
 

 
 Repositorio Institucional de la Universidad Autónoma de Madrid 

https://repositorio.uam.es 

 
 Esta es la versión de autor del artículo publicado en: 
 This is an author produced version of a paper published in: 

 
IEEE Transactions on Neural Networks and Learning Systems 31.8 (2020): 2752-
2763 

 
DOI: http://doi.org/10.1109/TNNLS.2019.2906302 

Copyright: © 2020 Institute of Electrical and Electronics Engineers 

 
© 2020 IEEE.  Personal use of this material is permitted.  Permission from IEEE 
must be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, 
creating new collective works, for resale or redistribution to servers or lists, or 
reuse of any copyrighted component of this work in other works. 

https://repositorio.uam.es/
http://doi.org/10.1109/TNNLS.2019.2906302


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Deep Least Squares Fisher Discriminant Analysis
David Díaz-Vico and José R. Dorronsoro

Abstract— While being one of the first and most elegant
tools for dimensionality reduction, Fisher linear discriminant
analysis (FLDA) is not currently considered among the top
methods for feature extraction or classification. In this paper,
we will review two recent approaches to FLDA, namely, least
squares Fisher discriminant analysis (LSFDA) and regularized
kernel FDA (RKFDA) and propose deep FDA (DFDA), a straight-
forward nonlinear extension of LSFDA that takes advantage of
the recent advances on deep neural networks. We will compare
the performance of RKFDA and DFDA on a large number of
two-class and multiclass problems, many of them involving class-
imbalanced data sets and some having quite large sample sizes;
we will use, for this, the areas under the receiver operating
characteristics (ROCs) curve of the classifiers considered. As we
shall see, the classification performance of both methods is often
very similar and particularly good on imbalanced problems, but
building DFDA models is considerably much faster than doing
so for RKFDA, particularly in problems with quite large sample
sizes.

Index Terms— Deep neural networks (DNNs), Fisher discrim-
inant analysis (FDA), kernel discriminant analysis, nonlinear
classifiers.

NOMENCLATURE

c Number of classes.
d Number of pattern features.
N, N1, . . . , Nc Total and class sample sizes.
I, Id d × d identity matrix.
1N All ones N-dimensional vector.
X N × d sample data matrix.
m Sample mean.
E N × c one hot encoding label matrix.
H N × N centering matrix.
� c × c diagonal matrix with �ii = Ni .
SB , ST Between-class and total sample covariance

matrices.
sB , sT Between-class and total projected

covariance matrices.
λ L2 regularization parameter.
Dλ Inverse of ST + λI .
k(·, ·) Kernel.

Manuscript received April 27, 2018; revised October 2, 2018,
January 25, 2019, and February 21, 2019; accepted March 11, 2019.
This work was supported in part by Mineco under Grant TIN2016-76406-P,
in part by the Comunidad de Madrid under Grant S2013/ICE-2845 CASI-
CAM-CM, in part by the Project FACIL—Ayudas Fundación BBVA a
Equipos de Investigación Científica 2016, in part by the Universidad
Autónoma de Madrid (UAM)–Asociación para el Desarrollo de la Ingeniería
del Conocimiento (ADIC) Chair for Data Science and Machine Learning,
and in part by the Instituto de Ingeniería del Conocimiento. (Corresponding
author: David Díaz-Vico.)

The authors are with the Dpto. Ing. Informática, Instituto de Ingeniería
del Conocimiento, Universidad Autónoma de Madrid, 28049 Madrid, Spain
(e-mail: david.diaz.vico@outlook.com).

Digital Object Identifier 10.1109/TNNLS.2019.2906302

K Kernel matrix.
C H K H matrix.
W Generic weight set of a DNN.
w0, W Linear output components of W .
˜W Components of W excluding w0 and W .
sk(x) Generic scoring for class k acting on x .
πi Prior probability of class i .
P(0|x), P(1|x) Posterior probabilities of classes

0, 1 conditioned on x .
TPR(t), FPR(t) True and false positive rates associated

with a threshold t .

I. INTRODUCTION

IMBALANCED classification is certainly among the most
important problems in machine learning, and as such, it has

received a wide attention [1]. This has been particularly the
case since the mid-2000s, where articles such as [2] and [3]
drew the scientific community to work on a topic that, although
recognized as relevant, up to that, the moment had received
only scattered attention [4]–[7]. Over time, it has been possible
to group [8] the many proposals for handling imbalanced
problems into two general approaches, sample-based
procedures or algorithm-based ones. Sample-based algorithms
usually try to correct the imbalance by undersampling the
largest class (see [9]), oversampling the smaller class (as in
the celebrated Synthetic Minority Over-Sampling Technique
approach [10]), or applying both in combination with an
ensemble classifier [11]. Given the computational cost of
rebalancing and of working with ensembles, simple classifiers
such as decision trees are often used. On the other hand,
algorithm-based methods involve stronger classifiers and
seek to correct their natural bias toward the larger classes.
A natural way to achieve this is to introduce imbalance
correcting classification costs [7], or to modify a classifier’s
loss function so that the influence of the smaller classes is
increased [12]. Neural networks for imbalanced classification
were studied under this second approach. In fact, it was early
recognized [13] that the usual one-hot target encoding often
used in neural classification implicitly and strongly favored
the larger class. To correct this, it was proposed in [13] that
an alternate coding of class patterns which incorporated class
size information into the network’s training.

These observations suggest that classification methods that
are implicitly aware of class information should be of interest
when seeking efficient classifiers in imbalanced problems.
One such method is Fisher linear discriminant analysis
(FLDA [14], [15]). FLDA is based on having competing
spreads for the within-class covariances (small) and the
between-class covariance (large), and it is most often applied
to obtain useful data representations. However, while it can

2162-237X © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-4002-5312


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

also be used to build distance-based classifiers, it is not
frequently applied as such. This is often the case of purely
linear classifiers, but another reason is that its goal of keeping
class means as far as possible while at the same time having
small class variances, can be optimally achieved only when
all classes have Gaussian-distributed features with a common
covariance matrix.

Nevertheless, FLDA is at the core of several successful
methods for important problems. For instance, in face recog-
nition and person reidentification, the well known Fisher face
method [16], which initially relied on models relatively close
to Fisher’s original proposal, has been progressively improved
by adding a nonlinear processing of the images to be identified.
Another well-known extension is kernel Fisher discriminant
analysis (KFDA [17]), which essentially applies linear FDA
over nonlinear extensions of the initial features and takes
advantage of the kernel trick to avoid having to explicitly
build them. KFDA initially addressed binary classification but
has been extended to multiclass problems in [18]. Moreover,
the approach in [18], regularized KFDA (RKFDA) puts on a
clear footing on how to deal with regularization in KFDA.
However, on the other hand, working with kernels requires
N × N matrix computations, with N sample size, which may
make it too expensive, if not unfeasible, on large problems.
Other kernel extensions of FLDA have been proposed, such
as [19] for face recognition, [20] for radial basis function-
based classification, or [21] for general feature extraction and
recognition.

After the huge success of deep neural networks (DNNs),
a clear way for the nonlinear extension of linear methods
is to place them at the last hidden layer of a possibly deep
multilayer perceptron (MLP). In fact, the recent advances in
DNNs have greatly simplified the training of networks with
a very large number of layers and hundreds of thousands of
weights. To this, we can add the widespread availability of
DNN tools such as Theano [22], CNTK [23], Torch [24],
MXNET [25], or TensorFlow [26], endowed with compila-
tion procedures that automatically compute backpropagation
gradients for cost functions much more general than the cross
entropy or square errors that had traditionally been applied
in classification or regression. In a slight abuse of language,
here, we will use the term “deep” with precisely this meaning
of networks defined, initialized, and optimized using these
new advanced techniques, rather than implying a large number
of hidden layers. In fact, a large number of layers and the
correspondingly large number of weights are dependent on
having very large training samples with sizes in the millions
of patterns. Here, we will consider samples sizes up to the
hundreds of thousands and networks with up to five layers;
note that while their training is nowadays almost routine, it was
simply not possible until a few years ago, as the modern
initialization, activation, and optimization techniques were not
yet available.

