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Abstract
The neuronal glycine transporter GlyT2 modulates inhibitory glycinergic neurotransmission and plays a key role in regulating 
nociceptive signal progression. The cholinergic system acting through muscarinic acetylcholine receptors (mAChRs) also 
mediates important regulations of nociceptive transmission being the M2 subtype the most abundantly expressed in the spinal 
cord. Here we studied the effect of M2 mAChRs stimulation on GlyT2 function co-expressed in a heterologous system with 
negligible levels of muscarinic receptor activity. We found GlyT2 is down-regulated by carbachol in a calcium-dependent 
manner. Different components involved in cell calcium homeostasis were analysed to establish a role in the mechanism of 
GlyT2 inhibition. GlyT2 down-regulation by carbachol was increased by thapsigargin and reduced by internal store depletion, 
although calcium release from endoplasmic reticulum or mitochondria had a minor role on GlyT2 inhibition. Our results are 
consistent with a GlyT2 sensitivity to intracellular calcium mobilized by M2 mAChRs in the subcortical area of the plasma 
membrane. A crucial role of the plasma membrane sodium calcium exchanger NCX is proposed.
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Introduction

Glycine is the main inhibitory neurotransmitter in caudal 
areas of the central nervous system (CNS) and controls 
the processing of motor, sensory and nociceptive informa-
tion. Glycine receptors activated by synaptic glycine permit 
chloride influx through the postsynaptic membrane leading 
to hyperpolarization and decreased propagation of excita-
tory postsynaptic potentials. Glycinergic neurons present in 
the dorsal horn of the spinal cord diminish their activity in 

pathological pain conditions and behave as gate-keepers of 
the touch-pain circuitry. The reduction of glycinergic inhibi-
tory transmission by application of the prototypical antago-
nist strychnine produces hyperalgesia [1], while the intrathe-
cal application of glycine prevents it [2]. Synaptic glycine 
is removed by two specific glycine transporters GlyT1 and 
GlyT2 that co-transport glycine together with sodium and 
chloride. GlyT1 is preferentially located in astrocytes and 
is associated both to the glycinergic and the glutamatergic 
pathways. However, GlyT2 is exclusively present in glycin-
ergic neurons. The neuronal glycine transporter GlyT2 that 
co-transports sodium, chloride and glycine (3:1:1) into the 
neuron, modulates inhibitory glycinergic neurotransmission 
by controlling the extracellular concentration of synaptic 
glycine and the supply of neurotransmitter to the presynaptic 
terminal. The pharmacological blockade of GlyT2 reduces 
the progression of the painful signal to rostral areas of the 
CNS by increasing glycine extracellular levels, so it has clear 
analgesic action. Although there is some role of GlyT1 in 
analgesia, its inhibition increases excitatory neurotransmis-
sion what may promote pro-nociceptive action. In addition, 
GlyT2 is involved in a pathology of the glycinergic neuro-
transmission called hyperekplexia or startle disease (OMIM 
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149400). Loss of function mutations of the human SLC6A5 
gene encoding GlyT2 cause this sensorimotor disorder 
potentially lethal in neonates due to apnea episodes [3].

The crucial role of GlyT2 in the inhibitory glycinergic 
neurotransmission has fostered the study of modulatory fac-
tors that regulate its activity, and that might help the success 
of future therapies. Among several regulatory mechanisms 
[4], GlyT2 has physical and functional interactions with pro-
teins whose main function is directly or indirectly related to 
intracellular calcium homeostasis: the Na+/K+-ATPase [5], 
the neuronal plasma membrane calcium ATPase (PMCA) 
and the ubiquitous Na+/Ca2+ exchanger (NCX1) [6]. Phar-
macological inhibition of PMCA activity, as well as specific 
inhibition of the reverse mode of NCX (NCXrev), led to a 
marked reduction in GlyT2 activity suggesting that proper 
Ca2+ dynamics in presynaptic terminals is necessary for 
optimal GlyT2 activity [6]. The role of NCX is crucial in 
intracellular calcium homeostasis since it can exchange Na+ 
and Ca2+ in either direction depending on the transmem-
brane electrochemical gradient of Na+ [7]. The increase in 
cytosolic calcium may occur by activation of extracellular 
calcium entry via Ca2+ channels and NCX (3Na+: 1Ca2+), 
and by calcium release from intracellular sources. The main 
pathways to lower internal calcium are the endoplasmic 
reticulum (ER) Ca2+-ATPase (SERCA), the PMCA and 
NCX. SERCA has high affinity for calcium and can seques-
ter it into the ER. PMCA is a high affinity low capacity 
system for calcium extrusion from cells, but NCX is a high 
capacity low affinity calcium sodium exchanger [6].

