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M. Gatti,6 A. Roodman,2,7 C. Chang,8,9 R. Chen,10 A. Choi,11 S. Desai,12 A. Drlica-Wagner,8,9,13

D. Gruen,2,7,14 R. A. Gruendl,15,16 A. Hernandez,14 N. MacCrann,11,17 J. Meyers,18 A. Navarro-Alsina,19,20

S. Pandey,1 A. A. Plazas,21 L. F. Secco,1 E. Sheldon,22 M. A. Troxel,10 S. Vorperian,23 K. Wei,9 J. Zuntz,24

T. M. C. Abbott,25 M. Aguena,20,26 S. Allam,13 S. Avila,27 S. Bhargava,28 S. L. Bridle,5 D. Brooks,29

A. Carnero Rosell,30,31 M. Carrasco Kind,15,16 J. Carretero,6 M. Costanzi,32,33 L. N. da Costa,20,34

J. De Vicente,35 H. T. Diehl,13 P. Doel,29 S. Everett,36 B. Flaugher,13 P. Fosalba,37,38 J. Frieman,9,13

J. Garcı́a-Bellido,27 E. Gaztanaga,37,38 D. W. Gerdes,39,40 G. Gutierrez,13 S. R. Hinton,41

D. L. Hollowood,36 K. Honscheid,11,17 D. J. James,42 S. Kent,9,13 K. Kuehn,43,44 N. Kuropatkin,13

O. Lahav,29 M. A. G. Maia,20,34 M. March,1 J. L. Marshall,45 P. Melchior,21 F. Menanteau,15,16

R. Miquel,6,46 R. L. C. Ogando,20,34 F. Paz-Chinchón,16,47 E. S. Rykoff,2,7 E. Sanchez,35 V. Scarpine,13

M. Schubnell,40 S. Serrano,37,38 I. Sevilla-Noarbe,35 M. Smith,48 E. Suchyta,49 M. E. C. Swanson,16

G. Tarle,40 T. N. Varga,50,51 A. R. Walker,25 W. Wester,13 and R.D. Wilkinson28 (DES Collaboration)

Affiliations are listed at the end of the paper

Accepted 2020 November 16. Received 2020 November 16; in original form 2020 July 16

ABSTRACT
We introduce a new software package for modelling the point spread function (PSF) of astronomical images, called PIFF (PSFs
In the Full FOV), which we apply to the first three years (known as Y3) of the Dark Energy Survey (DES) data. We describe
the relevant details about the algorithms used by PIFF to model the PSF, including how the PSF model varies across the field
of view (FOV). Diagnostic results show that the systematic errors from the PSF modelling are very small over the range of
scales that are important for the DES Y3 weak lensing analysis. In particular, the systematic errors from the PSF modelling are
significantly smaller than the corresponding results from the DES year one (Y1) analysis. We also briefly describe some planned
improvements to PIFF that we expect to further reduce the modelling errors in future analyses.

Key words: gravitational lensing: weak – techniques: image processing – catalogues – surveys – software: data analysis –
cosmology: observations.

1 I N T RO D U C T I O N

The Dark Energy Survey (DES, DES Collaboration 2016) has already
produced very precise constraints on cosmology (Abbott et al.
2018) using just the first year of data (Y1). The Y1 weak lensing
(WL) cosmic shear measurements alone were able to constrain the
combination σ 8(�m/0.3)0.5 to 3.5 per cent uncertainty (Troxel et al.
2018). Such precise constraints require that systematic uncertainties
be controlled to levels smaller than the statistical uncertainties. The
first three years of DES data (collectively referred to as Y3) thus
require even better control of the various systematic effects that
impact shear measurements.

One of the most significant systematic uncertainties in the DES
Y1 cosmic shear analysis was the estimation of the point spread
function (PSF) at the location of each galaxy. PSF estimation is
difficult because the PSF varies both spatially across the field of

� E-mail: mjarvis@physics.upenn.edu

view (FOV) and temporally from one exposure to the next. The FOV
of the Dark Energy Camera (DECam; Flaugher et al. 2015) is quite
large, covering a diameter of 2.2◦ and containing 62 2k × 2k CCDs
(charge coupled devises). These CCDs are not perfectly coplanar,
which means that the PSF variation is moderately discontinuous
at the edges of each CCD. Furthermore, the PSF can be directly
measured only at the locations of stars, which are essentially point
sources, so their surface brightness profiles are direct measurements
of the PSF at those locations. Since the galaxies are observed at
different locations, the PSF must be interpolated to the locations of
the galaxies.

In the Y1 analysis effort, it was clear that while the PSF estimation
was sufficiently accurate to not significantly bias the Y1 cosmic
shear results, we would need to make some improvements for the
Y3 analysis, which has smaller statistical uncertainties. Other recent
cosmic shear experiments have similarly mentioned PSF modelling
errors as a significant source of systematic uncertainty (Hamana et al.
2020; Hildebrandt et al. 2020).
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The Y1 PSF estimation used the software package PSFEX (Bertin
2011). This package estimates the PSF at the location of each star
using a linear combination of basis vectors. In our case, the basis
used was simply the pixel values on a grid. The coefficients of this
model are interpolated using a polynomial in the chip coordinates, x
and y, across the area of each CCD image.

This method worked very well and is quite robust. However, Zuntz
et al. (2018) detected some aspects that could potentially be improved
for future DES analyses. First, the mean measured size of the PSF
models showed a non-negligible offset from the mean measured size
of the input stars. Second, a map of both size and shape residuals
versus location on the focal plane exhibited spatial patterns that were
clearly related to features of the astrometric distortion solutions for
DECam.

To address both of these issues, we developed new PSF estimation
software, named PIFF (PSFs In the Full FOV), which we describe
in this paper. The principal goals for how to extend beyond the
capabilities of the tried-and-true PSFEX software were:

(i) Description of the PSF in sky coordinates rather than pixel
coordinates to better account for the effects of astrometric distortion.

(ii) Potential to fit the PSF simultaneously across multiple detec-
tors in the FOV in cases where continuous behaviour across detectors
could be exploited for better fitting.

(iii) Ability to use astrometric maps that are not expressible in the
FITS (Flexible Image Transport System) standards.1

(iv) Code written in or easily accessible from PYTHON.
(v) Modular design to enable new (potentially non-linear) PSF

models, outlier rejection algorithms, and interpolation schemes.

The version of PIFF used for the DES Y3 WL analysis is 0.2.4, but
PIFF has been in continuous development since the Y3 PSF models
were finalized. In this paper, we demonstrate diagnostics for the
DES Y3 PSF model based on version 0.2.4, but we will also point
out various features that have already been improved upon in later
versions. Throughout the paper, we will mention the choices used
for the DES Y3 WL analysis where we discuss the various options
enabled by PIFF. The complete configuration file that was used for
this analysis is given in Appendix B.

We give an overview of the procedure for building a PSF model
for an exposure in Section 2. We describe the options in PIFF for
the PSF surface brightness model, interpolation schemes, and how
it finds the overall solution in Sections 3–5. We describe the DES
Y3 data in Section 6 and show our tests of the PSF solution on these
data in Section 7. In Section 8, we discuss some potential future
improvements to PIFF currently in development, and we conclude in
Section 9. Detailed instructions for using PIFF can be found in the
online code documentation.2

2 SC H E M E O F O P E R AT I O N

At any particular location in the FOV, the PSF is a 2D function
describing the mapping from a delta function (a point) in the sky
at coordinates (u0, v0) to a surface brightness profile measured by
the detector at coordinates (x0, y0) as Iimage(x − x0, y − y0). The
functional form of this mapping is called the ‘model’ in PIFF.

In PIFF, we usually express the model in sky coordinates, for which
we use the notation (u, v), rather than image (pixel) coordinates, for
which we use (x, y). The features of the PSF created by atmospheric

1https://fits.gsfc.nasa.gov/fits wcs.html
2http://rmjarvis.github.io/Piff/

and optical distortions tend to vary more smoothly across the FOV
when considered in sky coordinates than in pixel coordinates. This
is especially true in the presence of high-frequency components of
astrometric distortion such as ‘tree rings’ (Kotov et al. 2010; Plazas,
Bernstein & Sheldon 2014a) which originate in the detector. While
detector-based components of the PSF (such as charge diffusion) may
or may not have this property, the DES modelling has been found
to be overall better-behaved when using sky coordinates. Fitting in
pixel coordinates remains an option in PIFF for applications where
this is not true. A mixed model is left to future development.

The sky coordinates u and v are defined in the local tangent plane
projection of the sky, as seen from Earth, around a nominal position of
the source. Positive v is to the north, and positive u is west. Converting
the surface brightness profile between image and sky coordinates is
straightforward given the knowledge of the world coordinate system
(WCS), which defines the functions u(x, y) and v(x, y).

Iimage(x, y) = Isky(u, v)

∣∣∣∣∣
du
dx

dv
dx

du
dy

dv
dy

∣∣∣∣∣ (1)

where the last factor is the determinant of the Jacobian of the
coordinate transformation, which we identify as the pixel area, Apix.

We normalize this function to have unit flux,3∫
du dv Isky(u, v) =

∫
dx dy Iimage(x, y) = 1. (2)

Henceforth, we will dispense with the ‘sky’ label and merely use I(u,
v) as the surface brightness profile in sky coordinates.

The function I(u, v) here is taken to include a convolution by the
pixel response. This is sometimes referred to as the ‘effective PSF’
(ePSF; Bernstein 2002), which we take to be continuous even though
it is only sampled at the pixel centres. It is an implementation detail
of the various models in PIFF whether the underlying description
is natively the ePSF or the PSF profile without the pixel. Different
models handle this differently, but all models know how to properly
draw themselves on to an image including the correct application of
the pixel response.

