finite.- In- particular,- for- $p<\infty$,- the- elements- of- $L^{p}(\mathcal{R}(\Gamma))^{-}$ are-not-necessarily-bounded,-while-a-bounded-operator-that-is-affiliated-to- $\mathcal{R}(\Gamma)$ -automatically-belongs-to- $\mathcal{R}(\Gamma)$-as-a-consequence-of-von-Neumann's-Double-Com-mutant-Theorem.- For $-p=-2^{-}$one-obtains- ${ }^{-}$-separable-Hilbert-space- with-scalar-product-

$$
\left\langle F_{1}, F_{2}\right\rangle_{2}={ }^{-} \tau\left(F_{2}^{*} F_{1}\right)-
$$

for-which-the-monomials $\{\rho(\gamma)\}_{\gamma \in \Gamma}$ form-an-orthonormal-basis.- For these-spaces-the-usual-statement-of-Hölder-inequality-still-holds,-so-that-in-particular-for-any$F \in L^{p}(\mathcal{R}(\Gamma))$ - with- $1-\leq p \leq \infty$ its- $-50 r^{-}$-coefficients- are- well- defined,- and-the-finiteness-of-the-trace-implies-that- $L^{p}(\mathcal{R}(\Gamma))-\subset L^{q}(\mathcal{R}(\Gamma))$ - whenever- $q<p$.-Moreover,-fundamental-results-of-Fourier-analysis-such-as- $L^{1}(\mathcal{R}(\Gamma))$-Uniqueness-Theorem,- Plancherel- Theorem- between- $L^{2}(\mathcal{R}(\Gamma))$ - and- $\ell_{2}(\Gamma)$-still- hold- in- the-present-setting-(see-e.g.- [1,-Section-2.2]).- We-stress-that-Plancherel- Theorem-in-this-setting-extends-the-usual-duality-between-Fourier-transform-and-Fourier-coefficients,-turning-the-two-operations-into-the-bounded-inverse-of-one-another,-between-the-whole- $\ell_{2}(\Gamma)$-and- $L^{2}(\mathcal{R}(\Gamma))$.-

If $-F$ is-a-closed-and-densely-defined-selfadjoint-operator-that-is-affiliated-to-$\mathcal{R}(\Gamma)$,-we-will-call- support of F the-spectral- projection-over-the-set- $\mathbb{R} \backslash\{0\}$.- It-is-the-minimal-orthogonal-projection- s_{F} of $\ell_{2}(\Gamma)$-such-that- $F=-F s_{F}=-s_{F} F$,-it-belongs-to- $\mathcal{R}(\Gamma)^{-}$(see-e.g.- [30,-Theorem-5.3.4]),-and-it-reads-explicitly ${ }^{-}$

$$
\begin{equation*}
s_{F}=-\mathbb{P}_{(\operatorname{Ker}(F))^{\perp}}=-\mathbb{P}_{\overline{\operatorname{Ran}(F)}} . \tag{5}
\end{equation*}
$$

2.4 Weighted $L^{2}(\mathcal{R}(\Gamma))$ spaces

This-subsection-is-devoted-to-define-a-particular-class-of-spaces-that-we-will-use-in-this-paper,-which-are-called-weighted- $L^{2}(\mathcal{R}(\Gamma))$-spaces.-
Definition 2. Let $q \in \mathcal{R}(\Gamma)$-be an orthogonal projection. We define $q L^{2}(\mathcal{R}(\Gamma))$ to be the subspace of $L^{2}(\mathcal{R}(\Gamma))$-given by

$$
q L^{2}(\mathcal{R}(\Gamma)):=-\left\{q F:-F \in L^{2}(\mathcal{R}(\Gamma))\right\} .
$$

Note that this subspace is closed, and that $F \in q L^{2}(\mathcal{R}(\Gamma))$-if and only if $F=-q F$.
Given-a-positive- $\in L^{1}(\mathcal{R}(\Gamma)$),-let- $\mathfrak{h}(\Omega)$-be-the-subspace-of- $\mathcal{R}(\Gamma)$-defined-by-

$$
\mathfrak{h}(\Omega)::=-\{F \in \mathcal{R}(\Gamma)-:-s \quad F=-F\}
$$

where-s denotes-the-support-of- as-defined-in-(5).- For- $F \in \mathfrak{h}(\Omega)$-define-

$$
\|F\|_{2,} \quad:=-\left\|\quad \frac{1}{2} F\right\|_{2}=-\tau\left(\left|F^{*}\right|^{2}\right)^{-\frac{1}{2}} .
$$

Note- that- if- $F \in \mathfrak{h}(\Omega)$ - and $-\|F\|_{2}, \quad=-0$, we- have- that- ${ }^{\frac{1}{2}} F=-0$ - and- then $\operatorname{Ran}(F)-\subset \operatorname{Ker}\left(\Omega^{\frac{1}{2}}\right)-=-\operatorname{Ker}(\Omega)$.- This-implies- that-s $F=-0$ - and- thus, $-F=-0^{-}$ As-a-consequence,-it-holds-that- $\|\cdot\|_{2}$, is-a-norm-in- $\mathfrak{h}(\Omega)$. Its-associated-scalar-product-reads-

$$
\langle F, G\rangle_{2}, \quad=-\left\langle\quad{ }^{\frac{1}{2}} F, \quad \frac{1}{2} G\right\rangle_{2}=-\tau\left(F G^{*}\right) .
$$

Definition 3. Given a positive $\in L^{1}(\mathcal{R}(\Gamma))$, we define the weighted space $L^{2}\left(\mathcal{R}(\Gamma)\right.$,)- as the completion of $\mathfrak{h}(\Omega)$-with respect to the $\|\cdot\|_{2}$, norm. That is

$$
L^{2}(\mathcal{R}(\Gamma),)=\overline{-\mathfrak{h}}(\Omega)^{\|\cdot\|_{2},}
$$

Proposition 4. Let $\in L^{1}(\mathcal{R}(\Gamma))$-be a positive operator and let s $L^{2}(\mathcal{R}(\Gamma))$ be as in Definition 2 for $q=-s$. Let $\omega:-\mathfrak{h}(\Omega) \rightarrow s L^{2}(\mathcal{R}(\Gamma))$ - be the mapping defined by

$$
\omega(F)=-\frac{1}{2} F
$$

Then ω can be extended to a surjective isometry from $L^{2}\left(\mathcal{R}(\Gamma)\right.$,)- onto s $L^{2}(\mathcal{R}(\Gamma))$.
Proof. Observe- first- that,- if- $F \in \mathfrak{h}(\Omega)-\subset \mathcal{R}(\Gamma)$,- then- ${ }^{\frac{1}{2}} F \in L^{2}(\mathcal{R}(\Gamma))$ - and $s \quad \frac{1}{2} F={ }^{\frac{1}{2}} F$.- Thus,- $\quad \frac{1}{2} F \in s L^{2}(\mathcal{R}(\Gamma))$-and- w is-well-defined.- Moreover,-

$$
\|\omega(F)\|_{2}=-\left\|{ }^{\frac{1}{2}} F\right\|_{2}=-\|F\|_{2,} .
$$

Thus, $-\omega$ extends- to- an-isometry-from- $L^{2}\left(\mathcal{R}(\Gamma)\right.$,)- to- $s L^{2}(\mathcal{R}(\Gamma))$.- To- prove-surjectivity,- take- $F_{0} \in s L^{2}\left(\mathcal{R}(\Gamma)\right.$-such- that- $F_{0} \perp \omega\left(L^{2}(\mathcal{R}(\Gamma),)^{-}\right) \cdot$ •(Then,- in-
particular,-since-s $\rho(\gamma)-\in \mathfrak{h}(\Omega)$-for-all- $\gamma \in \Gamma$,-we-have-

$$
0=\left\langle F_{0}, \quad \frac{1}{2} S \quad \rho(\gamma)^{*}\right\rangle_{2}=\left\langle F_{0}, \quad \frac{1}{2} \rho(\gamma)^{*}\right\rangle_{2}=-\tau\left(\Omega^{\frac{1}{2}} F_{0} \rho(\gamma)\right)-\quad \forall \gamma \in \Gamma .
$$

Therefore,- ${ }^{\frac{1}{2}} F_{0}=-0-$ by- $L^{1}(\mathcal{R}(\Gamma))$-uniqueness- of-Fourier-coefficients.- Hence, s $\quad F_{0}=-0$, -and-since- $F_{0} \in s \quad L^{2}(\mathcal{R}(\Gamma))$, -then- $F_{0}=-0$,-proving-surjectivity.-

Remark 5. Note that an element $F \in L^{2}(\mathcal{R}(\Gamma)$,)- is identified with a Cauchy sequence $\left\{F_{n}\right\}_{n \in \mathbb{N}} \subset \mathfrak{h}(\Omega)$ - with respect to the norm $\|\cdot\|_{2}$, For any such sequence, $\left\{{ }^{\frac{1}{2}} F_{n}\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence in $s L^{2}(\mathcal{R}(\Gamma))$ - and then it has a limit in s $L^{2}(\mathcal{R}(\Gamma))$-that we call ${ }^{\frac{1}{2}} F$. This is the extension of the isometry ω to $F \in L^{2}(\mathcal{R}(\Gamma)$,$) .$

3 Dual integrability and Helson maps

Let- us- first- recall- the- definition- of- bracket-map- of- a- unitary- representation,-as-in- $[1,-18]$,- which- is- the-operator- in- $L^{1}(\mathcal{R}(\Gamma))$ - whose-Fourier-coefficients-are$\left\{\langle\varphi, \Pi(\gamma) \psi\rangle_{\mathcal{H}}{ }_{\gamma \in \Gamma}\right.$.
Definition 6. Let Π - be a unitary representation of a discrete and countable group Γ - on a separable Hilbert space \mathcal{H}. We say that Π - is dual integrable if there exists a sesquilinear map $[\cdot, \cdot]:-\mathcal{H} \times \mathcal{H} \rightarrow L^{1}(\mathcal{R}(\Gamma))$, called bracket map, satisfying

$$
\langle\varphi, \Pi(\gamma) \psi\rangle_{\mathcal{H}}=-\tau([\varphi, \psi] \rho(\gamma))^{-} \forall \varphi, \psi \in \mathcal{H}, \forall \gamma \in \Gamma
$$

In such a case we will call $(\Gamma, \Pi, \mathcal{H})$-a dual integrable triple.
Note-that,-as-a-consequence-of-uniqueness-of-Fourier-coefficients-in- $L^{1}(\mathcal{R}(\Gamma))$, the-bracket-map-is-unique.-

According- to- $[1,-$ Th. -4.1$],-\Pi$ - is- dual- integrable- if- and- only- if- it- is-square-integrable,-in-the-sense-that-there-exists-a-dense-subspace- \mathcal{D} of- \mathcal{H} such-that-
$\left\{\left\langle\langle\varphi, \Pi(\gamma) \psi\rangle_{\mathcal{H}} \underset{\gamma \in \Gamma}{ } \in \ell_{2}(\Gamma)-\forall \varphi \in \mathcal{H}, \forall \psi \in \mathcal{D}\right.\right.$.
Moreover- we- (ecall- that,- by- $[1,-$ Prop.- 3.2],- the- bracket- map-satisfies- the-properties-
I) $-\left[\psi_{1}, \psi_{2}\right]^{*}=\left[\psi_{2}, \psi_{1}\right]^{-}$
II) $-\left[\psi_{1}, \Pi(\gamma) \psi_{2}\right]=-\rho(\gamma)\left[\psi_{1}, \psi_{2}\right]^{-}, \quad\left[\Pi(\gamma) \psi_{1}, \psi_{2}\right]=\left[\psi_{1}, \psi_{2}\right] \rho(\gamma)^{*},-\quad \forall \gamma \in \Gamma^{-}$
III)- $[\psi, \psi]$-is-nonnegative,- and $-\|[\psi, \psi]\|_{1}=-\|\psi\|_{\mathcal{H}}^{2}$
for-all- $\psi, \psi_{1}, \psi_{2} \in \mathcal{H}$.-
Since,-in-contrast-with-[1],-we-are-using-here-a-bracket-map-in-terms-of-the-right-regular-representation,- we-provide-a-proof- of-Property-II).- By - definition-of-the-bracket-map-and-the-traciality-of- τ we-have-that-for-any- $\gamma_{o} \in \Gamma$,-

$$
\begin{aligned}
\tau\left(\left[\psi_{1}, \Pi\left(\gamma_{0}\right) \psi_{2}\right] \rho(\gamma)\right) & =-\left\langle\psi_{1}, \Pi(\gamma) \Pi\left(\gamma_{0}\right) \psi_{2}\right\rangle_{\mathcal{H}}=-\left\langle\psi_{1}, \Pi\left(\gamma \gamma_{0}\right) \psi_{2}\right\rangle_{\mathcal{H}} \\
& =-\tau\left(\left[\psi_{1}, \psi_{2}\right] \rho\left(\gamma \gamma_{0}\right)\right)=-\tau\left(\left[\psi_{1}, \psi_{2}\right] \rho(\gamma) \rho\left(\gamma_{0}\right)\right)- \\
& =\tau\left(\rho\left(\gamma_{0}\right)\left[\psi_{1}, \psi_{2}\right] \rho(\gamma)\right)^{-}, \quad \forall \gamma \in \Gamma .
\end{aligned}
$$

Then,- by- the $L^{1}(\mathcal{R}(\Gamma))$ - uniqueness- of- Fourier- coefficients- we- conclude- that$\left[\psi_{1}, \Pi\left(\gamma_{0}\right) \psi_{2}\right]=-\rho\left(\gamma_{0}\right)\left[\psi_{1}, \psi_{2}\right]$.- The- other- equality- is- proved-from-this- result-and-Property-I).-

Given-a- σ-finite-measure-space- (\mathcal{M}, ν),-we-denote-by- $\|\Phi\|_{\oplus}$ the-norm-on-the-Hilbert-space- $L^{2}\left((\mathcal{M}, \nu), L^{2}(\mathcal{R}(\Gamma))\right)$, that-reads-

$$
\|\Phi\|_{\oplus}=-\left(\iint_{\mu}\|\Phi(x)\|_{2}^{2} d \nu(x)\right)^{\frac{1}{2}}=-\left(\int\left(\mu_{\mu} \tau\left(\Phi(x)^{*} \Phi(x)\right) d \nu(x)\right)^{\frac{1}{2}}\right.
$$

for-all- $\Phi \in L^{2}\left((\mathcal{M}, \nu), L^{2}(\mathcal{R}(\Gamma))\right)$.-

Definition 7. Let Γ-be a discrete group and Π - a unitary representation of Γ-on the separable Hilbert space \mathcal{H}. We say that the triple ($\Gamma, \Pi, \mathcal{H})$-admits a Helson map if there exists a σ-finite measure space (\mathcal{M}, ν)-and an isometry

$$
\mathscr{T}:-\mathcal{H} \rightarrow L^{2}\left((\mathcal{M}, \nu), L^{2}(\mathcal{R}(\Gamma))\right)
$$

satisfying

$$
\begin{equation*}
\mathscr{T}[\Pi(\gamma) \varphi]=-\mathscr{T}[\varphi] \rho(\gamma)^{*} \quad \forall \gamma \in \Gamma, \forall \varphi \in \mathcal{H} . \tag{6}
\end{equation*}
$$

Observe-that-for $-\Psi \in L^{2}\left((\mathcal{M}, \nu), L^{2}(\mathcal{R}(\Gamma))\right)$-and- $F \in \mathcal{R}(\Gamma)$-we-are-denoting-with- ΨF the-element-of- $L^{2}\left((\mathcal{M}, \nu), L^{2}(\mathcal{R}(\Gamma))\right)$-that-for-a.e. $-x \in \mathcal{M}$ is-given-by-

$$
\begin{equation*}
(\Psi F)(x)=-\Psi(x) F \tag{7}
\end{equation*}
$$

The-main-theorem-of-this-section-is-the-following.-
Theorem 8. Let Γ-be a discrete group and Π - a unitary representation of Γ-on the separable Hilbert space \mathcal{H}. Then, the triple $(\Gamma, \Pi, \mathcal{H})$-is dual integrable if and only if it admits a Helson map.

Remark 9. It is known that a representation is square integrable if and only if it is unitarily equivalent to a subrepresentation of a multiple copy of the right regular representation (see [20, Prop 4.2]). In our setting, a Helson map is essentially an isomorphism that implements such unitary equivalence.

Indeed, given Γ - a discrete group and Π - a unitary representation of Γ-on the separable Hilbert space \mathcal{H} with associated Helson map \mathscr{T}, by a similar argument to the one used in the proof of [1, Th. 4.1], the map

$$
\begin{array}{rlr}
\Gamma-\times \mathscr{T}(\mathcal{H})^{-} & \rightarrow \mathscr{T}(\mathcal{H})- \\
(\gamma, \Phi)^{-} & \mapsto \Phi \rho(\gamma)^{*}
\end{array}
$$

defines a unitary representation of Γ-on $\mathscr{T}(\mathcal{H})$-that is unitarily equivalent to a summand of a direct integral decomposition of the right regular representation.

Since we are interested in the structure of such isometry, we provide here a constructive proof of both implications of Theorem 8 in two separate propositions: Proposition 10, which constructs a bracket map starting from a Helson map, and Proposition 14, which constructs a Helson map starting from a bracket map.