The cholinergic system acting through muscarinic ace-
tylcholine receptors (mAChRs) also mediates important 
regulations of nociceptive transmission in the spinal cord. 
Muscarinic receptor stimulation and acetylcholinesterase 
inhibitors produce analgesia at both spinal and supraspinal 
sites [8]. Pharmacological and receptor knockout studies 
have proven that some of their antinociceptive effects in 
the spinal cord are elicited by presynaptic modulation of 
transmitter release that increases inhibitory and decreases 
excitatory neurotransmission [9]. Among the five mAChRs 
(M1–M5, [10, 11]), M2, M3 and M4 are expressed in the 
spinal cord. M2 receptors represent about 90% of total spinal 
cord mAChRs being particularly expressed in the superficial 
dorsal horn, an area of special relevance in pain transmis-
sion [8, 12]. The role of the individual receptor subtypes in 
antinociception has given conflicting results likely due to 
the limited selectivity of the pharmacological tools available 
and the opposite actions of the different receptor subtypes 
in spinal cord [12, 13]. Despite these limitations, M2 recep-
tors have been involved in peripheric [14], spinal [8, 11] and 
supraspinal [15] antinociception.

It has been shown that ACh increases the release of 
glycine from inhibitory interneurons in the rat spinal cord 
with a proposed potentiating effect of the M2 mAChR [16]. 

Conversely, an inhibitory effect of M2 receptor in the mice 
glycinergic neurotransmission has been reported [13]. In 
addition, the individual effects of M2 receptor stimulation 
on the different synaptic components of the glycinergic neu-
rotransmission are unknown, despite this aspect may give 
some clues on the action of M2 mAChR on glycinergic neu-
rons. Since GlyT2 is an essential modulator of glycinergic 
transmission and it can control the strength of the synaptic 
transmission in spinal cord, in this report we analyzed the 
effect of M2 mAchR stimulation on GlyT2 function. For 
this purpose, we used a heterologous system with negligible 
levels of muscarinic receptors and co-expressed transporter 
and receptor. Our data show GlyT2 can be inhibited by M2 
receptor stimulation in a calcium-dependent manner.

Experimental Procedures

Materials

Wistar rats were bred under standard conditions at the 
Centro de Biología Molecular Severo Ochoa (CBMSO) 
in accordance with procedures approved in the Directive 
2010/63/EU of the European Union with approval of the 
Research Ethics Committee of the Universidad Autónoma 
de Madrid (Comité de Ética de la Investigación UAM, CEI-
UAM). M2 acetylcholine receptor cDNA was a gift from 
Ana Ruíz Gómez (CBMSO, Spain). The intracellular cal-
cium chelator BAPTA-AM (acid 1,2-Bis (2-aminophenoxy) 
ethane-N, N, N ′, N′-tetraacetic tetrakis (acetoxymethyl 
ester)) was from Calbiochem. Carbachol (carbamoylcho-
line), methacholine, atropine, EGTA (ethylene-bis (oxy-
ethylene nitrile) tetraacetic acid tetrasodium), Dantrolene 
hydrochloride, 2-aminoethoxydiphenyl borate (2-APB), 
4-aminopyridine were from Sigma-aldrich. Thapsigargin, 
CGP37157, KB-R7943 mesylate and tertiapin LQ were from 
Tocris Bioscience.

Immunofluorescence of Brainstem Primary 
Neuronal Cultures

Immunofluorescence in neuron-enriched cultures was per-
formed as reported [17]. Brainstem primary cells growing 
on coverslips were fixed with ice-cold methanol or 4% para-
formaldehyde, permeabilized with 0.25% Triton X-100 and 
nonspecific binding sites were blocked with 10% BSA in 
PBS. Cells were then incubated with the GlyT2 antibody 
(generated in house [18]) or M2 mAChR antibody (Alo-
mone Labs. 1/500–1/2000). Secondary antibodies were anti-
rabbit coupled to Alexa Fluor® 555 fluorophore for GlyT2, 
anti-rabbit antibodies coupled to Alexa Fluor® 488 for M2 
mAChRs. The cells were visualized by confocal microscopy 
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on a LSM 510 Confocal Microscope (Zeiss) using a vertical 
microscope Axio Imager.Z1 M (Zeiss).

Dual Immunofluorescence of Tissue Slices

Adult Wistar rats were deeply anesthetized by intra-peri-
toneal injection of pentobarbital (100 mg/kg) and tran-
scardially perfused with a fixative solution containing 4% 
paraformaldehyde in PBS, at a flow rate of 20 ml/min. The 
brainstem and spinal cord were extracted and maintained 
overnight in fixative. After washing in PBS, tissue was cut 
with a vibratome into 50 µm slices that were stored in PBS 
with 0.02% azide for a maximum of 3 weeks. Dual immuno-
fluorescence in slices was performed as described previously 
[17] and samples were visualized as above.

