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Abstract

We show that in 3-dimensional ideal magnetohydrodynamics there exist
infinitely many bounded solutions that are compactly supported in space-time and
have non-trivial velocity and magnetic fields. The solutions violate conservation of
total energy and cross helicity, but preservemagnetic helicity. For the 2-dimensional
case we show that, in contrast, no nontrivial compactly supported solutions exist
in the energy space.

1. Introduction

Idealmagnetohydrodynamics (MHDfor short) couplesMaxwell equationswith
Euler equations to study themacroscopic behaviour of electrically conducting fluids
such as plasmas and liquidmetals (see [31,50]). The corresponding systemof partial
differential equations governs the simultaneous evolution of a velocity field u and
a magnetic field B which are divergence free. The evolution of u is described by
the Cauchy momentum equation with an external force given by the Lorentz force
induced by B. The evolution of B is, in turn, described by the induction equation
which couples Maxwell–Faraday law with Ohm’s law.

D.F. was partially supported by ICMAT Severo Ochoa projects SEV-2011-0087 and
SEV-2015-556, theGrantsMTM2014-57769-P-1 andMTM2017-85934-C3-2-P (Spain) and
the ERCGrant 307179-GFTIPFD, ERCGrant 834728-QUAMAP. S.L. was supported by the
ERCGrant 307179-GFTIPFDand by theAtMathCollaboration at theUniversity ofHelsinki.
L. Sz. was supported by ERC Grant 724298-DIFFINCL. Part of this work was completed in
the Hausdorff Research Institute (HIM) in Bonn during the Trimester Programme Evolution
of Interfaces. The authors gratefully acknowledge the warm hospitality of HIM during this
time. D.F also thanks the hospitality of the University of Aalto were part of his research took
place.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00205-020-01570-y&domain=pdf
http://orcid.org/0000-0002-6307-9225


52 D. Faraco et al.

The ideal MHD equations give a wealth of structure to smooth solutions and
several integral quantities are preserved. In 3D, smooth solutions conserve the total
energy, but also two other quantities related to the topological invariants of the
system are constant functions of time: the cross helicitymeasures the entanglement
of vorticity and magnetic field, and the magnetic helicity measures the linkage and
twist of magnetic field lines. Magnetic helicity was first studied by Woltjer [59]
and interpreted topologically in the highly influential work of Moffatt [42], see
also [4]. In fact, it was recently been proved in [36] that cross helicity and magnetic
helicity characterise all regular integral invariants of ideal MHD.

In this paper we are interested in weak solutions of the ideal MHD system,
which in some sense describe the infinite Reynolds number limit. As pointed out
in [12] such weak solutions should reflect two properties:

(i) anomalous dissipation of energy;
(ii) conservation of magnetic helicity.

Indeed, just as in the hydrodynamic situation, in MHD turbulence the rate of total
energy dissipation in viscous, resistive MHD seems not to tend to zero when the
Reynolds number and magnetic Reynolds number tend to infinity. This has been
recently verified numerically in 3D; see [20,39,41]. On the other hand simula-
tions, and theoretical results have shown that magnetic helicity is a rather robust
conserved quantity even in turbulent regimes, and J.B. Taylor conjectured that
magnetic helicity is approximately conserved for small resistivities [57] (unlike
subhelicities along Lagrangian subdomains that are magnetically closed at the ini-
tial time). Taylor’s conjecture is at the core of Woltjer–Taylor relaxation theory
which predicts that after an initial turbulent state, various laboratory plasmas relax
towards a quiescent statewhichminimisesmagnetic energy subject to the constraint
of magnetic helicity conservation (see [4,46]).

The conservation of magnetic helicity for weak solutions of ideal MHD was
first addressed in [12], and subsequently it was shown in [1,35] that it is conserved if
u, B ∈ L3

x,t , that is, in contrast with energy conservation, no smoothess is required.
Moreover, the first and second author recently proved that if a solution in the
energy space L∞t L2

x arises as an inviscid limit, then it conserves magnetic helicity
(see [29]). In this context, Theorem 2.2 below extends [29, Corollary 1.3], from
ideal (that is inviscid, non-resistive) limits of Leray–Hopf solutions to a larger class
of possible approximation schemes.

Our main purpose in this paper is to show the existence of nontrivial weak
solutions to ideal 3D MHD compatible with both requirements (i)–(ii) above.

Theorem 1.1. There exist bounded, compactly supported weak solutions of ideal
MHD in R

3, with both u, B nontrivial, such that neither total energy nor cross
helicity is conserved in time, but magnetic helicity vanishes identically.

We note that bounded solutions in particular fall into the subcritical regime
of [35] for magnetic helicity, so that for the solutions above magnetic helicity
must vanish at all times even though the magnetic field B is not identically zero.
Moreover, as a corollary of Theorem 2.2 below, it also holds that for bounded
solutions on T3, either the initial data has vanishing magnetic helicity or B cannot
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have compact support in time. Indeed, as noted by Arnold [3],
∫
T3 |B|2 dx ≥

C
∣
∣
∫
T3 A · B dx

∣
∣ at every t ∈ [0, T [, where A is the magnetic potential. It is also

worth pointing out that the solutions in Theorem 1.1 have nontrivial cross-helicity.
MHD turbulence in 2D seems to have many similarities with the 3D case (in

stark contrast with hydrodynamic turbulence), in particular there is plenty of numer-
ical evidence for anomalous dissipation of energy [6,7]. Nevertheless, wewill show
in Section 2.2 that in 2D, under very mild conditions, weak solutions with nontriv-
ial magnetic field cannot decay to zero in finite time, in particular solutions as in
Theorem 1.1 do not exist in 2D.

Our construction is based on the framework developed in [21] by C.De Lellis
and the third author for the construction of weak solutions to the Euler equations.
This framework is based on convex integration, which was developed by Gro-
mov [32] following the work of Nash [44], and—in a nutshell—amounts to an
iteration procedure whereby one approximates weak solutions via a sequence of
subsolutions, in each iteration adding highly oscillatory perturbations designed to
cancel the low wavenumber part of the error. In [21] convex integration was used in
connection with Tartar’s framework to obtain bounded nontrivial weak solutions
of the Euler equations which have compact support and violate energy conserva-
tion. Such pathological weak solutions were known to exist [49,51] but the method
of [21] turned out to be very robust and many equations in hydrodynamics are
amenable to it and its ramifications.

Roughly speaking, the development of the theory followed two strands: con-
cerning the Euler equations and in connection with Onsager’s conjecture [27,45],
an important problem was to push the regularity of such weak solutions beyond
mere boundedness to the Onsager-critical regime. This programme, started in [24],
finally culminated in Isett’swork [33], see also [9]. For a thorough report of these
developments and connections to Nash’s work on isometric embeddings, we refer
to [25]. Another, somewhat independent strand, was to adapt the techniques to
other systems of equations, such as compressible Euler system [13], active scalar
equations [10,18,52,53] and others [8,14,15,37]. A key point in the technique is
a study of the phase-space geometry of the underlying system, to understand the
interaction of high-frequency perturbations with the nonlinearity in the equations
in the spirit of L. Tartar’s compensated compactness. A particularly relevant exam-
ple to this discussion is the case of 2D active scalar equations, where there seems
to be a dichotomy between systems closed under weak convergence such as 2D
Euler in vorticity form or SQG, and those with a large weak closure such as IPM
[18,52]—see the discussion in [23, Section 8] and [34] of [23,34] in this regard.

Concerning the ideal MHD system, setting the magnetic field b ≡ 0 obvi-
ously reduces to the incompressible Euler equations, and thus [21] applies.
More generally, in [8] Bronzi, Lopes Filho and Nussenzveig Lopes con-
structed bounded weak solutions of the symmetry reduced form u(x1, x2, x3, t) =
(u1(x1, x2, t), u2(x1, x2, t), 0) and B(x, t) = (0, 0, b(x1, x2, t)), compactly sup-
ported in time and not identically zero. These “21

2 -dimensional” solutions were
obtained by reducing the symmetry reduced 3D MHD to 2D Euler with a pas-
sive tracer, where a modification of the strategy of [21] applied. Nevertheless,
such reductions to the Euler system do not seem to be able to capture generic,
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truly 3-dimensional weak solutions, which—with the simultaneous requirement of
properties (i) and (ii) above—seem to lie on the borderline between weakly closed
(for example SQG) and non-closed (for example IPM) systems.

The remark above will be explained in more detail in Section 2—for now let us
merely point out that whilst the Cauchymomentum equation for the evolution of the
velocity u has a large relaxation (the main observation behind all results involving
convex integration for the Euler equations), theMaxwell system for the evolution of
the magnetic field B is weakly closed (an observation going back to the pioneering
work of Tartar [55]). Indeed, our whole philosophy in this paper is to emphasise
the role of compensated compactness in connection with conserved quantities—in
Section 2 we revisit Taylor’s conjecture and conservation of mean-square magnetic
potential in this light.

The additional rigidity due to conservation of magnetic helicity is a severe
obstruction to applying the available versions of convex integration to MHD: The
nonlinear constraint E · B = 0, where E is the electric and B the magnetic field,
has to be satisfied not just by the weak solutions in Theorem 1.1 but also along any
approximating sequence in the convex integration scheme. In order to ensure this
constraint, we use nonlinear potentials and, inspired byMüller and Šverák [43],
develop a substantially new version of convex integration directly on differential
two-forms (the Maxwell 2-form), consistent with the geometry of full 3D MHD.
Indeed, this is the main innovation in this paper, and hence we dedicate Section 4
below to explain the differences to previous schemes in technical terms.We remark
in passing that for the special solutions in [8], E · B = 0 is automatic.

We close the introduction by commenting on the recent preprint [5] which we
learned about after this paper was completed. In [5], L∞t L2

x weak solutions are
constructed which do not preserve magnetic helicity or total energy. The space
L∞t L2

x is super-critical with respect to magnetic helicity, c.f. [29,35] and Theo-
rem 2.2 below, and thus the solutions constructed in [5] seem closer in spirit to
unbounded, so-called very weak solutions constructed in [2]. The construction in
[5] is based on the convex integration scheme developed in [11] for the 3D Navier–
Stokes equations, and indeed, we remind the reader that the weak solutions in [11]
are super-critical not just in terms of Navier–Stokes regularity, but also in terms
of the minimal regularity required for compactness (for example the Leray–Hopf
energy space). Thus, the methods of these two papers are completely different, and
it would be a very interesting question whether they can be combined—for instance
to explore the limiting integrability and smoothness of convex integration solutions
to MHD.

2. The Ideal MHD System

We recall that the ideal MHD equations in three space dimensions are written
as

∂t u + u · ∇u − B · ∇B +∇� = 0, (2.1)

∂t B +∇ × (B × u) = 0, (2.2)
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∇ · u = ∇ · B = 0, (2.3)

for a velocity field u, magnetic field B and total pressure �. In this paper we
consider both the full space case R3 and the periodic setting T

3. In the latter case
the zero-mean condition

〈u〉 = 0, 〈B〉 = 0 for a.e t (2.4)

is added to (2.1)–(2.3), where for notational conveniencewewrite 〈u〉 for the spatial
average on T

3.
As usual, weak solutions of (2.1)–(2.3) can be defined in the sense of distribu-

tions for u, B ∈ L2
loc, using the identities u · ∇u − B · ∇B = ∇ · (u⊗ u − B ⊗ B)

and ∇ × (B × u) = ∇ · (B ⊗ u − u ⊗ B) for divergence-free fields. That is,

∫ T

0

∫

R3
[u · ∂tϕ + (u ⊗ u − B ⊗ B) : Dϕ]+

∫

R3
u0 · ϕ(·, 0) = 0,

∫ T

0

∫

R3
[B · ∂tϕ + (B ⊗ u − u ⊗ B) : Dϕ] +

∫

R3
B0 · ϕ(·, 0) = 0,

∫ T

0

∫

R3
u · ∇ϕ =

∫ T

0

∫

R3
B · ∇ϕ = 0

for appropriate Cauchy data u0, B0 for all ϕ ∈ C∞c (R3 × [0, T [) with ∇ · ϕ = 0.
An analogous definition is given in the periodic setting on the torus T3.

2.1. Conserved Quantities

It is well known that there are three classically conserved quantities of ideal 3D
MHD on the torus T3. For the first two, analogous definitions are available in R3.

Definition 2.1. Let (u, B) be a smooth solution of (2.1)–(2.3) and let A be a vector
potential for B, that is ∇ × A = B. The total energy, cross helicity and magnetic
helicity of (u, B) are defined as

1

2

∫

T3
(|u(x, t)|2 + |B(x, t)|2) dx,

∫

T3
u(x, t) · B(x, t) dx,

∫

T3
A(x, t) · B(x, t) dx .

All three quantities defined above are conserved in time by smooth solutions. The
conservation of total energy and cross helicity conservation was studied in [12,35,
58,60]. Conservation of the magnetic helicity was shown in [12] for solutions u ∈
C([0, T ]; Bα1

3,∞) and B ∈ C([0, T ]; Bα2
3,∞) with α1+ 2α2 > 0. In [1,35], magnetic

helicity conservation is shown under the assumption that u, B ∈ L3(T3×]0, T [).
We note in passing that on the whole space R

3 the analogous definitions of
total energy and cross helicity lead to conserved quantities for square integrable
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solutions, but magnetic helicity is not well-defined. This boils down to the scaling
properties of the function spaces in question; see Appendix A. However, for square
integrable magnetic fields that are compactly supported in space, magnetic helicity
is well-defined. Indeed, every B ∈ L1(R3) with ∇ · B = 0 satisfies

∫
R3 B(x) dx =

B̂(0) = 0 since B̂(ξ) · ξ/ |ξ | = 0 for all ξ 
= 0 and B̂ is continuous.
Following L. Tartar’s pioneering work [55] one can understand the system

(2.1)–(2.3) as a coupling between linear conservation laws and a set of constitutive
laws in form of pointwise constraints. The conservation laws are

∂t u + ∇ · S = 0, (2.5)

∂t B + ∇ × E = 0, (2.6)

∇ · u = ∇ · B = 0, (2.7)

where in 3D, S is a symmetric 3 × 3 tensor (the Cauchy stress tensor) and E is a
vector field (the electric field). Indeed, (2.6) is simply theMaxwell–Faraday law for
the electric field. In the periodic case (2.4) is added to (2.5)–(2.7). The constitutive
set is then obtained by relating the stress tensor S and the electric field E to velocity,
magnetic field and pressure, for example via the ideal Ohm’s law:

K := {(u, S, B, E) : S = u ⊗ u − B ⊗ B +�I, � ∈ R, E = B × u}. (2.8)

It is easy to verify that the system (2.1)–(2.3) can be equivalently formulated for
the state variables (u, S, B, E) as (2.5)–(2.7) together with (u, S, B, E)(x, t) ∈ K
a.e. (x, t).

