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Abstract 

We investigate the structure of subspaces of a Hilbert space that are 
invariant under unitary representations of a discrete group. We work 
with square integrable representations, and we show that they are those 
for which we can construct an isometry intertwining the representation 
with the right regular representation, that we call a Helson map. We 
then characterize invariant subspaces using a Helson map, and provide 
general characterizations of Riesz and frame sequences of orbits. These 
results extend to the nonabelian setting several known results for abelian 
groups. They also extend to countable families of generators previous 
results obtained for principal subspaces. 

Introduction 

The study of properties of invariant subspaces started with the results of Wiener 
[32] and Srvinivasan [29] showing that a subspace V of L2(T) is invariant under 
multiplication by exponentials of the form e2πikx, k 2 Z if and only if V = 
{fχ : f 2 L2(T)} for some measurable set E ˆ T. The subject is the main

E 
object of study of the book of H. Helson [17]. 

Strongly connected with these objects are shift-invariant spaces which are 
subspaces of L2(Rd) invariant under integer translations. Their structure was 
studied in [14, 13, 28, 8]. The extension to LCA groups and their countable 
discrete subgroups was given in [10, 24], while co-compact subgroups were con-
sidered in [9]. Other actions than translations were considered in [2, 21], where 
the Zak transform is used to study the structure of spaces invariant under the 
action of an LCA group on a σ-fnite measure space. The setting of compact 
groups was then treated in [22]. 

A general framework that includes the invariant spaces described above is 
the one that we consider in this paper where we have unitary representations 
of a countable discrete, not necessarily abelian, group � on a separable Hilbert 
space H. We will treat the class of square integrable representations, or, equiv-
alently, those for which a bracket map [·, ·] : H ×H ! L1(R(�)) can be found 
(see Defnition 6), that are called dual integrable. Since we shall work in the 
nonabelian setting, the dual group of � which plays an important role in the 
abelian case, will be replaced by the group von Neumann algebra R(�). This 
approach was started in [1]. 
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The purpose of this paper is to study subspaces invariant under dual inte-
grable representations. We will analyze their structure and study the reproduc-
ing properties of countable families of orbits. In the following paragraphs we 
describe in detail the content and structure of this paper. 

After describing in Section 2 the tools needed in the paper, we introduce in 
Section 3 the notion of a Helson map T : H ! L2((M, ν), L2(R(�))) associated 
to a unitary representation, where (M, ν) is a σ-fnite measure space. We prove 
that the existence of such a map is equivalent to dual integrability. Moreover, 
a constructive procedure is given to obtain Helson maps from brackets and vice 
versa. 

In Section 4 we study the structure of subspaces of ` 2(�) that are invari-
ant under the left regular representation, giving a characterization in Theorem 
17. This allows us to extend to the noncommutative setting the previously 
mentioned results of Wiener and Srinivasan. 

A characterization of invariant subspaces under a dual integrable represen-
tation is given in Section 5, Theorem 20, by means of the Helson map. Such 
characterization is more explicit for principal invariant subspaces, see Propo-
sition 22, or for fnitely generated ones, see Corollary 23. As a consequence, 
existence of biorthogonal systems of orbits of a single element under a dual 
integrable representation is characterized by a property of the bracket map in 
Proposition 24. 

Section 6 is dedicated to study reproducing properties of orbits of a countable 
family of elements of H. The reproducing properties we have in mind are those 
of being Riesz or frame sequences. We will prove existence of Parseval frames of 
orbits, and characterize families whose orbits generate frames or Riesz sequences. 

Several examples are given in Section 7 to illustrate our results: 

1. For the case of integer translations in L2(R) the so-called fberization 
mapping can be obtained from our Helson maps. 

2. A Helson map is obtained, in the form of a Zak transform, for any repre-
sentation arising from an action of a discrete group on a σ-fnite measure 
space. 

3. Subspaces of ` 2(�) generated by f = aδγ1 
+ bδγ2 

under the left regular 
representation are studied as an example. 

4. We compute the bracket and a Helson map for the action of the dihedral 
group D3 on L2(R2). 

5. The setting of [4, 5] for translates in number-theoretic groups is shown 
to ft our general scheme. This allows us to extend the results in [5] to 
several generators. 

Acknowledgements: This project has received funding from the European 
Union’s Horizon 2020 research and innovation programme under the Marie 
Sk lodowska-Curie grant agreement No 777822. In addition, D. Barbieri and E. 
Hernández were supported by Grant MTM2016-76566-P (Ministerio de Economı́a 
y Competitividad, Spain), and V. Paternostro was supported by Grants UBA-
CyT 20020170200057BA, CONICET-PIP 11220150100355, MINCyT-PICT 2014-
1480 and 2016-2616 (Joven). 
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2 Preliminaries 

The aim of this section is to introduce the basic objects and notations that 
we will use throughout the paper. We recall here the concept of invariant 
subspaces, frames and Riesz sequences. Additionally, we revise a notion of 
Fourier duality based on the right regular representation [25, 23, 1] and the 
defnition of noncommutative Lp spaces, and provide introductory details on 
weighted noncommutative L2 spaces. 

Some general notation we shall use is the following. The set of all bounded 
and everywhere defned linear operators on a Hilbert H will be denoted by B(H) 
and the subset of B(H) of unitary operator will be denoted by U(H). For an 
operator T defned on H, not necessarily bounded, we denote by Ran(T ) and 
Ker(T ) its range and its kernel, respectively. An orthogonal projection onto the 
closed subspace W ˆ H will be denoted by PW . 

2.1 Invariant subspaces 

We will work with subspaces of a Hilbert spaces H that are invariant under the 
action of a group. To be precise, we start by recalling that, given � a countable 
and discrete group an a Hilbert space H, a unitary representation of � on H is 
a homomorphism � : � ! U(H). 

Definition 1. Let � be a unitary representation of a discrete and countable 
group � on a separable Hilbert space H. We say that a closed subspace V ˆ H 
is �-invariant if and only if �(γ)V ˆ V for all γ 2 �. 

Given a countable family = {ψi}i2I ˆ H, the closed subspace V defned 
H 

by V = span{�(γ)ψi : γ 2 �, i 2 I} is �-invariant. It is called the �-invariant 
space generated by = {ψi}i2I , and we will see that any �-invariant subspace 
is of this form (see e.g. Lemma 11). When contains only one element ψ, 

H 
we will simply use the notation hψi� = span{�(γ)ψ}γ2� and we call hψi� 

principal �-invariant space. 

2.2 Frame and Riesz sequences 

We briefy recall the defnitions of frame and Riesz bases. For a detailed expo-
sition on this subject we refer to [11]. 

Let H be a separable Hilbert space, I be a fnite or countable index set and 
{fi}i2I be a sequence in H. The sequence {fi}i2I is said to be a frame for H if 
there exist 0 < A � B < +1 such that X 

Akfk2 � |hf, fii|2 � Bkfk2 

i2I 

for all f 2 H. The constants A and B are called frame bounds. When A = B = 
1, {fi}i2I is called Parseval frame. 

The sequence {fi}i2I is said to be a Riesz basis for H if it is a complete 
system in H and if there exist 0 < A � B < +1 such that X X X 

A |ai|2 � k aifik2 � B |ai|2 

i2I i2I i2I 

for all sequences {ai}i2I of fnite support. 
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The sequence {fi}i2I is a frame (or Riesz) sequence, if it is a frame (or Riesz 
H 

basis) for the Hilbert space it spans, namely span{fi}i2I . 

2.3 Noncommutative setting 

Let � be a discrete and countable group. The right regular representation of 
� is the homomorphism ρ : � ! U(` 2(�)) which acts on the canonical basis of 
` 2(�), {δγ}γ2�, as 

ρ(γ)δγ0 = δγ0γ−1 γ, γ0 2 � 

or, equivalently, such that ρ(γ)f(γ0) = f(γ0γ) for f 2 ̀ 2(�) and γ, γ0 2 �. 
Analogously, the left regular representation is the homomorphism λ : � ! 
U(` 2(�)) which acts on the canonical basis as 

λ(γ)δγ0 = δγγ0 γ, γ0 2 � 

or, equivalently, such that λ(γ)f(γ0) = f(γ−1γ0) for f 2 ̀ 2(�) and γ, γ0 2 �. 
The right von Neumann algebra of � is defned as (see e.g. [12, Section 43, 

Section 12, Section 13] or [31, Section 3, Section 7]) 

wot 
R(�) = span{ρ(γ)}γ2� , 

where the closure is taken in the weak operator topology (WOT). The left von 
Neumann algebra L (�) of � is defned analogously in terms of the left regular 
representation and we recall that 

R(�) = L (�)0 = {λ(γ) : γ 2 �}0 = {ρ(γ) : γ 2 �}00 (1) 

where if S ˆ B(H), S 0 = {T 2 B(H) : TS = ST, 8 S 2 S}, the commutant of 
S. 

Given F 2 R(�), let τ be the standard trace given by 

τ(F ) = hFδe, δei` 2(�), 

where e is the identity of �. Recall that τ is normal, fnite and faithful. More-
over, it has the tracial property which means that τ(FG) = τ(GF ) for all 
F,G 2 R(�). 

For f, g 2 ̀ 2(�), the convolution g � f is the element of ` 1(�) given by X X 
f(γ0)g(γγ0−1) = g(γ0)f(γ0−1γ), γg � f(γ) = 2 �. (2) 

γ02� γ02� 

By [12, Proposition 43.10], we have that the elements of the group von Neumann 
algebra R(�) are bounded convolution operators on ` 2(�). More precisely, F 2 
R(�) if and only if there exists a (unique) convolution kernel f 2 ̀ 2(�) such that 
Fg = g � f . We will use this correspondence as our notion of Fourier duality: 
for F 2 R(�), we will call Fourier coefficients of F the values of its convolution 

kernel f , and denote it with f = Fb = {Fb(γ)}γ2�. Therefore 

Fg = g � Fb 8 g 2 ̀ 2(�). (3) 

Note that, by defnition of τ and using (2), we have 

bF (γ) = τ(Fρ(γ)), 8 γ 2 �. 
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bConversely, if f 2 ̀ 2(�) is such that f = F for some F 2 R(�), we will call F 
the group Fourier transform of f , which is a bounded operator given by X 

F�f = F = f(γ)ρ(γ)� 

γ2� 

where convergence is intended in the weak operator topology. Observe that they d bsatisfy f = F�f , or F = F�F . 
Given two operators F,G 2 R(�), their composition can be written in terms 

of this Fourier duality as � b � 
FG = F� G � Fb . (4) 

Indeed, �� X �� �� � � Xb b b Gb(γ00)ρ(γ00)�FG = F�F F�G = F (γ0)ρ(γ0)� 

γ002� X γ02� X�X � 
Fb(γ0)Gb(γ00)ρ(γ00γ0)� Fb(γ0)Gb(γγ0−1) ρ(γ)� = = 

γ0,γ002� γ2� γ02�X 
= (Gb � Fb)(γ)ρ(γ)� = F�(Gb � Fb). 
γ2� 

For any 1 � p <1 let k · kp be the norm over R(�) given by 

pkFkp = τ(|F |p) 
1 

, 

p
where |F | is the selfadjoint operator defned by |F | = F �F and the p-th 
power is defned by functional calculus of |F |. Following [26, 27, 1], we defne 
the noncommutative Lp(R(�)) spaces for 1 � p <1 as 

k·kp
Lp(R(�)) = span{ρ(γ)}γ2� 

while for p = 1 we set L1(R(�)) = R(�) endowed with the operator norm. 
A densely defned closed linear operator on ` 2(�) is said to be aÿliated to 