Cell Growth and Protein Expression

COS7 cells (American Type Culture Collection) were 
grown at 37 ºC and 5% CO2 in high glucose Dulbecco’s 
modified Eagle’s medium supplemented with 10% foetal 
bovine serum supplemented with 1% non-essential amino 
acids and 1% glutamine. Transient expression in COS7 cells 
was carried out as previously described [19] using Turbofect 
Transfection Reagent (Thermo Fisher Scientific, Waltham, 
MA, USA), following the manufacturer’s protocol (2 μl rea-
gent/μg of DNA). Reproducible results were obtained with 
60–70% confluent cells on a 100 mm dish using 4 µg of total 
DNA. Co-expression of GlyT2 transporters and M2 acetyl-
choline receptors (mAChRs) was performed using 2.5 µg of 
the transporter cDNA and/or 1.5 µg of the receptor cDNA. 
Cells were incubated for 48 or 72 h at 37ºC and then used for 
transport assays. SH-SY5Y cells (American Type Culture 
Collection) were cultured under the aforementioned condi-
tions and in supplemented DMEMF-12 medium with 10% 
fetal bovine serum, non-essential amino acids and 2 mM 
glutamine.

Transport Assays

COS7 cells were washed and incubated at 37 °C in HEPES-
buffered saline (HBS, in mM: 150 NaCl, 10 HEPES-Tris, pH 
7.4, 1 CaCl2, 5 KCl, 1 MgSO4, 10 glucose) containing 2 μCi/
ml [2-3H]glycine (1.6 TBq/mmol; PerkinElmer Life Sciences), 
at 10 μM final glycine concentration if not otherwise stated 
[20]. At the end of the desired time (usually 6 min), reactions 
were washed and terminated by aspiration. Protein concentra-
tion (Bradford) and [2-3H]glycine levels (liquid scintillation, 
LKB 1219 Rackbeta) were determined. Glycine accumulation 
measured in mock-transfected cells was subtracted from that of 
the transporter-transfected cells and normalized by the protein 
concentration. Kinetic analyses were performed by varying 

glycine concentration in the uptake medium between 0.5 µM 
and 1 mM.

Pharmacological Treatments

Transfected or mock-transfected cells were washed with HBS 
and treated for the indicated times with HBS with or without 
calcium containing 0.01–500 µM carbachol or 0.01-100 µM 
methacoline minus plus atropine 10 µM. For the compounds 
indicated in the figure legends, a 15–30 min preincubation 
before the addition of carbachol or carbachol plus atropine was 
performed. All the reagents were prepared immediately before 
the experiment and protected from light. Once the incubation 
was completed, cells were quick washed and subjected to [3H]
glycine transport as above. In the experiments using channel 
blockers, the treatment was for 5 min and the subsequent gly-
cine transport for 4 min.

Imaging Measurements of Cytosolic Ca2+

COS7 cells growing on coverslips coated with polylysine 
were washed in HCSS medium (in mM: NaCl, 120; KCl, 5.4; 
MgCl2, 0.8; Hepes, 25; NaHCO3, 4.2; CaCl2, 1 and glucose, 
5), then loaded with 5 μM Fura-2 AM for 40 min at 37 °C 
in HCSS, and washed rapidly. Then coverslips were placed 
in a small superfusion chamber on the microscope stage as 
described earlier [21] and Fura-2 fluorescence was imaged 
ratiometrically using alternate excitation at 340 and 380 nm 
and a 510-nm emission filter with a Neofluar 40X/0.75 objec-
tive at 37 °C. Additions were made as a bolus, as indicated. 
Single cell analysis of the changes in [Ca2+]i were expressed 
as the ratio of fluorescence intensity at 340 (F340, bound cal-
cium) and 380 nm (F380, calcium-free) (F340/F380). Image 
acquisition and analysis were performed with the Aquacosmos 
2.5 software (Hamamatsu).

