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BOUNDEDNESS OF DIFFERENTIAL TRANSFORMS FOR ONE-SIDED
FRACTIONAL POISSON-TYPE OPERATOR SEQUENCE

ZHANG CHAO, TAO MA AND JOSE L. TORREA

ABSTRACT. Let P, f be given by

1 oo g2 o3/
7371‘(15):411(0{)/‘0 pres ft—s)ds, 7>0,teR, 0<a<]l1.
It is known that the function U (¢, 7) = P, f(t) is a classical solution to the extension problem
DU 41220 4U._—0, inRx(0,00)

and

lim P_ f(t) = f(t), a.e. andin LP(R,w)-norm,w € A, .
=01

In this paper, we analyze the convergence speed of a series related with P, f by discussing the
behavior of the family of operators
No
Tnf(t) = Y vi(Pa;y f() =P, f(1), N =(N1,N2) €Z® with N < No,
Jj=N1
where {v;};jecz is a bounded number sequence, and {a;};cz is a p-lacunary sequence of positive
numbers, that is, 1 < p < ajy1/ay,for all j € Z. We shall show the boundedness of the maximal
operator
T f(t) = sup Tnf@), teR,

in the one-sided weighted Lebesgue spaces LP(R,w)(w € A, ), 1 < p < co. As a consequence we
infer the existence of the limit, in norm and almost everywhere, of the family T’y f for functions in
LP(R,w). Results for L}(R,w)(w € A7), L=®(R) and BMO(R) are also obtained.

It is also shown that the local size of T f, for functions f having local support, is the same with
the order of a singular integral. Moreover, if {v;};ecz € ¢P(Z), we get an intermediate size between
the local size of singular integrals and Hardy-Littlewood maximal operator.

1. INTRODUCTION

Let P2 f be given by

1.1 o ! e T d R 1
() PTf(t)W(a)/ Tf(t*S) S,T>O,t€ ,0<Oé< .

This is a fractional Poisson-type operator on the line, which can be found in [3]. It is known that
the Poisson-type operator appeared when solving the extension problem, see [5, 12, 13]. In [3], the
authors showed that P2 is a classical solution to a version of extension problem for the given initial
data f in a weighted space LP(w), where w satisfies the one-sided A, condition. Moreover, in this
extension problem, they proved that the fractional derivatives on the line are Dirichlet-to-Neumann
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operators. Precisely, it is shown that for functions f € LP(R,w),w € A, ,1 < p < oo, the function
U(t,7) =P2f(t) is a classical solution to the extension problem

CUL+US =0, inRx(0,00),
= f(t), a.e. and in LP(R, w)-norm.

Moreover, for ¢, :=

—co lim 772U, 7) = (Dioge)* f(t), in the distributional sense.

T—0t

In the above formulas,

Diese f () = sli%lf M and (Do) f / 1t 7Si+1 It )ds.

By A, we denote the class of lateral weights introduced by E.Sawyer [11], see (2.2) and (2.3).
The purpose of this note is to give some extra information about the convergence of the family
{P&f}+>0. In order to do this, we shall discuss the behavior of the series

S fi(PeL F() =P (1)),

JEZ

where {v;} ez is a sequence of bounded numbers and {a;};jez is a p-lacunary sequence of positive
numbers, that is, 1 < p < ajy1/a;,for all j € Z. This way to analyze convergence of sequences was
considered by Jones and Rosemblatt for ergodic averages(see [7]), and latter by Bernardis et al. for
differential transforms(see [2]).

For each N € Z?, N = (N7, N3) with N7 < N, we define the sum

No
(1.2) TR = Y (o (Pe ., f(t) = P& F(2).
Jj=N1
We shall consider the maximal operator
Tof(t) =sup|Tyf(®), tEeR.
(1.3) Along the paper, we shall denoteT™ to be T for simply.

The supremum are taken over all N = (N7, No) € Z? with Ny < Na.

In order to prove the results, we shall use the vector-valued Calderén-Zygmund theory in an
essential way. In the proof of the maximal operator T, we shall use a kind of Cotlar’s lemma that
in some sense is parallel to the classical Cotlar’s inequality used to control the maximal operator of
the truncations in the Calderén-Zygmund theory. Looking to the first set of our results, the reader
could have the impression that the operator T is of the same size of the maximal operator M™.
In this line of thought we present a series of results contained in Theorem 1.3 and Theorem 1.4 in
which it is shown that the size of T acting over functions of compact support is in fact of the order
of a singular integral. At this point we want to observe the analogy of our operators with martingale
transforms. On the other hand if we consider the sequence of Rademacher functions {r;};ez, by
Kintchine’s inequality we have

(P, ro-PoroR)” <k, Z(()(%J(-)—P;f(-))

Jer Lo (R) Ier () o)

In other words, as a by product of our results we get the boundedness of the operator

(S fpe. s -Poror)”

JEZ
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in the same spaces that we get for operator 7. Finally, in Theorem 1.4 it is also shown that if we
assume the sequence {v;} ez € ¢P(Z), then the local behavior of T is approaching to the maximal
operator as p — 1T. Now we present our main results.

Theorem 1.1. Let 0 < a < 1, {vj}jez a sequence of bounded numbers and {a;}jez a p-lacunary
sequence of positive numbers. Let T* be defined in (1.3).

(a) For any 1 <p < oc andw € A, there exists a constant C' depending on p, p, o, w and ||v||l°°(Z)
such that

1T F oy < C 1 o
for all functions f € LP(R,w).
(b) For any w € Ay, there exists a constant C depending on p, a,w and [|v|;ec 7 such that

1
w(i—oo <t <+oo: [T°f()] > A}) < O Ifl ey, A >0,

for all functions f € L'(R,w).
(c) Given f € L(R), then either T*f(t) = oo for allt € R, or T*f(t) < oo for a.e. t € R. And in
this later case, there exists a constant C depending on p, a and |[v[|;e (7 such that

1T fllparom) < C I fllpee ) -
(d) Given f € BMO(R), then either T*f(t) = co for allt € R, or T*f(t) < oo for a.e. t € R. And

in this later case, there exists a constant C' depending on p, o and ||v||jec 5 such that

(1.4) 1T fll gpror < Clflprvow) -

We have denoted by LP(R,w),1 < p < oo, the Lebesgue space of measurable functions satisfying

l/wmwwﬁ<m

and L*°(R) the space of measurable functions such that ess sup |f(t)| < oo. Both of them are with
teR
the obvious norms. Also, we define BMO(R) as the space of measurable functions such that for any

interval B,
: /
ft) = fp dt < C < oo,
| Bl g

1 1
and || f| aro(r) = sup E/ f(t) — fp dt, where fp = Bl /(f(t)dt. For more details, see [6].
B B

The proof of the last theorem contains three steps:

(A) We prove the following uniform boundedness of the family of operators Ty: from LP(R,w)
into LP(R,w), 1 < p < oo, from L'(R,w) into weak-L*(R,w), from L*(R) into BMO(R),
and from BMO(R) into BMO(R), see Theorem 2.6.