Proposition 10. Let Γ-be a discrete group and Π - a unitary representation of Γ on the separable Hilbert space \mathcal{H}. Let $(\Gamma, \Pi, \mathcal{H})$-admit a Helson map \mathscr{T}. Then it is a dual integrable triple, and the bracket map can be expressed as

$$
\begin{equation*}
[\varphi, \psi]=-\iint_{\mu} \mathscr{T}[\psi](x)^{*} \mathscr{T}[\varphi](x) d \nu(x), \quad \forall \varphi, \psi \in \mathcal{H} . \tag{8}
\end{equation*}
$$

Proof. Let-us-first-prove-that-the-right-hand-side-of-(8)-is-in- $L^{1}(\mathcal{R}(\Gamma))$.- For-this,-we-only-need-to-see-that-its-norm-is-finite,-which-is-true-because-

$$
\begin{aligned}
& \int_{\mathcal{M}} \mathscr{T}[\psi](x)^{*} \mathscr{T}[\varphi](x) d \nu(x)_{1}^{-} \leq \iint_{\mu}\left\|\mathscr{T}[\psi](x)^{*} \mathscr{T}[\varphi](x)\right\|_{1} d \nu(x)^{-} \\
& \leq \iint_{\mu}\|\mathscr{T}[\psi](x)\|_{2}\|\mathscr{T}[\varphi](x)\|_{2} d \nu(x)^{-} \leq\|\mathscr{T}[\psi]\|_{\oplus}\|\mathscr{T}[\varphi]\|_{\oplus}=-\|\psi\|_{\mathcal{H}}\|\varphi\|_{\mathcal{H}}
\end{aligned}
$$

where-we-have-used-Hölder's-inequality-on- $L^{2}(\mathcal{R}(\Gamma))$-and-on- $L^{2}(\mathcal{M}, d \nu)$-and-the-fact-that- \mathscr{T} is-an-isometry.- Moreover,-since- \mathscr{T} satisfies- ${ }^{-}(6)$,- for $-\varphi, \phi \in \mathcal{H}$ and$\gamma \in \Gamma^{\prime}$,-we-have-

$$
\begin{aligned}
&\langle\varphi, \Pi(\gamma) \phi\rangle_{\mathcal{H}}=-\langle\mathscr{T}[\varphi], \mathscr{T}[\Pi(\gamma) \phi]\rangle_{\oplus}=-\iint_{\mu}\langle\mathscr{T}[\varphi](x), \mathscr{T}[\Pi(\gamma) \phi](x)\rangle_{2} d \nu(x)- \\
&=\left.\iint_{\mu}\left\langle\mathscr{T}[\varphi](x), \mathscr{T}[\phi](x) \rho(\gamma)^{*}\right\rangle_{2} d \nu(x)=-\iint_{\mu} \tau\left(\rho(\gamma) \mathscr{T}[\phi](x)^{*} \mathscr{T}[\varphi](x)\right)\right) d \nu(x)^{-} \\
&\left.=-\tau\left(\rho(\gamma)-\iint_{\mu} \mathscr{T}[\phi](x)^{*} \mathscr{T}[\varphi](x) d \nu(x)\right)\right)
\end{aligned}
$$

where- the- last-identity-is- due- to- Fubini's- Theorem,- which- holds- by- the- normality ${ }^{-}$of $-\tau$.- Now, ${ }^{-}$since- we- have- that- the- Fourier- coefficients- of- $[\varphi, \psi]$ - and $\iint_{\text {ness-Theorem. }} \mathscr{T}[\psi](x)^{*} \mathscr{T}[\varphi](x) d \nu(x)$-coincide, - then- (8)-holds- by- the- $L^{1}(\mathcal{R}(\Gamma))$ - Unique-

We-set-out-to-prove-the-converse-of-Proposition-10,-to-finally-prove-Theorem-8.- The-following-result-is-needed.-

Lemma 11. Let Π-be a unitary representation of a discrete and countable group Γ - on a separable Hilbert space \mathcal{H}, and let $V \subset \mathcal{H}$ be a Π-invariant subspace. Then there exists a countable family $\left\{\psi_{i}\right\}_{i \in \mathcal{I}}$ satisfying $\left\langle\psi_{i}\right\rangle_{\Gamma} \perp\left\langle\psi_{j}\right\rangle_{\Gamma}$ for $i \neq-j$ and such that V decomposes into the orthogonal direct sum

$$
\begin{equation*}
V=\bigoplus_{i \in \mathcal{I}}\left\langle\psi_{i}\right\rangle_{\Gamma} \tag{9}
\end{equation*}
$$

Proof. Let- $\left\{e_{n}\right\}_{n \in \mathbb{N}}$ be- an- orthonormal- basis- for- V;- choose- $\psi_{1}=-e_{1}$ and- let-$V_{1}=-\left\langle\psi_{1}\right\rangle_{\Gamma}$.- If- $V_{1}=-V$ the-lemma-is- proved.- If- $V_{1} \neq V$,- let $-e_{n_{2}}$ be-the-first-element- of- $\left\{e_{n}\right\}_{n \in \mathbb{N}}$ such- that $e_{n_{2}} \notin V_{1 .^{-}}$Define- $\psi_{2}=-\mathbb{P}_{V_{1}} e_{n_{2}}$, , where- $\mathbb{P}_{V_{1}}$ stands-for the-orthogonal- projection- of $-\mathcal{H}$ onto- V_{1}^{\perp} and V_{1}^{\perp} is-the-orthogonal complement-of- V_{1} in- V (i.e. $V=-V_{1} \oplus V_{1}^{\perp}$).- It-holds-that- $V_{1} \perp\left\langle\psi_{2}\right\rangle_{\Gamma}$ since,-for $\gamma_{1}, \gamma_{2} \in \Gamma,-$

$$
\left\langle\Pi\left(\gamma_{1}\right) \psi_{1}, \Pi\left(\gamma_{2}\right) \psi_{2}\right\rangle_{\mathcal{H}}=-\left\langle\Pi\left(\gamma_{2}^{-1} \gamma_{1}\right) \psi_{1}, \psi_{2}\right\rangle_{\mathcal{H}}=0
$$

because- $\Pi\left(\gamma_{2}^{-1} \gamma_{1}\right) \psi_{1} \in V_{1}$ and $-\psi_{2} \in V_{1}^{\perp}$.- Let- $V_{2}=-\left\langle\psi_{1}\right\rangle_{\Gamma} \oplus\left\langle\psi_{2}\right\rangle_{\Gamma}$. We-iterate the-process-to-obtain-

$$
V_{k}=\bigoplus_{j=1}^{k}\left\langle\left\langle\psi_{j}\right\rangle_{\Gamma}\right.
$$

where $-\left\langle\psi_{i}\right\rangle_{\Gamma} \perp\left\langle\psi_{j}\right\rangle_{\Gamma}$ for- $i \neq-j,-i, j=1, \ldots, k$.- Since $-\left\{e_{1}, \ldots, e_{n_{k}}\right\} \subset V_{k}$ and-$V=-\overline{s p a n}\left\{e_{n}\right\}_{n \in \mathbb{N}} \mathcal{H}$,-one-gets-(9)-after-a-countable-number-of-steps.-

Remark 12. From Lemma 11 one concludes that any Π-invariant subspace V of \mathcal{H} is generated by a countable family of elements of V, namely that $V=-$ $\operatorname{span}\left\{\Pi(\gamma) \psi_{i}:-\gamma \in \Gamma, i \in \mathcal{I}\right\}$.

When- Π-is-dual-integrable,- the-bracket- $[\psi, \psi]$-for-nonzero- $\psi \in \mathcal{H}$ provides-a-positive- $L^{1}(\mathcal{R}(\Gamma))$-weight-that-we-can-use-in-order-to-define-the-weighted-space$L^{2}(\mathcal{R}(\Gamma),[\psi, \psi])$-as-in-Subsection-2.4.- Explicitly,-the-induced-norm-is-

$$
\|F\|_{2,[\psi, \psi]}=-\left(\tau\left(\left|F^{*}\right|^{2}[\psi, \psi]\right)\right)^{\frac{1}{2}}=-\left\|[\psi, \psi]^{\frac{1}{2}} F\right\|_{2}
$$

and-the-inner-product-is-

$$
\left\langle F_{1}, F_{2}\right\rangle_{2,[\psi, \psi]}=-\left\langle[\psi, \psi]^{\frac{1}{2}} F_{1},[\psi, \psi]^{\frac{1}{2}} F_{2}\right\rangle_{2}=-\tau\left(F_{2}^{*}[\psi, \psi] F_{1}\right) .
$$

The- associated- weighted- space- is- needed- for- the-following- result,- which- was-proved-in- [1,-Prop.- 3.4]-and-lies-at-the-basis- of- our-subsequent-constructions.-For- $\psi \in \mathcal{H}$ let-us-use,-in-accordance-with-Subsection-2.4,-the-notation-

$$
\mathfrak{h}=-\mathfrak{h}([\psi, \psi])=-\left\{F \in \mathcal{R}(\Gamma)^{-\mid} \mid F=s_{[\psi, \psi]} F\right\} .
$$

Proposition 13. Let Γ-be a discrete group and Π^{-}a unitary representation of Γ^{-} on the separable Hilbert space \mathcal{H} such that $(\Gamma, \Pi, \mathcal{H})$-is a dual integrable triple. Then for any nonzero $\psi \in \mathcal{H}$ the map $S_{\psi}:=\operatorname{span}\{\Pi(\gamma) \psi\}_{\gamma \in \Gamma} \rightarrow \mathfrak{h}$ given by

$$
\begin{equation*}
S_{\psi}\left[\sum_{\gamma \in \Gamma}(f(\gamma) \Pi(\gamma) \psi]=-s_{[\psi, \psi]} \sum_{\gamma \in \Gamma}\left(f(\gamma) \rho(\gamma)^{*}\right.\right. \tag{10}
\end{equation*}
$$

is well-defined and extends to a linear surjective isometry

$$
S_{\psi}:-\langle\psi\rangle_{\Gamma} \rightarrow L^{2}(\mathcal{R}(\Gamma),[\psi, \psi])-
$$

satisfying

$$
\begin{equation*}
S_{\psi}[\Pi(\gamma) \varphi]=-S_{\psi}[\varphi] \rho(\gamma)^{*}, \quad \forall \varphi \in\langle\psi\rangle_{\Gamma} . \tag{11}
\end{equation*}
$$

Proof. Let-us-first-see-that- S_{ψ} is-well-defined.- Suppose-that-for-some- $\gamma \in \Gamma$-we-have- $\Pi(\gamma) \psi=-\psi$. Then-we-need-to-prove-that- $s_{[\psi, \psi]} \rho(\gamma)^{*}={ }^{-} s_{[\psi, \psi]}$. For-this,-let$v \in \operatorname{Ran}([\psi, \psi])$,-and-let- $u \in \ell_{2}(\Gamma)$-be-such- that- $v=[\psi, \psi] u$.- Then-

$$
\rho(\gamma) v=-\rho(\gamma)[\psi, \psi] u=[\psi, \Pi(\gamma) \psi] u=[\psi, \psi] u=-v,
$$

where- we-have-used-Property-II)- of- the-bracket-map.- A-simple-density-argu-ment- then- ensures- that $-\rho(\gamma) v=-v$ for- all- $v \in \overline{\operatorname{Ran}([\psi, \psi])}$.- This-means- that $\rho(\gamma) s_{[\psi, \psi]}=s_{[\psi, \psi]}$,-and-the-conclusion-follows-by-taking-the-adjoint.-

Let-now- $\varphi=-\sum_{\gamma \in \Gamma}\left(f(\gamma) \Pi(\gamma) \psi \in \operatorname{span}\{\Pi(\gamma) \psi\}_{\gamma \in \Gamma}\right.$ be-a-finite-sum.- Then-

$$
\begin{aligned}
\left\|S_{\psi}[\varphi]\right\|_{2,[\psi, \psi]}^{2} & =-\|[\psi, \psi]^{\frac{1}{2}} \sum_{\gamma \in \Gamma}\left(f(\gamma) \rho(\gamma)^{*} \|_{2}^{2}\right. \\
& =-\tau\left(\sum_{\gamma_{1}, \gamma_{2} \in[}\left(\overline{f\left(\gamma_{1}\right)} \rho\left(\gamma_{1}\right)[\psi, \psi] f\left(\gamma_{2}\right) \rho\left(\gamma_{2}\right)^{*}\right)=-\tau([\varphi, \varphi]) \in-\|\varphi\|_{\mathcal{H}}^{2}\right.
\end{aligned}
$$

Therefore, S_{ψ} can-be-extended- by- density- to- a- linear- isometry- from ${ }^{-}\langle\psi\rangle_{\Gamma}$ to$L^{2}(\mathcal{R}(\Gamma),[\psi, \psi])$.- To-prove-surjectivity,-suppose-that- $F \in L^{2}(\mathcal{R}(\Gamma),[\psi, \psi])$-satisfies ${ }^{-}$

$$
\left\langle F, S_{\psi}[\varphi]\right\rangle_{2,[\psi, \psi]}=0^{-} \quad \forall \varphi \in\langle\psi\rangle_{\Gamma} .
$$

In-particular,-for-all- $\gamma \in \Gamma^{-}$

$$
0=-\left\langle F, S_{\psi}[\Pi(\gamma) \psi]\right\rangle_{2,[\psi, \psi]}=-\left\langle F, s_{[\psi, \psi]} \rho(\gamma)^{*}\right\rangle_{2,[\psi, \psi]}=-\tau(\rho(\gamma)[\psi, \psi] F) .
$$

Since-both $[\psi, \psi]^{\frac{1}{2}}$ and $-[\psi, \psi]^{\frac{1}{2}} F$ belong-to- $L^{2}(\mathcal{R}(\Gamma)$), see-Remark-5, then- $[\psi, \psi] F \in$ $L^{1}(\mathcal{R}(\Gamma))$ - and-by- the- uniqueness- of- Fourier-coefficients- one- gets- $[\psi, \psi] F=-0$ -This-implies- $[\psi, \psi]^{\frac{1}{2}} F=-0$,-so- $\|F\|_{2,[\psi, \psi]}=-0$-and-hence $-F=-0$.-

Finally,- to- prove- (11),-it-suffices- to- prove-it-on-a-dense-subspace.- If- $\varphi=$ $\sum_{\gamma \in \Gamma}\left\{(\gamma) \Pi(\gamma) \psi \in \operatorname{span}\{\Pi(\gamma) \psi\}_{\gamma \in \Gamma}\right.$ is-a-finite-sum,-then-

$$
\begin{aligned}
S_{\psi}[\Pi(\gamma) \varphi] & =-S_{\psi}\left[\sum_{\gamma^{\prime} \in \Gamma}\left(f\left(\gamma^{\prime}\right) \Pi\left(\gamma \gamma^{\prime}\right) \psi\right]=-s_{[\psi, \psi]} \sum_{\gamma^{\prime} \in \Gamma}\left(f\left(\gamma^{\prime}\right) \rho\left(\gamma \gamma^{\prime}\right)^{*}\right.\right. \\
& =-s_{[\psi, \psi]} \sum_{\gamma^{\prime} \in \Gamma}\left(f\left(\gamma^{\prime}\right) \rho\left(\gamma^{\prime}\right)^{*} \rho(\gamma)^{*}=-S_{\psi}[\varphi] \rho(\gamma)^{*} .\right.
\end{aligned}
$$

We-are-now-ready- to- prove- the- converse- of- Proposition-10- to- finally-get- a^{-} complete-proof-of-Theorem-8.-
Proposition 14. Let Γ-be a discrete group and Π - a unitary representation of Γ on the separable Hilbert space \mathcal{H} such that $(\Gamma, \Pi, \mathcal{H})$-is a dual integrable triple. Then $(\Gamma, \Pi, \mathcal{H})$-admits a Helson map.
Proof. Let- $=-\left\{\psi_{i}\right\}_{i \in \mathcal{I}}$ be-a-family-as-in-Lemma-11-for- \mathcal{H}, -i.e. $-\mathcal{H}=-\bigoplus_{i \in \mathcal{I}}\left\langle\left\langle\psi_{i}\right\rangle_{\Gamma}\right.$.
For- $\varphi \in \mathcal{H}$ define-

$$
\left.U(\varphi)=-\left\{\left[\psi_{i}, \psi_{i}\right]^{\frac{1}{2}} S_{\psi_{i}}\left[\mathbb{P}_{\left\langle\psi_{i}\right\rangle_{\Gamma}} \varphi\right]\right\}\right\}_{\| \in \mathcal{I}}
$$

where- $S_{\psi_{i}}$ is- given- by-Proposition- 13 - and- $\mathbb{P}_{\left\langle\psi_{i}\right\rangle_{\Gamma}}$ denotes- the-orthogonal- pro-jection- of- \mathcal{H} onto- $\left\langle\psi_{i}\right\rangle_{\Gamma}$.- We-shall-show-that- U is-a-Helson-map-for $-(\Gamma, \Pi, \mathcal{H})^{-}$ taking-values-in- $\ell_{2}\left(\mathcal{I}, L^{2}(\mathcal{R}(\Gamma))\right)$.-For- $\varphi \in \mathcal{H}$,-by-Proposition-13-we-get

$$
\begin{aligned}
\|U(\varphi)\|_{\ell_{2}\left(\mathcal{I}, L^{2}(\mathcal{R}(\Gamma))\right)}^{2} & =\sum_{i \in \mathcal{I}}\left\|\left[\psi_{i}, \psi_{i}\right]^{\frac{1}{2}} S_{\psi_{i}}\left[\mathbb{P}_{\left\langle\psi_{i}\right\rangle_{\Gamma}} \varphi\right]\right\|_{2}^{2}=-\sum_{i \in \mathcal{I}}\left(S_{\psi_{i}}\left[\mathbb{P}_{\left\langle\psi_{i}\right\rangle_{\Gamma}} \varphi\right] \|_{2,\left[\psi_{i}, \psi_{i}\right]}^{2}\right. \\
& =\sum_{i \in \mathcal{I}}\left(\mathbb{P}_{\left\langle\psi_{i}\right\rangle_{\Gamma}} \varphi\left\|_{\mathcal{H}}^{2}=-\right\| \varphi \|_{\mathcal{H}}^{2} .\right.
\end{aligned}
$$

This-shows- that- $U(\varphi):-\mathcal{H} \rightarrow \ell_{2}\left(\mathcal{I}, L^{2}(\mathcal{R}(\Gamma))\right)^{-}$- is- an- isometry.- Property- ${ }^{-}$(6)of the-Helson- map- is a- consequence- of- (11)- and the- fact- that- an- orthogonal-projection-onto-an-invariant-subspace-commutes-with-the-representation.-

4 Left-invariant spaces in $\ell_{2}(\Gamma)$

In- this- section- we-study- invariant- subspaces- of- $\ell_{2}(\Gamma)$ - under- the- left- regular-representation- λ.- As-it-is-customary,-we-will-call-such-spaces-left-invariant.- We-begin-with-the-following-basic-fact.-
Lemma 15. An orthogonal projection onto the closed subspace $V \subset \ell_{2}(\Gamma)$-belongs to $\mathcal{R}(\Gamma)$-if and only if V is left-invariant.
Proof. By- $(1)-\mathbb{P}_{V}$ belongs-to- $\mathcal{R}(\Gamma)$-if-and-only-if- $\mathbb{P}_{V} \lambda(\gamma)=-\lambda(\gamma) \mathbb{P}_{V}$ for-all- $\gamma \in \Gamma$.-Let-us then first-assume that $-\lambda(\Gamma) V \subset V$.- Then-also- V^{\perp} is-left-invariant,-because-for-all- $\gamma \in \Gamma,-v \in V,-v^{\prime} \in V^{\perp}$ it-holds ${ }^{-}$

$$
\left\langle v, \lambda(\gamma) v^{\prime}\right\rangle=-\left\langle\lambda(\gamma)^{*} v, v^{\prime}\right\rangle=-\left\langle\lambda\left(\gamma^{-1}\right) v, v^{\prime}\right\rangle=0
$$

so- $\lambda(\gamma) v^{\prime} \perp v$, -and-hence- $\lambda(\Gamma) V^{\perp} \subset V^{\perp} .-$ Then, for-all- $u \in \ell_{2}(\Gamma)^{-}$

$$
\mathbb{P}_{V} \lambda(\gamma) u=-\mathbb{P}_{V} \lambda(\gamma) \mathbb{P}_{V} u+-\mathbb{P}_{V} \lambda(\gamma) \mathbb{P}_{V} \perp u=-\lambda(\gamma) \mathbb{P}_{V} u
$$

and-thus, $-\mathbb{P}_{V} \in \mathcal{R}(\Gamma)$.-
Conversely,-let- $\mathbb{P}_{V} \in \mathcal{R}(\Gamma)$.- Then-for-all- $v \in V$ we-have- $\lambda(\gamma) v=-\lambda(\gamma) \mathbb{P}_{V} v=-$ $\mathbb{P}_{V} \lambda(\gamma) v \in V .-$ Hence, $-\lambda(\Gamma) V \subset V$.