Using this formulation one can easily identify the conservation of magnetic
helicity as an instance of compensated compactness following the work of Tartar
[55] when applied to the Maxwell system

∂t B +∇ × E = 0,

∇ · B = 0. (2.9)

To explain this, we recall the following generalisation of the div-curl lemma
from Example 4 in [55]: suppose we have a sequence of magnetic and electric fields
(Bj , E j ) ⇀ (B, E) converging weakly in L2

x,t and such that {∂t B j +∇× E j } and
{∇ · Bj } are in a compact subset of H−1. Then Bj · E j

∗
⇀ B · E in the space

of measures. In view of the constitutive law E = B × u we deduce that any
reasonable approximation of bounded weak solutions of ideal MHD leads in the
limit to a solution (u, S, B, E) of (2.5)–(2.7) with B · E = 0. That is, the state
variables are constrained to the relaxed constitutive set

M = {(u, S, B, E) : B · E = 0}. (2.10)

In turn, perpendicularity of the electric E and magnetic B fields is closely related
to conservation of magnetic helicity. Indeed, if A is a magnetic potential (so that
∇ × A = B), adapting the classical computation (for example [6]) shows that

d

dt

∫

T3
A · B dx = −2

∫

T3
B · E dx . (2.11)
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More generally, we have the following theorem, establishing the connection
between compensated compactness and conservation of magnetic helicity, an issue
that has been emphasised by L. Tartar [55,56]:

Theorem 2.2. (a) Suppose that (B, E) ∈ L p × L p′(T3×]0, T [), 1
p + 1

p′ = 1,
1 < p < ∞, with 〈B〉 = 0, is a solution of (2.9) and assume B · E = 0 a.e.
Then magnetic helicity is conserved.

(b) Suppose that (Bj , E j ) is a sequence of solutions of (2.9) as in (a), and in
addition

B j ⇀ B in L2(T3×]0, T [) and sup
j∈N

∥
∥E j

∥
∥
L1(T3×]0,T [) <∞.

Then magnetic helicity is conserved.

Part (a) extends in particular the L3 result of [35]. Indeed, for weak solutions
of ideal MHD with u, B ∈ L3 we have E = B × u ∈ L3/2. On the other hand our
proof does not rely on a specific regularisation technique as in [17], and merely
relies on a weak version of formula (2.11). Part (b) shows that conservation of
magnetic helicity holds even beyond the setting of weak continuity of the quantity
B ·E . As amatter of fact this line of argument furnishes a proof of Taylor conjecture
for simply connected domains [29].

We begin the proof of Theorem 2.2 by recalling the following L p Poincaré-type
lemma for the Maxwell system (2.9):

Lemma 2.3. Let 1 < p < ∞, 1/p + 1/p′ = 1 and suppose (B, E) ∈
L p × L p′(T3×]0, T [) is a solution of (2.9). Then there exist a unique A ∈
L p
t W

1,p
x (T3×]0, T [) and ϕ ∈ L p′

t W 1,p′
x (T3×]0, T [) such that

B = ∇ × A and ∂t A + E − 〈E〉 = ∇ϕ

with 〈A〉 = 0, 〈ϕ〉 = 0 for a.e. t and ∇ · A = 0. Furthermore,

‖∇A‖L p � ‖B‖L p and ‖∂t A‖L p′ + ‖∇ϕ‖L p′ � ‖E‖L p′ .

Indeed, we set A = −�−1(∇× B) and ϕ = �−1∇ · (∂t A+ E) and apply standard
Calderón-Zygmund estimates for the Laplacian.

Proof of Theorem 2.2. For part (a) suppose (B, E) ∈ L p × L p′(T3×]0, T [) is a
solution of (2.9) with B · E = 0. Let η ∈ C∞c (]0, T [), so that for ε > 0 small
enough, supp(η) ⊂]ε, T − ε[. Furthermore, let Bδ = B ∗ χδ be a standard space-
time mollification of B. By using Lemma 2.3 and integrating by parts a few times
we get

∫ T−ε

ε

∂tη(t)
∫

T3
A(x, t) · B(x, t) dx dt

= lim
δ↘0

∫ T−ε

ε

∂tη(t)
∫

T3
Aδ(x, t) · Bδ(x, t) dx dt

= lim
δ↘0

[∫ T−ε

ε

η(t)
∫

T3

(
Eδ(x, t)− 〈E〉 − ∇ϕδ(x, t)

) · Bδ(x, t) dx dt
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+
∫ T−ε

ε

η(t)
∫

T3
Aδ(x, t) · ∇ × Eδ(x, t) dx dt

]

= 2 lim
δ↘0

∫ T−ε

ε

η(t)
∫

T3
Eδ(x, t) · Bδ(x, t) dx dt

= 2
∫ T−ε

ε

η(t)
∫

T3
B(x, t) · E(x, t) dx dt = 0,

since |B||E | ∈ L1(T3×]0, T [) and B · E = 0.
For part (b) suppose (Bj , E j ) ∈ L p × L p′(T3×]0, T [) is a sequence of solu-

tions of (2.9) with Bj · E j = 0 a.e. and assume Bj ⇀ B in L2(T3×]0, T [)
and sup j∈N

∥
∥E j

∥
∥
L1 < ∞. We intend to use to the Aubin–Lions Lemma (see

for example [48, Lemma 7.7]) to get, up to a subsequence, A j → A in
L2
t L

2
x (T

3×]0, T [;R3); then∇× A = B,∇ · A = 0 and 〈A〉 a.e. t , and furthermore∫
T3 A · B dx is constant in t .

First note that sup j∈N
∥
∥A j

∥
∥
L2
t W

1,2
x

< ∞. Let us denote W 1,4
σ (T3;R3) :=

{w ∈ W 1,4(T3;R3) : ∇ · w = 0}. By using the embedding L1(T3,R3) ↪→
(W 1,4

σ (T3,R3))∗ and the formula ∂t A j = −E j + 〈E〉 + ∇ϕ j we obtain

sup
j∈N

∥
∥∂t A j

∥
∥
L1
t (W

1,4
σ )∗x

� sup
j∈N

∥
∥E j

∥
∥
L1 <∞,

which verifies the assumptions of the Aubin–Lions Lemma. ��

2.2. The 2-Dimensional Case

In comparison to the above analysis, let us briefly look at the 2-dimensional
case. Here (2.2) reduces to

∂t B +∇⊥(u · B⊥) = 0, (2.12)

where we write B⊥ = (−B2, B1) for the vector B = (B1, B2), and similarly
∇⊥ = (−∂2, ∂1). The magnetic potential (stream function) of B is a scalar field ψ

such that ∇⊥ψ = B. As for conserved quantities, total energy and cross-helicity
has analogous expressions, but magnetic helicity is replaced by the mean-square
magnetic potential, defined as

∫

T2
|ψ |2 dx .

Mean-square magnetic potential is conserved by smooth solutions, and in [12]
the conservation was shown for weak solutions (u, B) with the regularity u ∈
C([0, T ]; Bα1

3,∞) and B ∈ C([0, T ]; Bα2
3,∞) for α1 + 2α2 > 1.

Next, observe that (2.3) implies that u ·B⊥ is a div-curl product. Consequently, if
we have a sequence of velocity and magnetic fields (u j , Bj ) ⇀ (u, B) converging
weakly in L2 and such that {∇ · u j } and {∇ · Bj } are in a compact subset of H−1,
then u j · B⊥j

∗
⇀ u · B⊥ in the space of measures. In other words (2.12) is stable

under weak convergence in L2. Another way of writing (2.12) is by using the
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stream functions of u and B. Indeed, if we write u = ∇⊥φ and B = ∇⊥ψ , with
〈φ〉 = 〈ψ〉 = 0, then (2.12) becomes

∂tψ + J (φ,ψ) = 0, (2.13)

where we write, as usual, J (φ,ψ) = ∇φ ·∇⊥ψ for the Jacobian determinant of the
mapping (φ,ψ) : T2 → R

2. Observe that the same equation appears also for the
2D Euler equations, where we replace ψ by the vorticity ω = ∂1u2 − ∂2u1 and φ

by the velocity potential v = ∇⊥φ. However, here we do not assume any coupling
between φ and ψ , and treat (2.13) as a passive scalar equation.

The form (2.13) allows us to prove conservation of the mean-square magnetic
potential under very mild conditions as follows:

Theorem 2.4. Suppose that (u, B) ∈ Cw([0, T [; L2(T2)) is a weak solution of
(2.3) and (2.12). Then the mean-square magnetic potential is conserved.

We point out that the analogous result for the 2D Euler equations, namely the
conservation of enstrophy 1

2

∫ |ω|2 dx is well-known [28,40], and the proof is based
on the theory of renormalised solutions. Here we give an alternative, short proof,
again emphasising that compensated compactness lies at the heart of the matter. For
the proof we first recall the H1 regularity theory of Coifman, Lions, Meyer and
Semmes from [16], more precisely the following adaptation of the classical Wente
inequality to the torus T2 (see [30, Theorem A.1]):

Lemma 2.5. When ( f1, f2, f3) ∈ W 1,2(T2,R3), we have
∫

T2
f1(x)J( f2, f3)(x) dx � ‖ f1‖BMO(T2)

∥
∥J( f2, f3)

∥
∥H1(T2)

� ‖∇ f1‖L2(T2) ‖∇ f2‖L2(T2) ‖∇ f3‖L2(T2) . (2.14)

The left-hand side of (2.14) can be understood in terms of H1–BMO duality,
but we in fact only require (2.14) where the left-hand side is Lebesgue integrable.

Proof of Theorem 2.4. First let us assume that u and B are smooth. Then, using
(2.13), we obtain after integration by parts

d

dt

1

2

∫

T2
|ψ |2 dx =

∫

T2
ψ J (ψ, φ) dx = −

∫

T2
φ J (ψ,ψ) dx = 0. (2.15)

For the general case notefirst that under the assumption on (u, B), using the compact
embedding W 1,2 ↪→ L2 the stream functions φ,ψ belong to C([0, T ]; L2(T2))

with ∇φ,∇ψ ∈ Cw([0, T ]; L2(T2)). Then the computation (2.15) can be car-
ried out using standard regularisation of ψ, φ and the uniform bound in (2.14).
When ψδ is a standard space-time mollification of ψ , the function ∂t |ψδ|2 =
−2ψδ[J (ψ, φ)]δ is handled via the formula

[J (ψ, φ)]δ = [J (ψ − ψδ, φ)]δ + ([J (ψδ, φ)]δ − J (ψδ, φ))+ J (ψδ, φ).

��
Theorem 2.4 implies the following corollary:
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Corollary 2.6. Suppose (u, B) ∈ Cw([0, T [; L2(T2)) is a weak solution of (2.3)
and (2.12). Then either B ≡ 0 or there exists a constant c > 0 such that∫
T2 |B|2 dx ≥ c for every t ∈ [0, T [.
Proof. The proof follows by using the Poincaré inequality at every t ∈ [0, T [ to
estimate

∫
T2 |B(x, t)|2 dx = ∫

T2 |∇ψ(x, t)|2 dx ≥ C
∫
T2 |ψ(x, t)|2 dx . ��

Thus, in 2D even if the kinetic and magnetic energies
∫
T2 |u|2 dx and∫

T2 |B|2 dx may fluctuate (and indeed, numerical experiments indicate anoma-
lous dissipation of the total energy even in 2D [7]), by Corollary 2.6 it is impossible
for the magnetic energy to dissipate to zero.

Finally, we remark that although it is natural to ask whether an analogue of
Theorem 2.4 holds in the whole spaceR2, in fact square integrable divergence-free
vector fields do not in general have a square integrable stream function in R2. This
is shown in Appendix A.

3. Plane-Wave Analysis

Recall that the ideal MHD system in 3D can be written for a state variable
(u, S, B, E) in terms of the conservation laws (2.5)–(2.7) with the constitutive set
K , defined in (2.8). The framework introduced by Tartar amounts to an analysis
of one-dimensional oscillations compatible with (2.5)–(2.7)—the wave-cone—and
then the interaction of the wave-cone with the constitutive set; we carry out this
analysis in this section.

3.1. The Wave Cone and the Lamination Convex Hull

Plane waves are one-dimensional oscillations of the form (x, t) �→ h((x, t) ·
ξ)V with

V = (u, S, B, E) ∈ R
15,

ξ = (ξx , ξt ) ∈ (R3×R)\{0} and h : R→ R. For a plane wave solution, (2.5)–(2.7)
become

ξx · u = ξx · B = 0, (3.1)

ξt u + Sξx = 0, (3.2)

ξt B + ξx × E = 0. (3.3)

In what follows, we will write, with a slight abuse of notation, (3.1)–(3.3) in the
concise form V ξ = 0.

Definition 3.1. The wave cone for ideal MHD is

�0 = {V = (u, S, B, E) ∈ R
15 : ∃ξ ∈ R

4\{0} such that (3.1)−(3.3) hold}.
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We also denote

� = {V = (u, S, B, E) ∈ R
15 : ∃ξ ∈ (R3\{0})× R

such that (3.1)−(3.3) hold hold}.
If V1, V2 ∈ R

15 satisfy V1 − V2 ∈ �, then [V1, V2] ⊂ R
15 is called a �-segment.

In the convex integration processwewill use� instead of�0, as the requirement
ξx 
= 0 is crucial to many of the arguments. We next define lamination convex and
�-convex hulls.

Given a set Y ⊂ R
15 we denote Y 0,� := Y and define, inductively

Y N+1,� := Y N ,� ∪ {λV + (1− λ)W : λ ∈ [0, 1], V,W ∈ Y N ,�, V −W ∈ �}
for all N ∈ N0.

Definition 3.2. When Y ⊂ R
15, the lamination convex hull of Y (with respect to

�) is

Y lc,� :=
⋃

N≥0
Y N ,�.

It is well-known that semiconvex hulls can be expressed by duality in terms of
measures, see for example [15,38,47].

Definition 3.3. Let Y ⊂ R
15. The set of laminates of finite order (with respect to

�), denoted L(Y ), is the smallest class of atomic probability measures supported
on Y with the following properties:

(i) L(Y ) contains all the Dirac masses with support in Y .
(ii) L(Y ) is closed under splitting along �-segments inside Y .

Condition (ii) means that if ν =∑M
i=1 νiδVi ∈ L(Y ) and VM ∈ [Z1, Z2] ⊂ Y with

Z1 − Z2 ∈ �, then

M−1∑

i=1
νiδVi + νM (λδZ1 + (1− λ)δZ2) ∈ L(Y ),

where λ ∈ [0, 1] such that VM = λZ1 + (1− λ)Z2.

Remark 3.4. Given V ∈ Y N ,�, we may write V = λ1V1 + λ2V2, where

V1, V2 ∈ Y N−1,�, 0 ≤ λ1 ≤ 1, λ1 + λ2 = 1, V1 − V2 ∈ �.

Similarly, we write V1 = λ1,1V1,1+λ1,2V1,2. Repeating this process, by induction
we arrive at a finite-order laminate with support in Y and barycentre V :

ν =
∑

j∈{1,2}N
μjδVj , supp(ν) ⊂ Y, ν̄ = V,

where μj = μ j1,..., jN = λ j1 . . . λ j1,..., jN ∈ [0, 1].
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In addition to the lamination convex hull, another, potentially larger, hull is used
in convex integration theory. In order to define it we recall the notion of �-convex
functions.

Definition 3.5. A function f : R15 → R is said to be �-convex if the function
t �→ f (V + tW ) : R→ R is convex for every V ∈ R

15 and every W ∈ �.