(B) The following pointwise Cotlar’s type inequality

sup |T](\1f1,N2f(t)| <C {(/l(TfM,Mf)(t) + M;f(t) )
~M<N{<N2<M
see Theorem 3.2.

(C) The boundedness of M~ and the uniform boundedness of 7%, in LP(R,w) show the bound-
edness of the maximal operator T* in LP(R,w). The use of the vector-valued Calderén-
Zygmund theory allows us to get all of the statements in Theorem 1.1.

The last theorem has the following consequence.

Theorem 1.2. (a) If 1 <p < oo and w € A, then T f converges a.e. and in LP(R,w) norms for
all f € LP(R,w) as N = (N1, Na) tends to (—o0, +00).

(b) If p =1 and w € A7, then TS f converges a.e. and in measure for all f € L'(R,w) as N =
(N1, Na) tends to (—oo, +00).
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The dichotomy results announced in Theorem 1.1, parts (¢) and (d), about L*(R) and BMO(R)
are motivated, in part, by the existence of a bounded function f such that 7* f(¢) = oo as the following
theorem shows.

Theorem 1.3. There exist bounded sequence {v;};cz, p-lacunary sequence {a;}jcz and f € L™(R)
such that T* f(t) = oo for allt € R.

This last theorem also says that the operator T* is essentially bigger than the operator P* f(t) =
sup, PTl/Qf(t) which is bounded in LP(R,w),1 < p < oo, and in L*(R), see [3].

1
On the other hand, if f = x(0,1) and H is the Hilbert transform, it is easy to see that — / H(f)(z)dx ~
r kA

log ¢ as r — 07. In general, this is the growth of a singular integral applied to a bounded function at

r
the origin. The following theorem shows that the growth of the function 7" f for bounded function f
at the origin is of the same order of a singular integral operator.

Theorem 1.4. (a) Let {v;};cz € IP(Z) for some 1 < p < oo. For every f € L™(R) with support in
the unit ball B = B(0,1), for any ball B, C B with 2r < 1, there exists a constant C > 0 such
that

1 2 1/}’/
o e senan < e (1062) 7 ol 1l

(b) When1 < p < oo, for anye > 0, there exist a p-lacunary sequence {a;}jez, a sequence {v;}jez €
(P(Z) and a function f € L (R) with support in the unit ball B = B(0, 1), satisfying the following
statement: for any ball B, C B with 2r < 1, there exists a constant C' > 0 such that

1
| B: |

o\ 1/ (—o)
/{ i@l 2 0 (1052) " ollog Ifl~ce

(c) When p = oo, there exist a p-lacunary sequence {a;};cz, a sequence {v;}jez € I°°(Z) and f €
L (R) with support in the unit ball B = B(0,1), satisfying the following statements: for any ball
B, C B with 2r < 1, there exists a constant C' > 0 such that

1 . 9
1B, /( T f(t)|dt = C <log ;) (u||lx(z) 1F e o).

In the statements above, p' = and if p=1, p' = oo.

-1’
Some related results about the local behavior of variation operators can be found in [4]. One

dimensional results about the variation of some convolutions operators can be found in [8].

The organization of the paper is as follows. In Section 2, we will get the kernel estimates to
see that the kernel K is a vector-valued Caldrén-Zygmund kernel, and then we can get the uniform
boundedness of 7'y, i.e. Theorem 2.6. And with a Cotlar’s inequality, we can get the proof of Theorem
1.1 in Section 3. In Section 4, we will give the proof of Theorem 1.3 and Theorem 1.4.

Throughout this paper, the symbol C' in an inequality always denotes a constant which may depend
on some indices, but never on the functions f in consideration.

2. UNIFORM LP BOUNDEDNESS OF THE OPERATORS 1'y
We shall need the following lemma.

Lemma 2.1. Let 0 < o < 1. Then for any complex number zg with Rezo > 0 and | arg zo| < /4, we

have
o 20 du e~ Tem 0/
e e — = zéfo‘ ———dr.
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Proof. Let pg = arg zg. Assume that 0 < ¢¢ < w/4. The case —m/4 < o < 0 is completely analogous.
Define the ray in the complex plane
ray,, = {z = re™ 0 < r < oo}

And then let C denote the sector in the real part of the complex plane, with 0 < argz < ¢y but
truncated at ¢, : |z] = ¢ and Cg : |z| = e. In fact, the boundary of C consists four parts: C., Cg,
ray,,, and positive half part of the real line.

Let us consider the complex function

e—zo/ue—uzo
F(u) = TR

which is holomorphic function when u # 0. Thus, by the Cauchy theorem, we have /(F (u)du = 0.
We first calculate

0 e—zo/(eiea)e—zoaem ) 0 e—|z0\ei(*"079)/ae—\zo\aei(‘m*e) )
F(u)du = : icedh = : ice®df .
c caeial capiad
£

Since o < /4, po — 0 < 7/2 and po + 0 < 7/2. Hence

/ Fu)du < 517”‘/ i e 170l cospo—0)/e ,=|z0le cos(eo+) g _, ),
as ¢ — 0. Similarly, aiong the curve Cr, we have
/ Fu)du < /(0 ¢~ 170l cos(po—6)/Ro—lz0| Reos(wo+0) pl—o g
If wo < /4, E
/ Fu)du < 6_020R2R1_0‘/ i e~ cosleo=0dp 5 0,
Cr

as R — oo. But for the case po = 7/4, ¢o + 0 can be /2, then we can not take the limit as above.
However, we have

/ F(u)du S/( e—\zo|COS(%—9)/Re—\ZO|RCOS(%+9)R1—ad9
Cr

< /Z e—\zochos(%-i-@)Rl—ade < /((5 e—lzo\Rsin(%—ﬁ))Rl_wd(9
0

4 . 4 2
S/ e—\z0|Rsme1—adw§/ e—\zo\;Rle—adw’
0

where we have changed variable w = 7/4 — 6 and used the inequality 2w/7 < sinw. Thus we have

/ F(u)du < il R_O‘/ e "du<CR™“—0, R-— o0
Cr 2|20

Therefore, we conclude that / F(u)du =0 for |arg z| < /4.

