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Microscopic description of quadrupole-octupole coupling in neutron-rich actinides and superheavy
nuclei with the Gogny-D1M energy density functional
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The interplay between quadrupole and octupole degrees of freedom is discussed in a series of neutron-rich
actinides and superheavy nuclei with 92 � Z � 110 and 186 � N � 202. In addition to the static Hartree-
Fock-Bogoliubov approach, dynamical beyond-mean-field correlations are taken into account via both parity
restoration and symmetry-conserving generator coordinate method calculations based on the Gogny-D1M energy
density functional. Physical properties such as correlation energies, negative-parity excitation energies, as well
as reduced transition probabilities B(E1) and B(E3) are discussed in detail. It is shown that, for the studied
nuclei, the quadrupole-octupole coupling is weak and to a large extent the properties of negative-parity states
can be reasonably well described in terms of the octupole degree of freedom alone.
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I. INTRODUCTION

All over the nuclear chart, the majority of the spheri-
cal and/or quadrupole-deformed ground states are reflection
symmetric. However, in regions with the given proton and/or
neutron numbers (around the so-called octupole magic num-
bers 34, 56, 88 and 134), the spatial reflection symmetry is
broken spontaneously and octupole-deformed ground states
are favored energetically [1]. Octupole deformation is also
well known to affect the outer fission barriers of atomic
nuclei and is the collective variable associated to cluster ra-
dioactivity (see, for example, Refs. [2–5]). The search for
signatures of octupole correlations has remained an active
research field over the years [6–16]. Previous experiments
have found evidence for octupole-deformed ground states in
144,146Ba [12,13] and 222,224Ra [14,15] and measured the E1
strength in 228Th [16]. Furthermore, a correlation between the
Schiff moment [17] and octupole deformation has been found
[18], suggesting that octupole-deformed nuclei might repre-
sent the best candidates for atomic electric dipole moment
measurements.

From a theoretical point of view, various models and ap-
proaches have already been employed to study the properties
of octupole collectivity. Among them, we can mention the
studies of octupole shapes carried out using the macroscopic-
microscopic (MM) approach [19–23] or the interacting boson
model (IBM) [24–27] with parameters determined using
fermion-to-boson mapping procedures starting from mean-
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field potential energy surfaces (MFPESs), obtained with rela-
tivistic and nonrelativistic energy density functionals (EDFs).

Microscopic nonrelativistic and relativistic approaches,
both at the mean-field level and beyond, have been widely
used to study octupole correlations [28–51]. Those micro-
scopic studies include global surveys looking for octupole-
deformed mean-field ground states in even-even nuclei
[45–51]. In addition, properties of dynamic octupole corre-
lations have been analyzed in large-scale beyond-mean-field
calculations carried out for even-even nuclei and using sev-
eral parametrizations of the Gogny [52] EDF [50,51]. The
results of those calculations indicate that not only static oc-
tupole deformation but also dynamical beyond-mean-field
octupole correlations have a sizeable impact on physical
observables.

The interplay between the two lowest multipole moments
characterizing the nuclear shape, namely the quadrupole and
octupole degrees of freedom, has been studied in Sm and Gd
isotopes with neutron number 84 � N � 92 [53] as well as
in actinide nuclei around N ≈ 134 [54]. Calculations have
been carried out using the parametrizations D1S [55], D1M
[56], and D1M∗ [57] of the Gogny-EDF. Both quadrupole
and octupole constraints were considered simultaneously to
build the MFPESs for the considered nuclei. Those MFPESs
exhibited a soft behavior along the octupole direction, indi-
cating that dynamical beyond-mean-field effects should be
taken into account. Those beyond-mean-field effects were
considered via both parity projection of the intrinsic states
and symmetry-conserving quadrupole-octupole configuration
mixing calculations, in the spirit of the two-dimensional (2D)
generator coordinate method (GCM) [58]. In addition to the
systematic of the correlation energies, 1− excitation ener-
gies, B(E1) and B(E3) transition probabilities, the results
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of Refs. [53,54] indicate that 2D-GCM zero-point quantum
fluctuations lead to a dynamically enhanced octupolarity in
the studied nuclei. The 2D-GCM framework has also been
applied to Rn, Ra, and Th nuclei in Ref. [59].

Octupole correlations in neutron-rich heavy and super-
heavy nuclei have been the subject of intense scrutiny in
recent years [22,32,47–49,60–62]. Those nuclei will not be
accessible with future radioactive beam facilities (RBF).
However, they represent the territories where the fate of the
nucleosynthesis of heavy nuclei is determined and therefore a
better understanding of their properties is required, for exam-
ple, to improve the modeling of fission recycling in neutron
star mergers [63,64].