While the lamination convex hull is defined by taking convex combinations,
the �-convex hull Y� of Y ⊂ R

15 is defined as the set of points that cannot be
separated from Y by �-convex functions.

Definition 3.6. When Y ⊂ R
15 is compact, the�-convex hull Y� consists of points

W ∈ R
15 with the following property: if f : R15 → R is �-convex and f |Y ≤ 0,

then f (W ) ≤ 0.

3.2. Normalisations of the Constitutive Set

In order to produce bounded solutions of 3D MHD we consider normalised
versions of the constitutive set K .Wewish to prescribe both the total energy density
(|u|2 + |B|2)/2 and the cross helicity density u · B, but for this aim it is obviously
not enough to prescribe |u| and |B|. However, by using the Elsässer variables

z± := u ± B

we can write (|u|2 + |B|2)/2 = (
∣
∣z+

∣
∣2 + ∣

∣z−
∣
∣2)/4 and u · B = (

∣
∣z+

∣
∣2 − ∣

∣z−
∣
∣2)/4,

and thus it suffices to prescribe
∣
∣z±

∣
∣. This motivates the normalisation given below;

recall that K := {(u, S, B, E) : S = u⊗ u− B⊗ B +�I, � ∈ R, E = B × u}.
Definition 3.7. Whenever r, s > 0, we denote

Kr,s := {(u, S, B, E) ∈ K : |u + B| = r, |u − B| = s, |�| ≤ rs}. (3.4)

As pointed out in Section 2, the Maxwell system is essentially closed under
weak convergence; the scalar product B · E is weakly continuous. As an immediate
consequence the �-convex hull K�

r,s has empty interior (in 3D, and also in 2D).
Indeed, Tartar’s result in Example 4 [55] is based on the fact that the quadratic
expression Q(u, S, B, E) := B · E satisfies

Q(V ) = 0 for all V ∈ �0,

and consequently, Q is �0-affine. Then we deduce that

K�0
r,s ⊂M ,

where M is the set in (2.10).
In 3D, assume now B × u 
= 0. Then (3.1) implies, up to normalisation, that

ξx = B × u, and then (3.3) yields ξt B = −(B × u)× E = (E · u)B − (E · B)u =
(E · u)B. Thus, whenever B × u 
= 0, (3.1)–(3.3) reduce to the conditions

S(B × u)+ (E · u)u = 0, B · E = 0 (3.5)

which is an easier condition to check in the sequel.
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4. Discussion of the Convex Integration Scheme in 3D

The standard way of finding nontrivial compactly supported solutions for equa-
tions of fluid dynamics was first presented in [21] and axiomatised in [53]. We
describe it briefly in the case of Theorem 1.1.

With a bounded domain � ⊂ R
4 fixed, it suffices to find a solution V of the

relaxedMHD equationsL(V ) = 0 such that V (x, t) ∈ K2,1 a.e. in� (K2,1 defined
in (3.4)) and V (x, t) = 0 a.e. outside �. One intends to construct V as a limit of
subsolutions, that is, mappings V� solving L(V�) = 0 and taking values in Klc,�

2,1 .
The basic building blocks of the construction are plane waves which oscillate

in directions of �. In order to prevent harmful interference of the waves and to
make the eventual solutions compactly supported, one needs to localise the plane
waves. The localisation is customarily carried out by constructing potentials. This
causes small error terms, and in order for each V� to take values in the lamination
convex hull, one hopes to prove that the hull has non-empty interior. The specifics of
the convex integration scheme vary (see for example [15,18,21] for three different
approaches in fluid dynamics and [38,53] for a more general discussion).

In the case of 3D MHD, the process is more subtle, as Klc,�
2,1 has an empty

interior, more precisely Klc,�
2,1 ⊂ M . Therefore, although we may proceed with

the ’symmetric (fluid) part’ u and S, the ’anti-symmetric (electromagnetic) part’ B
and E needs special attention.

As a first step towards overcoming the emptiness of int(Klc,�
2,1 ), we construct

a pair of non-linear potential operators PB and PE that satisfy ∇ · PB[ϕ,ψ] = 0,
∂t PB[ϕ,ψ) + ∇ × PE [ϕ,ψ] = 0 and PE [ϕ,ψ] · PE [ϕ,ψ] = 0 for all ϕ,ψ ∈
C∞(R4). (For u and S we simply use the potentials in [21] for the Euler equations.)
We add the localised plane waves within PB and PE ; despite their non-linearity,
PB and PE have cancellation properties which allow them to map suitable sums of
localised plane waves to sums of localised plane waves (up to a small error term).

As a drawback, PB and PE do not allow oscillating plane waves for every
�-segment—their applicability depends not only on the direction but also on the
location of the segment. We consider �-segments for which PB and PE give plane
waves and call them good �-segments or �g-segments. This leads us to study

K
lc,�g
2,1 , the restricted lamination convex hull of K2,1 in terms of �g .
A priori, �g is a rather large subset of �-segments. However, even though

Klc,�
2,1 has non-empty interior relative to M , the electromagnetic part of K

lc,�g
2,1 is

rigid: the constraint E = B × u holds for all (u, S, B, E) ∈ K
lc,�g
2,1 . Neverthe-

less, as the in-approximation formulation of convex integration shows, the iterative
step happens at relatively open sets and it is a limit procedure which leads to the
inclusion in closed sets. Thus, in this case the size of �g saves the day; as it turns
out, for relatively open subsets U ⊂ M we have Ulc,� = Ulc,�g . This even-
tually allows us to apply the Baire category framework of convex integration in
U2,1 := intM (Klc,�

2,1 ). We present useful characterisations of U2,1 in Theorem 6.7;

in particular, intM (Klc,�
2,1 ) = ∪0≤τ<1K

lc,�
2τ,τ . Theorem 6.7 is the most technically
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difficult part of the paper and the heart of the convex integration scheme. The proof
of Theorem 1.1 is then completed in Section 7.

Notice that actually, we do not compute the exact hull Klc,�
2,1 . However, the

formula intM (Klc,�
2,1 ) = ∪0≤τ<1K

lc,�
2τ,τ turns out to give us enough information

about Klc,�
2,1 . The formula is used in a similar manner as in [15].

5. Potentials in 3D

Wewish to find potentials corresponding to�-segments. For the fluid variables
(u, S), we simply use the potentials of [21,22] for the Euler equations. In the case
of the electromagnetic variables (B, E), the question about existence of potentials
is more subtle because of the non-linear constraint B · E = 0 that the potentials
need to obey. This issue is studied in Sections 5.3–5.8.

5.1. Potentials for the Fluid Side

We recall from [21,22] that potentials for the fluid part, that is, the variables u
and S, can be obtained as follows. First of all, recall that (2.5)–(2.6) can be written
equivalently for the symmetric 4× 4 matrix

U =
(

S u
uT 0

)

(5.1)

as ∇x,t ·U = 0. With this notation (3.1)–(3.2) (that is belonging to the wave-cone)
is equivalent to Uξ = 0 for some ξ ∈ R

4\{0}. Let us denote R
4×4
sym,0 := {U ∈

R
4×4
sym : U4,4 = 0}.

Lemma 5.1. SupposeU ∈ R
4×4
sym,0 such thatUξ = 0 for some (ξx , ξt ) ∈ (R3\{0})×

R. Then there exists PU : C∞(R3×R)→ C∞(R3×R;R4×4
sym,0) with the following

properties:

(i) ∇ · PU [φ] = 0 for every φ ∈ C∞(R3 × R).
(ii) Ifφ(x, t) = h((x, t)·ξ) for some h ∈ C∞(R3×R), thenwe have PU [φ](x, t) =

h′′((x, t) · ξ)U for all (x, t) ∈ R
3 × R.

This lemma essentially follows from the proof of [21, Proposition 3.2]. For the
convenience of the reader we sketch a simplified proof, following the exposition in
[54]:

Proof. As noted in [22,54], a matrix-valued quadratic homogeneous polynomial
P : R4 → R

4×4 gives rise to a differential operator P(∂) as required in the lemma,
if P = P(η) satisfies

Pη = 0, PT = P, Pe4 = 0, P(ξ) = U.

Elementary examples satisfying the first 3 conditions above are given by P(η) =
1
2 (Rη⊗Qη+Qη⊗Rη) for antisymmetric 4×4matrices R, Q such that Re4 = 0. In
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particular, for any a, b ⊥ ξ with a ⊥ e4, set R = a⊗ξ−ξ⊗a and Q = b⊗ξ−ξ⊗b,
to obtain Pa,b(η). One quickly verifies that Pa,b(ξ) = 1

2 (a⊗ b+ b⊗ a). Since any
U ∈ R

4×4
sym,0 with Uξ = 0 can be written as a linear combination

U =
∑

i

1
2 (ai ⊗ bi + bi ⊗ ai )

for vectors ai , bi ∈ R
4 with ai · ξ = bi · ξ = 0 and ai · e4 = 0, we obtain PU as

required in the lemma as

PU (η) =
∑

i

Pai ,bi (η).

��

5.2. Wave Cone Conditions on u, B and E

It will turn out that when we choose which �-directions to use, we have much
more freedom in the choice of S than the three other variables u, B and E . Recall
that in 3D, the wave cone conditions are

ξx · u = ξx · B = 0, (5.2)

ξt u + Sξx = 0, (5.3)

ξt B + ξx × E = 0. (5.4)

We can typically first find u, B, E, ξ satisfying (5.2) and (5.4) and afterwards
choose S satisfying (5.3). This motivates the following observation:

Lemma 5.2. Let u, B, E ∈ R
3. The following conditions are equivalent.

(i) (5.2) and (5.4) have a solution ξ ∈ (R3\{0})× R.
(ii) B · E = 0.

Proof. We first show that (i)⇒ (ii). Choose a solution ξ ∈ (R3\{0})×R of (5.2)
and (5.4). If ξt 
= 0, then (5.4) gives B · E = −(ξx × E · E)/ξt = 0. If ξt = 0,
then (5.4) gives E = kξx for some k ∈ R, so that (5.2) gives B · E = 0.

We then show that (ii) ⇒ (i). If B × u 
= 0, we choose ξx = B × u. Since
B ·E = 0,wemaywrite E = c1 B×u+c2B×(B×u) for some c1, c2 ∈ R. (The set
{B, B×u, B×(B×u)} is an orthogonal basis ofR3.) Thus ξx×E = c2 |B × u|2 B
and we may choose ξt = −c2 |B × u|2. If, on the other hand, B × u = 0, we may
set ξt = 0 and choose ξx = a if E 
= 0 and any ξx ∈ {B}⊥\{0} if E = 0. ��
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5.3. Maxwell Two-Forms

Our aim in the rest of this chapter is to find potentials for the variables B and
E . We carry out this task using the formalisms of two-forms and bivectors inR4. In
electromagnetics, it is customary to express (B, E) ∈ R

3×R
3 as a unique bivector

ω ∈ �2(R4) via the identification

ω := B1 dx
2 ∧ dx3 + B2dx

3 ∧ dx1 + B3dx
1 ∧ dx2

+ E1dx
1 ∧ dx4 + E2dx

2 ∧ dx4 + E3dx
3 ∧ dx4 (5.5)

(see [26]). We write ω ∼= (B, E). Then, Gauss’ law and Maxwell–Faraday law are
written concisely via differential forms:

∇ · B = 0 and ∂t B +∇ × E = 0 ⇐⇒ dω = 0, (5.6)

that is, ω is an exact two-form called Maxwell two-form or electromagnetic two-
form.

Recall that in addition to (5.6), we also need E and B to satisfy B · E = 0. We
express the latter condition in the language of bivectors:

B · E = 0 ⇐⇒ ω ∧ ω = 2B · E dx1 ∧ dx2 ∧ dx3 ∧ dx4 = 0

⇐⇒ ω = v ∧ w for some v,w ∈ R
4

(where the last equality showing that ω is simple will be proved in the forthcoming
Proposition 5.3). Here and in the sequel, we identify a vector v ∈ R

4 and a 1-form∑4
i=1 vidxi .
Our nonlinear constraint simplifies to

M = {(u, S, ω) : ω ∧ ω = 0} (5.7)

and the wave cone conditions for (B, E), (5.2) and (5.4), are reduced to

ω ∧ ξ = 0. (5.8)

If such a ξ is found, in view of Lemma 5.2 it can be modified to verify ξx · u = 0
as well. Thus it only remains to verify the condition involving S, that is, (5.3).

It turns out that the interaction of (5.7) and (5.8) is very neat with the forms
formalism. This is the content of the next section.

5.4. �-Segments in Terms of Simple Bivectors

The following well-known proposition collects characterisations equivalent to
the condition B · E = 0 (The Plücker identity for the bivector ω):

Proposition 5.3. Let ω ∼= (B, E) ∈ R
3 × R

3. The following conditions are equiv-
alent:

(i) ω is degenerate, that is, ω ∧ ω = 0.
(ii) ω is simple, that is, ω = v ∧ w for some v,w ∈ R

4, called the factors of ω.
(iii) B · E = 0
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(iv) ω ∧ ξ = 0 for some ξ ∈ (R3\{0})× R.

Proof. The equivalence of (i) and (iii) was already noted, and (ii) clearly implies (i).
Suppose then (iii) holds; our aim is to prove (ii). If E = 0, choose any vx , wx ∈ R

3

such that vx ×wx = b. Then (vx , 0)∧ (wx , 0) ∼= (vx ×wx , 0) = (B, 0). If E 
= 0,
then (E, 0) ∧ (B × E/ |E |2 , 1) ∼= (B, E), giving (ii).

The implication (iii) ⇒ (iv) follows from Lemma 5.2, and the proof of
Lemma 5.2 also gives (iv)⇒ (iii). Alternatively, (iv)⇒ (ii) follows from Proposi-
tion 5.4 below. ��

Using Proposition 5.3, we formulate some useful further characterisations of
(5.8).

Proposition 5.4. Suppose ω = v ∧ w 
= 0 and ξ ∈ (R3\{0}) × R. The following
conditions are equivalent:

(i) ω ∧ ξ = 0.
(ii) ξ ∈ span{v,w}.
(iii) ω = ṽ ∧ ξ for some ṽ ∈ span{v,w}\{0}.
Proof. For (i)⇒ (ii) suppose v∧w∧ξ = 0.Wemay thuswrite c1v+c2w+c3ξ = 0,
where {c1, c2, c3} 
= {0}. If c3 = 0, we get a contradiction with v ∧ w 
= 0, and
therefore ξ ∈ span{v,w}. For (ii)⇒ (iii) choose ṽ ∈ span{v,w}\{0}with ṽ ·ξ = 0.
After normalising ṽ we get ṽ ∧ ξ = v ∧ w. The direction (iii)⇒ (i) is clear. ��

Recall that every �-segment is contained inM . We give equivalent character-
isations for this condition.

Proposition 5.5. Suppose thatω0 andω 
= 0 are simple bivectors and thatω∧ξ =
0, where ξ ∈ (R3\{0})× R. The following conditions are equivalent:

(i) ω0 + tω is simple for all t ∈ R.
(ii) ω0 ∧ ω = 0.
(iii) We can write ω = v ∧ ξ and either ω0 = v0 ∧ ξ or ω0 = v ∧ w0.

