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A B S T R A C T

In an Internet arena where the search engines and other digital marketing firms’ revenues peak, other actors
still have open opportunities to monetize their users’ data. After the convenient anonymization, aggregation,
and agreement, the set of websites users visit may result in exploitable data for ISPs. Uses cover from assessing
the scope of advertising campaigns to reinforcing user fidelity among other marketing approaches, as well
as security issues. However, sniffers based on HTTP, DNS, TLS or flow features do not suffice for this task.
Modern websites are designed for preloading and prefetching some contents in addition to embedding banners,
social networks’ links, images, and scripts from other websites. This self-triggered traffic makes it confusing to
assess which websites users visited on purpose. Moreover, DNS caches prevent some queries of actively visited
websites to be even sent. On this limited input, we propose to handle such domains as words and the sequences
of domains as documents. This way, it is possible to identify the visited websites by translating this problem to
a text classification context and applying the most promising techniques of the natural language processing and
neural networks fields. After applying different representation methods such as TF–IDF, Word2vec, Doc2vec,
and custom neural networks in diverse scenarios and with several datasets, we can state websites visited on
purpose with accuracy figures over 90%, with peaks close to 100%, being processes that are fully automated
and free of any human parametrization.
1. Introduction

The different actors in the Internet arena observe how users interact
both with service providers and between them while they browse,
chat, download a file or watch a video, among other activities. Such
interactions generate large amounts of data at different points of mea-
surement and scales. Some of these actors are exploiting this data
with evident success, whereas others are still in the early stages. For
instance, search engines such as Google and Bing exploit the search
queries of their users, generating profits of billions of dollars [1].
Also, marketing companies like SimilarWeb or Amazon’s Alexa [2]
sell browsing statistics gathered through plugins and toolbars. While
these actors are monetizing their data, others such as ISPs, or DNS
proxies/providers have still open opportunities to take advantage of the
value of their data.

Actually, both research and industry have already paid attention to
profile users’ browsing patterns, such as the websites they visit, as a
valued piece of information [3]. As an example, it becomes apparent
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that the identification of a competitor attracting the interest among
the customers of a given company is of paramount interest to such a
company, so it can react accordingly. Another example is the impact
that a certain advertising campaign achieves in a specific territory
or geographical region, i.e., the set of users in this territory that has
accessed a certain web after being exposed to a marketing campaign.
Besides, and shifting to security issues, the popularity rankings of
websites or the number of visits a website receives can be considered as
a useful detector of anomaly behavior. That is, when unpopular or non-
existing websites tend to be the most visited in a given network. In this
scenario, ISPs have the perfect occasion to place in the web-analytics
marketing arena.

Needless to say, user privacy rights are of paramount importance,
and traffic encryption mechanisms developed in recent times are key
tools to protect users’ data from a wide range of attacks [4]. In pursuit
of a balance between the provision of a service and data collecting,
some governments and agencies, such as the United Nations or Euro-
pean Union, have promoted laws to regulate the quantity and nature of
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the data that is gathered from users [5]. In addition to this, some ISPs
follow a policy of monitoring only those users that voluntarily want to
be part of commercial studies through online forms. In this way, users
that expressly do not desire to be part of studies are not considered.

In this light, ISPs are collecting anonymized and aggregated data,
which can be used to reconstruct the browsing activity of the users. To
this end, HTTP traffic was traditionally used to infer the sites visited.
However, very soon the research community realized that the trivial
approach of an HTTP sniffer does not suffice for this problem, as traffic
encryption was already becoming a common practice [6]. The first
answer to this limitation by the research community was to turn its
attention to DNS traffic or TLS’ Server Name Indication (sni) field.
Such a field contains the domain name of the host that the client is
connecting to, and servers use it to negotiate the certificate used in
each session. As another alternative, the research community focused
on how extended Netflow characteristics are useful to label connections
to websites.

Unfortunately, this revealed other significant problems. Modern
websites are designed [7] in such a way that once a user actively
visits a web, many other HTTP and DNS connections are triggered in
the background (e.g., banners, ads, social networks’ links, Javascript
scripts, prefetched and preloaded links). This makes it difficult to assess
whether a website was visited on purpose or not. Note that this is key
to create browsing statistics as HTTP or DNS traffic from no actively
visited websites must not be considered. In addition to this, the DNS
cache clouds the global vision of the sites visited by users as browsers
may access sites using cached addresses this way not generating DNS
queries when websites are actually visited.

In this light, let us remark that the common factor of these input
sources is the same: a partial list of domains (including not only
the actively visited website but also others) obtained while the users
browse the Internet. Therefore, we propose to use any of these sources
of the same information according to the particularities of each specific
environment, but avoiding non-common information or parameters.
For example, a potentially interesting field such as the DNS’s TTL,
which stands for the time that a name and its resolved address is valid,
is not considered for the sake of homogeneity. In fact, TTL values can
be manipulated [8].

Facing this scenario of limited inputs, as a novel approach, we real-
ized that domains are nothing but words likewise the lists of domains
can be seen as text documents. In this way, we propose to translate the
problem of users’ browsing profiling into a text classification context.
Certainly, with a high number of classes (the possible visited websites).
In particular, some of the most promising text classification algorithms
and our problem, user browsing profiling, share multiple points in
common. Both use incomplete information and while they aim at
learning word associations to suggest additional words or synonyms for
a partial sentence (e.g., Google’s autocomplete function), we propose
to search for relationships between the list of occurrences of website
domains, our corpus of text, and the visited websites to predict. The
observation of this link between problems and the particularities of
the limited input of our problem allows us to approach it with a
novel and promising perspective. Therefore, all the full potential behind
areas such as Natural Language Processing (NLP) and Artificial Neural
Networks (ANNs) have been reviewed for a problem that intuitively
does not seem related.

The results shown throughout this paper confirms the usefulness
of the approach. We have learned that there is no perfect model for
the problem, but diverse approaches depending on the availability of
processing time, the use of high-performance resources such as GPUs
or Tensor Processing Units (TPUs) for training models, and the number
of domains under study (i.e., all the Internet or a few domains of
interest, for example, only TV show websites to measure popularity
in a marketing campaign). In particular, we highlight the result of
techniques, such as Term Frequency Inverse Document Frequency (TF–
2

IDF) [9], Word2Vec [10], Doc2vec [11] and a custom neural network
model with weighted accuracy over 90%, often close to 100% for
diverse scenarios and data, being processes fully automated and free
of any human parametrization and interaction.