It is thus natural trying to take advantage of this for
Fisher analysis, but it is not easy to blend eigencalculations
on the covariance matrices of the last hidden layer with
the usual backpropagation training of DNNs; see [27] for
an early attempt in this direction, see [28] where FLDA is

preceded by nonlinear transformations learned by DNNs in a
semisupervised fashion, and see [29] where the direct opti-
mization of FLDA’s eigenvalue-based criterion is proposed.
Other examples are [30] for person reidentification or [31] for
gender detection. A much simpler way for such an extension
is given by the initial results in [32] and [33], and particularly,
the proposals in [34] and [18] show how to relate FLDA
with a least squares regression (LSR) over properly defined
targets (see also [35] for a different least squares approach).
We shall make extensive use of this and also of the isometry
that is shown in [18] and [34] to exist between the FLDA
projections and those induced by the LSR solution. This isom-
etry implies that equivalent FLDA and LSR distance-based
classifiers can be defined in terms of k-nearest neighbors, min-
imum class-mean distances, or as done here, distance-based
scores.

As a consequence, a simple way to nonlinearly extend the
preceding is to replace linear LSR by a DNN counterpart,
where the outputs of a DNN will now approximate appropriate
class-based LSR targets. Of course, regularization is also
mandatory for DNNs, which involves not only a careful choice
of penalties but also an adequate criterion function to be min-
imized during hyperparametrization. This DNN approach to
FDA is our main contribution here (see [36] for a preliminary
version), to which we can add the following.

1) The proposal of suitable scoring functions for RKFDA
and deep FDA (DFDA) based on the computation of
receiver operating characteristic (ROC) curves and area
under the curve (AUC) values.

2) An extensive comparison of RKFDA and DFDA over
a large number of two-class and multiclass data sets,
many of them involving imbalanced problems, which
show that DFDA gives essentially the same classifi-
cation results but with a much lower computational
cost.

This paper is organized as follows. In Section II, we shall
briefly review classical FLDA, and in Section III, we give
a streamlined expositions of the RKFDA approach in [18].
In Section IV, we will review the equivalence in [18] and [34]
between a concrete LSR problem and FLDA. We will propose
in Section V a distance-based scoring function for both DFDA
and RKFDA that facilitates the computation of AUC values
which we will use in order to optimize the regularization
parameter of DFDA and RKFDA. In Section VI, we will exten-
sively compare the performance of DFDA and that of RKFDA
over a number of substantially imbalanced two-class problems,
whereas, in Section VII, we will do so on several large scale
problems that are either imbalanced or multiclass or both; we
also include, here, results for the largest data sets among those
considered in [17]. While, as we shall see, the classification
performance of RKFDA and DFDA is essentially the same,
the computational costs of DFDA are considerably smaller
and make it possible to apply DFDA to large problems for
which the large size of the kernel matrix makes the use of
RKFDA too costly. Finally, a brief discussion will be given as
well as pointers to further work. We also mention that Python
code for building RKFDA and DFDA models and performing
our experiments are available at a GitHub repository.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DÍAZ-VICO AND DORRONSORO: DEEP LSFDA 3

II. FISHER’S LINEAR DISCRIMINANT ANALYSIS

A. Generalized Eigenproblem

Recall that FLDA seeks to concentrate its projections around
their class means while, at the same time, keeping apart these
class means. Several target functions have been proposed,
see [14, Sec. 10.2], where many of them are shown to be
equivalent. In this paper, we will maximize the trace criterion

g(A) = trace
(

s−1
T sB

) = trace((At ST A)−1(At SB A)) (1)

where A is the d×q projection matrix, SB and ST are the sam-
ple between-class and total covariance matrices, respectively,
and sB and sT denote the between-class and total covariances
of the projections z = At x , see [18, Sec. 2.2], for more details.
Assuming q to be such that sB has rank q and sT is invertible,
solving ∇Ag = 0 leads to 0 = −2 ST As−1

T sBs−1
T +2 SB As−1

T ,
i.e., to the problem of finding A such that SB A = ST As−1

T sB .
Given that, for any M and an invertible Q,

trace(Q−1 M Q) = trace(QQ−1 M) = trace(M), the solution
of (1) is unique modulo any such a q × q transformation
Q of the A projections, which will not change the cost
function g(A). In particular, if s−1

T sB = U�Ut is the SVD
of s−1

T sB , we can replace the previous problem with the
following equivalent eigenproblem:

SB A = ST A� (2)

with � the eigenvalues of s−1
T sB and, hence, the nonzero

eigenvalues of S−1
T SB . If ST is invertible, solving (2) is

equivalent to solving S−1
T SB A = A�, we then have

g(A) = trace
(

s−1
T sB

) = trace � = γ1 + . . . + γq . (3)

We can maximize this simply by selecting the q largest
eigenvalues in � after sorting them in descending order,
together with some convenient normalization of their asso-
ciated eigenvectors. In fact, note that a normalization has to
be introduced given that the maximizer of (1) is not uniquely
defined; the usual choice is to have At ST A = Iq but, here,
we will consider solutions B such that Bt ST B = �. Observe
that we can move from A to B simply by setting B = A�1/2

and vice versa.
Finally, it may be the case that ST does not have full rank.

While often S−1
T is then replaced with the Moore–Penrose

inverse of ST , here, we will consider regularized discriminant
analysis [37], working with the positive definite matrix ST +λI
for some λ > 0 and solving then the eigenvalue problem

(ST + λI )−1 SB A = A�. (4)

B. Solving the Generalized Eigenproblem

At first sight, solving (4) would require the computation of:
1) SB and Dλ = (ST + λI )−1 at a cost O(Nd2) + O(d3);
2) DλSB at a cost O(d3);
3) A and � from the SVD of DλSB at a cost O(d3).

Thus, besides computing ST , three steps with a cost O(d3) are
involved. To improve on this, first, observe that if X denotes
the N × d data matrix, we have

ST = Xt H X, SB = Xt H E�−1Et H X (5)

Algorithm 1 Solving Fisher Linear Discriminant Method

1 Read X , λ, E , (N1, . . . , Nc)
2 Compute � = diag(N1, . . . , Nc)

3 Compute ST = X T H X
4 Compute Dλ = (ST + λId )−1

5 Compute Q = Xt H E�−1/2 and R = Qt Dλ Q
6 Compute the SVD R = V �V t

7 Return �, V , Dλ

where the superscript t indicates the transpose, � denotes the
c × c diagonal matrix with �ii = Ni , the number of sample
patterns in class i , E denotes the N × c one-hot encoding
matrix, and H is the centering matrix

H = IN − 1

N
1N 1t

N (6)

with 1N the all ones N-dimensional vector; in particular, the
pth row of the N × d matrix H X equals xt

p − mt , with x p

the pth sample vector. Moreover

SB = Xt H E�−1/2 �−1/2 Et H X = QQt (7)

where we write Q = Xt H E�−1/2. Defining, now, the c × c
matrix

R = Qt Dλ Q (8)

if R = V �V t is its reduced SVD decomposition (i.e., we only
consider the q ≤ c nonzero eigenvalues in �), then it can be
easily seen that the pair (A = Dλ QV , �) verifies DλSB A =
A�, i.e., it solves (4), for we have

DλSB A = Dλ QQt Dλ QV = Dλ Q RV

= Dλ QV � = A�.

This suggests to solve (4) through the steps in Algorithm 1,
whose computational cost is:

1) O(Nd2) to compute ST at step 3 of the algorithm;
2) O(d3) to compute Dλ in step 4;
3) O(d Nc)+ O(dc2) to compute Q and O(cd2 + c2 d) to

compute R in step 5;
4) O(c3) to compute V , � from the SVD of R in step 6;
5) O(dq2) to compute A = Dλ QV after the return in

step 7.