R(�) if it commutes with all unitary elements of L (�). When p <1, the ele-
ments of Lp(R(�)) are the linear operators on ` 2(�) that are aÿliated to R(�) 
whose p-norm is fnite. In particular, for p < 1, the elements of Lp(R(�)) 
are not necessarily bounded, while a bounded operator that is aÿliated to R(�) 
automatically belongs to R(�) as a consequence of von Neumann’s Double Com-
mutant Theorem. For p = 2 one obtains a separable Hilbert space with scalar 
product 

hF1, F2i2 = τ(F2 
�F1) 

for which the monomials {ρ(γ)}γ2� form an orthonormal basis. For these spaces 
the usual statement of Hölder inequality still holds, so that in particular for any 
F 2 Lp(R(�)) with 1 � p � 1 its Fourier coeÿcients are well defned, and 
the fniteness of the trace implies that Lp(R(�)) ˆ Lq(R(�)) whenever q < p. 
Moreover, fundamental results of Fourier analysis such as L1(R(�)) Uniqueness 
Theorem, Plancherel Theorem between L2(R(�)) and ` 2(�) still hold in the 
present setting (see e.g. [1, Section 2.2]). We stress that Plancherel Theorem 
in this setting extends the usual duality between Fourier transform and Fourier 
coeÿcients, turning the two operations into the bounded inverse of one another, 
between the whole ` 2(�) and L2(R(�)). 
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If F is a closed and densely defned selfadjoint operator that is aÿliated to 
R(�), we will call support of F the spectral projection over the set R \ {0}. It 
is the minimal orthogonal projection sF of ` 2(�) such that F = FsF = sFF , it 
belongs to R(�) (see e.g. [30, Theorem 5.3.4]), and it reads explicitly 

sF = P(Ker(F ))? = P
Ran(F )

. (5) 

2.4 Weighted L2(R(�)) spaces 

This subsection is devoted to defne a particular class of spaces that we will use 
in this paper, which are called weighted L2(R(�)) spaces. 

Definition 2. Let q 2 R(�) be an orthogonal projection. We define qL2(R(�)) 
to be the subspace of L2(R(�)) given by 

qL2(R(�)) := {qF : F 2 L2(R(�))}. 

Note that this subspace is closed, and that F 2 qL2(R(�)) if and only if F = qF . 

Given a positive 2 L1(R(�)), let h(
) be the subspace of R(�) defned by 

h(
) := {F 2 R(�) : s F = F} 

where s denotes the support of as defned in (5). For F 2 h(
) defne 

1 

Fk2 = τ(|F �|2 ) 
1 
2 .kFk2, := k 2 

1 
2F = 0 and thenNote that if F 2 h(
) and kFk2, = 0, we have that 

Ran(F ) ˆ Ker(
 
1 
2 ) = Ker(
). This implies that s F = 0 and thus, F = 0. 

As a consequence, it holds that k · k2, is a norm in h(
). Its associated scalar 
product reads 

11 

Gi2 = τ(FG� ) .hF,Gi2, = h F, 2 2 

Definition 3. Given a positive 2 L1(R(�)), we define the weighted space 
L2(R(�), ) as the completion of h(
) with respect to the k · k2, norm. That is 

k·k2,
L2(R(�), ) = h(
) . 

Proposition 4. Let 2 L1(R(�)) be a positive operator and let s L2(R(�)) 
be as in Definition 2 for q = s . Let ω : h(
) ! s L2(R(�)) be the mapping 
defined by 

ω(F ) = 
1 
2F. 

Then ω can be extended to a surjective isometry from L2(R(�), ) onto s L2(R(�)). 
1 
2F 2 L2(R(�)) andProof. Observe frst that, if F 2 h(
) ˆ R(�), then 

111 

F 2 s L2(R(�)) and wF F . Thus, is well defned. Moreover, 2 = 2 2s 

kω(F )k2 = k 1 
2Fk2 = kFk2, . 

Thus, ω extends to an isometry from L2(R(�), ) to s L2(R(�)). To prove � � 
surjectivity, take F0 2 s L2(R(�)) such that F0?ω L2(R(�), ) . Then, in 

particular, since s ρ(γ) 2 h(
) for all γ 2 �, we have 

1 

s ρ(γ)�i2 = hF0, 
1 
2 ρ(γ)�i2 = τ(
 

1 

0 = hF0, F0ρ(γ)) 8 γ 2 �.2 2 

Therefore, 
1 
2F0 0 by L1(R(�)) uniqueness of Fourier coeÿcients. Hence,= 

s F0 = 0, and since F0 2 s L2(R(�)), then F0 = 0, proving surjectivity. 

6 
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Remark 5. Note that an element F 2 L2(R(�), ) is identified with a Cauchy 
ˆ h(
) with respect to the norm k · k2, . For any suchsequence {Fn 

sequence, { 2 

}n2N 
Fn 

1 }n2N is a Cauchy sequence in s L2(R(�)) and then it has a 

limit in s L2(R(�)) that we call F . This is the extension of the isometry ω 
1 
2 

to F 2 L2(R(�), ) . 

Dual integrability and Helson maps 

Let us frst recall the defnition of bracket map of a unitary representation, 
as in [1, 18], which is the operator in L1(R(�)) whose Fourier coeÿcients are 
{hϕ,�(γ)ψiH .

γ2� 

Definition 6. Let � be a unitary representation of a discrete and countable 
group � on a separable Hilbert space H. We say that � is dual integrable if 
there exists a sesquilinear map [·, ·] : H × H ! L1(R(�)), called bracket map, 
satisfying 

hϕ,�(γ)ψiH = τ([ϕ,ψ]ρ(γ)) 8 ϕ,ψ 2 H , 8 γ 2 �. 

In such a case we will call (�,�,H) a dual integrable triple. 

Note that, as a consequence of uniqueness of Fourier coeÿcients in L1(R(�)), 
the bracket map is unique. 

According to [1, Th. 4.1], � is dual integrable if and only if it is square 
integrable, in the sense that there exists a dense subspace D of H such that � 

hϕ,�(γ)ψiH 2 ̀ 2(�) 8 ϕ 2 H , 8 ψ 2 D. 
γ2� 

Moreover we recall that, by [1, Prop. 3.2], the bracket map satisfes the 
properties 

I) [ψ1, ψ2]� = [ψ2, ψ1] 

II) [ψ1,�(γ)ψ2] = ρ(γ)[ψ1, ψ2] , [�(γ)ψ1, ψ2] = [ψ1, ψ2]ρ(γ)� , 8 γ 2 � 

III) [ψ,ψ] is nonnegative, and k[ψ,ψ]k1 = kψk2 
H 

for all ψ,ψ1, ψ2 2 H. 
Since, in contrast with [1], we are using here a bracket map in terms of the 

right regular representation, we provide a proof of Property II). By defnition 
of the bracket map and the traciality of τ we have that for any γo 2 �, 

τ([ψ1,�(γ0)ψ2]ρ(γ)) = hψ1,�(γ)�(γ0)ψ2iH = hψ1,�(γγ0)ψ2iH 
= τ([ψ1, ψ2]ρ(γγ0)) = τ([ψ1, ψ2]ρ(γ)ρ(γ0)) 

= τ(ρ(γ0)[ψ1, ψ2]ρ(γ)) , 8 γ 2 �. 

Then, by the L1(R(�)) uniqueness of Fourier coeÿcients we conclude that 
[ψ1,�(γ0)ψ2] = ρ(γ0)[ψ1, ψ2]. The other equality is proved from this result 
and Property I). 

Given a σ-fnite measure space (M, ν), we denote by kΦk� the norm on the 
Hilbert space L2((M, ν), L2(R(�))), that reads �Z � 1 �Z � 1 

22 

kΦk� = kΦ(x)k22dν(x) = τ(Φ(x)�Φ(x))dν(x) 
M M 

for all Φ 2 L2((M, ν), L2(R(�))). 
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Definition 7. Let � be a discrete group and � a unitary representation of � on 
the separable Hilbert space H. We say that the triple (�,�,H) admits a Helson 
map if there exists a σ-finite measure space (M, ν) and an isometry 

T : H ! L2((M, ν), L2(R(�))) 

satisfying 
T [�(γ)ϕ] = T [ϕ]ρ(γ)� 8 γ 2 �, 8 ϕ 2 H. (6) 

Observe that for Ψ 2 L2((M, ν), L2(R(�))) and F 2 R(�) we are denoting 
with ΨF the element of L2((M, ν), L2(R(�))) that for a.e. x 2M is given by 

(ΨF )(x) = Ψ(x)F. (7) 

The main theorem of this section is the following. 

Theorem 8. Let � be a discrete group and � a unitary representation of � on 
the separable Hilbert space H.Then, the triple (�,�,H) is dual integrable if and 
only if it admits a Helson map. 

Remark 9. It is known that a representation is square integrable if and only 
if it is unitarily equivalent to a subrepresentation of a multiple copy of the right 
regular representation (see [20, Prop 4.2]). In our setting, a Helson map is 
essentially an isomorphism that implements such unitary equivalence. 

Indeed, given � a discrete group and � a unitary representation of � on the 
separable Hilbert space H with associated Helson map T , by a similar argument 
to the one used in the proof of [1, Th. 4.1], the map 

� × T (H) ! T (H) 
(γ, Φ) 7! Φρ(γ)� 

defines a unitary representation of � on T (H) that is unitarily equivalent to a 
summand of a direct integral decomposition of the right regular representation. 

Since we are interested in the structure of such isometry, we provide here 
a constructive proof of both implications of Theorem 8 in two separate proposi-
tions: Proposition 10, which constructs a bracket map starting from a Helson 
map, and Proposition 14, which constructs a Helson map starting from a bracket 
map. 

Proposition 10. Let � be a discrete group and � a unitary representation of � 
on the separable Hilbert space H. Let (�,�,H) admit a Helson map T . Then 
it is a dual integrable triple, and the bracket map can be expressed as Z 

[ϕ,ψ] = T [ψ](x)�T [ϕ](x)dν(x), 8 ϕ,ψ 2 H. (8) 
M 

Proof. Let us frst prove that the right hand side of (8) is in L1(R(�)). For this, 
we only need to see that its norm is fnite, which is true because Z Z 

T [ψ](x)�T [ϕ](x)dν(x) � kT [ψ](x)�T [ϕ](x)k1dν(x) 
1MZ M 

� kT [ψ](x)k2kT [ϕ](x)k2dν(x) � kT [ψ]k� kT [ϕ]k� = kψkHkϕkH 
M 
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where we have used Hölder’s inequality on L2(R(�)) and on L2(M, dν) and the 
fact that T is an isometry. Moreover, since T satisfes (6), for ϕ, φ 2 H and 
γ 2 �, we have Z 
hϕ,�(γ)φiH = hT [ϕ],T [�(γ)φ]i� = hT [ϕ](x),T [�(γ)φ](x)i2dν(x) Z M Z � � 

= hT [ϕ](x),T [φ](x)ρ(γ)�i2dν(x) = τ ρ(γ)T [φ](x)�T [ϕ](x) dν(x) 
M M� Z � 

= τ ρ(γ) T [φ](x)�T [ϕ](x)dν(x) 
M 

where the last identity is due to Fubini’s Theorem, which holds by the nor-
mality of τ . Now, since we have that the Fourier coeÿcients of [ϕ,ψ] andZ 

T [ψ](x)�T [ϕ](x)dν(x) coincide, then (8) holds by the L1(R(�)) Unique-
M 

ness Theorem. 