The data for star i consist of the (sky-subtracted) counts d̂iα in
all pixels indexed by α in a region around star i. If the pixels each
subtend an area Apix on the sky, then the model for the observed
surface brightness of star i with flux fi and sky position (ui, vi) is

diα = fiApixI (uiα−ui, viα−vi). (3)

The likelihood of obtaining the data given the model is given by

− 2 logL(d̂i) =
∑
α∈i

[(
d̂iα−diα

)2

σ 2
iα+diα

+ log
(
σ 2

iα+diα

)]
, (4)

where we have assumed that the model and data are in units of
photoelectrons, so that the total variance of a pixel is the sum of
the read/background variance σ 2

iα and the Poisson variance from the
expected counts, diα .

The PSF model will always be a function of some vector of
parameters p. We will denote as p̂i the parameters selected to fit
the data for star i. When we refer to individual parameters, we will
use k to index them: p̂ik .

We must also define some interpolation scheme to provide a
function p(u, v, c), which can return p at an arbitrary location (u,

3This seems an obvious choice, but one should be careful when using the PIFF

PSF model for photometry, in terms of how this normalization interacts with
the zero-point calibration of aperture fluxes
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v) in the sky domain of the exposure and potentially depend on
additional properties of the target, which we denote as c since this is
most likely to be a colour. The interpolated function will be somehow
trained on the particular fits p̂i measured at the (ui, vi, ci) of the PSF
stars.

One basic sequence of operations for a PIFF run for a given
exposure (or portion thereof) is:

(i) Read as input the list of stellar sky coordinates (ui, vi) for
candidate PSF-fitting stars i = 1, . . . , N�, pixel data d̂ i for the regions
around each star, and noise levels σ iα at each pixel. We may also have
other potential data on the stars upon which the PSF can depend, in
particular a colour ci.

(ii) Specify a parametric form I (u, v| p) for the PSF model.
(iii) Specify a method to interpolate the PSF parameters pk from

the positions (and perhaps colours) of the stars to an arbitrary test
point (u, v, c) in the domain.

(iv) Execute a fit of the model to the pixel data at each star to yield
a maximum-likelihood estimate p̂i at the location of the star.

(v) Train or fit the interpolation with the p̂i vectors.
(vi) Possibly identify and excise outlier stars that are deemed to

be poor exemplars of the PSF according to some metric.
(vii) Iterate from step (iii) to refit and reject outliers until conver-

gence is reached.

An alternative approach, described in Section 4.4 and also imple-
mented in PSFEX, is to merge steps (iii) and (iv) into a direct solution
for the parameters of the interpolating function, bypassing the single-
star solutions. This has a higher level of computational complexity,
but enables the use of PSF models that are not fully specified by a
single star, for example, if the model has significant power below the
Nyquist scale for the given pixel size, or if any stars have missing
data.

We will detail the components of the procedure in the following
sections. First, though, we note that there is a subtlety to the process:
there is a degeneracy between the choice of centre (ui, vi) for a star
and the functional form of I(u, v). We can always shift the nominal
centre, insert a countering shift into the model, and obtain the same
fit. There are two possible means to break this degeneracy. PIFF allows
one to choose whichever is more appropriate, based on the nature of
the input centres.

The first mode, which we label ‘centred-PSF,’ is to force the
model to be centred, that is,

∫
du dv {u, v}I (u, v) = 0, and treat the

positions (ui, vi) of the stars as free parameters. This is appropriate
when the stellar positions and/or the WCS solution are not trusted to
be extremely accurate, so offsets are more likely indicative of errors
in the input rather than real PSF centroid motion. In this mode, the
centroid parameters of the PSF model are forced to zero and are not
included in the interpolation. It would be left to other processing
steps to evaluate any variable astrometric displacements across the
exposure. This option is the default in PIFF, or it can be explicitly
specified by setting centered=True when defining a Model.
This is the mode that we used for the DES Y3 WL analysis.

The second mode, which we will call ‘fixed-star,’ is to trust the
input positions (ui, vi) of the stars, and assign the shift freedom to the
parameters of the PSF function I(u, v). This would be appropriate
if the input positions and WCS are both known to be extremely
accurate. In this case the centroid offset can be taken to be due
to stochastic atmospheric refraction or other instrumental effects,
which can then be interpolated along with the other PSF parameters.
This option is enabled by setting centered=False in PIFF when
defining a Model.

3 PSF MO D EL

PIFF provides a number of possible choices for the functional form
of the model, I(u, v), with different advantages and disadvantages in
terms of simplicity and realism.

3.1 Analytic radial profiles

The simplest PSF models in PIFF are based on isotropic radial
functions of the intensity. This radial function may be sheared and
dilated, but is otherwise fixed to a given functional form:.

Ip(u, v) = f (r), (5)

r =
√

u′2 + v′2, (6)(
u′

v′

)
= s√

1 − g2
1 − g2

2

(
1 + g1 g2

g2 1 − g1

)(
u

v

)
(7)

where g1, g2, and s are free parameters in the fit, which effect the
shear and dilation.4

Normally, these analytic profiles are taken to describe the PSF
profile without the pixel response, so the full ePSF profile, which
we’ve been calling I(u, v), would be

I (u, v) = Ip(u, v) ∗ P (u, v) (8)

where ∗ denotes convolution and P(u, v) is the square pixel response
projected into sky coordinates according to the WCS. This convolu-
tion is handled automatically by GALSIM5 (Rowe et al. 2015) when
the profile is being drawn.

However, there is also an option to tell GALSIM not to include
the pixel convolution when drawing the PSF by setting in-
clude pixel=False, in which case I(u, v) = Ip(u, v). This is not
normally recommended (not least because the pixel response is not
a radial function), but it can be useful in some very simple scenarios
for testing purposes.

There are three available options in PIFF for the radial function,
f(r):

(i) Gaussian uses the radial function

fGaussian(r) = A exp

(
− r2

2σ 2

)
, (9)

where σ is taken to be 1 arcsec, since it is degenerate with the overall
dilation that is allowed by the fit. Gaussian profiles are not usually
particularly good matches for real PSFs, but they are very simple,
and therefore are sometimes useful for simulations.

(ii) Moffat uses the radial function

fMoffat(r) = A
(
1 + (r/r0)2

)−β
, (10)

where r0 is degenerate with the dilation so is essentially arbitrary at
this point.6 The β parameter controls the concentration of the profile
and must be explicitly specified. We do not yet have the capability
to fit for β as part of the fit, although this could be added if someone
has a use case that requires it.

(iii) Kolmogorov is defined in Fourier space (Racine 1996)

FKolmogorov(k) = A exp

(
−
(

24�(6/5)

5

)5/6 (
λk

2πr0

)5/3
)

, (11)

4We only have three d.o.f. in the 2 × 2 matrix, since any rotation component
is irrelevant for an initially isotropic function.
5https://github.com/GalSim-developers/GalSim
6The choice of r0 in PIFF is such that the half-light radius is 1 arcsec.
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where r0 here is the Fried parameter (Fried 1966), a property of the
atmospheric conditions at the time of the observation. The real-space
function is the Hankel transform of FKolmogorov(k):

fKolmogorov(r) = 1

2π

∫ ∞

0
FKolmogorov(k)J0(kr)kdk. (12)

In all cases, the overall amplitude A is set such that the integrated
flux is unity. Because the radial functions are naturally centred,
implementing the centred-PSF mode is simple. To induce fixed-star
mode, we need to add two additional parameters (uc, vc) to the set of
model parameters to specify how the centre is offset from the nominal
position. These are subtracted from (u, v) prior to the application of
the shear and dilation (equation 7).

The maximum-likelihood solution is found for six parameters:

p̂full = [A, g1, g2, s, uc, vc] (13)

using non-linear least squares (with SCIPY). The estimated covariance
matrix of the solution is computed from the Jacobian matrix J
returned by SCIPY:

Cov ( p̂full) = (
JT J

)−1
(14)

which may be used by the interpolator if needed (currently only
GPInterp can use it; cf. Section 4.3).

Then, the final parameter vector for the PSF model is a subset of
the full maximum-likelihood solution:

p̂ =
{

[g1, g2, s] centred-PSF

[g1, g2, s, uc, vc] fixed-star
(15)

where the flux of the star A is ignored. For centred-PSF mode, the
fitted uc, vc values are used to update the nominal position of the star.

3.2 Pixel grid

The PixelGrid model is much more general than the analytic
profiles. It models the PSF profile as a 2D grid of points, smoothed
into a continuous function by a 1D kernel function K(x):

I (u, v) =
Npix∑
k=1

pkK(u−uk)K(v−vk). (16)

There are Npix free parameters pk in the model, where Npix is the total
number of pixels in the model grid. The centre (uk, vk) of each pixel
k are set on to a regular square grid of chosen spacing and dimension.
The grid orientation is parallel to the u and v directions.

For the kernel function, we use the Lanczos interpolation kernels,
K(x) = Ln(x), where

Ln(x) ≡

⎧⎪⎪⎨
⎪⎪⎩

1 if |x| = 0
n

π2x2 sin (πx) sin
(
πx
n

)
if 0 < |x| < n

0 if |x| ≥ n

(17)

and n is a free (integer) parameter, whose default in PIFF is n = 3.
The grid of pixels where the model is defined does not need

to be the same size or orientation as the pixels in the observed
image. Indeed, since the model is constructed in sky coordinates,
there is always some WCS transformation from model space to the
data, which means that in general an interpolation would always
be required to the constrain the model parameters defined in (u, v)
coordinates from data in (x, y) coordinates.

This is the model we used for the DES Y3 WL analysis.
Specifically, we used a 17 × 17 grid of pixels with a pixel scale
of 0.30 arcsec. These are about 15 per cent larger than the data pixels

(0.263 arcsec), which we found helped improve the robustness of the
fit compared to using model pixels nearly the same size as the data
pixels.