R

At last, by the Cauchy theorem, we then get

/ F(u)du = / F(u)du.
0 ray .o
Taking u = szp, we have

00 —1/s,—s22 oo -1, —z2/r
e e 0 _ e (& 0
F(u)du = —zds = 27 ——dr.
sozy 0 r2-a
0 ay . 0 0

®

Then this lemma is completely proved. O
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Remark 2.2. Notice that the integral

2s

& 2 . d
4SyF( ) / e~V /(4T) o =7 (ip+A) 115, pER, A>0, 0<s<1,
$)Jo T

1s absolutely convergent.

1. Uniform L2-boundedness.
It is known that, see [3], the Fourier transform of P f

=ty [ i

By fA(p) we denote the Fourier transform of the function f, that is,

Iy 1 —ixp
f(C = @i /ﬂ(f(x)e dr, peR.

Theorem 2.3. There is a constunt C, depending on o and |[v[|;= ), such that

S%P I1TxfllL2wy < Cllfll2m)-

Proof. Let f € L?(R). Using the Plancherel theorem, we have

No [e%s} ajy1 o
T3l = Y (P f =P <Cloleey ([ 0PFfr
Jj=N1 L2(R) J== @i ( L2(R)

Observe that,

877’/5‘(: =09 / e i f C

Note that the Fo

22 dr
_C/ "D f(p) 5

rier transform above is well \defined, see Remark 2.2. Then we deduce that

« T o o —r . _2 dr
T3Sl <€ B [ [ errtime w00 o ar
0 0 r L2(R)
Changing variable 2o = 71/ip, by using Lemma 2.1 , we have
d
/ /(}O Zp 4r(lp) dT—/ / ZOe E 214& dZO
d
=2'- O‘/ Zo/ e e U—Z dzp.
Since |arg zg| = 7/4, we have |e=%0/(2W)| < e=clz0l/v and |e=20u/2| < e~¢l20lt where ¢ = v/2/4. Then
/ ZO /(}O —zo/u —zou dZO / |Zo|a/ —c\z0|/u —c|z0|ud d
/ |ZO|20¢ 1/ €7C|ZU‘ /vefcvd dZO—/ | |2a 20— 1/ 7c(|\/7\ )2 /vefcv@d,r

[e3 —c(mT v N —CUd
Q/ (ke e e+ S

L dv ,
—er /”dTe “v—<C e “Ydv < C.
0 v 0

Then the proof of the theorem is complete. O
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2.2. Uniform LP-boundedness.
Let us come back to the definition of the operators Ty, see (1.2). By using the formula (1.1), we
have

Ny

TRf() = > (o (Pe, f(t) = P2 £(1))

Jj=N1

?+1/(43) _ a?ae—a?/@s)
= 40‘1—‘ < /( e flt—s)ds

- KN<><t—sds—/ K3(t— 5)f(s) ds.

0
where
N> 20 ,—a?.,/(4s) _ 2a,—a?/(4s)
@ o 1 aj+1€ it a]. e Y
(2.1) KR (s) = 7o @ j; v; e

The kernel K (s) is supported in (0,+00). Our study of Ty will be related to the one-sided
Calderon-Zygmund operators. In particular, we shall look for Lebesgue estimates with absolute
continuous measures w(x)dz, where w is a weight in any of the classes A;t defined by E. Sawyer, see
[11]. This classes were introduced in relation with the boundedness of the one-sided Hardy-Littlewood
maximal operator M~ defined by

_ 1
M= f(t) = sup - /( F(t+5)|ds.
e>0 € 5
We recall the results that we shall use related with weights for M~
(1) The operator M~ is of weak type (1,1) with respect to the measure w(t)dt if and only if w € AT,
i.e., there exists C' such that
(2.2) Mtw<Cuw ae.,

where M™ is the right-sided Hardy Littlewood maximal operator defined as
1
M+f(t)sup—[(|f(t+s)|ds.
e>0 €

(2) The operator M~ is bounded in LP(w), 1 < p < oo, if and only if w € A7, i.e., if there exists C
such that for any three points a < b < ¢

1

(2.3) /[(wl-ﬁ) : ( /( w)% <Cle-a),

1 1
where — + - = 1.
p p
For more details about the one-sided weights, see [1, 2, 11].

Theorem 2.4. Let K& be the kernel defined in (2.1). For any s # 0, there exists constant C
depending on a and ||v][; 7, (but not on N) such that

. o C

) KR ()] < 2,
g o C
i) 10.K5(5)] < .

The proof of Theorem 2.4 involves an estimate we will repeat several times, so we formulate it in

the following remark.
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Remark 2.5. Along the paper, we shall use frequently the estimate xe=%/B < Ce=*/B" with
z,A,B,B',C > 0.

Proof of Theorem 2.4. For i), we have

J+1€ @4/ 4e) _a?aeia?/(“) /o 2 /(4 2 2 /(4 1
[Kx(s)| <C Z Sita =C Y [aftye /) —afrema/)

Sl+a :

Observe that, by Remark 2.5,

S (a2 e ) g2egai/ts) < /( 20— /<4s>) du
j=—

u20¢+1 a+1 5
< / (2au2a—1 - ) —u?/(4s) du < C 20¢ 1 )e—u /(4s) du
- 0 2s 0 2s

2a—1

<C\/_( /( (V)2 1(1) o Huva) g

NG

204-‘,—1 5
ga—1/2 / o4 (u/v3) di)
\/5

C
Then |K{(s)| < —
s

For i), we can write

This proves i).

Ny
03 by (sl — o)

Jj=Ni
Na

1 aj41 21 u2a+1 2
=C Z <mvj /aj <<Ozu T — 5s e~ s du.