For-the-left-regular-representation-a-natural-Helson-map-is-provided-in-the-following-propositions.-

Proposition 16. A Helson map for the left regular representation is the group Fourier transform, that is $\mathscr{T}:-\ell_{2}(\Gamma) \rightarrow L^{2}(\mathcal{R}(\Gamma))$-is given by

$$
\begin{equation*}
\mathscr{T}[f]=-\mathcal{F}_{\Gamma} f=-\sum_{\gamma \in \Gamma}\left(f(\gamma) \rho(\gamma)^{*}, \quad f \in \ell_{2}(\Gamma)-\right. \tag{12}
\end{equation*}
$$

where in this case the measure spaces \mathcal{M} is taken to be a singelton. As a consequence, the bracket map for the left regular representation reads

$$
\begin{equation*}
[f, g]=\left(\mathcal{F}_{\Gamma} g\right)^{*} \mathcal{F}_{\Gamma} f, \quad f, g \in \ell_{2}(\Gamma) \tag{13}
\end{equation*}
$$

Proof. By-Plancherel-Theorem,-we-have-that- \mathscr{T} defined-as-in-(12)-is-a-surjective-isometry.-We-can-check-the-Helson-property-(6)-by-direct-computation,-since-

$$
\begin{align*}
\mathcal{F}_{\Gamma} \lambda(\gamma) f & =-\sum_{\gamma^{\prime} \in \Gamma} \lambda(\gamma) f\left(\gamma^{\prime}\right) \rho\left(\gamma^{\prime}\right)^{*}=-\sum_{\gamma^{\prime} \in \Gamma} f\left(\gamma^{-1} \gamma^{\prime}\right) \rho\left(\gamma^{\prime}\right)^{*}=-\sum_{\gamma^{\prime \prime} \in \Gamma}\left(f\left(\gamma^{\prime \prime}\right) \rho\left(\gamma \gamma^{\prime \prime}\right)^{*}\right. \\
& =-\sum_{\gamma^{\prime \prime} \in \Gamma}\left(f\left(\gamma^{\prime \prime}\right) \rho\left(\gamma^{\prime \prime}\right)^{*} \rho(\gamma)^{*}=\left(\mathcal{F}_{\Gamma} f\right) \rho(\gamma)^{*}\right. \tag{14}
\end{align*}
$$

Then,-(13)-follows-from-Proposition-10.-
Analogously, the-right-regular-representation $-\rho$ is-always-dual-integrable,-and-a-Helson-map- $\mathscr{T}: \ell_{2}(\Gamma)-\rightarrow L^{2}(\mathcal{R}(\Gamma))$-is-provided-by-

$$
\mathscr{T}[f]=-\sum_{\gamma \in \Gamma}\left(f(\gamma) \rho(\gamma)^{-}, \quad f \in \ell_{2}(\Gamma) .\right.
$$

The-following theorem-characterizes the-subspaces-of- $\ell_{2}(\Gamma)$ that-are-invariant-under-the-left-regular-representation- λ.-

Theorem 17. Let $V \subset \ell_{2}(\Gamma)$-be a closed subspace. Then the following are equivalent
i) V is left-invariant;
ii) $\exists q \in \mathcal{R}(\Gamma)$-orthogonal projection of $\ell_{2}(\Gamma)$-such that $\mathcal{F}_{\Gamma}(V)=-q L^{2}(\mathcal{R}(\Gamma))$.

Moreover, in this case we have $q=-\mathbb{P}_{V}$.
Proof. Let-us-first-prove-that- i-implies- $i i$)-Let- $q=-\mathbb{P}_{V},-$ which-belongs-to- $\mathcal{R}(\Gamma)$ -by-Lemma-15.- By-(3)-we-have $-q(f)=-f * \widehat{q}$ for-all- $f \in \ell_{2}(\Gamma)$.- Thus,- by-(4)-

$$
\begin{equation*}
q\left(\mathcal{F}_{\Gamma} f\right)=-\sum_{\gamma \in \Gamma} f * \widehat{q}(\gamma) \rho(\gamma)^{*}=-\sum_{\gamma \in \Gamma}\left\{(f)(\gamma) \rho(\gamma)^{*}=-\mathcal{F}_{\Gamma}(q(f))\right. \tag{15}
\end{equation*}
$$

Now, - if $-f \in V,-$ then $-q(f)=-f$ and-by- $(15),-\mathcal{F}_{\Gamma} f=-q\left(\mathcal{F}_{\Gamma} f\right) .-\operatorname{So}-\mathcal{F}_{\Gamma}(f)-\in$ $q L^{2}(\mathcal{R}(\Gamma))$, which-shows that $-\mathcal{F}_{\Gamma}(V)-\subset q L^{2}(\mathcal{R}(\Gamma)) .-$ Conversely, if $-F \in q L^{2}(\mathcal{R}(\Gamma)),-$ then- $q F=-F$.- If $f=-\widehat{F}$,- we- then- have- that $q\left(\mathcal{F}_{\Gamma} f\right)=-\mathcal{F}_{\Gamma} f,-$ so- by- $^{-}(15),-$ $f=-q(f)-\in V .-$ Thus $-F \in \mathcal{F}_{\Gamma}(V)$.

Let- us- prove- that- $i i$)-implies- i - Let $f \in V .-$ Then $-\mathcal{F}_{\Gamma} f=-q G$ for-some$G \in L^{2}(\mathcal{R}(\Gamma))$.- By-(14),-we-have-that,-for-each- $\gamma \in \Gamma,-\mathcal{F}_{\Gamma} \lambda(\gamma) f=\left(\mathcal{F}_{\Gamma} f\right) \rho(\gamma)^{*}=-$ $q G \rho(\gamma)^{*} \in q L^{2}(\mathcal{R}(\Gamma))$.- This-implies-that- $\lambda(\gamma) f \in V$ for-all- $\gamma \in \Gamma .-$

The-following- result- extends- to- general- discrete- groups ${ }^{-}$- - classical- result-attributed-to-Srinivasan-[29]-and-Wiener-[32]-(see-also-[9,-Corollary-3.9]).-

Corollary 18. Let $W \subset L^{2}(\mathcal{R}(\Gamma))$ be a closed subspace. Then $W \rho(\gamma)-\subset$ $W \forall \gamma \in \Gamma^{-}$if and only if there exists an orthogonal projection $q \in \mathcal{R}(\Gamma)$-such that $W=-q L^{2}(\mathcal{R}(\Gamma))$.

Proof. By-Theorem-17,-we-know-that-there-exists-an-orthogonal-projection- $q \in$ $\mathcal{R}(\Gamma)$-such-that- $W=-q L^{2}\left(\mathcal{R}(\Gamma)\right.$-if-and-only-if- $W=-\mathcal{F}_{\Gamma} V$ for-some-left-invariant-subspace- $V \subset \ell_{2}(\Gamma)$.- On- the- other-hand,- by- (14) - we- have- that- $\mathcal{F}_{\Gamma} \lambda(\gamma) f=-$ $\left(\mathcal{F}_{\Gamma} f\right) \rho(\gamma)^{*}$ for-all- $f \in \ell_{2}(\Gamma)$-and-all- $\gamma \in \Gamma$.- Thus,-for-all- $\gamma \in \Gamma$,- we-have-that$\lambda(\gamma) v \in V$ if-and-only-if- $\left(\mathcal{F}_{\Gamma} v\right) \rho(\gamma)^{*} \in W$ for-all $v \in V$.-

We-now-prove-that-every-closed-subspace-of- $\ell_{2}(\Gamma)$-which-is-invariant-under-the-left-regular-representation-is-principal,-and-it-can-be-generated-by-a-Parseval-frame-gnerator.-

Proposition 19. Every left-invariant closed subspace $V \subset \ell_{2}(\Gamma)$-is principal, i.e. there exists $\psi \in \ell_{2}(\Gamma)$-such that

$$
V=\overline{\operatorname{span}\{\lambda(\gamma) \psi\}_{\gamma \in \Gamma}} \ell_{2}(\Gamma)
$$

Moreover, for $p=-\widehat{\mathbb{P}_{V}} \in \ell_{2}(\Gamma)$, the system $\{\lambda(\gamma) p\}_{\gamma \in \Gamma}$ is a Parseval frame for V.

Proof. Let- $V \subset \ell_{2}(\Gamma)$-be-left-invariant.- Then,-for- $f \in V$, -using-(3)-

$$
f=-\mathbb{P}_{V} f=-f * p=-\sum_{\gamma \in \Gamma}\left(f(\gamma) \lambda(\gamma) p \in{\overline{\operatorname{span}\{\lambda(\gamma) p\}_{\gamma \in \Gamma}}}^{\ell_{2}(\Gamma)},\right.
$$

which proves that- $V \subset \overline{\operatorname{span}\{\lambda(\gamma) p\}_{\gamma \in \Gamma}}{ }^{\ell_{2}(\Gamma)}$.- Now, -observe that- $\mathbb{P}_{V} \in \mathbb{P}_{V} L^{2}(\mathcal{R}(\Gamma))$ -which-coincides-with- $\mathcal{F}_{\Gamma} V$ by-Theorem-17.-Then, $-p \in V$ and thus $\overline{\operatorname{span}\{\lambda(\gamma) p\}_{\gamma \in \Gamma} \subset}$ V,- proving-the-other-inclusion.- Then,- we-can-choose $-\psi=-p$.-

Let-us-see-now- that-the-system- $\{\lambda(\gamma) p\}_{\gamma \in \Gamma}$ is-a-Parseval-frame-for $-V$.- For-this,- note- that- by- (13)- in-Proposition-16,- the- bracket-map- for- λ is- given- by$[f, g]=\left(\mathcal{F}_{\Gamma} g\right)^{*}\left(\mathcal{F}_{\Gamma} f\right), f, g, \in \ell_{2}(\Gamma) .-$ Then,- since- $\mathcal{F}_{\Gamma} p=-\mathbb{P}_{V},{ }^{-}$one- has- $[p, p]=-$ $\mathbb{P}_{V}^{*} \mathbb{P}_{V}=-\mathbb{P}_{V}{ }^{-}$-So,-by-[1,-Th.-A],-the-system- $\{\lambda(\gamma) p\}_{\gamma \in \Gamma}$ is-a-Parseval-frame.

5 Invariant subspaces of unitary representations

The-following-result-gives-a-characterization-of-invariant-subspaces-in-terms-in-the-invariance-of-its-image-under-a-Helson-map.-

Theorem 20. Let $(\Gamma, \Pi, \mathcal{H})$-be a dual integrable triple with associated Helson map \mathscr{T}, and let $V \subset \mathcal{H}$ be a closed subspace. Then, the following are equivalent
i) V is Π-invariant
ii) $\mathscr{T}[V] \rho(\gamma)-\subset \mathscr{T}[V]$-for all $\gamma \in \Gamma^{-}$
iii) $\mathscr{T}[V] F \subset \mathscr{T}[V]$-for all $F \in \mathcal{R}(\Gamma)$ -

Proof. The-equivalence-of- i)-and- $i i$-is-a-direct-consequence-of-the-definition-of-Helson-map,- while- $\left.i i i)^{-} \Rightarrow i\right)^{-}$-is-trivial.- We-only-need-to-prove- $\left.\left.i\right)^{-} \Rightarrow i i i\right)^{-}$- To-see-this,-let-us-first-see-that-

$$
\begin{equation*}
\mathscr{T}\left[S_{\psi}^{-1}\left(s_{[\psi, \psi]} F\right)\right] \neq-\mathscr{T}[\psi] F \tag{16}
\end{equation*}
$$

for- every- $\psi \in \mathcal{H}$ and- every- $F \in \mathcal{R}(\Gamma)$,- where- S_{ψ} is- the- isometry- given- by-Proposition-13.- To- see- this,- observe- first- that- (16)- holds- for- trigonometric-polynomials-as-a-consequence-of-(6).- Let-then- $F \in \mathcal{R}(\Gamma)$-and-let- $\left\{F_{n}\right\}_{n \in \mathbb{N}}$ be-a-sequence-of-trigonometric-polynomials-such-that- $\left\{F_{n}^{*}\right\}_{n \in \mathbb{N}}$ converges-strongly to- F^{*},-i.e.

$$
\left\|F_{n}^{*} u-F^{*} u\right\|_{\ell_{2}(\Gamma)} \rightarrow 0, \quad \forall u \in \ell_{2}(\Gamma)
$$

Observe- that-such- a-sequence- always- exists-because- $\mathcal{R}(\Gamma)$ - coincides- with- the-SOT-closure-of-trigonometric-polynomials-by-von-Neumann's-Double-Commu-tant-Theorem-(see-e.g.- [12]).- This-implies-that-for-all- $\psi \in \mathcal{H}$

$$
\begin{equation*}
\left\|F_{n}-F\right\|_{2,[\psi, \psi]} \rightarrow 0 \tag{17}
\end{equation*}
$$

Indeed,-by-definition-of-the-weighted-norm-we-have-

$$
\begin{aligned}
\left\|F_{n}-F\right\|_{2,[\psi, \psi]}^{2} & =-\left\|[\psi, \psi]^{\frac{1}{2}}\left(F_{n}-F\right)\right\|_{2}^{2}=-\tau\left(\left(F_{n}-F\right)\left(F_{n}-F\right)^{*}[\psi, \psi]\right)- \\
& =\left\langle\left(F_{n}-F\right)^{*}[\psi, \psi] \delta_{\mathrm{e}},\left(F_{n}-F\right)^{*} \delta_{\mathrm{e}}\right\rangle_{\ell_{2}(\Gamma)} \\
& \leq\left\|\left(F_{n}-F\right)^{*}[\psi, \psi] \delta_{\mathrm{e}}\right\|_{\ell_{2}(\Gamma)}\left\|\left(F_{n}-F\right)^{*} \delta_{\mathrm{e}}\right\|_{\ell_{2}(\Gamma)}
\end{aligned}
$$

where- $[\psi, \psi] \delta_{\mathrm{e}} \in \ell_{2}(\Gamma)$-because-the-domain- of- $[\psi, \psi]-\in L^{1}(\mathcal{R}(\Gamma)$-contains-finite-sequences-(see-e.g.- $\left[1,-\right.$ Section-2]).- Then-(17)-follows-because- $\left\{F_{n}^{*}\right\}_{n \in \mathbb{N}}$ converges-strongly-to- F^{*}.- Now,-by-Proposition-13,-we-have-

$$
\begin{equation*}
\left\|S_{\psi}^{-1}\left(s_{[\psi, \psi]} F\right)-S_{\psi}^{-1}\left(s_{[\psi, \psi]} F_{n}\right)\right\|_{\mathcal{H}}=-\left\|F-F_{n}\right\|_{2,[\psi, \psi]} \tag{18}
\end{equation*}
$$

for-all- $\psi \in \mathcal{H}$ and thus-(17)-implies that- $S_{\psi}^{-1}\left(s_{[\psi, \psi]} F_{n}\right)$-converges-to- $S_{\psi}^{-1}\left(s_{[\psi, \psi]} F\right)$ -in- \mathcal{H}.- As-a-consequence,-since- \mathscr{T} is ${ }^{-}$continuous,-we-obtain-

$$
\mathscr{T}\left[S_{\psi}^{-1}\left(s_{[\psi, \psi]} F_{n}\right)\right]^{-}-\mathscr{T}\left[S_{\psi}^{-1}\left(s_{[\psi, \psi]} F\right)\right]_{\oplus}^{-} \rightarrow 0^{-} \forall \psi \in \mathcal{H} .
$$

Since- $\mathscr{T}\left[S_{\psi}^{-1}\left(s_{[\psi, \psi]} F_{n}\right)\right]=-\mathscr{T}[\psi] F_{n}$, the-identity-(16)-is-proved-by-showing-that $\mathscr{T}[\psi] F_{n}$ converges-to- $\mathscr{T}[\psi] F$ in- $L^{2}\left((\mathcal{M}, \nu), L^{2}(\mathcal{R}(\Gamma))\right)$. ${ }^{\text {Now-we-have- }}$

$$
\begin{align*}
& \left\|\mathscr{T}[\psi] F-\mathscr{T}[\psi] F_{n}\right\|_{\oplus}^{2}=-\tau\left(\iint_{\mu}\left|\mathscr{T}[\psi](x)\left(F-F_{n}\right)\right|^{2} d \nu(x)\right)(\\
& =-\tau\left(\left|\left(F-F_{n}\right)^{*}\right|^{2} \int f_{\mu}|\mathscr{T}[\psi](x)|^{2} d \nu(x)\right)\left(=-\left\|F-F_{n}\right\|_{2,[\psi, \psi]}^{2}\right. \tag{19}
\end{align*}
$$

where-the-last-identity-is-due-to-Proposition-10.- Therefore-convergence-is-pro-vided-by-(17).-

Assume- that $-V$ is- Π-invariant,- and ${ }^{-}$take $-\psi \in V$ and $-F \in \mathcal{R}(\Gamma)$.- Then,- by ${ }^{-}$ (16)-and-Proposition-13,-we-have-

$$
\mathscr{T}[\psi] F=-\mathscr{T}\left[S_{\psi}^{-1}\left(s_{[\psi, \psi]} F\right)\right]-\in \mathscr{T}\left[\langle\psi\rangle_{\Gamma}\right]-\subset \mathscr{T}[V] .
$$

We-observe-that-a-subspace- M of $-L^{2}\left((\mathcal{M}, \nu), L^{2}(\mathcal{R}(\Gamma))\right.$) patisfying-condition-iii)-in-Theorem-20-is-what-in-the-abelian-case-is-called-multiplicatively invariant space-(see-e.g.- [9]).- Then,- Theorem-20-is-a-version- of- $[9,-$ Theorem-3.8]-in-the-noncommutative-setting,-for-a-discrete-group-and-general-representations.-

The-next-corollary-follows-directly-from-the-properties-of-a-Helson-map.-
Corollary 21. Let $(\Gamma, \Pi, \mathcal{H})$-be a dual integrable triple with associated Helson map \mathscr{T}, and let $V \subset \mathcal{H}$ be a Π-invariant subspace generated by $\left\{\psi_{j}\right\}_{j \in \mathcal{I}} \subset \mathcal{H}$, that is

$$
\left.V=-\overline{\operatorname{span}\left\{\Pi(\gamma) \psi_{j}:-j \in \mathcal{I}, \gamma \in \Gamma\right.}\right\}^{\mathcal{H}} .
$$

Then

$$
\mathscr{T}[V]=-\overline{\operatorname{span}\left\{\mathscr{T}\left[\psi_{j}\right] \rho(\gamma) \because-j \in \mathcal{I}, \gamma \in \Gamma\right\}} L^{L^{2}}\left((\mathcal{M}, \nu), L^{2}(\mathcal{R}(\Gamma))\right)
$$

The-following- result- gives- a- characterization- of- the-elements- belonging- to$\langle\psi\rangle_{\Gamma}$ in-terms- of- a-multiplier- that-belongs- to- $L^{2}(\mathcal{R}(\Gamma),[\psi, \psi]) .^{-}$This- extends-to- the-noncommutative-setting- [13,- Th.- 2.14],-that- is- one- of- the-fundamental-results-in-the-theory-of-shift-invariant-spaces.-

Proposition 22. Let $(\Gamma, \Pi, \mathcal{H})$-be a dual integrable triple with associated Helson map \mathscr{T} and let $\psi \in \mathcal{H}$. Then the following hold:
i) the mapping $F \mapsto \mathscr{T}[\psi] F$ from $\mathfrak{h}([\psi, \psi])$-to $L^{2}\left((\mathcal{M}, \nu), L^{2}(\mathcal{R}(\Gamma))\right)$ (can be extended by density to an isometry on the whole $L^{2}(\mathcal{R}(\Gamma),[\psi, \psi])$;
ii) $\varphi \in\langle\psi\rangle_{\Gamma}$ if and only if there exists $F \in L^{2}(\mathcal{R}(\Gamma),[\psi, \psi])$-satisfying

$$
\mathscr{T}[\varphi]=-\mathscr{T}[\psi] F
$$

and in this case one has $[\varphi, \psi]=[\psi, \psi] F$.
Proof. In- order- to- see- i),- it- is- enough- to- note- that,- by- (19),- we- have- that $\|\mathscr{T}[\psi] F\|_{\oplus}^{2}=-\|F\|_{2,[\psi, \psi]}^{2}$ for-all- $F \in \mathfrak{h}([\psi, \psi])$.- Therefore,- the-conclusion-follows.-

Let-us-then-prove-ii).- Observe-first-that-what-we-have-just-proved-allows-us-to-extend-(16)-to-

$$
\begin{equation*}
\mathscr{T}\left[S_{\psi}^{-1} F\right]=\mathscr{T}[\psi] F \quad \forall \psi \in \mathcal{H}, F \in L^{2}(\mathcal{R}(\Gamma),[\psi, \psi]) . \tag{20}
\end{equation*}
$$

Indeed,-for- $\left\{F_{n}\right\}_{n \in \mathbb{N}} \subset \mathfrak{h}([\psi, \psi])$-a-sequence-converging-to- $F \in L^{2}(\mathcal{R}(\Gamma),[\psi, \psi])$, we-know-by-(16)-that-

$$
\mathscr{T}\left[S_{\psi}^{-1} F_{n}\right]=-\mathscr{T}[\psi] F_{n} \quad \forall n \in \mathbb{N}
$$

and,-by-(19),-we-have-that-the-right-hand-side-converges-to- $\mathscr{T}[\psi] F$.- By-the-con-tinuity-of- \mathscr{T},-in-order-to-show-(20)-we-then-need-only-to-prove-that- $\left\{S_{\psi}^{-1} F_{n}\right\}_{n \in \mathbb{N}}$ converges-to- $S_{\psi}^{-1} F$ in- \mathcal{H}, - which-is-true-by-(18).