Among the calculations mentioned in the previous para-
graph, those based on the NL3∗, DD-ME2, DD-PC1, and
PC-PK1 relativistic EDFs [47,48], have predicted an island
of octupole-deformed nuclei in their ground state centered
at Z ≈ 96, N ≈ 196. An island of octupolarity has also
been found with the SLy6 and SV-min zero-range Skyrme-
EDFs but this time centered at Z ≈ 100, N ≈ 190 [32].
An intermodel comparison between the NL3∗, DD-ME2,
DD-PC1, and PC-PK1 covariant EDFs and the UNEDF0,
UNEDF1, UNEDF2, SLy4, and SV-min Skyrme-EDFs has
been presented in Ref. [49] for Z � 110 and N � 210. It
has been concluded that a region of the octupole-deformed
ground state exists for 184 < N < 206. Furthermore, cal-
culations within the MM framework predicted an island of
octupole deformation centered at Z ≈ 100, N ≈ 184 [22].
Recent MM large-scale calculations for 98 � Z � 126 and
134 � N � 192 predicted octupole-deformed ground states
for N � 182 [60]. Additionally, an account of the fission
properties of superheavy nuclei with 100 � Z � 126 includ-
ing very neutron-rich isotopes up to around 4 MeV from the
two-neutron driplines has predicted octupole instability for
186 � N � 194 using the Gogny-D1M∗ EDF [61]. All the
aforementioned approaches agree on the existence of an island
of octupolarity in neutron-rich actinides and low-Z (i.e., Z �
110) superheavy nuclei, in spite of the differences regarding
its location and extension in the (Z, N) plane. However, the
predictions of different approaches differ for larger Z values
[22,32,48,60–62].

Given the relevance of dynamical octupole correlations
and/or symmetry restoration in the properties associated to
the octupole degree of freedom pointed out in our previous
studies, discussed above, we have decided to apply those
techniques to the region of the nuclear chart including ac-
tinides and low-Z superheavies. In this work, we study the
quadrupole-octupole coupling in neutron-rich even-even nu-
clei with proton and neutron numbers 92 � Z � 110 and
186 � N � 202. As in previous studies covering other re-
gions of the nuclear chart [53,54], we consider three levels
of approximation for each nucleus. First, the constrained
Hartree-Fock-Bogoliubov (HFB) approach is used to obtain
a set of mean-field HFB wave functions, which are labeled
by their intrinsic quadrupole and octupole moments. The
energy associated with those HFB states is used to build
a mean-field potential energy surface (MFPES) which is
a function of both the quadrupole and octupole moments.
As discussed later on, those MFPESs often are rather soft

along the octupole direction. Some of the studied neutron-
rich nuclei display a pronounced competition, i.e., shape
coexistence, between reflection-symmetric and reflection-
asymmetric configurations. Moreover, in some cases the
MFPES exhibits a transitional behavior along the quadrupole
direction. Therefore, the HFB approximation can only be
considered as a starting point and dynamical correlations
stemming from the restoration of the broken parity symmetry
(second level) and/or fluctuations in the collective quadrupole
and octupole coordinates (third level) have to be taken into
account.

The results discussed in this paper have been obtained with
the finite-range and density-dependent Gogny-D1M EDF.
Such a parametrization, specially tailored to better describe
nuclear masses, has already provided a reasonable descrip-
tion of octupole properties [44,50,53,54,59]. However, in
order to illustrate the robustness of the 2D-GCM predictions
with respect to the underlying Gogny-EDF, we will also
discuss results obtained with the D1S, D1M∗, and D1M∗∗
parametrizations for a selected set of nuclei. The parametriza-
tion D1S has been thoroughly tested all over the nuclear chart
both at the mean-field level and beyond (see, for example,
Ref. [65] and references therein). On the other hand, D1M∗
and D1M∗∗ are newly proposed reparametrizations of D1M
with the goal of improving the slope of the symmetry energy
while preserving as much as possible other properties of D1M.
Details of their fitting protocol can be found in Refs. [57,66].

The paper is organized as follows. The three levels of
approximation employed in this study are briefly outlined in
Secs. II A and II B. In order to facilitate the discussion, the
results obtained with the corresponding approach will be dis-
cussed in each section. The HFB results will be discussed in
Sec. II A while beyond-mean-field correlations are considered
in Sec. II B. First, parity-projected potential energy surfaces
(PPPESs) are computed via parity projection of the intrinsic
HFB states in Sec. II B 1. This level of approximation is useful
to disentangle the relative contribution of parity projection
to the total correlation. Second, both parity projection and
fluctuations in the collective coordinates are considered via
2D-GCM calculations in Sec. II B 2. Special attention is
paid in Sec. II B 2 to the systematic of 1− energy splittings,
correlation energies, and B(E1) and B(E3) transition proba-
bilities in the considered nuclei. Furthermore, in this section,
we will discuss the robustness of the 2D-GCM predictions
with respect to the considered Gogny-EDF. Finally, Sec. III
is devoted to the concluding remarks.

II. RESULTS

The aim of this work is to study the quadrupole-octupole
coupling in the neutron-rich nuclei 278–294U, 280–296Pu,
282–298Cm, 284–300Cf, 286–302Fm, 288–304No, 290–306Rf,
292–308Sg, 294–310Hs, and 296–312Ds. Three levels of
approximation have been employed: the HFB [58] scheme
with constraints on the (axially symmetric) quadrupole and
octupole operators, parity projection of the intrinsic state,
and the symmetry-conserving 2D-GCM. In what follows,
we briefly outline those approaches, which were used in the
past in different regions of the nuclear chart [53,54,59]. The
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different results obtained at each level of approximation will
be presented and discussed.