The rest of the paper is organized as follows: in Section 2, we
review the state of the art putting into perspective our contributions.
Next, Section 3 defines the problem formally while Section 4 presents
the methodologies used to address it. Afterward, Section 5 covers the
data acquisition, and Section 6 studies the performance of the set of
approaches in such data. Later, Section 7 discusses the main lessons and
contributions of this work in relation to the results. Finally, Section 8
concludes the paper and provides some future lines of work.

2. State of the art

We first present the challenges that the Internet community faces in
the task of extracting website visits from traffic measurements. Then,
we focus on how novel approaches from the machine learning field can
be useful in this task.

2.1. Traffic measurements for browsing analytic

The inspection of HTTP traffic and, specifically, its field host was
the natural approach to relate traffic to visited websites. For instance,
authors in [12] classify and identify the traffic using density-based spa-
tial clustering of applications with noise (DBSCAN) clustering algorithm
over the URLs, building coarse categories depending on the service such
as advertising or video streaming.

However, the advent of HTTPS rendered this approach useless
without Man-In-The-Middle proxies, which are unfeasible in many
deployments due to privacy concerns. As an alternative, the monitoring
community proposed focusing on the DNS protocol to reveal the traffic
behind an HTTPS flow [13,14] and then, perform a correlation between
DNS and HTTP traffic [7,15]. Nevertheless, a fraction of users can
choose other DNS servers than those provided by their ISP and the
use of DNS encryption and DNS over HTTPS (DoH) is gaining popu-
larity [16,17]. Moreover, most DNS resolvers and clients implement a
cache for DNS traffic where the associated IP address of a given domain
name is temporarily stored. As Time To Live (TTL) for the cache entry
can be long [8], chances are that a point of presence monitoring traffic
cannot see clients’ DNS queries although they are effectively visiting a
website.

In this scenario, the Internet community’s attention turned into
the inspection of some fields of HTTPS. Monitoring HTTPS traffic can
provide some insights on the browsed sites by means of Server Name
Indication (sni) field of TLS protocol. This field contains the name
of the host that the client is connecting to and serves to negotiate
the certificate used in each connection. This information is presented
before the TLS handshake and allows for the coexistence of multiple
HTTPS sites using the same IP address or addresses. Such a scenario is
commonly found on Content Delivery Networks (CDNs) and cloud and
hosting services.

However, the use of sni is not mandatory and although it is infre-
uent may not be used in the HTTPS connection. Moreover, recently
ome companies such as Cloudflare and Mozilla1 are promoting the use
f encrypted snis (eSNIs) [18] and Encrypted Client Hello (ECH) TLS
essages which avoids exposing this kind of information.

As a last bump in the road, the combination of TCP and TLS is
rogressively being substituted by UDP and QUIC [19], which has
ecome the standard transport mechanism for HTTP/3. Additionally
o the problems presented by TLS, QUIC provides full encryption for
ll traffic and presents the 0-RTT mechanism whereby previously es-
ablished connections may remain cached for a time period, avoiding

1 https://blog.cloudflare.com/encrypted-client-hello/.
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initial handshake in case a connection is reactivated in a similar way
that DNS cache does.

An alternative approach to the inspection of HTTP or DNS traffic for
extracting visits has been analyzing network flow characteristics. This is
the case of works such as [3,18,20–25]. Measures such as packet-size
frequencies, total-transmission time, and sizes, among other features,
are exploited to correlate flows and websites to identify visits and
security vulnerabilities. In addition, features related to DNS traffic such
as location, resolver, platform were useful to classify. On these flow
features, the authors apply different Machine Learning techniques, such
as Support Vector Machine, k-Nearest Neighbors algorithms or Random
Forest. Moreover, Deep Learning techniques such as convolutional neu-
ral networks (CNN) are considered. Mechanisms based on flow features
on fully encrypted traffic tend to give less accurate results. For example,
an F-Score higher than 0.8 for 80% of considered domains according
to the authors in [18]. Several are the downsides of this approach.
First, it is characterizing how web servers and communications work,
not the websites themselves. This way, a change in the server network,
software version, or transport-layer protocol may have an impact on the
model. Second, they need to collect much traffic, which entails scale
and computational problems. Third, they are especially sensitive to
missing or delayed packets. Finally, such flow-based approaches require
flows to expire before any analysis is carried out.

While the application of all the above-introduced ideas circumvent
the encryption problem at different levels and return a list of the
domains present in the traffic, the final target of obtaining the websites
that a user intentionally visited is not an immediate task. Modern
websites are currently designed in such a way that include a set of
external resources such as images, styles, banners, ads, or Javascript
scripts that generate both DNS and HTTP traffic without being specif-
ically requested by the user. With a similar impact, browsers preload
content and prefetch links in order to speed up browsing which, in turn,
generates non-requested traffic. This phenomenon has been referred to
as the tangled web problem [15].

In sum, whether for one cause or another, it is wrong to consider
that a user has visited a website, simply, by having found DNS, HTTP
traffic, or equivalent flows from such a website or domain. While this
dysphoria between the purposefulness of a visit may not be significant
for other issues, it is insufficient for providing precise results for the
monetization of the data.

To address this problem, the authors in [26] proposed the idea of
building weighted footprints. A weighted footprint is the set of domains
that are requested upon site loading ordered by relevance. By searching
such a list of domains in traffic, or a fraction of them according to the
observed TTLs, the effectively visited pages were inferred. Although
this mechanism has proven to be successful, three problems arise nowa-
days. First, ISPs and other DNS providers are manipulating TTL values
by means of DNS Transparent Proxies [8]. Also regarding TTL, the use
of DNS encryption techniques at the same time that choosing non-ISP’s
servers render TTL unavailable. Moreover, the emulation of the DNS
cache or other user-level browsing structures comes together with a
high demand for memory and resources that scales with the number of
users of the network and a complex parametrization. These problems
reduced the scope of application of such footprint-based proposals.