Now,-by-Proposition-13,-we-have-that-(20)-implies-that- $\varphi \in\langle\psi\rangle_{\Gamma}$ if-and-only-if-there-exists- $F \in L^{2}(\mathcal{R}(\Gamma),[\psi, \psi])$-satisfying- $\mathscr{T}[\varphi]=-\mathscr{T}[\psi] F$.-

As-a-consequence,- by-using-(8),-we-have-that-

$$
[\varphi, \psi]=-\iint_{\mu} \mathscr{T}[\psi](x)^{*} \mathscr{T}[\varphi](x) d x=-\left(\int_{\mathcal{M}} \mathscr{T}[\psi](x)^{*} \mathscr{T}[\psi](x) d x\right) \notin=[\psi, \psi] F
$$

Proposition-22-extends-to-finitely-generated-invariant-spaces-as-follows,-gen-eralizing-[14,-Theorem-1.7]-
Corollary 23. Let $(\Gamma, \Pi, \mathcal{H})$-be a dual integrable triple with associated Helson map \mathscr{T}, and let $V \subset \mathcal{H}$ be a Π-invariant subspace generated by the finite family $\left\{\psi_{j}\right\}_{j=1}^{k} \subset \mathcal{H}$, that is

$$
V=\overline{\operatorname{span}\left\{\Pi(\gamma) \psi_{j}:-j \in\{1, \ldots, k\}, \gamma \in \Gamma\right\}}
$$

If, for each $j \in\{1, \ldots, k\}$, there exists $F_{j} \in L^{2}\left(\mathcal{R}(\Gamma),\left[\psi_{j}, \psi_{j}\right]\right)$ - such that

$$
\begin{equation*}
\mathscr{T}[\varphi]=-\sum_{j=1}^{k}\left(\mathscr{\int}\left[\psi_{j}\right] F_{j}\right. \tag{21}
\end{equation*}
$$

then $\varphi \in V$. Conversely, if $\sum_{j=1}^{k}\left\langle\left\langle\psi_{j}\right\rangle_{\Gamma}\right.$ is closed and $\varphi \in V$, then there exists $F_{j} \in L^{2}\left(\mathcal{R}(\Gamma),\left[\psi_{j}, \psi_{j}\right]\right)$-such that (21) holds.
Proof. Assume-first that-(21)-holds.- Then,-by-Proposition-(22),- $\mathscr{T}^{-1}\left[\mathscr{T}\left[\psi_{j}\right] F_{j}\right]-\in$ $\left\langle\psi_{j}\right\rangle_{\Gamma}$ for-all- $j=1, \ldots, k$, -so- $\varphi \in \sum_{j=1}^{k}\left\langle\psi \psi_{j}\right\rangle_{\Gamma} \subset V$.-

Conversely,-if- $\sum_{j=1}^{k}\left\langle\psi_{j}\right\rangle_{\Gamma}$ is-closed,-we-have-that $\sum_{j=1}^{k}\left\langle\left\langle\psi_{j}\right\rangle_{\Gamma}=-V\right.$. - Then, $-\varphi \in V$ implies-that- $\varphi=-\sum_{j=1}^{k} \psi_{j},-$ where- $\varphi_{j} \in\left\langle\psi_{j}\right\rangle_{\Gamma}$ for-all- $j=1, \ldots, k$.- So,- again- the-conclusion-follows-by-Proposition-(22).-

Recall-that-conditions-for-a-sum-of-subspaces-of-a-Hilbert-space-to-be-closed-can-be-found-in-[15].-

5.1 Minimality and biorthogonal systems

In-this- section-we- characterize- minimal- systems,- or- equivalently-biorthogonal-systems,-in-terms-of-a-condition-on-the-bracket-map.-We-recall-that,-for- $\psi \in \mathcal{H}$,-the-system- $\{\Pi(\gamma) \psi\}_{\gamma \in \Gamma}$ is-said-to-be-minimal-if,-for-all- $\gamma_{0} \in \Gamma$,-it-holds-

$$
\Pi\left(\gamma_{0}\right) \psi \notin \overline{\operatorname{span}\left\{\Pi(\gamma) \psi:-\gamma \in \Gamma, \gamma \neq-\gamma_{0}\right\}}{ }^{\mathcal{H}}
$$

Note- that,- by- the- same- argument- provided- in- [19],- it- can- be- proved- that$\{\Pi(\gamma) \psi\}_{\gamma \in \Gamma}$ is-minimal-if-and-only-if-

$$
\psi \notin \overline{\operatorname{span}\{\Pi(\gamma) \psi:-\gamma \in \Gamma, \gamma \neq \mathrm{e}\}^{\mathcal{H}}}
$$

Proposition 24. Let $(\Gamma, \Pi, \mathcal{H})$-be a dual integrable triple, and let $0-\neq-\psi \in \mathcal{H}$. The following are equivalent.
i) $\{\Pi(\gamma) \psi\}_{\gamma \in \Gamma}$ is minimal.
ii) There exists $\tilde{\psi} \in\langle\psi\rangle_{\Gamma}$ such that $\{\Pi(\gamma) \psi\}_{\gamma \in \Gamma}$ and $\{\Pi(\gamma) \widetilde{\psi}\}_{\gamma \in \Gamma}$ are biorthogonal systems
iii) $[\psi, \psi]$ - is invertible in $\ell_{2}(\Gamma)$-and $[\psi, \psi]^{-1} \in L^{1}(\mathcal{R}(\Gamma))$.

Proof. Recall-that- $\{\Pi(\gamma) \psi\}_{\gamma \in \Gamma}$ and- $\{\Pi(\gamma) \widetilde{\psi}\}_{\gamma \in \Gamma}$ are-biorthogonal-systems-if-

$$
\left\langle\Pi(\gamma) \psi, \Pi\left(\gamma^{\prime}\right) \widetilde{\psi}\right\rangle_{\mathcal{H}}=-\delta_{\gamma, \gamma^{\prime}} \quad \forall \gamma, \gamma^{\prime} \in \Gamma
$$

The-equivalence- of- i - -and- $i i$)- can-be-carried- out-following- the-same-argument-provided-in-[18,-Th.-6.1].-

Let- us- prove- $\left.i i)^{-} \Rightarrow i i i\right)^{-}$- Since- $\tilde{\psi} \in\langle\psi\rangle_{\Gamma}$, - by- Proposition- 22 - there- exists $F=-F_{\widetilde{\psi}} \in L^{2}(\mathcal{R}(\Gamma),[\psi, \psi])$ - such- that $-\mathscr{T}[\widetilde{\psi}]^{-}=-\mathscr{T}[\psi] F$ and $-[\widetilde{\psi}, \psi]=[\psi, \psi] F$. Moreover,- using-the-definition-of-dual-integrability,-it-follows-th $\operatorname{tt}-\{\Pi(\gamma) \psi\}_{\gamma \in \Gamma}$ and- $\{\Pi(\gamma) \widetilde{\psi}\}_{\gamma \in \Gamma}$ are-biorthogonal-if-and-only-if- $[\widetilde{\psi}, \psi]=-\mathbb{I}_{\ell_{2}(\Gamma)}$. Thus- $[\psi, \psi] F=-$ $\mathbb{I}_{\ell_{2}(\Gamma)}$,- which-shows- that- $[\psi, \psi]$ - is- invertible.- Its-ipverse-belongs- to- $L^{1}(\mathcal{R}(\Gamma))^{-}$ because-

$$
\begin{aligned}
\left\|[\psi, \psi]^{-1}\right\|_{1} & =-\tau\left([\psi, \psi]^{-1}\right)=-\tau(F)=-\tau(F[\psi, \psi] F)=-\|F\|_{2,[\psi, \psi]}=-\|\mathscr{T}[\psi] F\|_{\oplus} \\
& =-\|\mathscr{T}[\widetilde{\psi}]\|_{\oplus}=-\|\widetilde{\psi}\|_{\mathcal{H}} .
\end{aligned}
$$

Let- us- now- prove- $\left.{ }^{-i i i}\right)^{-} \Rightarrow$ ii)- Since ${ }^{-}[\psi, \psi]^{-1} \in L^{1}(\mathcal{R}(\Gamma))$,- it- follows- that$[\psi, \psi]^{-1} \in L^{2}(\mathcal{R}(\Gamma),[\psi, \psi])$.- In-fact-

$$
\tau\left(\left|[\psi, \psi]^{-1}\right|^{2}[\psi, \psi]\right)=-\tau\left([\psi, \psi]^{-1}\right)=-\left\|[\psi, \psi]^{-1}\right\|_{1}<\infty
$$

Then,- by-Proposition-13,- there- exists- $\widetilde{\psi} \notin\langle\psi\rangle_{\Gamma}$ such- that- $S_{\psi}[\widetilde{\psi}]=[\psi, \psi]^{-1}$.-Since- S_{ψ} is-an-isometry,-for-all- $\gamma \in \Gamma$-we- have-

$$
\begin{aligned}
\langle\Pi(\gamma) \psi, \widetilde{\psi}\rangle_{\mathcal{H}} & =-\left\langle S_{\psi}[\Pi(\gamma) \psi], S_{\psi}[\widetilde{\psi}]\right\rangle_{2,[\psi, \psi]}=-\left\langle\rho(\gamma)^{*},[\psi, \psi]^{-1}\right\rangle_{2,[\psi, \psi]} \\
& =-\tau\left(\rho(\gamma)^{*}[\psi, \psi]^{-1}[\psi, \psi]\right)=-\tau\left(\rho(\gamma)^{*}\right)=-\delta_{\gamma, 0}
\end{aligned}
$$

which-shows-biorthogonality.-

6 Frames of orbits

In-this-section-we-study-reproducing-properties-of-systems-of-the-form-

$$
\begin{equation*}
E=-\left\{\Pi(\gamma) \phi_{i}:-\gamma \in \Gamma, i \in \mathcal{I}\right\} \tag{22}
\end{equation*}
$$

where- $\left\{\phi_{i}\right\}_{i \in \mathcal{I}} \subset \mathcal{H}$ is-a-countable-family,- $(\Gamma, \Pi, \mathcal{H})$-is-a-dual-integrable-triple,-and- \mathcal{I} is- a- countable- index- set.- We- first- show- existence- of- Parseval- frames-sequences-of-that-form,-and-then-we-characterize-families- $\left\{\phi_{i}\right\}_{i \in \mathcal{I}}$ for-which-the-system- E of-their-orbits-is-a-Riesz-or-a-frame-sequence.-

6.1 Existence of Parseval frames

The- purpose-of-this-subsection-is-to-prove- that-every- Π-invariant-space-has-a-Parseval- frame-of- orbits.- We-start-by-doing-so-for-principal-spaces,-extending-[14,-Th.- 2.21]-and-[24,-Cor.- 3.8].

Theorem 25. Let $(\Gamma, \Pi, \mathcal{H})$ - be a dual integrable triple, and let $0-\neq-\psi \in \mathcal{H}$. Then there exists $\phi \in \mathcal{H}$ such that $\{\Pi(\gamma) \phi\}_{\gamma \in \Gamma}$ is a Parseval frame for $\langle\psi\rangle_{\Gamma}$.

Proof. Let- $p=\widehat{s_{[\psi, \psi]}} \in \ell_{2}(\Gamma)$,-that-is $-p(\gamma)={ }^{-} \tau\left(s_{[\psi, \psi]} \rho(\gamma)\right)$-for-every $-\gamma \in \Gamma$,-and-observe-that-

$$
\begin{aligned}
H_{\psi}:-\langle\psi\rangle_{\Gamma} & \rightarrow \overline{\operatorname{span}\{\lambda(\gamma) p\}_{\gamma \in \Gamma}} \ell_{2}(\Gamma) \\
\varphi & \left.\mapsto\left\{\tau\left([\psi, \psi]^{\frac{1}{2}} S_{\psi}[\varphi] \rho(\gamma)\right)\right\}\right\}_{\in \Gamma}
\end{aligned}
$$

is-an-isometric-isomorphism-of-Hilbert-spaces-satisfying-

$$
\begin{equation*}
H_{\psi}[\Pi(\gamma) \varphi]=-\lambda(\gamma) H_{\psi}[\varphi]-\quad \forall \gamma \in \Gamma, \varphi \in\langle\psi\rangle_{\Gamma} . \tag{23}
\end{equation*}
$$

Indeed, ${ }^{[}[\psi, \psi]^{\frac{1}{2}} S_{\psi}::^{-}\langle\psi\rangle_{\Gamma} \rightarrow s_{[\psi, \psi]} L^{2}(\mathcal{R}(\Gamma))$ - is- an- isometric- isomorphism- by-Propositions-13-and-4.- Now,-by-Theorem-17-we-know that- $V=-\left(s_{[\psi, \psi]} L^{2}(\mathcal{R}(\Gamma))\right)^{\wedge}$ is-a-left-invariant-subspace-of- $\ell_{2}(\Gamma)$-such that- $\mathbb{P}_{V}=-s_{[\psi, \psi]}=-\mathcal{F}_{\Gamma} p$,-and,-by-Propo-sition-19,-we-have-that- $V=-\overline{\operatorname{span}\left\{\lambda(\gamma) \widehat{\mathbb{P}}_{V}\right\} / \gamma \in \Gamma}{ }^{\ell_{2}(\Gamma)}$.- This-implies-that-

$$
H_{\psi}:\left\langle\langle\psi\rangle_{\Gamma} \rightarrow \overline{\operatorname{span}\{\lambda(\gamma) p\}_{\gamma \in \Gamma}} \ell_{2}(\Gamma)\right.
$$

is-an-isometric-isomorphism.- Additionally,-by-(11)-it-follows-that-

$$
[\psi, \psi]^{\frac{1}{2}} S_{\psi}[\Pi(\gamma) \varphi]=[\psi, \psi]^{\frac{1}{2}} S_{\psi}[\varphi] \rho(\gamma)^{*} \quad \forall \gamma \in \Gamma, \varphi \in\langle\psi\rangle_{\Gamma}
$$

Thus,- for $-\gamma, \gamma^{\prime} \in \Gamma$,- we-have-

$$
\begin{aligned}
H_{\psi}[\Pi(\gamma) \varphi]\left(\gamma^{\prime}\right) & =-\tau\left([\psi, \psi]^{\frac{1}{2}} S_{\psi}[\Pi(\gamma) \varphi] \rho\left(\gamma^{\prime}\right)\right)=-\tau\left([\psi \psi, \psi]^{\frac{1}{2}} S_{\psi}[\varphi] \rho(\gamma)^{*} \rho\left(\gamma^{\prime}\right)\right)(\\
& =-\tau\left([\psi, \psi]^{\frac{1}{2}} S_{\psi}[\varphi] \rho\left(\gamma^{-1} \gamma^{\prime}\right)\right)=-H_{\psi}[\psi]\left(\gamma^{-1} \gamma^{\prime}\right)=-\lambda(\gamma) H_{\psi}[\varphi]\left(\gamma^{\prime}\right)-
\end{aligned}
$$

hence-proving-(23).-
 frame-sequence-by-Proposition-19,-we-have-

$$
\begin{aligned}
\sum_{\gamma \in \Gamma}\left|\langle\varphi, \Pi(\gamma) \phi\rangle_{\mathcal{H}}\right|^{2} & =-\sum_{\gamma \in \Gamma}\left\langle\left.\left\langle H_{\psi}[\varphi], H_{\psi}[\Pi(\gamma) \phi]\right\rangle_{\ell_{2}(\Gamma)}\right|^{2}=-\sum_{\gamma \in \Gamma}\left\langle\left.\left\langle H_{\psi}[\varphi], \lambda(\gamma) p\right\rangle_{\ell_{2}(\Gamma)}\right|^{2}\right.\right. \\
& =-\left\|H_{\psi}\langle\varphi]\right\|_{\ell_{2}(\Gamma)}^{2}=-\|\varphi\|_{\mathcal{H}}^{2},
\end{aligned}
$$

showing-that- $\{\Pi(\gamma) \phi\}_{\gamma \in \Gamma}$ is-a-Parseval-frame-for $-\langle\psi\rangle_{\Gamma}$.-
Corollary 26. Let $V \subset \mathcal{H}$ be a Π-invariant subspace. Then there exist a countable family $\left\{\phi_{i}\right\}_{i \in \mathcal{I}} \subset \mathcal{H}$ such that $E=-\left\{\Pi(\gamma) \phi_{i}:-\gamma \in \Gamma, i \in \mathcal{I}\right\}$ is a Parseval frame for V.

Proof. Consider-a-family- $\left\{\psi_{i}\right\}_{i \in \mathcal{I}}$ as-in-Lemma-11.- Now,-for-each- $i \in \mathcal{I}$,-let- ϕ_{i} be-the-Parseval-frame-generator-of- $\left\langle\psi_{i}\right\rangle_{\Gamma}$ given-by-Theorem-25.-Since- $\left\langle\phi_{i}\right\rangle_{\Gamma} \perp\left\langle\phi_{j}\right\rangle_{\Gamma}$ for $-i \neq-j$, - the-system $-E$ is-a-Parseval frame-for $-V$.-

We-remark-that-this-corollary-extends-to-general-discrete-groups-and-unitary-representations-the-following-results-[8,-Th.- 3.3$],-[24,-$ Th. -3.10$],-[10,-$ Th. -4.11$]$, -[2,-Th.-5.5]-(see-also-[9,-Th.-5.3]).-

6.2 Characterization of frames and Riesz systems

This-subsection-is-devoted-to-characterize-the-reproducing-properties-of-systemsof the-form-(22).

For-instance,-we-can-easily-see-that- E is-an-orthonormal-system-if-and-only-if-

$$
\begin{equation*}
\left[\phi_{i}, \phi_{j}\right]=-\delta_{i, j} \mathbb{I}_{\ell_{2}(\Gamma)} . \tag{24}
\end{equation*}
$$

Indeed,- observe-first- that- by- definition- of- the- bracket-map- we- have- that,- for$i \neq-j$

$$
\left\langle\phi_{i}\right\rangle_{\Gamma} \perp\left\langle\phi_{j}\right\rangle_{\Gamma} \Longleftrightarrow\left[\phi_{i}, \phi_{j}\right]=0^{-}
$$

because-

$$
\left[\phi_{i}, \phi_{j}\right]=0 \Longleftrightarrow 0=-\tau\left(\left[\phi_{i}, \phi_{j}\right] \rho(\gamma)\right)==\left\langle\phi_{i}, \Pi(\gamma) \phi_{j}\right\rangle_{\mathcal{H}} \quad \forall \gamma \in \Gamma .
$$

Moreover,-for-each- $i \in \mathcal{I}$,-we-have-that $-\left\{\Pi(\gamma) \phi_{i}\right\}_{\gamma \in \Gamma}$ is-an-orthonormal-system-if-and-only-if- $\left[\phi_{i}, \phi_{i}\right]=-\mathbb{I}_{\ell_{2}(\Gamma)}$ by-the-same-argument-as-above-(see-also-[1,-i),-Th.A]).
 simple,- and-it- will-be- the- content- of- the-next- two- theorems.- The-structure- of-their-proofs- is- analogous- to the- one-developed - for- the-abelian- cases- in- $[8,-$ Th. -2.3]-and-[10,-Th.- 4.1-and-Th.-4.3].-

Theorem 27. Let $(\Gamma, \Pi, \mathcal{H})$-be a dual integrable triple, let $\left\{\phi_{i}\right\}_{i \in \mathcal{I}} \subset \mathcal{H}$ be a countable family, and denote by E the system

$$
E=-\left\{\Pi(\gamma) \phi_{i}:-\gamma \in \Gamma, i \in \mathcal{I}\right\} .
$$

Given two constants $0-<A \leq B<\infty$, the following conditions are equivalent:
i) E is a Riesz sequence with frame bounds A, B.
ii) $A \sum_{i \in \mathcal{I}}\left|F_{i}\right|^{2} \leq \sum_{i, j \in \mathcal{I}}\left(F_{j}^{*}\left[\phi_{i}, \phi_{j}\right] F_{i} \leq B \sum_{i \in \mathcal{I}}\left(\left.F_{i}\right|^{2}\right.\right.$ for all finite sequence $\left\{F_{i}\right\}_{i \in \mathcal{I}}$ in $\mathcal{R}(\Gamma)$.