A. Mean field

For each of the studied nuclei, we first build the MFPES,
i.e., the mean-field energy EHFB(Q) as a function of the K = 0
multipole deformation moments Q = (Q20, Q30). To this end,
the HFB equation with constraints on the axially symmetric
quadrupole

Q̂20 = z2 − 1
2 (x2 + y2) (1)

and octupole operator

Q̂30 = z3 − 3
2 (x2 + y2)z (2)

is solved using an approximate second-order gradient method
[67] that guarantees a fast and reliable convergence of the self-
consistent HFB procedure. The quadrupole Q20 and octupole
Q30 deformation parameters are defined via the mean values
of the operators Q̂20 and Q̂30 in the corresponding HFB states.
From the deformations Q20 and Q30, one can easily compute
[39] the deformations parameters β2 and β3 as

βl =
√

4π (2l + 1)

3Rl
0A

Ql0 (3)

where R0 = 1.2A1/3 and A is the mass number. For example,
for A = 294 a quadruple deformation Q20 = 10 b is equiva-
lent to β2 = 0.141 and an octupole deformation Q30 = 1 b3/2

is equivalent to β3 = 0.021.
In order to alleviate the already substantial computational

effort, both axial and time-reversal symmetries have been kept
as self-consistent symmetries. Aside from the usual mean-
field constrains on the proton and neutron numbers, the center
of mass is fixed at the origin to avoid spurious effects associ-
ated with its motion [44,53,54,59]. To grant convergence for
the studied physical quantities, the HFB quasiparticle opera-
tors (α̂†

k , α̂k ) [58] have been expanded in a (deformed) axially
symmetric harmonic oscillator (HO) basis (ĉ†

l , ĉl ) containing
17 major shells.

The MFPESs obtained for the isotopes 288–304No are shown
in Fig. 1 as illustrative examples. In our calculations, the
Q20 grid −20 b � Q20 � 50 b (with a step δQ20 = 1 b) and
the Q30 grid 0 b3/2 � Q30 � 20 b3/2 (with a step δQ30 =
0.5 b3/2) have been employed. Along the Q20 direction, there
is a shape and phase transition from a spherical ground state
in 288No to well quadrupole-deformed ground states in heavier
isotopes. For 290–294No, the MFPESs exhibit a transitional be-
havior along the Q20 direction. Similar results are obtained for
other isotopic chains. As can be seen from Figs. 2(a1)–2(a5)
and 2(d1)–2(d5), the ground-state quadrupole deformations
Q20,GS are within the range 0 b � Q20,GS � 30 b.

The MFPESs show octupole-deformed minima in some
No isotopes with the minima occurring always at small
quadrupole deformations. A typical example is 290No, which
is octupole deformed and almost spherical. When the isotopes
of No acquire a larger quadrupole deformation, the octupole-
deformed minimum vanishes and the ground state becomes
reflection symmetric with a rather soft MFPES along the Q30

direction. This pattern repeats in all the other isotopes consid-
ered in this work as can be deduced from Fig. 2. We observe
there that octupole-deformed HFB ground states are found in
284–290U, 284–290Pu, 286–292Cm, 286–292Cf, 288–294Fm, 288–294No,
292,294Rf, 294,296Sg, 296Hs, and 298Ds with 1 b3/2 � Q30,GS �
7 b3/2 [see Figs. 2(b1)–2(b5) and 2(e1)–2(e5)]. These results
indicate that, as in previous studies [22,32,47–49,60], an is-
land of octupole-deformed neutron-rich actinides and low-Z
superheavy nuclei is found in our HFB calculations based on
the the Gogny-D1M EDF. Similar results, not shown here,
have also been obtained with the D1S, D1M∗, and D1M∗∗
parametrizations.

The HFB energy gained by breaking reflection symmetry
in the ground state, defined as

�ECORR,HFB = EHFB,Q30=0 − EHFB,GS, (4)

is plotted in Figs. 2(c1)–2(c5) and 2(f1)–2(f5). The largest val-
ues of �ECORR,HFB correspond to N = 194 (U), N = 192 (Pu,
Cm, Cf, and Fm), N = 190 (No and Rf), and N = 188 (Sg,
Hs, and Ds). The maximum value of 1.8 MeV corresponds
to 290Cf. The relatively small �ECORR,HFB energies reflect the
softness along the Q30 direction in the MFPESs of nuclei with
an octupole-deformed HFB ground state.

For some No isotopes, the MFPESs (see Fig. 1) exhibit
a pronounced competition, i.e., shape coexistence, between
reflection-symmetric and reflection-asymmetric minima. For
example, in the case of 296No the energy difference between
the global reflection-symmetric (Q20,GS, Q30,GS ) = (22 b, 0)
and local reflection-asymmetric (Q20, Q30) = (10 b, 7 b3/2)
minima amounts to just 210 keV. Such a shape coexistence
is also observed in other isotopic chains.