As a conclusion and for the sake of the independence of a specific
scenario, we consider that the general input that a website users’
profiling tool may expect is the set of domains that DNS, QUIC/TLS’
sni or mechanisms based on extended flows can extract. Over such a
common piece of information, we lay the foundations of our approach:
the observation of the fact that domains can be considered as words
and the set of domains as a document. In this way, we are proposing
to translate inputs into a text classification problem and exploiting
the advances in the natural language processing and artificial neural
3

networks fields to determine intentional visits to websites.
2.2. Natural language processing techniques

NLP is a centenary field that still attracts attention, where the most
novel machine learning techniques are significantly contributing. Since
the early attempts at the first half of the XX century, the first setback
was the problem of having categorical variables with a potentially
unlimited number of values, the well-known curse of dimensionality
phenomenon. Soon, the research community agreed that the key was
to build some kind of smart document representation, e.g., a low-
dimensional vector of characteristics, on which, subsequently, apply
the most diverse set of methods to solve a classification or regres-
sion problem [27]. In this context, classical approaches such as Bag
of Words [28] (BoW) representation arise, in which documents are
represented just as a set of words along with the frequencies of each
word in the sentence. Similarly, TF–IDF is built on top of the same
representation; it only considers the frequency of the words and not
the order, but with a more complex weighting procedure whereby the
concept of corpus and collection of documents were introduced. This
idea was particularly useful for designing Information Retrieval (IR)
systems such as search engines where documents have to be found and
ranked with respect to the relevance of the document [29]. Lately, this
proved to be a useful and simple approach but not powerful enough to
fully capture the meaning of a sentence, where order and context play
an important role.

Modern representations, known as embeddings, aim at capturing
both this idea of relevance and other important facts such as the order
and the context of a word. Word2vec [10] is one of the most prominent
unsupervised algorithms that creates a vector representation using the
context of a word. The idea of the authors was in fact that if two
words can fit in the same place of a sentence, they must be similar
in some sense. As a further refinement, Doc2vec [11] was proposed as
is an extension towards documents. This way, this concept focuses on
creating vector representations of sentences, paragraphs, or documents,
rather than lists of ungrouped sentences. This very same idea has
been extended to very different fields such as graphs [30] or user
modeling [31].

To incorporate order into such embedding, recurrent neural net-
works emerged as an option. In particular, Long Short-Term Memory
cells [32] are the usual approach to process sequences of texts or
time series. These kinds of models employ feedback connection to
retain a memory or state that is trained to capture the structure
of sequences, which is significantly useful for text generation [33],
automatic translation [34], or sentiment analysis [35]. All the above-
introduced mechanisms have been considered in the process of this
work and given their relevance, they will be further explained in our
particular context of utilization in the next section.

Finally, we remark that NLP and related fields have recently begun
to be applied in the area of communications. As some examples, the
authors in [36] searched for anomalous patterns in HTTP by means of
a word2vec approach. Similarly, in [37] is studied how to recognize
identical users across different social media platforms. NLP approaches
were put into practice to find relationships between the words, cate-
gories, and users. In [38], the authors explore a method for detecting
abnormal comments in e-commerce and review sites. Focusing on DNS-
based applications, the authors in [39] have applied embeddings to
separate malicious DNS queries from regular ones. In particular, they
aim at detecting botnets by querying for pseudo-random domains to
bypass black-list security mechanisms in data exfiltration scenarios.

3. Problem statement

The problem that we address is to determine if a user has visited
a given website on purpose in a given time interval by exploiting the
sources of information available on the heterogeneous Internet traffic.
In such a statement, two key points stand out: the available information

and the intentionality of the website visits.
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Regarding the former, given the previously described state-of-the-
art challenges, the following sources of information for gathering web-
site domains are viable:

1. The field host of HTTP when it is not encrypted or HTTP proxy
data is available.

2. The qname fields of DNS both question and answer when they are
not encrypted or the logs of the ISPs’ DNS server are available.

3. The TLS/QUIC field sni when certificates are negotiated in each
connection providing that it is not encrypted.

4. After constructing extended-features flows on the full traffic
aggregate, to use them to label connections and domains by
inference with a given precision.

We note that the diversity of these sources will provide signifi-
cant audience coverage, while the specific number will depend on
users’ own configuration. That is, the set of users that after changing
ISP’s DNS server and encrypt this traffic and choosing a browser that
encrypts esni field (e.g., Tor) visits an HTTPS website assuming that
traffic aggregate can be gathered (for computational or storage reasons,
for example) will comprise the uncovered audience. However, while
some users may both encrypt DNS connections and pick a DNS server
different from the ISP’s one, the majority of users do not. Similarly,
the possibility of finding encrypted sni is low today. According to [18],
esni fields were mostly absent in their measurement campaign. Anyhow,
some limitations in audience coverage can be simply equivalent to
the impact that those search engines that guarantee not to exploit
users’ data, such as DuckDuckGo [40], have on Google search engine’s
coverage. Even more, coverage can be directly limited simply due to
the fact that operators allow users to demand not to be monitored.

This way, regardless of the particularities, the common input data
on which the methods can be applied is a sequence of domain names
such as:

{abs.twimg.com, video.twimg.com, twitter.com, …}, (1)

which is the one a user generates when Twitter is visited.
Formally, let 𝐷 be our vocabulary, i.e., the set of all domains. In

addition, all the possible sequences may have many more elements
outside 𝐷, all these words, which are essentially strings gathered in the
traffic, will be called S. The first issue is the dimension of 𝐷. Typically,
classification problems consider only a few classes, but, in this case,
the number of classes is potentially infinite. Furthermore, the different
subdomains we use as predictors are also potentially infinite and they
come in sequence with no fixed length. Here is an example of what our
model 𝑓 should do

{abs.twimg.com, video.twimg.com, twitter.com, . . . }
𝑓
←←←←←←←→ twitter.com (2)

In order to properly specify the problem, we will call the sequence
of subdomains 𝑆𝑑 , where 𝑆𝑑 = {𝑠𝑖}