Proof. Note-first-that,-if- \mathscr{T} is-a-Helson-map-associated-to- $(\Gamma, \Pi, \mathcal{H})$,-by-Propo-sition-10-we-have-

$$
\sum_{i, j \in \mathcal{I}} F_{j}^{*}\left[\phi_{i}, \phi_{j}\right] F_{i}=\int_{\mathcal{M}} \sum_{i \in \mathcal{I}}\left(\mathscr{T}\left[\phi_{i}\right](x) F_{i}^{2} d \nu(x) .\right.
$$

 the-Helson-map,-we-have-

$$
\begin{aligned}
\sum_{\substack{\gamma \in \Gamma \\
i \in \mathcal{I}}} \ngtr(\gamma, i) \Pi(\gamma) \phi_{i}^{2} & =-\left.\mathscr{T}\left[\sum_{\substack{\gamma \in \Gamma \\
i \in \mathcal{I}}} \nprec(\gamma, i) \Pi(\gamma) \phi_{i}\right]\right|_{\oplus} ^{2} \\
& =\int_{\mathcal{M}} \tau\left(\sum _ { i \in \mathcal { I } } \not \left(\gamma\left[\phi_{i}\right](x) \sum_{\gamma \in \Gamma} \not\left(\gamma(\gamma, i) \rho(\gamma)^{*}\right) d \nu(x) .\right.\right.
\end{aligned}
$$

On- the-other-hand,-if-we-call- $F_{i}=-\sum_{\gamma \in \Gamma} \not\left(\gamma(\gamma, i) \rho(\gamma)^{*}\right.$,- by-Plancherel-Theorem-we-have-

$$
\sum_{\substack{\gamma \in \Gamma \\ i \in \mathcal{I}}}|b(\gamma, i)|^{2}=-\sum_{i \in \mathcal{I}} f\left(\left|F_{i}\right|^{2}\right) .
$$

Then,-condition- i)-of $-E$ being-a-Riesz-sequence-is-equivalent-to-the-condition-
iii) $-A \tau\left(\sum_{i \in \mathcal{I}}\left|F_{i}\right|^{2}\right) \leq \tau\left(\int\left(\sum_{i \in \mathcal{I}}\left(\mathscr{T}\left[\phi_{i}\right](x) F_{i}{ }^{2} d \nu(x)-\right)\left(\leq B \tau\left(\sum_{i \in \mathcal{I}}\left|F_{i}\right|^{2}\right)\right.\right.\right.$.
for-all-finite-sequence- $\left\{F_{i}\right\}_{i \in \mathcal{I}} \subset \mathcal{R}(\Gamma)$.-
We-then-prove-the-equivalence-of- $-i i$ - -and- $-i i i)$.- The-implication- $\left.i i)^{-} \Rightarrow i i i\right)^{-}$-is-trivial,-since-for-all-positive-operators- P on- $\ell^{2}(\Gamma)$-one-has- $\tau(P)^{-} \geq 0$.-

In-order to prove-iii) \Rightarrow ii) we proceed-by-contradiction.- Suppose-indeed that-the-right-inequality-in-ii)-does-not-hold-for-a-finite-sequence- $\left\{F_{i}\right\}_{i \in \mathcal{I}} \subset \mathcal{R}(\Gamma)$, and-define- \mathbb{P} to-be-the-orthogonal-projection-

$$
\mathbb{P}=-\chi_{(0, \infty)}\left(\int \left(\sum_{i \in \mathcal{I}}\left(\mathcal{T}\left[\phi_{i}\right](x) F_{i}^{2} d \nu(x)-B \sum_{i \in \mathcal{I}}\left|F_{i}\right|^{2}\right)(\right.\right.
$$

where- $\chi(F)$-stands-for the-spectral-projection-of the-selfadjoint-operator- F over-the-Borel-set- $\subset \mathbb{R}$.- By-[30,- Theorem-5.3.4],-since-we-are-defining-a-spectral-projection- of-a-closed-and-densely-defined-selfadjoint-affiliated-operator,- then$\mathbb{P} \in \mathcal{R}(\Gamma)$.- Then- $W=-\operatorname{Ran}(\mathbb{P})$-is- the-closed-linear-subspace-of- $\ell_{2}(\Gamma)$-where-the-right-inequality-in-ii)-does-not-hold,-and-

$$
\left\langle\left(\int \left(\sum_{i \in \mathcal{I}}\left(\mathscr{y}\left[\phi_{i}\right](x) F_{i}^{2} d \nu(x)-B \sum_{i \in \mathcal{I}}\left|F_{i}\right|^{2}\right) \psi(u\rangle_{\ell^{2}(\Gamma)}>0^{-} \forall u \in W .\right.\right.\right.
$$

This-means-that-

$$
\begin{equation*}
\mathbb{P}\left(\iint_{i} \sum_{i \in \mathcal{I}}\left(\mathscr{T}\left[\phi_{i}\right](x) F_{i}^{2} d \nu(x)-B \sum_{i \in \mathcal{I}}\left|F_{i}\right|^{2}\right) \not P \gg 0 .\right. \tag{25}
\end{equation*}
$$

We-now-write-

$$
\begin{aligned}
\mathbb{P}\left(\iint_{\Lambda} \sum_{i \in \mathcal{I}}\right. & \left.\nmid \gamma\left[\phi_{i}\right](x) F_{i}^{2} d \nu(x)-B \sum_{i \in \mathcal{I}}\left|F_{i}\right|^{2}\right) \not P \\
= & \iint_{\mu} \sum_{i, j \in \mathcal{I}} \mathbb{P} F_{j}^{*} \mathscr{T}\left[\phi_{j}\right](x)^{*} \mathscr{T}\left[\phi_{i}\right](x) F_{i} \mathbb{P} d \nu(x)-B \sum_{i, j \in \mathcal{I}}\left(\mathbb{P} F_{j}^{*} F_{i} \mathbb{P}\right. \\
= & \int\left(\sum _ { i , j \in \mathcal { I } } \left(F_{j}^{W^{*}} \mathscr{T}\left[\phi_{j}\right](x)^{*} \mathscr{T}\left[\phi_{i}\right](x) F_{i}^{W} d \nu(x)-B \sum_{i, j \in \mathcal{I}}\left(F_{j}^{W^{*}} F_{i}^{W}\right.\right.\right.
\end{aligned}
$$

where-we-have-used the-shorthand-notation- $F_{i}^{W}=-F_{i} \mathbb{P} \in \mathcal{R}(\Gamma)$.- By-the-linearity-of- τ,-we-can-then-deduce-from-(25)-that-

$$
\tau\left(\int \left(\sum_{i \in \mathcal{I}}\left(\mathcal{T}\left[\phi_{i}\right](x) F_{i}^{W} d \nu(x)-\right)>B \tau\left(\sum_{i \in \mathcal{I}}\left(\left.F_{i}^{W}\right|^{2}\right)\right.\right.\right.
$$

which-contradicts-the-right-inequality-of-iii).- When-the-inequality-at- the-left-hand-side-fails,-we-can-proceed-analogously-and-obtain-a-similar-contradiction.-

Remark 28. The characterization of orthonormal systems given by (24) can be also deduced from Theorem 27 as follows. Item ii), Theorem 27 for orthonormal systems reads

$$
\begin{equation*}
\sum_{i, j \in \mathcal{I}} F_{j}^{*}\left[\phi_{i}, \phi_{j}\right] F_{i}=\sum_{i \in \mathcal{I}}\left|F_{i}\right|^{2} \tag{26}
\end{equation*}
$$

for all finite sequence $\left\{F_{i}\right\}_{i \in \mathcal{I}} \subset \mathcal{R}(\Gamma)$. If (24) holds, this identity is trivial. Conversely, for each $k \in \mathcal{I}$ consider the finite sequence $\left\{\delta_{j, k} \mathbb{I}_{\ell_{2}(\Gamma)}\right\}_{j \in \mathcal{I}} \subset \mathcal{R}(\Gamma)$ and apply (26) to obtain $\left[\phi_{k}, \phi_{k}\right]=-\mathbb{I}_{\ell_{2}(\Gamma)}$. Using this, and applying (26) to the sequence $\left\{\left(\delta_{j, k_{1}}+\delta_{j, k_{2}}\right) \mathbb{I}_{\ell_{2}(\Gamma)}\right\}_{j \in \mathcal{I}} \subset \mathcal{R}(\Gamma)$ - with $k_{1} \neq k_{2}$ we then get

$$
2 \mathbb{I}_{\ell_{2}(\Gamma)}+\left[\phi_{k_{1}}, \phi_{k_{2}}\right]+\left[\phi_{k_{2}}, \phi_{k_{1}}\right]=2 \mathbb{I}_{\ell_{2}(\Gamma)}
$$

Analogously, for the sequence $\left\{\left(\delta_{j, k_{1}}+i \delta_{j, k_{2}}\right) \mathbb{I}_{\ell_{2}(\Gamma)}\right\}_{j \in \mathcal{I}} \subset \mathcal{R}(\Gamma)$-with $k_{1} \neq k_{2}$ we obtain

$$
2 \mathbb{I}_{\ell_{2}(\Gamma)}-i\left(\left[\phi_{k_{1}}, \phi_{k_{2}}\right]-\left[\phi_{k_{2}}, \phi_{k_{1}}\right]\right)=-2 \mathbb{I}_{\ell_{2}(\Gamma)}
$$

Thus $\left[\phi_{k_{1}}, \phi_{k_{2}}\right]=0$.
Theorem 29. Let $(\Gamma, \Pi, \mathcal{H})$-be a dual integrable triple, let $\left\{\phi_{i}\right\}_{i \in \mathcal{I}} \subset \mathcal{H}$ be a countable family, and denote with E the system

$$
E=-\left\{\Pi(\gamma) \phi_{i}:-\gamma \in \Gamma, i \in \mathcal{I}\right\}
$$

Given two constants $0-<A \leq B<\infty$, the following conditions are equivalent:
i) E is a frame sequence with frame bounds A, B.
ii) $A[f, f] \leq \sum_{i \in \mathcal{I}}\left(\left.\left[f, \phi_{i}\right]\right|^{2} \leq B[f, f]-\right.$ for all $f \in \overline{\operatorname{span}-E}^{\mathcal{H}}$.

Proof. The-structure-of-the-proof-is-similar-to-that-of-the-previous-theorem.-
By- the- definition- of- bracket- map- and- Plancherel- Theorem,- for- all- $f \in$ $\overline{\operatorname{span}^{-E}}{ }^{\mathcal{H}}$ we-have-

$$
\sum_{\gamma \in \Gamma}\left|\left\langle f, \Pi(\gamma) \phi_{i}\right\rangle_{\mathcal{H}}\right|^{2}=-\sum_{\gamma \in \Gamma}\left(\left.\tau\left(\rho(\gamma)\left[f, \phi_{i}\right]\right)\right|^{2}={ }^{-} \tau\left(\left|\left[f, \phi_{i}\right]\right|^{2}\right)(\forall i \in \mathcal{I}\right.
$$

so-that the-condition- i)-of E being-a-frame-system-is-equivalent-to-the-condition-
iii)-

$$
A \tau([f, f])-\leq \sum_{i \in \mathcal{I}} \tau\left(\left|\left(f, \phi_{i}\right]\right|^{2}\right) \leqslant B \tau([f, f]) \text { - for-all- } f \in{\overline{\operatorname{span}}-\mathcal{E}^{\mathcal{H}}}^{\text {(}}
$$

since- by- property- III $^{-}$- of the- bracket- map- $\tau([f, f])^{-}=-\|f\|_{\mathcal{H}^{-}}^{2}$ - We- then- prove-the-equivalence- of- $i i)^{-}$-and- $\left.i i i\right)^{-}$.- As-for- Theorem- 27, - the-implication- $\left.\left.i i\right)^{-} \Rightarrow i i i\right)^{-}$ is- trivial.- In-order-to- prove- that- $i i i$)-implies- $i i)^{-}$- we- proceed- by- contradiction.-Suppose- indeed- that- the-right- inequality- in- $i i$ - does- not- hold- for-some- $f_{0} \in$ $\overline{\operatorname{span}-E}^{\mathcal{H}}$,-and-let-us-define-the-orthogonal-projection-of- $\mathcal{R}(\Gamma)$ -

$$
\mathbb{P}=\chi_{(0, \infty)}\left(\sum_{i \in \mathcal{I}}\left(\left.\left\{f_{0}, \phi_{i}\right]\right|^{2}-B\left[f_{0}, f_{0}\right]\right) \cdot(\right.
$$

Let $-W=-\operatorname{Ran}(\mathbb{P}),-$ and - note- that $-W$ is- the- closed-linear-subspace- of $-\ell_{2}(\Gamma)^{-}$ where-the-right-inequality-in-ii)-does-not-hold-for- f_{0} - - Then-

$$
\left\langle\left(\sum_{i \in \mathcal{I}}\left|\left\{f_{0}, \phi_{i}\right]\right|^{2}-B\left[f_{0}, f_{0}\right]\right) \psi, u\right\rangle_{\ell^{2}(\Gamma)}>0^{-} \forall u \in W
$$

which-means-that-

$$
0-<\mathbb{P}\left(\sum_{i \in \mathcal{I}}\left(\left.\left[f_{0}, \phi_{i}\right]\right|^{2}-B\left[f_{0}, f_{0}\right]\right) \mathbb{P}=-\sum_{i \in \mathcal{I}} \not p\left[\phi_{i}, f_{0}\right]\left[f_{0}, \phi_{i}\right] \mathbb{P}-B \mathbb{P}\left[f_{0}, f_{0}\right] \mathbb{P}\right.
$$

Now,-by-iii),-Theorem-20,-we-have-that-since- $f_{0} \in \overline{\operatorname{span}-E}^{\mathcal{H}}$,-there-exists- $f_{W} \in$ $\overline{\operatorname{span}-E^{\mathcal{H}}}$ such-that- $\mathscr{T}\left[f_{0}\right] \mathbb{P}=-\mathscr{T}\left[f_{W}\right]$.- So,-by-Proposition-10

$$
\left[f_{0}, \phi_{i}\right] \mathbb{P}=-\iint_{\mu} \mathscr{T}\left[\phi_{i}\right](x)^{*} \mathscr{T}\left[f_{0}\right](x) \mathbb{P} d \nu(x)=\left[f_{W}, \phi_{i}\right] .
$$

Proceeding-analogously-for-the-other-brackets,-we-then-get-

$$
0-<\sum_{i \in \mathcal{I}}\left(\left.\left\{f_{W}, \phi_{i}\right]\right|^{2}-B\left[f_{W}, f_{W}\right]\right.
$$

By-the-linearity-of- τ we-could-then-deduce-that-

$$
\tau\left(\sum_{i \in \mathcal{I}}\left(\left.\left[f_{W}, \phi_{i}\right]\right|^{2}\right) \beta B \tau\left(\left[f_{W}, f_{W}\right]\right)-\right.
$$

which-contradicts-the-right-inequality-of-iii).-
In-the-case-of-only-one-generator,-we-can-recover- [1,-Th.- A]-as-a-corollary.-We- emphasize- that- this- type- of result- was- first- proved- for- the- case- of- integer-translations-in-[6,-7].-

Corollary 30. Let $\phi \in \mathcal{H}$, let $E=-\{\Pi(\gamma) \phi:-\gamma \in \Gamma\}$ and let $0-<A \leq B<\infty$. Then
i) E is a Riesz sequence if and only if $A \mathbb{I}_{\ell_{2}(\Gamma)} \leq[\phi, \phi] \leq B \mathbb{I}_{\ell_{2}(\Gamma)}$;
ii) E is a frame sequence if and only if $A s_{[\phi, \phi]} \leq[\phi, \phi]-\leq B s_{[\phi, \phi]}$.

Proof. To- prove- i), - note- that- by- $i i$),- Theorem- ${ }^{-27-}$ we- have- that- E is- a-Riesz-sequence-if-and-only-if-

$$
A|F|^{2} \leq F^{*}[\phi, \phi] F \leq B|F|^{2} \quad \forall F \in \mathcal{R}(\Gamma) .
$$

which-is-easily-seen-to-be-equivalent-to- $A \mathbb{I}_{\ell_{2}(\Gamma)} \leq[\phi, \phi]-\leq B \mathbb{I}_{\ell_{2}(\Gamma)}$.
To-prove- i i),-by- $i i$),-Theorem- 29 -we-have-that- E is-a-frame-sequence-if-and-only-if-

$$
A[f, f]-\leq|[f, \phi]|^{2} \leq B[f, f]-\forall f \in \overline{\operatorname{span}-E}^{\mathcal{H}}=\langle\phi\rangle_{\Gamma} .
$$

Now,-by- $i i$),-Proposition-22,-we-have-that-for-any- $f \in\langle\phi\rangle_{\Gamma}$ there-exits-a-unique$F \in L^{2}(\mathcal{R}(\Gamma),[\phi, \phi])$-such-that- $\mathscr{T}[f]=-\mathscr{T}[\phi] F$ and- $[f, \phi]=[\phi, \phi] F$.- By-Propo-sition-10,-we-also-have-that-

$$
[f, f]=-F^{*}[\phi, \phi] F,
$$

so,-recalling-Proposition-13,-the-previous-inequalities-read-

$$
A F^{*}[\phi, \phi] F \leq F^{*}|[\phi, \phi]|^{2} F \leq B F^{*}[\phi, \phi] F \quad \forall F \in L^{2}(\mathcal{R}(\Gamma),[\phi, \phi]) .
$$

This-is-easily-seen-to-be-equivalent-to- $A s_{[\phi, \phi]} \leq[\phi, \phi]^{-} \leq B s_{[\phi, \phi]}$ - $^{-}$

7 Relevant examples

In-this- section-we- provide- examples- of- brackets- and- Helson- maps- in- differentsettings.

7.1 Integer translations on $L^{2}(\mathbb{R})$.

Let- Γ-be-a-uniform-lattice- of- an-LCA-group- G,-i.e.- a-discrete-and- countable-subgroup- such- that $-G / \Gamma^{-}$- is- compact,- and-let- $T: \Gamma^{-} \rightarrow \mathcal{U}\left(L^{2}(G)\right)$-be- given- by$T(\gamma) f(x)=-f(x-\gamma)$.- A-fundamental-tool-for-analyzing-the-structure-of-shift-invariant-subspaces-is-the-so-called-fiberization-mapping-(see-[10,-Prop.-3.3]):-

$$
\begin{gathered}
\mathscr{T}:-L^{2}(G)-L^{2}\left(\Omega ; \ell_{2}\left(\Gamma^{\perp}\right)\right)- \\
\mathscr{T}[f](\omega)=-\left\{\mathcal{F}_{G} f(\omega+-\lambda)\right\}_{\lambda \in \Gamma^{\perp}}
\end{gathered}
$$

where- is-a-measurable-section-of-the-quotient- $\widehat{G} / \Gamma^{\perp}, \Gamma^{\perp}$ is-the-annihilator-of-Γ-(which-is-discrete), \widehat{G} is-de-dual-group-of- G,-and- $\mathcal{F}_{G} f(\chi)=-\int \notin f(x) \overline{\chi(x)} d x$, for$\chi \in \widehat{G}$,-is-the-Fourier-transform-in-the-LCA-group- G-Recall-th d-the-annihilator-of-a-group- $K \subseteq G$ is-the-closed-subgroup-of- \widehat{G} given-by- $K^{\perp}=-\{\chi \in \widehat{G}:-\chi(\kappa)=-$ $1-\forall \kappa \in K\}$.