The coefficients pk for a given star can be constrained by minimiz-
ing

χ2 =
∑

α

(
dα − f ApixI (uα−uc, vα−vc)

)2

σ 2
α + dα

(18)

where the sum on α is over the observed data pixels and the
star has some flux f and centroid (uc, vc). Minimizing this leads
straightforwardly to a design matrix for the coefficients {pk}

A p = b (19)

for which the maximum-likelihood solution is

p̂ = (
AT A

)−1
AT b (20)

Cov ( p̂) = (
AT A

)−1
(21)

Since the model has translational freedom, the centred-PSF mode
described in Section 2 is not as simple as it was for radial profiles.
The centroid of the pixel grid profile is a derived property based on
all Npix parameters – as is the overall flux constraint. To implement
this mode, the current version of PIFF starts with an initial estimate
of the flux and centroid based on simple (zeroth and first order)
moments of the data, d̂iα . The model centroid is not forced to zero
during the fit, and the flux is not forced to unity, so the solution can
have non-zero centroid and non-unit flux. Then, at the start of each
iteration, the position of each star is updated such that the best match
to the current model would have zero centroid. Similarly, the model
is renormalized to have unit flux, and the flux of the star is updated to
match the best fit to this model. This is essentially a projected gradient
descent algorithm on these three parameters. This algorithm tends
to converge quickly to models with zero centroid and unit flux in
almost all cases. The fixed-star mode uses the same pattern, but only
updating the flux, which tends to converge even faster.

The version of PIFF that we used for the Y3 analysis (version 0.2.4)
used a different algorithm for the centred-PSF mode. The details of
this algorithm are given in Appendix A. However, we found that
this could sometimes lead to numerical instabilities in the solutions
during the interpolation step, leading to spurious checkerboard
patterns when extrapolated to locations not near any constraining
stars (cf. Fig. 1). This failure mode was mitigated by using a model
grid size that was somewhat larger than the data pixel size (0.3 arcsec
versus 0.263 arcsec), which made the checkerboard failures rare. We
believe the blacklist procedure described in Section 6.4 removed most
of the CCDs that were still affected by it. The algorithm described
above does not suffer from this failure mode, but we did not discover
this solution until after the Y3 PSF solutions were finalized. We
expect that future applications of PIFF will be able to use a grid size
commensurate or even smaller than the data pixels, although this has
yet to be extensively tested.

4 PSF INTERPOLATION

The profile of the PSF is not constant across the FOV. We have
measurements of the PSF at the locations of the stars, but we generally
need to know the PSF at other locations, such as where galaxies are
observed.

PIFF has a number of potential methods for doing the interpolation,
which can typically be matched with any of the various PSF
models described in Section 3. The information about the model

MNRAS 501, 1282–1299 (2021)
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Figure 1. An example of a ‘checkerboard’ failure mode that can sometimes
happen with PixelGrid solutions with version 0.2.4 of PIFF. On the right is the
model for the PSF in one of the Y3 DES images, extrapolated to a location far
from any of the constraining stars. Notice the checkerboard pattern, especially
near near the upper right corner of the model. On the left is the PSF for the
same location of the same image using PIFF version 0.3.0. The checkerboard
pattern is no longer present.

is parametrized by a vector p with measurements (or constraints)
taken at the locations of the stars p̂i(ui, vi).

All currently implemented interpolation schemes except the
BasisPolynomial (Section 4.4) follow the separated-solution
scheme of Section 2, whereby a maximum-likelihood solution p̂i is
first derived for each star for the specified model. Then, a second
solution is derived for the parameters of the interpolated function
p(u, v, c) by fitting to or training on the p̂i vectors.

4.1 Simple polynomial interpolation

The simplest possible interpolation scheme is to take the model as
constant across the FOV. This is not usually a particularly good
approximation to reality, but it can be useful in some cases, such
as a simulation that really does have a constant PSF model. This
simplistic interpolation scheme is called Mean in PIFF.

Slightly more complicated, but still rather simple, is Polyno-
mial interpolation. In this scheme, each coefficient in the vector p,
pk, is interpolated according to an arbitrary polynomial in u and v

(and possibly other parameters assigned to each star, such as colour).

pik =
∑

m

QkmKim(ui, vi, . . . ) (22)

where K i is a basis vector giving the relevant polynomial terms at
the location of star i: K i = {1, ui, vi , u

2
i , uivi , v

2
i , . . . }. Note that the

basis may include other factors, such as ones involving a colour term
ci, if desired. Terms in the u and v parameters are included up to a
maximum total m + n. The order of the polynomial may be different
for each parameter if desired. The coefficients Qkm are found by a
maximum-likelihood fit to the p̂ik values.

4.2 k-nearest neighbours

The kNNInterp class in PIFF implements a k-nearest neighbour
regression (Altman 1992) on the parameter vectors p̂i . The estimated
parameter vector at an arbitrary location (u, v) is taken to be the
weighted average of the k constraining stars nearest to that location.

The implementation is based on the SCIKIT-LEARN7 class
KNeighborsRegressor, which can weight the k points either
uniformly or inversely by their distance to the interpolation location.

7https://scikit-learn.org/

The default weight is uniform, which we find usually gives better
results for PSF interpolation, since it smooths over typical noise in
the measurements of the PSF vectors.

This interpolation scheme can potentially give better performance
for PSF patterns that have complicated functional forms, which are
not well modelled by a polynomial. The appropriate value of k to
choose (default is 15) depends on both the stellar density of the
observations and the expected scale length of variations in the true
PSF pattern.

4.3 Gaussian processes

The GPInterp class in PIFF implements a Gaussian process
regression (Rasmussen & Williams 2006) on the parameter vectors
p̂i . Gaussian process regression, also known as ‘Kriging,’ assumes
that the parameter vector p at every location is drawn from a
multidimensional Gaussian random field across the (u, v) space.
It requires an estimate of the spatial covariance function of p,
commonly referred to as the kernel. The interpolation estimate at an
arbitrary location (u, v) is the minimum variance unbiased estimate
from the Gaussian distribution at that location conditioned on the
values p̂i measured at all the PSF stars.

The GPInterp class is implemented using the TREEGP module.8

It can use a number of possible kernels from SCIKIT-LEARN to define
the covariance matrix along with a few custom options, which we
use in PIFF. The default kernel is the so-called squared exponential
or radial basis function kernel, known as RBF in SCIKIT-LEARN.

The TREEGP module has several methods for how to optimize
the kernel’s hyper-parameters, which are available in PIFF via the
optimizer parameter:

(i) likelihood is the traditional maximum-likelihood opti-
mization. It finds the hyper-parameters that maximize the likelihood
of the Gaussian process solution. This is similar to the optimization
done by the GaussianProcessRegressor in SCIKIT-LEARN,
although technically TREEGP has a custom implementation, which
uses scipy.optimize for its back end.

(ii) isotropic uses a direct measurement of the two-point
correlation function of the p̂ik values using TREECORR9 (Jarvis,
Bernstein & Jain 2004; Jarvis 2015). This is the defaultoptimizer,
since it is typically much faster and may be somewhat more accurate
than the the maximum-likelihood method.

(iii) anisotropic is similar to isotropic except that it uses
the TwoD binning option in TREECORR, which measures the correla-
tion function in two spatial directions, rather than just radially. This
is particularly useful if the PSF pattern is significantly anisotropic
(e.g. due to a predominant wind direction). In this case, the resulting
kernel is anisotropic as well.

(iv) none does no optimization of the hyper-parameters. This is
probably only useful for tests where you may know the true kernel
and do not want any optimization to be performed.

Typically when Gaussian processes are used on noisy data, one
should include a ‘white noise kernel’ representing noise in the
individual measurements p̂ik . PIFF (by default) accounts for this
using the estimated variance from the model fits. All models in PIFF

calculate variance estimates along with the best-fitting values, which
are usually sufficient for this purpose. However, there is an option
to include an additional white noise kernel if one thinks that these

8https://github.com/PFLeget/treegp
9https://github.com/rmjarvis/TreeCorr
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Figure 2. A simulation of a purely atmospheric PSF pattern. From left to right the panels show (1) the true PSF shapes without noise, (2) the shapes with
measurement noise, (3) the residuals from a second order polynomial fit on each CCD, and (4) the residuals from an anisotropic Gaussian process fit over the
whole FOV. Each panel shows ‘whiskers’ whose length is proportional to the ellipticity of the PSF, and whose orientation matches the orientation of longest
axis of the PSF shape. In both cases, the residuals are shown only for a set of reserve stars, which were not used to fit the PSF model.

estimates are insufficient to completely describe the measurement
noise.

Gaussian process regression makes the assumption that the expec-
tation value of the parameters pk at each location is zero (or some
function that can be modelled with hyperparameters). If this is not
true, for example, because there is some static pattern imposed on
top of the Gaussian variation, then one would need to subtract off this
static pattern before running the Gaussian process interpolation. PIFF

includes a mechanism to do this, called meanify, which computes
the mean values of the measured parameters over a number of
exposures to estimate the static pattern. This can then be subtracted
before using the Gaussian process interpolation.

In simulations of atmospheric PSF variation, we have found that
Gaussian process interpolation works very well when the true PSF
only includes an atmospheric component. Fig. 2 shows an example
where we simulated a purely atmospheric PSF pattern. The first panel
shows the true pattern of PSF ellipticities without noise. The second
shows the ellipticities with measurement noise. We fit this pattern
both with a second-order polynomial across each CCD and with a
Gaussian process (using the anisotropic optimizer) across the
full FOV. In both cases, we reserved 20 per cent of the stars to use
for validation. The residuals on the reserve stars in the two cases
are shown in the third and fourth panels. The Gaussian process is
clearly superior, leaving much smaller residuals than the polynomial,
although to be fair, this is experiment is slightly circular, since the
simulation was made with a Gaussian process for the atmosphere.

We have not used this method for DES Y3 data though, because
it does not work very well when the real PSF includes an optical
component, including discontinuities at the chip boundaries. We are
still working on a PSF mode that can properly account for optical
effects (including the chip boundaries) coupled to a Gaussian process
interpolation for the atmospheric component (cf. Section 8.2).

4.4 Basis-function polynomial interpolation

An alternative to the simple polynomial interpolation implemented
in Polynomial is to delay the full solution of the pk values at
the location of each star until the code is ready to also fit for
the interpolation coefficients. This scheme is implemented in the
BasisPolynomial class. This is the interpolation scheme we
used in the DES Y3 WL analysis to interpolate the PixelGrid
model.