Data Analysis

Non-linear regression fits of experimental transport data and 
statistical analyses were performed using GraphPad Prism 
(GraphPad Software). Kruskal–Wallis test was used to com-
pare multiple groups, with subsequent Dunn’s post-hoc test to 
determine the significant differences between samples. Kol-
mogorov–Smirnov and Mann–Whitney U tests were used to 
compare two separate groups. p values are denoted through 
the text as follows: *p < 0.05; **p < 0.01; ***p < 0.001; 
****p < 0.0001.
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Results

Several studies have shown that M2 mAChRs are widely 
expressed throughout the brain, including all major regions 
predicted to be involved in pain transmission, modula-
tion, and perception (pons/medulla, midbrain, thalamus, 
cerebral cortex) [22]. This localization includes regions 

containing glycinergic neurons where GlyT2 is expressed. 
However, the comparative distribution of GlyT2 and M2 
mAChRs has not been examined. Before analyzing the 
possible modulation of GlyT2 by M2 mAChRs, we wished 
to know if receptor and transporter co-localized in spinal 
cord. For this purpose, we stained spinal cord slices and 
primary neurons from brain stem and spinal cord with 
specific antibodies of the two proteins and analyzed their 

Fig. 1   Immunolocalization of 
GlyT2 and M2 mAChRs in spi-
nal cord. a–d Dual immunohis-
tochemical detection for GlyT2 
(red) and M2 mAChR (green) 
in 50 µm rat spinal cord slices 
was performed as indicated in 
Experimental Procedures. a, 
b Ventral horn slices (twofold 
magnification of 63 × objective). 
c, d Dorsal horn slices. Scale 
bars, 20 µm. e, f Localization 
of GlyT2 and M2 mAChRs in 
brainstem primary neuronal 
cultures. 13 DIV grown brain-
stem/spinal cord primary cells 
were fixed and subjected to dual 
immunostaining as described in 
Experimental Procedures. Sin-
gle channels for M2 mAChRs 
and GlyT2 are shown in green 
and red respectively. A merge of 
the two channels is presented. 
Scale bars, 10 µm
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distribution by immunofluorescence (Fig. 1). As shown in 
Fig. 1, there is partial overlap of the two protein distribu-
tions in the ventral and the dorsal horn of the spinal cord 
and also in primary neurons obtained from these regions, 
suggesting there are neurons where the transporter could 
be modulated by the receptor.

In order to dissect the consequences of M2 mAChR stim-
ulation on GlyT2, we chose the COS7 cell line where the 
endogenous expression of mAChRs was not detected [23] 
and consequently the cells do not respond to Ach [24]. M2 
mAChR was co-expressed together with GlyT2 in COS7 
cells and stimulated with carbachol before measuring [3H]
glycine transport by GlyT2 (Fig. 2). Carbachol stimulation 
inhibited GlyT2 transport activity in a dose–response man-
ner with an EC50 = 2.6 ± 0.7 µM. The inhibition was pre-
vented by the general AchR antagonist atropine and also 
by the preferential muscarinic-selective antagonist metoc-
tramine (Fig. 2a). The inhibition was not observed in cells 
expressing the GlyT2 transporter alone, indicating it was 
triggered by the M2 mAChR heterologously expressed and 
not by an endogenous receptor (Fig. 2b). Glycine transport 
inhibition by carbachol was rapid being almost maximal in 
about 5 min and it was maintained at least during 30 min 
(Fig. 2c). Kinetics analysis showed carbachol treatment 
mainly affected the Km of glycine transport promoting about 
fourfold increase and a much smaller (about 30%) reduc-
tion of the Vmax, strongly suggesting M2 mAChRs modu-
lates the transport activity of the transporters present at the 
plasma membrane (Fig. 2d). To confirm the inhibitory effect 
of M2 mAChRs on GlyT2, we used the SH-SY5Y human 
neuroblastoma cell line, devoid of GlyT2, but endogenously 
expressing predominantly the M3 mAChR subtype (approxi-
mately 74% of total) and also significant amounts of M1 
mAChRs and M2 mAChRs [25]. Carbachol treatment of 
SH-SY5Y cells transiently expressing GlyT2 significantly 
increased [3H]glycine transport, suggesting M3 (and per-
haps M1) activate GlyT2. This is in agreement with previ-
ous reports that measured opposite regulatory actions of the 
different mAChRs subtypes [12, 26]. However, the overex-
pression of M2 mAChRs together with GlyT2 in SH-SY5Y 
cells promoted an inhibition of GlyT2 transport similar to 
that observed in COS7 cells (Fig. 2e,f). These data robustly 
indicate GlyT2 transport activity can be down-regulated by 
M2 mAChR stimulation.