We set out to prove the converse of Proposition 10, to fnally prove Theorem 
8. The following result is needed. 

Lemma 11. Let � be a unitary representation of a discrete and countable group 
� on a separable Hilbert space H, and let V ˆ H be a �-invariant subspace. 
Then there exists a countable family {ψi}i2I satisfying hψii�?hψji� for i 6= j 
and such that V decomposes into the orthogonal direct sum M 

V = hψii�. (9) 
i2I 

Proof. Let {en}n2N be an orthonormal basis for V ; choose ψ1 = e1 and let 
V1 = hψ1i�. If V1 = V the lemma is proved. If V1 =6 V , let en2 

be the frst 
PV en2 

, where PVelement of {en}n2N such that en2 
2/ V1. Defne ψ2 = 

stands for the orthogonal projection of H onto V 

? ? 
1 1 

? ?and V is the orthogonal1 1 
?complement of V1 in V (i.e. V = V1 � V ). It holds that V1 ? hψ2i� since, for1 

γ1, γ2 2 �, 
h�(γ1)ψ1,�(γ2)ψ2iH = h�(γ−1γ1)ψ1, ψ2iH = 02 

?because �(γ−1γ1)ψ1 2 V1 and ψ2 2 V . Let V2 = hψ1i� � hψ2i�. We iterate2 1 

the process to obtain 
kM 

Vk = hψji�, 
j=1 

where hψii� ? hψji� for i 6= j, i, j = 1, . . . , k. Since {e1, . . . , enk 
} ˆ Vk and 

H 
V = span{en}n2N , one gets (9) after a countable number of steps. 

Remark 12. From Lemma 11 one concludes that any �-invariant subspace V 
of H is generated by a countable family of elements of V , namely that V = 
span{�(γ)ψi : γ 2 �, i 2 I}. 

When � is dual integrable, the bracket [ψ,ψ] for nonzero ψ 2 H provides a 
positive L1(R(�)) weight that we can use in order to defne the weighted space 
L2(R(�), [ψ,ψ]) as in Subsection 2.4. Explicitly, the induced norm is � � 1 

12 kFk2,[ψ,ψ] = τ(|F �|2[ψ,ψ]) = k[ψ,ψ] Fk22 

9 



and the inner product is 

11 

F2i2 = τ(F2 
�[ψ,ψ]F1).hF1, F2i2,[ψ,ψ] = h[ψ,ψ] F1, [ψ,ψ]2 2 

The associated weighted space is needed for the following result, which was 
proved in [1, Prop. 3.4] and lies at the basis of our subsequent constructions. 
For ψ 2 H let us use, in accordance with Subsection 2.4, the notation 

h = h([ψ,ψ]) = {F 2 R(�) |F = s[ψ,ψ]F}. 

Proposition 13. Let � be a discrete group and � a unitary representation of � 
on the separable Hilbert space H such that (�,�,H) is a dual integrable triple. 
Then for any nonzero ψ 2 H the map Sψ : span{�(γ)ψ}γ2� ! h given by hX i X 

Sψ f(γ)�(γ)ψ = s[ψ,ψ] f(γ)ρ(γ)� (10) 
γ2� γ2� 

is well-defined and extends to a linear surjective isometry 

Sψ : hψi� ! L2(R(�), [ψ,ψ]) 

satisfying 
Sψ[�(γ)ϕ] = Sψ[ϕ]ρ(γ)� , 8 ϕ 2 hψi�. (11) 

Proof. Let us frst see that Sψ is well-defned. Suppose that for some γ 2 � we 
have �(γ)ψ = ψ. Then we need to prove that s[ψ,ψ]ρ(γ)� = s[ψ,ψ]. For this, let 
v 2 Ran([ψ,ψ]), and let u 2 ̀ 2(�) be such that v = [ψ,ψ]u. Then 

ρ(γ)v = ρ(γ)[ψ,ψ]u = [ψ,�(γ)ψ]u = [ψ,ψ]u = v, 

where we have used Property II) of the bracket map. A simple density argu-
ment then ensures that ρ(γ)v = v for all v 2 Ran([ψ,ψ]). This means that 
ρ(γ)s[ψ,ψ] = s[ψ,ψ], and the conclusion follows by taking the adjoint. X 

Let now ϕ = f(γ)�(γ)ψ 2 span{�(γ)ψ}γ2� be a fnite sum. Then 
γ2� X 

kSψ[ϕ]k2 = k[ψ,ψ]2,[ψ,ψ] 

1 
2 f(γ)ρ(γ)�k2 

2 

γ2�� X � � � 
= τ f(γ1)ρ(γ1)[ψ,ψ]f(γ2)ρ(γ2)� = τ [ϕ,ϕ] = kϕk2 

H. 
γ1,γ22� 

Therefore, Sψ can be extended by density to a linear isometry from hψi� to 
L2(R(�), [ψ,ψ]). To prove surjectivity, suppose that F 2 L2(R(�), [ψ,ψ]) sat-
isfes 

hF, Sψ[ϕ]i2,[ψ,ψ] = 0 8 ϕ 2 hψi�. 

In particular, for all γ 2 � 

0 = hF, Sψ[�(γ)ψ]i2,[ψ,ψ] = hF, s[ψ,ψ]ρ(γ)�i2,[ψ,ψ] = τ(ρ(γ)[ψ,ψ]F ). 

11 

F belong to L2(R(�)), see Remark 5, then [ψ,ψ]F 2Since both [ψ,ψ] and [ψ,ψ]2 2 

L1(R(�)) and by the uniqueness of Fourier coeÿcients one gets [ψ,ψ]F = 0. 
1 
2 = 0, so kFk2,[ψ,ψ]This implies [ψ,ψ] F = 0 and hence F = 0. 
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Finally, to prove (11), it suÿces to prove it on a dense subspace. If ϕ =X 
f(γ)�(γ)ψ 2 span{�(γ)ψ}γ2� is a fnite sum, then 

γ2� h X i X 
Sψ[�(γ)ϕ] = Sψ f(γ0)�(γγ0)ψ = s[ψ,ψ] f(γ0)ρ(γγ0)� 

γ02� γ02�X 
= s[ψ,ψ] f(γ0)ρ(γ0)�ρ(γ)� = Sψ[ϕ]ρ(γ)� . 

γ02� 

We are now ready to prove the converse of Proposition 10 to fnally get a 
complete proof of Theorem 8. 

Proposition 14. Let � be a discrete group and � a unitary representation of � 
on the separable Hilbert space H such that (�,�,H) is a dual integrable triple. 
Then (�,�,H) admits a Helson map. M 
Proof. Let = {ψi}i2I be a family as in Lemma 11 for H, i.e. H = hψii�. 

For ϕ 2 H defne i2I n o 
U (ϕ) = [ψi, ψi] 

1
2 Sψi 

[Phψii� 
ϕ] 

i2I 

where Sψi 
is given by Proposition 13 and Phψii� 

denotes the orthogonal pro-
jection of H onto hψii�. We shall show that U is a Helson map for (�,�,H) 
taking values in ` 2(I, L2(R(�))). For ϕ 2 H, by Proposition 13 we getX X 
kU (ϕ)k2 

` 2(I,L2(R(�))) = k[ψi, ψi] 
1
2 Sψi 

[Phψii� 
ϕ]k22 = kSψi 

[Phψii� 
ϕ]k22,[ψi,ψi] 

i2I i2IX 
= kPhψii� 

ϕk2 = kϕkH 2 .H 
i2I 

This shows that U (ϕ) : H ! ̀ 2(I, L2(R(�))) is an isometry. Property (6) 
of the Helson map is a consequence of (11) and the fact that an orthogonal 
projection onto an invariant subspace commutes with the representation. 

4 Left-invariant spaces in ` 2(�) 

In this section we study invariant subspaces of ` 2(�) under the left regular 
representation λ. As it is customary, we will call such spaces left-invariant. We 
begin with the following basic fact. 

Lemma 15. An orthogonal projection onto the closed subspace V ˆ ̀ 2(�) be-
longs to R(�) if and only if V is left-invariant. 

Proof. By (1) PV belongs to R(�) if and only if PV λ(γ) = λ(γ)PV for all γ 2 �. 
Let us then frst assume that λ(�)V ˆ V . Then also V ? is left-invariant, because 
for all γ 2 �, v 2 V , v0 2 V ? it holds 

hv, λ(γ)v 0i = hλ(γ)� v, v 0i = hλ(γ−1)v, v 0i = 0 

?so λ(γ)v0?v, and hence λ(�)V ? ˆ V . Then, for all u 2 ̀ 2(�) 

PV λ(γ)u = PV λ(γ)PV u+ PV λ(γ)PV = λ(γ)PV u,? u 

and thus, PV 2 R(�). 
Conversely, let PV 2 R(�). Then for all v 2 V we have λ(γ)v = λ(γ)PV v = 

PV λ(γ)v 2 V . Hence, λ(�)V ˆ V . 
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For the left regular representation a natural Helson map is provided in the 
following propositions. 

Proposition 16. A Helson map for the left regular representation is the group 
Fourier transform, that is T : ` 2(�) ! L2(R(�)) is given by X 

T [f ] = F�f = f(γ)ρ(γ)� , f 2 ̀ 2(�) (12) 
γ2� 

where in this case the measure spaces M is taken to be a singelton. As a 
consequence, the bracket map for the left regular representation reads 

[f, g] = (F�g)�F�f , f, g 2 ̀ 2(�). (13) 

Proof. By Plancherel Theorem, we have that T defned as in (12) is a surjective 
isometry. We can check the Helson property (6) by direct computation, since X X X 

f(γ00)ρ(γγ00)�F�λ(γ)f = λ(γ)f(γ0)ρ(γ0)� = f(γ−1γ0)ρ(γ0)� = 
γ02� γ02� γ002�X 

f(γ00)ρ(γ00)�ρ(γ)� = = (F�f)ρ(γ)� . (14) 
γ002� 

Then, (13) follows from Proposition 10. 

Analogously, the right regular representation ρ is always dual integrable, and 
a Helson map T : ` 2(�) ! L2(R(�)) is provided by X 

T [f ] = f(γ)ρ(γ) , f 2 ̀ 2(�). 
γ2� 

The following theorem characterizes the subspaces of ` 2(�) that are invariant 
under the left regular representation λ. 

Theorem 17. Let V ˆ ̀ 2(�) be a closed subspace. Then the following are 
equivalent 

i) V is left-invariant; 

ii) 9 q 2 R(�) orthogonal projection of ` 2(�) such that F�(V ) = qL2(R(�)). 