𝑁(𝑑)
𝑖=1 , the domain is 𝑑 ∈ 𝐷, and

(𝑑) is the length of the sequence, which depends on the domain.
lthough this sequence 𝑆𝑑 may seem constant, we will see cases where

here is some random behavior, mainly two cases: first, the domains
re not queried due to cache effects, persistent connections or 0-RTT
echanism, such as what happens in this example

abs.twimg.com, twitter.com, . . . }
𝑓
←←←←←←←→ twitter.com (3)

nd, second, some parts of the domain names might be random, like

ipv4-c070-mad001-ix.1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

random part

. oca.nflxvideo.net
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

relevant part

, (4)

here the first piece is just a random string related to the current local
DN that we are connecting to, and the rest totally identifies the traffic
ince it is a Netflix domain.
4

It may be thought to be an easy problem as the main domain 𝑑 is
ikely part of 𝑆𝑑 , but the problem is that, for other domain 𝑑′, it may

also happen that 𝑑 ∈ 𝑆𝑑′ . Here is emerging the second key point of the
posed problem, not all the gathered traffic comes from deliberate visits.

For instance, Facebook appears on many other pages since it is
always referenced whenever a button of ‘‘Sign in with Facebook" is
placed without an intentional visit by the user. This makes the problem
way more difficult and, unfortunately, is more common than expected
as the previous section stated. That is, unsolicited traffic is usually
triggered by banners, ads, Javascript scripts as well as by prefetched
and preloaded links techniques in most of the current websites.

To sum up, we look forward to some classifier

𝑓 ∶ S𝑁 → [0, 1]|𝐷|

𝑆 = {𝑠1,… , 𝑠𝑁} → 𝑓 (𝑆) = [𝑃 (𝑑|𝑆𝑑 = 𝑆)]𝑑∈𝐷 (5)

where 𝑆 is the input sequence, such as {abs.twimg.com,
video.twimg.com, twitter.com, . . . }, 𝑁 is the maximum length of the
sequence, |𝐷| the number of domains we consider and 𝑃 (𝑑|𝑆𝑑 = 𝑆) the
probability that the user was browsing site 𝑑 given that the sequence
was 𝑆.

4. Methodologies

This section describes several methodologies to solve the problem
of (2) and (5), which is essentially a text classification problem. Nowa-
days, NLP fueled the state of the art of text processing and classification
based on ANN, so this section will cover both classical techniques and
modern approaches to deal with this.

4.1. Classical approach: term frequency and inverse document frequency

In this very first approach, we want to think of this as a recommen-
dation algorithm or a search engine [41], where we aim at providing
a definition for the similarity or distance between two sequences. For
that purpose, it is even more useful to have a full representation in
a metric space, since we can train a classifier on this space, such
as k-Nearest Neighbors (k-NN) or a Multi-Layer Perceptron (MLP).
We have chosen the former as an example of a simple classifier that
allows us to benchmark solely the quality of the embedding, and the
other as a powerful classifier able to fit further complicated patterns.
Other classifiers can also be employed and performance is expected
to be somewhere in the middle between these two classifiers. For
instance, Support Vector Machines (SVMs) are known to have also good
performance, but they also suffer from performance problems when
the number of classes is very large [42]—as in this case—since they
are binary classifiers that rely on either the one-vs-one strategy or the
one-vs-rest strategy.

As a training set, we use, at least, a sample sequence of each domain
that we intend to identify. For each document we want to classify, we
assign the class or domain of the nearest neighbor (if 𝑘 = 1, if we have
more samples, we can use 𝑘 = 3 or 𝑘 = 5) or the one given by the MLP
classifier.

As mentioned, both need a metric space, in this case, the TF–IDF [9]
methodology provides one. First, we define TF as

TF(𝑠, 𝑆𝑑 ) =

{

1 + log2 freq(𝑠, 𝑆𝑑 ) if freq(𝑠, 𝑆𝑑 ) > 0
0 otherwise

(6)

nd IDF as

DF(𝑠) = log
|𝐷| + 1

|𝐷𝑠| + 0.5
(7)

where 𝐷𝑠 = {𝑑 ∈ 𝐷 ∶ 𝑠 ∈ 𝑆𝑑}, i.e. the domains whose sequences
contain 𝑠. Then, for each 𝑑 ∈ 𝐷, we define 𝑣𝑑 as the vector

𝑣 = [TF(𝑠, 𝑆 ) ⋅ IDF(𝑠)] (8)
𝑑 𝑑 𝑠∈S
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As we see, 𝑣𝑑 is a vector with infinite dimension. This would be
roblematic, but, the number of non-zero terms is finite due to the form
f TF(𝑠, 𝑆𝑑 ). In order to measure the similarity between two domains,

we use either the Euclidean distance or the cosine distance defined as
simply the cosine of the angle between the vectors 𝑣𝑑 and 𝑣𝑑′ ,

sim(𝑑, 𝑑′) = cos(𝑣𝑑 , 𝑣𝑑′ )

=
𝑣𝑑 ⋅ 𝑣𝑑′
|𝑣𝑑 ||𝑣𝑑′ |

=
∑

𝑠∈S TF(𝑠, 𝑆𝑑 )TF(𝑠, 𝑆𝑑′ )IDF2(𝑠)
√

∑

𝑠∈S TF(𝑠, 𝑆𝑑 )2IDF2(𝑠)
√

∑

𝑠∈S TF(𝑠, 𝑆𝑑′ )2IDF2(𝑠)
(9)

As we see, the sum of the scalar product and the norm does only involve
the non-zero terms, so, in fact, the dimension of S does not impact the
algorithm, but the performance depends on the length of the sequence.
To use the TF–IDF representation properly, a sparse matrix is usually
employed where only non-zero terms are stored. These sparse vectors
can be fed into other supervised methods such as an MLP classifier.

4.2. Modern approaches: neural networks

Sequence modeling, both in time series and text processing, is one
of the areas where neural networks excel. In this case, we propose to
follow a similar approach to neural networks that are able to classify
texts or paragraphs (in our case, 𝑆𝑑) into categories (in our case, the
domain 𝑑). Two approaches will be covered: the first one is based on
the construction of an embedding based on context and the second one
is a direct approach that exposes an end-to-end neural network model
working.

