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Abstract 

In order to give a formal treatment of di˙erential equations in positive characteristic 
p, it is necessary to use divided powers. One runs into an analog problem in the theory 
of q-di˙erence equations when q is a pth root of unity. We introduce here a notion 
of twisted divided powers (relative to q) and show that one can recover the twisted 
Weyl algebra and obtain a twisted p-curvature map that describes the center of the 
twisted Weyl algebra. We also build a divided p-Frobenius that will give, by duality, 
a formal Azumaya splitting of the twisted Weyl algebra as well as a twisted Simpson 
correspondence. 
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Introduction 

Motivation 

The classical Simpson correspondence establishes an equivalence between certain local 
systems and certain Higgs bundles (see [Sim92]). It is purely topological in nature. There 
exists also a Simpson correspondence in positive characteristic (see [OV07]) that we recall 
now (local form): 
Theorem 0.1 (Ogus-Vologodsky). Let S be scheme of positive characteristic p and X a 
smooth scheme over S. Then, if the relative Frobenius F : X Ñ X 1 lifts modulo p2, it 
induces an equivalence between the category of modules with a quasi-nilpotent integrable 
connection on X and the category of quasi-nilpotent Higgs modules on X 1. 

In [GLQ10], we generalized this theorem to higher level with a strategy of proof that was 
p0qdi˙erent from the original one. We want to recall it here. Let us denote by D theX 

ring of di˙erential operators of level zero (Berthelot’s sheaf of di˙erential operators) of 
X{S and by TX 1 the tangent sheaf on X 1{S. Then, an OX -module with a quasi-nilpotent 

p0q
pintegrable connection is the same thing as a D -module, and a quasi-nilpotent HiggsX 

bundle on X 1 is the same thing a zS‚T X 1 -module (where S‚ denotes the symmetric algebra 
and completion is always meant with respect to the augmentation ideal). Moreover, there 

p0q p0qexists an injective p-curvature map S‚TX 1 ãÑ D whose image is exactly the center ZX X 
p0q p0qof D ; and the image of the linearized p-curvature map OX bOX1 S

‚TX 1 ãÑ D is the X X 
p0qcentralizer ZO of OX . Using a lifting of Frobenius, one can build an isomorphism X 

p p{Dp0q 
» End 

p

p0q ZOX 
p0q

qX ZX 

from which Simpson correspondence may be deduced through Morita equivalence. Actu-
p0q 1ally, if P denotes the ring of principal parts of level zero of X{S and is the sheaf of X X 1 

di˙erential forms on X 1{S, then this isomorphism comes by duality from an isomorphism 

1 p0qOXˆX1 X 
bOX1 �‚ X 1 » P (1)X 

(where �‚ denotes the divided power algebra). 

The key of the construction consists in using a lifting F̃ of F modulo p2 in order to defne 
the divided Frobenius map, 

1 1 p0q
rrF ˚s :“ F : X 1 Ñ PX , p 

that can be extended in order to obtain the isomorphism (1). Let us also recall how the 
p-curvature map may be obtained by duality. If IX (resp. IX 1 ) denotes the ideal of the 
diagonal of X{S (resp. X 1{S), then one can use the divided power map 

p0q
' ÞÑ 'rps , IX 1 Ñ PX 

p0q p0q1in order to defne a morphism “ IX 1 {I2 Ñ P {IX P . In fact, we obtain anX 1 X 1 X X 

isomorphism 
1 p0q p0qOX bOX1 �‚ X 1 » PX {IX PX (2) 

and the linearized p-curvature is dual to the following composition 
p0q p0q p0q 1P � P {IX P » OX bOX1 �‚ X 1 .X X X 
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Let us give an explicit description of these constructions. Locally, we may assume that 
S “ SpecpRq and X “ SpecpAq are aÿne and that we are given a system of étale 
coordinates on X. Actually, we will concentrate on the one dimensional case and call x the 
coordinate. The pull back A1 of A along the Frobenius of R comes with an étale coordinate 
1 1 px . We denote by F ˚ : A1 Ñ A the relative Frobenius of A so that F ˚px q “ x . We let 
˘ “ 1bx´xb1 P AbR A and denote by ! P 1 the class of ̆ 1 “ 1bx1 ́ x1 b1 P A1 bR A

1.A1 

If we write Ax˘y and Ax!y for the divided power polynomial rings, then the isomorphism 
(2) is the A-linear map 

Ax!y » Ax˘y{˘, !rks ÞÑ ˘rpks . (3) 

We can also describe the divided Frobenius map when we are given a lifting Fr˚ of 
F ˚ modulo p2. To make it simpler, we assume that Fr˚pxr1q “ xrp. Then, from 
rF ˚p˘r1q “ 1 b xrp ́  xrp b 1 one easily derive 

p
ÿ

rF ˚sp!q “ pp ́  1q ¨ ¨ ¨ pp ́  i ̀  1qxp´i˘ris (4) 
i“1 

and the isomorphism (1) is given by 

rkspAr˘s{˘pqx!y » Ax˘y, !rks ÞÑ prF ˚sp!qq . 

We will mimic this strategy in the twisted case and prove in the end (corollary 8.9 below) 
the following theorem (the vocabulary will be specifed later on): 
Theorem 0.2. Let R be a commutative ring and q P R such that R is q-divisible of 
q-characteristic p ą 0. Let pA, ̇ q be a twisted R-algebra with twisted coordinate x such 
that ˙pxq “ qx. If F ˚ is a p-Frobenius on A which is adapted to ˙, then it induces 
an equivalence between A-modules endowed with a quasi-nilpotent ˙-derivation and A1-
modules endowed with a quasi-nilpotent Higgs feld. 