There is thus only one step with a cost O(d3) and when d >
N > c, this should improve on the first approach.

III. REGULARIZED KERNEL FISHER

DISCRIMINANT ANALYSIS

A. Plain Regularized KFDA Problem

In what follows we loosely follow the discussion in [18]. We
also point out that, as mentioned in [18], the treatment below is
slightly different from that in [17]. We assume starting patterns
x ∈ Rd and their expansions x̃ = �(x) ∈ RD in some (quite)
large dimensional space (i.e., D � d). We will denote the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

expanded data matrix as ˜X and we can define the between
and total covariance matrices of the expansions as

˜SB = ˜Xt H E�−1Et H ˜X, ˜ST = ˜Xt H ˜X (9)

with H again the centering matrix H = IN − (1/N)1N 1t
N

and E the one-hot encoding matrix. The generalized regular-
ized eigenvalue problem now to be solved is

˜SB ˜A = (˜St + λID)˜A ˜� (10)

with ˜A ∈ RD×q . This is [18, eq. (14)], shown also in that paper
to be equivalent to its kernel version problem in [18, eq. (16)].

Given that now D � c is certain, the way to proceed
according to the previous discussion for FLDA would be to set
˜Q = ˜Xt H E�−1/2 and to define again the c × c matrix R as

R = ˜Qt
˜Dλ ˜Q = �−1/2 Et H ˜X ˜Dλ˜Xt H E�−1/2 (11)

where ˜Dλ = (˜ST + λI )−1 and R has rank q ≤ c − 1; we then
get its reduced SVD decomposition R = V �V t and somehow
compute the projection matrix ˜A = ˜Dλ ˜QV . However, this is
not feasible as all the preceding computations would have to
be performed on the expanded ˜X , something we want to avoid.

To do so, we will rewrite ˜Dλ˜Xt H as follows.
Set C = H ˜X ˜Xt H = H K H , where we will call K = ˜X ˜Xt

the kernel matrix as we assume its entries x̃ p · x̃q to be
computed on the initial features x through a suitable kernel
k(x p, xq), and set also �λ = (C + λIN )−1. Then, we have

˜Xt H = ˜Xt H (C + λIN ) �λ

= (˜Xt H H ˜X ˜Xt H + λ˜Xt H ) �λ

= (˜Xt H H ˜X + λID) ˜Xt H �λ

= ˜D−1
λ

˜Xt H �λ

therefore, it follows that

˜Dλ˜Xt H = ˜Xt H �λ (12)

which, in turn, implies

R = �−1/2 Et H ˜X (˜Dλ˜Xt H E) �−1/2

= �−1/2 Et H ˜X (˜Xt H �λ) E�−1/2

= �−1/2 Et (H ˜X ˜Xt H ) �λE�−1/2

= �−1/2 Et C �λ E�−1/2 (13)

where we use parentheses for easier reading.
Therefore, the kernel matrix is just what we need to obtain

the matrix R without having to handle the extended data
matrix ˜X and to compute Rs SVD to get V and �. Using (12)
again, the resulting projecting matrix ˜A would then be

˜A = ˜Dλ ˜QV = ˜Dλ˜Xt H E�−1/2V

= ˜X H�λE�−1/2V . (14)

At first sight, ˜A seems to require ˜X but, again, we can
avoid this when computing the Fisher projections. In fact,
the projection of the expansion x̃ of a new x would be

z = ˜At (̃x − m̃) = V t�−1/2 Et�λ H ˜Xt (̃x − m̃)

= V t�−1/2 Et�λ H

(

kx − 1

N
K 1N

)

(15)

Algorithm 2 Training Phase of the Regularized Kernel
Fisher Discriminant Method

1 Read K , λ, E , (N1, . . . , Nc)
2 Compute � = diag(N1, . . . , Nc)
3 Compute C = H K H
4 Compute �λ = (C + λIN )−1

5 Compute F = Et C and G = �λE
6 Compute P = �−1/2 F , Q = G�−1/2 and R = P Q
7 Compute the condensed SVD R = V �V t

8 Return �, V , �λ

where kx is the vector (k(x, x1), . . . , k(x, xN ))t and which
only involves kernel operations. Note that when k(x, x �) =
x · x � (i.e., x̃ = x), we simply recover the previous solution of
FLDA.

We next make explicit the corresponding training and testing
algorithms for this RKFDA procedure.

B. Train and Test Algorithms for the RKFDA Problem

We describe, here, [18, Algorithm 5] in a more detailed
form, handling separately what would be its training phase
(Algorithm 2) and its testing phase (Algorithm 3) and with
an eye to the detailed computational analysis we given in the
following. In the training phase, we simply compute R in (13)
and perform a SVD on it, getting V and � such that

R = V �V t (16)

where � contains the q ≤ c − 1 nonzero eigenvalues of
R and V is made of orthogonal eigenvectors.

These steps to obtain V and � are put together in Algo-
rithm 2 for the training phase of RKFDA, whose computa-
tional costs run as follows.

1) Since we have C = H K H = K−(1/N)(DK +(DK )t )+
(1/N)V K , with:

a) DK the N × N matrix Dk = (d K , . . . , d K ) with
d K the degree vector dK = (d K

1 , . . . , d K
N )t and

d K
p = ∑

q K p,q

b) V K
pq = vK = ∑

p,q K p,q

computing C in line 3 does not essentially involve
float operations once the kernel matrix K is available;
computing it has a cost of O(N2κ), where κ is the cost
of a kernel computation k(x, x �).

2) Computing �λ = (C + λIN )−1 in line 4 has a O(N3)
cost.

3) Computing F = Et C and G = �λ E in line 5 has a
cost of O(cN2).

4) Computing P = �−1/2 F , Q = G�−1/2 and R = P Q
in line 6 has a cost of O(c2 N).

5) Computing the condensed SVD R = V �V t in line 7
has also a cost of O(c3).

Since we may expect N � c, the most expensive operation is
computing �λ = (C + λIN )−1.

With regards to the test phase, where we apply the projec-
tions At x̃ to the expansions x̃ of new, unseen x , the required
steps are outlined in Algorithm 3 for getting these projections



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DÍAZ-VICO AND DORRONSORO: DEEP LSFDA 5

Algorithm 3 Test Phase of the Regularized Kernel Fisher
Discriminant Method

1 Read k(·, ·), S = {x1, . . . , xn}, �λ = (C + λIN )−1, E ,
(N1, . . . , Nc), �q , Vq

2 Read test sample Stest = {x �
1, . . . , x �

M }
3 Compute the test kernel matrix KS = (k �

1, . . . , k �
M ), with

k �
p = (

k
(

x �
p, x1

)

, . . . , k
(

x �
p, xN

))t − k �
p1N (17)

and k �
p = 1

N

∑

q k(x �
p, xq)

4 Compute CS = H KS

5 Compute � = diag(N1, . . . , Nc)

6 Compute T = V t�−1/2 Et�λ

7 Return T CS

on a test sample Stest = {x �
1, . . . , x �

M } with M new patterns.
Its main computational costs are those of the following.

1) Computing KS in line 3 with a cost of O(N Mκ), where
we recall that κ denotes the cost of a kernel computation
k(x, x �).

2) Computing CS = H KS = KS − (1/N)1N 1t
N KS in line

4 only involves sums but no further kernel operations.
3) Computing T = (V t�−1/2)(Et�λ) in line 6 with a

O(cN2) cost.
4) Computing T CS in line 7 with a O(cN M) cost.

Thus, assuming N ≥ M ≥ c, the overall test cost is dominated
by the O(cN2) of line 6.