Moreover, in this case we have q = PV . 

Proof. Let us frst prove that i) implies ii) Let q = PV , which belongs to R(�) 
by Lemma 15. By (3) we have q(f) = f � qb for all f 2 ̀ 2(�). Thus, by (4) X X 

q(F�f) = f � qb(γ)ρ(γ)� = q(f)(γ)ρ(γ)� = F�(q(f)). (15) 
γ2� γ2� 

Now, if f 2 V , then q(f) = f and by (15), F�f = q(F�f). So F�(f) 2 
qL2(R(�)), which shows that F�(V ) ˆ qL2(R(�)). Conversely, if F 2 qL2(R(�)), bthen qF = F . If f = F , we then have that q(F�f) = F�f , so by (15), 
f = q(f) 2 V . Thus F 2 F�(V ). 

Let us prove that ii) implies i) Let f 2 V . Then F�f = qG for some 
G 2 L2(R(�)). By (14), we have that, for each γ 2 �, F�λ(γ)f = (F�f)ρ(γ)� = 
qGρ(γ)� 2 qL2(R(�)). This implies that λ(γ)f 2 V for all γ 2 �. 
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The following result extends to general discrete groups a classical result 
attributed to Srinivasan [29] and Wiener [32] (see also [9, Corollary 3.9]). 

Corollary 18. Let W ˆ L2(R(�)) be a closed subspace. Then Wρ(γ) ˆ 
W 8 γ 2 � if and only if there exists an orthogonal projection q 2 R(�) such 
that W = qL2(R(�)). 

Proof. By Theorem 17, we know that there exists an orthogonal projection q 2 
R(�) such that W = qL2(R(�)) if and only if W = F�V for some left-invariant 
subspace V ˆ ̀ 2(�). On the other hand, by (14) we have that F�λ(γ)f = 
(F�f)ρ(γ)� for all f 2 ̀ 2(�) and all γ 2 �. Thus, for all γ 2 �, we have that 
λ(γ)v 2 V if and only if (F�v)ρ(γ)� 2 W for all v 2 V . 

We now prove that every closed subspace of ` 2(�) which is invariant under 
the left regular representation is principal, and it can be generated by a Parseval 
frame gnerator. 

Proposition 19. Every left-invariant closed subspace V ˆ ̀ 2(�) is principal, 
i.e. there exists ψ 2 ̀ 2(�) such that 

` 2(�)
V = span{λ(γ)ψ}γ2� . 

cMoreover, for p = PV 2 ̀ 2(�), the system {λ(γ)p}γ2� is a Parseval frame for 
V . 

Proof. Let V ˆ ̀ 2(�) be left-invariant. Then, for f 2 V , using (3) X ` 2(�)
f = PV f = f � p = f(γ)λ(γ)p 2 span{λ(γ)p}γ2� , 

γ2� 

` 2(�)
which proves that V ˆ span{λ(γ)p}γ2� . Now, observe that PV 2 PV L2(R(�)) 

which coincides with F�V by Theorem 17. Then, p 2 V and thus span{λ(γ)p}γ2� ˆ 
V , proving the other inclusion. Then, we can choose ψ = p. 

Let us see now that the system {λ(γ)p}γ2� is a Parseval frame for V . For 
this, note that by (13) in Proposition 16, the bracket map for λ is given by 
[f, g] = (F�g)�(F�f), f, g,2 ̀ 2(�). Then, since F�p = PV , one has [p, p] = 
P� PV = PV . So, by [1, Th. A], the system {λ(γ)p}γ2� is a Parseval frame.V 

5 Invariant subspaces of unitary representations 

The following result gives a characterization of invariant subspaces in terms in 
the invariance of its image under a Helson map. 

Theorem 20. Let (�,�,H) be a dual integrable triple with associated Helson 
map T , and let V ˆ H be a closed subspace. Then, the following are equivalent 

i) V is �-invariant 

ii) T [V ]ρ(γ) ˆ T [V ] for all γ 2 � 

iii) T [V ]F ˆ T [V ] for all F 2 R(�) 
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Proof. The equivalence of i) and ii) is a direct consequence of the defnition of 
Helson map, while iii) ) ii) is trivial. We only need to prove i) ) iii) To see 
this, let us frst see that h i 

S−1T ψ (s[ψ,ψ]F ) = T [ψ]F (16) 

for every ψ 2 H and every F 2 R(�), where Sψ is the isometry given by 
Proposition 13. To see this, observe frst that (16) holds for trigonometric 
polynomials as a consequence of (6). Let then F 2 R(�) and let {Fn}n2N be 
a sequence of trigonometric polynomials such that {F �}n2N converges stronglyn 

to F � , i.e. 
kFn � u− F � uk` 2(�) ! 0, 8 u 2 ̀ 2(�). 

Observe that such a sequence always exists because R(�) coincides with the 
SOT-closure of trigonometric polynomials by von Neumann’s Double Commu-
tant Theorem (see e.g. [12]). This implies that for all ψ 2 H 

kFn − Fk2,[ψ,ψ] ! 0. (17) 

Indeed, by defnition of the weighted norm we have 

kFn − Fk22,[ψ,ψ] = k[ψ,ψ] 2
1 

(Fn − F )k22 = τ((Fn − F )(Fn − F )�[ψ,ψ]) 

= h(Fn − F )�[ψ,ψ]δe, (Fn − F )�δei` 2(�) 

� k(Fn − F )�[ψ,ψ]δek` 2(�)k(Fn − F )�δek` 2(�) 

where [ψ,ψ]δe 2 ̀ 2(�) because the domain of [ψ,ψ] 2 L1(R(�) contains fnite 
sequences (see e.g. [1, Section 2]). Then (17) follows because {F �}n2N converges n 

strongly to F � . Now, by Proposition 13, we have 

kS−1 
ψ (s[ψ,ψ]F ) − Sψ 

−1(s[ψ,ψ]Fn)kH = kF − Fnk2,[ψ,ψ] (18) 

for all ψ 2 H and thus (17) implies that Sψ 
−1(s[ψ,ψ]Fn) converges to Sψ 

−1(s[ψ,ψ]F ) 
in H. As a consequence, since T is continuous, we obtain 

T [Sψ 
−1(s[ψ,ψ]Fn)] − T [Sψ 

−1(s[ψ,ψ]F )] ! 0 8 ψ 2 H. 
� 

Since T [Sψ 
−1(s[ψ,ψ]Fn)] = T [ψ]Fn, the identity (16) is proved by showing that� � 

T [ψ]Fn converges to T [ψ]F in L2 (M, ν), L2(R(�)) . Now we have �Z � 
2kT [ψ]F − T [ψ]Fnk = τ |T [ψ](x)(F − Fn)|2dν(x)� � Z M � 

= τ |(F − Fn)�|2 |T [ψ](x)|2dν(x) = kF − Fnk2 (19)2,[ψ,ψ] , 
M 

where the last identity is due to Proposition 10. Therefore convergence is pro-
vided by (17). 

Assume that V is �-invariant, and take ψ 2 V and F 2 R(�). Then, by 
(16) and Proposition 13, we have 

T [ψ]F = T [Sψ 
−1(s[ψ,ψ]F )] 2 T [hψi�] ˆ T [V ]. 
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� � 
We observe that a subspace M of L2 (M, ν), L2(R(�)) satisfying condition 

iii) in Theorem 20 is what in the abelian case is called multiplicatively invariant 
space (see e.g. [9]). Then, Theorem 20 is a version of [9, Theorem 3.8] in the 
noncommutative setting, for a discrete group and general representations. 

The next corollary follows directly from the properties of a Helson map. 

Corollary 21. Let (�,�,H) be a dual integrable triple with associated Helson 
map T , and let V ˆ H be a �-invariant subspace generated by {ψj}j2I ˆ H, 
that is 

V = span{�(γ)ψj : j 2 I, γ 2 �}H . 

Then � � 
L2 (M,ν),L2(R(�))

T [V ] = span{T [ψj ]ρ(γ) : j 2 I, γ 2 �} . 

The following result gives a characterization of the elements belonging to 
hψi� in terms of a multiplier that belongs to L2(R(�), [ψ,ψ]). This extends 
to the noncommutative setting [13, Th. 2.14], that is one of the fundamental 
results in the theory of shift-invariant spaces. 

Proposition 22. Let (�,�,H) be a dual integrable triple with associated Helson 
map T and let ψ 2 H. Then the following hold: � � 

i) the mapping F 7! T [ψ]F from h([ψ,ψ]) to L2 (M, ν), L2(R(�)) can be 
extended by density to an isometry on the whole L2(R(�), [ψ,ψ]); 

ii) ϕ 2 hψi� if and only if there exists F 2 L2(R(�), [ψ,ψ]) satisfying 

T [ϕ] = T [ψ]F 

and in this case one has [ϕ,ψ] = [ψ,ψ]F . 

Proof. In order to see i), it is enough to note that, by (19), we have that 
2kT [ψ]Fk = kFk2 for all F 2 h([ψ,ψ]). Therefore, the conclusion follows. � 2,[ψ,ψ] 

Let us then prove ii). Observe frst that what we have just proved allows us 
to extend (16) to 

T [S−1F ] = T [ψ]F 8 ψ 2 H , F 2 L2(R(�), [ψ,ψ]). (20)ψ 

Indeed, for {Fn}n2N ˆ h([ψ,ψ]) a sequence converging to F 2 L2(R(�), [ψ,ψ]), 
we know by (16) that 

T [S−1 ] = T [ψ]Fn 8 n 2 Nψ Fn 

and, by (19), we have that the right hand side converges to T [ψ]F . By the con-
tinuity of T , in order to show (20) we then need only to prove that {S−1Fn}n2Nψ 

converges to S−1F in H, which is true by (18).ψ 

Now, by Proposition 13, we have that (20) implies that ϕ 2 hψi� if and only 
if there exists F 2 L2(R(�), [ψ,ψ]) satisfying T [ϕ] = T [ψ]F . 

As a consequence, by using (8), we have that Z �Z � 
[ϕ,ψ] = T [ψ](x)�T [ϕ](x)dx = T [ψ](x)�T [ψ](x)dx F = [ψ,ψ]F. 

M M 
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Proposition 22 extends to fnitely generated invariant spaces as follows, gen-
eralizing [14, Theorem 1.7] 

Corollary 23. Let (�,�,H) be a dual integrable triple with associated Helson 
map T , and let V ˆ H be a �-invariant subspace generated by the finite family 
{ψj}k ˆ H, that isj=1 

H 
V = span{�(γ)ψj : j 2 {1, . . . , k}, γ 2 �} . 

If, for each j 2 {1, . . . , k}, there exists Fj 2 L2(R(�), [ψj , ψj ]) such that 

kX 
T [ϕ] = T [ψj ]Fj , (21) 

j=1 

kX 
then ϕ 2 V . Conversely, if hψji� is closed and ϕ 2 V , then there exists 

j=1 

Fj 2 L2(R(�), [ψj , ψj ]) such that (21) holds. 