For the previous interpolation schemes, the maximum-likelihood
estimate p̂i is derived using an iterative process, since the model

equation (3) is not linear in the fluxes and centroids of the stars, and
may not be linear in the parameters pki. Furthermore it is important
to note that the likelihood in equation (4) contains the model in the
noise estimate. The iteration step consists of finding the least-squares
solution for the differential parameter shift δ p̂i to the equation

Ai δ p̂i = bi (23)

Aiαk ≡ ∂diα

∂pik

(
σ 2

iα+diα

)−1/2
(24)

biα ≡ (
d̂iα−diα

) (
σ 2

iα+diα

)−1/2
(25)

PIFF computes Ai and bi of the design equation using the values
of p̂i and diα derived in the previous iteration. The derived δ p̂i

are then added to the solution to obtain the parameters for the next
iteration. After the first pass, the shifts are generally relatively small
adjustments in the fit.

For the BasisPolynomial interpolation, we instead directly
model pi in terms of the interpolation coefficients Qkm via

pik =
∑

m

QkmKim(ui, vi, . . . ) (26)

where K i is a basis vector giving the relevant polynomial terms at
the location of star i: K i = {1, ui, vi , u

2
i , uivi , v

2
i , . . . }. The design

equation for the iteration step of an individual star can be rewritten
as

Ai δ Q K i = bi (27)

The BasisPolynomial algorithm essentially concatenates the
design equations for all the stars i into a single system which can
be solved for δ Q, thus using the information from all of the stars at
once.

One advantage of the BasisPolynomial interpolation scheme
over the simpler Polynomial scheme is that it is less affected by
missing data such as from cosmic rays or bad columns. The design
matrix for a star with missing data can omit those pixels from the
constraint, in which case the solution for the coefficients Qkm will use
the other stars to constrain any degrees of freedom (d.o.f.) that involve
those pixels. This feature is especially important for thePixelGrid
model, where missing data generally leads to singular (or at least
poorly conditioned) matrices for those stars. With an interpolation
scheme that requires the solution p̂i be completed for each star, these
stars would have to be excluded. But using BasisPolynomial,
such stars can still provide the information that is available, while
leaving out the pixels that cannot provide any constraining power.
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Another nice feature of this scheme is that it is straightforward
to properly include the uncertainties. This scheme directly uses the
variance in the pixel counts without requiring the intermediate cal-
culation of Cov ( p̂) and propagation of that through the interpolation
fit.

5 SO LV I N G F O R T H E P S F

When solving for the full PSF solution, PIFF uses an iterative approach
to successively improve the solution. This has a number of advantages
over a single-pass direct solution. First, it allows for the possibility
of rejecting outlier stars after each iteration if there are some stars
that are not good exemplars of the PSF (perhaps because they are
binary or have a neighbour contaminating the image around the star).
Second, it makes it easier to handle missing data (e.g. bad pixels or
columns); we may, if we wish, use the solution from the other stars
to backfill the missing pixels for a particular star, although this is not
necessary when using BasisPolynomial. Third, as noted above,
the iterative process allows us to use the model diα rather than the
measurement d̂iα to estimate each star’s Poisson contribution to the
noise. Using the Poisson shot noise estimated from the observed
signal is necessarily biased, since pixels that happen to scatter high
will have too high an estimated variance and be underweighted,
and those that scatter low will have too low an estimate and be
overweighted.

The overall procedure starts by making a small cutout image of
the observed pixels from the full image around each star, centred as
nearly as possible at the star’s input position. By default these cutout
images are 32 × 32 pixels2, but this can be changed if desired. There
are options to remove some stars at this point based on measurements
of the star on these cutout images.

Then for each input star, PIFF initializes the solution with a rough
guess for the model. Different models do this in slightly different
ways, but generally they start with something like a Gaussian profile
matched to the stars’ measured second moments. This defines the
initial model vectors p̂i .

During each iteration of the solution phase, PIFF either solves
for the shifts δ p̂i according to the chosen model, as described in
Section 3, or computes the design equation for these shifts (equation
23) if using BasisPolynomial for the interpolation.

Then, PIFF solves for the interpolation coefficients according to the
chosen interpolation scheme, as described in Section 4. This finishes
the solution for this iteration. The solution is evaluated at the location
of each input star as the starting point for the next iteration.

At the end of each iteration, PIFF can look for outliers and remove
them from consideration for the next pass. It also computes the overall
χ2 and d.o.f. of the solution. If there were no outliers removed and
the change in χ2 is below a user-set threshold or if it has reached a
user-set maximum number of iterations, then the process stops, and
the solution is written to an output file.

5.1 Input data

PIFF has a number of options for specifying the input data. First, it
needs the image (or images) making up the field for which to solve
for the PSF. One can run PIFF on a single CCD image or on all
the images from a single exposure (or some fraction thereof). Each
image is typically input as a FITS file, including a weight or variance
map, the WCS, and possibly a bad pixel mask. The user can specify
specific bits in the bad pixel mask to exclude from consideration.

One can also specify a different WCS to use rather than the one
in the FITS file if desired. We used this feature in the DES Y3 WL

analysis to use the improved PIXMAPPY solution (cf. Section 6.2),
which includes tree rings and other subtle effects that cannot be
expressed in the regular FITS WCS specification.

The other required input is a list of stars and their positions on the
image(s). These can be given either as x and y pixel values or as right
ascension and declination. PIFF does not currently have any ability
to determine which objects are stars automatically, but it can use a
flag column to select only a portion of the given input catalogue if
appropriate.

There are also options to remove some stars based on features of
their images. For instance, one may specify a saturation threshold
to exclude stars that have any pixels above this value. If the star’s
cutout image is partially off the image, it is normally excluded, but
one can optionally keep such stars. One can also exclude stars whose
measured size is an extreme outlier compared to the other stars (e.g.
due to neighbours or image artefacts) or whose measured signal-to-
noise ratio (S/N) is smaller than a given value. For the DES Y3 WL
analysis, we excluded stars with S/N <20.

In addition to removing stars that are deemed bad for some reason,
there is also an option to reserve some stars from being used for the
PSF solution to serve as fair test stars for diagnostics. These stars are
not used for any part of the iterative solution, but they are included
in the output catalogue, marked with a flag indicating that they are
reserve stars. For DES Y3, we reserved 20 per cent of the input stars.

The weight map image is used to determine the measurement noise
on the pixel values. The weight map is typically the inverse variance
of each pixel, but PIFF can also read a (not-inverse) variance map. The
input weight should ideally include only the estimated variance from
the sky, read noise, dark current, etc., not including the Poisson shot
noise of the signal itself. (This is the case for the processed images
produced by DES data management.) As noted above, estimating the
source shot noise from the measured counts will induce a bias on
the measured PSF and fluxes. If the input weight (or variance) map
includes the variance of the signal as well as the uniform sources
of noise, then PIFF has an option to remove it using the gain (either
provided or fit for by PIFF from the variance map and the image).

Finally, another option that we found to be important in the DES Y3
WL analysis is to downweight the brightest stars. If each star keeps
its real noise estimate, then most of the weight comes from just the
few brightest stars in the image. This tends to bias the interpolation
solution to overfit the modes that pass through these stars. Therefore,
we have an option to effectively limit the nominal S/N of the bright
stars to a given maximum. PIFF does not actually add noise to achieve
this nominal S/N; rather, it just decreases the weight map to the level
that would give bright stars this S/N value. The default for this
parameter is 100, which was used for DES Y3. This choice was
found to produce good results (cf. Section 7), but the results were
not very sensitive to changing this by a factor of 2 or so.

Note that while Piff can be used on co-added images, rather than
single-epoch images, it is not recommended if the dithering strategy
includes large offsets. The PSF in the co-add is discontinuous at the
location of every chip edge from the single-epoch exposures. These
cause problems when trying to interpolate the PSF across the co-add
image. Additionally, the current implementation assumes the noise
is uncorrelated across pixels, which would not be true in general for
co-added images.

5.2 Outliers

At the end of each iteration, there is an option to remove stars that are
determined to be outliers and thus are probably not good exemplars
of the PSF. Currently there is only one outlier method, although the

MNRAS 501, 1282–1299 (2021)



DES year 3 results: PSF modelling 1289

code is written to accommodate the addition of other algorithms for
identifying stars to remove.

The Chisq outlier method looks for stars whose measured χ2 is
very large. Specifically, for each star i, it sums over pixels α in the
cutout of the star:

χ2
i =

∑
α∈i

(
d̂iα −diα

)2

σ 2
iα+diα

(28)

where the sum is over all of the pixels in the cutout image for that star.
As discussed above, the total noise in each pixel is taken to be the
sum of the read/background variance σ 2

iα and the Poisson variation of
the expected counts, diα . If the χ2 value is more than some threshold,
then the star is removed from consideration for subsequent iterations.

The usual way to specify the threshold is in terms of an effective
number of ‘sigma’. Given a specified nsigma value, PIFF calculates
the corresponding probability that a Gaussian distribution could
exceed this many sigma.10 For instance, nsigma=2 corresponds
to p = 0.05, nsigma=3 corresponds to p = 0.003, etc. If preferred,
users can also input the probability directly.

Then for each star, PIFF calculates the threshold for which this is the
probability that the measured χ2 would exceed the threshold purely
from statistical noise, given the number of d.o.f. for that star.11 For the
DES Y3 WL analysis, we used nsigma=5.5, which corresponds
to p = 4 × 10−8.

One can also specify a maximum number of stars to reject in each
iteration. This is generally a good idea, since a small number of
outliers can potentially skew the solution to the point where almost
all of the stars have a bad χ2 value. For DES Y3, we limited the
rejection to at most 1 per cent of the stars in the exposure (rounded
up), which typically translated into either 1 or 2 stars per iteration.

5.3 Output files

Once the iteration has converged, PIFF writes the final solution into
an output FITS file. The file format is rather complicated, using many
HDUs (header/data units) to store the various kinds of information
in a modular way. For instance each Model class and each Interp
class stores different kinds of information, so each uses one or more
HDUs in a class-specific way.