Finally, we observe that we have relied on the assumption of
a finite dimension D for the x̃ for the sake of motivating and
deriving the above-mentioned algorithms. However, we ulti-
mately only need a kernel k(x, x �) to compute the matrix R
and the projections z in Algorithms 2 and 3. This makes
possible to work, for instance, with projections �(x) in a
countably infinitely dimensional Hilbert space when Gaussian
kernels are used.

IV. DEEP FISHER DISCRIMINANT ANALYSIS

A. Least Squares Regression and FLDA

Let X be the n × d data matrix, 1n the all ones vector, and
in a two-class problem, let y be the target vector defined by
setting yp = n/n1 for patterns in class 1 and yp = −n/n2 for
those in class 2. Then, it is well known [15] that solving

min
w0,w

1

2
�y − 1nw0 − Xw�2 (18)

gives a solution to FLDA. In fact, if m1 and m2 are the
class means on the original features, then SB = (m1 − m2)
(m1−m2)

t , and setting w = S−1
T (m1 −m2), it is easy to check

that S−1
T SBw = wγ , with γ = (m1 − m2)

t S−1
T (m1 − m2).

In other words, w solves the eigenproblem (4) and, therefore,
coincides with a dilation of an FLDA’s projection vector.

Many attempts have been made to extend this simple
equivalence to multiclass problems. This has been achieved
by the essentially equivalent proposals of Ye [34] and, partic-
ularly, Zhang et al. [18] (see also the proposals by Park and
Park [33]). We describe it next.

With 1n and X as before, let now W be a d × q matrix,
w0 a q × 1 vector and Y a target matrix to be chosen, and
consider the LSR problem of minimizing

min
w0,W

1

2

∥

∥Y − 1n wt
0 − XW

∥

∥

2
. (19)

Assuming for simplicity, a regular ST (or working with ST +λI
for some λ > 0 if not), the optimal W∗ solving (19) is

W∗ = S−1
T Xt H Y (20)

with H again the centering matrix. As in Section II, we have
here ST = Xt H X and also

SB = Xt H E�−1/2 �−1/2 Et H X = QQt

with E the N ×c one-hot encoding matrix. Choosing as targets
in (19) the N × c matrix Y = H E�−1/2, the LSR matrix W∗
solution is given by

W∗ = S−1
T Xt H Y = S−1

T Xt H E�−1/2 = S−1
T Q. (21)

We see now that we can recover from W∗ a solution of (4).
To do so, consider again the reduced SVD decomposition
R = V �V t of the c × c matrix R = Qt S−1

T Q. Setting
B = W∗V , we have

S−1
T SB B = S−1

T SB W∗V

= S−1
T QQt W∗V = S−1

T QQt S−1
T QV

= S−1
T Q RV = S−1

T QV �

= W∗V � = B�.

Moreover

Bt ST B = V t (W∗)t ST W∗V = V t Qt S−1
T ST S−1

T QV

= V t Qt S−1
T QV = V t RV

= �.

In other words, (B, �) is a solution of (4) with the normal-
ization Bt ST B = �.

However, we would like to avoid working with B as it would
require the SVD of R and, instead, derive a suitable projection
from the LSR solution W . To achieve this, let us denote by
z = (W∗)t x and ω = Bt x the W∗ and B projection,
respectively, of a pattern x . We then have [18]

�ω − ω��2
2 = (x − x �)t B Bt(x − x �)

= (x − x �)t W∗V V t (W∗)t (x − x �)
= �z − z��2

2

which implies that

�z − zk�2 = �ω − ωk�2, (22)

where zk, ωk denote the kth class means for the z and ω
projections.

Thus, any distance classifier or, more generally, any score
based on distances to class means will give the same results
when computed either over the least squares z projec-
tion or over the linear FDA ones ω. In other words, the LSR
solution can be used to define distance-based scores equivalent
to the ones which could be defined using Fisher’s projection;



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

we will discuss them in Section V below. This LSR procedure
opens the way to a nonlinear, DNN-based approach to Fisher’s
analysis which we describe in Section IV-B. Before doing so,
we point out that it can be easily seen that the row in the target
matrix Y = H E�−1/2 for a pattern x p of class k is given by

Ypk = n − nk

n
√

nk
(23)

and Ypk� = −(
√

nk/n) for the other components k � �= k.
(In [34], these Y values are just multiplied by

√
n.)

B. Deep Neural Fisher Discriminant Networks

As just argued, a distance-based classifier for a c class
problem equivalent to the one resulting from Fisher projections
can be obtained through the following steps.

1) For a given training matrix Xtr , class indicator matrix
Etr and targets Ytr = H Etr�

−1/2, obtain the
c-dimensional vector w∗

0 and d × c matrix W∗ which
solve the LSR problem

min
w0,W

1

2

∥

∥Ytr − 1n wt
0 − Xtr W

∥

∥

2
. (24)

2) Use them to compute the projections y = w∗
0 + (W∗)t x

for x ∈ Dtr and their class means yk = w∗
0 + (W∗)t xk .

3) Assign a test pattern x to a class according to scores
defined in terms of the distances between the projection
y = w∗

0 + (W∗)t x and the class means yk .

Now, it is natural to define a nonlinear extension by applying
the previous LSR steps to nonlinear extensions z = �(x) of
the original features x . A simple way is to apply the previous
linear steps to the z features on the last hidden layer of a DNN;
more precisely, we

1) Solve the LSR problem

min
W

1

2
�Ytr − f (Xtr ,W)�2 (25)

to get an optimal DNN weight set W∗; here, Xtr is the
training matrix, Ytr is the training target matrix defined
previously and the matrix f (Xtr ,W) has rows of the
form f (Xtr ,W)p = f (x p,W), with f (x,W) the linear
outputs of a deep network with weights W .

2) Compute the DNN projections yp = f (x p,W∗) over
Xtr and their class means yc.

3) Compute for the rows x in a test matrix Xts their DNN
projections y = f (x,W∗) and corresponding scores
according to their distances to the yc means and assign
them to the class with the highest score.

Let us write the optimal weight as W∗ = (w∗
0, W∗, ˜W∗),

where w∗
0 , W∗ are the linear weight vector and matrix that

connect the last hidden layer with the network outputs; let us
also denote as z the last hidden layer features z = �(x, ˜W∗),
with � the partial DNN transformation that computes them.
Then, the previous w∗

0, W∗ also solve the LSR problem (18)
over the z features: if not and there were better choices,
say ŵ0 and ̂W for w0 and W with a smaller square error
over the z features, the DNN weight set (ŵ0, ̂W , ˜W∗) would
yield a smaller error than the one defined by the previously

optimal W∗. As a consequence, any score-based classifier built
on the full DNN projections is equivalent to the same score
classifier acting over the FLDA projections of the last hidden
layer patterns.

We will call this DFDA, as it effectively applies Fisher’s
standard linear discriminant analysis over the features z
learned by training a deep neural model. As mentioned in
Section I, we point out that our use of the term “deep network”
has more to do with the underlying network architectures and
initialization and training techniques that we will use, than
with the networks having a large number of hidden layers
(which will be at most five in our experiments).

To avoid singularities, we can simply add a regularization
term. In its simplest form, we would solve

min
w0,W,˜W

1

2
�Y − f (X, w0, W, ˜W)�2

+λ

2
trace(W t W + ˜W t

˜W ) (26)

where ˜W are the components of ˜W when layer biases are
removed. We shall use this cost function in our experiments.
Note that other regularization procedure, such as dropout,
could be used for the ˜W weights; on the other hand,
(λ/2)trace(W t W ) should be the regularizer of the linear output
weights W .