Proof. Assume frst that (21) holds. Then, by Proposition (22), T −1[T [ψj ]Fj ] 2 
kX 

hψji� for all j = 1, . . . , k, so ϕ 2 hψji� ˆ V . 
j=1 Xk kX 

Conversely, if hψji� is closed, we have that hψji� = V . Then, ϕ 2 V 
j=1 j=1 

kX 
implies that ϕ = ϕj , where ϕj 2 hψji� for all j = 1, . . . , k. So, again the 

j=1 

conclusion follows by Proposition (22). 

Recall that conditions for a sum of subspaces of a Hilbert space to be closed 
can be found in [15]. 

5.1 Minimality and biorthogonal systems 

In this section we characterize minimal systems, or equivalently biorthogonal 
systems, in terms of a condition on the bracket map. We recall that, for ψ 2 H, 
the system {�(γ)ψ}γ2� is said to be minimal if, for all γ0 2 �, it holds 

H 
�(γ0)ψ 2/ span{�(γ)ψ : γ 2 �, γ 6= γ0} . 

Note that, by the same argument provided in [19], it can be proved that 
{�(γ)ψ}γ2� is minimal if and only if 

H 
ψ 2/ span{�(γ)ψ : γ 2 �, γ 6= e} . 

Proposition 24. Let (�,�,H) be a dual integrable triple, and let 0 6= ψ 2 H. 
The following are equivalent. 

i) {�(γ)ψ}γ2� is minimal. 

ii) There exists ψe 2 hψi� such that {�(γ)ψ}γ2� and {�(γ)ψe}γ2� are biorthog-
onal systems 

iii) [ψ,ψ] is invertible in ` 2(�) and [ψ,ψ]−1 2 L1(R(�)). 
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Proof. Recall that {�(γ)ψ}γ2� and {�(γ)ψe}γ2� are biorthogonal systems if 

h�(γ)ψ,�(γ0)ψeiH = δγ,γ0 8 γ, γ0 2 �. 

The equivalence of i) and ii) can be carried out following the same argument 
provided in [18, Th. 6.1]. eLet us prove ii) ) iii) Since ψ 2 hψi�, by Proposition 22 there exists 

F = F e ψ] T [ψ]F and [ e =2 L2(R(�), [ψ,ψ]) such that T [ e = ψ,ψ] [ψ,ψ]F .ψ 

Moreover, using the defnition of dual integrability, it follows that {�(γ)ψ}γ2� 

and {�(γ)ψe}γ2� are biorthogonal if and only if [ e Thus [ψ,ψ]Fψ, ψ] = I` 2(�). = 
I` 2(�), which shows that [ψ,ψ] is invertible. Its inverse belongs to L1(R(�)) 
because 

k[ψ,ψ]−1k1 = τ([ψ,ψ]−1) = τ(F ) = τ(F [ψ,ψ]F ) = kFk2,[ψ,ψ] = kT [ψ]Fk� 
= kT [ψe]k� = kψekH. 

Let us now prove iii) ) ii) Since [ψ,ψ]−1 2 L1(R(�)), it follows that 
[ψ,ψ]−1 2 L2(R(�), [ψ,ψ]). In fact 

τ(|[ψ,ψ]−1|2[ψ,ψ]) = τ([ψ,ψ]−1) = k[ψ,ψ]−1k1 <1. 

Then, by Proposition 13, there exists ψe 2 hψi� such that Sψ[ψe] = [ψ,ψ]−1 . 
Since Sψ is an isometry, for all γ 2 � we have 

eh�(γ)ψ, ψiH = hSψ[�(γ)ψ], Sψ[ψe]i2,[ψ,ψ] = hρ(γ)� , [ψ,ψ]−1i2,[ψ,ψ] 

= τ(ρ(γ)�[ψ,ψ]−1[ψ,ψ]) = τ(ρ(γ)�) = δγ,0 

which shows biorthogonality. 

6 Frames of orbits 

In this section we study reproducing properties of systems of the form 

E = {�(γ)φi : γ 2 �, i 2 I} (22) 

where {φi}i2I ˆ H is a countable family, (�,�,H) is a dual integrable triple, 
and I is a countable index set. We frst show existence of Parseval frames 
sequences of that form, and then we characterize families {φi}i2I for which the 
system E of their orbits is a Riesz or a frame sequence. 

6.1 Existence of Parseval frames 

The purpose of this subsection is to prove that every �-invariant space has a 
Parseval frame of orbits. We start by doing so for principal spaces, extending 
[14, Th. 2.21] and [24, Cor. 3.8]. 

Theorem 25. Let (�,�,H) be a dual integrable triple, and let 0 6= ψ 2 H. 
Then there exists φ 2 H such that {�(γ)φ}γ2� is a Parseval frame for hψi�. 
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Proof. Let p = s[ψ,ψ] 2 ̀ 2(�), that is p(γ) = τ(s[ψ,ψ]ρ(γ)) for every γ[ 2 �, and 
observe that 

` 2(�)
Hψ : hψi� ! span{λ(γ)p}γ2�n � �o 

ϕ 7! τ [ψ,ψ] 2
1 

Sψ[ϕ]ρ(γ) 
γ2� 

is an isometric isomorphism of Hilbert spaces satisfying 

Hψ[�(γ)ϕ] = λ(γ)Hψ[ϕ] 8 γ 2 �, ϕ 2 hψi�. (23) 

Indeed, [ψ,ψ] 
1
2 Sψ : hψi� ! s[ψ,ψ]L

2(R(�)) is an isometric isomorphism by � �^ 
Propositions 13 and 4. Now, by Theorem 17 we know that V = s[ψ,ψ]L

2(R(�)) 
is a left-invariant subspace of ` 2(�) such that PV = s[ψ,ψ] = F�p, and, by Propo-

` 2(�) 

sition 19, we have that V = span{λ(γ)Pc V }γ2� . This implies that 

` 2(�)
Hψ : hψi� ! span{λ(γ)p}γ2� 

is an isometric isomorphism. Additionally, by (11) it follows that 

[ψ,ψ] 
1
2 Sψ[�(γ)ϕ] = [ψ,ψ] 

1
2 Sψ[ϕ]ρ(γ)� 8 γ 2 �, ϕ 2 hψi�. 

Thus, for γ, γ0 2 �, we have � � � � 
Hψ[�(γ)ϕ](γ0) = τ [ψ,ψ] 2

1 

Sψ[�(γ)ϕ]ρ(γ0) = τ [ψ,ψ] 2
1 

Sψ[ϕ]ρ(γ)�ρ(γ0) � � 
= τ [ψ,ψ] 2

1 

Sψ[ϕ]ρ(γ−1γ0) = Hψ[ϕ](γ−1γ0) = λ(γ)Hψ[ϕ](γ0) 

hence proving (23). 
Let now φ = H−1[p]. Then, for ϕ 2 hψi�, since {λ(γ)p}γ2� is a Parseval ψ 

frame sequence by Proposition 19, we have X X X 
|hϕ,�(γ)φiH|2 = |hHψ[ϕ], Hψ[�(γ)φ]i` 2(�)|2 = |hHψ[ϕ], λ(γ)pi` 2(�)|2 

γ2� γ2� γ2� 

= kHψ[ϕ]k2 = kϕkH 2 ,` 2(�) 

showing that {�(γ)φ}γ2� is a Parseval frame for hψi�. 

Corollary 26. Let V ˆ H be a �-invariant subspace. Then there exist a 
countable family {φi}i2I ˆ H such that E = {�(γ)φi : γ 2 �, i 2 I} is a 
Parseval frame for V . 

Proof. Consider a family {ψi}i2I as in Lemma 11. Now, for each i 2 I, let φi be 
the Parseval frame generator of hψii� given by Theorem 25. Since hφii� ? hφji� 

for i 6= j, the system E is a Parseval frame for V . 

We remark that this corollary extends to general discrete groups and unitary 
representations the following results [8, Th. 3.3], [24, Th. 3.10], [10, Th. 4.11], 
[2, Th. 5.5] (see also [9, Th. 5.3]). 
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6.2 Characterization of frames and Riesz systems 

This subsection is devoted to characterize the reproducing properties of systems 
of the form (22). 

For instance, we can easily see that E is an orthonormal system if and only 
if 

[φi, φj ] = δi,jI` 2(�). (24) 

Indeed, observe frst that by defnition of the bracket map we have that, for 
i 6= j 

hφii�?hφji� () [φi, φj ] = 0 

because 

[φi, φj ] = 0 () 0 = τ([φi, φj ]ρ(γ)) = hφi,�(γ)φjiH 8 γ 2 �. 

Moreover, for each i 2 I, we have that {�(γ)φi}γ2� is an orthonormal system 
if and only if [φi, φi] = I` 2(�) by the same argument as above (see also [1, i), Th. 
A]). 

For the case of Riesz and frame sequences, the characterization is not as 
simple, and it will be the content of the next two theorems. The structure of 
their proofs is analogous to the one developed for the abelian cases in [8, Th. 
2.3] and [10, Th. 4.1 and Th. 4.3]. 

Theorem 27. Let (�,�,H) be a dual integrable triple, let {φi}i2I ˆ H be a 
countable family, and denote by E the system 

E = {�(γ)φi : γ 2 �, i 2 I}. 

Given two constants 0 < A � B <1, the following conditions are equivalent: 

i) E is a Riesz sequence with frame bounds A,B. X X X 
ii) A |Fi|2 � Fj 

�[φi, φj ]Fi � B |Fi|2 

i2I i,j2I i2I 
for all finite sequence {Fi}i2I in R(�). 

Proof. Note frst that, if T is a Helson map associated to (�,�,H), by Propo-
sition 10 we have ZX X 2 

Fj 
�[φi, φj ]Fi = T [φi](x)Fi dν(x). 

Mi,j2I i2I 

Let {b(γ, i) : γ 2 �, i 2 I} be a fnite sequence. Then, by the properties of 
the Helson map, we have 

2 hX i 2X 
b(γ, i)�(γ)φi = T b(γ, i)�(γ)φi 

γ2� H γ2� � 
i2I i2IZ � X �X 2 

= τ T [φi](x) b(γ, i)ρ(γ)� dν(x). 
M i2I γ2� 
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X 
On the other hand, if we call Fi = b(γ, i)ρ(γ)� , by Plancherel Theorem we 

γ2� 

have X X 
|b(γ, i)|2 = τ(|Fi|2). 