Jj=N1

The partial derivative 95K (s) consists two parts. The first part is

aj41 u2a+1 S u2a+1 u2 2
I_CZ<1+aJ/ (Fﬁ-((au o 2s )@)e v du

Jj=N1
N2

1 aj41 Va + 1)u20z+1 u20¢+3 )
=C Z <—Sl+o¢ v / (k 552 s e~ 15 du.
aj

Jj=N1

And the second part is

Na a; 20+1
1 i+l u2
e SR ()
; a;

Jj=N1

N 1 + a Aj41 21 u20¢+1 _u_2
=C Z <32+0‘> j/w <Z(au 2 >e 45 du.
J

J=N1

Then by using Remark 2.5 again, we have

1 (a+ Du2att 2043 2 1 .4, _C
1] < 051+a /( 952 T g ¢ du < CS1+0¢S S =

1 2a+1 W2 «
1< - e /( (20u2*! — e fau <o <<

V)

and

2s 82+a - 82



DIFFERENTIAL TRANSFORMS FOR FRACTIONAL POISSON TYPE OPERATOR SEQUENCE 9

Combining the estimates I and 11, we have
o C
0K (s)] < 5.
All the estimates above are true uniform for N. The proof of the Theorem 2.4 is complete. O

From Theorems 2.3, 2.4, and standard Calderén-Zygmund theory, we can get the uniform estimate
in LP(R,w) (1 < p < o0, w € A,) of the operators T'y. Here, A, denotes the classical Muckenhoupt
A, weights, see [10]. However, to the one-side nature of the kernel, we can apply Theorem 2.1 in [1]
to get the uniform boundedness in LP(R, w) of the operators Ty with w € A7 in the following.

Theorem 2.6. Let T be the family of operators defined in (1.2), we have the following statements.
(a) Forany 1l <p < oo andw € A, there exists a constant C' depending on p, a, ||v||l°°(Z) and w(not
on N ) such that
IS Flme < € 1o
for all functions f € LP(R,w).
(b) For any w € Ay, there exists a constant C' depending on «, ||v||j 7y and w(not on N) such that

o 1
w({t € R TIO > M) < O3 Il A >0,

for all functions f € L'(R,w).
(¢) There exists a constant C' depending on o and ||v||;ec (7 (not on N) such that

TR fll o) < C Il ) -

for all functions f € L*°(R).
(d) There exists a constant C' depending on o and |0 () (not on N) such that

ITN fllBrom) < CllfllBrmow)
for all functions f € BMO(R)).

The constants C appeared above all are independent with N.

As we have said before the proof of (a) and (b) in the theorem above is obtained by using Theorem
2.1 in [1]. On the other hand the proof of (¢) and (d) are standard in the Calderén-Zygmund theory
and it can be found in [9].

3. BOUNDEDNESS OF THE MAXIMAL OPERATOR T™*

In this section, we will give the proof of Theorem 1.1 related to the boundedness of the maximal
operator T*. The next proposition, parallel to Proposition 3.2 in [2], shows that, without lost of
generality, we may assume that

s
(3.1) l<p< 2 <2 jez
aj
Proposition 3.1. Given a p-lacunary sequence {a;};cz and a multiplying sequence {v;}jcz € 1°°(Z),
we can define a p-lacunary sequence {n;}jcz and {w;};cz € I°°(Z) verifying the following properties:

(i) 1<p<mnjt/n; <p? ||wj||zoo(z) = HUszoo(Z)-
(i) For all N = (Ny, N2) there exists N' = (N1, N3) with Ty = TR, where TS, is the operator
defined in (1.2) for the new sequences {n;}jez and {w;} cz.

Proof. We follow closely the ideas in the proof of Proposition 3.2 in [2]. We include it at here for
completeness.

Let n9 = ap, and let us construct n; for positive j as follows (the argument for negative j is
analogous). If p? > a1 /ag > p, define 71 = a;. In the opposite case where a;/ag > p?, let m1 = pag.
It verifies p2 > n1/no = p > p. Further, a1/m1 > p?ao/pag = p. Again, if a1 /m < p?, then ny = ay.
If this is not the case, define 1, = p?ag < a;. By the same calculations as before, ng, 71,72 are part
of a lacunary sequence satisfying (3.1). To continue the sequence, either n3 = a; (if a1/n2 < p?) or



10 ZHANG CHAO, TAO MA AND JOSE L. TORREA

n2 = p*no (if a1/n2 > p*). Since p > 1, this process ends at some jy such that nj, = a;. The rest of
the elements 7; are built in the same way, as the original a;, plus the necessary terms put in between
two consecutive a; to get (3.1).

Let J(j) ={k:aj—1 < <a;}, and wy = v; if & € J(j). Then

keJ(j

vi(PEL L F) = PEFH) = > (ww’sﬂlf(t) — P2 f(t)).

If M = (M, Ms) is the number such that 1y, +1 = an,+1 and 7y, = an,, then we get

TRFt) = > v(Pe  ft)=PLFH) = <wk(7’$;+lf(t) —Pof(t)) = Tg f(t),
j=N1 k=M,

where T§; is the operator defined in (1.2) related with sequences {nx}rez, {wWk}hez, @ and M =
(M, My). O

It follows from this proposition that it is enough to prove all the results of this article in the case
of a p-lacunary sequence satisfying (3.1). For this reason, in the rest of the article we assume that
{a;}jez satisfies (3.1) without saying it explicitly.

In order to prove Theorem 1.1, we need a Cotlar’s type inequality to control the operator T* by
some one-sided Hardy-Littlewood maximal operators.

For any M € Z*, let

Ty f(t) = sup TN ()], —oo<t< 4oc.
~M<N;{<N2<M

Theorem 3.2. For each q € (1,400), there exists a constant C' depending on q, ||v||lx(Z), a and p
such that for every M € 77,

T f(t) < C{MT (T2 f)(8) + Mg f(1) , —00 <t < o0,

Mg £(0) = sup (2 /( Ft+ 9 ds)% .