Proof. The equivalence (i)⇔ (ii) is clear since ω0 ∧ ω = ω ∧ ω0. The direction
(iii)⇒ (ii) is also clear, and we complete the proof by showing that (ii)⇒ (iii).
The case ω0 = 0 being clear, we assume that ω0 
= 0.

Use Proposition 5.4 to write ω = ṽ ∧ ξ for some ṽ ∈ R
4\{0}. Also write

ω0 = ṽ0 ∧ w̃0. Since ω0 ∧ ω = 0 and ω0 
= 0 by assumption, we conclude that
ṽ0 = d1w̃0 + d2ṽ + d3ξ for some d1, d2, d3 ∈ R.

If d3 = 0, we set v = ṽ and w0 = d2w̃0. Next, if d3 
= 0 and d2 
= 0, we
choose v = ṽ+ (d3/d2)ξ and w0 = d2w̃0. Finally, if d3 
= 0 and d2 = 0, we select
v = ṽ and v0 = −d3w̃0. ��

5.5. Clebsch Variables

Now (5.6) means that ω is closed and thus, by Poincaré lemma, exact: ω = dα.
Here the so-called electromagnetic four-potential α is of course not unique. We
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specify a choice of α below. Recall from (5.7) that our potential α is required to
satisfy

dα ∧ dα = 0.

This fact, among other things, motivates us to set α = ϕ dψ which leads to ω =
dα = dϕ ∧ dψ ; here φ,ψ ∈ C∞(R4) are traditionally called Clebsch variables or
Euler potentials.

Definition 5.6. We define PB, PE : C∞(R4)× C∞(R4)→ C∞(R4;R3) via

dϕ ∧ dψ ∼= (∇ϕ ×∇ψ, ∂tψ∇ϕ − ∂tϕ∇ψ) =: (PB[ϕ,ψ], PE [ϕ,ψ]). (5.9)

With the Clebsch variables at our disposal we make a natural Ansatz on the
electromagnetic side of the localised plane waves. Fix V0 = (u0, S0, ω0) ∈ M ,
V = (u, S, ω) ∈ � with ξ ∈ (R3\{0}) × R being a solution to (3.1)–(3.3) and
ω0 ∧ ω = 0.

Use the simplicity of ω0 to write ω0 = v0 ∧ w0, and recall the operator PU
given by Lemma 5.1, with U given in (5.1).

Fix a cube Q ⊂ R
4 and a cutoff function χ ∈ C∞c (Q). Given h ∈ C∞(R) and

� ∈ N, our aim is to find φ�, ϕ� and ψ� such that

V� := ((u0, S0)+ PU (φ�), dϕ� ∧ dψ�) = V0 + χ(x, t)h′′(�(x, t) · ξ)V + O

(
1

�

)

(5.10)
and V� ⇀ V0 in L2(Q;R15). The choice of φ� is specified in Lemma 5.1. For the
electromagnetic part we define Clebsch variables of the form

ϕ�(x, t) := v0 · (x, t)+ c1χ(x, t)h′(�(x, t) · ξ)

�
, (5.11)

ψ�(x, t) := w0 · (x, t)+ c2χ(x, t)h′((x, t) · ξ)

�
. (5.12)

In (5.11)–(5.12), we use h′ instead of h in order to be consistent with the scaling
on the fluid part.

The Ansatz (5.11)–(5.12) yields

dϕ�(x, t)∧dψ�(x, t) = v0∧w0+χ(x, t)h′′(�(x, t)·ξ)(c2v0−c1w0)∧ξ+O

(
1

�

)

,

(5.13)
which is of the form (5.10) if

(c2v0 − c1w0) ∧ ξ = ω. (5.14)

This raises the question whether (5.14) can be solved for c1, c2 ∈ R. Notice that if
ω0 
= 0, the answer is independent of the factors v0, w0 of ω0 = v0 ∧ w0.

It turns out that given general ω0, ω with ω0∧ω = 0, such c1, c2 do not always
exist. (The canonical bad case is ω0 = v∧ ξ, ω = w∧ ξ , as then (c1v+c2ξ)∧ ξ =
c1v∧ξ = w∧ξ if and only if v is parallel tow). Essentially, when (5.14) holds, the
segment defined by V0 and V is good (the case ω0 = 0 yielding some additional
cases).
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Remark 5.7. In (5.13), we use crucially the cancellation properties of the wedge
product dϕ� ∧ dψ� to overcome the nonlinearity of PB and PE . In fact, dϕ� ∧ dψ�

arises, up to a term O(1/�), as pullbacks of the bivector v0 ∧ w0. In other words,

(dϕ�, dψ�) = �∗�(dϕ, dψ),

where ϕ(x, t) = (x, t) ·v0,ψ(x, t) = (x, t) ·w0 and��(x, t) = x+�−1h′(�x ·ξ)ζ

with ζ · v0 = c1 and ζ ·w0 = c2. Note that the class of simple two-forms is closed
under taking pull-backs with � ∈ C∞(R4;R4), as a consequence of the formula
�∗(v ∧ w) = �∗v ∧�∗w.

5.6. States in Clebsch Variables

As a matter of fact, when we iterate the construction and apply convex integra-
tion we will be modifying dϕ and dψ instead of dϕ ∧ dψ . We will therefore use a
separate notation in which we keep track of the factors forming a bivector:

W = (u, S, v, w) ∈ R
4×R

3×3
sym ×R

4×R
4, V = p(W ) := (u, S, v∧w) ∈M .

(5.15)
The case ω0 = 0 is special as we will be able to construct potentials only when we
interpret 0 = 0 ∧ 0.

5.7. Good and Bad �-Segments

To start, we consider simple two-forms ω0 = v0 ∧w0 
= 0 and ω = v∧w 
= 0
with ω0 ∧ ω = 0. Since ω is simple, there exists ξ ∈ (R3\{0}) × R such that
ω ∧ ξ = 0. We study separately the case where ω and ω0 are parallel and the one
in which they are not.

Proposition 5.8. If ω = kω0 
= 0 for some k ∈ R, then (5.14) is satisfied for some
c1, c2 ∈ R.

Proof. Since ω ∧ ξ = kv0 ∧ w0 ∧ ξ = 0, we may write d1v0 + d2w0 + d3ξ = 0
for some d1, d2, d3 ∈ R, not all zero. Since v0 ∧ w0 
= 0, we have d3 
= 0, which
implies that {d1, d2} 
= {0} (since ξ 
= 0). If d2 
= 0, set c1 = 0 and c2 = −kd3/d2:
then [c2v0 − c1w0] ∧ ξ = kv0 ∧ w0 = ω. The case d1 
= 0 is similar. ��
Proposition 5.9. Suppose ω0 
= 0 and ω 
= 0 satisfy ω0 ∧ ω = 0 but ω is not a
multiple of ω0. The following conditions are equivalent.

(i) There exist c1, c2 ∈ R such that (5.14) holds.
(ii) ω ∧ ξ = 0 but ω0 ∧ ξ 
= 0.
(iii) There exist ṽ, w̃0 ∈ R

4\{0} such that ω0 = ṽ ∧ w̃0 and ω = ṽ ∧ ξ .

Proof of (i) �⇒ (ii). Suppose (i) holds and fix c1 and c2. Then ω∧ ξ = 0. Seeking
contradiction, assume ω0 ∧ ξ = 0. Then there exist constants d1, d2, d3 ∈ R, not
all zero, such that d1v0 + d2w0 + d3ξ = 0. If d3 = 0, then v0 and w0 are linearly
dependent, which gives a contradiction with ω0 = v0∧w0 
= 0. On the other hand,
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if d3 
= 0, then ξ ∈ span{v0, w0} and thus ω = (c2v0 − c1w0) ∧ ξ is a multiple of
ω0 = v0 ∧ w0, giving a contradiction. ��
Proof of (ii) �⇒ (iii). By Proposition 5.5, we can write ω = ṽ ∧ ξ and either
ω0 = ṽ0 ∧ ξ or ω0 = ṽ ∧ w̃0. The latter condition must then hold in view
of (ii). ��
Proof of (iii) �⇒ (i). By assumption, ω0 = v0 ∧ w0 = ṽ ∧ w̃0. Thus ṽ ∈
span{v0, w0}. Writing ṽ = c2v0− c1w0 we obtain [c2v0− c1w0]∧ ξ = ṽ∧ ξ = ω.
��

Thus we are ready to define a class of �-segments for which there exist
the desired compactly supported plane waves (which are constructed in Propo-
sition 5.13). We then define the corresponding �g-convexity notions needed in the
sequel.

Definition 5.10. Suppose V0 := (u0, S0, ω0) ∈ M , V := (u, S, ω) ∈ � and
0 < λ < 1. We say that

[V0 − (1− λ)V, V0 + λV ] is a good �−segment (�g−segment)

if there exists ξ ∈ (R3\{0})× R such that (3.1)–(3.3) and one of the conditions

ω = 0, (5.16)

ω0 ∧ ξ 
= 0, (5.17)

ω = kω0 
= 0, k ∈ R\{−1/λ, 1/(1− λ)}, (5.18)

u = S = ω0 = 0 (5.19)

holds. Otherwise we say that [V0 − (1− λ)V, V0 + λV ] is a bad �-segment.

The restriction on k ∈ R in (5.18) ensures that the endpoints V0 − (1 − λ)V
and V0 + λV have non-vanishing ω-components; this is used in Propositions 5.13
and 7.4.

We define a lamination convex hull in terms of �g-segments.

Definition 5.11. Let Y ⊂M . We define the sets Y k,�g , k ∈ N0, as follows:

(i) Y 0,�g := Y .
(ii) If k ≥ 1 and V0 ∈M , the point V0 belongs to Y k,�g if V0 ∈ Y k−1,�g or there

exist λ ∈ (0, 1) and V ∈ M such that [V0 − (1 − λ)V, V0 + λV ] ⊂ M is a
good �-segment whose endpoints belong to Y k−1,�g .

Furthermore, we denote Y lc,�g := ∪k∈N0Y
k,�g .

We also give a related notion for finite-order laminates; recall Remark 3.4.

Definition 5.12. Suppose ν =∑
j∈{1,2}N μjδVj is a finite-order laminate supported

in Y ⊂M . We say that ν is a good finite-order laminate, and denote ν ∈ Lg(Y ),
if for all j′ ∈ {1, 2}k , 1 ≤ k ≤ N − 1, the �-segment [Vj′,1, Vj′,2] is good.
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5.8. Localised Plane Waves Along �g Segments

To every �g-segment there corresponds a potential, and thus we can localise
the plane waves.

Proposition 5.13. Let W0 = (u0, S0, v0, w0) ∈ R
17, and suppose [V0 − (1 −

λ)V̄ , V0 + λV̄ ] ⊂M is a �g-segment. If ω0 = 0, then suppose v0 = w0 = 0. Fix
a cube Q ⊂ R

4 and let ε > 0.
There exist W� := W0 + (ū�, S̄�, dϕ̄�, dψ̄�) ∈ W0 + C∞c (Q;R17) with the

following properties.

(i) L(V�) = 0, where V� = p(W�).
(ii) For every (x, t) ∈ Q there exists W̃ = W̃ (x, t) ∈ R

17 such that

Ṽ = p(W̃ ) ∈ [V0 − (1− λ)V̄ , V0 + λV̄ ],
|W�(x, t)− W̃ | < ε, |V�(x, t)− Ṽ | < ε.

(iii) For every � ∈ N there exist pairwise disjoint open sets A1, A2 ⊂ Q such that

V�(x, t) = V0 + λV̄ in A1 with |A1| > (1− ε)(1− λ) |Q| ,
V�(x, t) = V0 − (1− λ)V̄ in A2 with |A2| > (1− ε)λ |Q| .

Furthermore, W� is locally constant in A1 and A2. For j = 1, 2, writing
W� = (u j , S j , v j ∧w j ) in A j , we have either v j = w j = 0 or v j ∧w j 
= 0.

(iv) V� ⇀ V in L2(Q;R15).

For the proof we first specify the oscillating functions that we intend to use.
Their first derivatives can be chosen to be mollifications of 1-periodic sawtooth
functions.

Lemma 5.14. Suppose 0 < λ < 1 and ε > 0. Then there exists h ∈ C∞(R) with
the following properties:

(i) h′′ is 1-periodic.
(ii) −(1− λ) ≤ h′′ ≤ λ.
(iii)

∫ 1
0 h′′(s) ds = 0. (Thus, h′ is 1-periodic.)

(iv)
∣
∣{s ∈ [0, 1] : h′′(s) = λ}∣∣ ≥ (1− ε)(1− λ).

(v)
∣
∣{s ∈ [0, 1] : h′′(s) = −(1− λ)}∣∣ ≥ (1− ε)λ.

Proof of Proposition 5.13, the cases (5.16)–(5.18). Suppose one of the conditions
(5.16)–(5.18) holds. Define the perturbation (ū�, S̄�, dϕ̄�, dψ̄�) via Lemma 5.1
and (5.11)–(5.12). Claims (i) and (iv) are clear. In (ii) we choose W̃ = W0 +
χ(x, t)h′′((�(x, t) · ξ)W̄ .

In (iii) let ε > 0, fix a cube Q̃ ⊂ Q with |Q̃| > (1 − ε/3) |Q| and
choose χ such that χ = 1 in Q̃. Cover Q̃, up to a set of measure ε |Q| /3, by
cubes Q1, . . . , QN with one of the sides parallel to ξ . We wish to show that∣
∣{y ∈ Qk : h′′(�y · ξ) = λ}∣∣ ≥ |Qk | (1−ε/3)(1−λ) for every large enough � ∈ N;
in (iii) we may then choose A1 = ∪N

k=1{y ∈ Qk : h′′(�y · ξ) = λ}. Similarly,
A2 = ∪N

k=1{y ∈ Qk : h′′(�y · ξ) = 1− λ}.
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Choose an orthonormal basis { f1, f2, f3, f4} of R4 such that f1 = ξ/ |ξ | and
Qk = {y ∈ R

4 : ζ · f j ≤ y · f j ≤ ζ · f j + l(Qk)}
for some ζ ∈ R

4. In order to switch to coordinates where Qk has sides parallel
to coordinate axes, define L := ∑4

j=1 e j ⊗ f j ∈ R
4×4, so that L f j = e j for

j = 1, . . . , 4 and therefore L ∈ O(4). Then, denoting z = Ly,

Qk = {y ∈ R
4 : Lζ · e j ≤ Ly · e j ≤ Lζ · e j + l(Qk)}

= L−1{z ∈ R
4 : Lζ · e j ≤ z · e j ≤ Lζ · e j + l(Qk)}

= L−1
⎛

⎝
4∏

j=1
[(Lζ ) j , (Lζ ) j + l(P)]

⎞

⎠ = L−1(LQk).

Thus
∣
∣{y ∈ Qk : h′′(�y · ξ) = λ}∣∣ =

∣
∣
∣L−1{z ∈ LQk : h′′(� |ξ | z1) = λ}

∣
∣
∣

= l(Qk)
3|{s ∈ [(Lζ )1, (Lζ )1 + l(Qk)] :

h′′(� |ξ | z1) = λ)}|
≥ |Qk | (1− ε/3)(1− λ)

for all large � ∈ N.
To finish the proof of (iii), writeW� = (u j , S j , v j∧w j ) in A j , where j ∈ {1, 2}.