V. SCORING FUNCTIONS AND AUC COMPUTATION

A. Scoring Functions for RKFDA and DFDA

Since we intend to use the AUC as our merit function for
model hyperparametrization and test set evaluation, we will
transform the RKFDA and DFDA outputs into vector scores
with components in a [0, 1] range, where higher values of
the score components should reflect outputs closer to a class
centroid. The desired [0, 1] score range is reminiscent of
that of posterior Probabilities, and in principle, one way of
obtaining such scores could be to try to exploit the fact
that Fisher’s LDA maximizes the posterior class probabilities
assuming all sample class densities are given by Gaussians
with different means but the same covariance. However, this
is most likely not being true of the original features, cannot
be checked on the implicit features of RKFDA, and is not
guaranteed at all for the deep features at the last hidden layer
of a DFDA network. Because of this, we prefer to follow the
simple heuristic we describe next.

Note that, for the RKFDA z projections defined by (15),
class centroids zk are easily computed and so are the distances
to them of new pattern projections. Moreover, for FDA,
we have just observed in (22) that the least squares projections
have the same centroid distances than those of a Fisher
projection. This obviously extends to the outputs of a DFDA
network, as they are the least squares projections of the last
hidden layer representations.

Thus, for both RKFDA and DFDA, we can easily compute
the class-means distances �z − zk� of their projections z,
distances that we will transform into [0, 1] scores better suited
to our subsequent work. To do so, given a validation or test
Fisher projection z, we first compute its distances dk = dk(z)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DÍAZ-VICO AND DORRONSORO: DEEP LSFDA 7

to the centroids zk , 1 ≤ k ≤ c, of the training class projections
and then we define the kth score of z as the following
normalization of the inverses 1/dk , namely,

sk = sk(z) =
1
dk

∑

j
1

d j

= 1
∑

j
dk
d j

= 1

1 + ∑

j �=k
dk
d j

.

Of course, we have to watch out for zero or near-zero
values of dk . Assuming different class centroids, d j = 0 can
only happen at one k; in such a case, the previous expression
would clearly give sk = 1 while we simply take s j = 0 for
other j values as they would involve a fraction 1/dk = ∞ in
the denominator.

B. AUC for Two-Class and Multiclass Problems

Considering first two-class problems, let s(x), 0 ≤ s(x) ≤ 1
be a scoring function which gives higher values to positive
patterns, i.e., those in class 1; an example could be any
estimate P̂(1|x) of the conditional probability of a pattern
being from class 1 given its features x . Let f0, f1 be the
densities of the class conditioned random scores S0(x) =
s(x |0), S1(x) = s(x |1) which we assume to be independent.
Then, for any threshold t , let ct (x) be the classifier such that
ct (x) = 1 iff s(x) > t and let true positive ratios (TPR(t)),
false positive ratios (FPR(t)) be its true and false positive
ratios, that is,

TPR(t) = P({s(x) > t|x ∈ C1}) =
∫ 1

t
f1(s)ds

FPR(t) = P({s(x) > t|x ∈ C0}) =
∫ 1

t
f0(s)ds.

Note that TPR is equivalent to recall or sensitivity and 1−FPR
is equal to specificity. The ROC curve is defined by the points
(FPR(t), TPR(t)) and the area below the ROC is called the
AUC. We define AUC in terms of the 1 class but the same
value is obtained if defined in terms of the 0 class.

The AUC captures in a single number of the performance
of the underlying classifier across all thresholds 0 ≤ t ≤ 1.
Moreover, since TPR(t) and FPR(t) are computed on the rows
and columns on the confusion matrix, the AUC should be more
robust on imbalanced problems, as it uses no prior probability
information. Finally, it can be shown [38] that

AUC = P({s(x) > s(x �) : x ∈ C1, x � ∈ C0})
i.e., the AUC measures the probability that the score of a
random positive pattern is larger than that of negative one.
In particular, this supports the intuition of a given classifier
being preferable to another with smaller AUC.

Contrary to the two-class situation, no clear cut extension of
the AUC to a multiclass setting has been given. Conceptually,
the volume under the surface (VUS) in [39] is possibly
closest to the previous two-class formulation, but it may be
quite difficult to compute, especially for more than three
classes. Simpler approaches can be derived by computing

and combining several two-class AUC values, such as the
total AUC [40]

AUCtotal =
c

∑

i=1

πi AUCi (27)

where, for each i , πi is the class prior and AUCi is computed
as in a two-class problem with Ci as the positive class; the
macroaverage AUCs [41], either on its arithmetic

AUCmacro = 1

c

∑

i

AUCi (28)

or geometric

AUCgeom =
(

c
∏

1

AUCi

) 1
c

(29)

mean variants; the microaverage AUCs of [42, Ch. 13],
or finally, the M-AUC [43]

M = 2

c(c − 1)

∑

i< j

AUC(i, j) (30)

which combines c(c − 1) two class AUC(i, j). See [44] for
more details on the AUC and [38], [41], and [45] for examples
of its use in multiclass problems. As just mentioned, there does
not seem to be a general agreement on which AUC variant
should be used in multiclass problems. Given its simplicity
and relative robustness on imbalanced data sets, we shall use
geometric macro-AUC in our multiclass experiments.

VI. DFDA VERSUS RKFDA ON IMBALANCED

TWO-CLASS PROBLEMS

RKFDA and DFDA over 30 data sets taken from the
Keel repository [46]. They all derive from an original set of
seven problems (some of them multiclass) whose samples are
grouped in various ways to produce 30 different two-class
problems with imbalance ratios that range from a minimum
of 9.22 (when the classes 0 and 4 of the glass problem are
to be classified against the class 5) to a maximum of 129.44
(when class 19 of the abaloneproblem is pitted against all
others). Their sample sizes, dimensions, and imbalance ratios
are given in Table I where the data set names to follow the Keel
naming conventions. For all problems considered, we have
used the five train-test folds provided in the Keel repository.

We will compare the performance of RKFDA models
against DFDA models with a feedforward architecture. The
quite popular ReLU function is our choice for the hidden
layer activations; as usual in a regression setting, we have
linear outputs, and we use Adam over minibatches as the
backpropagation optimizer.

In principle, these choices could imply a substantial hyper-
parameterization cost but we will simplify this as follows.
First, we will use Adam’s default values for the initial
learning rate (0.001) and its beta1 (0.9) and beta2 (0.999)
parameters, as they are quite reliable and robust; similarly,
we leave minibatch size at its scikit-learn default (200).
The second source of hyperparameters could be the number
of hidden layers and of units on each of them in the DFDA



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE I

DIMENSIONS, SAMPLE SIZES, AND IMBALANCE RATIOS FOR
THE TWO-CLASS PROBLEMS

models but here we will simply report our results for networks
with a number of hidden layers ranging from 0 to 5, and
100 units each.

This leaves us with the L2 (or Tikhonov) regularization
penalty λ as our only DFDA hyperparameter, for which we
explore 50 values evenly spaced on a log scale in the interval
[2−30, 210] selecting the optimal one by k-fold cross validation
as described in the following. Prior to this, the DFDA features
have been normalized to 0 mean and 1 standard deviation.

The RKFDA models require two hyperparameters, the L2
regularization penalty λ and the width γ of the Gaussian
kernels exp(−γ �x − x ��2); both will be also selected here
by cross validation. As before, for λ, we will explore 50
values in the interval [2−30, 210]. In order to select γ , we scale
featurewise the RKFDA inputs to a [0, 1] range; note that after
this we will have �x − x ��2 ≤ d , with d pattern dimension.
Because of this, we will explore γ values of the form (2k/d),
with k in the [−10, 10] range; in other words, the considered
kernels will essentially be powers of a basic exponential e−z2

.
As just mentioned, for each of the five train partitions

provided for each data set, optimal λ regularization parameters,
and in the RKFDA case, γ values have been obtained by
fivefold stratified cross validation using the AUC of the
positive class as the scoring function (recall that, as mentioned,
AUC1 = AUC0). Once the optimal λ and, for RKFDA, γ
are chosen, we have used them to train individual DFDA and
RKFDA models on the train partition and applied them on
the test partition, computing afterward the test AUC scores.
In Table III, we show, for each problem, the average AUC
values over five test splits of the RKFDA and all the DFDA

TABLE II

DIMENSIONS, TRAIN SAMPLE SIZES, NUMBER OF CLASSES, AND
IMBALANCE RATIOS FOR THE LARGE SIZE DATA SETS

classifiers except the one with a single hidden layer that we
omit for space and formatting reasons. For easier reading of
these values, the table also gives at the bottom the average of
the rankings of the six models considered for each problem.