Before concluding this section, we turn our attention to
single-particle properties. As it is well known, atomic nu-
clei “avoid” regions with high single-particle level densities
(Jahn-Teller effect) and therefore the plots of single-particle
energies (SPEs) as a function of quadrupole or octupole mo-
ment help us to identify regions where energy gaps (i.e.,
low-level density regions) favor the appearance of deformed
minima. For this purpose, we have chosen to plot the eigenval-
ues of the Routhian h = t + � − λQ20 Q20 − λQ30 Q30, where
t is the kinetic energy and � is the Hartree-Fock field. The
term λQ20 Q20 + λQ30 Q30 contains the Lagrange multipliers
used to enforce the corresponding quadrupole and octupole
constraints. The single-particle energies obtained in the 292No
case are plotted in Figs. 3 and 4, for protons and neutrons
separately, as functions of the quadrupole moment. The plot of
Fig. 3 corresponds to zero octupole deformation, and therefore
the parity of each single-particle orbital is identified with the
use of full (positive-parity) and dashed (negative-parity) lines.
On the other hand, Fig. 4 corresponds to the same kind of
plot but in this case we have taken an octupole deformation
Q30 = 6 b3/2 that roughly corresponds with the position of
the octupole deformed minima. In the latter, parity is not
a good quantum number. Finally, the corresponding Fermi
levels are plotted with a thick dotted red line. The first thing
we notice in Fig. 3 is the presence of � j = �l = 3 orbitals
around the Fermi level both for protons (i13/2 − f7/2) and
neutrons (k17/2 − h11/2). The presence of these opposite-parity
�J = �l = 3 pairs of orbitals is a natural requirement for
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FIG. 1. MFPESs computed with the Gogny-D1M EDF for the isotopes 288–304No. Dark blue contour lines extend from 0.25 up to 1 MeV
above the ground-state energy in steps of 0.25 MeV in the ascending sequence of full, long-dashed, medium-dashed, and short-dashed. Dark
green contour lines extend 1.5 up to 3 MeV above the ground state in steps of 0.5 MeV with the same sequence of full, long-dashed, medium-
dashed, and short-dashed as before. From there on, orange dotted contour lines are drawn in steps of 1 MeV. The color code spans a range
of 10 MeV with red corresponding to the lowest energy and blue corresponding to an energy 10 MeV above. The intrinsic HFB energies are
symmetric under the exchange Q30 → −Q30. For A = 294, a quadruple deformation Q20 = 10b is equivalent to β2 = 0.141 and an octupole
deformation Q30 = 1b3/2 is equivalent to β3 = 0.021. For more details, see the main text.

the existence of octupole-deformed minima. For protons and
neutrons, there are gaps in the spectra at the spherical con-
figuration relatively close to the Fermi level: Those gaps
are the precursors of the near spherical octupole-deformed
minima observed for neutron numbers N = 186–192. The
deformed minima observed for larger N values at Q20 ≈ 18 b
are due to gaps opening up at that deformation. In Fig. 4,
we depict the same type of plot but for Q30 = 6 b3/2. At
Q20 = 0, we have included the labels of the spherical orbitals
at the same place where they are located in the Q30 = 0
plot to show the strong impact of parity mixing. We observe
how large shell gaps open up at Q20 = 0 as a consequence
of parity mixing that are responsible for the near spherical
octupole-deformed minima obtained for N = 186–192. On
the other hand, for Q20 ≈ 18 b there are no clear gaps in

the spectrum, in agreement with the fact that there are no
octupole-deformed minima for that value of the quadrupole
moment.

B. Beyond-mean-field correlations

As discussed in the previous section, the softness of the
MFPESs along the octupole direction as well as the existence
in some cases of coexisting minima point toward the key
role of dynamical beyond-mean-field correlations, i.e., sym-
metry restoration and/or quadrupole-octupole configuration
mixing in the properties of the ground state and collective
negative-parity states in the studied nuclei. Since the octupole
is the softest mode, the spatial reflection symmetry is the most
important invariance to be restored. It would be desirable to
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FIG. 2. The mean-field ground-state quadrupole [panels (a1)–(a5) and (d1)–(d5)] and octupole [panels (b1)–(b5) and (e1)–(e5)] defor-
mations as well as the octupole correlation energies �ECORR,HFB [panels (c1)–(c5) and (f1)–(f5)] from Eq. (4) are plotted, as functions of
the neutron number, for the nuclei 278–294U, 280–296Pu, 282–298Cm, 284–300Cf, 286–302Fm, 288–304No, 290–306Rf, 292–308Sg, 294–310Hs, and 296–312Ds.
Results have been obtained with the Gogny-D1M EDF.

restore also both the rotational and particle number symme-
tries. However, such a gigantic task is out of the scope of
an exhaustive survey like the one discussed in this paper for
several technical reasons (for example, the large number of
HO shells used and the number of degrees of freedom required
in the GCM ansatz).

1. Parity symmetry restoration

In order to restore the spatial reflection symmetry broken
by the HFB states |	(Q)〉 with nonzero octupole deformation,
we resort to parity projection; i.e., we build the parity-
conserving states |	π (Q)〉 = P̂π |	(Q)〉 by applying on the

intrinsic state the parity projector

P̂π = 1
2 (1 + π
̂), (5)

where π = ±1 is the desired parity quantum number. The
energies Eπ (Q), associated with the states |	π (Q)〉, define the
PPPESs. They read

Eπ (Q) = 〈	(Q)|Ĥ [ρ(�r)]|	(Q)〉
2〈	(Q)|P̂π |	(Q)〉

+ π
〈	(Q)|Ĥ[θ (�r)]
̂|	(Q)〉

2〈	(Q)|P̂π |	(Q)〉
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FIG. 5. Positive-parity (π = +1) PPPESs computed with the Gogny-D1M EDF for the isotopes 288–304No. See caption of Fig. 1 for the
contour-line patterns and color scale.