Next, we addressed the mechanism behind GlyT2 inhibi-
tion by M2 mAChRs. Classical signaling of this receptor 
couples through the inhibitory G protein, Gi/o and inhibits 
formation of cAMP through inhibition of adenylate cyclases 
[10]. We used several pharmacological agents interfering 
with this signalling pathway by increasing cAMP levels (for-
skolin, IBMX) or by inhibiting the cAMP activated protein 
kinase A (H89) and found no alteration of carbachol-induced 
GlyT2 inhibition (not shown). We, thus, investigated the role 

of calcium since M2 mAChR and muscarinic receptor acti-
vation can induce increases in cytosolic calcium [27–30]. 
During agonist stimulation, the intracellular calcium concen-
tration reached reflects a balance between sustained calcium 
entry from the extracellular space by channels and transport-
ers, NCX in reverse mode (NCXrev) and calcium clearance 
from the cytoplasmic compartment. Removal of calcium 
occurs through sequestration into intracellular stores or cal-
cium extrusion by the PMCA and the NCX (forward mode) 
[31]. We repeated the carbachol treatment of COS7 cells co-
expressing M2 mAChRs together with GlyT2 but this time 
in the presence of the intracellular calcium chelator BAPTA-
AM. In this condition, the inhibition of glycine transport by 
M2 mAChR stimulation was completely abolished (Fig. 3a). 
As BAPTA-AM treatment has been reported to increase the 
rate of NCXrev transport (calcium entry mode), [32, 33], a 
condition compatible with optimal GlyT2 activity [6], this 
result suggested GlyT2 down-regulation by the M2 mAChR 
was mediated by intracellular Ca2+.

Next we used thapsigargin, a specific and irreversible 
inhibitor of the SERCA pump that blocks the pumping of 
Ca2+ into the ER [31, 34]. Experimentally, thapsigargin 
has been extensively used to mobilize calcium from the ER 
and, if replenishment is not allowed (i.e. in the absence of 
external calcium), it can finally deplete the calcium stores 
[35–37]. We first observed that the addition of thapsigar-
gin by itself to COS7 cells expressing GlyT2 produced a 
decrease in glycine transport activity, and this decrease was 
greater in the absence of external Ca2+ (Fig. 3b). This could 
indicate a GlyT2 sensitivity to raises in cytosolic calcium 
but also a GlyT2 inhibition by inward depolarizing cur-
rents that are triggered by thapsigargin upon ER calcium 
depletion [38]. In addition, thapsigargin treatment has an 
inhibitory effect on the NCXrev [32, 33], that may further 
reduce GlyT2 transport activity [6]. Furthermore, when we 
incubated cells expressing GlyT2 and M2 mAChR simul-
taneously with thapsigargin and carbachol, the inhibition 
of GlyT2 was increased when the treatment was performed 
in the absence but not in the presence of external Ca2+ 
(Fig. 3b), suggesting an action of the replenishment currents 
triggered by thapsigargin. However, if the cells were prein-
cubated with thapsigargin in the absence of calcium before 
the addition of carbachol, the reduction of GlyT2 transport 
was much reduced and become not significant, indicating 
carbachol action is quite dependent on filled calcium internal 
stores. Interestingly, BAPTA-AM prevented carbachol inhi-
bition independently of the presence or absence of thapsigar-
gin, in agreement with the reported thapsigargin inhibition 
of NCXrev only in the absence of BAPTA-AM [32, 33].

To confirm the involvement of calcium transients in the 
molecular mechanisms elicited by M2 mAChRs, we ana-
lyzed the intracellular calcium responses after M2 mAChRs 
stimulation in Fura-2AM-loaded COS7 cells expressing 
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GlyT2 and the M2 mAChRs and compared it with the 
responses by untransfected cells (Fig. 4). The addition of 
carbachol to cells expressing M2 mAChRs promoted an 

immediate calcium response measured by microfluorim-
etry that lasted for some min (Fig. 4B) and could not be 
observed in untransfected cells (Fig. 4A,C). The response 
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Fig. 2   Effect of M2 mAChR activation on glycine uptake by GlyT2. 
a, b, d COS7 cells co-expressing M2 mAChRs and GlyT2 (a–d) or 
GlyT2 and vector (pcDNA3, b) were incubated for 30  min at 37ºC 
with increasing concentrations of carbachol (a, b) in the absence 
or presence of the antagonist atropine (10  µM) or methoctramine 
(20  µM) (a). c Time course of carbachol inhibition at 500  µM car-
bachol. d Kinetics of glycine transport in the absence or presence 

of 250  µM carbachol. After washing, glycine transport activity was 
measured at 6 min or the indicated times. e, f SH-SY5Y cells express-
ing GlyT2 (e) or co-expressing M2 mAChRs and GlyT2 (f) were 
treated with 250 µM carbachol minus-plus 10 µM atropine (atr). After 
washing, glycine transport activity was measured during 10  min. 
*Significantly different from vehicle, *p < 0.05 and ** p < 0.01 by 
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was sensitive to atropine, so that the maximal amplitude of 
the response was reduced to basal levels after atropine treat-
ment (Fig. 4d, e). These data confirmed the M2 mAChRs 
promote intracellular calcium changes in COS-7 in the pres-
ence of carbachol.