Proof. Since the operators 15 are given by convolutions, they are invariant under translations, and
therefore it is enough to prove the theorem for ¢t = 0. Observe that, for N = (N, Na),

Tﬁ,f(t) = Tﬁ/l,Mf(t) - Tz?f2+1,Mf(t)7

with —M < Ny < No < M. Then, it suffices to estimate T%Mf(O) for |m| < M with constants
independent of m and M. Let us split f as

where

F@) = FOx(—az,,01) + FO)X(~00,~a2

m410 1l

=: f1(t) + f2(t) + f3(1),

() + F()X(0,+00)
for —oo <t < +o00.
First, notice that T)%, ,/f3(0) = 0. Then, we have

T arf(0) < T 4 f1(0) + T 2 f2(0)
= 1+11.
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For I, by the mean value theorem, we have

I'= T3 v fi(0
oo ]\/1 §+1/(4s) . a?aefai/(éls)
=C, / o fi(—s)ds
a2, ,/(4s) 200 ,—a?/(4s)
- 1@ Ajt1 + as%e i
< Calltlliez) Z” 2t R fi(=9)]ds

j=m

< Cua /( Z( é + a—%) |f1(=s)| ds

co M ‘
SC&,U(P4+1)/(( Z |fi(—s)|ds (since pgaj—*jlgpQ)

g+1 a;

oo M 2
> aup 2 /( ZEU‘} |dS
m+1

< Comr— /( ) =)l ds

sc—/( (1 4a(p +Z L) 1)l ds

m—+1

1
S Ca,v,pag—/ ) |f(8)| dS

m—+1 (O

< Ca,p,UMq_f(O)'

For part 11,
IT = T a f2(0 =—/ T 0 f2(0) du
1 /0 1 /0
< _2 TQM mf(u) du+ 2 ) TfM,Mfl(U) du

r o / T2\ falu) — T2 f2(0) du

s [ T ot
= A1+A2+A3+A4.
(If m = —M, we understand that A4 = 0.) It is clear that
Ay < MT(T2 3 0 £)(0).

For As, by the uniform boundedness of Ty in Theorem 2.6, we get

1 0 1/q 1 1/1]
Ay PN ) TfM,Mfl(u) qdu> <C (a_g /ﬂ<|f1(“)|q du)

1 0

IN

1/q
=C — If(u)lqdu> < CMy f(0).

2
Am

—a2
am

11



12 ZHANG CHAO, TAO MA AND JOSE L. TORREA

For the third term Az, with —a2, < u < 0, by the mean value theorem and Theorem 2.4, we have
Tﬁi,Mﬁ(“) - me2 / M u— s)fa(s)ds —/ K%M s) f2(s)ds

< [* K~ Ko 1Ol [ K9m0

/ " KO (= s) = K\ (—s) | f(s)] ds

(/( mlu—s) = K5 p(=s) [f(s)]ds
j=m+

= /( KoM e lul[F(s)lds (a2 — a2 <& <aliy)
Jj=m+

Tl 0

< CJ ;</(M &1 s)|ds < ] ;( (2-— 2 /af+1 If(s)|ds

a2
- C_;(a_? | m /( [7(s)]ds

+oo 1
=¢ Z <p2(j—m) M £(0)
Jj=m+
< OMy f(0).
Then,
Az = QLQ (2 Tr?;,MfQ(U) - T%nyz(O) du < CMq_f(O).

For the latest one, A4, we have

2
Am

1 1 0 *a3n+1
Ay = — Ty m-1f2(u) du < a_2/ / K2y m—1(u—8)fa(s) dsdu.

Then, we con51der the inner integral appeared in the above inequalities first. Since —a2, < u < 0,
—00 < s < —a?, ., and the sequence {a;};cz is p-lacunary sequence, we have |u — s| ~ |s | From this
and by the mean value theorem, we get

/( T Ky (0= ) fals) ds

2 a3 /(4('“_3)) 2a —az./(4(u—s))
CL '+1e A - a]- e i
(; (’LL — 8)1 @ f(S) ds
k=m+1 k+1 j=—

(u —s)tte fls) ds (aj <& < aj)

k=m+ ai iy j=—M

0o a—1,_—¢2 u—s
+ </ (aj+1—aj)§]2- L/ (4lu=s))

2 1)a2ae aj/(4s)

< C vl z) Z / i Slta |f(s)|ds

k=m+ aj iy ],71L

<Cpoa S / ()] ds
k= m+ ak+1 ]——
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+oo
Cpon S LS e (s s

k=m-H akJrl ak+1 j=—M

—2a(k—m+1) *ak
p_ oy
S [ il

k=m-+ Gt Tt

+oo
1 1
< Chpa Z(WE/{ |f(s)] ds
k+1

k=m-H
00 1

< Cpva D[ et M 10)
k=m-H

Cpov.aMy FD).

Hence,
Ay <CM f(0).
Combining the estimates above for A;, Ao, A3 and Ay, we get

IT < M™(T 20 0 1)(0) + CM £(0).

And, then we have
T f(0) < C(MT(T%y 0 f)(0) + Mg £(0))

As the constants C' appeared above all depend on ||v||loo(Z), p and «, not gn m, M, we complete the
proof. O

Now we can start the proof of Theorem 1.1.

Proof of Theorem 1.1. For each w € A, choose 1 < ¢ < p < oo such that w € A;/q. Then, it is well

known that the maximal operators M~ and M are bounded in LP(R,w). On the other hand, by
Theorem 2.6, the operators T are uniformly bounded in LP(R,w) with w € A7 . Hence

T3 f Nl ooy < C( ML) pooy T Mgt LP(w))

<C( Toarf gy + Wline) E CIF It -

Note that the constants C' appeared above do not depend on M. Consequently, letting M increase
to infinity, we get the proof of the L? boundedness of T*. This completes the proof of part (a) of the
theorem.

In order to prove (b), we consider the £°°(Z?)-valued operator T f(t) = {T%f(t)}nezz. Since
ITf(E)lleoez2yy = T*f(t), by using (a) we know that the operator 7 is bounded from LP(R,w)
into Lew(W)(R,w), for every 1 < p < oo and w € A;. The kernel of the operator T is given by
Ke(t) = {K$(t)} nveze. By Theorem 2.4 and the vector Valued version of Theorem 2.1 in [1], we
get that the operator T is bounded from L*(R,w) into weak- L. Zz)(R,w) for w € A7 . Hence, as
|7 f ()l goe (z2y = T f(t), we get the proof of (b).

For (c), we shall prove that if f € L>(R) and there exists o € R such that T* f(ty) < oo, then
T*f(t) < oo for a.e. t € R. Given t # to. Set f1 = fX(tg—alto—t|, to+4alto—t|) and fo = f — f1. Note that
T* is LP-bounded for any 1 < p < oo. Then T* f1(t) < oo, because f1 € LP(R), for any 1 < p < oc.
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On the other hand, as the kernel K is supported in RT, we have

TN f2(t) — Ty fa(to)

/ K]‘i‘,(ts)fg(s)ds/(o K (to — s) f2(s)ds

0—4[to—t|
/ (KRt — ) — KSy(to — 9)) fals)ds

oo

0 4|t0 t‘
< OIS (E)| [t — tol [fo(s)] ds (t— s < E(s) < fo — )

o—4[to—t| |1f _ ﬁ0|
<
<ol =Sl

< Ollfll ooy < 00

Hence
TN f2(t) = TR f2(to) [l z2) < Cllf oo ()

and therefore T* f(t) = || T f(t )Hloo(Z?) < C < 0. For the L> — BM O boundedness, we will prove it
later.