− λZ

( 〈	(Q)|ẐP̂π |	(Q)〉
〈	(Q)|P̂π |	(Q)〉 − Z0

)

− λN

( 〈	(Q)|N̂P̂π |	(Q)〉
〈	(Q)|P̂π |	(Q)〉 − N0

)
. (6)

Because the Gogny force used is a density-dependent one, we
need a prescription for the density-dependent contribution to
the energy overlaps. As in previous studies [53,54,59], we use
the density

ρ(�r) = 〈	(Q)|ρ̂(�r)|	(Q)〉
〈	(Q)|	(Q)〉 (7)

to compute 〈	(Q)|Ĥ[ρ(�r)]|	(Q)〉 and the density

θ (�r) = 〈	(Q)|ρ̂(�r)
̂|	(Q)〉
〈	(Q)|
̂|	(Q)〉 (8)

in the evaluation of 〈	(Q)|Ĥ[θ (�r)]
̂|	(Q)〉. In this way, we
avoid the pathologies found in the restoration of spatial sym-
metries [68–71]. As the parity-projected proton and neutron

numbers usually differ from the nucleus’s proton Z0 and neu-
tron N0 numbers, we have introduced first-order corrections in
Eq. (6), with λZ and λN being chemical potentials for protons
and neutrons, respectively [53,54,59,72,73] .

The π = +1 and π = −1 PPPESs obtained for the iso-
topes 288–304No are depicted in Figs. 5 and 6 as illustrative
examples. Since 
̂|	(Q20, Q30 = 0)〉 = |	(Q20, Q30 = 0)〉,
the projection onto positive parity is unnecessary for those
states. On the other hand, in the case of negative parity, the
evaluation of the projected energy along the Q30 = 0 axis
requires us to resolve 0/0 indeterminacy [36] and therefore
it is subject to numerical inaccuracies [53,54]. However, the
negative-parity projected energy Eπ=−1(Q) Eq. (6) increases
rapidly when approaching Q30 = 0 (see Fig. 7) [53,54] and its
limiting value [36] is high enough as not to play a significant
role in the discussion of the π = −1 PPPESs. We have then
omitted this quantity along the Q30 = 0 axis in Fig. 6. It
is worthwhile to notice that the quadrupole moments corre-
sponding to the absolute minima of the π = +1 and π = −1
PPPESs are close to the HFB values.
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FIG. 6. Negative-parity (π = −1) PPPESs computed with the Gogny-D1M EDF for the isotopes 288–304No. See caption of Fig. 1 for the
contour-line patterns and color scale.

As can be seen from Figs. 1, 5, and 7, not only the MF-
PESs but also the π = +1 PPPESs are rather soft along the
Q30 direction. In the case of nuclei with small and/or zero
HFB ground-state octupole deformations, such as 288No and
300No, the π = +1 PPPESs only display an absolute mini-
mum around Q30 = 2.0 b3/2. This is illustrated in Figs. 7(a)
and 7(c), where the π = +1 parity-projected energies ob-
tained for 288No and 300No are plotted, as functions of Q30,
for a fixed value of the quadrupole moment corresponding to
the absolute minimum of the PES. However, the topography
along the Q30 direction is more complex for nuclei with larger
HFB octupole deformations as the π = +1 PPPESs exhibit
a pronounced competition between two minima. In the case
of 294No, for example, the energy difference between the
local Q30 = 2.0b3/2 and global Q30 = 7.0 b3/2 minima [see
Fig. 7(b)] amounts to 652 keV. Note also from Fig. 7(b), the
energy degeneracy of the absolute HFB and π = +1 minima
in this case. Furthermore, as can be seen from Fig. 5, for 294No
the shape coexistence extends to a third minimum, located at

(Q20, Q30) = (22 b, 2 b3/2), which is only 14 keV above the
absolute one.

The π = −1 PPPESs, depicted in Fig. 6, exhibit in all the
cases a well-developed absolute minimum. In the case of nu-
clei such as 288No and 300No, the absolute π = −1 minimum
corresponds to a larger octupole deformation than the π = +1
one [see Figs. 7(a) and 7(c)]. On the other hand, for 294No,
the (degenerate) π = −1 and π = +1 absolute minima have
similar octupole deformations [see Fig. 7(b)]. Similar features
have been found for other isotopic chains. Let us mention that
the complex topography found for the PPPESs along the Q30

direction in our Gogny-D1M calculations has already been
studied, as a function of the strength of the two-body inter-
action, using parity projection on the Lipkin-Meshkov-Glick
(LMG) model [74].