γ2� i2I 
i2I 

Then, condition i) of E being a Riesz sequence is equivalent to the condition �X � �Z � �X �X 2 

iii) Aτ |Fi|2 � τ T [φi](x)Fi dν(x) � Bτ |Fi|2 . 
Mi2I i2I i2I 

for all fnite sequence {Fi}i2I ˆ R(�). 
We then prove the equivalence of ii) and iii). The implication ii) ) iii) is 

trivial, since for all positive operators P on `2(�) one has τ(P ) � 0. 
In order to prove iii) ) ii) we proceed by contradiction. Suppose indeed that 

the right inequality in ii) does not hold for a fnite sequence {Fi}i2I ˆ R(�), 
and defne P to be the orthogonal projection �Z X 2 X � 

P = χ T [φi](x)Fi dν(x) − B |Fi|2 
(0,1) 

M i2I i2I 

where χ (F ) stands for the spectral projection of the selfadjoint operator F over 
the Borel set ˆ R. By [30, Theorem 5.3.4], since we are defning a spectral 
projection of a closed and densely defned selfadjoint aÿliated operator, then 
P 2 R(�). Then W = Ran(P) is the closed linear subspace of ` 2(�) where the 
right inequality in ii) does not hold, and �Z X 2 X � 

h T [φi](x)Fi dν(x) − B |Fi|2 u, ui`2(�) > 0 8 u 2 W. 
M i2I i2I 

This means that �Z X 2 X � 
P T [φi](x)Fi dν(x) − B |Fi|2 P > 0. (25) 

M i2I i2I 

We now write �Z X 2 X � 
P T [φi](x)Fi dν(x) − B |Fi|2 P 

M i2I i2IZ X X 
= PFj �T [φj ](x)�T [φi](x)FiPdν(x) − B PFj �FiP 

M i,j2I i,j2IZ X � X � 
= FW T [φj ](x)�T [φi](x)FW dν(x) − B FW FW j i j i 

M i,j2I i,j2I 

where we have used the shorthand notation FW = FiP 2 R(�). By the linearity i 

of τ , we can then deduce from (25) that �Z � �X 2 
�X 

τ T [φi](x)FW dν(x) > Bτ |FW |2 
i i 

M i2I i2I 

which contradicts the right inequality of iii). When the inequality at the left 
hand side fails, we can proceed analogously and obtain a similar contradiction. 
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Remark 28. The characterization of orthonormal systems given by (24) can be 
also deduced from Theorem 27 as follows. Item ii), Theorem 27 for orthonormal 
systems reads X X 

F � j [φi, φj ]Fi = |Fi|2 (26) 
i,j2I i2I 

for all finite sequence {Fi}i2I ˆ R(�). If (24) holds, this identity is trivial. 
Conversely, for each k 2 I consider the finite sequence {δj,kI` 2(�)}j2I ˆ R(�) 
and apply (26) to obtain [φk, φk] = I` 2(�). Using this, and applying (26) to the 
sequence {(δj,k1 

+ δj,k2 
)I` 2(�)}j2I ˆ R(�) with k1 =6 k2 we then get 

2I` 2(�) + [φk1 
, φk2 

] + [φk2 
, φk1 

] = 2I` 2(�). 

Analogously, for the sequence {(δj,k1 + iδj,k2 )I` 2(�)}j2I ˆ R(�) with k1 =6 k2 we 
obtain 

2I` 2(�) − i([φk1 
, φk2 

] − [φk2 
, φk1 

]) = 2I` 2(�). 

Thus [φk1 , φk2 ] = 0. 

Theorem 29. Let (�,�,H) be a dual integrable triple, let {φi}i2I ˆ H be a 
countable family, and denote with E the system 

E = {�(γ)φi : γ 2 �, i 2 I}. 

Given two constants 0 < A � B <1, the following conditions are equivalent: 

i) E is a frame sequence with frame bounds A,B. X H 
ii) A[f, f ] � |[f, φi]|2 � B[f, f ] for all f 2 span E . 

i2I 

Proof. The structure of the proof is similar to that of the previous theorem. 
By the defnition of bracket map and Plancherel Theorem, for all f 2 
H 

span E we have X X � � 
|hf,�(γ)φiiH|2 = |τ(ρ(γ)[f, φi])|2 = τ |[f, φi]|2 8 i 2 I 

γ2� γ2� 

so that the condition i) of E being a frame system is equivalent to the condition X � � H 
iii) Aτ([f, f ]) � τ |[f, φi]|2 � Bτ([f, f ]) for all f 2 span E 

i2I 

since by property III) of the bracket map τ([f, f ]) = kfk2 We then prove H. 
the equivalence of ii) and iii). As for Theorem 27, the implication ii) ) iii) 
is trivial. In order to prove that iii) implies ii) we proceed by contradiction. 
Suppose indeed that the right inequality in ii) does not hold for some f0 2 

H 
span E , and let us defne the orthogonal projection of R(�) �X � 

P = χ |[f0, φi]|2 − B[f0, f0] . 
(0,1) 

i2I 

Let W = Ran(P), and note that W is the closed linear subspace of ` 2(�) 
where the right inequality in ii) does not hold for f0. Then �X � 

h |[f0, φi]|2 − B[f0, f0] u, ui`2(�) > 0 8 u 2 W 
i2I 
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which means that �X � X 
0 < P |[f0, φi]|2 − B[f0, f0] P = P[φi, f0][f0, φi]P − BP[f0, f0]P. 

i2I i2I 

H 
Now, by iii), Theorem 20, we have that since f0 2 span E , there exists fW 2 

H 
span E such that T [f0]P = T [fW ]. So, by Proposition 10 Z 

[f0, φi]P = T [φi](x)�T [f0](x)Pdν(x) = [fW , φi]. 
M 

Proceeding analogously for the other brackets, we then get X 
0 < |[fW , φi]|2 − B[fW , fW ]. 

i2I 

By the linearity of τ we could then deduce that �X � 
τ |[fW , φi]|2 > Bτ([fW , fW ]) 

i2I 

which contradicts the right inequality of iii). 

In the case of only one generator, we can recover [1, Th. A] as a corollary. 
We emphasize that this type of result was frst proved for the case of integer 
translations in [6, 7]. 

Corollary 30. Let φ 2 H, let E = {�(γ)φ : γ 2 �} and let 0 < A � B < 1. 
Then 

i) E is a Riesz sequence if and only if AI` 2(�) � [φ, φ] � BI` 2(�); 

ii) E is a frame sequence if and only if As[φ,φ] � [φ, φ] � Bs[φ,φ]. 

Proof. To prove i), note that by ii), Theorem 27 we have that E is a Riesz 
sequence if and only if 

A|F |2 � F �[φ, φ]F � B|F |2 8 F 2 R(�). 

which is easily seen to be equivalent to AI` 2(�) � [φ, φ] � BI` 2(�). 
To prove ii), by ii), Theorem 29 we have that E is a frame sequence if and 

only if 
H 

A[f, f ] � |[f, φ]|2 � B[f, f ] 8 f 2 span E = hφi�. 

Now, by ii), Proposition 22, we have that for any f 2 hφi� there exits a unique 
F 2 L2(R(�), [φ, φ]) such that T [f ] = T [φ]F and [f, φ] = [φ, φ]F . By Propo-
sition 10, we also have that 

[f, f ] = F �[φ, φ]F, 

so, recalling Proposition 13, the previous inequalities read 

AF �[φ, φ]F � F �|[φ, φ]|2F � BF �[φ, φ]F 8 F 2 L2(R(�), [φ, φ]). 

This is easily seen to be equivalent to As[φ,φ] � [φ, φ] � Bs[φ,φ]. 
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7 Relevant examples 

In this section we provide examples of brackets and Helson maps in di�erent 
settings. 

7.1 Integer translations on L2(R). 

Let � be a uniform lattice of an LCA group G, i.e. a discrete and countable 
subgroup such that G/� is compact, and let T : � ! U(L2(G)) be given by 
T (γ)f(x) = f(x − γ). A fundamental tool for analyzing the structure of shift-
invariant subspaces is the so-called fberization mapping (see [10, Prop. 3.3]): 

T : L2(G) ! L2(
 , ` 2(�?)) 

T [f ](ω) = {FGf(ω + λ)}λ2�? 

where is a measurable section of the quotient b , �? is the annihilator of 

� (which is discrete), Gb is de dual group of G, and 

G/ 

F 
� 

G 

? 

f(χ) = 
R 

f(x)χ(x)dx, for 
G 

χ 2 Gb, is the Fourier transform in the LCA group G. Recall that the annihilator 
of a group K � G is the closed subgroup of Gb given by K? = {χ 2 Gb : χ(κ) = 
1 8 κ 2 K}. 

We want to show that this map can actually be obtained as a special case 
of the construction given by Proposition 14. 

First of all one must take into account that, when � is abelian, there is an 
isomorphism between R(�) and b G/�? ˇ , provided by Pontryagin duality � ˇ b 
(see also [3]). Therefore, the target space of the map U of Proposition 14 is 

` 2(I, L2(R(�))) ˇ ̀ 2(I, L2(
)) ˇ L2(
 , ` 2(I)). 

Now, for the sake of simplicity, we will work in detail the case G = R, � = Z 
and T the integer translations on L2(R), i.e. T (k)ϕ(x) = ϕ(x− k) (see [8]). 

Let I = �? = Z be the annihilator of � = Z. Consider = {ψj}j2Z ˆ L2(R) 
be the Shannon system 

FRψj = χ[j,j+1], j 2 Z. (27) 

L2(R)
If hψjiZ = span{T (k)ψj : k 2 Z} , it is clear that M 

L2(R) = hψjiZ 
j2Z 

−2πikω because FRT (k)ψj(ω) = χ[j,j+1]e . Moreover, the integer translates of 
each ψj generate an orthonormal system, so that [ψj , ψj ] = I` 2(Z) (see [1, Theo-
rem A]). Then, = {ψj}j2Z ˆ L2(R) is a family as in Lemma 11 and the map 
of Proposition 14 is U [ϕ] = {Sψj [Phψj iZ ϕ]}j2Z for ϕ 2 L2(R). Write X X 

Phψj iZ k
j 

k
jϕ(x) = a ψj(x− k) = a T (k)ψj(x) 

k2Z k2Z 

with aj = hϕ, T (k)ψjiL2(R). Then,k nX o 
U [ϕ] = aj ρ(k)� , (28)k

j2Z 
k2Z 
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where {ρ(k)}k2Z is the sequence of translation operators in `2(Z). 
We now show that U gives rise to the map T : L2(R) ! L2([0, 1], ` 2(Z)) 

given by T [f ](ω) = {FRf(ω + j)}j2Z by replacing the integer translations 
{ρ(k)}k2Z of `2(Z) with the characters {e2πik·}k2Z of Z. 

By defnition, FRψj(ω + l) = δj,l for all j, l 2 Z and a.e. ω 2 [0, 1). Thus, 
for ϕ 2 L2(R) X X 

j j −2πikω FRPhψj iZ ϕ(ω + l) = a FRT (k)ψj(ω + l) = a χ[j,j+1](ω + l)ek k 

k2Z k2ZX 
j −2πikω = a δj,le , a.e. ω 2 [0, 1).k 

k2Z 

Then, X X 
l −2πikω FRPhψj iZ ϕ(ω + l) = ake , a.e. ω 2 [0, 1). 

j2Z k2Z 

Therefore, U becomes nX o nX o n o 
j −2πikω ake = FRPhψj iZ ϕ(ω+l) = FRϕ(ω+l) = T [f ](ω), 

j2Z l2Z l2Z 
k2Z j2Z 

for a.e. ω 2 [0, 1). 
For the general case, consider the family FGψδ = χ + δ , δ 2 �? instead of 

(27). The rest of the details are left to the reader. 

7.2 Measurable group actions on L2(X , µ) and Zak trans-
form. 

A particular construction of a Helson map can be given in terms of the Zak 
transform whenever the representation � arises from a measurable action of 
a discrete group on a measure space. This was frst considered in the abelian 
setting in [18] and then in [2]. For the nonconmmutative case, the Zak transform 
was taken into consideration in [1]. For the sake of completeness we include its 
construction here. 