Prior to the models, we highlight that neural networks do not work
directly with strings as TF–IDF does; they rely on building first a vo-
cabulary. This vocabulary is a mapping of each word to a number. Due
to the dimensionality of the data, normally the vocabulary is limited
and less frequent words are considered as OOV (Out of Vocabulary)
tokens. In addition, other tokens are usually added as the start of the
sequence, end of the sequence, or padding token. These last tokens
solve the problem of variable length of the sequence, since a neural
network only works with inputs of fixed dimension.

4.2.1. Unsupervised embeddings: Word2Vec and Doc2Vec
First, in order to understand Word2Vec, it is necessary to understand

the two techniques used to perform the algorithm: Continuous Bag of
Words architecture and Skip-Gram. Both architectures rely on the same
concept: an artificial target variable to train the neural network.

Continuous Bag of Words (CBoW): In this first case, we build se-
quences where we delete an element, for instance, in sequence 𝑆 =
𝑠1,… , 𝑠𝑁 , we call 𝑆𝑖 to the sequence without 𝑠𝑖 and the idea is to
train a neural network so that 𝑓𝜙(𝑆𝑖) = 𝑠𝑖, using some classification
loss functions such as the logarithm of the cross-entropy. Once the
neural network is trained, we only need to specify the embedding.
To this end, we use the same approach as the AE, a hidden layer of
size 𝐾. Normally, since these networks can easily have millions of
parameters (≈ |S|×Sequence length×𝐾), it is recommended to keep the
architecture as simple as possible and usually it is just a hidden layer
and an output layer with a soft-max activation function. Fig. 1 shows
the architecture of the CBoW.

Skip-Gram: As before, we build an artificial target to predict. In this
case, the approach is completely the opposite, just with the information
of one word 𝑠𝑖, we try to guess the context 𝑆𝑖, i.e. 𝑓𝜙(𝑠𝑖) = 𝑆𝑖. In terms
of parameters, this problem looks heavier and, in fact, it is known to be
slower in terms of convergence than CBoW but it also results in better
representations. As before, a single hidden layer is usually considered to
avoid an excessive number of parameters. Fig. 2 shows the architecture
of the Skip-Gram network.

Once the embedding is trained and ready, for each word, we have
𝑘

5

a number of R . Given this, now, the problem is just a classification
Fig. 1. Continuous bag of words architecture.

Fig. 2. Skip-Gram architecture using a context of size 2𝑚.

problem in R𝑘 with many classes. As long as we have enough samples
to train a classifier, we will be solving the problem. In order to compare
the obtained result with incoming architectures, we use the same
classifiers as before.

Once word2vec methods are clear, it is easier to follow the doc2vec
approximation. As before, there are two possible approximations: Para-
graph Vector-Distributed Memory (PV-DM) and Paragraph Vector-
Distributed Bag of Words (PV-DBoW).

The first case, PV-DM, is an extension of CBoW. For each word, we
compute the representation using a neural network in Fig. 3. Once all
vectors are computed for every word based on some tags, the word
itself, and the context, the resulting embedding is concatenated or
averaged in a final vector that represents the whole paragraph. Tags act
as a way of adding domain information to the network, so tags weight
matrix encodes an embedding of the tags.
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Fig. 3. Fundamental unit for the distributed memory model for paragraph vector
(PV-DM).

Fig. 4. Distributed bag of words model for paragraph vector (PV-DBoW).

The second case, PV-DBoW, follows an analogous procedure than
skip-gram, but instead of creating the context from the center word,
it is performed with the tags. Fig. 4 explains this architecture. Once
the network is trained, the likelihood of the observed words can be
computed to see from new samples the estimated probabilities of
belonging to a class.

Implementation of all methods can be found in the Python library
for topic modeling gensim [43].

4.2.2. Custom neural networks: embedding layer and direct approach with
recurrent neural networks

Although the usual approach to text processing is unsupervised, we
have categories available so we can create a classifier directly. Thus,
the objective now is to create a direct model based on neural networks.
6

The architecture is shown in Fig. 5.
Fig. 5. Direct approach to text-classification using a RNN.

Fig. 6. Direct approach to text-classification using an ANN with custom embeddings.

In this case, we use an embedding layer to represent the data first
in a dense way, instead of a sparse representation. An embedding
layer [44] of output size 𝑘 is a function that converts each 𝑠 ∈ S into a
trainable weight, this is:

emb ∶ S → R𝑘

𝑠 → 𝑤𝑖 (10)

where {𝑤𝑖}
|S|
𝑖=1 are trainable weights. Also, if |S| is too large to be

practical, it is possible to use a hash function to reduce the number of
parameters. This is known as the hashing trick [45]. Bear in mind that
this embedding operator is exactly the same for each word, no matter
the position, meaning that the number of parameters of this layer is
proportional to the dimension of the input |S| and the desired output
dimension.

Next, a recurrent layer, in particular, an LSTM layer, treats the input
as a sequence. If this is not done, the input will be treated as a vector.
This means that having the whole sequence of subdomains but the first
one would lead to a completely different vector, whereas, with LSTM
cells, neural networks can learn patterns in the sequence.

Another possibility is to eliminate the complexity of a recurrent
layer and aggregate the results of each embedding. Fig. 6 presents
this architecture. The aggregation can be either one that preserves
the order such as concatenation or one that ignores the orders, such
as the maximum or the sum. Although this model is weaker than
the previous one, it is important to consider that training RNN can
be extremely challenging in many environments, especially with the

absence of specific hardware designed for them, such as TPUs.
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Fig. 7. Results for the ideal classifier that bound the best obtainable accuracy.
. Data acquisition and preprocessing

Let us pay attention to the data to train the neural networks. For
hat purpose, the authors of [26] built a system that is composed of

capture engine filtering DNS and a number of web browsers that
utomatically access a list of objective domains simulating desktop
nd mobile environments (by changing, user-agent field) in several
perating systems.

This system, hereinafter called the ‘‘robot’’, is used to query the
nformation for a list of domains, typically tops of popular websites or
ets of domains of relevance for a client, e.g., stores or telecommunica-
ions companies. The robot provides a record that includes much more
nformation than the performed DNS queries, e.g., the Time-To-Live
r the server. Nevertheless, these extra attributes will not be used to
eed the neural network, since we pursue to homogenize the input data
or different scenarios, and not all of them can provide such extra at-
ributes. In other words, the robot carries out measurement campaigns
ssuming sources of information such as sources 2 and 3, previously
efined in Section 3. Also, the validity and representativeness of data
ave already been assessed in [26].