We-want- to-show- that-this-map-can-actually-be-obtained-as-a-special-case-of-the-construction-given-by-Proposition-14.-

First-of-all-one-must- take-into-account-that, when- Γ-is-abelian,- there-is-an-isomorphism-between- $\mathcal{R}(\Gamma)$-and $-\widehat{\Gamma}-\widetilde{\widetilde{G}} / \Gamma^{\perp} \approx$, - provided-by-Pontryagin-duality-(see-also-[3]).- Therefore,-the-targ\&t-space-of-the-map- U of-Proposition-14-is-

$$
\ell_{2}\left(\mathcal{I}, L^{2}(\mathcal{R}(\Gamma))\right)=\approx \ell_{2}\left(\mathcal{I}, L^{2}(\Omega)\right) \approx L^{2}\left(\Omega ; \ell_{2}(\mathcal{I})\right)
$$

Now,-for-the-sake-of-simplicity,- we-will- work- in-detail- the-case- $G=-\mathbb{R}, \Gamma=-\mathbb{Z}$ and- T the-integer-translations-on- $L^{2}(\mathbb{R})$,-i.e. $-T(k) \varphi(x)=-\varphi(x-k)-($ see- $[8])$.-

Let- $\mathcal{I}=\Gamma^{\perp}=-\mathbb{Z}$ be the-annihilator-of $-\Gamma^{-}=-\mathbb{Z}^{-}$- Consider- $=-\left\{\psi_{j}\right\}_{j \in \mathbb{Z}} \subset L^{2}(\mathbb{R})^{-}$ be-the-Shannon-system-

$$
\begin{equation*}
\mathcal{F}_{\mathbb{R}} \psi_{j}=\chi_{[j, j+1]}, j \in \mathbb{Z} \tag{27}
\end{equation*}
$$

If- $\left\langle\psi_{j}\right\rangle_{\mathbb{Z}}=-\overline{\operatorname{span}\left\{T(k) \psi_{j}:-k \in \mathbb{Z}\right\}}{ }^{L^{2}(\mathbb{R})}$, it-is-clear-that-

$$
L^{2}(\mathbb{R})=\bigoplus_{j \in \mathbb{Z}}\left\langle\left\langle\psi_{j}\right\rangle_{\mathbb{Z}}\right.
$$

because- $\mathcal{F}_{\mathbb{R}} T(k) \psi_{j}(\omega)==^{-} \chi_{[j, j+1]} e^{-2 \pi i k \omega}$.- Moreover,- the- integer- translates- of-each- ψ_{j} generate-an-orthonormal-system,-so-that- $\left[\psi_{j}, \psi_{j}\right]=-\mathbb{I}_{\ell_{2}(\mathbb{Z})}$ (see- $[1$, -Theo-rem-A]).-Then,- $=-\left\{\psi_{j}\right\}_{j \in \mathbb{Z}} \subset L^{2}(\mathbb{R})$-is-a-family-as-in-Lemma-11-and-the-map-of-Proposition-14-is- $U[\varphi]=-\left\{S_{\psi_{j}}\left[\mathbb{P}_{\left\langle\psi_{j}\right\rangle_{\mathbb{Z}}} \varphi\right]\right\}_{j \in \mathbb{Z}}$ for- $\varphi \in L^{2}(\mathbb{R})$.- Write-

$$
\mathbb{P}_{\left\langle\psi_{j}\right\rangle_{\mathbb{Z}}} \varphi(x)=-\sum_{k \in \mathbb{Z}} a_{k}^{j} \psi_{j}(x-k)=-\sum_{k \in \mathbb{Z}} \psi_{k}^{j} T(k) \psi_{j}(x)-
$$

with $-a_{k}^{j}=-\left\langle\varphi, T(k) \psi_{j}\right\rangle_{L^{2}(\mathbb{R})} .-$ Then,

$$
\begin{equation*}
U[\varphi]=-\left\{\sum_{k \in \mathbb{Z}}\left\{_{k}^{j} \rho(k)^{*}\right\}_{f \in \mathbb{Z}},\right. \tag{28}
\end{equation*}
$$

where- $\{\rho(k)\}_{k \in \mathbb{Z}}$ is-the-sequence-of-translation-operators-in- $\ell^{2}(\mathbb{Z})$.
We-now-show-that $-U$ gives-rise-to-the-map- $\mathscr{T}:-L^{2}(\mathbb{R})^{-} \rightarrow L^{2}\left([0,1], \ell_{2}(\mathbb{Z})\right)^{-}$ given- by- $\mathscr{T}[f](\omega)=-\left\{\mathcal{F}_{\mathbb{R}} f(\omega+-j)\right\}_{j \in \mathbb{Z}}$ by- replacing- the- integer- translations$\{\rho(k)\}_{k \in \mathbb{Z}}$ of $-\ell^{2}(\mathbb{Z})$-with-the-characters- $\left\{e^{2 \pi i k \cdot}\right\}_{k \in \mathbb{Z}}$ of- \mathbb{Z}.-

By-definition, $-\mathcal{F}_{\mathbb{R}} \psi_{j}(\omega+-l)=-\delta_{j, l}$ for-all- $j, l \in \mathbb{Z}$ and-a.e. $\omega \in[0,1)$.- Thus, for $-\varphi \in L^{2}(\mathbb{R})$ -

$$
\begin{aligned}
\mathcal{F}_{\mathbb{R}} \mathbb{P}_{\left\langle\psi_{j}\right\rangle_{\mathbb{Z}}} \varphi(\omega+l) & =-\sum_{k \in \mathbb{Z}} a_{k}^{j} \mathcal{F}_{\mathbb{R}} T(k) \psi_{j}(\omega+-l)=-\sum_{k \in \mathbb{Z}} f_{c_{k}^{j}}^{j} \chi_{[j, j+1]}(\omega+l) e^{-2 \pi i k \omega} \\
& =-\sum_{k \in \mathbb{Z}} f_{l}^{j} \delta_{j, l} e^{-2 \pi i k \omega}, \quad \text { a.e. }-\omega \in[0,1)
\end{aligned}
$$

Then,

$$
\sum_{j \in \mathbb{Z}} \mathcal{F}_{\mathbb{R}} \mathbb{P}_{\left\langle\psi_{j}\right\rangle_{\mathbb{Z}}} \varphi(\omega+-l)=-\sum_{k \in \mathbb{Z}} \alpha_{k}^{l} e^{-2 \pi i k \omega}, \quad \text { a.e. } \omega \in[0,1)
$$

Therefore, $-U$ becomes-

$$
\left\{\sum_{k \in \mathbb{Z}} a_{k}^{j} e^{-2 \pi i k \omega}\right\}_{j \in \mathbb{Z}}=-\left\{\sum_{j \in \mathbb{Z}}\left\{\mathcal{F}_{\mathbb{R}} \mathbb{P}_{\left\langle\psi_{j}\right\rangle_{\mathbb{Z}}} \varphi(\omega+l)\right\}_{l \in \mathbb{Z}}=-\left\{\mathcal{F}_{\mathbb{R}} \varphi(\omega+l)\right\}_{l \in \mathbb{Z}}=-\mathscr{T}[f](\omega),\right.
$$

for a.e. $-\omega \in[0,1)$.
For-the-general-case,-consider-the-family- $\mathcal{F}_{G} \psi_{\delta}=-\chi+\delta, \delta \in \Gamma^{\perp}$ instead-of-(27).- The-rest-of-the-details-are-left-to-the-reader.-

7.2 Measurable group actions on $L^{2}(\mathcal{X}, \mu)$ and Zak transform.

A- particular- construction- of- ${ }^{-}$- Helson-map- can- be- given- in- terms- of- the- Zak-transform- whenever- the- representation- Π^{-}- arises- from- ${ }^{-}$- measurable- action- of-a-discrete-group-on-a-measure-space.- This- was- first- considered- in- the-abelian-setting-in-[18]-and then-in-[2].-For the-nonconmmutative-case,-the-Zak-transform-was-taken-into-consideration-in-[1].-For-the-sake-of-completeness-we-include-its-construction-here.-

Consider-a- σ-finite measure-space- $(\mathcal{X}, \mu),-\Gamma$-a-countable-discrete-group-and-let$\sigma: \Gamma \times \mathcal{X} \rightarrow \mathcal{X}$ be-a-quasi- Γ-invariant-measurable-action-of- Γ-on- \mathcal{X}.- This-means-that-for-each- $\gamma \in \Gamma^{-}$-the-map- $x \mapsto \sigma_{\gamma}(x)=-\sigma(\gamma, x)$-is- μ-measurable,- that-for-all$\gamma, \gamma^{\prime} \in \Gamma$-and-almost-all- $x \in \mathcal{X}$ it-holds $\sigma_{\gamma}\left(\sigma_{\gamma^{\prime}}(x)\right)^{-}={ }^{-} \sigma_{\gamma \gamma^{\prime}}(x)$-and $-\sigma_{\mathrm{e}}(x)=-x$,-and-that-for-each- $\gamma \in \Gamma$-the-measure- μ_{γ} defined-by- $\mu_{\gamma}(E)=-\mu\left(\sigma_{\gamma}(E)\right.$)-is-absolutely-continuous-with-respect- to- μ with-positive-Radon-Nikodym-derivative.- Let-usindicate the family-of-associated-Jacobian-densities-with the-measurable function$J_{\sigma}: \Gamma \times \mathcal{X} \rightarrow \mathbb{R}^{+}$given-by-

$$
d \mu\left(\sigma_{\gamma}(x)\right)=-J_{\sigma}(\gamma, x)-d \mu(x) .
$$

We-can-then-define-a-unitary-representation- Π_{σ} of- Γ-on- $L^{2}(\mathcal{X}, \mu)$-as-

$$
\begin{equation*}
\Pi_{\sigma}(\gamma) \varphi(x)=-J_{\sigma}\left(\gamma^{-1}, x\right)^{\frac{1}{2}} \varphi\left(\sigma_{\gamma^{-1}}(x)\right) \tag{29}
\end{equation*}
$$

We-say-that-the-action- σ has-the-tiling-property-if-there-exists-a- μ-measurable-subset- $C \subset \mathcal{X}$ such-that-the-family- $\left\{\sigma_{\gamma}(C)\right\}_{\gamma \in \Gamma}$ is-a- μ-almost-disjoint-covering-
of- \mathcal{X},-i.e. $\mu\left(\sigma_{\gamma_{1}}(C)-\cap \sigma_{\gamma_{2}}(C)\right) \neq 0$ for ${ }^{-} \gamma_{1} \neq \gamma_{2}$ and-
$\mu\left(\mathcal{X} \backslash \bigcup_{\gamma \in \Gamma}\left(\sigma_{\gamma}(C)\right)=0\right.$.
Following-[1], the-noncommutative-Zak-transform-of- $\varphi \in L^{2}(\mathcal{X}, \mu)$-associated-to-the-action- σ is-given-by-

$$
Z_{\sigma}[\varphi](x)=-\sum_{\gamma \in \Gamma}\left(\left(\mathrm{I}_{\sigma}(\gamma) \varphi\right)(\not(x)) \rho(\gamma), \quad x \in \mathcal{X}\right.
$$

The-following-result-is-a-slight-improvement-of-[1,-i),-Th.- B],-showing-thatZ_{σ} defines-an-isometry-that-is-surjective-on-the-whole- $L^{2}\left((C, \mu), L^{2}(\mathcal{R}(\Gamma))\right)$.-

Proposition 31. Let σ be a quasi- Γ-invariant action of the countable discrete group Γ - on the measure space (\mathcal{X}, μ), and let Π_{σ} be the unitary representation given by (29) on $L^{2}(\mathcal{X}, \mu)$. If σ has the tiling property with tiling set C, then the $Z a k$ transform Z_{σ} defines an isometric isomorphism

$$
Z_{\sigma}:-L^{2}(\mathcal{X}, \mu)-\rightarrow L^{2}\left((C, \mu), L^{2}(\mathcal{R}(\Gamma))\right)-
$$

satisfying the condition

$$
\begin{equation*}
Z_{\sigma}\left[\Pi_{\sigma}(\gamma) \varphi\right]=-Z_{\sigma}[\varphi] \rho(\gamma)^{*}, \quad \forall \gamma \in \Gamma, \forall \varphi \in L^{2}(\mathcal{X}, \mu) \tag{30}
\end{equation*}
$$

Hence, Z_{σ} is a Helson map for the representation Π_{σ}. As a consequence, the bracket map for Π_{σ} can be written as

$$
[\varphi, \psi]=-\int \chi_{\sigma}[\psi](x)^{*} Z_{\sigma}[\varphi](x) d \mu(x)
$$

Proof. The-isometry-can-be-proved-as-in-[1,-Th.- B],-while-property-(30)-can-be-obtained-explicitly-by-

$$
\begin{aligned}
Z_{\sigma}\left[\Pi_{\sigma}(\gamma) \varphi\right] & =\sum_{\gamma^{\prime}}\left(\left(\Pi_{\sigma}\left(\gamma^{\prime} \gamma\right) \varphi\right)((x)) \rho\left(\gamma^{\prime}\right)=\sum_{\gamma^{\prime \prime}}\left(\left(\Pi_{\sigma}\left(\gamma^{\prime \prime}\right) \varphi\right)((x)) \rho\left(\gamma^{\prime \prime} \gamma^{-1}\right)\right.\right. \\
& =-Z_{\sigma}[\varphi] \rho(\gamma)^{*}
\end{aligned}
$$

To-prove-surjectivity,-take- $\Psi \in L^{2}\left((C, \mu), L^{2}(\mathcal{R}(\Gamma))\right)$-and-for-each- $\gamma \in \Gamma^{-}$-define-

$$
\begin{array}{r}
\psi(x)=-J_{\sigma}\left(\gamma^{-1}, \sigma_{\gamma}(x)\right)^{-\frac{1}{2}} \tau\left(\Psi\left(\sigma_{\gamma}(x)\right) \rho(\gamma)^{*}\right)\left(\begin{array}{l}
\text { a.e.- } x \in \sigma_{\gamma^{-1}}(C) \\
\text { Such-a- } \psi \text { belongs-to- } L^{2}(\mathcal{X}, \mu), \text {-since- }
\end{array}\right. \text { (31)-the-tiling-prdperty-it-is-measurable-and- } \tag{31}
\end{array}
$$ its-norm-reads-

$$
\begin{aligned}
\|\psi\|_{L^{2}(\mathcal{X}, \mu)}^{2} & =\sum_{\gamma \in \Gamma}\left(\int_{\sigma_{\gamma^{-1}}(C)} J_{\sigma}\left(\gamma^{-1}, \sigma_{\gamma}(x)\right)^{-1} \tau\left(\Psi\left(\sigma_{\gamma}(x)\right) \rho(\gamma)^{*}\right)^{2} d \mu(x)\right. \\
& =\sum_{\gamma \in \Gamma}\left(\int_{C} J_{\sigma}\left(\gamma^{-1}, y\right)^{-1}\left|\tau\left(\Psi(y) \rho(\gamma)^{*}\right)\right|^{2} J_{\sigma}\left(\gamma^{-1}, y\right) d \mu(y)^{-}\right.
\end{aligned}
$$

where-the-last-identity-is-due-to-the-definition-of-the-Jacobian-density,-because$d \mu(x)=-d \mu\left(\sigma_{\gamma^{-1}}(y)\right)^{-}=-J_{\sigma}\left(\gamma^{-1}, y\right) d \mu(y) .-$ Then,-by-Plancherel-Theorem ${ }^{-}$

$$
\|\psi\|_{L^{2}(\mathcal{X}, \mu)}^{2}=-\int_{C} \sum_{\gamma \in \Gamma}\left|\tau\left(\Psi(y) \rho(\gamma)^{*}\right)\right|^{2} d \mu(y)=-\int_{C}\|\Psi(y)\|_{2}^{2} d \mu(y)
$$

so-that- $\|\psi\|_{L^{2}(\mathcal{X}, \mu)}^{2}=-\|\Psi\|_{L^{2}\left((C, \mu), L^{2}(\mathcal{R}(\Gamma))\right)}^{2}<+\infty$.- By-applying-the-Zak-trans-form-to- ψ we-then-have-that,-for-a.e. $-x \in C,-$

$$
Z_{\sigma}[\psi](x)=-\sum_{\gamma \in \Gamma}\left(\int_{\sigma}\left(\gamma^{-1}, x\right)^{\frac{1}{2}} \psi\left(\sigma_{\gamma^{-1}}(x)\right) \rho(\gamma)=-\sum_{\gamma \in \Gamma} \tau\left(\Psi(x) \rho(\gamma)^{*}\right) \not(\gamma(\gamma)=-\Psi(x)-\right.
$$

again-by-Plancherel-Theorem.- This-proves-surjectivity-and-in-particular-shows-that-(31)-provides-an-explicit-inversion-formula-for- Z_{σ}.

Remark 32. The Zak transform is actually directly related to the isometry S_{ψ} introduced in (10), since for all $F \in \mathfrak{h}([\psi, \psi])$-(see Section 2.4) it holds

$$
F=-S_{\psi}\left(f\left(\not \text { \& }_{\sigma}[\psi](\cdot) F\right)\right) \cdot(
$$

First notice that $\tau\left(Z_{\sigma}[\psi](\cdot) F\right)\left(\in\langle\psi\rangle_{\Gamma}\right.$. Indeed, let $F \in \operatorname{span}\{\rho(\gamma)\}_{\gamma \in \Gamma} \cap$ $\mathfrak{h}([\psi, \psi])$, and denote with $\{\widehat{F}(\gamma)\}_{\gamma \in \Gamma}$ its Fourier coefficients. By the orthonormality of $\{\rho(\gamma)\}_{\gamma \in \Gamma}$ in $L^{2}(\mathcal{R}(\Gamma))^{-}$it holds

$$
\tau\left(\not \text { Q }_{\sigma}[\psi](x) F\right)=\sum_{\gamma, \gamma^{\prime} \in \Gamma}\left(\Pi_{\sigma}(\gamma) \psi\right)(\not x) \widehat{F}\left(\gamma^{\prime}\right) \tau\left(\rho(\gamma) \rho\left(\gamma^{\prime}\right)^{*}\right)=\sum_{\gamma \in \Gamma} \widehat{F}(\gamma) \Pi_{\sigma}(\gamma) \psi(x)-
$$

for a.e. $x \in \mathcal{X}$. Therefore $\tau\left(Z_{\sigma}[\psi](\cdot) F\right) \neq \operatorname{span}\left\{\Pi_{\sigma}(\gamma) \psi\right\}$. Consequently

$$
S_{\psi}\left(f\left(\not \ddot{q}_{\sigma}[\psi](\cdot) F\right)\right)=s_{[\psi, \psi]} \sum_{\gamma \in \Gamma} \hat{F}(\gamma) \rho(\gamma)^{*}=s_{[\psi, \psi]} F=-F,
$$

which can be extended to the whole $\mathfrak{h}([\psi, \psi])$-by density. For a relationship between the Zak transform and the global isometry U of Proposition 14 in the setting of LCA groups, see [2, Prop. 6.7].

7.3 A two-pronged comb in $\ell_{2}(\Gamma)$

In-this-subsection,- we-study-properties-of-a-two-pronged-comb- f of $-\ell_{2}(\Gamma) .-\mathrm{We}^{-}$ shall-analyze-when-it-generates-the-whole- $\ell_{2}(\Gamma)$-and-under-which-conditions-the-system- $\{\lambda(\gamma) f:-\gamma \in \Gamma\}$ has-reproducing-properties.-

To-begin-with,-we-recall- that-a-two-pronged-comb- $f \in \ell_{2}(\Gamma)$-is-a-sequence-of-the-form $-f=-a \delta_{\gamma_{1}}+b \delta_{\gamma_{2}}$ for ${ }^{-} \gamma_{1}, \gamma_{2} \in \Gamma$,- with- $\gamma_{1} \neq-\gamma_{2}$,-and- $a, b \in \mathbb{C} \backslash\{0\}$.- We-denote-by- $V(f)$-the-left-invariant-space-generated-by- f,- that-is-

$$
V(f)=-{\overline{\operatorname{span}\{\lambda(\gamma) f\}_{\gamma \in \Gamma}}}^{\ell_{2}(\Gamma)} .
$$

The-following-lemma-states-conditions-for-a-two-pronged-comb-to-generate$\ell_{2}(\Gamma)$.