As a measure of the correlations induced by parity projec-
tion, we consider the correlation energy

�ECORR,PP = EHFB,GS − Eπ=+1,GS, (9)
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plots. Results have been obtained with the Gogny-D1M EDF.

defined in terms of the difference between the HFB EHFB,GS

and parity-projected Eπ=+1,GS ground-state energies. In
Fig. 10, we show this quantity for the studied nuclei.
The correlation energy �ECORR,PP is zero or nearly zero
for U, Pu, Cm, Cf, Fm, and No isotopes with 190 �
N � 194 as for these nuclei the π = +1 PPPESs display
features, along the Q30 direction, similar to the ones dis-
cussed above for 294No; i.e., the HFB and π = +1 absolute
minima are degenerate or nearly degenerate. As will be
discussed in Sec. II B 2, the comparison between the corre-
lation energies �ECORR,PP and the ones obtained within the
symmetry-conserving 2D-GCM framework reveals the key

role played by quantum fluctuations around those neutron
numbers.

2. Generator coordinate method

The dynamical interplay between the quadrupole and oc-
tupole degrees of freedom is considered via the 2D-GCM
ansatz ∣∣π

σ

〉 =
∫

dQ f π
σ (Q)|	(Q)〉, (10)

where both positive and negative octupole moments Q30

are included in the integration domain to assure the parity-
conserving nature of the states |π

σ 〉 [53,54,59]. The index σ

in Eq. (10) labels the different GCM solutions.
The amplitudes f π

σ (Q) are solutions of the Griffin-Hill-
Wheeler (GHW) equation [58]∫

dQ′(H(Q, Q′) − Eπ
σ N (Q, Q′)) f π

σ (Q′) = 0 (11)

with the Hamiltonian and norm kernels given by

H(Q, Q′) = 〈	(Q)|Ĥ[ρGCM(�r)]|	(Q′)〉
− λZ (〈	(Q)|Ẑ|	(Q′)〉 − Z0N (Q, Q′))

− λN (〈	(Q)|N̂ |	(Q′)〉 − N0N (Q, Q′)),

N (Q, Q′) = 〈	(Q)|	(Q′)〉. (12)

As in previous studies [53,54,59], we use the mixed density
prescription

ρGCM(�r) = 〈	(Q)|ρ̂(�r)|	(Q′)〉
〈	(Q)|	(Q′)〉 (13)

in the density-dependent term of the Hamiltonian kernel. As
in the parity projection case Eq. (6), we use a perturbative
first-order correction in the Hamiltonian kernel H(Q, Q′) to
take into account deviations in both the proton and neutron
numbers [53,59,72,73].

The HFB basis intrinsic states |	(Q)〉 are not orthonormal.
Therefore, the amplitudes f π

σ (Q) cannot be interpreted as
probability amplitudes. Instead, one considers the so-called
collective wave functions

Gπ
σ (Q) =

∫
dQ′N 1

2 (Q, Q′) f π
σ (Q′), (14)

written in terms of the operational square root of the norm
kernel N 1

2 (Q, Q′) [53,54,58,59,68].
The overlaps of one- and two-body operators between

different HFB states are evaluated with the efficient Pfaffian
techniques of Refs. [75–77].

For the reduced transition probabilities B(E1, 1− → 0+)
and B(E3, 3− → 0+), the rotational formula for K = 0 bands
has been used:

B(Eλ, λ− → 0+) = e2

4π

∣∣〈π=−1
σ

∣∣Ôλ

∣∣π ′=+1
σ ′=1

〉∣∣2
. (15)

For B(E1) and B(E3) transitions, σ corresponds to the first
excited GCM state with negative parity. The electromagnetic
transition operators Ô1 and Ô3 are the dipole moment operator
and the proton component of the octupole operator, respec-
tively [53]. The overlap 〈π

σ |Ô|π ′
σ ′ 〉 of an operator Ô between
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two different GCM states Eq. (10) can be evaluated according
to the expressions given in Refs. [53,54].

The collective wave functions Eq. (14) corresponding to
the ground and lowest negative-parity 2D-GCM states in
288–304No are plotted in Figs. 8 and 9, respectively. As can
be seen from Fig. 8, the ground-state collective amplitude
Gπ=+1

σ=1 (Q20, Q30) shows the typical Gaussian shape along
both the quadrupole and octupole directions with a maxi-
mum located at octupole moments different from zero in
292,294No. The same holds for 284,286U, 286–290Pu, 286–290Cm,
288–292Cf, 290,292Fm, 294Rf, and 296Sg. For other nuclei, the
peaks of the ground-state collective amplitudes are located
around Q30 = 0. The spreading of Gπ=+1

σ=1 (Q20, Q30) along the
Q30 direction is large, indicating the octupole-soft character
of the 2D-GCM ground states obtained for the considered
nuclei. On the other hand, for the negative-parity amplitudes
Gπ=−1

σ (Q20, Q30), depicted in Fig. 9, the shape of the wave
function is again Gaussian along the Q20 direction, whereas
along the Q30 direction it shows the characteristic shape of

the first excited state of the harmonic oscillator (odd under
the exchange of sign in Q30) with a zero value at Q30 = 0 as
well as a maximum and a minimum, one at a positive Q30

value and the other at the corresponding negative value. As a
consequence, the negative-parity wave function maximum or
minimum always take place at a nonzero octupole moment.
This is in agreement with the position of the minima of the
π = −1 PPPESs (see Fig. 6).