Once we have acquired our dataset, we need to adapt it to be
ed into a neural network. The first step is to build a vocabulary.
he vocabulary models S by adding two extra tokens or words and
liminating the least used ones. So, the vocabulary will be called Ŝ ⊂
S ∪ {𝑂𝑂𝑉 ,𝐵𝐿𝐾}, where 𝑂𝑂𝑉 and 𝐵𝐿𝐾 stand for Out-Of-Vocabulary
token and Blank token respectively. The first one is used whenever an
element in S is not in Ŝ and the second one is used when a sequence is
shorter than the maximum allowed by the neural network.

Once this is done, we map each word to a number. This can be done
through a one-hot encoding (so each word is mapped to a number in
{0, 1} ̂

|S|) or by a simple hashing (so each word is mapped to a number
in {0,… , |Ŝ|}). Always the first approach is preferred, since distances
between words in the second space are not representative whereas, in
the first case, all the words are equally spaced.

Although it is clear that the first option is better, we have to consider
that this means that if vocabulary size is around 100 000, we are
working with an input space of dimension 100 000𝑚, where 𝑚 is the
length of the sequence. This makes everything so expensive to compute
that we have to stick to the second option in many cases.

Besides, it is possible to apply many techniques, such as splitting
the domains into their subdomains or removing the repetitive parts of
the domain names—e.g. www, and top-level domains (com, net, etc.)
r country code domains (es, us, uk, etc.). In the latter case, these are

usually called stop words in text processing. While they are sometimes
removed, we decided to keep them because some regional domains,
such as google.com.br or google.com.ar, are difficult to differentiate
otherwise.
7

Then, to cope with the high dimensionality, the aforementioned
embedding layer trains a linear operator and a scalar to map the input
space to a fixed dimension real vector space, for instance, if we want
to map the sequence of integers to a sequence of real-valued vectors.
This provides a mixed solution that is usually used so that we do not
exhaust the memory when creating and processing the dataset, the size
of hidden layers are not excessively large and the topology of the words
(that now are vectors in R𝑘) is more coherent with the problem we
intend to solve.

6. Results

In this section, we will evaluate the different methods explained
before: TF–IDF, doc2vec, and the direct approach with neural networks.
For all these methods, we will evaluate the performance with several
datasets and we will model the impact of DNS caching. We recall that
each time a system queries a DNS domain, the result is returned with
a Time-To-Live (TTL) field. This means that as long as TTL has not
expired, the device will not ask for the same domain while accessing it.
As a reminder, none of the methods presented here has any information
about the TTL at training, so the classifiers have no way of knowing
which domains are more likely to be cached. This means that similar
effects should be extendable to any caching or sampling effect, no
matter whether it is related to DNS, TLS, or traffic sniffing.

To obtain the datasets, we used the aforementioned robot to query
the Top 100 and Top 2500 of worldwide most visited domains ac-
cording to Alexa [46]. This is done for two web browsers: Chromium,
the open-source alternative of Google Chrome, and Mozilla Firefox. In
real traffic, we have observed that a set of only four domains (Google,
Facebook, Apple, and Microsoft) can accumulate more than 60% of
the global traffic in terms of the number of accesses. In fact, these
tops follow Pareto’s Law, as it happens in salary distribution or the
frequency of words in English.

It is clear that the less information you have, the less precision you
can achieve. Thus, firstly, we analyze the best achievable results. This
way the performance of the methods is compared with respect to such
best possible behavior.

6.1. Ideal classifier

We define the ideal classifier as the one which, as long as the
information is enough, always predicts the correct domain. A classifier
has enough information to predict the domain 𝑑 if and only if 𝑆𝑑 ≠ 𝑆𝑑′

for every domain 𝑑′ ∈ 𝐷 different from 𝑑, i.e. as long as there is no
other sequence that happens to be the same for a different domain.

When we are not considering the effect of caching, this happens

with a very low probability. However, if we start missing domains
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Fig. 8. Distribution of the length of the sequences.
in the sequence, the probability starts growing, which influences the
highest possible accuracy.

Fig. 7 displays the performance as a function of the number of
missing elements of the sequence for both Alexa’s Top 100 and Top
2500. In the Top 100 case, we see that there is no significant loss of
information after more than 10 excluded domains from the sequence.
After that, it decreases linearly. With more than 25 missing elements,
the performance is significantly compromised given that accuracy can-
not be higher than 60%. This is because many of the sequences have
less than 25 elements and become easily empty.

For the Top 2500, behavior differs significantly. An accuracy of 90%
is still attainable even with more than 15 missing elements, but after
that, there is a change in the slope and it ends with less than 70% for
30 elements.

These calculations show that results of accuracy should be measured
in a different scale, i.e. we should modify the accuracy so that results
are comparable for a different number of missing elements. Thus, we
define the weighted accuracy with 𝑘 missing elements as

wacc(𝑘) = acc(𝑘)
accideal(𝑘)

, (11)

where acc is the accuracy with 𝑘 missing elements and accideal(𝑘) is the
accuracy of the ideal classifier.

Intuitively, the weighted accuracy helps us to measure the accuracy
of the classifier as a percentage of the best achievable accuracy—
i.e., the accuracy of the ideal classifier. However, we need extra infor-
mation to completely evaluate the results. In particular, Fig. 8 displays
the normalized histogram and the Empirical Cumulative Distribution
Function (ECDF) of the length of the sequences for each dataset. The
mean sequence length is 48.27 for the Top 100 and 65.12 for the Top
2500. In the histogram, we observe that the mode in both distributions
is around 15–25. This justifies the change of behavior we have observed
in Fig. 7b around this range. Furthermore, the ECDF depicts the proba-
bility of having a sequence of length higher or equal than X. This means
that if you exclude 30 elements of the sequences, you would lose 40%
to 45% of the dataset due to empty sequences.