Users do not need to know anything about this file format however,
since the piff PYTHON module has code to read the output file and
reconstruct a PSF object that can compute the correct PSF profile
at an arbitrary location. PIFF is designed to serve the roles both of
solving for the PSF solution and of using that solution for further
analysis.

In addition to the FITS file containing the final PSF solution, one can
also choose to have PIFF generate a number of diagnostic output files.
These include a number of plots including residuals as a function of
position in the field, diagnostic statistics, and more. These plots are
not very useful for characterizing the quality of the fits for a large

10It uses the two-sided probability, p = erfc(nsigma/
√

2). This is merely
a shorthand to allow users to convert intuitive ideas of ‘n sigma’ into a
probability. It does not actually refer to some number of any meaningful
‘sigma’.
11We use the usual definition that the number of d.o.f. is the number of
data points minus the number of model parameters; however, we note that
this definition is not necessarily correct or meaningful for non-linear models
(Andrae, Schulze-Hartung & Melchior 2010). We believe it is acceptable
for this purpose, given the kinds of models that are used for PSF modelling
though.

data set (such as DES Y3), since they are made for one exposure at
a time, but they can be very useful for simple sanity checks when
trying out different configuration choices for a particular data set.

One can also have PIFF output a catalogue with measurements of
the size and shape of both the PSF model and the actual star images.
These catalogues are more useful for large-scale diagnostics, since
one can generate statistics for many images by combining these data.
The plots in Section 7 are made from these residual measurements.12

6 DATA

The first three years of data from the DES Y3 covers nearly 5000
sq deg of the (mostly) southern sky, and includes close to 40 000
exposures reaching an i-band limiting magnitude (10σ detection,
2 arcsec aperture) of 23.4 (DES Collaboration 2018). We refer to
Sevilla-Noarbe et al. (2020) and Morganson et al. (2018) for most
of the details about the data reduction, including flat fielding, sky-
subtraction, noise characterization, and object detection, but we
mention some relevant points here.

6.1 Brighter-fatter correction

One of the most important improvements in the data reduction
process compared to the DES Y1 reduction is that a correction was
applied to remove the ‘brighter-fatter effect’ (BFE; Antilogus et al.
2014; Guyonnet et al. 2015). The BFE is a natural consequence of
Coulomb’s Law for the electrons being accumulated in the detector.
The electrons accumulated in high-flux pixels repel some of the
other electrons arriving later in the exposure, which would have been
expected to fall in these pixels. The later-arriving electrons tend to
be pushed outward from the centres of bright objects, causing these
objects to appear somewhat larger than they would have appeared in
the absence of BFE. The enlargement is more significant for brighter
and more compact sources (i.e. the ones with the highest surface
brightness).

The impact of BFE is quite significant in DECam images,
noticeably affecting the sizes of the brightest three magnitudes of
stars on any given image (Melchior et al. 2015; Jarvis et al. 2016;
Zuntz et al. 2018). In the Y1 analysis, we were thus forced to remove
these stars from our sample of PSF stars to avoid biasing the PSF
size.

The correction procedure applied to the Y3 images was originally
proposed by Antilogus et al. (2014) and quantified for DECam by
Gruen et al. (2015). It involves moving some of the flux observed on
the image back to where it would have fallen in the absence of BFE.
This correction is applied directly to the pixel values early in the data
reduction process (Morganson et al. 2018).

As we will see below (Section 7.2), the correction does not work
perfectly, but it corrects for about 90 per cent of the full effect. We
found that there was still a non-negligible bias in the sizes and shapes
of stars within 1.2 mag of saturation. Therefore, we still needed to
remove these very bright stars from our PSF sample before running
PIFF. However, this means that we included almost two magnitudes
more stars in our PSF sample than in Y1, which significantly helped
improve the Y3 PSF solutions.

12Technically, the measurements for those plots were done outside of PIFF,
but the code we had been using to generate those measurements has since
been ported into PIFF to make it easier to generate such data in the future.
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6.2 World coordinate system

Another important detector effect seen in earlier DES analyses is a
circular pattern most easily seen in the flat-field images. This effect,
known as ‘tree rings’, is due to lateral electric fields in the CCDs
due to impurities in the silicon. The impurities are deposited as the
silicon crystals are grown, which leads to a ring pattern around the
initial crystal seed location. Plazas, Bernstein & Sheldon (2014b)
showed that the tree rings are primarily an astrometric effect causing
the effective pixel size to vary radially around the centres of the
silicon crystals.

For the DES Y3 WL analysis, we used an astrometric solution
that included the tree ring information as part of the model, fit
from the positions of objects on overlapping images (Bernstein et al.
2017). The model also included other astrometric effects including
the telescope distortion pattern, edge distortion at the edges of each
CCD, and adjustments in the precise positions of each CCD, which
were determined to move slightly each time the camera warmed up.

The full solution to the WCS is implemented by the PIXMAPPY13

software package. We used this WCS solution for each exposure
rather than the simpler TAN-PV WCS solutions stored in the FITS

files. Since PIFF models the PSF in sky coordinates, the astrometric
effects of the tree rings and other distortion effects are accounted
for by transforming the image data of each star to sky coordinates.
The led to a significant improvement in the PSF shapes compared to
using the native FITS-based WCS solutions.

6.3 Selection of PSF stars

The selection of stars to use for PSF modelling in DES Y3 used
the same algorithm as has been used in both of the previous DES
analyses: Science Verification (Jarvis et al. 2016) and Y1 (Zuntz et al.
2018). We refer to those papers for details, but we provide a brief
summary here.

For the initial catalogue of objects, we used SEXTRACTOR (Bertin
& Arnouts 1996). We then used a size–magnitude diagram to identify
stars as a locus of points with constant size separating from the larger
cloud of galaxies. For the magnitude, we used the SEXTRACTOR

measurement MAG AUTO. For the size, we used the scale size, σ , of
the best-fitting elliptical Gaussian profile using an adaptive moments
algorithm. The locus is easy to identify by eye at bright magnitudes.
Fig. 3 shows an example size–magnitude diagram for a representative
DES Y3 image. The pink and green points were identified as stars,
and the black points are other objects (both galaxies and stars that
may be too faint or noisy to be identified as such).

The algorithm we used to automate this identification starts with
the brightest 10 per cent of the objects (excluding saturated objects)
and finds a tight locus at small size for the stars and a broad locus
of galaxies with larger sizes. Then, the algorithm proceeds to fainter
magnitudes, building up both loci, until the stellar locus and the
galaxy locus start to merge. The precise magnitude at which this
happens is a function of the seeing as well as the density of stars and
galaxies in the particular part of the sky being observed. The faint-
end magnitude of the resulting stellar sample thus varies among
the different exposures. The green and pink points in Fig. 3 were
identified as stars by this algorithm.

As discussed above (Section 6.1), the initial data processing
included a correction for the BFE. However, we found that the
brightest stars still showed some significant size residuals. We

13https://github.com/gbernstein/pixmappy

Figure 3. An example size–magnitude diagram for a single CCD image,
used to identify stars. The size T = 2σ 2 is based on the scale size of the best-
fitting elliptical Gaussian. The pink and green points are the objects initially
identified as stars. The green points are the ones that pass our selection
criteria outlined in Section 6.3, most notably the magnitude cut to avoid
objects contaminated by the BFE. These objects are then used to constrain
the PSF model.

therefore removed the identified stars within 1.2 mag of saturation to
avoid these stars biasing the inferred PSF. We also removed stars that
were close to the edge of the CCD or near the DECam ‘tape bumps’
(Flaugher et al. 2015). We also removed a random 20 per cent of the
remaining stars as ‘reserve’ stars for the diagnostic shown below in
Section 7. The pink points in Fig. 3 show the stars that were removed
for one of these reasons. The green points represent the final stellar
sample for this CCD, which was input into PIFF.

6.4 Blacklist

Immediately upon completion of a PIFF model, we perform some
basic sanity checks to make sure the model seems plausible. If a
PSF model for a particular CCD is considered suspect for any of the
following reasons, we enter it into a ‘blacklist’ and exclude this CCD
from any further analysis.

(i) Too few stars: we flag images for which fewer than 25 stars
survived the outlier rejection.

(ii) Too many stars: we flag images where more than 30 per cent
of the objects were considered stars. This is unusual and generally
indicates a problem with the star selection, rather than a truly dense
stellar field.

(iii) Outlier size: if the mean size of the PSF solution for one CCD
was very different (4σ outlier) from the others on the same exposure,
we assume either the fit or the star selection for that image failed.

(iv) Large spread in the PSF model sizes: if the standard deviation
of the sizes of the final PSF stars is more than 20 per cent of the mean
size, then this tends to indicate a bad PSF solution.

(v) Errors when running PIFF or the stellar locus codes: these were
rare but happened occasionally.

(vi) No PIXMAPPY WCS solution: a few exposures were taken
during periods with insufficient calibration information to produce a
reliable PIXMAPPY WCS solution.

A little fewer than half the exposures had at least one CCD
blacklisted by these checks. Of these, the average number of CCDs
removed from consideration of the downstream analysis was close
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Figure 4. On the left are histograms of the PSF stars by magnitude for each
band: g, r, i, z, and Y. The blue region are the PSF stars that were also in
the Gaia DR2 catalogue. Red indicates objects that we consider stars, which
are not in the Gaia catalogue. (Purple is all PSF stars.) On the right are
plots showing the density of objects in size–magnitude space, using the same
colour scheme.

to two. This blacklisting procedure thus led to the removal of about
2 per cent of the Y3 data.

6.5 tests of Stellar Purity

To produce an accurate PSF model, the selection of PSF stars should
be very pure. If there are any galaxies included in the sample, then
this will bias the resulting PSF size to be slightly larger than the true
size. We therefore performed two tests to check whether and to what
extent any galaxies were erroneously included in the stellar sample.

Figure 5. Color–colour plots of the samples of DES PSF objects which do
(left) and do not (right) have matching objects in the Gaia DR2 high purity
stellar catalogue. All objects appear to follow the stellar locus, including the
bright unmatched objects shown as individual points (black for moderately
bright and red for very bright).