In the case (5.16), if ω0 = 0, then v j = w j = 0 by assumption, and if ω0 
= 0, then
ω0 − (1 − λ)ω̄ 
= 0 and ω0 + λω̄ 
= 0. Next, in the case (5.17), by (5.8) we have
(ω0+tω̄)∧ξ = ω0∧ξ 
= 0, hence in particularω0−(1−λ)ω̄ 
= 0 andω0+λω̄ 
= 0.
Finally, the case (5.18) follows from the restriction k /∈ {1/λ, 1/(1− λ)}. ��

The case (5.19) requires a separate argument since in this case, (5.14) has no
solutions c1, c2 ∈ R. In fact, if λ = 1/2, we let dϕ̄� and dψ̄� oscillate in different
directions, and thus W� is not a plane wave. However, V� = p(W�) oscillates
along the �g-segment [−V/2, V/2]. The general case λ ∈ (0, 1) the follows by
combining with the case (5.18).
Proof of Proposition 5.13, the case (5.19). The case ω̄ = 0 being obvious, assume
ω̄ = v̄ ∧ w̄ 
= 0. Suppose first λ = 1/2.

Without loss of generality, assume v̄ · w̄ = 0. Let ε > 0 and choose Q̃ ⊂ Q
and χ as above. Then

ϕ̄�(x, t) := �−1χ(x, t)h′((x, t) · �v̄), ψ̄�(x, t) := 2�−1χ(x, t)h′((x, t) · �w̄)

have the sought properties for all large enough � ∈ N.
Indeed, for (ii) choose W̃ = (0, 0, χ(x, t)h′′((x, t) · �v̄)v̄, 2χ(x, t)h′′((x, t) ·

�w̄)w̄). For (iii), note that when (x, t) ∈ Q̃, we have

V�(x, t) =
{
V0 + 2−1(0, 0, v̄ ∧ w̄) when h′′((x, t) · �v̄) = h′′((x, t) · �w̄) = ±2−1,
V0 − 2−1(0, 0, v̄ ∧ w̄) when h′′((x, t) · �v̄) = −h′′((x, t) · �w̄) = ±2−1.

(5.20)
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Cover Q̃ up to a small set by cubes Q1, . . . , QN with two sides parallel to v̄x and
w̄x ; recall that v̄x · w̄x = 0.

For k = 1, . . . , N we get {(x, t) ∈ Qk : h′′((x, t) · �v̄) = h′′((x, t) · �w̄) =
2−1} ≥ ∣

∣{s ∈ [0, 1] : h′′(s) = 2−1}∣∣2 |Qk | − O(1/�) > |Qk | (1− ε/3)(1/2)2 as in
the previous proof, and a similar inequality holds for the other three cases of (5.20).
This completes the proof of the case λ = 1/2.

We then cover the case λ 
= 1/2. Let 0 < δ < min{λ, 1 − λ}. Using the case
above, we choose dϕ̄�, dψ̄� satisfying claims (i)–(iv) for [V0 − δV̄ , V0 + δV̄ ] and
ε/2. Note that dϕ̄� ∧ dψ̄� = δω̄ 
= 0 in A1 and dϕ̄� ∧ dψ̄� = −δω̄ 
= 0 in A2. We
then cover the sets A1 and A2 by cubes up to a small set and apply the case (5.18)
in the cubes. (The last claim of (iii) is clear.) ��
Remark 5.15. We have looked for solutions of (5.10) of the form (5.11)–(5.12),
and in some special cases, a solution does not exist. It is conceivable that another
Ansatz would satisfy (5.10) in some of the cases excluded by (5.11)–(5.12). This
would essentially require a degenerate Darboux Theoremwith aDirichlet boundary
condition—more concretely, solving dϕ� ∧ dψ� = v0 ∧ w0 + h′′(�(x, t) · ξ)v ∧
w + O(1/�) with (dϕ�, dψ�) = (v0, w0) on ∂Q. However, such theorems are
remarkably difficult to prove and to the authors’ knowledge, a suitable existence
result is not available at this point; we refer to [19, Section 14] and the references
contained therein.

6. Characterisations of the Relative Interior of the Lamination Convex Hull

Our next task is to find a suitable (relatively open) set Ur,s ⊂ intM (Klc,�
r,s ) in

state space, which will serve the purpose of defining subsolutions—see Section 7.1
below. Since we have only constructed potentials for �g-segments, we would like
to produce Ur,s by using �g-segments only. The choice of Ur,s is, however, non-
trivial, as discussed in Section 6.1. Nevertheless, eventually the following simple
definition turns out to suffice.

Definition 6.1. We denote

Ur,s := intM (Klc,�
r,s ).

In the main result of this chapter, Theorem 6.7, we give several characterisations
of Ur,s and show, in particular, that 0 ∈ Ur,s .

6.1. A Rigidity Result on the Good �-Hull

Initially, it appears natural to choose some set Ur,s ⊂ K
lc,�g
r,s for strict subsolu-

tions. However, K
lc,�g
r,s turns out to be rather small; in fact,

E0 = B0 × u0 for every V0 = (u0, S0, B0, E0) ∈ Klc,�g .

Proposition 6.2. Suppose [V0 − (1− λ)V, V0 + λV ] ⊂M is a �g-segment, and
assume that V1 := V0+λV and V2 := V0− (1−λ)V satisfy E j = Bj × u j . Then
E0 = B0 × u0.
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The proof consists of two parts. First, the �g-conditions and the assumption
E j = Bj × u j lead to the conclusion (B1 − B2) × (u1 − u2) = 0. Then a bit of
algebra gives

λB1 × u1 + (1− λ)B2 × u2 = (λB1 + (1− λ)B2)× (λu1 + (1− λ)u2),

that is, E0 = B0 × u0.
At first sight, Proposition 6.2 seems to prevent convex integration unless poten-

tials are found for bad �-segments. However, this rigidity disappears once one
considers �g-convex hulls of relatively open sets. Indeed, whenever U is bounded
and relatively open inM , we have U lc,�g = U lc,� (see Proposition 6.6). The basic
reason behind this phenomenon is the fact that, loosely speaking, bad �-segments
become good when translated to almost any direction.

6.2. Laminates of Relatively Open Sets inM

We start the proof of Proposition 6.6 by showing that the class of relatively
open sets inM is closed with respect to taking laminates:

Proposition 6.3. SupposeU is relatively open inM . ThenUlc,�g is relatively open
inM .

Before beginning the proof of Proposition 6.3 we describe the main difficulty.
The proof proceeds by induction. Suppose V0− (1−λ)V, V0+ (1−λ)V ∈ Uk,�g ,
[V0−(1−λ)V, V0+λV ] ⊂M is a�g-segment and BM (V0+λV, δ)∪BM (V0−
(1 − λ)V, δ) ⊂ U lc,�g . Given Ṽ0 ∈ M with |V0 − Ṽ0| small our aim is to get
Ṽ0 ∈ U lc,�g . It is tempting to write Ṽ0 = λ[Ṽ0 − (1− λ)V ] + (1− λ)[Ṽ0 + λV ].

It is, however, not guaranteed that the endpoints Ṽ0+λV, Ṽ0− (1−λ)V lie on
the nonlinearmanifoldM ! Therefore,we need to perturb Ṽ0+λV and Ṽ0−(1−λ)V
in order to place an entire �g-segment onM . This is in stark contrast to equations
of fluid dynamics where the lamination convex hull has non-empty interior. Again,
the two-form formalism comes to the rescue.

We overcome the difficulties via the following lemmawhich allows us to choose
the factors v,w ∈ R

4 of a simple two-form v∧w in a continuous way. Henceforth,
we denote ‖ω‖ := max| f |=|g|=1 ω( f, g) for every ω ∈ �2(R4).

Lemma 6.4. Suppose v1, w1, v2, w2 ∈ S3 with v1 · w1 = v2 · w2 = 0, and let
0 < ε < 1. If ‖v1 ∧ w1 − v2 ∧ w2‖ < ε, then there exist orthogonal ṽ2, w̃2 ∈ S3

such that

ṽ2 ∧ w̃2 = v2 ∧ w2, |v1 − ṽ2| <
√
2ε and |w1 − w̃2| <

√
2ε.

Proof. First, if v2 · v1 = w2 · v1 = 0, then (v1 ∧ w1 − v2 ∧ w2)(v2, w2) = −1,
which yields a contradiction. Assume, therefore, that v2 · v1 and w2 · v1 are not
both zero.

Denote by ṽ2 the normalised projection of v1 onto span{v2, w2} and by w̃2 its
rotation in span{v2, w2}, that is,

ṽ2 = (v1 · v2)v2 + (v1 · w2)w2

|(v1 · v2)v2 + v1 · w2)w2| , w̃2 = −(v1 · w2)v2 + (v1 · v2)w2

|(v1 · v2)v2 + (v1 · w2)w2| .
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Thus ṽ2 ∧ w̃2 = v2 ∧ w2 and w̃2 · v1 = 0. Now

(v1 ∧ w1 − ṽ2 ∧ w̃2)

(
ṽ2 − (ṽ2 · v1)v1
|ṽ2 − (ṽ2 · v1)v1| , w̃2

)

= − 1− (ṽ2 · v1)2√
1− (ṽ2 · v1)2

= −
√
1− (ṽ2 · v1)2.

Thus
√
1− (ṽ2 · v1)2 ≤ ‖v1 ∧ w1 − ṽ2 ∧ w̃2‖ < ε. Since clearly ṽ2 · v1 ≥ 0, we

conclude that ṽ2 · v1 >
√
1− ε2. Hence, |v1 − ṽ2|2 < 2− 2

√
1− ε2 < 2ε2.

We then show that |w1 − w̃2| <
√
2ε. First,

(v1 ∧ w1 − ṽ2 ∧ w̃2)

(

v1,
w1 − (w̃2 · w1)w̃2

|w1 − (w̃2 · w1)w̃2|
)

=
√
1− (w̃2 · w1)2

gives
√
1− (w̃2 · w1)2 < ε. Next,

(v1 ∧ w1 − ṽ2 ∧ w̃2)(v1, w1) = 1− (v1 · ṽ2)(w̃2 · w1) < ε

implies that w̃2 · w1 > 0. As above, we conclude that |w1 − w̃2|2 < 2ε2. ��
We also need a lemmawhich gives a solution of amatrix equation with a natural

norm estimate.

Lemma 6.5. If x ∈ R
3\{0} and y ∈ R

3, then

S := x ⊗ y + y ⊗ x − (x · y)I
|x |2 ∈ R

3×3
sym

satisfies Sx = y and |S| ≤ 3 |y| / |x |.
Proof of Proposition 6.3. We need to show for every k ∈ N0 that if V0 ∈ Uk,�g ,
then there exists δ > 0 such that BM (V0, δ) ⊂ U lc,�g . The claim holds for k = 0
by assumption, so assume, by induction, it holds for k.

Let V0 ∈ Uk+1,�g . Write V0 = λ(V0 − (1− λ)V )+ (1− λ)(V0 + λV ), where
[V0− (1−λ)V, V0+λV ] is a�g-segment. By assumption, there exists δ > 0 such
that

BM (V0 − (1− λ)V, δ) ∪ BM (V0 + λV, δ) ⊂ U lc,�g .

We intend to show that whenever δ̃ = δ̃V0,V,λ > 0 is small enough, BM (V0, δ̃) ⊂
U lc,�g . The case (5.16) is clear.

Suppose first (5.17) holds, that is,ω∧ξ = 0 butω0∧ξ 
= 0. By Proposition 5.9
and scaling, wemaywrite V0 = (u0, S0, ‖ω0‖ v∧w0) and V = (u, S, v∧ξ), where
|v| = |w0| = 1 and v · w0 = 0.

Let now Ṽ0 = (ũ0, S̃0, ω̃0) ∈M and ‖Ṽ0 − V0‖ < δ̃. By Lemma 6.4, we may
write ω̃0/‖ω̃0‖ = ṽ ∧ w̃0, where |ṽ| = |w̃0| = 1, ṽ · w̃0 = 0 and |ṽ − v| + |w̃0 −
w0| �V0 δ̃. In the last estimate we used the inequality ‖ω0/ ‖ω0‖ − ω̃0/‖ω̃0‖‖ ≤
2‖ω0 − ω̃0‖/ ‖ω0‖.
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Now choose Ṽ = (u, S, ṽ ∧ ξ) ∈ �. As long as δ̃ > 0 is small enough, it is
ensured that ṽ ∧ w̃0 ∧ ξ 
= 0, so that [Ṽ0 − (1 − λ)Ṽ , Ṽ0 + λṼ ] satisfies (5.17).
Thus Ṽ0 = λ(Ṽ0 − (1− λ)Ṽ )+ (1− λ)(Ṽ0 + λṼ ) ∈ U lc,�g , as claimed.

Suppose next (5.18) holds, so that ω = kω0 
= 0 with k /∈ {−1−λ, 1/(1−λ)}.
Write ω0 = ‖ω0‖ v0∧ ξ 
= 0, where |v0| = |ξ | = 1 and v0 · ξ = 0. Again, let Ṽ0 =
(ũ0, S̃0, ω̃0) ∈M and ‖Ṽ0− V0‖ < δ̃. This time, we may write ω̃0 = ‖ω̃0‖ṽ0 ∧ ξ̃ ,
where |ṽ0| = |ξ̃ | = 1, ṽ0 · ξ̃ = 0 and |ṽ0 − v0| + |ξ̃ − ξ | �V0 δ̃.

Our aim is to choose ũ ≈ u and S̃ ≈ S such that Ṽ = (ũ, S̃, kω̃0) satisfies
Ṽ ξ̃ = 0. We select

ũ := u − u · ξ̃x
|ξ̃x |2

ξ̃x

so that ũ · ξ̃x = 0 and |ũ − u| �V0,V,λ δ̃ as soon as, say, δ < |ξx | /2. We then use
Lemma 6.5 to choose S̃ ∈ R

3×3
sym satisfying

S̃ξ̃x + ξ̃t ũ = (S̃ − S)ξ̃x + S(ξ̃x − ξx )+ ξ̃t (ũ − u)+ (ξ̃t − ξt )u = 0

with |S̃ − S| �V0,V,λ δ̃. Now [Ṽ0 − (1 − λ)Ṽ , Ṽ0 + λṼ ] satisfies (5.18) and the
endpoints belong to U lc,�g . We conclude that Ṽ0 ∈ U lc,�g .

Last suppose u = S = ω0 = 0 
= ω. Let Ṽ0 = (ũ0, S̃0, ṽ0 ∧ w̃0) ∈ M with
|Ṽ0−V0| < δ̃. Suppose first ṽ0∧w̃0 = 0. Then Ṽ0 ∈ [Ṽ0−(1−λ)V, Ṽ0+λV ], the
�-segment satisfies (5.19) and the endpoints belong to U lc,�g , so that Ṽ0 ∈ U lc,�g .