As it can be seen, these average rankings are quite similar
for all methods except, as it was to expected, the DFDA_0
model which, being linear, it is in fact equivalent to a standard
linear Fisher model (note that, nevertheless, it gives the best
test average AUC in some problems). RKFDA gives the small-
est AUC in five problems, as also does the DFDA_5 model
but, in general, all models except DFDA_0 appear to have a
similar performance. We also observe that the best test AUC
values in Table III are higher in almost all cases than the values
computed for the same data sets using six state-of-the-art
procedures in imbalanced classification and reported in [47].
In any case, note that the methods here are much stronger than
the relatively weak decision tree classifiers used in [47].

The results in Table III are mostly descriptive. In order
to achieve a more precise analysis, observe that considering
all the 30 problems and their five train-test splits, we have
a total of 150 AUC values for each one of the six models
considered. This suggests that a more objective comparison
can be achieved by applying a paired Wilcoxon signed-rank
test for each model pair over these 150 AUC values, using
Bonferroni corrections to compensate for multiple compar-
isons. The resulting p-values under the null hypothesis are
shown in Table IV. As it could be expected from the previous
discussion, the null hypothesis can only be rejected when the
DFDA_0 model is compared against the others; this is not the
case in all other comparisons and we can conclude that the
performance of DFDA models with two or more hidden units
is similar to that of RKFDA models.

We finally point out that in our experiments in this and
Section VII we have used the MLPRegressor class in
scikit-learn [48] for our implementation of DFDA net-
works, which makes its programming and execution very



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DÍAZ-VICO AND DORRONSORO: DEEP LSFDA 9

TABLE III

TEST AUC FOR RKFDA AND THE 0- AND 2- TO 5-HIDDEN LAYER DFDA MODELS ON THE TWO-CLASS PROBLEMS

TABLE IV

WILCOXON TESTS FOR TWO-CLASS PROBLEMS

easy. We have also used scikit-learn’s routines and
pipelines to implement the data scaling and cross-validation-
based hyperparameterization. As for RKFDA, we have based
our implementation on the numpy and scipy routines for
eigenvalue computations, matrix inversion, and matrix multi-
plication. Thus, while the execution of general Python code
may imply some computational overheads, the numerically
heavier parts of our algorithms rely on a computationally
efficient core. We have run our programs on a Fujitsu Primergy
RX2540 server with 512 GB of RAM memory and Xeon
E5-2640v4 processors at 2.4 GHz. Recall that the code
used to implement RKFDA in our experiments is available
at a https://github.com/daviddiazvico?tab=repositoriesGitHub
repository.

VII. DFDA VERSUS RKFDA ON LARGE

SCALE PROBLEMS

Large scale problems have an obvious importance
in applications, particularly so when imbalanced and/or
multiclass data sets are considered, but they seem not
have been widely discussed in the literature [49]. We
will compare here the performance of RKFDA and
DFDA on two different data subsets with a number of
moderate to large problems, some of them multiclass
and/or imbalanced. The first set is taken from the
https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/data
sets section of the LIBSVM web site. To determine the
optimal values of the hyperparameters λ and γ , we will use
the predefined train, validation, and test splits available for
the dna, ijcnn1, letter, satimage, and shuttle
data sets. The remaining data sets have only train and test
splits and for them, we will hyperparameterize λ and γ
by tenfold stratified cross validation on the train subset.
The second comparison is made of the seven data sets
with at least 1000 patterns among the 13 considered
in the original RKFDA paper by Mika et al. [17],
namely, banana, German, image, ringnorm,
splice, twonorm, and waveform. These data sets
are available in several web sites; we have used those
at http://theoval.cmp.uea.ac.uk/g̃cc/matlab/default.html
#benchmarks.In [17], RKFDA is compared against other
machine learning algorithms using as the performance
measure the accuracy of a threshold-based Fisher classifier
(all problems have only two classes) which is chosen applying
a 1-D linear support vector machine (SVM) classifier on



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE V

TEST AUC FOR RKFDA AND THE 0- AND 2- TO 5-HIDDEN LAYER MLPS ON THE LARGE SIZE PROBLEMS

the RKFDA outputs. In order to have a simpler comparison
with our other results, we have compared the performance
of RKFDA and DFDA using the test AUC values of our
score-based classifiers.

Their dimensions, train sample sizes, number of classes,
and imbalance ratios (defined now as the ratio between
the maximum class size and the minimum one) are given
in Table II. While some data sets are rather small (1000 pat-
terns in german), others are quite large, particularly
cvotype.binary, with 581 012 patterns. The maximum
number of classes is 26 in letter and imbalance ratios go
from near 1 in several data sets to the very large one for
shuttle.

We will again compare here the performance of RKFDA
models against DFDA models comprising 0–5 hidden layers
of width 100, following the procedure of Section VI; recall
that we will scale DFDA inputs to 0 mean and 1 standard
deviation featurewise, while, for RKFDA models, the inputs
will be scaled also featurewise to a [0, 1] range.

Optimal λ and γ values for the LIBSVM data sets are
obtained as those giving a higher geometric macro-AUC in the
validation subsets and these values are used to build the final
models over the train or train plus validation subsets when the
latter exist, and to compute the multiclass geometric macro-
AUC over the test subsets. The data sets used by Mika et al.
have 100 predefined train-test splits; as in [17], we use the
first five splits for hyperparameter tuning and then report
the average and the standard deviation of the test AUCs over
the 100 splits (recall that the LIBSVM data sets only have a
single test set and no standard deviation can be computed).

These final AUC values are given in Table V; we also
omit again the results for the DFDA_1 classifier. For
convenience, it is divided into three parts for the medium size
LIBSVM data sets, the Mika data sets and, finally, the large

LIBSVM data sets. While in several problems, DFDA and
RKFDA models give similar geometric macro-AUC values,
in satimage, w7a, w8a, banana, ringnorm,
and splice, the AUC values of RKFDA are lower, while still
in other problems, namely, combined, covtype.binary,
and skinnonskin, we have not been able to properly
hyperparameterize RKFDA on them. In fact, RKFDA and
DFDA training required about the same times on the rather
small two-class problems but RKFDA training took much
longer times as the data set sizes increased. In particular, given
that we were not able to obtain RKFDA hyperparameters
for the three largest data sets, we do not give RKFDA’s
AUC values for them at the table’s bottom. As before, each
method’s ranking is shown for each problem in the table; note
the rankings of the first two groups run from 1 to 6 but those
at its bottom going from 1 to 5. Here, also, the DFDA_0
model seems to give worse results and the DFDA_2 also
appears to have a worse performance than the models with
three or more hidden layers; note also that the DFDA_3
seems to have a slight edge over the others.

As in the two-class case, the results in Table V and,
particularly, its rankings, also have here a descriptive nature.
The number of observations of the models for which proper
hyperparameters are obtained for RKFDA is now 18, a rel-
atively low number at the edge of what is usually taken as
to justify a more precise Wilcoxon-based comparison between
the DFDA and RKFDA models. Nevertheless, even with these
caveats in mind, we have also applied here a paired Wilcoxon
signed-rank tests for the first two problem sets in Table V.
Its results appear in Table VI and, as it can be seen, if the
Wilcoxon approximation hypotheses hold, the null hypothesis
could be rejected when comparing the DFDA_0 model against
the others. On the other hand, when RKFDA is compared with
the DFDA_3 and DFDA_4, we can reject the null hypothesis



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DÍAZ-VICO AND DORRONSORO: DEEP LSFDA 11

TABLE VI

WILCOXON TESTS FOR THE LARGE SIZE PROBLEMS

at the 0.05 level and could also do so at the 0.1 level when
it is compared with DFDA_5 (we could also reject it when
comparing the DFDA_3 and DFDA_4 models). Therefore,
while the application of a Wilcoxon test may not be rigorously
justified, the results in Tables V and VI point to a slightly
better performance of some of the DFDA models over the
RKFDA ones on larger sample size problems.