Consider a σ-fnite measure space (X , µ), � a countable discrete group and let 
σ : � ×X ! X be a quasi �-invariant measurable action of � on X . This means 
that for each γ 2 � the map x 7! σγ(x) = σ(γ, x) is µ-measurable, that for all 
γ, γ0 2 � and almost all x 2 X it holds σγ(σγ0 (x)) = σγγ0 (x) and σe(x) = x, and 
that for each γ 2 � the measure µγ defned by µγ(E) = µ(σγ(E)) is absolutely 
continuous with respect to µ with positive Radon-Nikodym derivative. Let us 
indicate the family of associated Jacobian densities with the measurable function 
Jσ : � ×X ! R+ given by 

dµ(σγ(x)) = Jσ(γ, x) dµ(x). 

We can then defne a unitary representation �σ of � on L2(X , µ) as 

�σ(γ)ϕ(x) = Jσ(γ−1 , x) 2
1 

ϕ(σγ−1 (x)). (29) 

We say that the action σ has the tiling property if there exists a µ-measurable 
subset C ˆ X such that the family {σγ(C)}γ2� is a µ-almost disjoint covering 
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� � 
of X , i.e. µ σγ1 

(C) \ σγ2 
(C) = 0 for γ1 =6 γ2 and � �[ 
µ X \ σγ(C) = 0. 

γ2� 

Following [1], the noncommutative Zak transform of ϕ 2 L2(X , µ) associated 
to the action σ is given by �X�� � 

Zσ[ϕ](x) = �σ(γ)ϕ (x) ρ(γ), x 2 X . 
γ2� 

The following result is a slight improvement of [1, i), Th. B], showing that 
Zσ defnes an isometry that is surjective on the whole L2((C, µ), L2(R(�))). 

Proposition 31. Let σ be a quasi-�-invariant action of the countable discrete 
group � on the measure space (X , µ), and let �σ be the unitary representation 
given by (29) on L2(X , µ). If σ has the tiling property with tiling set C, then 
the Zak transform Zσ defines an isometric isomorphism 

Zσ : L
2(X , µ) ! L2((C, µ), L2(R(�))) 

satisfying the condition 

Zσ[�σ(γ)ϕ] = Zσ[ϕ]ρ(γ)� , 8 γ 2 �, 8 ϕ 2 L2(X , µ). (30) 

Hence, Zσ is a Helson map for the representation �σ. As a consequence, the 
bracket map for �σ can be written as Z 

[ϕ,ψ] = Zσ[ψ](x)�Zσ[ϕ](x)dµ(x). 
X 

Proof. The isometry can be proved as in [1, Th. B], while property (30) can be 
obtained explicitly by � �X�� � X�� � 

�σ(γ00)ϕ ρ(γ00γ−1)Zσ[�σ(γ)ϕ] = �σ(γ0γ)ϕ (x) ρ(γ0) = (x) 
γ0 γ00 

= Zσ[ϕ]ρ(γ)� . 

To prove surjectivity, take Ψ 2 L2((C, µ), L2(R(�))) and for each γ 2 � defne 

ψ(x) = Jσ(γ−1, σγ(x))− 
1
2 τ 
� 
Ψ(σγ(x))ρ(γ)�

� 
a.e. x 2 σγ−1 (C). (31) 

Such a ψ belongs to L2(X , µ), since by the tiling property it is measurable and 
its norm reads ZX � � 2 

kψk2 = Jσ(γ−1, σγ(x))−1 τ Ψ(σγ(x))ρ(γ)� dµ(x)L2(X ,µ) 
σγ−1 (C)γ2� ZX 

= Jσ(γ−1 , y)−1|τ(Ψ(y)ρ(γ)�)|2Jσ(γ−1 , y)dµ(y) 
Cγ2� 

where the last identity is due to the defnition of the Jacobian density, because 
dµ(x) = dµ(σγ−1 (y)) = Jσ(γ−1, y)dµ(y). Then, by Plancherel Theorem Z ZX 

kψk2 = |τ(Ψ(y)ρ(γ)�)|2dµ(y) = kΨ(y)k22dµ(y)L2(X ,µ) 
C Cγ2� 
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so that kψk2 = kΨk2 < +1. By applying the Zak trans-L2(X ,µ) L2((C,µ),L2(R(�))) 

form to ψ we then have that, for a.e. x 2 C, X X � 
Zσ[ψ](x) = Jσ(γ−1 , x) 2

1 

ψ(σγ−1 (x))ρ(γ) = τ(Ψ(x)ρ(γ)� ρ(γ) = Ψ(x) 
γ2� γ2� 

again by Plancherel Theorem. This proves surjectivity and in particular shows 
that (31) provides an explicit inversion formula for Zσ. 

Remark 32. The Zak transform is actually directly related to the isometry Sψ 
introduced in (10), since for all F 2 h([ψ,ψ]) (see Section 2.4) it holds � �� 

F = Sψ τ Zσ[ψ](·)F . � � 
First notice that τ Zσ[ψ](·)F 2 hψi�. Indeed, let F 2 span{ρ(γ)}γ2� \ 
h([ψ,ψ]), and denote with {Fb(γ)}γ2� its Fourier coefficients. By the orthonor-
mality of {ρ(γ)}γ2� in L

2(R(�)) it holds � � X � � X 
τ Zσ[ψ](x)F = �σ(γ)ψ (x)Fb(γ0) τ(ρ(γ)ρ(γ0)�) = Fb(γ)�σ(γ)ψ(x) 

γ,γ02� γ2� � � 
for a.e. x 2 X . Therefore τ Zσ[ψ](·)F 2 span{�σ(γ)ψ}. Consequently � � �� X 

Sψ τ Zσ[ψ](·)F = s[ψ,ψ] Fb(γ)ρ(γ)� = s[ψ,ψ]F = F , 
γ2� 

which can be extended to the whole h([ψ,ψ]) by density. For a relationship 
between the Zak transform and the global isometry U of Proposition 14 in the 
setting of LCA groups, see [2, Prop. 6.7]. 

7.3 A two-pronged comb in ` 2(�) 

In this subsection, we study properties of a two-pronged comb f of ` 2(�). We 
shall analyze when it generates the whole ` 2(�) and under which conditions the 
system {λ(γ)f : γ 2 �} has reproducing properties. 

To begin with, we recall that a two-pronged comb f 2 ̀ 2(�) is a sequence 
of the form f = aδγ1 

+ bδγ2 
for γ1, γ2 2 �, with γ1 6= γ2, and a, b 2 C \ {0}. We 

denote by V (f) the left-invariant space generated by f , that is 

` 2(�)
V (f) = span{λ(γ)f}γ2� . 

The following lemma states conditions for a two-pronged comb to generate 
` 2(�). 

Lemma 33. Let γ1, γ2 2 �, with γ1 =6 γ2, a, b 2 C \ {0} and f = aδγ1 + bδγ2 . 
Let h γ2 and e 2 � the identity.= γ−1 

1 

i) If there is no n 2 N such that hn = e, then V (f) = ` 2(�). 

ii) If there exists n 2 N such that hn = e, and a =6 ±b, then V (f) = ` 2(�). 
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Proof. Since the closed subspace V (f) is left-invariant, by Theorem 17 we have 
that F�V (f) = PV (f)L

2(R(�)). In particular, F�f = PV (f)F�f . Thus, the con-
dition V (f) = ` 2(�) holds whenever Ker(F�f)� = {0}. Indeed. If Ker(F�f)� = 
{0}, we will have that Ker(PV (f)) = {0} because (F�f)� = (F�f)�PV (f). Thus, 
PV (f) = I` 2(�) and therefore V (f) = ` 2(�). 

For computing Ker(F�f)� , note that, since (F�f)� = aρ(γ1) + bρ(γ2), any 
g 2 Ker(F�f)� must satisfy 

(F�f)� g(γ) = ag(γγ1) + bg(γγ2) = 0 8 γ 2 �. (32) 

Now, let g 2 Ker(F�f)� and suppose that g 6= 0. Choose γ0 2 � such that 
g(γ0) =6 0 and, for n 2 Z, let γ = γ0h

n−1γ1 
−1 . Then, by (32) we have that 

0 = ag(γ0h
n−1) + bg(γ0h

n) 

which is equivalent to g(γ0h
n) = −a g(γ0h

n−1). Thus, 
b � �n 

a 
g(γ0h

n) = (−1)n g(γ0). (33)
b 

In case i), all elements γ0h
n are di�erent, so using (33) we have X X a 2n 

kgk2 � |g(γ0h
n)|2 = |g(γ0)|2 = +1` 2(�) b 

n2Z n2Z 

for any a, b 2 C \ {0}. Since g 2 ̀ 2(�), this is a contradiction, thus g = 0, and 
Ker(F�f)� = {0}. 

In case ii), if n 2 N is such that hn = e, then from (33) we get � �n 
a 

g(γ0) = g(γ0h
n) = (−1)n g(γ0). 

b � �n 
aSince g(γ0) 6= 0, we then have that (−1)n = 1 and this is true only when 
b 

n is odd and a = −b or when n is even and a = b. As a consequence, if a =6 ±b, 
we deduce that Ker(F�f)� = {0} 

Remark 34. The condition a 6= ±b cannot be removed from item ii) in Lemma 
33. To see this, consider � = Z2. If a 2 C\{0} and f = a(δ0 +δ1) then, V (f) = 
span{δ0 + δ1} which is not ` 2(Z2). If f = a(δ0 − δ1) then, V (f) = span{δ0 − δ1}
which is not ` 2(Z2). 

We now want to study the reproducing properties of {λ(γ)f : γ 2 �}, with 
f = aδγ1 

+ bδγ2 
a two-pronged comb. In order to do so, we need to study the 

bracket map [f, f ] which reads, using (13), 

[f, f ] = |F�f |2 = |aρ(γ1)� + bρ(γ2)�|2 = (aρ(γ1) + bρ(γ2))(aρ(γ1)� + bρ(γ2)�) 

= (|a|2 + |b|2)I` 2(�) + abρ(γ1γ
−1) + baρ(γ1γ

−1)� . (34)2 2 

Proposition 35. Let f = aδγ1 + bδγ2 2 ̀ 2(�) be a two-pronged comb, with 
γ1 6= γ2 2 � and a, b 2 C \ {0}. If |a| 6= |b|, the collection {λ(γ)f : γ 2 �} is a 
Riesz basis for ` 2(�). 
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Proof. Observe frst that, for all γ 2 �, a, b,2 C, both the operators 

Z−(γ) = 2|ab|I` 2(�) −abρ(γ)−baρ(γ)� , Z+(γ) = 2|ab|I` 2(�) +abρ(γ)+baρ(γ)� p
|ab|I` 2(�) − pab |ab| ρ(γ)�are positive. Indeed, Z−(γ) = X�X with X , while= p

Z+(γ) = Y �Y with Y = |ab|I` 2(�) + pab 
|ab| 

ρ(γ)� Thus we can write. 

[f, f ] − Z+(γ1γ
−1) � [f, f ] � [f, f ] + Z−(γ1γ

−1)2 2 

which reads, by (34) 

(|a| − |b|)2I` 2(�) � [f, f ] � (|a| + |b|)2I` 2(�). 