Suppose then ṽ0 ∧ w̃0 
= 0. We write V = (0, 0, ξ ∧ w) and choose

Ṽ = (0, 0, ξ̃ ∧ (w̃ + w̃0)) ∈ �,

where ξ̃x 
= 0, |ξ̃ − ξ | + |w̃ − w| < δ̃ and furthermore ṽ0 ∧ w̃0 ∧ ξ̃ 
= 0 and
ṽ0 ∧ w̃0 ∧ w̃ 
= 0. Thus

Ṽ0 + (0, 0, ṽ0 ∧ w̃)+ λṼ = (ũ0, S̃0, (ṽ0 + λξ) ∧ (w̃0 + w̃)) ∈ U lc,�g

and Ṽ0 + (0, 0, ṽ0 ∧ w̃)− (1− λ)Ṽ ∈ U lc,�g . Now Ṽ0 + (0, 0, ṽ0 ∧ w̃) ∈ U lc,�g ;
the �-segment is good because Ṽ ξ̃ = 0 but ṽ0 ∧ w̃0 ∧ ξ̃ 
= 0.

An entirely similar argument gives Ṽ0 − (0, 0, ṽ0 ∧ w̃) ∈ U lc,�g . Now [Ṽ0 −
(0, 0, ṽ0 ∧ w̃), Ṽ0 + (0, 0, ṽ0 ∧ w̃)] is a �g-segment because we assumed that
ṽ0 ∧ w̃0 ∧ w̃ 
= 0. Thus Ṽ0 ∈ U lc,�g , as claimed. ��

6.3. Equivalence of Hulls of Relatively Open Sets

Proposition 6.6. Suppose U is bounded and relatively open in M . Then U lc,� =
U lc,�g .

Proof. The direction U lc,�g ⊂ U lc,� is obvious. We prove the converse direction
by induction, first assuming that (u, S, 0) /∈ U lc,� for each u and S. Clearly U ⊂
U lc,�g . Assume, therefore, that Uk,� ⊂ U lc,�g ; our aim is to show that Uk+1,� ⊂
U lc,�g .
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Suppose [V0−(1−λ)V, V0+λV ] ⊂M is a bad�-segment and the endpoints
V0 − (1− λ)V, V0 + λV ∈ Uk,� ⊂ U lc,�g . Assume first that ω0 
= 0 and that ω0
and ω are not parallel. Thus ω0 − (1− λ)ω, ω0 + λω 
= 0. Now ω0 = ξ ∧w0 and
ω = ξ ∧w by Propositions 5.4 and 5.9. Choose ω̃ := εw0 ∧w andW = (0, 0, ω̃),
where ε 
= 0 is small. Now, sinceω0∧ω̃ = ω∧ω̃ = 0, we have V0+W+λV, V0+
W−(1−λ)V ∈M . Proposition 6.3 then gives V0+W+λV, V0+W−(1−λ)V ∈
U lc,�g . Furthermore, [V0+W − (1−λ)V, V0+W +λV ] is a�g-segment because
ω ∧ ξ = 0 but (ω0 + εw0 ∧ w) ∧ ξ 
= 0. Therefore V0 + W ∈ U lc,�g . Similarly,
V0−W ∈ U lc,�g . Finally, [V0−W, V0+W ] is a �g-segment because ω̃∧w = 0
and yet ω0 ∧ w 
= 0. Consequently, V0 ∈ U lc,�g .

Assume next that ω0 = 0. Since [V0 − (1 − λ)V, V0 + λV ] ⊂ M is a bad
�-segment, we have ω = ξ ∧ w 
= 0. We may assume that wx 
= 0 (by possibly
adding a constant multiple of ξx 
= 0 to wx ). This time select a basis {ξ,w, f, g}
of R4 with fx 
= 0 and wx · fx = 0. Select W = (0, 0, ε w ∧ f ) with ε 
= 0 small.
Arguing as in the previous paragraph, V0±W +λV, V0±W − (1−λ)V ∈ U lc,�g .
As above, V0±W ∈ U lc,�g since (ω0±w∧ f )∧ ξ 
= 0. Now [V0−W, V0 +W ]
(with λ = 1/2) satisfies (5.19); thus V0 ∈ U lc,�g .

Finally assume ω0 
= 0 and ω = kω0 for k ∈ {−1/λ, 1/(1− λ)}. We may thus
write ω0 = v0 ∧ ξ . Choose W = (0, 0, v0 ∧w), where v0 ∧w ∧ ξ 
= 0; thus, after
scaling w, V0±W ∈ U lc,�g . Indeed, V0+ λV ±W ∈ U lc,�g and V0− λV ±W ∈
U lc,�g byProposition 6.3. The�-segment [V0+λV±W, V0−(1−λ)V±W ] is good
since ω∧ξ = 0 but (ω0±v0∧w)∧ξ 
= 0. Now the�-segment [V0−W, V0+W ]
is good since v0 ∧ w ∧ w = 0 but v0 ∧ ξ ∧ w 
= 0. Thus, again, V0 ∈ U lc,�g . ��

6.4. Formulation of the Characterisations

Proposition 6.6 allows us to use the whole wave cone � in computations on
hulls of relatively open sets. In order to exploit this, in Theorem 6.7 we characterise
Ur,s := intM (Klc,�

r,s ) via different relatively open sets. Our main aim is twofold:
first, Ur,s = ∪τ∈[0,1)(BM (Kτr,τ s, ετ ))

lc,�g whenever the constants ετ > 0 are
small enough, and secondly, 0 ∈ Ur,s . We prove the first one via the (a priori) easier
equality Ur,s = ∪τ∈[0,1)(BM (Kτr,τ s, ετ ))

lc,� and Proposition 6.6.
In order to prove both of our two aims in a unified manner, we introduce some

further terminology. For every u, B ∈ R
3 we denote

Su,B := u ⊗ u − B ⊗ B ∈ R
3×3
sym ,

and for every c > 0 we define relatively open sets

Vr,s,c := {(u, S, B, E) : |u + B| < r + c, |u − B| < s + c,
∣
∣S − Su,B −�I

∣
∣ < c,

|�| < rs + c, |E − B × u| < c, B · E = 0}.
Note that given c > 0 we have 0 ∈ Vr,s,c and BM (Kr,s, c̃) ⊂ Vr,s,c for every small
enough c̃ > 0.

Theorem 6.7. There exist constants ετ = ετ,r,s > 0 such that for any τ0 ∈ (0, 1),

Ur,s =
⋃

τ0<τ<1

V lc,�g
τr,τ s,ετ

=
⋃

τ0<τ<1

(BM (Kτr,τ s, ετ ))
lc,�g =

⋃

τ0<τ<1

Klc,�
τr,τ s .
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We divide the proof of Theorem 6.7 into two propositions.

Proposition 6.8. For every τ ∈ [0, 1) there exists ετ > 0 such thatUr,s ⊃ Vτr,τ s,ετ .

Proposition 6.9. Ur,s ⊂ ∪τ0<τ<1K
lc,�
τr,τ s for every τ0 ∈ (0, 1).

Propositions 6.8–6.9 are proved in the rest of this chapter. Assuming Proposi-
tions 6.8–6.9, Theorem 6.7 is obtained as follows:

Proof of Theorem 6.7. Whenever 0 < τ0 < 1 and the constants ετ > 0
are small enough, Propositions 6.6 and 6.8 give Klc,�

r,s ⊃ ∪τ0<τ<1V lc,�
τr,τ s,ετ

=
∪τ0<τ<1V lc,�g

τr,τ s,ετ
. Together with Proposition 6.3, which says that ∪τ0<τ<1V lc,�g

τr,τ s,ετ

is relatively open in M , this yields that Ur,s ⊃ ∪τ0<τ<1V lc,�g
τr,τ s,ετ

by the definition
of Ur,s .

Next, the inclusion ∪τ0<τ<1V lc,�g
τr,τ s,ετ

⊃ ∪τ0<τ<1K
lc,�
τr,τ s follows directly from

the fact that Vτr,τ s,ετ ⊃ Kτr,τ s and Proposition 6.6. Proposition 6.9 then says that
Ur,s ⊂ ∪τ0<τ<1K

lc,�
τr,τ s .

Given parameters ετ > 0 we choose ε̃τ > 0 such that Vτr,τ s,ετ ⊃
BM (Kτr,τ s, ε̃τ ), and thenUr,s ⊃ ∪τ0<τ<1BM (Kτr,τ s, ε̃τ )

lc,�g ⊃ ∪τ0<τ<1K
lc,�
τr,τ s ⊃

Ur,s . Theorem 6.7 holds for these adjusted parameters ε̃τ > 0. ��

6.5. Elsässer Variables in Relaxed MHD

In some of the computations on relaxedMHD itwill be convenient to replace the
variables (u, S, B, E) by Elsässer variables and a matrix component, (z+, z−, M),
which satisfy

z± = u ± B, u = z+ + z−

2
, B = z+ − z−

2
,

M = S + A, MT = S − A, S = M + MT

2
, A = M − MT

2
.

The main advantage is that the constraint set obtains the particularly simple form

Kr,s = {(z+, z−, z+ ⊗ z− +�I ) : |z+| = r, |z−| = s, |�| ≤ rs}.
The wave cone conditions (3.1)–(3.3) are written in Elsässer formalism as

ξx · z± = 0, Mξx + ξt z
+ = 0, MT ξx + ξt z

− = 0. (6.1)

6.6. The Proof of Proposition 6.8

Proposition 6.8 gives our first estimation on the hull Klc,�
r,s . Below, we further

divide the proof of Proposition 6.8 into five steps.
Let 0 ≤ τ < 1. Below, steps (i)–(v) are expressed under the assumption that

V ∈ Vτr,τ s,ετ , that is, |u + B| < τr + ετ , |u − B| < τ s + ετ , |e ⊗ e| < ετ ,
|S| < ετ , |B × v| < ετ , |E | < ετ and |�| < τ 2rs + ετ . The constant ετ > 0
varies from step to step.
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(i) V = (u, Su,B +�I, B, B × u) ∈ Klc,�
r,s .

(ii) V = (u, Su,B + e ⊗ e +�I, B, B × u) ∈ Klc,�
r,s .

(iii) V = (u, Su,B + S +�I, B, B × u) ∈ Klc,�
r,s .

(iv) V = (u, Su,B + S +�I, B, B × u + B × v) ∈ Klc,�
r,s .

(v) V = (u, Su,0 + S +�I, 0, E) ∈ Klc,�
r,s .

Steps (i)–(v) are restated in Lemmas 6.10–6.14.
In the first step we relax the constraints

∣
∣z+

∣
∣ = r and

∣
∣z−

∣
∣ = s to

∣
∣z+

∣
∣ ≤ r and∣

∣z−
∣
∣ ≤ s. The proof is most conveniently presented in Elsässer variables which

facilates the search for � combinations. For later use the statement is expressed in
terms of the sets Vτr,τ s,ετ .

Lemma 6.10. (Relaxation of the normalisation) (u, Su,B+�I, B, B×u) ∈ Klc,�
r,s

whenever
∣
∣z+

∣
∣ < τr + ε

(1)
τ ,

∣
∣z−

∣
∣ < τ s + ε

(1)
τ and |�| < rs, where ε

(1)
τ =

min{r − τr, s − τ s}.
Proof. Suppose first z+, z− 
= 0. In terms of Elsässer variables,

(z+, z−, z+ ⊗ z− +�I ) = λ

(
r

∣
∣z+

∣
∣ z
+, z−,

r
∣
∣z+

∣
∣ z
+ ⊗ z− +�I

)

+ (1− λ)

(

− r
∣
∣z+

∣
∣ z
+, z−,− r

∣
∣z+

∣
∣ z
+ ⊗ z− +�I

)

for 2λ− 1 = |z+|/r ∈ (0, 1); here the �-direction is (2r z+/|z+|, 0, 2r z+/|z+| ⊗
z−), so that (6.1) are satisfied with any ξx ∈ {z+, z−}⊥\{0} and ξt = 0. Further-
more,

(

± r
∣
∣z+

∣
∣ z
+, z−,± r

∣
∣z+

∣
∣ z
+ ⊗ z− +�I

)

= λ̃

(

± r
∣
∣z+

∣
∣ z
+,

s
∣
∣z−

∣
∣ z
−,± r

∣
∣z+

∣
∣ z
+ ⊗ s

∣
∣z−

∣
∣ z
− +�I

)

+ (1− λ̃)

(

± r
∣
∣z+

∣
∣ z
+,− s

∣
∣z−

∣
∣ z
−,∓ r

∣
∣z+

∣
∣ z
+ ⊗ s

∣
∣z−

∣
∣ z
− +�I

)

∈ K 1,�
r,s

for 2λ̃− 1 = |z−|/s ∈ (0, 1); to show that the corresponding directions belong to
� we can again take ξx ∈ {z+, z−}⊥\{0} and ξt = 0. Thus we have shown that
(z+, z−, z+ ⊗ z− +�I ) ∈ K 2,�

r,s .
Suppose next z+ = 0 and z− 
= 0. Now (0, z−, π I ) = 2−1(z−, z−, z− ⊗ z− +

�I ) + 2−1(−z−, z−,−z− ⊗ z− + �I ) ∈ K 3,�
r,s , where we may choose ξ with

ξt = 0 and ξx ∈ {z−}⊥\{0}. The remaining cases with z− = 0 are similar. ��
Steps (ii)–(iii) are covered in the next two lemmas. This time we get rid of the

constraint S = Su,b+�I . It is easier to deal first with a symmetric rank-one matrix
and then iterate.
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Lemma 6.11. (Adding a symmetric rank-one matrix) There exists ε
(2)
τ > 0,

depending on ε
(1)
τ > 0 such that (u, Su,B + e ⊗ e + �I, B, B × u) ∈ Klc,�

r,s

whenever
∣
∣z+

∣
∣ < τr + ε

(2)
τ ,

∣
∣z−

∣
∣ < τ s + ε

(2)
τ , |e| < ε

(2)
τ and |�| < τ 2rs + ε

(2)
τ .

Proof. We use the formula Su,B + e ⊗ e = (Su+e,B + Su−e,B)/2 to write

(u, Su,B + e ⊗ e +�I, B, B × u)

= 1

2
(u + e, Su+e,B +�I, B, B × (u + e))

+ 1

2
(u − e, Su−e,B +�I, B, B × (u − e))

=: 1
2
(V1 + V2).

Here Lemma 6.10 gives V1, V2 ∈ Klc,�
r,s as long as ε

(2)
τ ≤ ε

(1)
τ /2. (We do not

track such dependence of ε
(k)
τ on ε

(k−1)
τ explicitly in the forthcoming proofs.) The

�-direction is

V1 − V2 = (2e, 2(u ⊗ e + e ⊗ u), 0, 2B × e).

If B× e 
= 0, we choose ξx = B× e and ξt = −u · B× e; if B× e = 0, we choose
any ξx ∈ {u, e}⊥\{0} and ξt = 0. ��

We then take further �-convex combinations to replace e⊗ e by more general
symmetric matrices.

Lemma 6.12. (Relaxation of the fluid side) There exists ε
(3)
τ > 0, depending on

ε
(2)
τ > 0 such that (u, Su,B+S+�I, B, B×u) ∈ Klc,�

r,s whenever
∣
∣z+

∣
∣ < τr+ε

(3)
τ ,

∣
∣z−

∣
∣ < τ s + ε

(3)
τ , |S| < ε

(3)
τ and |�| < τ 2rs + ε

(3)
τ .