VIII. CONCLUSION

In this paper, we have reviewed the classical (FDA) and
kernel (RKFDA) approaches to Fisher’s discriminant analysis
following the analysis of Zhang et al. [18]. We have empha-
sized the computational complexity of RKFDA, which is cubic
on the sample’s size N and, hence, could become prohibitive
for large data sets. Aiming to overcome this, we have proposed
DFDA networks, a simple yet very powerful DNN alternative
to achieve a nonlinear form of FDA adapting the least squares
formulation of FDA proposed in [34] and [18].

We have compared DFDA and RKFDA on a large number of
highly imbalanced two-class problems of relatively small sizes
as well as in a number of two-class and multiclass problems
with substantially larger sizes and some of them with large
class imbalances. Our experimental results show that while
RKFDA and the deep DFDA models give similar results on
the smaller data sets (excluding, of course, the linear model
DFDA_0), the deeper DFDA models seem to improve the
purely classification performance of RKFDA on the large data
sets: although the application of a Wilcoxon test is not fully
justified, if done, we could reject the null hypothesis at the 0.05
level in two cases and could do so at the 0.1 level in another.
Moreover, when computational complexity considerations are
taken into account, DFDA models seem to clearly beat the
RKFDA ones, whose training times on the larger data sets are
much higher (and even failed to finish in some cases).

We can thus conclude that the new deep DFDA networks
we propose here are a simple yet powerful alternative to the
more established regularized kernel-based RKFDA models in
general classification problems and particularly so in imbal-
anced ones. We have seen both approaches to have a similar
(and quite good) performance on highly imbalanced, relatively
small two-class problems; on larger problems, DFDA networks
appear to perform better than RKFDA models from a pure

classification point of view, while being clearly superior from a
computational perspective. In fact, the need of handling kernel
matrices makes the direct application of RKFDA models quite
costly, putting large but clearly not big data problems out of
their reach (a situation not dissimilar to what other kernel-
based methods such as SVMs face over large data sets).

In any case, there are clear ways to improve the performance
of DFDA models that seem precluded to RKFDA ones,
of which we mention three. First, better results are to be
expected if problem-tailored numbers of hidden layers and
units are chosen instead of the fixed architectures used here.
Second, the fully connected networks we have considered
can be combined or substituted with any other of the many
processing layer proposals that have been made for deep net-
works. A clear example is convolutional layers: they directly fit
in the proposed deep Fisher approach and could certainly lead
to an improved classification performance on problems such
as image classification whose inputs have a spatial structure
upon which convolutional filters act naturally.

Finally, we point out that, even after a nonlinear pre-
processing, the Fisher criterion may not lead to the strongest
classifiers. In fact, in the linear case, the cross-entropy loss
used in logistic regression often produces better models. On
the other hand, the structure induced by the Fisher criterion on
the last hidden layer of a DFDA network yields new features
that a more powerful classifier could take advantage of. This
naturally suggests that one could add the least squares DFDA
loss as a companion to another, problem-specific loss that then
takes advantage of the within-class concentration and between
class separation structure of the Fisher-like representation on
the last hidden layer.

While that might have been rather difficult a few years ago,
the most widely used deep net frameworks (Torch, Tensor-
Flow, Theano, MXNET, or CNTK) provide backpropagation
gradients automatically through their network “compilation”
procedures. This means that more general loss functions than
square error or cross entropy can be considered without having
to program their gradients “by hand,” as it was needed in the
early 2000s. We can thus add the DFDA loss function into
any strong deep model (such as AlexNet or VGG-16 for image
processing) in a way that can enhance its performance. We are
currently pursuing these and other related research goals.

ACKNOWLEDGMENT

The authors would like to thank the Centro de Computación
Científica (CCC) at Universidad Autónoma de Madrid (UAM)
for the use of their facilities.

REFERENCES

[1] B. Krawczyk, “Learning from imbalanced data: Open challenges and
future directions,” Prog. Artif. Intell., vol. 5, no. 4, pp. 221–232, 2016.

[2] N. Japkowicz and S. Stephen, “The class imbalance problem: A system-
atic study,” Intell. Data Anal., vol. 6, no. 5, pp. 429–449, 2002.

[3] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Trans.
Knowl. Data Eng., vol. 21, no. 9, pp. 1263–1284, Sep. 2009.

[4] N. Japkowicz, C. Myers, and M. A. Gluck, “A novelty detection
approach to classification,” in Proc. 14th Int. Joint conf. Artif. Intell.,
vol. 1, Aug. 1995, pp. 518–523.

[5] M. Kubat and S. Matwin, “Addressing the curse of imbalanced training
sets: One-sided selection,” in Proc. 14th Int. Conf. Mach. Learn., vol. 97,
1997, pp. 179–186.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[6] T. Fawcett and F. J. Provost, “Adaptive fraud detection,” Data Mining
Knowl. Discovery, vol. 1, no. 3, pp. 291–316, 1997.

[7] P. M. Domingos, “MetaCost: A general method for making classifiers
cost-sensitive,” in Proc. 5th ACM SIGKDD int. conf. Knowl. Discovery
Data Mining, vol. 99, Aug. 1999, pp. 155–164.

[8] B. Tang and H. He, “GIR-based ensemble sampling approaches
for imbalanced learning,” Pattern Recognit., vol. 71, pp. 306–319,
Nov. 2017.

[9] X. Liu, J. Wu, and Z. Zhou, “Exploratory undersampling for class-
imbalance learning,” IEEE Trans. Syst., Man, Cybern. B , vol. 39, no. 2,
pp. 539–550, Apr. 2009.

[10] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: Synthetic minority over-sampling technique,” J. Artif. Intell.
Res., vol. 16, pp. 321–357, Jun. 2002.

[11] M. Galar, A. Fernandez. E. Barrenechea. H. Bustince, and F. Herrera,
“A review on ensembles for the class imbalance problem: Bagging-,
boosting-, and hybrid-based approaches,” IEEE Trans. Sys. Man,
Cybern. C, Appl. Reviews, vol. 42, no. 4, pp. 463–484, Jul. 2012.

[12] Z. Zhou and X. Liu, “Training Cost-Sensitive neural networks with
methods addressing the class imbalance problem,” IEEE Trans. Knowl.
Data Eng., vol. 18, no. 1, pp. 63–77, Jan. 2006.

[13] A. R. Webb and D. Lowe, “The optimised internal representation of
multilayer classifier networks performs nonlinear discriminant analysis,”
Neural Netw., vol. 3, no. 4, pp. 367–375, 1990.

[14] K. Fukunaga, Introduction to statistical pattern recognition, Boston,
MA, USA: Academic, 1990.

[15] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. NewYork,
NY, USA: Wiley, 2000.

[16] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces vs.
Fisherfaces: Recognition using class specific linear projection,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 19, no. 7, pp. 711–720, Jul. 1997.

[17] S. Mika, G. Rätsch, J. Weston, B.Schölkopf, A. J. Smola, and
K. R. Müller, “Invariant feature extraction and classification in kernel
spaces,” in Proc. Adv. Neural Inf. Process. syst., 1999, pp. 526–532.

[18] Z. Zhang, G. Dai, C. Xu, and M. I. Jordan, “Regularized discriminant
analysis, ridge regression and beyond,” J. Mach. Learning Res., vol. 11,
pp. 2199–2228, Aug. 2010.