The 2D-GCM average quadrupole moment is defined as

(Q̄20)πσ = 〈
π

σ

∣∣Q̂20

∣∣π
σ

〉
(16)

and the ground-state values (Q̄20)π=+1
σ=1 corroborate the mean-

field result; i.e., with increasing neutron number, for each
of the studied isotopic chains, there is a transition to well
quadrupole-deformed ground states. Similarly, the average
quadrupole moments of the first negative-parity excited state
(Q̄20)π=−1

σ increase with increasing neutron number.
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FIG. 9. Collective wave functions Eq. (14) for the lowest negative-parity states of the nuclei 288–304No. See the caption of Fig. 8 for
contour-line patterns. Results have been obtained with the Gogny-D1M EDF. For more details, see the main text.

We have also computed the average octupole moment
[53,54]

(Q̄30)πσ = 4
∫
D

dQdQ′Gπ ∗
σ (Q)Q30(Q, Q′)Gπ

σ (Q′) (17)

and obtained, for all the studied nuclei, nonzero values in the
range 0.37 b3/2 � (Q̄30)π=+1

σ=1 � 5.41 b3/2. At variance with
the static HFB results of Sec. II A, once parity-projected
quadrupole-octupole configuration mixing effects are taken
into account via the 2D-GCM ansatz Eq. (10), the ground
states of all the studied nuclei are (dynamically) octupole-
deformed, albeit with the largest octupole deformations
(Q̄30)π=+1

σ=1 corresponding to U, Pu, Cm, Cf, Fm, No, Rf, and
Sg isotopes with 190 � N � 196. For the octupole moments
(Q̄30)π=−1

σ , we have obtained values in the range 2.57 b3/2 �
(Q̄30)π=−1

σ � 6.17 b3/2 and their largest values correspond
once more to U, Pu, Cm, Cf, Fm, No, Rf, and Sg isotopes
with 190 � N � 196.

The 2D-GCM correlation energy

�ECORR,2D−GCM = EHFB,GS − Eπ=+1,2D−GCM (18)

is defined as the difference between the HFB and 2D-GCM
ground-state energies. This quantity is plotted in Fig. 10
along with the correlation energy �ECORR,PP stemming from
symmetry restoration alone. The comparison between both
correlation energies reveals that 2D-GCM zero-point quantum
fluctuations substantially modify the behavior of �ECORR,PP

for U, Pu, Cm, Cf, Fm, and No isotopes with 190 � N � 196
providing a weaker dependence of �ECORR,2D−GCM with the
neutron number. A weaker trend is also obtained for Rf and
Sg nuclei around N = 190. This agrees well with previous
results for Sm, Gd, and actinide nuclei [53,54]. Moreover,
the range of values of the correlation energy 1.49 MeV �
�ECORR,2D−GCM � 2.45 MeV is of the same order of magni-
tude as the rms for the binding energy in Gogny-like nuclear
mass tables [56] and, therefore, those correlation energies
should be considered in future parametrizations of the Gogny-
EDF.

The 2D-GCM energy difference between the positive-
parity ground state and the lowest 1− excited state is
depicted in the left panels of Figs. 11 and 12 as a func-
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tion of the neutron number. The 1− excitation energies are
very small (0.10 MeV � E1− � 0.36 MeV) for U, Pu, Cm,
Cf, Fm, No, Rf, and Sg isotopes with 190 � N � 196, in
agreement with their large dynamical octupole deformations.
Note that in the case of Hs and Ds isotopes, the E1− val-
ues obtained for 298Hs (0.60 MeV) and 298Ds (0.93 MeV)
are slightly larger than the previous ones. Other nuclei,
with less pronounced dynamical octupole deformation ef-
fects, exhibit larger E1− values, pointing toward the octupole
vibrational character of their first negative-parity excited state.
In the same panels, we have also included the E1− energies
obtained within 1D-GCM calculations with Q30 as single
generating coordinate. It is satisfying to observe that both
calculations predict very similar trends with neutron number
though the 2D-GCM energies are larger the the 1D-GCM
ones.

The B(E1) transition probabilities are plotted in the middle
panels of Figs. 11 and 12. For 92 � Z � 102, they exhibit
a steady increase up to N = 192, while for larger neutron
numbers, the B(E1) strengths remain almost constant. Except
for 298,300Ds, a steady increase is also observed for Z � 104
up to N = 190. At variance with the results obtained for lower
Z chains, except for 296Rf and 298,300Sg, the B(E1) values also
increase for larger neutron numbers, and the effect is more
pronounced in the Hs and Ds isotopic chains. Note that the
behavior of the B(E1) strengths with neutron number is not

correlated with the behavior of the negative-parity excitation
energies and the B(E3) strengths (discussed below). There-
fore, it is not strictly correlated with the amount of octupole
correlations. This is a consequence of the strong dependence
of the dipole moment with orbital occupancies [35] that leads,
for instance, to strong suppression of the E1 strength in some
specific nuclei [39,78] and not in their neighbors. As can be
seen from the figures, the B(E1) transition probabilities ob-
tained within 1D-GCM calculations exhibit the same pattern
with neutron number as the 2D-GCM ones.