First, we follow a test presented in Amon et al. (2018, Appendix
C) for the Kilo-Degree Survey to match our catalogue of PSF stars to
the Gaia Data Release 2 (DR2) stellar catalogue (Gaia Collaboration
2018). These are believed to be a very pure sample of stars (Bailer-
Jones, Fouesneau & Andrae 2019), but they do not extend as faint as
our data. Thus, the matching is only expected to be close to complete
at brighter magnitudes.

The left-hand side of Fig. 4 shows histograms of our stellar sample
as a function of magnitude including the portion that matches the
Gaia catalogue (blue) and the portion that does not (red). The match
is very close to complete at bright magnitudes; more than 98 per cent
of the PSF stars match a Gaia star over at least 2 mag in all bands. At
the fainter end, the Gaia catalogue becomes incomplete, and the DES
data include more stars, which are not matched to any Gaia stars. The
g and Y bands also show an unmatched population at the bright end,
since some stars brighter than the Gaia sample are unsaturated in
DES data. Within the range of magnitudes where the Gaia catalogue
is complete, we find that essentially all the selected PSF stars are
matched to Gaia stars. This implies that there are very few galaxies
being included in the sample at these magnitudes.

In Fig. 5, we show the colors of our selected stars with (left) and
without (right) matches in the Gaia DR2 high purity stellar catalogue.
The objects without Gaia matches follows the same stellar locus as is
seen for the objects with Gaia matches. In particular, this is true both
for the bright unmatched objects (shown as individual points) and
for the fainter objects (shown as the blue intensity scaling). There
does not seem to be any significant subpopulation of the bright or
faint selected stars with different colour properties than those of the
high-confidence Gaia stars.

At fainter magnitudes, where the Gaia catalogue is incomplete, we
also looked at the size distribution of the stellar sample. The right-
hand side of Fig. 4 shows size–magnitude diagrams of the stars,
colour coded in the same way as the histograms on the left. This test
is less clear than where a direct match is possible, but there does not
appear to be any significant population of objects with sizes at faint
magnitudes that differ noticeably from the sizes of the bright stars,
with the possible exception of g band. For g band, there does seem
to be a cloud of red points with larger sizes than would be expected
from the blue points. It is thus possible that there are some galaxies
being included in the stellar population for g band. We chose not
to use the g band for any Y3 WL analysis, in part because of this
apparent contamination.14

14The g-band PSF solution was found to have unacceptably large rho statistics
(cf. Section 7.4), possibly due to this contamination, but also possibly due
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Figure 6. A colour–colour plot using VHS K band for one of the colors,
motivating our VHS-based colour selection test (equation 29). A random
sample of 0.5 million matched DES-VHS objects is plotted. Morphological
classifications indicated by the colour bar come from the Y3 Gold catalogue
(Sevilla-Noarbe et al. 2020).

Another test of the stellar purity comes from the infrared (IR)
colours of the objects. In particular, if we include K-band colors from
the Visible and Infrared Survey Telescope for Astronomy (VISTA)
Hemisphere Survey (McMahon et al. 2019, VHS), then we find a
simple colour selection, provides a very good discrimination between
stars and galaxies:

(z − K) > 0.5 × (r − z) (29)

This selection is shown in Fig. 6. We consider the points that appear
above this line (i.e. the > condition in equation 29) as likely to be
non-stellar. These ‘colour outliers’ are thus likely to be poor objects
to include in the PSF catalogue.

Some motivation for the use of IR bands for star–galaxy discrim-
ination was given by Jarrett et al. (2000), who point out that galaxy
light is dominated by old stellar populations with significant flux at
2 μm and that their redshifts tends to push additional light into IR
bands. Similar colour cuts using a combination of optical and near-IR
colours have been found to be effective by, for example, Ivezić et al.
(2002), Baldry et al. (2010), and Sevilla-Noarbe et al. (2018).

Unfortunately, the VHS catalogue only covers about half of
the DES Y3 footprint, and 2MASS (The Two Micron All Sky
Survey, Skrutskie et al. 1997), and WISE (Wide-field Infrared Survey
Explorer, Wright et al. 2010) are both too shallow for this purpose.
Therefore, we cannot apply this cut to our entire input sample.
Additionally, this idea for selection was proposed after our Y3 PSF
catalogues were finalized, so we did not even apply it for the portion
where we had VHS overlap. Rather, we use this test to quantify how
much the interloping galaxies might be biasing the size of the PSF.

Fig. 7 shows the distribution of observed sizes of PSF stars in a
single representative exposure according to their IR colours. Blue
shows the stars that were not matched to VHS observations, and
so do not have a K-band magnitude. Grey shows the matched stars
that fall below the condition in equation (29), and thus are expected
to be true stars. Red shows the matched stars that fall above this
condition, called colour outliers, which are likely to be galaxies. For
this exposure, the colour outliers constitute less than 1 per cent of

to other systematic effects that are strong in the g band such as differential
chromatic refraction (cf. Section 7.3).

Figure 7. Histograms of the sizes (cf. equation 33) for PSF stars in the VHS
overlap region according to whether they were successfully matched to the
VHS catalogue, and if so, whether they had colours consistent with being a
star (grey) or not (red). The unmatched stars are blue. The outliers show a
slightly higher mean size than the high-confidence stars, but we calculate that
this bias is not significant.

Figure 8. The fraction of identified PSF stars found to be colour outliers (cf.
Fig. 7) and their mean fractional shift in measured size, compared to the stars
that fall below the condition in equation (29) and are thus high-confidence
stars. Each point represents a single exposure. Results are plotted for a random
sample of 1685 exposures in the i band each having at least 100 matched VHS
objects (median of 7000 matched objects).

our PSF stars, and their mean size is larger than the high-confidence
stars by about 4 per cent. This means the interloping galaxies may
be inducing a fractional bias in the size of about 4 × 10−4 for this
particular exposure.

Fig. 8 shows the fraction of colour outliers and their mean
fractional shift in measured size, 〈�T〉/〈T〉, for a random sample
of Y3 exposures in the i band with matching VHS data. While the
specific values vary somewhat from exposure to exposure, there is no
evidence of any exposures with particularly bad stellar identification.
Nearly all exposures have less than 3 per cent outlier fraction with
a fractional size shift less than 0.05. This implies that the fractional
bias in the PSF size is nearly always less than 1.5 × 10−3. This bias
is small enough not to be important for Y3 WL analyses, but it is not
completely negligible, so we will try to improve upon this for the Y6
PSF modelling.
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Figure 9. Maps of the two components of the residual shape (δe1 and δe2) and the fractional residual size (δT/Tpsf) as a function of position in the focal plane
for riz bands. The shape components have a slight radial pattern, corresponding to high spatial frequency modes that our third-order interpolation across each
CCD was unable to completely model. The size residuals show noticeable tree ring patterns in many CCDs. These patterns are much smaller with the PIXMAPPY

astrometric solution than when we use the native FITS WCS solutions, but they are still significantly non-zero.

7 PSF DIAGNOSTICS

We have performed a number of diagnostic tests of the quality of
the DES Y3 PIFF solutions. Among the various uses of the PSFs,
WL shear estimation generally has the strictest requirements on the
quality of the PSF estimates. We have therefore primarily focused our
attention on tests of errors in the PSF solutions that could adversely
impact WL shear estimates.

All of the diagnostics are calculated using a set of ‘reserve’ stars,
which were not used to constrain the PSF solutions. We reserved
20 per cent of the selected stars (cf. Section 6.3) at random to
constitute this reserve set and removed them from the list of stars
passed to PIFF. These stars thus provide an unbiased estimate of the
errors at random locations in the image.

We calculated the PSF solution at the location of each of these
reserve stars to compare to the actual observed surface brightness
profile of the star. We used NGMIX (Sheldon 2015) to measure the
second moments of both the observed stars and the PIFF models
drawn at these locations:

Iuu =
∫

I (u, v)u2dudv (30)

Iuv =
∫

I (u, v)uvdudv (31)

Ivv =
∫

I (u, v)v2dudv (32)

These moments are not computed by direct summation, which is
somewhat unstable in practice. Rather NGMIX finds the best-fitting
elliptical Gaussian profile to the observed flux distribution. The above
moments are then taken to be the analytic second moments of this
profile.

The size T is defined as the trace of the moment matrix,

T = Iuu + Ivv, (33)

and the complex ellipticity can be calculated as

e = Iuu + 2iIuv − Ivv

Iuu + Ivv + 2
√

IuuIvv − I 2
uv

(34)

7.1 Residuals in the field of view

Fig. 9 shows the residuals of the the shape (e1 and e2) and size
(T) measurements for the reserve stars in riz bands as a function

of position on the DECam focal plane. All three show a noticeable
oscillatory pattern consistent with a fourth-order polynomial on each
CCD. This is due to the fact that our interpolation scheme is only
at third order, so the smallest order of variation not captured by our
PSF model is at fourth order.15

The size residuals show some additional, much smaller, circular
patterns, which are more prominent on some chips than others. The
most obvious example of this is found in the lower of the two
leftmost CCDs, but it appears quite significantly on several others
as well. These patterns are very similar to the tree-ring patterns
in the astrometry, implying that our procedure of measuring and
interpolating the PSF in sky coordinates was not sufficient to fully
remove the effects of the tree rings on the PSF size.

We investigated switching to using chip coordinates rather than
sky coordinates to model the PSF, and the tree-ring patterns in the
residuals became significantly worse. The same was true when we
used the simpler WCS solutions in the FITS files rather than using
PIXMAPPY. Thus, we know that using the PIXMAPPY WCS is working
to reduce the impact of the tree rings; it just is not sufficient to fully
remove all of the effect.

We believe that at least part of the reason for this is that the
total PSF size includes a component due to electron diffusion in the
CCD. This component of the PSF is explicitly generated in chip
coordinates, not sky coordinates, so modelling that part of the PSF
in sky coordinates means that the WCS (including tree rings) is
being applied where it should not be, leading to a signature of the
WCS in the size residuals. However, we also note that Magnier
et al. (2018) have identified variations in the charge diffusion size
itself associated with the same doping variations that cause the
astrometric tree-ring effect in the Panoramic Survey Telescope and
Rapid Response System (Pan-STARRS1) CCDs. This effect may be
present in DECam CCDs as well, which could be contributing to the
residuals seen in Fig. 9.