By [1, ii), Theorem A], when |a| 6= |b|, we then have that {λ(γ)f : γ 2 �} is a 
Riesz basis of V (f), and by Lemma 33 we have that V (f) = ` 2(�). 

7.4 Dihedral action on L2(R2) 

The smallest nonabelian group is � = D3, the dihedral group of order 6, the 
symmetry group of an equilateral triangle. It is a group with 6 elements and 2 
generators, which can be presented by 

3D3 = ha, b | a = e, b2 = e, ba = a 2bi. 

We can write D3 as a set in terms of the two generators a and b by 

D3 = {e, a, a 2, b, ab, a2b}. (35) 

Following this order, the adjoint right regular representation is then given by 

ρ(a)� = 

0 BBBBBB@ 
0 0 1 0 0 0 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 0 0 1 0 
0 0 0 0 0 1 

1 CCCCCCA , ρ(b)� = 

0 BBBBBB@ 
0 0 0 1 0 0 
0 0 0 0 1 0 
0 0 0 0 0 1 
1 0 0 0 0 0 
0 1 0 0 0 0 

1 CCCCCCA 
0 0 0 1 0 0 0 0 1 0 0 0 

and their compositions. p
3− 1 − 

Let Ra = 2 2 

! 
be the 120 degrees rotation on the plane, let Rb =p

3 − 1 
2�� 2 

1 0 
be the refection over the x axis and, for γ 2 D3, let us denote by 

0 −1 
Rγ the matrix obtained by the corresponding composition of these two matrices, 
e.g. Rab = RaRb. Then we can defne a representation π : D3 ! U(L2(R2)) by 
π(γ)f(x) = f(R− γ 

1x) for f 2 L2(R2) and γ 2 D3. 
We want to provide a Helson map for this representation based on the con-

struction given in Proposition 14. In order to do so, we start by choosing an 
orthonormal basis for L2(R2). Let H ˆ R2 be the hexagonal domain with 
vertices 

p p p p
1 3 1 3 1 3 1 3 

(1, 0) , ( , ) , (− , ) , (−1, 0) , (− ,− ) , ( ,− )
2 2 2 2 2 2 2 2 
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Figure 1: Hexagonal lattice L on the foor of the Maths department at the 
University of Buenos Aires. 

! 
33 2(see Figure 1), and let L = p . Then H tiles R2 by translations with 
30ˆ 2 p ˙ 

the lattice L = LZ2 = (3m +
3 
n, 

3 
n) : (m,n) 2 Z2 . Let us denote by 

2 2! 
1 03Lb = (Lt)−1 = , and by L? = {k 2 R2 : k · l 2 Z 8 l 2 L} = LbZ2 

2−p1 p
3 3 

the annihilator lattice of L. Then it is well known [16] that {p1 

|H| 
e2πik·}k2L? 

3 3is an orthonormal basis of L2(H), where |H| = 
p 

. Thus, the system = 2 
{ψl,k : (l, k) 2 L × L?} ˆ L2(R2) given by 

1 12πik·xχ 2πik·xχψl,k(x) = p Tle (x) = p e (x)
H H+l|H| |H| 

defnes an orthonormal basis of L2(R2), and we will use it to defne the family 
of Lemma 11. 

Since H is invariant under rotations of 120 degrees and refections over the 
x axis, and since each Rγ is an orthogonal matrix, 

1 12πik·Rγ 
−1 xχ (R−1 2πi(R− γ 

1)tk·xχπ(γ)ψl,k(x) = p e γ x) = p e (x)
H+l Rγ (H+l)|H| |H|

1 2πiRγ k·xχ= p e (x) = ψRγ l,Rγ k(x).
H+Rγ l|H| 

Notice that (Rγ l, Rγk) 2 L × L? for all (l, k) 2 (L × L?), because Rγ l = 
L(L−1Rγ l) and L−1Rγ l 2 Z2 for all l 2 L, and the same holds for L? . Thus 

π(γ)ψl,k 2 8 γ 2 γ , 8 (l, k) 2 L × L? . 

Let us call r the representation of D3 in L×L? given by rγ(l, k) = (Rγ l, Rγk). 
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Then the set � p � � p � 
I = L\{(x, y) 2 R2 : 0 � y < 3x} × L? \{(x, y) 2 R2 : 0 � y < 3x} 

is a section of (L×L?)/r, i.e. L×L? = 
[ 
{rγ(l, k) : γ 2 D3} as a disjoint 

(l,k)2I 
union, so that M 

L2(R2) = hψ(l,k)iD3 

(l,k)2I 

where hψl,kiD3 
is actually the fnite span of the orbit {π(γ)ψl,k}γ2D3 

. Let us 
write I as the disjoint union 

° I = {(0, 0)} [ ∂I [ I 

where n o n� � o2 
∂I = (3m, 0) : m = 1, 2, . . . × m, 0 : m = 1, 2, . . . 

3 

and � p � � p � 
° I = L\{(x, y) 2 R2 : 0 < y < 3x} × L? \{(x, y) 2 R2 : 0 < y < 3x} . 

Notice that rγ(0, 0) = (0, 0) for all γ 2 D3, rb(l, k) = (l, k) for all (l, k) 2 ∂I, 

and rγ(l, k) =6 rγ0 (l, k) for all γ, γ0 2 D3, γ =6 γ0 and all (l, k) 2 ° I. 
Since D3 is fnite, for all p � 1 we have Lp(R(D3)) = R(D3) ˇ M6×6(C), 

so the bracket map writes as the fnite sum X 
[ϕ,ψ] = hϕ, π(γ)ψiL2(R2) ρ(γ)� . 

γ2D3 

Using that π(γ)ψl,k = ψrγ (l,k), and by the orthonormality of , we get X 
[ψ0,0, ψ0,0] = ρ(γ)� 

γ2D3X 
[ψl,k, ψl,k] = hψl,k, ψrγ (l,k)iL2(R2) ρ(γ)� = IC6 + ρ(b)� 8 (l, k) 2 ∂I 

γ2D3 

[ψl,k, ψl,k] = IC6 8 (l, k) 2 ° I. P 
Note that ρ(γ)� is the 6 × 6 matrix with 1 in all entries, that is 6 times γ2D3 

1 a projection of rank 1 in C6 , while IC6 + ρ(b)� = IC6 + ρ(b) = (IC6 + ρ(b))2 is2 
twice a projection of rank 3 in C6 . Then, we have that 

• {π(γ)ψ0}γ2D3 
is a tight frame with constant 6; 

• {π(γ)ψj}γ2D3 , for j 2 ∂I, is a tight frame with constant 2; 

• {π(γ)ψj}γ2D3 
, for j 2 ° I, is an orthonormal system. 
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We can then compute the Helson map U of Proposition 14 as follows: X1 1 1 
U [ϕ]0,0 = p [ψ0, ψ0] [ϕ,ψ0,0] = p ρ(γ)�[ϕ,ψ0,0]

6 6 6 6 
γ2D3 X1 1 

= p [ϕ, π(γ)ψ0,0] = p [ϕ,ψ0,0]
6 6 6

γ2D3 

1 1 1 1 
U [ϕ]l,k = p [ψl,k, ψl,k] [ϕ,ψl,k] = p (IC6 + ρ(b)�) [ϕ,ψl,k]

2 6 2 2 

1 1 
= p ([ϕ,ψl,k] + ρ(b)�[ϕ,ψl,k]) = p ([ϕ,ψl,k] + [ϕ, π(b)ψl,k])

2 2 2 2 
1 

= p [ϕ,ψl,k] , (l, k) 2 ∂I 
2 

U [ϕ]l,k = [ϕ,ψl,k] , (l, k) 2 ° I. 

7.5 Translates for number-theoretic groups 

It is well known the there are LCA groups having no discrete subgroups and 
therefore, they do not ft in the setting of Section 7.1 for analyzing spaces invari-
ant under translations neither reproducing properties. In order to overcome this 
obstacle J. Benedetto and R. Benedetto proposed the following setting where a 
new kind of translation operators are defned (see [4, 5]). 

Let G be a number-theoretic group, that is an LCA group with a compactband open subgroup H. Assume that G is second countable and fx C ˆ G a 
section for the quotient b , which turns out to be discrete and countable. G/H? 

We denote by fb(γ) = 
R 

f(x)γ(x)dx the Fourier transform in the LCA group
G 

G. The translation operator by an element [x] 2 G/H of a function f 2 L2(G) 
is noted by T[x] and defned through its Fourier Transform as 

[ bT[x]f = fω[x], 

where ω[x] : Gb ! C is given by ω[x](γ) := ηγ(x) for γ = ηγ + σγ with ηγ 2 H? 
and σγ 2 C. These translation operators give rise to a unitary representation of 
the discrete group G/H on L2(G), namely T : G/H ! U(L2(G)), [x] 7! T[x]. 
Indeed. By [4, Rem. 2.3] it holds that T[x]T[y] = T[x+y] for all [x], [y] 2 G/H 
and that T[e] = IL2(G). Moreover, since |ω[x]| = 1 we have that 

fω[x]k fkkT[x]fkL2(G) = k b L2(Gb) = k b L2(Gb) = kfkL2(G). 

Let us see that (G/H, T, L2(G)) is a dual integrable triple. For this, let 
f, g 2 L2(G) and [x] 2 G/H. Then, Z ZXb bhf, T[x]giL2(G) = f(γ)gb(γ)ω[x](γ) dγ = f(γ)gb(γ)ω[x](γ) dγ 

Gb H?+σ Z σ2C X b= f(η + σ)bg(η + σ)ω[x](η + σ) dη 
H? σ2CZ X b= f(η + σ)bg(η + σ)η(x) dη 

H? σ2C 
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where we have used Plancherel Theorem, that Gb can be partitioned by {H? +P bσ}σ2C and the defnition of ω[x]. Since clearly σ2C f(·+ σ)gb(· + σ) 2 L1(H?), 

and H? ˇ [G/H, we conclude that the bracket map is given by X 
[f, g](η) = fb(η + σ)bg(η + σ) for a.e. η 2 H? . (36) 

σ2C 

In this context, it can be proven that the mapping given by 

T : L2(G) ! L2(H? , `2(C)), T [f ](η) := {fb(η + σ)}σ2C 

for a.e. η 2 H? is an isometric isomorphism that satisfes T [T[x]f ](η) = 

η(x)T [f ](η) for a.e. η 2 H? . Thus, it is a Helson map for (G/H, T, L2(G)). 
Recently, in [5, Th. 4.5], it was proven that for f 2 L2(G), the family 

{T[x]f : [x] 2 G/H} is a frame sequence with constants 0 < A � B <1 if and 
only if X 

A � |fb(η + σ)|2 � B, 
σ2C P 

for a.e. η 2 {η 2 H? : |fb(η + σ)|2 6= 0}. Once we have proven thatσ2C 
(G/H, T, L2(G)) is a dual integrable triple, one sees that [5, Th. 4.5] is the 
version of [1, Th. A] applied to this context (see also Corollary 30 and [3, Sec. 
5]). Moreover, our Theorem 29 generalizes [5, Th. 4.5] for families of the form 
{T[x]φi : [x] 2 G/H, i 2 I} where I is an at most countable index set. 
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