(d) Let tp be one point in R such that T* f(tg) < oo. Set I = [tg — 4|ty — t|, to + 4|to — t|] with
t # tyg. And we decompose [ to be

f=U—=Ioxi+(F = foxe +fr=fit+ fa+ f3.

Note that 7™ is LP-bounded for any 1 < p < oco. Then T™ f1(t) < oo, because f; € LP(R), for any
1 <p< oo And T f3 = 0, since Pa. fs = fs for any j € Z. On the other hand, as the kernel Ky is
supported in R, we have

TN fa(t) — T fa(to)
to

/_ K (t—s)fa(s)ds — K (to — s) f2(s)ds

— 00

o—4[to—t|
I @9 - Ktta - 9) fals)as

o0

IN

o—4[to—t|
/ 0s KR (E(s))[ |t = tol [ fa(s)ds  (t —s < &(s) <to—s)

074‘1507“ |t_t0|
<o =S el

s)
00 0—2F[to—t| B
<Cy. t—t0|/ Mds
= T
~ 2k |to—t|
|t t0| / 0
= s) — frlds
e LTI SRt |f(s)— f1l
+oo +2k+1‘t0_t‘
|t — to /0
=¢ s) — frlds
< ;(2k+1|t IIEN S |f(s) — f1l
1
= C —(k+1) L o

< 022 <’““>2,m|H J R 3 )
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Z( 2k+1|t7 t0|

< CZ< (k+1) (1+2k) Hf”BMO(]R)

<Clflemom) >
where Iyq1 = [to — 28Tt — t], 20 + 2FFL|tg — #|] for any k € N. Hence
TN f2(t) = TR f2(to) oo z2) < Cllf | Brmow)
and therefore T* f(t) = || T f(t )||lw(Zz) <C < oo
Now, we shall prove the estimate (1.4) for functions such that T*f(t) < oo a.e. For any h > 0

1
and to such that T%f(t9) < oo, consider the integral I = (to,to + h) and f; = 7 /{f(t)dt. We

have T*fi(t) = 0. Let f(t) = fi(t) + fa(t) + fr, where fi(t) = (f(t) — f1)X(to—ah.toran)(t) and
f2(t) = (f(t) = f)X(—c0.to—an)(t) + (f(t) = fI)X(to+4h,+o0) (t). Then,

o+h to+h to+h
%/( |T*f(t) — (T* f);|dt = %/ %/to (T*f(t) — T*f(s))ds dt

to+h pto+h
< / T F(t) — T* f(s)| dsdt

T

({(s) = frens + 260 f | pasoq ) ds

1 t0+h to+h
[ TRl ~ TRy ot

1 t0+h to+h
R N CETICE TR

t0+h to+h
h2 / / TN f1(t) Tﬁfl(S)Hloo(Zz)dsdt

to+h to+h
+_ / HTNf2 ) T](\l/'fQ(S)Hloo(Zz)det
to
=: A+B.

I /\

I /\

The Holder inequality and L?-boundedness of T* imply that

1 to+h 1 to+h
A<q [ IRt [ TG s

to to
1 [toth ) 1/2 1 [toth ) 1/2
< 5[ ROt )+ F [ IR s
to t()

1
=Crn 1f1ll 2wy < ClfllBarom) -
For B, since tg < t,s <ty + h and the support of fs is (—oo,ty — 4h) U((O + 4h, +00), we have
TN f2(t) — Ty f2(s)

N K= - /( K (s — ) falu)du
0—4h
/ (K3t — u) — K3(s — u)) fo(u)du

o0

IN

o—4h
/( 0L KR (E()] |t = s] [fa(u)| du (¢ —u < &(u) < to —u)



16 ZHANG CHAO, TAO MA AND JOSE L. TORREA

to—4h |t—8|
sc/_oo iz |l

+oo 0—2%h
<CZ/tt ” Mdu

- =2 0_2k+1h |t — u|2

+o0 h to—2Fn
SCZw/ |f(u) = frldu
k=2 to

—2k+1p

= h to+2F+t
<C _n B ]
- ’;2 (2k+1h)2 /to2k+1h |f(u) f1| U

+oo
_ 1
— CZ< (k+1)2k+1h/( |f(u) — f[|du
k=2 +1
+oo k
_ 1
SCZ< (k—’_l)QkJrlh/Ik+ f(u)_f1k+1 +Z fIl+1_fIl )du
! =2

—+oo

< 022 (k+1)2k+1h /( ( fw) = fr, +2k Hf”BMO(]R)) du

< CZ< (k+1) (1+2k) Hf”BMO(]R)

<Clflemom) >

where Ij41 denotes the interval [t —2¥Th, to 4+ 2*h]. Hence, we have B < C'[| f[| gps0(m) - Then by
the arbitrary of ¢ty and h > 0, we proved

1T fllparom) < C I flparog) -

For the second part of (¢), we can deduce it from the BM O-boundedness of 7™ and the inclusion of
L>(R) € BMO(R). This completes the proof of Theorem 1.1. O

Now we shall prove Theorem 1.2.
Proof of Theorem 1.2. First, we shall see that if ¢ is a test function, then T y(t) converges for all
t € R. In order to prove this, it is enough to see that for any (L, M) with 0 < L < M, the series

—L

A= Zvj C () = Pee(t) and B= Y wi(PL, o(t) — P e(t))

j=—M

converge to zero, when L, M — 4oco0. By the mean value theorem, following the arguments in the
proof of Theorem 3.2, we have

2a 1,-€5/(4s )(a'+1*a')
] < Ca [0z / D (o - s)lds, (Fay <& < agin)

+oo . ) M Qae—ai/(4s) aj41 ,
<Ca’u/ po‘(p 1)2%|@(t8)|d$, (Slnce pS a—J Sp )
j=L

400 I\/[
avp/ |(,0(t*5)|d8

JL]

1 a o
< Ca,v,p o) Z a |50(t - S)|d$
L j=L

qw

<
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2
1
< Ca,v,p 2[) _1 HQOHLI(R)_Q — 0, as L,M — +00.
pm = arg,

On the other hand, as the integral of the kernels are zero, we can write

oo —L 200 p—ajy1/(4s) _ j2a,—a5/(4s)
a’ 1@ j+1 as-e J
B-c, /( > (o - (plt — 5) — plt))ds

e/ (49) _ g20p=a}/(49)
- {[+ [} (2( I - st

=: B; + Bs.