In order to know if GlyT2 was sensitive to calcium 
released from the ER and this had a role in the inhibi-
tion by carbachol, we addressed the main ER pathways for 
the release of Ca2+: the inositol triphosphate (IP3) path-
way, which can be activated by some G-protein-coupled 
receptors including M1 and M3 mAChR subtypes, and the 
calcium-induced calcium release (CICR), in which ryano-
dine receptors (RyRs) are involved [31]. The two type of 

ER calcium channels (IP3R and RyRs) are endogenously 
present in COS7 cells and several reports indicate they 
can be activated by M2 mAChR in different cell systems 
[27, 29, 39–41]. Hence, we treated the cells with blockers 
of the two ER channels (Fig. 5). The IP3R blocker 2-ami-
noethoxydiphenyl borate (2-APB, [42, 43]) did slightly 
reduce the inhibition of GlyT2 by carbachol (Fig. 4a), but 
this was only significant at high concentrations of the com-
pound (100 µM), suggesting no or minimal involvement 
of the IP3R pathway in GlyT2 inhibition. In fact, concen-
trations of 2-APB around 100 µM have been shown to 
inhibit store operated calcium channels (SOC, see below). 
Moreover, the ryanodine receptor antagonist dantrolene 

Fig. 3   Effect of BAPTA-AM 
and thapsigargin on glycine 
transport inhibition by carba-
chol. COS7 cells co-expressing 
M2 mAChRs and GlyT2 were 
incubated for 15 min at 37ºC 
with vehicle or 50 µM BAPTA-
AM (a, b), 5 µM thapsigargin in 
HBS or HBS without calcium 
(b) or BAPTA-AM plus thap-
sigargin (b) and then incubated 
for 15 min with 250 µM of car-
bachol in the absence or pres-
ence of 10 µM atropine. In Tg 
PI condition 5 µM thapsigargin 
was added in a preincubation of 
30 min in HBS without calcium 
before carbachol or carbachol 
plus atropine. After washing, 
glycine transport activity was 
measured during 6 min. *Sig-
nificantly different from vehicle, 
*p < 0.05 and ** p < 0.01 by 
Student´s t test
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[44] was also ineffective on the action of carbachol, dis-
carding the CICR pathway involving RyRs as the target of 
regulation (Fig. 5b). Since mitochondria have the ability 
to take up, store and release Ca2+ from the ER, and the 
release of mitochondrial calcium to the cytosol can take 
place by the action of mitochondrial Na+/Ca2+ exchangers 
(MNCX) [41], we also used the specific MNCX mem-
brane-permeant blocker CGP37157 on carbachol action 
[45]. CGP37157 did not alter the inhibition of GlyT2 by 

carbachol, suggesting in this system, GlyT2 is not sensi-
tive to cytosolic calcium of mitochondrial origin (Fig. 5b).

From the above data we concluded inhibition of 
GlyT2 by carbachol was not caused by cytosolic calcium 
released from ER or mitochondria. We, thus, focused our 
attention to plasma-membrane channel-mediated events. 
We first wished to know whether the inhibition of GlyT2 
by carbachol was sensitive to plasma membrane depo-
larization. Therefore, we treated the cells co-expressing 
GlyT2 and M2 mAChRs with carbachol in the presence 

Fig. 4   Carbachol-induced 
Ca2+ influx into COS7 cells 
expressing M2 mAChRs. 
Cytosolic calcium responses 
in Fura-2AM-loaded mock-
transfected COS7 cells (a, 
c) or COS7 cells expressing 
M2 mAchRs + GlyT2 (b, d), 
exposed to 500 µM carbachol 
(a, b) or 500 µM carbachol plus 
10 µM atropine (c,d) added 
at the arrows. In a–d each 
trace represents the average 
the [Ca2+]i of 18–27 cells. 
The increases in the fluores-
cence ratio (F340/F380) were 
calculated as described in the 
Experimental Procedures. e 
Maximum amplitude of the 
calcium responses induced by 
carbachol and prevented by 
atropine. *p < 0.05 by Student´s 
t test
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of depolarizing treatments such as 4-aminopyridine/Ca2+ 
or high external KCl (Fig. 6a). These two treatments 
indeed prevented the inhibition, opening the possibility 
that GlyT2 down-regulation by carbachol may involve a 
voltage-dependent event. Furthermore, GlyT2 transport, 
as expected, was sensitive to the magnitude of the depo-
larization, which was reported to be lower for 4-amino-
pyridine/Ca2+ than for 30 mM KCl treatment [46]. One 