Proof. First we cover the case where S = −e ⊗ e. Choose an orthogonal basis
{e, f, g} of R3, where |e| = | f | = |g|. Write I = |e|−2 (e ⊗ e + f ⊗ f + g ⊗ g)
which, in combination with Lemma 6.11, yields

(u, Su,B − e ⊗ e +�I, B, B × u) = (u, Su,B + f ⊗ f + g ⊗ g + (�− |e|2)I, B, B × u)

= 1

2
(u, Su,B + 2 f ⊗ f + (�− |e|2)I, B, B × u)

+ 1

2
(u, Su,B + 2g ⊗ g + (�− |e|2)I, B, B × u)

∈ Klc,�
r,s ;

the �-direction is V̄ = (0, 2 f ⊗ f − 2g ⊗ g, 0, 0) and we may choose (ξx , ξt ) =
(e, 0).

By noting that (0, e⊗ e ± f ⊗ f, 0, 0) ∈ � for every e, f ∈ R
3 and iterating,

we obtain the case

S =
N∑

i=1
ci fi ⊗ fi (6.2)
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for any unit vectors fi ∈ S
2 and ci ∈ R with

∑N
i=1 |ci | < ετ . The proof is finished

by noting that every S ∈ R
3×3
sym with |S| < ετ can be written in the form (6.2).

Indeed, whenever f and g are unit vectors, we may write f ⊗ g + g ⊗ f =
2−1( f + g)⊗ ( f + g)− 2−1( f − g)⊗ ( f − g). ��

We have now covered the case where V differs from an element of K by the
perturbation S of the symmetric matrix part. Our next aim, in the following two
lemmas, is to allow E 
= B × u in V = (u, S, B, E). Recall that Klc,�

r,s ⊂ M .
Thus, if B 
= 0, E = B × f, f ∈ R

3 is a necessary condition. We will see next
that it is also sufficient with the appropriate size normalisations. We will make use
of the formula

Su,B = 1

2
(Su+ũ,B+B̃− Sũ,B̃)+ 1

2
(Su−ũ,B−B̃− Sũ,B̃) (u, ũ, B, B̃ ∈ R

3). (6.3)

Finally, recall that in view of Proposition 6.2, we are forced to use bad�-segments.

Lemma 6.13. (Relaxation of the magnetic side) There exists ε
(4)
τ > 0, depending

on ε
(3)
τ > 0 such that (u, Su,B + S +�I, B, B × u + B × v) ∈ Klc,�

r,s whenever∣
∣z+

∣
∣ < τr+ε

(4)
τ ,

∣
∣z−

∣
∣ < τ s+ε

(4)
τ , |S| < ε

(4)
τ , |B × v| < ε

(4)
τ and |�| < τ 2rs+ε

(4)
τ .

Proof. We may assume that B × v 
= 0 and B · v = 0. Then |B × v| = |B| |v|.
The difficulty is that if B is very small, v can be very large.

We denote c := (|B| / |v|)1/2 so that
|cv| = |c−1B| = |B × v|1/2 < |ε(4)

τ |1/2. (6.4)

We then use (6.3) to show that (u, B, Su,B + S+�I, B×u+ B× v) is the middle
point of a suitable � segment. Indeed,

(u, B, Su,B + S +�I, B × (u + v))

= 1

2
(u + cv, Su+cv,(1+c−1)B − Scv,c−1B + S +�I, B + c−1B, (1+ c−1)B × (u + cv))

+ 1

2
(u − cv, Su−cv,(1−c−1)B − Scv,c−1B + S +�I, B − c−1B, (1− c−1)B × (u − cv)).

(6.4) we can apply Lemma 6.12 to deduce that the endpoints lie in Klc,�
r,s . The

direction of the segment is

V̄ =
(

2cv, 2

(

u ⊗ cv + cv ⊗ u − 2

c
B ⊗ B

)

, 2c−1B, 2
(
B × cv + c−1B × u

))

,

which belongs to � since (3.5) is satisfied. ��
The case B = 0 needs to be dealt with separately, since lying in M does no

longer constrain E . The following lemma proves step (v) and completes the proof
of Proposition 6.8:
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Lemma 6.14. (The case B = 0) There exists ε
(5)
τ > 0, depending on ε

(4)
τ such

that (u, 0, Su,0 + S +�I, E) ∈ Klc,�
r,s whenever |u| < τr + ε

(5)
τ , |u| < τ s + ε

(5)
τ ,

|S| < ε
(5)
τ , |E | < ε

(5)
τ and |�| < τ 2rs + ε

(5)
τ .

Proof. We choose orthogonal e, f such that E = e × f , |e| = | f | = |E |1/2 <

(ε
(5)
τ )1/2. Using (6.3), we write

(u, Su,0 + S +�I, 0, e × f )

= 1

2
(u + e × f, Su+e× f,e − Se× f,e + S +�I, e, e × (u + e × f + f )

+ 1

2
(u − e × f, Su−e× f,−e − Se× f,e + S +�I,−e,−e × (u − e × f + (2e × f − f )).

By Lemma 6.13 the endpoints belong to Klc,�
r,s . Now V̄ = (2e× f, 2(u⊗ e× f +

e × f ⊗ u), 2e, 2e × (u + e × f )) ∈ � since (3.5) is satisfied. ��

6.7. The Proof of Proposition 6.9

Recall that Proposition 6.9 states the inclusion Ur,s ⊂ ∪τ0<τ<1K
lc,�
τr,τ s and com-

pletes the proof of Theorem 6.7.

Proof of Proposition 6.9. Let V ∈ intM (Klc,�
r,s ) and 0 < τ0 < 1. By relative

openness of intM (Klc,�
r,s ), we may choose μ such that τ0 <

√
μ < 1 and V/μ ∈

Klc,�
r,s . Now V ∈ (μKr,s)

lc,� since the conditions W̄ ∈ � and μW̄ ∈ � are
equivalent for all W̄ ∈ R

15. It thus suffices to show that μKr,s ⊂ Klc,�√
μr,
√

μs .

We use Elsässer variables. When (μz+, μz−, μz+ ⊗ z− +μ�I ) ∈ μKr,s , we
note that

√
μ ∈ (μ, 1) and write

(μz+, μz−, μz+ ⊗ z− +�I ) = λ(
√

μz+,
√

μz−, μz+ ⊗ z− +�I )

+ (1− λ)(−√μz+,−√μz−, μz+ ⊗ z− +�I )

∈ K 1,�√
μr,
√

μs

for 2λ− 1 = √μ ∈ (0, 1); here V̄ = (2
√

μz+, 2
√

μz−, 0) ∈ �. Hence μKr,s ⊂
K 1,�√

μr,
√

μs . ��

7. The Proof of Theorem 1.1

This chapter is dedicated to proving Theorem 1.1. In Section 7.1 we define the
set of subsolutions that we use in the proof, and the main steps of the proof are
listed in Section 7.2. The proof itself is carried out in the rest of the chapter.



Bounded Solutions of Ideal MHD with Compact 83

7.1. Restricted Subsolutions

We intend to prove Theorem 1.1 by using subsolutions that take values in Ur,s

and whose B and E components arise via PB and PE . For this, recall the notations

W = (u, S, dϕ, dψ), V = p(W ) = (u, S, dϕ ∧ dψ).

Fix a non-empty bounded domain � ⊂ R
3 × R, and let r, s > 0, r 
= s.

Definition 7.1. The set of restricted subsolutions is defined as

X0 := {V = (u, S, ω) ∈ C∞c (R4,R15) : there exists ϕ,ψ ∈ C∞c (R4) such that

ω = dϕ ∧ dψ, L(V ) = 0, supp(u, S, ϕ, ψ) ⊂ � and V (x, t) ∈ Ur,s∀(x, t) ∈ R
4}.

We define X to be the weak sequential closure of X0 in L2(R4; co(Kr,s)), where
co(Kr,s) denotes the closed convex hull of the constitutive set Kr,s defined in
Definition 3.7. Observe that Kr,s ⊂ R

15 is compact so that the weak topology of
L2 on X is metrizable.

Now X % {0} is a compact metrisable space, and we denote a metric by dX .

7.2. The Main Steps of the Proof

Following [21], our main aim is to prove Proposition 7.2 below. Once Proposi-
tion 7.2 is proved, Theorem 1.1 follows rather easily in Section 7.5.

Proposition 7.2. There exists C = Cr,s > 0 with the following property. If V =
(u, S, dϕ ∧ dψ) ∈ X0, then there exist V� = (u�, S�, dϕ� ∧ dψ�) ∈ X0 such that
dX (V�, V0)→ 0 and

∫

�

(|u�(x, t)|2 + |B�(x, t)|2 − |u(x, t)|2 − |B(x, t)|2) dx dt

≥ C
∫

�

(
r2 + s2

2
− |u(x, t)|2 − |B(x, t)|2

)

dx dt.

For the proof of Proposition 7.2 we need a so-called perturbation property,
formulated in our setting in Proposition 7.4. To motivate the formulation of Propo-
sition 7.4, we note that Theorem 6.7 implies the following proposition where we
choose any ετ = ετ,r,s such that

Oτ := BM (Kτr,τ s, ετ ) ⊂ Ur,s;

recall from Theorem 6.7 that for any τ0 ∈ (0, 1) we have

Ur,s =
⋃

τ0<τ<1

O
lc,�g
τ .
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Proposition 7.3. Let V0 ∈ Ur,s . Then for every large enough τ ∈ (0, 1) there exists

ν =
∑

j∈{1,2}N
μjδVj ∈ Lg(Oτ )

with barycentre ν̄ = V0 and [Vj′,1, Vj′,2] ⊂ Ur,s for all j′ ∈ {1, 2}k , 1 ≤ k ≤ N−1.
Furthermore, for each Vj = (uj, Sj, vj ∧ wj), j ∈ {1, 2}N , we have

r2 + s2

2
− |u0|2 − |B0|2 ≤ 2(

∣
∣uj

∣
∣2 + ∣

∣Bj
∣
∣2 − |u0|2 − |B0|2). (7.1)

Indeed, if V = (u, S, B, E) ∈ Kr,s , then |u|2 + |B|2 = (r2 + s2)/2 whereas,

since supp(ν) ⊂ Oτ ,
∣
∣uj

∣
∣2 + ∣

∣Bj
∣
∣2 � τ 2(r2 + s2)/2− ετ . Therefore, (7.1) follows

by choosing τ ∈ (0, 1) large enough.
Whereas Proposition 5.13 says, roughly speaking, that every good �-segment

can be approximated by oscillating mappings with certain properties, Proposi-
tion 7.4 makes an analogous claim about good laminates.

Proposition 7.4. Let Q ⊂ R
4 be a cube, and let V0 = p(W0) ∈ Ur,s . If ω0 =

v0 ∧w0 = 0, then assume that v0 = w0 = 0. Choose ν ∈ Lg(Oτ ) with ν̄ = V0 via
Proposition 7.3.

For every ε > 0 there exist

W� := W0 + (ū�, S̄�, dϕ̄�, dψ̄�) ∈ W0 + C∞c (Q;R17)

with the following properties:

(i) L(V�) = 0 and V�(x, t) ∈ Ur,s for all (x, t) ∈ �.
(ii) There exist pairwise disjoint open subsets Aj ⊂ Q with

∣
∣
∣
∣Aj

∣
∣− μj

∣
∣ < ε such

that

V�(x, t) = Vj for all j ∈ {1, 2}N and (x, t) ∈ Aj

and dϕ̄� and dψ̄� are locally constant in Aj.
(iii) For every (x, t) ∈ Q there exist j′ ∈ {1, 2}k and W̃ = W̃ (x, t) ∈ R

17 such that

p(W̃ ) ∈ [Vj′,1, Vj′,2], |W�(x, t)− W̃ | < ε, |V�(x, t)− p(W̃ )| < ε.

(iv) V� − V0 ⇀ 0 in L2(Q;R15).

Condition (iii) says, in particular, that at every (x, t) ∈ �, V�(x, t) is close
to one of the �g-segments [Vj′,1, Vj′,2], where j′ ∈ {1, 2}k , 1 ≤ k ≤ N − 1. We
will also need the estimate on W�(x, t). Proposition 7.4 is proved by a standard
induction via Proposition 5.13; we sketch the main ideas.

Proof. The proof follows by iteratively modifying the sequence at the sets where
it is locally affine (via Proposition 5.13) and using a diagonal argument. Namely, if
N = 1, the result follows from Proposition 5.13. Suppose now that 1 ≤ k ≤ N − 1
and that we have costructed a sequence of mappings W�k = (u�k , S�k , dϕ�k , dψ�k )

which satisfies (i), (iii) and (iv) and furthermore (ii) holds with the condition j ∈
{1, 2}N replaced by j ∈ {1, 2}k .
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Fix j ∈ {1, 2}k . We cover Aj by disjoint cubes up to a set of small measure and
modify W�k in each cube via Proposition 5.13. This gives rise to a new sequence
which we again modify at the sets Aj, j ∈ {1, 2}k+1, where it is locally affine.
Note that we can use Proposition 5.13 iteratively because in each Aj, claim (iii) of
Proposition 5.13 implies that either dϕk�

∧ dψk�

= 0 or dϕk�

= dψk�
= 0. Finally

a standard diagonal argument provides the norm bounds. ��

7.3. Modifications at the Set Where dϕ(x, t) ∧ dψ(x, t) = 0

The following issue needs to be addressed in the proof of Proposition 7.2: on
one hand, the mapping V = (u, S, dϕ ∧ dψ) ∈ X0 can have a large set where
dϕ(x, t) ∧ dψ(x, t) = 0 but (dϕ(x, t), dψ(x, t)) 
= 0, and on the other hand, in
Proposition 5.13, in the case ω0 = v0 ∧ w0 = 0, we only constructed potentials
when v0 = w0 = 0. We therefore modify W around points (x, t) ∈ � where
dϕ(x, t) ∧ dψ(x, t) = 0 but (dϕ(x, t), dψ(x, t)) 
= 0 making W look essentially
constant there.

Lemma 7.5. Suppose V ∈ X0, and let ε > 0. Then there exists Ṽ = (ũ, S̃, dϕ̃ ∧
dψ̃) ∈ X0 such that ‖V − Ṽ ‖L∞ < ε and

|{(x, t) ∈ � : dϕ̃(x, t) ∧ dψ̃(x, t) 
= 0} ∪ int({(x, t) ∈ � : dϕ̃(x, t) = dψ̃(x, t) = 0})|
> (1− ε) |�| .

Proof. Assume,without loss of generality, that 0 < ε < min� dist(V, ∂Ur,s). Then
the inequality ‖V − Ṽ ‖L∞ < ε ensures that Ṽ takes values in Ur,s .

Since W is absolutely continuous, we cover � by all the cubes Qi ⊂ � with
centers (xi , ti ) and the following properties:

• If dϕ(xi , ti ) ∧ dψ(xi , ti ) 
= 0, then dϕ ∧ dψ 
= 0 in Qi .
• If dϕ(xi , ti )∧dψ(xi , ti ) = 0, thenwe have sup(x,t)∈Qi

|W (x, t)−W (xi , ti )| <
ε2/[C(‖W‖L∞ + 1)].