6.2. Results for TF-IDF

First, we test the TF–IDF embedding. TF–IDF embedding retains a
lot of information from the texts, in fact the frequencies of the words,
but we expect that high-dimensional data may arise when coping with
huge datasets. For that purpose, sparse matrices are used to avoid
computational issues. Nevertheless, the dimensionality of the data can
also affect the convergence of the algorithm, so we do not have high
expectations in this method for huge datasets.

Fig. 9 shows the results in terms of the accuracy for the dataset
obtained for the Top 100 of Alexa. The dataset is composed of 15000
8

samples of the top 100 domains in terms of visits. The training subset,
in this case, is just composed of one sample per class whereas the test
is the rest of the dataset. Although this split seems very aggressive,
bear in mind that this representation can get highly dimensional and
noise (random subdomains) can affect it. As we mentioned before, the
objective of the experiments is to see the impact of the DNS caching
on the results. We observed that results are not affected when 4 or 5
domains are in the cache. However, from that point on, the results are
affected by an approximate ratio of 10% per 5 excluded domains.

For the case of the Top 2500, we expect worse results since dimen-
sions are much higher. In this case, the training set and test set are
divided randomly with 70% of the sample for training and 30% for
test. Fig. 10 displays the results for this case. In this example, we see
that the behavior is almost a straight descending line. MLP classifier
scores better than k-NN due to its complexity, but it cannot show results
higher than 85% of accuracy for the test set. It can be observed also
that in both classifiers we have overfitted the training data so the
performance for the test subset is always lower.

6.3. Results for Doc2Vec

In this case, we split the dataset into a training set composed of
70% of the sample and a test set composed of 30% of the sample. Then
we trained the embedding using both PV-DM and PV-DBoW algorithms
with different sets of parameters. Once embeddings are trained, we use
k-NN and a MLP classifier to solve the classification problem now in
some real-valued space.

As before, this is done both for Top 100 and Top 2500 of Alexa.
Fig. 11 shows the results for the Top 100 of Alexa. We observed
that both MLP and k-NN classifiers score similarly and, again, the
decay of the amount of information when eliding subdomains of the
sequence is linear and more or less with a similar slope to TF–IDF.
As a positive advantage, there is no overfitting in this case. About
the hyperparameters, we found out that a hyperparameter was critical:
whether to concatenate or to average the representations of the words.
When doing concatenation, the embedding retains information of the
order of the sequence. However, retaining this information causes the
algorithm to overfit and not generalize really well. On the other hand,
averaging provides a way of representing the words and their contexts
partially ignoring the order of the sequence.

For the Top 2500, Fig. 12 represents the score for k-NN and MLP
classifiers. Now, overfitting is clear and the difference between k-NN
and MLP is more obvious as well, being MLP better than k-NN. It is

similar also to TF–IDF with no highlighted differences.
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Fig. 9. Results for the Top 100 of Alexa for TF–IDF embedding. The solid blue line represents the training dataset and the dashed orange line the test dataset.
Fig. 10. Results for the Top 2500 of Alexa for TF–IDF embedding. The solid blue line represents the training dataset and the dashed orange line the test dataset.
Fig. 11. Results for the Top 100 of Alexa for doc2vec embedding. The solid blue line represents the training dataset and the dashed orange line the test dataset.
.4. Results for RNN and ANN with custom embeddings

Following the previous case, for both the Top 100 and the Top
500 datasets, we performed a train–test split with 70% of the samples
or training and 30% for test. In the first case, we found out that
erformance is similar to other methods as we can see in Fig. 13 and
he difference between training and test is negligible (which means
here are no overfitting issues). However, the decay of the accuracy
s a function of the number of missing subdomains is quite steep and
ot linear in this case. This can be due to the fact that RNN takes into
ccount the order of the domains whereas TF–IDF and doc2vec with
veraging do not, which makes the algorithm more sensible to missing
lements of the sequence.
9

In the Top 2500 case for RNN, the achieved accuracy is much worse
than TF–IDF. In this case, the decay is not so steep but, since accuracy is
below 50%, it does not make sense to consider the results. This means
that the data is not enough even to reliably train the RNN. As we will
see next, the order plays no significant role, since ANN performance in
the same conditions is significantly higher.

Since the order of the sequence is likely not important, we get rid of
the recurrent layer and just aggregate all the embeddings with a sum
operator. Fig. 14 shows improved results, on a par with doc2vec, both
in Top 100 and in Top 2500, but with some overfitting for the Top
2500. This confirms our hypothesis that the order of the elements in
the sequence is not such a relevant factor.
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Fig. 12. Results for the Top 2500 of Alexa for doc2vec embedding. The solid blue line represents the training dataset and the dashed orange line the test dataset.
Fig. 13. Results for the RNN for the Top 100 and Top 2500 of Alexa. The solid blue line represents the training dataset and the dashed orange line the test dataset.
Fig. 14. Results for the ANN without recurrent layers for the Top 100 and Top 2500 of Alexa. The solid blue line represents the training dataset and the dashed orange line the
test dataset.
6.5. Comparison

As we mentioned in the ideal classifier, accuracy is biased when
the number of excluded domains grows, so in this subsection, we
cover a comparative study of the performance of the different methods
against the ideal classifier. For that purpose, we compare in Fig. 15 the
performance in terms of the weighted accuracy. For the sake of brevity,
we have chosen the best performing scenarios for each method.

All methods have similar behavior, they decrease until the number
of missing elements is around 12–15 and then they either maintain the
same performance or they even improve it. As we previously saw in
the histogram, almost no sequences have a length less than 10 and the
10
mode of length of the sequence is around 15, which justifies this change
of behavior around 15. ANN is the only method that suffers from
overfitting, given that training and test performance are not similar.
TF–IDF and doc2vec perform similarly for the Top 100 domains in
Alexa, but some differences arise in the Top 2500. In this case, doc2vec
performs slightly better than TF–IDF, especially with more than 10
excluded domains. On the other hand, ANN follows similar behavior
but with a significantly worse score.