Proceeding as in the case A, and by using the fact that ¢ is a test function, we have

L % J(48) _ 20 ,—a2/(45)
a” 1 J+1 a e J
B =Ca /( S o2 e (olt — ) — (1))ds

j=—

—L 200 ,—aj,/(4s) _ 20 ,—a3/(4s)
aiye "ot as%e "
< Ca ||50/||L°°(]R)/(< Z Uy : SO . ds

j=—M
—L 200, —a?/(4s)
as¥e”%
< Ca IVl1 (2 /(( P’ = 1) Z ]Tds
j=—
—L a
< OHPUPQQO‘ Z o2 —ds
< CCW,WJ afL as L,M — +oo.

On the other hand,

1Bal < Gl ollm zy illmco /( < Canios N( | s

a
2
ScozvzppaaLZ g—aﬁcaggvp 20‘71_ — 0, as L,M — +occ.

i

As the set of test functions is dense in LP(R), by Theorem 1.1 we get the a.e. convergence for
any function in LP(R). Analogously, since LP(R) N LP(R,w) is dense in LP(R,w), we get the a.e.
convergence for functions in LP(R,w) with 1 < p < co. By using the dominated convergence theorem,
we can prove the convergence in LP (R, w)-norm for 1 < p < oo, and also in measure. |

4. PROOFS OF THEOREMS 1.3 AND 1.4
In this section, we will give the proof of Theorems 1.3 and 1.4.

Proof of Theorem 1.3. Let f be the function defined by
f(S) = Z 71)kX(—a2k+1,—a2k](S)7

kEZ
where a > 1 is a real number that we shall fix it later. It is easy to see that

(4.1) f(a®7s) = (=1)7 f(s).
Let a; = a’. Then

1 0 a2ajefa21/(4s) 1 +oo 6*1/(4“) - du
@ fir) = t—s)ds = — — f(t— a¥u)—.
Pajf( ) 4ar(a) /((r slta f( 5) S 4ar(a) /0 ue f( a U) U
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So

1 oo o1/ (4u) 5 du | oo o1/ (4u) du
@ f0) = — %)= = (—1) —— )=
PLIO = ey | e ST = s |

We observe that

+oo —1/(4u) +o0 ,—1/(4u) g
| e T [ = ) <
0 0

u* U u“ U
Henee /(4u) /(4u)
—1/(4u d e ,—1/(4u d
lim < (—u 0 and lim < —u) = =0,
R—+oc0 Jp ue U e—0t Jo ue U
—1/(4u) d a ,—1/(4u) d
On the other hand, lim ¢ —u S im ¢ o C > 0. Hence we can
a—+oo Jq ue U a—+oo fy u u

choose a > 1 big enough such that

e—1/(4u) du a ,—1/(4u) gy, la ,—1/(4u) 4y, +oo ,—1/(4u) gy,
[t [ [ [
ue u 1 u“ u 0 ue u a2 ue u
1/a ,—1/(4u) du oo p—1/(4u) du
> / @ f(iu)_ + / @ f(iu)_ ’
0 U U a2 U u

In other words, with the a > 1 fixed above, there exists constant C; > 0 such that

o—1/(4u)
(42) /( 7U)C/lu_’u = Cl

Hence 00
o o 1
Pq, —Pa.. f(0) = T () > 0.
Therefore we have
> (Pe. 1(0) = PE J(0) = oc.
JEZ

By using (4.1) and changing variable we get

1 o0 =1/ (4u) . du o1 oo g—1/(4u) t du
Cflt) = —— t—a¥u)L = (—1) — )&
Paj (t) 4ar(a) /( ue f( a U) U ( ) 4al—\(a) /0 ue f <a2J U) W

Then

Pgﬂf( ) = P, f(t)

J+1 —1/(4u) ¢ du —1/(4“) t du
(43) 4ar / a2(J+1) “ / E - “) 7}'

By the dominated convergence theorem, we know that

+oo —1/(4u) d +oo p—1/(4u) d
im [ - / ™ _ o >0,
h—0 /g u® U 0 U

uOt

where C is the constant appeared in (4.2). So, there exists 0 < ng < 1, such that, for |h| < 7,

oo g—1/(4u) du _ 1 [T e 1/(u) du C
/ -0 zg [T =S
0 u® U 2 Jo u u 2

1

— < (there are infinite j satisfying this
a

Then, for each t € R, we can choose j € Z such that

condition), and we have

0 671/(471) t du 0 6*1/(4“‘) t du
/( ue f<a2<j+1>“>7+/ ue f<ﬁu)7201>0'
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Choosing v; = (—1)/*1, j € Z, by (4.3) we have, for any t € R,
g Uj

() > > (1)j+1(/<,§§+1f(t)7’,§§f(t))

|ﬁ|<770
_1/(4'“) t du 0 6_1/(4u) t @
40‘F ( a2(3+1) Y w - u® / P Y
= o0.
We complete the proof of Theorem 1.3. g

Also, we will give the proof of Theorem 1.4 which gives a local growth characterization of the
operator T with f € L>°(R"™).

Proof of Theorem 1.4. First, we prove the theorem in the case 1 < p < oo. Since 2r < 1, we know
that B\Ba, # 0. Let f(t) = f1(t) + fa(t), where f1(t) = f(t)xB,, (t) and fo(t) = f(t)xB\B,, (t). Then

T f(O] < [T f(0)] + [T f2()] -
By Theorem 1.1,

1 1 ) 1/2 1 ) 1/2

— T f1(t)|dt < | — T f1(t)|” dt < — t)|” dt < oo (R -

o [ maona s (g [ raora) <o (g [inora) < e
We also know that, for any j € Z,

20 ,—a?.,/(4s) _ 2a,—a?/(4s)
a .+1e I+ as“e J
(4.4) /( / e / ds

/ a?f‘rle_a§+1/(4s) + a?ae—a?/(zls)
<

ds =2 - 4°T(av).