Such cubes exist for every (xi , ti ) ∈ �, and therefore they form a Vitali cover
of �. By the Vitali Covering Theorem, we may choose a finite, pairwise disjoint
subcollection {Q1, . . . , QN } with |�\ ∪N

i=1 Qi | < ε/2.
We intend to modify V in each Qi where dϕ(xi , ti )∧ dψ(xi , ti ) = 0. Fix such

Qi , and let R ⊂ Qi be a subcube with center (xi , ti ) and |R| = (1 − ε/2) |Qi |.
Choose δ > 0 such that (1 − δ)4 = 1 − ε/2; now l(r) = (1 − δ)l(Qi ). Choose
a smooth cutoff function χR with χR |R = 1 and |∇χR | ≤ C/[δl(Qi )]. Define
g ∈ C∞(Q; Q) by

g(x, t) := (x, t)+ χR(x, t)[(xi , ti )− (x, t)]
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so that g(x, t) = (xi , ti ) is constant in R and g = id near ∂Qi . Set ϕ̃ := ϕ ◦ g and
ψ̃ := ψ ◦ g so that

∇x,t ϕ̃ = DT
x,t g∇x,t ϕ ◦ g, ∇x,t ψ̃ = DT

x,t g∇x,t ψ ◦ g. (7.2)

Thus |{(x, t) ∈ Qi : dϕ̃(x, t) = dψ̃(x, t) = 0}| ≥ (1− ε/2) |Qi |.
The claim will be proved once we show that ‖dϕ̃ ∧ dψ̃‖ < ε/2 in Qi ; then

‖V − Ṽ ‖L∞ < ε. To this end, we fix (x, t) ∈ Qi and estimate

|Dg(x, t)| = |(1− χR(x, t))I + [(xi , ti )− (x, t)] ⊗ ∇χR(x, t)| ≤ C

δ

and

|dϕ(g(x, t)) ∧ dψ(g(x, t))| ≤ |dϕ(g(x, t)) ∧ (dψ(g(x, t))− dψ(g(xi , ti ))|
+ |(dϕ(x, t))− dϕ(xi , ti )) ∧ dψ(xi , ti )|
≤ C ′ ‖W‖L∞ |W (x, t)−W (xi , ti )| < ε2/C.

Now δ = 1−(1−ε/2)1/4 implies that ε/2 = 1−(1−ε/2) = δ(1+(1−ε/2)1/4+
(1− ε/2)2/4 + (1− ε/2)3/4) < 4δ. Thus, whenever |v1| = |v2| = 1, we have

|[dϕ̃(x, t) ∧ dψ̃(x, t)](v1, v2)|

= |[dϕ(g(x, t)) ∧ dψ(g(x, t))](DT g(x, t)v1, D
T g(x, t)v2)| < ε

2
.

��

By Lemma 7.5 and a standard diagonal argument, it suffices to prove Proposi-
tion 7.2 for every ε > 0 and every mapping V ∈ X0 such that

�̃ := {(x, t) ∈ � : dϕ(x, t) ∧ dψ(x, t) 
= 0}
∪ int({(x, t) ∈ � : dϕ(x, t) = dψ(x, t) = 0})

satisfies

|�̃| > (1− ε) |�| , (7.3)
∫

�

(
r2 + s2

2
− |u(x, t)|2 − |B(x, t)|2

)

dx dt

≤ 2
∫

�̃

(
r2 + s2

2
− |u(x, t)|2 − |B(x, t)|2

)

dx dt. (7.4)
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7.4. Proof of Proposition 7.2

Assuming that (7.3)–(7.4) hold, wewish to construct themappings V� = p(W�)

of Proposition 7.2 by suitablymodifying a discretisation argument from [21]. Given
V = p(W ) ∈ X0 we cover �̃, up to a small set, by cubes Qi ⊂ �̃ with center
(xi , ti ) such that W varies very little in Qi . We then approximate W by W (xi , ti )
in each Qi . Now V (xi , ti ) = ν̄ for some ν = ∑

j∈{1,2}N μjδVj ∈ Lg(Oτ ) with τ

close to 1, and we set W� := [W − W (xi , ti )] + [W (xi , ti )+ (ū�, S̄�, dϕ̄�, dψ̄�)],
where (ū�, S̄�, dϕ̄�, dψ̄�) is given by Proposition 7.4.

On one hand, the discretisation needs to be fine enough that V� = p(W�) does
not take values outside Ur,s , and on the other hand, the cubes need to cover a sub-
stantial proportion of �̃. Both properties are ensured by the following application
of the Vitali Covering Theorem.

Lemma 7.6. Suppose ε > 0 and V = p(W ) ∈ X0 satisfies (7.3)–(7.4). Let γ > 0.
Then there exist pairwise disjoint cubes Qi ⊂ �̃with centers (xi , ti )andparameters
δi > 0 with the following properties:

(i) For every i ∈ N, there exists τi ∈ (0, 1) and ν = ∑
j∈{1,2}N μjδVj ∈ Lg(Oτi )

with barycentre ν̄ = V (xi , ti ), where ν given by Proposition 7.3.
(ii) BM ([Vj′,1, Vj′,2]), δi ) ⊂ Ur,s for all i ∈ N and j′ ∈ {1, 2}k , 1 ≤ k ≤ N − 1.
(iii) sup(x,t)∈Qi

|W (x, t)−W (xi , ti )| < γδi .

(iv) |�̃\ ∪∞i=1 Qi | = 0.

Proof. Let (x, t) ∈ �̃. Since V (x, t) ∈ Ur,s , by Theorem 6.7 there exist τ ∈ (0, 1)
and ν = ∑

j∈{1,2}N μjδj ∈ Lg(Oτ ) with barycentre ν̄ = V (x, t). Furthermore,

there exists δ > 0 such that BM ([Vj′,1, Vj′,2]), δ) ⊂ Ur,s whenever j′ ∈ {1, 2}k ,
1 ≤ k ≤ N − 1. Since W is continuous, there exists a cube Q ⊂ �̃ with center
(x, t) such that sup(x ′,t ′)∈Q

∣
∣W (x ′, t ′)−W (x, t)

∣
∣ < γδi .

The collection of cubes chosen above forms a Vitali cover of �̃, and there-
fore, by the Vitali Covering Theorem, there exists a countable, pairwise disjoint
subcollection {Qi }i∈N with |�̃\ ∪∞i=1 Qi | = 0. ��
Proof of Proposition 7.2. Let ε > 0 and V ∈ X0, and suppose V satisfies (7.3)–
(7.4). Let 0 < γ = γV ' [min(x,t)∈�̃((r2+s2)/2−|u(x, t)|2−|B(x, t)|2)]1/2 (to
be determined later) and choose cubes Qi ⊂ �̃ via Lemma 7.6. At each Qi define

W� := W + (ū�, S̄�, dϕ̄�, dψ̄�) ∈ C∞(Qi ;R17),

where (ū�, S̄�, dϕ̄�, dψ̄�) ∈ C∞c (Qi ;R17) is given by Proposition 7.4.
We now intend to show that

V� = (u + ū�, S + S̄�, (dϕ + dϕ̄�) ∧ (dψ + dψ̄�)) =: (u�, S�, dϕ� ∧ dψ�)

takes values in Ur,s for every � ∈ N; then V� ∈ X0 by construction.
Fix a cube Qi and write V (xi , ti ) = p(W (xi , ti )) ∈ Ur,s as a barycentre

of ν = ∑
j∈{1,2}N μjδVj ∈ Lg(Oτ ). By Lemma 7.6, whenever j′ ∈ {1, 2}k with

1 ≤ k ≤ N − 1, we have BM ([Vj′,1, Vj′,2], δi ) ⊂ Ur,s .
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Let (x, t) ∈ Qi . By Lemma 7.6, |W (x, t)−W (xi , ti )| < γδi . By Propo-
sition 7.4, there exists W̃ such that p(W̃ ) ∈ [Vj′,1, Vj′,2] for some j′ ∈ {1, 2}k
and some k ≤ N1, and |W (xi , ti ) + (ū�, S̄�, dϕ̄�, dψ̄�)(x, t) − W̃ | < γδi . Thus
|W�(x, t) − W̃ | < 2γ δi . Hence, whenever γ > 0 is small enough (independently
of i), we conclude that |V�(x, t)− p(W̃ )| < δi and V�(x, t) ∈ Ur,s .

Whenever γ 2 < min(x,t)∈�̃[(r2+ s2)/2−|u(x, t)|2−|B(x, t)|2]/3, condition
(iii) of Lemma 7.6 and the property |�̃\ ∪i∈N Qi | = 0 yield a finite subcollection
of cubes such that

∫

�̃

(
r2 + s2

2
− |u(x, t)|2 − |B(x, t)|2

)

dx dt

≤ 2
M∑

i=1

(
r2 + s2

2
− |u(xi , ti )|2 − |B(xi , ti )|2

)

|Qi | .

Let 1 ≤ i ≤ M and write V (xi , ti ) = ν̄, where ν = ∑
j∈{1,2}N μjδVj is given by

Proposition 7.3. In particular, V�(x, t) = Vj in each Aj ⊂ Qi . Now Proposition 7.3
and Lemma 7.6 give

(
r2 + s2

2
− |u(xi , ti )|2 − |B(xi , ti )|2

)

|Qi |

≤ 3
∑

j∈{1,2}N
(
∣
∣uj

∣
∣2 + ∣

∣Bj
∣
∣2 − |u(xi , ti )|2 − |B(xi , ti )|2)

∣
∣Aj

∣
∣

≤ 4
∑

j∈{1,2}N

∫

Aj

(|u�(x, t)|2 + |B�(x, t)|2 − |u(x, t)|2 − |B(x, t)|2) dx dt.

Indeed, since V� = Vj in each Aj, the last estimate is equivalent to the inequality

4
∑

j∈{1,2}N

∫

Aj

(|u(x, t)|2 + |B(x, t)|2 − |u(xi , ti )|2 − |B(xi , ti )|2) dx dt

≤
∑

j∈{1,2}N

∣
∣Aj

∣
∣ [∣∣uj

∣
∣2 + ∣

∣Bj
∣
∣2 − |u(xi , ti )|2 − |B(xi , ti )|2],

which in turn is ensured if τ is large enough and γ 2 ' min(x,t)∈�̃[(r2 + s2)/2 −
|u(x, t)|2 − |B(x, t)|2] is small enough. This proves the claim. ��

7.5. Completion of the Proof of Theorem 1.1

Proof of Theorem 1.1. The functional V �→ ∫
R4 |V (x, t)|2 dx dt is aBaire-1map

in X , and thus its poins of continuity are residual in X (see [21, Lemma 4.5]). Let
now V ∈ X be a point of continuity and choose a sequence of mappings Ṽ� ∈ X0
with d(Ṽ�, V )→ 0. By Proposition 7.2 and a standard diagonal argument, we find
V� ∈ X0 with d(V�, V )→ 0 and

lim inf
�→∞

∫

�

(|u�(x, t)|2 + |B�(x, t)|2 − |u(x, t)|2 − |B(x, t)|2) dx dt (7.5)
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≥ C
∫

�

(
r2 + s2

2
− |u(x, t)|2 − |B(x, t)|2

)

dx dt. (7.6)

Since V �→ ‖V ‖2L2 is continuous at V and d(V�, V ) → 0, it follows that
‖V�‖2L2 → ‖V ‖2L2 . Thus ‖V� − V ‖L2 → 0 which, combined with (7.5)–(7.6),

gives |u(x, t)|2 + |B(x, t)|2 = r2 + s2 a.e. (x, t) ∈ �. Thus

V (x, t) ∈ Ur,s ∩ {(u, S, B, E) : |u + B| = r, |u − B| = s} ⊂ Kr,s

a.e. (x, t) ∈ �. On the other hand, by the definition of X we have V (x, t) = 0 a.e.
(x, t) ∈ (R3 × R)\�. Now V has all the sought properties. ��
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Appendix A. The Ill-Definedness of Magnetic Helicity and Mean-Square
Magnetic Potential in the Whole Space

Westate two simple resultswhich indicate thatmean-squaremagnetic potential andmagnetic
helicity are not well-defined quantities for L2-integrable solutions of ideal MHD in R

2 or
R
3. We denote L2σ (Rn;Rn) := {v ∈ L2(Rn;Rn) : ∇ · v = 0} when n ∈ {2, 3}.

Proposition A.1. There exists v ∈ L2σ (R2;R2) with the following property: if � ∈ D′(R2)

satisfies ∇⊥� = v, then � /∈ L2(R2).

Proposition A.1 is proved by choosing � ∈ Ẇ 1,2(R2) such that � + C /∈ W 1,2(R2) for
every C ∈ R and setting v := ∇⊥�. The 3D result requires somewhat more work. Here we
choose a smooth v in order to make � · v well-defined for all � ∈ D′(R3,R3).

Proposition A.2. There exists v ∈ L2σ (R3,R3)∩C∞(R3,R3) with the following property:
whenever � ∈ D′(R3,R3) satisfies ∇ ×� = v, we have � · v 
∈ L1(R3).

Proof. Fix ψ0 ∈ C∞c (B(0, 1),R3) such that ψ0 and ϕ0 := ∇ × ψ0 satisfy
∫
B(0,1) ψ0(x) ·

ϕ0(x) dx 
= 0. (Choose, for example,ψ0(x) = χ(x)(1, x3, 0), where χ ∈ C∞c (B(0, 1)with
χ(0) > 0.) Set ψ0(x) = ϕ0(x) = 0 outside B(0, 1).
Fix points x j ∈ R

3 and radii R j > 0 such that the balls B(x j , R j ), j ∈ N, are mutually
disjoint. For every j ∈ N denote

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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ψ j (x) :=
ψ0

(
x−x j
R j

)

R1/2
j

, ϕ j (x) :=
ϕ0

(
x−x j
R j

)

R3/2
j

,

so that supp(ψ j ) ⊂ B(x j , R j ), ∇ × ψ j = ϕ j and
∥
∥ϕ j

∥
∥
L2 = ‖ϕ0‖L2 . Define v ∈

L2σ (R3,R3) by

v(x) :=
∞∑

j=1

1

j2
ϕ j (x).

Suppose now � ∈ D′(R3,R3) satisfies ∇ ×� = v and � · v ∈ L1(R3). Given j ∈ N, note
that in B(x j , R j ) we have � = ψ j + ∇g j , where g j ∈ D′(B(x j , t j )). Thus, by using the
fact that ∇g j · ϕ j = 0 for every j ∈ N we get

∫

R3
|�(x) · v(x)| dx ≥

∞∑

j=1

1

j2

∣
∣
∣
∣
∣

∫

B(x j ,R j )
ψ j (x) · ϕ j (x) dx

∣
∣
∣
∣
∣

≥
∞∑

j=1

1

j2
R j

∣
∣
∣
∣

∫

B(0,1)
ψ0(x) · ϕ0(x) dx

∣
∣
∣
∣ ,

and the lower bound series diverges as soon as the radii satisfy R j ≥ j . ��
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