It is also important that training and prediction processes are feasi-
ble in a real environment, since models would be impractical otherwise.
Table 1 shows a summary of the results along with an evaluation of
the approximate memory necessity, training time, and prediction time
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Fig. 15. Weighted accuracy for all the methods presented in this work.
for each algorithm. TF–IDF itself is an immediate representation of the
data, but it builds extremely high dimensional data. This makes TF–
IDF an appropriate option for Top 100 but completely impossible for
Top 2500, where memory footprint becomes a problem. In fact, this
makes training and prediction in this representation an extraordinarily
expensive process that can take several hours or even days. On the other
hand, ANN offers a relatively low memory consumption since most of
the libraries are already prepared to handle NLP, which usually requires
even larger sequences or larger vocabularies. Training takes minutes
or hours, depending on the size of the network, but the prediction is
always a fast process that takes only a few seconds. Doc2vec perfor-
mance is somehow similar to ANN but marginally faster. To make the
difference between TF–IDF and the rest more evident, these last two
methods can be trained using GPUs or TPUs, reducing training time by
11

a factor of 10 in some cases.
For the sake of reproducibility, examples of the methods and
datasets have been made publicly available.2

7. Discussion: challenges and lessons learned

Throughout this paper, we have focused on the problem of profiling
users’ web browsing based on different resources such TLS records or
DNS data. This objective leads us to several results and contributions
about the difficulties and possibilities:

1. Formulation of the problem in terms of NLP: we have defined
in Section 3 the problem we propose to solve. These precise
and mathematical definitions allow us to foresee the difficulties
that may appear as well as possible solutions based on the

2 Available at https://github.com/hpcn-uam/nlp-web-analytics.

https://github.com/hpcn-uam/nlp-web-analytics
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Table 1
Summary of results of the text classification methods for the Top 2500 domains of Alexa. Accuracy@𝑘 stands for the accuracy of the method
when the number of excluded elements in each sequence is 𝑘.

Model Memory footprint Train time Predict time Accuracy Accuracy@5 Accuracy@10

Ideal – – – >99% >97% >95%

TF–IDF With k-NN High Minutes Hours >80% >70% >65%
With MLP High Hours Minutes >95% >85% >80%

Doc2vec With k-NN Medium Hours Hours >70% >65% >55%
With MLP Low Hours Minutes >90% >80% >75%

ANN With recurrence Low Daysa Minutesa >35% >25% >20%
Without recurrence Low Hoursa Minutesa >80% >70% >65%

aComputation time using CPU. GPU/TPU might improve this result drastically.
8
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state of the art. This means that we have translated an open
problem of identifying the user’s web browsing behavior from
the traffic into a natural-language classification problem with a
high number of classes, enabling us to employ the pre-existing
state of the art of NLP to cope with this.

2. Extensive, generic, and scalable approach with respect to alternatives:
we recognize that there are many alternatives for traffic iden-
tification and web browsing analytics extraction. In our work,
we present an extensive alternative that can be used with either
DNS data or with TLS/QUIC data. It could also be potentially
used with flow data in combination with techniques such as [3,
18,20–25] where resolved domains are estimated through flow
characteristics. In this case, the resulting performance would be
the result of the combined performance of both systems. Our
system is built on top of the state of the art of consolidated topics
of text classification which have already been widely tested.
Furthermore, it does only require a small percentage of the
traffic, instead of relying on full fingerprints of a set of network
packets. Finally, it can be deployed in a distributed way, scaling
up the monitoring for networks of any number of users.

3. Study of the performance with loss of information: one of the main
alternative sources as input data of our proposal is DNS data.
Consequently, we highlight the performance of our methods in
terms of the portion of the data that is unseen due to the effect
of the local cache. This also extends beyond that and shows even
a stronger result: since training data do not need any TTL or any
feature indicating that a domain is more likely to be missing in
the sequence, we are resistant to missing data. This can be due to
cache effects, losses in capture engines, sampling techniques or
any other issue that may happen in high-speed network probes.

4. Definition of ideal classifier : we have defined the theoretical ideal
classifier that provides a bound of the best achievable perfor-
mance in terms of accuracy. As we mentioned, the accuracy
is biased since it is expected to decrease when the number
of missing elements of the sequence rises. With this, we were
able to define a brand new metric, weighted accuracy (11), and
use it to make a fair comparison of the different methods in
Section 6.5.

5. There is no perfect model: we have assessed the performance
of many models with different parameters. Depending on the
situation, one option outperforms the others. In this case, TF–IDF
is a promising option valid for small datasets. Doc2vec is more
suitable for larger datasets, whereas generic ANN with custom
embeddings is also on par with doc2vec. Moreover, it is the most
promising option to learn the effects of DNS caching with data
augmentation.

6. Overall accuracy : Considering the most suitable model for ev-
ery situation (availability of GPU/TPU, number of domains in
the dataset, among other issues), the weighted accuracy shows
figures over 90%. This means that NLP methods were able to
learn the web browsing behavior successfully, proving to be
good alternatives that helped to build bridges between network
monitoring and NLP.
12
. Conclusion

In this paper, we have approached the web browsing analytics
xtraction problem using NLP techniques applied over diverse traffic
ources. This allows ISPs and DNS providers to exploit and monetize
he data that inherently flow through their infrastructures, thus cre-
ting new business opportunities in marketing and analytics markets.
pecifically, we have analyzed several text modeling techniques applied
o DNS and HTTPS data or even extended flows.

As in many situations, we did not find out an ideal technique able
o be used in every situation. Although TF–IDF is the most simplistic
pproach, it is useful even for situations where there are numerous
omains and, thus, neural networks may not converge, making doc2vec
nd RNN worthless. However, TF–IDF has a high memory footprint and
t comes with an overfitting issue that neither doc2vec nor RNN does.
n general, doc2vec is better than RNN and similar to ANN. This is
ecause the order of the sequence, in this case, provides no information,
s it is shown in the performance of ANN with aggregation instead of
recurrent layer.

There are still open research lines, such as improving RNN per-
ormance through data augmentation with permutations. As another
mprovement, models can be trained to be resilient against several
actors such as concurrent users behind a NAT router or DNS proxy
r missing data due to cache effects. Although this problem cannot
et justify the search for more complex models than those we cov-
red, attention networks [47] as well as other equivalent [48] models
re emerging as promising mechanisms that will become useful in
ddressing the future challenges of web browsing analytics.
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