Lemma 33. Let $\gamma_{1}, \gamma_{2} \in \Gamma$, with $\gamma_{1} \neq \gamma_{2}, a, b \in \mathbb{C} \backslash\{0\}$ and $f=-a \delta_{\gamma_{1}}+-b \delta_{\gamma_{2}}$. Let $h=\gamma_{1}^{-1} \gamma_{2}$ and $e \in \Gamma$-the identity.
i) If there is no $n \in \mathbb{N}$ such that $h^{n}=\mathrm{e}$, then $V(f)=-\ell_{2}(\Gamma)$.
ii) If there exists $n \in \mathbb{N}$ such that $h^{n}=\mathrm{e}$, and $a \neq \pm b$, then $V(f)=\ell_{2}(\Gamma)$.

Proof. Since-the-closed-subspace- $V(f)$-is-left-invariant,-by-Theorem-17-we-havethat $-\mathcal{F}_{\Gamma} V(f)=-\mathbb{P}_{V(f)} L^{2}(\mathcal{R}(\Gamma))$.- In particular, $-\mathcal{F}_{\Gamma} f=-\mathbb{P}_{V(f)} \mathcal{F}_{\Gamma} f$.- Thus, the-condition $-V(f)=-\ell_{2}(\Gamma)$-holds-whenever- $\operatorname{Ker}\left(\mathcal{F}_{\Gamma} f\right)^{*}=-\{0\}$. $-\operatorname{Indeed}$. $-\operatorname{If}-\operatorname{Ker}\left(\mathcal{F}_{\Gamma} f\right)^{*}=-$ $\{0\}$,-we-will-have-that- $\operatorname{Ker}\left(\mathbb{P}_{V(f)}\right)=-\{0\}$ because- $\left(\mathcal{F}_{\Gamma} f\right)^{*}=\left(\mathcal{F}_{\Gamma} f\right)^{*} \mathbb{P}_{V(f)}$ - - Thus,-$\mathbb{P}_{V(f)}=-\mathbb{I}_{\ell_{2}(\Gamma)}$ and - therefore $-V(f)=-\ell_{2}(\Gamma)$.-

For-computing- $\operatorname{Ker}\left(\mathcal{F}_{\Gamma} f\right)^{*}$, - note-that, since $^{-}\left(\mathcal{F}_{\Gamma} f\right)^{*}=-\bar{a} \rho\left(\gamma_{1}\right)+-\bar{b} \rho\left(\gamma_{2}\right),-$ any $g \in \operatorname{Ker}\left(\mathcal{F}_{\Gamma} f\right)^{*}$ must-satisfy-

$$
\begin{equation*}
\left(\mathcal{F}_{\Gamma} f\right)^{*} g(\gamma)=-\bar{a} g\left(\gamma \gamma_{1}\right)+\bar{b} g\left(\gamma \gamma_{2}\right)=0-\quad \forall \gamma \in \Gamma \tag{32}
\end{equation*}
$$

Now,-let- $g \in \operatorname{Ker}\left(\mathcal{F}_{\Gamma} f\right)^{*}$ and-suppose-that- $g \neq-0$.- Choose- $\gamma_{0} \in \Gamma$-such-that$g\left(\gamma_{0}\right) \neq 0$-and,-for $n \in \mathbb{Z}$,-let- $\gamma=-\gamma_{0} h^{n-1} \gamma_{1}^{-1}$.- Then,-by-(32)-we-have-that-

$$
0=-\bar{a} g\left(\gamma_{0} h^{n-1}\right)+\bar{b} g\left(\gamma_{0} h^{n}\right)-
$$

which-is-equivalent-to- $g\left(\gamma_{0} h^{n}\right)=-\frac{\bar{a}}{\bar{b}} g\left(\gamma_{0} h^{n-1}\right)$. - Thus, -

$$
\begin{equation*}
g\left(\gamma_{0} h^{n}\right)=(-1)^{n}\left(\frac{\bar{a}}{\bar{b}}\right)^{n} g\left(\gamma_{0}\right) \tag{33}
\end{equation*}
$$

In-case- i),-all-elements- $\gamma_{0} h^{n}$ are-different,-so-using-(33)-we-have-

$$
\|g\|_{\ell_{2}(\Gamma)}^{2} \geq \sum_{n \in \mathbb{Z}}\left|g\left(\gamma_{0} h^{n}\right)\right|^{2}=-\left|g\left(\gamma_{0}\right)\right|^{2} \sum_{n \in \mathbb{Z}}\left(\frac{a}{b}^{2 n}=+\infty\right.
$$

for-any- $a, b \in \mathbb{C} \backslash\{0\}$.- Since- $g \in \ell_{2}(\Gamma)$,-this-is-a-contradiction,- thus- $g=-0$,-and$\operatorname{Ker}\left(\mathcal{F}_{\Gamma} f\right)^{*}=-\{0\} .-$

In-case- $i i$),-if- $n \in \mathbb{N}$ is-such-that- $h^{n}=$-e,-then-from-(33)-we-get-

$$
g\left(\gamma_{0}\right)=-g\left(\gamma_{0} h^{n}\right)=(-1)^{n}\left(\frac{\bar{a}}{\bar{b}}\right)^{n} g\left(\gamma_{0}\right)
$$

Since- $g\left(\gamma_{0}\right)-\neq-0$,-we-then-have-that $-(-1)^{n}\left(\frac{\bar{a}}{\bar{b}}\right)^{n}=-1$-and-this-is-true-only-whenn is odd - and $-a=-b$ or - when $-n$ is-even-and $-a=-b$.- As-a-consequence, - if $-a \neq \pm b$, we-deduce-that- $\operatorname{Ker}\left(\mathcal{F}_{\Gamma} f\right)^{*}=-\{0\}$

Remark 34. The condition $a \neq - \pm b$ cannot be removed from item ii)-in Lemma 33. To see this, consider $\Gamma=-\mathbb{Z}_{2}$. If $a \in \mathbb{C} \backslash\{0\}$ and $f=-a\left(\delta_{0}+\delta_{1}\right)$-then, $V(f)=-$ span $\left\{\delta_{0}+\delta_{1}\right\}$ which is not $\ell_{2}\left(\mathbb{Z}_{2}\right)$. If $f=-a\left(\delta_{0}-\delta_{1}\right)$-then, $V(f)=-\operatorname{span}\left\{\delta_{0}-\delta_{1}\right\}$ which is not $\ell_{2}\left(\mathbb{Z}_{2}\right)$.

We-now-want-to-study-the-reproducing-properties-of- $\{\lambda(\gamma) f:-\gamma \in \Gamma\}$,-with-$f=-a \delta_{\gamma_{1}}+-b \delta_{\gamma_{2}}$ a-two-pronged-comb.- In-order-to-do-so,-we-need- to-study-the-bracket-map- $[f, f]$-which-reads,-using-(13),-

$$
\begin{align*}
{[f, f] } & =-\left|\mathcal{F}_{\Gamma} f\right|^{2}=-\left|a \rho\left(\gamma_{1}\right)^{*}+-b \rho\left(\gamma_{2}\right)^{*}\right|^{2}=\left(\bar{a} \rho\left(\gamma_{1}\right)+-\bar{b} \rho\left(\gamma_{2}\right)\right)\left(a \rho\left(\gamma_{1}\right)^{*}+-b \rho\left(\gamma_{2}\right)^{*}\right)- \\
& =\left(|a|^{2}+-|b|^{2}\right) \mathbb{I}_{\ell_{2}(\Gamma)}+-\bar{a} b \rho\left(\gamma_{1} \gamma_{2}^{-1}\right)+\bar{b} a \rho\left(\gamma_{1} \gamma_{2}^{-1}\right)^{*} \tag{34}
\end{align*}
$$

Proposition 35. Let $f=-a \delta_{\gamma_{1}}+-b \delta_{\gamma_{2}} \in \ell_{2}(\Gamma)$-be a two-pronged comb, with $\gamma_{1} \neq-\gamma_{2} \in \Gamma$ - and $a, b \in \mathbb{C} \backslash\{0\}$. If $|a| \neq-|b|$, the collection $\{\lambda(\gamma) f:-\gamma \in \Gamma\}$ is a Riesz basis for $\ell_{2}(\Gamma)$.

Proof. Observe-first-that,-for-all- $\gamma \in \Gamma, a, b, \in \mathbb{C}$,-both-the-operators-
$Z^{-}(\gamma)=2|a b| \mathbb{I}_{\ell_{2}(\Gamma)}-\bar{a} b \rho(\gamma)-\bar{b} a \rho(\gamma)^{*}, \quad Z^{+}(\gamma)=2|a b| \mathbb{I}_{\ell_{2}(\Gamma)}+\bar{a} b \rho(\gamma)+\bar{b} a \rho(\gamma)^{*}$
are-positive.- Indeed, $-Z^{-}(\gamma)=-X^{*} X$ with $-X=-\sqrt{|a b|} \mathbb{I}_{\ell_{2}(\Gamma)}-\frac{a \bar{b}}{\sqrt{|a b|}} \rho(\gamma)^{*}$,-while $Z^{+}(\gamma)=-Y^{*} Y$ with $-Y=-\sqrt{|a b|} \mathbb{I}_{\ell_{2}(\Gamma)}+-\frac{a \bar{b}}{\sqrt{|a b|}} \rho(\gamma)^{*}$.- Thus-we-can-write

$$
[f, f]--Z^{+}\left(\gamma_{1} \gamma_{2}^{-1}\right)-\leq[f, f]-\leq[f, f]+Z^{-}\left(\gamma_{1} \gamma_{2}^{-1}\right)
$$

which-reads,-by-(34)-

$$
(|a|-|b|)^{2} \mathbb{I}_{\ell_{2}(\Gamma)} \leq[f, f]-\leq(|a|+|b|)^{2} \mathbb{I}_{\ell_{2}(\Gamma)}
$$

By-[1,-ii),-Theorem-A], when- $|a| \neq-|b|$, we-then-have-that $-\{\lambda(\gamma) f:-\gamma \in \Gamma\}$ is-a-Riesz-basis-of- $V(f)$,-and-by-Lemma-33-we-have-that $-V(f)=\ell_{2}(\Gamma)$.-

7.4 Dihedral action on $L^{2}\left(\mathbb{R}^{2}\right)$

The-smallest- nonabelian- group- is ${ }^{-} \Gamma^{-}=-\mathbf{D}_{3}$,- the-dihedral- group- of- order -6 ,- the-symmetry-group-of-an-equilateral-triangle.- It-is-a-group-with-6-elements-and-2-generators,-which-can-be-presented-by-

$$
\mathbf{D}_{3}=-\left\langle a, b \mid a^{3}=\mathrm{e}, b^{2}=\mathrm{e}, b a=-a^{2} b\right\rangle
$$

We-can-write- \mathbf{D}_{3} as-a-set-in-terms-of-the-two-generators- a and- b by-

$$
\begin{equation*}
\mathbf{D}_{3}=-\left\{\mathrm{e}, a, a^{2}, b, a b, a^{2} b\right\} . \tag{35}
\end{equation*}
$$

Following-this-order,-the-adjoint-right-regular-representation-is-then-given-by-

$$
\rho(a)^{*}=\left(\begin{array}{llllll}
\left(\begin{array}{lllll}
0 & 0 & 1 & 0 & 0
\end{array} 0^{-}\right. \\
1 & 0 & 0 & 0 & 0 & 0- \\
0 & 1 & 0 & 0 & 0 & 0- \\
0 & 0 & 0 & 0 & 1 & 0- \\
0 & 0 & 0 & 0 & 0 & 1- \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)\left(\rho(b)^{*}=-\left(\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 & 0- \\
0 & 0 & 0 & 0 & 1 & 0- \\
0 & 0 & 0 & 0 & 0 & 1- \\
1 & 0 & 0 & 0 & 0 & 0- \\
0 & 1 & 0 & 0 & 0 & 0- \\
0 & 0 & 1 & 0 & 0 & 0-
\end{array}\right)\left(\begin{array}{l}
\\
\text { and-their-compositions.- }
\end{array}\right.\right.
$$

Let $\left.-R_{a}=-\begin{array}{rr}-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2}\end{array}\right)$ (be-the-120-degrees-rotation-on-the-plane,-let- $R_{b}=$ $\left(\begin{array}{rr}1 & 0^{-} \\ 0^{-} & -1^{-}\end{array}\right)$be-the-reflection-over-the- x axis-and,-for $-\gamma \in \mathbf{D}_{3}$,-let-us-denote-by$R_{\gamma}$ the-matrix-obtained-by-the-corresponding-composition-of these-two-matrices,-e.g.- $R_{a b}=-R_{a} R_{b}$.- Then-we-can-define-a-representation- $\pi:-\mathbf{D}_{3} \rightarrow \mathcal{U}\left(L^{2}\left(\mathbb{R}^{2}\right)\right.$)-by$\pi(\gamma) f(x)=-f\left(R_{\gamma}^{-1} x\right)$-for $-f \in L^{2}\left(\mathbb{R}^{2}\right)$-and- $\gamma \in \mathbf{D}_{3}$.-

We-want-to-provide-a-Helson-map-for-this-representation-based-on-the-con-struction- given- in-Proposition-14.- In- order- to- do- so,- we-start- by- choosing- an-orthonormal- basis-for- $L^{2}\left(\mathbb{R}^{2}\right)$.- Let- $H \subset \mathbb{R}^{2}$ be- the- hexagonal-domain- with-vertices-

$$
(1,0)^{-},\left(\frac{1}{2}, \frac{\sqrt{3}}{2^{-}}\right)^{-},\left(-\frac{1}{2}, \frac{\sqrt{3}}{2^{-}}\right)^{-},(-1,0)^{-},\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)^{\prime},\left(\frac{1}{2},-\frac{\sqrt{3}}{2^{-}}\right)
$$

Figure-1:- Hexagonal- lattice- \mathcal{L} on- the- floor- of- the- Maths- department- at - the-University-of-Buenos-Aires.-
(see-Figure-1),-and-let-L-=- $\left.\begin{array}{cc}3- & \frac{3}{2} \\ 0 & \frac{\sqrt{3}}{2}\end{array}\right) \cdot\left(\right.$ Then- H tiles $-\mathbb{R}^{2}$ by-translations-with-the-lattice- $\mathcal{L}=\mathrm{LZ}^{2}=-\left\{\left(3 m+\frac{3^{-}}{2} n, \frac{\sqrt{3}}{2} n\right):(m, n)^{-} \in \mathbb{Z}^{2}\right\} \cdot$. Let- us-denote- by ${ }^{-}$ $\left.\widehat{\mathrm{L}}=-\left(\mathrm{L}^{t}\right)^{-1}=-\quad \begin{array}{rr}\frac{1}{3} & 0 \\ -\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{3}}\end{array}\right),\left(\right.$ and - by $-\mathcal{L}^{\perp}=-\left\{k \in \mathbb{R}^{2}:-k \cdot l \in \mathbb{Z} \forall l \in \mathcal{L}\right\}=\widehat{\mathrm{L}} \mathbb{Z}^{2}$ the-annihilator-lattice-of- \mathcal{L}.- Then-it-is- well-known- $[16]$ - that- $\left\{\frac{1}{\sqrt{|H|}} e^{2 \pi i k \cdot}\right\}_{k \in \mathcal{L}^{\perp}}$ is- an- orthonormal- basis- of $L^{2}(H)$,- where- $|H|=-\frac{3 \sqrt{3}}{2}$.- Thus,- the- ${ }^{-}$system- $=-$ $\left\{\psi_{l, k}:(l, k)-\in \mathcal{L} \times \mathcal{L}^{\perp}\right\} \subset L^{2}\left(\mathbb{R}^{2}\right)$-given-by-

$$
\begin{gathered}
\psi_{l, k}(x)=-\frac{1}{\sqrt{||H|}} T_{l} e^{2 \pi i k \cdot x} \chi_{H}(x)=-\frac{1}{\sqrt{||H|}} e^{2 \pi i k \cdot x} \chi_{H+l}(x) \\
\text { defines-an-orthonormal-bdsis-of- } L^{2}\left(\mathbb{R}^{2}\right) \text {,-and-we- ukill-use-it-to-define-the-family- }
\end{gathered}
$$ of-Lemma-11.-

Since- H is-invariant-under-rotations-of-120-degrees-and-reflections-over-thex axis,-and-since-each- R_{γ} is-an-orthogonal-matrix, - $L\left(L^{-1} R_{\gamma} l\right)$-and $-L^{-1} R_{\gamma} l \in \mathbb{Z}^{2}$ for-all- $l \in \mathcal{L}$, -and-the-same-holds-for- \mathcal{L}^{\perp}.- Thus-

$$
\pi(\gamma) \psi_{l, k} \in \quad \forall \gamma \in \gamma, \forall(l, k)-\in \mathcal{L} \times \mathcal{L}^{\perp}
$$

Let-us-call- r the-representation-of- \mathbf{D}_{3} in- $\mathcal{L} \times \mathcal{L}^{\perp}$ given-by- $r_{\gamma}(l, k)=\left(R_{\gamma} l, R_{\gamma} k\right) .-$

Then-the-set-
$\mathcal{I}=-\left(\notin \cap\left\{(x, y)-\in \mathbb{R}^{2}: 0-\leq y<\sqrt{3} x\right\}\right) \times\left(\mathbb{q}^{\perp} \cap\left\{(x, y)-\in \mathbb{R}^{2}: 0-\leq y<\sqrt{3} x\right\}\right)($ is-a-section-of- $\left(\mathcal{L} \times \mathcal{L}^{\perp}\right) / r$,-i.e. $\mathcal{L} \times \mathcal{L}^{\perp}=-\bigcup_{(l, k) \in \neq \mathrm{L}}\left(\left\{r_{\gamma}(l, k):-\gamma \in \mathbf{D}_{3}\right\}\right.$ as-a-disjoint-union,-so-that-

$$
L^{2}\left(\mathbb{R}^{2}\right)=-\bigoplus_{(l, k) \in \in}\left\langle\left\langle\psi_{(l, k)}\right\rangle_{\mathbf{D}_{3}}\right.
$$

where- $\left\langle\psi_{l, k}\right\rangle_{\mathbf{D}_{3}}$ is-actually- the-finite-span- of- the- orbit- $\left\{\pi(\gamma) \psi_{l, k}\right\}_{\gamma \in \mathbf{D}_{3}}$.- Let- us-write- \mathcal{I} as-the-disjoint-union-

$$
\mathcal{I}=-\{(0,0)\} \cup \partial \mathcal{I} \cup \dot{\mathcal{I}}^{-}
$$

where-

$$
\partial \mathcal{I}=-\left\{(3 m, 0)^{-}:-m=1,2, \ldots\right\} \times\left\{\left(\frac{2^{-}}{3^{-}} m, 0\right)(:-m=1,2, \ldots\}\right.
$$

and
$\dot{\mathcal{I}}^{\prime}=-\left(\notin \cap\left\{(x, y)-\in \mathbb{R}^{2}: 0-<y<\sqrt{3} x\right\}\right) \times\left(\mathbb{4}^{\perp} \cap\left\{(x, y)-\in \mathbb{R}^{2}: 0-<y<\sqrt{3} x\right\}\right) \cdot($
Notice-that- $r_{\gamma}(0,0)=-(0,0)$-for-all- $\gamma \in \mathbf{D}_{3},-r_{b}(l, k)=(l, k)$-for-all- $(l, k)-\in \partial \mathcal{I},-$ and $-r_{\gamma}(l, k) \neq r_{\gamma^{\prime}}(l, k)$-for-all- $\gamma, \gamma^{\prime} \in \mathbf{D}_{3}, \gamma \neq \gamma^{\prime}$ and-all- $(l, k)-\in \dot{\mathcal{I}}^{\prime}$:-