possible mechanism to generate a depolarizing current is 
the blocking of potassium channels. M2 receptors may 
couple to GIRK potassium channels opening [47] or even 
closing [48]. Since these channels are blocked by 4AP  
and some of the carbachol-induced GlyT2 inhibition is 
prevented by 4AP, we tested the involvement of GIRK 
channels using a selective GIRK channel blocker. How-
ever, although the presence of GIRK channels seems to 
be confirmed in kidney [49], we did not detect any effect 
of GIRK inhibition using specific tertiapin blocker in the 
action of M2 mAChRs on GlyT2 (Fig. 6b). Finally, the 
calcium-dependent BK channels present in epithelial cells 
[50], are frequently inhibited by M2 mAChRs through a 
Gβɣ-mediated mechanism [51]. We performed the carba-
chol treatment in the presence of the general K-channel 
blocker tetraetylammonium (TEA) that inhibits BK chan-
nels [52], but it did not prevent GlyT2 down-regulation 
(Fig.  6c). Therefore, TEA treatment made us discard 
BK channel as target of carbachol action, besides this 
treatment indicated M2 mAChRs were not inactivated by 
depolarization [53].

Addressing the possibility that carbachol inhibition may 
involve plasma membrane depolarization, we reasoned that 
in COS7 cells, as in other systems, carbachol (and thapsi-
gargin) could trigger cationic currents that depolarize the 
plasma membrane. These currents are generated upon mobi-
lization of internal calcium that elicits the influx of extra-
cellular calcium for store replenishment [36, 38]. Several 
channels and transporters may allow the entry of calcium 
through the plasma membrane. L-type calcium channels of 
the Cav type, which are endogenously present in COS7 cells 
[54], are frequently coupled to ER depletion [36, 38]. The 
selective inhibition of L-type calcium channels by nifedi-
pine and low lanthanum concentrations did not alter the 
GlyT2 down-regulation by carbachol in the cells expressing 
receptor and transporter both in the absence or presence of 
external calcium (Fig. 6c). This observation suggested that 
the inhibition of GlyT2 by carbachol is not a direct conse-
quence of plasma membrane depolarization but may involve 
an event itself controlled by plasma membrane voltage. On 
the contrary, we found that the inhibition of GlyT2 by car-
bachol was extremely dependent on the external sodium 
concentration and was abolished when external sodium was 
reduced (replaced by equimolar N-methyl-D-glucamine) 
below 100 mM (Fig. 7a). This observation suggests that 
store operated calcium channels (SOC), a ubiquitous Ca2+ 
entry pathway that is activated in response to stimulation of 
plasma membrane receptors which mobilize internal calcium 
stores [55–57], is required for carbachol inhibition. Finally, 
the inhibition by carbachol of GlyT2 activity in cells co-
expressing the transporter and M2 mAChRs was prevented 
in the presence of KB-R7943 mesylate an inhibitor of the 
NCXrev (Fig. 7b, [58]). Inhibition by KB-R7943 mesylate, 
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ity was measured during 6 min. *Significantly different from vehicle, 
*p < 0.05 by Student´s t test
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might reduce the subcortical calcium concentration by 
allowing calcium extrusion by NCX forward mode and may 
compensate carbachol-induced calcium raise.

Discussion

In this work we have studied the down-regulation of GlyT2 
exerted by the major mAChR subtype in the spinal dorsal 
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COS7 cells co-expressing M2 mAChRs and GlyT2 were treated with 
500  µM carbachol or 10  µM atropine and 500  µM carbachol with 
or without 10  µM Tertiapin-LQ (b). Glycine transport activity was 
measured during 4 min in the same medium. *Significantly different 
from vehicle, *p < 0.05 by Student´s t test
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horn, the M2 mAChR, co-expressed with the transporter in 
COS7 cells. This heterologous system devoid of endogenous 
muscarinic receptor activity allows to focus on M2 mAChRs 
effects difficult to examine in brain-derived preparations, 
where the actions of the different mAChRs subtypes are 
compensatory [12–14]. We have demonstrated that GlyT2 
and M2 mAChRs can be present in the same cells of the 
spinal cord and, therefore, M2 mAChRs can regulate GlyT2. 
We have looked for several possible mechanisms to explain 
the inhibitory action of M2 mAChRs and, using calcium 

imaging measurements, we found M2 mAChRs induce cal-
cium transients in COS7 cells and these trigger the inhibition 
of GlyT2. As GlyT2 has been previously shown to be modu-
lated by several proteins involved in calcium homeostasis 
such as the Na+/K+-ATPase [5], the PMCA and the ubiq-
uitous NCX1 [6], it represents a good candidate for direct 
regulation by calcium raises produced by M2 mAChRs [41]. 
There are several signaling pathways triggered by M2 recep-
tors including inhibition of adenylyl cyclase activity [10, 
12], but many others involve the control of plasma mem-
brane conductances [51, 52] or intracellular calcium mobi-
lization [26–30].