The B(E3) transition probabilities are plotted in the right
panels of Figs. 11 and 12. Unlike the B(E1) case, the mag-
nitude of the B(E3) strength is strongly correlated with the
excitation energy of the collective negative-parity state; i.e.,
whenever this excitation energy is small, the B(E3) strength
is large. Except for 296No and 298Rf, this correspondence is
obeyed in all the considered nuclei. The MFPESs obtained for
296No (see Fig. 1) and 298Rf exhibit a pronounced competition
between two minima at almost the same energy but with
quite different Q20 and Q30 deformations. This shape coex-
istence leads to a rather low excitation energy of the 1− state.
However, the collective wave functions for the ground and
negative-parity states barely overlap, leading to a reduction in
the B(E3) value. For other nuclei, the ground-state collective
wave function is peaked at a nonzero octupole deformation
and therefore strongly overlaps with the one of the negative-
parity state (see Figs. 8 and 9), leading to a large B(E3)
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FIG. 11. The 2D-GCM E1− energy splittings (left panels) and the reduced transition probabilities B(E1) (middle panels) and B(E3) (right
panels) are plotted (in black) as functions of the neutron number for the studied U, Pu, Cm, Cf, and Fm isotopic chains. The E1− , B(E1), and
B(E3) values obtained in the framework of the 1D-GCM, with the octupole moment as single generating coordinate, have also been included
(in red) in each of the plots. Results have been obtained with the Gogny-D1M EDF. For more details, see the main text.
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FIG. 12. The same as Fig. 11 but for the No, Rf, Sg, Hs, and Ds isotopic chains.

value. For less octupole correlated systems, the peak of the
ground-state collective wave function shifts to Q30 = 0 and
therefore the overlap with the negative-parity collective wave
function is severely reduced as it is the E3 strength. As can
be seen from the figures, the 1D-GCM and 2D-GCM B(E3)

transition probabilities display the same trend with the most
pronounced quantitative differences being obtained for U, Pu,
Cm, Cf, and Fm isotopes around N = 194.

In the comparison between 1D-GCM and 2D-GCM cal-
culations, one should keep in mind that even when the
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FIG. 13. The 2D-GCM E1− energy splittings [panel (a)] and the reduced transition probabilities B(E1) [panel (b)] and B(E3) [panel (c)]
are plotted as functions of the neutron number for the isotopes 288–304No. Results have been obtained with the parametrizations D1S, D1M,
D1M∗, and D1M∗∗ of the Gogny-D1M EDF. For more details, see the main text.

corresponding collective wave functions look similar along
the octupole direction, their tiny differences can be associated
with the differences in the results. The comparison between
1D-GCM and 2D-GCM results in Figs. 11 and 12 reveals that,
to a large extent, there is a decoupling between the quadrupole
and octupole degrees of freedom in the studied nuclei, which
indicates that the 1D-GCM framework represents a valuable
computational tool to account for the systematics of the 1−
excitation energies and transition probabilities in this exotic
region of the nuclear chart.

Finally, in order to illustrate the robustness of the 2D-
GCM predictions with respect to the underlying Gogny-EDF,
calculations have also been carried out with the parametriza-
tions D1S, D1M∗, and D1M∗∗ for 288–304No. The results are
depicted in Fig. 13. The largest quantitative differences are
obtained with the D1S parametrization, as expected, because
D1M∗ and D1M∗∗ were fitted to be as close as possible to
D1M. However, from the comparison we conclude that the
predicted trends, with neutron number, of the 1− excitation
energies and reduced transition probabilities are rather insen-
sitive to the Gogny-EDF employed in the calculations.

III. CONCLUSIONS

In this paper, we have studied the interplay between
quadrupole and octupole degrees of freedom in a set of even-
even neutron-rich actinides and superheavy nuclei with 92 �
Z � 110 and 186 � N � 202, both at the mean-field level
and beyond. To this end, we have resorted to the Gogny-HFB
framework, parity projection, and 2D-GCM configuration
mixing calculations with the quadrupole Q20 and octupole Q30

moments as generating coordinates.

Static octupole deformations are found around the “oc-
tupole neutron magic number,” N = 192, in roughly 30% of
the 90 nuclei analyzed. On the other hand, dynamical octupole
deformations are ubiquitous and have a significant impact on
correlation energies, leading to a weaker dependence with
neutron number. The consideration of beyond-mean-field ef-
fects within the 2D-GCM approach allows us to explore
properties of the lowest lying collective negative-parity ex-
cited states, such as their excitation energies and transition
strengths to the positive-parity ground state. Low excitation
energies and large E3 strengths are observed in nuclei with
strong octupole correlations. The E1 strength, as expected, is
a less collective quantity and does not show a clear correlation
with octupole properties.

Given that very neutron-rich isotopes are considered, a
comparison with experimental data is not possible at present
and probably will not be possible in the future. However, the
properties analyzed can be used to model the nuclear reactions
taking place in the r-process nucleosynthesis of superheavy
nuclei. The relevance of this lies on the fact that the population
of short-lived superheavy nuclei is thought to have an impact
on the solar abundance of midmass elements in the rare-earth-
metal region through fission recycling.
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