Since- \mathbf{D}_{3} is finite, for-all- $p \geq 1$-we-have- $L^{p}\left(\mathcal{R}\left(\mathbf{D}_{3}\right)\right)=-\mathcal{R}\left(\mathbf{D}_{3}\right)-\approx M_{6 \times 6}(\mathbb{C})$, so-the-bracket-map-writes-as-the-finite-sum-

$$
[\varphi, \psi]=-\sum_{\gamma \in \mathbf{D}_{3}}(\varphi, \pi(\gamma) \psi\rangle_{L^{2}\left(\mathbb{R}^{2}\right)} \rho(\gamma)^{*} .
$$

Using- that ${ }^{-} \pi(\gamma) \psi_{l, k}={ }^{-} \psi_{r_{\gamma}(l, k)}$,-and-by-the-orthonormality-of- ${ }^{-}$- ${ }^{-}$we-get-

$$
\begin{aligned}
{\left[\psi_{0,0}, \psi_{0,0}\right] } & =-\sum_{\gamma \in \mathbf{D}_{3}}\left(\rho(\gamma)^{*}\right. \\
{\left[\psi_{l, k}, \psi_{l, k}\right] } & =-\sum_{\gamma \in \mathbf{D}_{3}}\left(\psi_{l, k}, \psi_{r_{\gamma}(l, k)}\right\rangle_{L^{2}\left(\mathbb{R}^{2}\right)} \rho(\gamma)^{*}=-\mathbb{I}_{\mathbb{C}^{6}}+-\rho(b)^{*} \quad \forall(l, k)-\in \partial \mathcal{I} \\
{\left[\psi_{l, k}, \psi_{l, k}\right] } & =-\mathbb{I}_{\mathbb{C}^{6}} \quad \forall(l, k)-\in \dot{\mathcal{I}} .
\end{aligned}
$$

Note-that $\sum_{f \in \mathbf{D}_{3}} \rho(\gamma)^{*}$ is-the- $6-\times 6$-matrix-with-1-in-all-entries,- that-is- 6 -times-a-projection- ϕ f-rank-1-in- $\mathbb{C}^{6},-$ while $-\mathbb{I}_{\mathbb{C}^{6}}+-\rho(b)^{*}=-\mathbb{I}_{\mathbb{C}^{6}}+-\rho(b)=-\frac{1}{2}\left(\mathbb{I}_{\mathbb{C}^{6}}+-\rho(b)\right)^{2}$ is twice-a-projection-of-rank-3-in- \mathbb{C}^{6}.- Then,-we-have-that-

- $\left\{\pi(\gamma) \psi_{0}\right\}_{\gamma \in \mathbf{D}_{3}}$ is-a-tight-frame-with-constant-6;-
- $\left\{\pi(\gamma) \psi_{j}\right\}_{\gamma \in \mathbf{D}_{3}}$,-for- $j \in \partial \mathcal{I}$,-is-a-tight-frame-with-constant-2;-
- $\left\{\pi(\gamma) \psi_{j}\right\}_{\gamma \in \mathbf{D}_{3}}$, for $^{-} j \in \dot{\mathcal{I}}^{\text {' }}$, - ${ }^{\text {is-an-orthonormal-system. }}$ -

We-can-then-compute-the-Helson-map- U of-Proposition-14-as-follows:-

$$
\begin{aligned}
U[\varphi]_{0,0} & =-\frac{1}{\sqrt{6}}\left[\psi_{0}, \psi_{0}\right] \frac{1-}{6}\left[\varphi, \psi_{0,0}\right]=-\frac{1-}{6 \sqrt{6}} \sum_{\gamma \in \mathbf{D}_{3}} \rho(\gamma)^{*}\left[\varphi, \psi_{0,0}\right] \\
& =-\frac{1}{6 \sqrt{6}} \sum_{\gamma \in \mathbf{D}_{3}}\left[\varphi, \pi(\gamma) \psi_{0,0}\right]=-\frac{1-}{\sqrt{6}}\left[\varphi, \psi_{0,0}\right] \\
U[\varphi]_{l, k} & =-\frac{1}{\sqrt{2}}\left[\psi_{l, k}, \psi_{l, k}\right] \frac{1}{6}\left[\varphi, \psi_{l, k}\right]=-\frac{1-}{\sqrt{2}}\left(\mathbb{I}_{\mathbb{C}^{6}}+-\rho(b)^{*}\right) \frac{1-}{2}\left[\varphi, \psi_{l, k}\right] \\
& =-\frac{1}{2 \sqrt{2}-}\left(\left[\varphi, \psi_{l, k}\right]+-\rho(b)^{*}\left[\varphi, \psi_{l, k}\right]\right)=-\frac{1-}{2 \sqrt{2}-}\left(\left[\varphi, \psi_{l, k}\right]+\left[\varphi, \pi(b) \psi_{l, k}\right]\right) \\
& =-\frac{1-}{\sqrt{2}}\left[\varphi, \psi_{l, k}\right]^{-}, \quad(l, k)-\in \partial \mathcal{I} \\
U[\varphi]_{l, k} & =\left[\varphi, \psi_{l, k}\right]^{-}, \quad(l, k)-\in \dot{\mathcal{I}}^{-}
\end{aligned}
$$

7.5 Translates for number-theoretic groups

It- is- well- known- the- there- are- LCA- groups- having- no- discrete-subgroups- andtherefore, they-do-not-fit-in-the-setting-of-Section-7.1-for-analyzing-spaces-invari-ant-under-translations-neither-reproducing-properties.- In-order-to-overcome-this-obstacle-J.-Benedetto-and-R.-Benedetto-proposed-the-following-setting-where-a-new-kind-of-translation-operators-are-defined-(see-[4,-5]).-

Let- G be-a-number-theoretic-group,-that-is-an-LCA-group-with-a-compact and-open-subgroup- H.- Assume- that $-G$ is-second-countable- and- fix ${ }^{-} \mathcal{C} \subset \widehat{G}$ a-section- for- the-quotient- \widehat{G} / H^{\perp},- which- turns- out- to-be-discrete- and- countable.-We-denote-by- $\widehat{f}(\gamma)=-\int \notin f(x) \overline{\gamma(x)} d x$ the-Fourier-transform-in-the-LCA-group G.- The-translation operqutox by an element $[x]-\in G / H$ of-a-function- $f \in L^{2}(G)$ -is-noted-by- $T_{[x]}$ and-defined-through-its-Fourier-Transform-as-

$$
\widehat{T_{[x]} f}=-\widehat{f} \omega_{[x]}
$$

where $-\omega_{[x]}:-\widehat{G} \rightarrow \mathbb{C}$ is ${ }^{- \text {given-by }}{ }^{-} \omega_{[x]}(\gamma):=-\overline{\eta_{\gamma}(x)}$ - for ${ }^{-} \gamma={ }^{-} \eta_{\gamma}+{ }^{-} \sigma_{\gamma}$ with $-\eta_{\gamma} \in H^{\perp}$ and $-\sigma_{\gamma} \in \mathcal{C}$.- These-translation-operators-give-rise-to-a-unitary-representation-of-the-discrete- group $^{-} G / H$ on $L^{2}(G),-$ namely $-T:-G / H \rightarrow \mathcal{U}\left(L^{2}(G)\right),-[x]-\mapsto T_{[x]]^{-}}$ Indeed.- By-[4,-Rem.- 2.3]-it-holds-that- $T_{[x]} T_{[y]}=-T_{[x+y]}$ for-all- $[x],[y]-\in G / H$ and - that $-T_{[e]}=-\mathbb{I}_{L^{2}(G)}$. Moreover, -since $-\left|\omega_{[x]}\right|=-1$-we-have-that -

$$
\left\|T_{[x]} f\right\|_{L^{2}(G)}=-\left\|\widehat{f} \omega^{x x]}\right\|_{L^{2}(\widehat{G})}=-\|\widehat{f}\|_{L^{2}(\widehat{G})}=-\|f\|_{L^{2}(G)} .
$$

Let- us- see- that- $\left(G / H, T, L^{2}(G)\right)$ - is- a- dual- integrable- triple.- For- this,- let$f, g \in L^{2}(G)$-and- $[x]-\in G / H$.- Then,-

$$
\begin{aligned}
\left\langle f, T_{[x]} g\right\rangle_{L^{2}(G)} & =-\int_{\widehat{G}} \widehat{f}(\gamma) \overline{\widehat{g}(\gamma) \omega_{[x]}(\gamma)} d \gamma=-\sum_{\sigma \in \mathcal{C}} \int_{H^{\perp}+\sigma} \widehat{f}(\gamma) \overline{\hat{g}(\gamma) \omega_{[x]}(\gamma)} d \gamma \\
& =\sum_{\sigma \in \mathcal{C}}\left(\int \left(_{I^{\perp}} \widehat{f}(\eta+\sigma) \overline{\hat{g}(\eta+\sigma) \omega_{[x]}(\eta+-\sigma)} d \eta\right.\right. \\
& =-\iint_{(\perp \perp} \sum_{\sigma \in \mathcal{C}} \hat{f}(\eta+\sigma) \overline{\hat{g}(\eta+-\sigma)} \eta(x) d \eta
\end{aligned}
$$

where-we-have-used-Plancherel-Theorem,-that- \widehat{G} qan-be-partitioned-by- $\left\{H^{\perp}+\right.$ $\sigma\}_{\sigma \in \mathcal{C}}$ and-the-definition-of- $\omega_{[x]}$. Since-clearly- $\sum_{(\in \mathcal{C}} \widehat{f}(\cdot+\sigma) \overline{\bar{g}(\cdot+\sigma \sigma)}-\in L^{1}\left(H^{\perp}\right)$, and- $H^{\perp} \approx \widehat{G / H}$,-we-conclude-that- the-bracket-mpap-is-given-by-

$$
\begin{equation*}
[f, g](\eta)=-\sum_{\sigma \in \mathcal{C}}\left(\hat{f}(\eta+-\sigma) \overline{\bar{g}(\eta+-\sigma)} \text { - for-a.e. }-\eta \in H^{\perp} .\right. \tag{36}
\end{equation*}
$$

In-this-context,-it-can-be-proven-that-the-mapping-given-by-

$$
\mathscr{T}:-L^{2}(G) \rightarrow L^{2}\left(H^{\perp}, \ell^{2}(\mathcal{C})\right), \quad \mathscr{T}[f](\eta)::=-\{\widehat{f}(\eta+\sigma)\}_{\sigma \in \mathcal{C}}
$$

for- a.e.- $\eta \in H^{\perp}$ is- an- isometric- isomorphism- that- satisfies- $\mathscr{T}\left[T_{[x]} f\right](\eta)=-$ $\eta(x) \mathscr{T}[f](\eta)$-for-a.e.- $\eta \in H^{\perp}$.- Thus,-it-is-a-Helson-map-for- $\left(G / H, T, L^{2}(G)\right)$.-

Recently,- in- [5,- Th.- 4.5],- it- was- proven- that-for $-f \in L^{2}(G)$,- the- family$\left\{T_{[x]} f:[x]-\in G / H\right\}$ is-a-frame-sequence-with-constants- $0^{-}<A \leq B<\infty$ if-and-only-if-

$$
A \leq \sum_{\sigma \in \mathcal{C}}|\widehat{f}(\eta+-\sigma)|^{2} \leq B
$$

for-a.e.- $\eta \in\left\{\eta \in H^{\perp}:-\sum_{f \in \mathcal{C}}|\widehat{f}(\eta+-\sigma)|^{2} \neq 0\right\}$.- Once- we-have- proven- that $\left(G / H, T, L^{2}(G)\right)$ - is- a- dual- in tegrable- triple,- one- sees- that- [5,- Th.- 4.5]- is- the-version-of- $[1,-$ Th.- A]-applied-to-this-context- (see-also-Corollary-30-and-[3,-Sec.-5]).- Moreover,-our-Theorem-29-generalizes-[5,-Th.-4.5]-for-families-of-the-form$\left\{T_{[x]} \phi_{i}:[x]-\in G / H, i \in \mathcal{I}\right\}$ where- \mathcal{I} is-an-at-most-countable-index-set.-

Acknowledgements:- The-authors-would-like-to-thank-the-anonymous-referee-for-his/her-comments-which-helped-us-to-improve-the-presentation-of-the-paper.-

References

[1]- D.-Barbieri,-E.-Hernández,-and-J.-Parcet.-Riesz-and-frame-systems-gener-ated-by-unitary-actions-of-discrete-groups.- Appl. Comput. Harmon. Anal.,-39(3):369-399,-2015.-
[2]- D.- Barbieri,- E.- Hernández,- and-V.- Paternostro.- The-Zak-transform- and-the-structure-of-spaces-invariant-by-the-action-of-an-LCA-group.- J. Funct. Anal.,-269(5):1327-1358,-2015.-
[3]- D.- Barbieri,- E.- Hernández,- and- V.- Paternostro.- Group- riesz- and- frame-sequences:- the-bracket- and- the-gramian.- Collect. Math.,-69(2):221-236,-2017.-
[4]- J.-J.-Benedetto-and-R.-L.-Benedetto.-A-wavelet-theory-for-local-fields-and-related-groups.- The Journal of Geometric Analysis,-14(3):423-456,-2004.-
[5]- J.- J.- Benedetto- and-R.- L.- Benedetto.- Frames- of- translates- for- number-theoretic- groups.- J. Geom. Anal. https://doi.org/10.1007/s12220-019-00234-y,-2019.-
[6]- J.- J.- Benedetto- and-S.- Li.- Multiresolution- analysis-frames- with- applica-tions.- IEEE ICASSP, International Confererence on Acoustic and Signal Processing, Minneapolis,-1993.-
[7]- J.-J.-Benedetto-and-D.-F.-Walnut.- Gabor-frames-for-12-and-related-spaces.-In- Wavelets: mathematics and applications,-Stud.-Adv.-Math.,- pages-97--162.-CRC,-Boca-Raton,-FL,-1994.-
[8]- M.-Bownik.-The-structure-of-shift-invariant-subspaces-of- $L^{2}\left(\mathbb{R}^{n}\right)$.- J. Funct. Anal.,-177(2):282-309,-2000.-
[9]- M.-Bownik-and-K.-A.-Ross.- The-structure-of-translation-invariant-spaces-on-locally-compact-abelian-groups.- J. Fourier Anal. Appl.,-21(4):849-884,-2015.-
[10]- C.- Cabrelli-and-V.-Paternostro.- Shift-invariant-spaces-on-LCA-groups.- J. Funct. Anal.,-258(6):2034-2059,-2010.-
[11]- O.- Christensen.- An introduction to frames and Riesz bases.- Applied-and-Numerical-Harmonic-Analysis.-Birkhäuser-Boston-Inc.,-Boston,-MA,-2003.-
[12]- J.-B.-Conway.- A course in operator theory,-volume-21-of-Graduate Studies in Mathematics.- American-Mathematical-Society,-Providence,-RI,-2000.-
[13]- C.-de-Boor,-R.-A.-DeVore,-and-A.-Ron.-Approximation-from-shift-invariantsubspaces of $-L_{2}\left(\mathbf{R}^{d}\right)$.- Trans. Amer. Math. Soc.,-341(2):787-806,-1994.-
[14]- C.-de-Boor,-R.-A.-DeVore,-and-A.-Ron.- The-structure-of-finitely-generated-shift-invariant-spaces-in- $L_{2}\left(\mathbf{R}^{d}\right)$.- J. Funct. Anal.,-119(1):37-78,-1994.-
[15]- F.-Deutsch.-The-angle-between-subspaces-in-a-Hilbert-space.-In-Approximation theory, wavelets and applications,-Singh-et-al,-editors,-pages-107-130.-Kluwer,-1995.-
[16]- B.- Fuglede.- Commuting- self-adjoint- partial- differential- operators- and- a-group-theoretic-problem.- J. Functional Analysis,-16:101-121,-1974.-
[17]- H.-Helson.- Lectures on invariant subspaces.- Academic-Press,-1964.-
[18]- E.- Hernández,- H.- Šíkić,- G.- Weiss,- and- E.- Wilson. Cyclic- subspaces-for-unitary-representations-of-LCA-groups;-generalized-Zak-transform.- Colloq. Math.,-118(1):313-332,-2010.-
[19]- E.-Hernández,-H.-Šikić,-G.-Weiss,-and-E.-Wilson.-On-the-properties-of-the integer-translates- of- a-square-integrable-function.- In-Harmonic analysis and partial differential equations,- volume-505- of- Contemp. Math.,- pages-233-249.-Amer.-Math.-Soc.,-Providence,-RI,-2010.-
[20]- R.- E.-Howe-and-C.-C.-Moore.- Asymptotic-properties-of-unitary-represen-tations.- J. Funct. Anal.,-32(1):72-96,-1979.-
[21]- J.- W.-Iverson.- Subspaces- of-L ${ }^{2}$ invariant- under-translation-by-an-abelian-subgroup.- J. Funct. Anal.,-269(3):865-913,-2015.-
[22]- J.-W.-Iverson.- Frames-generated-by-compact-group-actions.- Trans. Amer. Math. Soc.,-370(1):509-551,-2018.-
[23]- M.-Junge,-T.-Mei,-and-J.-Parcet.-Smooth-Fourier-multipliers-on-group-von-Neumann-algebras.- Geom. Funct. Anal.,-24(6):1913-1980,-2014.-
[24]- R.-A.-Kamyabi-Gol-and-R.-R.-Tousi.-The-structure-of-shift-invariant-spaces-on-a-locally-compact-abelian-group.- J. Math. Anal. Appl.,-340(1):219-225,2008.
[25]- R.-A.-Kunze.- l_{p} Fourier-transforms-on-locally-compact-unimodular-groups.Trans. Amer. Math. Soc.,-89:519-540,-1958.-
[26]- E.-Nelson.- Notes-on-non-commutative-integration.- J. Functional Analysis,-15:103-116,-1974.-
[27]- G.- Pisier- and- Q.- Xu.- Non-commutative- L^{p}-spaces.- In- Handbook of the geometry of Banach spaces, Vol. 2,-pages-1459-1517.-North-Holland,-2003.-
[28]- A.-Ron-and-Z.-Shen.- Frames-and-stable-bases-for-shift-invariant-subspaces-of- $L_{2}\left(\mathbf{R}^{d}\right)$.- Canad. J. Math.,-47,-1995.-
[29]- T.-P.-Srinivasan.-Doubly-invariant-subspaces.-Pacific J. Math.,-14:701-707,1964.
[30]- V.- S.- Sunder.- Functional analysis.- Birkhäuser- Advanced- Texts:- Basler-Lehrbücher.- [Birkhäuser- Advanced- Texts:- Basel- Textbooks].- Birkhäuser-Verlag,-Basel,-1997.- Spectral- theory.-
[31]- M.-Takesaki.- Theory of operator algebras. I,-volume-124-of-Encyclopaedia of Mathematical Sciences.- Springer-Verlag,- Berlin,-2002.- Reprint- of- the-first-(1979)-ed.,-Operator-Algebras-and-Non-commutative-Geometry,-5.-
[32]- N.-Wiener.- Tauberian-theorems.- Ann. of Math. (2),-33(1):1-100,-1932.-

Davide Barbieri

Universidad-Autónoma-de-Madrid,-28049-Madrid,- Spain-
davide.barbieri@uam.es

Eugenio Hernández

Universidad-Autónoma-de-Madrid,-28049-Madrid,-Spain-
eugenio.hernandez@uam.es

Victoria Paternostro

Universidad-de-Buenos-Aires-and-IMAS-CONICET,-Consejo-Nacional-de-Inves-tigaciones-Científicas-y-Técnicas,-1428-Buenos-Aires,-Argentina-
vpater@dm.uba.ar