Our first analysis of GlyT2 inhibition, revealed carba-
chol treatment mainly affects the Km of glycine transport 
suggesting M2 mAChRs modulates the transport activity 
of the transporters present at the plasma membrane. Since 
inhibition of ER calcium exit pathways do have only a minor 
effect, the inhibitory mechanism seems to get restricted to 
the plasma membrane. The blocking of many of the potas-
sium channels sometimes coupled to M2 mAChRs signal-
ing including GIRK, did not alter GlyT2 inhibition by M2 
mAChRs. Calcium channels were also not involved in the 
inhibitory mechanism, and these observations suggest the 
inhibition of GlyT2 by carbachol is not a direct consequence 
of plasma membrane depolarization but may involve an 
event itself controlled by plasma membrane voltage. For 
this reason, we turned to the subcortical area and found that 
the inhibition of GlyT2 by carbachol was extremely depend-
ent on the external sodium concentration and was abolished 
when external sodium was reduced and in the presence of 
KB-R7943 mesylate an inhibitor of the NCXrev. Inhibition 
by KB-R7943 mesylate, might reduce the subcortical cal-
cium concentration by allowing calcium extrusion by NCX 
forward mode and may compensate carbachol-induced cal-
cium raise. In summary, the results presented in this report 
are consistent with a GlyT2 sensitivity to intracellular cal-
cium mobilized by M2 mAChRs in the subcortical area of 
the plasma membrane.

NCX is a critical molecule for the control of intracellular 
calcium that has been shown to modulate the increases in 
cytosolic calcium promoted by carbachol in other systems 
[30, 55]. In fact, the increases in cytosolic calcium by carba-
chol have been shown to be significantly attenuated by NCX 
inhibition in tracheal smooth muscle [30]. GlyT2 is sensitive 
to calcium but also to sodium present in the restricted plasma 
membrane-ER junctional space [6], the NCX, coupled to 
GlyT2 activity, and with high capacity for exchange, may 
modulate the carbachol regulation. Many of the experimen-
tal conditions we tested on the down-regulation of GlyT2 
exerted by carbachol, have been reported to increase cyto-
solic calcium, a condition in which NCX is in its forward 
mode (calcium extrusion). The NCX forward mode might 
be inhibitory for GlyT2 since it accumulated sodium in the 
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Fig. 7   Effect of low external sodium and inhibition of NCX on 
glycine transport down-regulation by carbachol. a COS7 cells co-
expressing M2 mAChRs and GlyT2 were incubated for 5 min at 37ºC 
with vehicle or 250  µM carbachol in HBS containing the indicated 
NaCl concentrations (N-methylglucamine substitution). Glycine 
transport activity was measured during 4  min in the same medium. 
*Significantly different from vehicle, *p < 0.05 by Student´s t test. b 
COS7 cells co-expressing M2 mAChRs and GlyT2 were incubated 
for 15 min at 37ºC with vehicle or 250 µM carbachol in the absence 
or presence of 10  µM  KB-R7943 mesylate. *Significantly different 
from vehicle, *p < 0.05 by Student´s t test
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submembranous space [6]. Sodium influx into the restricted 
subcortical space may inhibit GlyT2 by reducing the elec-
trochemical sodium gradient necessary for glycine uptake or 
causing membrane depolarization [6]. Depolarization (and 
Na+ load) are conditions that promote the reversal of NCX 
[30, 56]. We propose carbachol increases internal calcium 
what may promote NCX forward mode [35–37], without dis-
carding carbachol treatment may require an active NCX [30, 
55, 56] and its inhibition may block GlyT2 down-regulation. 
M2 mAChRs pharmacological and receptor knockout stud-
ies have proven that some of their antinociceptive effects 
in the spinal cord are elicited by presynaptic modulation of 
transmitter release that increases inhibitory and decreases 
excitatory neurotransmission [9]. The possible inhibition of 
GlyT2, a presynaptic glycinergic protein, by a mechanism 
involving intracellular calcium raises, may exert a proper 
coordination of neurotransmitter uptake and release that may 
trigger analgesic actions mediated by M2 mAChRs.

Future Directions

The regulation of GlyT2 by calcium is not fully understood. 
Whether GlyT2 directly detects intracellular calcium rises 
deserves future attention since this might be a mechanism 
with the potential of coordinating the presynaptic ionic com-
position during antinociception mediated by M2 mAChRs in 
the spinal cord. The investigation of M2 mAChRs in brain-
derived preparations using siRNA experimental tools for 
selective mAChRs down-regulation will shed light not only 
in the role of calcium in GlyT2 regulation but in the role 
of M2 mAChRs in glycinergic neurotransmission and pain 
modulation.
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