When we develop the full optical plus atmospheric PSF model (cf.
Section 8.2), we plan to include the possibility of having a Gaussian
component in CCD coordinates applied at the end to better model
this effect.

15We tested using fourth-order polynomials for the solutions, and other
diagnostics, such as the rho statistics (cf. Section 7.4), became worse, probably
due to overfitting in fields with smaller numbers of stars.
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Figure 10. The PSF residual size (top), fractional size (middle), and shape
(bottom two) of stars as a function of their magnitude. In each case the ‘PSF’
subscript refers to the true PSF, as estimated from direct measurements of
images of reserve stars, and ‘model’ refers to the PIFF estimate of the PSF
at those locations. The black points show the average values for all reserve
stars in the r, i, and z bands, which are the bands used for cosmic shear
measurements in the DES Y3 WL analysis. Cyan, orange, and pink points
show the average values in thin slices of r − z colour, ranging from blue to
red. To reduce the impact of the BFE bright stars are excluded from our PSF
models; the exact cut-off varies among CCD exposures, but the shaded grey
region shows a typical example.

7.2 Residuals by magnitude

As discussed above in Section 6.1, an important feature of CCD data
is the ‘BFE’ (Antilogus et al. 2014; Guyonnet et al. 2015), where
the charge of electrons accumulated in high-flux pixels repels some
of the other electrons arriving later in the exposure, causing bright
objects to appear somewhat larger than they would otherwise have
appeared. Without any correction, this leads to an obvious trend of
PSF size with magnitude. The effect is also anisotropic, which leads
to a strong trend in the e1 shape residuals as well (Zuntz et al. 2018).
As we have discussed, the Y3 data reduction process included a
correction for this effect, which we can test by looking at PSF size
and shape residuals as a function of magnitude.

The black points in Fig. 10 show size residuals (upper panel),
fractional size residuals (second panel), and e1 and e2 shape residuals
(lower two panels) of the riz reserve stars as a function of their
magnitude. The size residual is well below the level measured in
Y1, and shows very little trend with magnitude, remaining below
0.5 per cent over the entire range. The shape residuals also show no

significant trend with magnitude. This implies that the brighter-fatter
correction we applied, along with the bright star cut, is sufficient to
remove the impact of this effect on the PSF solutions.

7.3 Trends with colour

There are several physical effects that are expected to cause the PSF
to be wavelength-dependent (Plazas & Bernstein 2012; Meyers &
Burchat 2015). The PSF size from Kolmogorov seeing is expected
to vary as λ−0.2 (Hardy 1998, p. 92) or even steeper when taking
into account the so-called outer scale (Xin et al. 2018). Differential
chromatic diffraction (DCR) causes the PSF to spread along the
direction towards zenith, affecting bluer stars more than redder stars.
Diffraction and other optical aberrations generally scale proportion-
ally with λ. There are a few refractive elements, which have a non-
trivial wavelength dependence. And the conversion depth of photons
in the silicon increases with wavelength, which affects the PSF size,
due to the fast beam leading to a shallow depth of focus.

We do not explicitly include any of these effects in the PSF
modelling for the Y3 analysis (although see Section 8.4 for discussion
of how we plan to include colour dependence in the future). We thus
expect the size residuals to be a function of the colour of the stars.

The coloured points in Fig. 10 show the size and shape residuals
for three thin slices in r − z colour. Cyan shows the bluest stars,
pink the reddest, and orange in between. The size residuals show a
very clear trend with colour. The blue stars are larger than the average
model, and the red stars are smaller. This implies that the atmosphere
(which causes red stars to appear smaller) is probably dominating
over other effects (which mostly cause the size to increase with λ).

This can thus cause a bias in the inferred shapes of galaxies if the
mean galaxy colour is significantly different from the mean colour of
the stars used to constrain the PSF. See Gatti et al. (2020) for further
discussion of the impact of this on the sample of galaxies used for
the Y3 WL shear catalogue.

The e1 residuals (third panel of Fig. 10) show very little colour
dependence, but the e2 residuals (fourth panel of Fig. 10) do show a
significant colour dependence. The redder stars have a smaller than
average e2 shape, and the bluer stars have a larger than average e2.

This trend seems to be primarily due to DCR. We have calculated
the expected direction and magnitude of the DCR effect across the
DES Y3 footprint, quantified by two numbers:

DCR1 = tan2(z) cos(2q) (35)

DCR2 = tan2(z) sin(2q) (36)

where z is the zenith angle and q is the parallactic angle. We
calculate the weighted mean of these numbers for each location
on the sky, based on the observations that contributed to the co-
add images (Sevilla-Noarbe et al. 2020), using HEALSPARSE16 for
efficient access. Fig. 11 shows the mean shape residuals binned by
these DCR quantities for just the r-band observations where the DCR
effect is strongest. The three sets of points correspond to the same
r − z colours as in Fig. 10. The DES observing history (mostly the
particular history of the hour angle of each observation) happens to
have favored negative values of both quantities. The binning scheme
in Fig. 11 is such that each point includes equal numbers of stars.
The mean residuals for the red and blue colour slices are close to
zero when the DCR quantities are near zero, and they are large
when the DCR quantities are large (in absolute value). The points

16https://healsparse.readthedocs.io/en/latest/
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Figure 11. The PSF shape residuals in r band as a function of the
mean direction and magnitude expected for DCR. The three sets of points
correspond to the same three thin slices of r − z colour as shown in Fig. 10.

do not perfectly follow the linear fits, but it is clear that DCR is the
dominant effect driving the difference between the residuals for red
stars and blue stars. The corresponding plots for i band (not shown)
are similar, but with smaller amplitude. The ones for z-band show
almost no effect at all. These are what would be expected, since
the magnitude of the DCR effect decreases quickly with increasing
wavelength.

7.4 Rho statistics

Rowe (2010) introduced the original two rho statistics for quantifying
the spatial correlations of errors in PSF models, ρ1(θ ) and ρ2(θ ).
Jarvis et al. (2016) developed three more related statistics that
appear at the same order in their potential impact on WL two-point
correlation functions:

ρ1(θ ) ≡ 〈
δe∗

PSF(x)δePSF(x + θ )
〉

(37)

ρ2(θ ) ≡ 〈
e∗

PSF(x)δePSF(x + θ )
〉

(38)

ρ3(θ ) ≡
〈(

e∗
PSF

δTPSF

TPSF

)
(x)

(
ePSF

δTPSF

TPSF

)
(x + θ )

〉
(39)

ρ4(θ ) ≡
〈

δe∗
PSF(x)

(
ePSF

δTPSF

TPSF

)
(x + θ )

〉
(40)

ρ5(θ ) ≡
〈

e∗
PSF(x)

(
ePSF

δTPSF

TPSF

)
(x + θ )

〉
(41)

where ePSF is the observed ellipticity of the PSF stars, TPSF is the
observed size of the PSF stars, δePSF is the difference between the
measured ellipticity of the observed stars, and the ellipticity of the
PIFF models at the same locations, and δTPSF is the difference in the
sizes of the observed stars and the PIFF models.

These statistics, if non-zero, imply some systematic errors in the
WL shear correlation function, ξ+. There are corresponding statistics
for ξ− contamination, but we find these to be negligible, so we focus
our attention henceforth on these five rho statistics.

The five rho statistics for the riz bands are shown in Fig. 12.
The left-hand panel shows ρ1, ρ3, and ρ4, which represent direct
systematic errors in ξ+ with a leading coefficient of order unity
(Jarvis et al. 2016). The right-hand panel shows ρ2 and ρ5, whose

impact on ξ+ is mediated by a coefficient, α, describing the amount
of ‘PSF leakage’ that occurs during the shear measurement process.

All of the rho statistics are small enough that they are not
expected to cause significant systematic errors in the cosmic shear
measurements. In particular, ρ1 is about a factor of 10 smaller at large
scales and a factor of 4 smaller at small scales that what was achieved
for the Y1 PSF solution (Zuntz et al. 2018, fig. 9). The impact of this
on ξ+ had been one of the largest systematic uncertainties in the Y1
analysis.

At large scales, ρ2 is not much smaller than we found for the Y1
analysis, but its impact is also expected to be small because our shear
measurement method has very little PSF leakage. The estimated
value of the leakage parameter, α, for the DES Y3 WL analysis is of
order 10−2. See Gatti et al. (2020) for details.

The rho statistics for each of r, i, and z bands separately (not
shown) are somewhat noisier, but none of them show any particular
problems. On the other hand, the g-band rho statistics, shown in
Fig. 13 are an order of magnitude or more larger for all five statistics,
particularly at large scales. This could be due to the increased impact
of DCR in the g band, or the non-stellar contamination in g band
discussed in Section 6.5, or possibly other factors. Regardless of the
cause, these rho statistics were considered unacceptably high, and
we decided to exclude the g-band data from our Y3 WL analysis.

8 PLANNED FUTURE I MPROVEMENTS

We have several plans for how the PSF solution could be further
improved for the final DES year six analysis (Y6) as well as for other
surveys with similar or smaller statistical errors. These features are
all currently being developed for release in a future version of PIFF.

8.1 DECam optical model

We have been developing an optical model of the Blanco telecope
and DECam focal plane to directly predict the effects of the optics on
the PSF pattern. A preliminary version of this model was described
in Davis, Rodriguez & Roodman (2016). The model is based on
measurements of images of stars in out-of-focus exposures, which
produce ‘donut’ images. These reference wavefront images allow for
very precise estimation of the Zernike decomposition of the optical
wavefront as a function of position in the focal plane, with only a
small number of d.o.f. for how these Zernike patterns change from
one exposure to another.

This model has now been implemented in PIFF, with either 10
or 1117 free parameters that are fit from a given in-focus image.
Most of the Zernike coefficients are obtained from the reference
wavefront images and are not fitted using the in-focus image.
We generally include coefficients up to Zernike order 38 in the
reference information, but even higher order can be accommodated if
desired.