SlJra

Then, by Holder’s inequality, (4.4) and Fubini’s Theorem, for 1 < p < co and any N = (Ny, Na), we
have
N2

S (o (73;“],“ falt) =P fg(t))
j=N1
Na /(4s) _ 2« 7(12-/(45))
e J+1 a, J
<C Z(vg /( fs! - falt — s) ds
Jj=N1

R

N> a2$167a§+1/(4s) _ a2aefa?/(4s) p
< C ol g / s e |fa(t — s)| ds

> (

—a3a/(4s) _ g2ag=a}/(49) ,
<Ol (Z({ /( alt — )P ds}(
J+1/(4s) ?a —a; /(45) o /o 1/p'
/( T ds} )
slta

1 /
No /p

20 ,—a?,,/(4s) _ 20 ,—a?/(4s)
a’ 1@ j+1 as—e J ’
< CH’UH“;@) / - slta . |f2(t—8)|p ds
= (
/p

+o00 2a /(4s) —a?/(4s)
as J+1 —a Ye J ’
< C ol (_Z 741 e ot — )7 ds (
J==




20 ZHANG CHAO, TAO MA AND JOSE L. TORREA

p/
< C ol /( Lipe-or )"

< Ol zy = ||f2( )" ds.

For s € B\By, and t € B,, we have r < |t — s| < 2. Then, we get

p/

/P

< ||f|L°°(]R)/ / gt
| By | <|t—s|<2 |t_5|
2\ 1/’

~ ((og ) 1y -

1/p/ /9’
ﬁ/{@*ﬂt)ldtSC(lﬂL(fg%) p)(fllpo(mfc(()g%) Wl

For the case p = 1 and p = oo, the proof is similar and easier. Then we get the proof of (a).
For (b), when 1 < p < oo, for any 0 < e < p—1, let

Hence,

0

f(t) = Z (_1)kX(7a2k1,a2k71](t) and a; = a’,

k=—

with a > 1 being fixed later. Then, the support of f is contained in [—1,0), and {a; } jez is a p-lacunary
sequence with p = a > 1. We observe that

+oo —1/(4u) d too o—1/(4u) g
/ < f(—u)—u < / = g 4°T(a) < 0.
0 0

u* U u“ U
Hence
—1/(4u) d e —1/(4u) d
lim ¢ f(—u . 0 and lim c )= 0
R—+co J g ue U =0 J, ue U
1 —1/(4u) d L o=1/(4u) g4
Also there exists a constant C' > 0 such that lim < f(=u) e < L
a——+o00 1 u u a—+o00 1 ue u

C. So we can choose a > 1 big enough such that ‘

o—1/(4u) du 1 =1/(4u) gy, 1/a® ,—1/(4u) g, +oo ,—1/(4u) gy,
[t [ S [T
-1 u“ u a-1 u“® u 0 u~ u a—1 u“ U
1/a®  —1/(4u) d +oo ,—1/(4u) d
S0 [0 et [ f(—u)—“>.
0 u U a—1 U U

Therefore, there exists a constant C'; > 0 such that

o0 —1/(4u)
(15) /( ™ 0

and

1/a® ,—1/(4u) too ,—1/(4u)
(4.6) 0</ € d—“+/ ° du _ C1
0 a—1

ue u ue u — 9

On the other hand, by the dominated convergence theorem, we have

~1/(4) d +00 = 1/(4u) d
lim c Flh—u)& = / < feuX =0 >0,
h—0 Jq u” u 0 U

ua
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where C is the constant appeared in (4.5). So, there exists 0 < ny < 1, such that, for |h| < np,

too g—1/(4u) du _ 1 [T -1/ du C
(4.7) / fh-w =g [ few =S
0 0

u U ue u 2

It can be checked that
—J

F@®t) = (=17 () + (=17 Y1) xaze, a1 (1)

k=1

when j < 0. We will always assume j < 0 in the following. By changing variable,

N 1 o0 ,—1/(4u) . du
Pgf(1) = M( g £t = a%u) ™

T 1

Pgﬂf( ) = Pa; f( )

]+1 —1/(4u) t —1/(4u) t d
(4.8) u — )
40‘F a2(J+1) a2J U
—1/(4u) ~_ L
/ Z( D)X (~a2k,—a2v-1] <a23+2 - > w

/( o—1/(4u) ;( )5 (a2 —q2i1] ( ) du }(

2Jo

Then

For given 7y as above, let 2r < 1 such that r < nZ and r ~ a®/5 for a certain negative integer Jo.

r
If Jp <5 <0, we have 55 <o And, for any —r <t < r we have
a

k=1

—j—1
t
—1 - Xja—1,400) (1) < Z (—1)kX(7a2k,7a2k71] (W - U) é X[a—1,+00) (1)

and

—J
t
=1 X[afl,Jroo)(u) < ; _1)kX(7a2k,fa2k*1] (ﬁ - u) < X[afl,Jroo)(u)-

Hence, for the third and fourth integrals in (4.8), by (4.6) we have

00 ,—1/(4u) J71 . ; "
/( U Z (_1) X(fa% —a2k—1] (m _ ’LL) —
k=1

e 1/ () I i du
(49) / Z( 1) X( a2k, —a2k— 1] (Tj —u) —
k=1
(’ e~/ dy 20
/ W= o

So, for any t € [—r,r] and Jy < j < 0, combining (4.8), (4.7) and (4.9), we have

/Pg]+1f(t)_’Pg‘jf(t) Zcoz' (Cl_%c'l)écCH >0.
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We choose the sequence {v;}jez € ¢P(Z) given by v; = (—1)j+1(—j)7ﬁ, then for N = (Jp,0), we
have

0
1 1 1 1 1
J— * > — (& > . (—=19) p—-e
= A= 5 /[ RSOl 2 s /[ L2 (een )

[7"077‘] 7=Jo

1 2 —e)’
> Cpea - C1-(=Jo) @9 ~ | log - .

For (c), let v; = (—=1)7T!, a; = ¢/ with a > 1 and 0 < ny < 1 fixed in the proof of (b). Consider
the same function f as in (b). Then, [[v[[; ) = 1 and || f|| < g) = 1. By the same argument as in (b),
with N = (Jp,0) and 0 < o < 1, we have

! T f(t)] dt > 1/ T8 f(t)| dt > ! 1/ EO Crdt > —S1 (=Jo) ~1 2
2r Ji—rm T 2r Sl N T 4ol (a) 2r J; il 55 ot = 4°T () 0 08 -
=Jo

O
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