[19] J. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “Face recognition
using kernel direct discriminant analysis algorithms,” Trans. Neural
Netw., vol. 14, no. 1, pp. 117–126, Jan. 2003.

[20] V. Sydorov, M. Sakurada, and C. H. Lampert, “Deep fisher kernels–end
to end learning of the fisher kernel GMM parameters,” in Proc. Conf.
Comput. Vision Pattern Recognit., Washington, DC, USA, Jun. 2014,
pp. 1402–1409.

[21] J. Yang, A. F. Frangi, J.-Y. Yang, D. Zhang, and Z. Jin, “KPCA plus
LDA: A complete kernel fisher discriminant framework for feature
extraction and recognition,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 27, no. 2, pp. 230–244, Feb. 2005.

[22] J. Bergstra et al., “Theano: A CPU and GPU math expression compiler,”
in Proc. Python sci. Comput. conf. (SciPy), Jun. 2010, vol. 4, no. 3,
pp. 1–25.

[23] F. Seide and A. Agarwal, “CNTK: microsoft’s open-source deep-
learning toolkit,” in Proc. 22nd ACM SIGKDD Inter. Conf. Knowledge
Discovery Data Mining, 2016, p. 2135.

[24] R. Collobert and K. Kavukcuoglu, “Torch7: A matlab-like environment
for machine learning,” in Proc. BigLearn, NIPS Workshop, vol. 5, no. 10,
Dec. 2011, pp. 1–6.

[25] T. Chen et al. (2015). “MXNet: A flexible and efficient machine learning
library for heterogeneous distributed systems.” [Online]. Available:
https://arxiv.org/abs/1512.01274

[26] Google. Tensorflow, An Open Source Software Library for
Machine Intelligence. Accessed: Mar. 2019. [Online]. Available:
https://www.tensorflow.org/

[27] C. S. Cruz and J. R. Dorronsoro, “A nonlinear discriminant algorithm
for feature extraction and data classification,” IEEE Trans. Neural Netw.,
vol. 9, no. 6, pp. 1370–1376, Nov. 1998.

[28] A. Stuhlsatz, J. Lippel, and T. Zielke, “Feature extraction with deep
neural networks by a generalized discriminant analysis,” IEEE Trans.
Neural Netw. Learn. Sys., vol. 23, no. 4, pp. 596–608, Apr. 2012.

[29] M. Dorfer, R. Kelz, and G. Widmer. (Nov. 2015). “Deep linear discrim-
inant analysis.” [Online]. Available: https://arxiv.org/abs/1511.04707

[30] L. Wu, C. Shen, and A. van den Hengel, “Deep linear discriminant analy-
sis on fisher networks: A hybrid architecture for person re-identification,”
Pattern Recognit., vol. 65, pp. 238–250, May 2017.

[31] Q. Tian, T. Arbel, and J. J. Clark, “Deep LDA-pruned nets for effi-
cient facial gender classification,” in Proc.IEEE Conf. Comput. Vision
Pattern Recognit. (CVPR) Workshops, Honolulu, HI, USA, Jul. 2017,
pp. 512–521.

[32] K. Lee and J. Kim, “Font Size: On the equivalence of linear discriminant
analysis and least squares,” in Proc. 29th AAAI Conf. Artif. Intell., 2015,
pp. 2736–2742.

[33] C. H. Park and H. Park, “A relationship between linear discriminant
analysis and the generalized minimum squared error solution,” SIAM
J. Matrix Anal. Applications, vol. 27, no. 2, pp. 474–492, Jun. 2005.

[34] J. Ye, “Least squares linear discriminant analysis,” in Proc. 24th Int.
Conf. Mach. Learn., 2007, pp. 1087–1093.

[35] D. Cai, X. He, and J. Han, “SRDA: An efficient algorithm for large-
scale discriminant analysis,” IEEE Trans. Knowl. Data Eng., vol. 20,
no. 1, pp. 1–12, Jan. 2008.

[36] D. Díaz-Vico A. Omari, A. Torres-Barrán, and J. R. Dorronsoro, “Deep
fisher discriminant analysis,” in Proce. 14th Int. Work-conf. Artif. Neural
Netw., 2017, pp. 501–512.

[37] J. H. Friedman, “Regularized discriminant analysis,” J. Amer. Statist.
Assoc., vol. 84, no. 405, pp. 165–175, 1989.

[38] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognit. Lett.,
vol. 27, no. 8, pp. 861–874, 2006.

[39] C. Ferri, J. Hernandez-Orallo, and M. Salido, “Volume under the ROC
surface for multi-class problems,” in Proc. 14th Eur. Conf. Machine
Learn., 2003, pp. 108–120.

[40] F. Provost and P. Domingos, “Tree induction for probability-based
ranking,” Machine Learn., vol. 52, no. 3, pp. 199–215, Sep. 2003.

[41] G. Tsoumakas, I. Katakis, and I. P. Vlahavas, “Mining multi-label data,”
in Data Mining Knowl. Discovery Handbook, 2nd ed. New York, NY,
USA: Springer, 2010, pp. 667–685.

[42] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Informa-
tion Retrieval. Cambridge, U.K.: Cambridge Univ. Press, 2008.

[43] D. J. Hand and R. J. Till, “A simple generalisation of the area under the
ROC curve for multiple class classification problems,” Machine Learn.,
vol. 45, no. 2, pp. 171–186, Nov. 2001.

[44] D. Díaz-Vico, A. R. Figueiras-Vidal, and J. R. Dorronsoro, “Deep MLPS
for imbalanced classification,” in Proc. Int. Joint Conf. Neural Netw.,
2018, pp. 1–7.

[45] Y. Yang, “An evaluation of statistical approaches to text categorization,”
Inf. Retrieval, vol. 1, nos. 1–2, pp. 69–90, 1999.

[46] J. Alcalá-Fdez et al. “Keel data-mining software tool: data set reposi-
tory, integration of algorithms and experimental analysis framework,”
J. Multiple-Valued Logic Soft Comput., vol. 17, nos. 2–3, pp. 255–287,
2011.

[47] S. Gónzalez S. García, M. LázaroA. R. Figueiras-Vidal, and F. Her-
rera, “Class switching according to nearest enemy distance for learn-
ing from highly imbalanced data-sets,” Pattern Recognit., vol. 70
pp. 12–24, 2017.

[48] F. Pedregosa et al., “Scikit-learn: Machine learning in python,” J. achine
Learn. Res., vol. 12, pp. 2825–2830, 2011.

[49] S. Wang and X. Yao, “Multiclass imbalance problems: Analysis and
potential solutions,” IEEE Trans. Sys. Man Cybern., B (Cybern.), vol. 42,
no. 4, pp. 1119–1130, 2012.

David Díaz-Vico received the M.Sc. degree in math-
ematics and the M.S.E. degree in computer science
from the Universidad Autónoma de Madrid, Madrid,
Spain, in 2012, where he is currently pursuing the
Ph.D. degree in computer science.

He was a Data Scientist with Accenture Ana-
lytics, Madrid, Telefónica Research and Devel-
opment, Madrid, and Instituto de Ingeniería del
Conocimiento (IIC), Madrid, for more than 8 years.
He has authored several papers. He holds patents in
machine learning and applications.

José R. Dorronsoro received the Ph.D. degree with
Washington University in St. Louis, St. Louis, MO,
USA, in 1981.

He is currently a Professor of computer science
with the Universidad Autónoma de Madrid, Madrid,
Spain. He has directed eight Ph.D. theses and has
been a Leader of a large number of research and
innovation projects. He is also a Senior Scientist
with the Instituto de Ingeniería del Conocimiento
(IIC), Madrid, where he leads IIC’s research and
innovation on the application of machine learning

to areas such as renewable energy. He has authored more than 100 scientific
papers in mathematical analysis, machine learning, and applications.


	portada de squares
	squares