Three of the d.o.f. are currently the average size and shape of the
atmospheric component of the PSF, which are not part of the optical
model. This makes the current implementation of the optical model
very accurate on average, but not particularly accurate in the variation
across any single exposure, since the atmospheric component is the
dominant contributor to this variation. This leads us to our next
planned improvement.

17The amplitude of the spherical aberration may be either fixed or fitted.
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Figure 12. The ρ statistics for the PSF residuals (equations 37–41) in the riz bands. Negative values are shown in absolute value as dotted lines.

Figure 13. The ρ statistics for the PSF residuals in the g band. These statistics
are much worse that than the ones for the riz bands shown in Fig. 12. Possible
reasons for this are given in the text. These results contributed to the decision
not to use the g band for DES Y3 WL analysis.

8.2 Composite PSF

We have started to develop a composite PSF class in PIFF with
multiple components convolved together to produce the complete
PSF solution. Each component will be able to be separately fit, using
different models and different interpolation schemes as appropriate
for each.

This composite class is primarily intended to allow for the
convolution of an optical model and an atmospheric model. These
two components of the PSF are constrained in very different ways.
The optical model, as described above, has very few free parameters
to be fit for a given in-focus exposure, but its model of the surface
brightness is quite complex including very high-order Zernike
aberrations.

The atmospheric component, on the other hand, is fairly simple in
its description at the location of a single star, being well approximated
by an elliptical Kolmogorov or von Karman profile. However, the
variation of the PSF parameters across the FOV is quite complicated.
Gaussian process interpolation is generally found to work well,
which involves a large matrix inversion to solve for the relevant
parameters.

We also expect that a third Gaussian component, modelling charge
diffusion inside the CCD, will also be important to include, since
this component interacts differently with the WCS (especially the
tree rings) than the other two components (cf. Section 7.1). This
component would probably only require a single fitted parameter for
the entire focal plane, being the average scale size of the Gaussian
diffusion.

Development of a composite model that combines all three
components in a single iteration cycle is still ongoing. We are hopeful
that we will have this working in time to use it for DES Y6 analysis.

8.3 Using Gaia stars as input

We have seen in Section 6.5 that the Gaia stellar catalogue is
somewhat shallower than the input stellar catalogue we used for
the DES Y3 WL analysis. Using this as our input stellar catalogue
would result in losing about half of the potential stars for constraining
the PSF.

We are none the less considering switching to using that as our
input catalogue for Y6. The most obvious advantage to this is that
it would avoid any concerns about galaxies leaking into the stellar
sample (especially in g band where this was a particular problem).
The Gaia catalogue constitutes an extremely pure stellar sample.
Also, the stars that would be included are mostly high S/N; the stars
we would be losing have less useful information about the PSF.

However, the bigger advantage is that the Gaia stars include
extremely precise astrometric information. We could therefore switch
to the ‘fixed-star’ mode described in Section 2, where we would fix
the true positions of the stars at the Gaia positions (taking into
account parallax and proper motion to find the position at the time of
each DES exposure) and allow the observed PSF profile to include a
small centroid offset.

These centroid offsets are expected from the effects of atmospheric
seeing. The atmospheric component of the PSF is integrated over a
finite exposure time, and the net integrated pattern includes a small
shift in the observed centroid. Furthermore, we expect these centroid
offsets to be well fitted by the same kind of Gaussian process
interpolation that is effective for interpolating the size and shape
parameters.

We thus plan to investigate including this centroid offset as part of
the atmospheric component of the PSF to see if it can improve the
overall astrometric modelling of the galaxies.

8.4 Including chromatic dependence

We saw in Section 7.2 that the size and shape residuals vary with
the colour of the stars. This is completely expected, since several of
the physical effects that make up the PSF pattern are wavelength-
dependent.
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For the Y6 PSF solution, we plan to include a single colour
parameter (e.g. g − r) in the fit to account for the wavelength
dependence on the PSF to first order. Then, when using the PSF model
for galaxies, the colour of the galaxy would need to be provided to
produce an estimate of the correct PSF for that specific galaxy. We
are hopeful that including this colour dependence will improve the
g-band PSF solution sufficiently to allow it to be used for WL in the
Y6 analysis.

We designed the PIFF software to allow for this kind of colour term
to be included in the interpolation scheme, anticipating this use case.
However, we have not yet tried using this functionality on real data,
so there will likely be some development required to get it working
on DES Y6 data.

9 SU M M A RY

We have presented a new software package for PSF estimation of
astronomical images, called PIFF, which was developed primarily for
the DES Y3 WL analysis. The PIFF PSF models were tested on the
Y3 data and show significantly smaller residuals than had been seen
in the Y1 data. Most notably, the ρ1 statistic is more than an order
of magnitude smaller at large scales than what was found for the
Y1 PSF model. This had been one of the most significant sources of
systematic uncertainty in the Y1 cosmic shear analysis.

Development of PIFF is still very active. We have described in
Section 8 several potential improvements we hope to include in the
DES Y6 analysis. In addition, as part of the Dark Energy Science
Collaboration for the Vera Rubin Observatory Legacy Survey of
Space and Time (LSST), we have been testing PIFF on simulated
LSST images. Results of these tests will be reported separately, but
we fully expect that PIFF will prove to be useful for LSST and other
surveys in addition to DES. Indeed, the design of PIFF is very general,
so we expect that it will be useful to many other current and future
surveys who need accurate PSF modelling based on observations of
stars.
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Tecnológicas-Madrid, the University of Chicago, University College
London, the DES-Brazil Consortium, the University of Edinburgh,
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DATA AVAI LABI LI TY

The PIFF software is publicly available18 under an open source
license. This paper describes version 1.0 of the software, although
most of the tests were made with PSF models produced by version
0.2.4. Installation instructions are found on the website, and we
welcome feature requests and bug reports from users. The code we
used to run PIFF on DES images, produce the PSF catalogues, and
create many of the plots is also publicly available.19 Catalogues of
the PSF measurements on the reserve stars will be made available as
part of the DES Y3 coordinated release.20
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APPENDIX A : CONSTRAINED CENTROID
M E T H O D F O R P I X E L G R I D

The version of PIFF used for the DES Y3 WL analysis (0.2.4)
included a different mechanism for constraining the centroid of the
PixelGrid model to be (0,0) than we now employ (version 0.3.0
and later). For transparency reasons, we describe the older method
here.

As described in Section 3.2, the PixelGrid PSF model is

I (u, v) =
Npix∑
k=1

pkK(u−uk)K(v−vk) (A1)

where K(x) = Ln(x) is the Lanczos interpolation kernel (equation 17).
The coefficients pk for a given star can be constrained by minimizing

χ2 =
∑

α

(
dα − f ApixI (uα−uc, vα−vc)

)2

σ 2
α + dα

(A2)

where the sum on α is over the observed data pixels and the star has
some flux f and centroid (uc, vc). Minimizing this leads to a design

matrix for the coefficients {pk}

A0 p = b0 (A3)

If we want to force the solution to have zero centroid and unit flux,
we can impose three additional constraint equations on the solution:

∑
k

⎛
⎜⎜⎝

1

ui

vi

⎞
⎟⎟⎠pk =

⎛
⎜⎜⎝

1

0

0

⎞
⎟⎟⎠ (A4)

A1 p = b1 (A5)

To allow equation (A5) to hold, our fit must have three fewer d.o.f.
Three of the coefficients in p need to be determined directly from
the rest using equation (A5). We denote the three coefficients to be
excluded from the fit as pc, the constrained coefficients, which in
practice are taken to be the central pixel and two of its neighbours.
The other coefficients, denoted pf , are the fitted coefficients.

Without loss of generality, we can arrange the constrained coeffi-
cients to have index 0, 1, 2, and the fitted coefficients to have index
3 .. Npix−1. Then equation (A5) becomes

A1[:, 0 : 3] pc + A1[:, 3 : Npix] pf = b1 (A6)

which can be directly solved for pc given a solution pf .
According to Bayes Theorem, the pixel data dα for a given star

constrain pf , f, uc, and vc according to the likelihood:

L( pf , f , uc, vc) ∝ e−χ2/2Pf (f )Pu(uc)Pv(vc) (A7)

where Pf, Pu, and Pv are priors on the flux and centroid parameters
and χ2 is from equation (A2). We used Gaussian priors in all cases.
For the flux, we assumed a Gaussian width of 0.5 times the current
flux estimate. For the centroid parameters, we assumed a width of
0.5 pixels.

Note that χ2 is quadratic in pf , and therefore the minimum is linear
in pf . The only non-linear terms arise from the flux and centroid
parameters. However, these should generally be small adjustments
during the iterative solution, so we can linearize this equation in
δf, δuc, and δvc. This then allows for these three parameters to be
marginalized analytically producing a linear design equation

Aδ pf = b (A8)

for each iteration of the solution.

APPENDI X B: CONFI GURATI ON USED FOR
DES Y3 PSF MODEL

As mentioned in the main text, we used PIFF version 0.2.4 for the DES
Y3 PSF solution. The input configuration file was the following:

modules:
- galsim extra

input:
image file name: # Set on command line
image hdu: 0
badpix hdu: 1
weight hdu: 2

cat file name: # Set on command line
cat hdu: 1
x col: x
y col: y
sky col: sky
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ra: TELRA
dec: TELDEC

gain: 1.0
max snr: 100
min snr: 20
stamp size: 25

wcs:
type: Pixmappy
file name: # Set on command line
exp: # Set on command line
ccdnum: # Set on command line

output:
file name: # Set on command line

psf:
model:

type: PixelGrid
scale: 0.30
size: 17

interp:
type: BasisPolynomial
order: 3

outliers:
type: Chisq
nsigma: 5.5
max remove: 0.01

Of course, some values needed to be set differently for each
exposure and CCD, so these were specified on the command line
when we ran the piffify executable for each image. The other
parameters shown here were the same for all exposures.
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CNRS/IN2P3, Sorbonne Université, F-75005, Paris, France
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