Let us make some comments. The condition that R is q-divisible of q-characteristic p ą 0 
is satisfed for example in the following situations: 

1. q “ 1 and CharpRq “ p with p prime: this is Ogus-Vologodsky’s theorem, 

2. q ‰ 1 and q is a pth root of unity with p prime, 

3. q P K Ă R, with K a feld, is a primitive pth root of unity but p needs not be prime. 

Then if we are given an R-algebra A, the existence (and uniqueness) of ̇  and F ˚ satisfying 
the above properties, are guaranteed in the following situations: 

1. A “ Rrxs or A “ Rrx, x ´1s and q P Rˆ, 

2. R is pN -torsion with p prime (and the pth power map of R{p lifts to R) and x is an 
étale coordinate on A. 

In particular, we see that when R is pN -torsion with p prime, theorem 0.2 is a q-deformation 
of theorem 0.1 in the sense of [Sch17]. 

Description 

In the frst section, we study the behavior under multiplication of twisted powers in a 
polynomial ring. Roughly speaking, these twisted powers are the products that naturally 
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appear when one writes down a formal solution for a q-di˙erential equation. They depend 
on the constant q but also on the variable x. Actually, for more fexibility, we use another 
parameter y (which is y :“ p1 ´ qqx in practice). The point is to check that there is 
enough divisibility in the sense of q-integers so that we can defne the twisted divided 
power polynomial ring in section two. We need these divided powers because we are 
mainly interested in the case when q is a primitive root of unity where (twisted) powers 
are not suÿcient. 

Beware that there is no such thing as a general theory of twisted divided powers and we 
are only able to do the twisted divided power polynomials. Nevertheless, we can defne 
the twisted divided p-power map by using di˙erent parameters q and y on both sides, and 
give an explicit description of the image. We will also show that, as in the classical case, 
there exists a duality between polynomials and twisted divided power polynomials. In 
the third section, we apply the previous constructions to the case where there exists an 
endomorphism ̇  that multiplies y by q. In this situation, there exists a general theory 
of twisted powers and it is compatible with the previous one. We show that ̇  extends 
to twisted divided power polynomials and that it behaves nicely with respect to twisted 
divided p-power map as well as duality. 

In the fourth section, we introduce the twisted principal parts of level zero. This is the 
ring where the formal solutions of a q-di˙erential equation live, even when q is a root of 
unity. At this point, we really need a coordinate x and set y “ x ́  ˙pxq. Note that there 
exists a theory of twisted principal parts of infnite level that is suÿcient when q is not 
a root of unity. However, we need twisted divided powers in order to obtain the correct 
object in general, exactly as what happens in positive characteristic for usual di˙erential 
equations. One can defne formally the Taylor map and check that it is given by the 
expected formula. Using this Taylor map, one can dualize the construction and defne 
in section fve the notion of twisted di˙erential operator of level zero. We show that, as 
expected, the ring of twisted di˙erential operators of level zero is isomorphic to the twisted 
Weyl algebra. In section six, we concentrate on the primitive pth root of unity situation. 
One can then defne the twisted p-curvature map as the dual of the twisted divided p-power 
map introduced earlier. We show that its image is exactly the center of the twisted Weyl 
algebra. 

Section seven is quite technical. We want to defne the notion of divided p-Frobenius on 
the twisted divided power polynomial rings (again, we need di˙erent favors of the divided 
powers on the source and the target). Actually, we were unable to give an explicit formula 
and will rely on a generic argument in order to show the existence of the map. In the last 
section, we concentrate again on the root of unity situation and we dualize the twisted 
divided p-Frobenius map in order to obtain a formal Azumaya splitting of the twisted 
Weyl algebra. It is then completely standard to derive by Morita equivalence a Simpson 
correspondence for twisted di˙erential modules. 

Notations 

Throughout the article, R will denote a commutative ring (with unit) and q will be a fxed 
element of R. We need to recall here some vocabulary and notation from [LQ15]. First of 
all, the q-analog of a natural number m is: 

m´1pmqq :“ 1 ̀  q ̀ ¨ ¨ ¨ ` q . 
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And when q P Rˆ, the q-analog of ́ m is: 
ˆ ˙ 

p´mqq :“ ´ 
1 
` ¨ ¨ ¨ ` 

1 
. 

q qm 

We will also call pmqq (or p´mqq when q P Rˆ) a q-integer of R. 

We might use the attribute “twisted” in place of the prefx q and say twisted analog or 
twisted integer for example instead of q-analog or q-integer. The same remark applies to 
all the forthcoming defnitions. 

The q-characteristic of R is the smallest positive integer p such that ppqq “ 0 if it exists, 
and zero otherwise. We will then write q´charpRq :“ p. If q ‰ 1 and p ą 0, then it means 
that q is a primitive pth root of unity. When q “ 1, then p is nothing than the usual 
characteristic of R. 

The ring R is said to be q-fat (resp. q-divisible) if pmqq is always regular (resp. invertible) 
in R unless pmqq “ 0. For example, when the q-characteristic p is a prime number, then R 
is automatically q-divisible, and therefore also q-fat. And of course, when R is a domain 
(resp. a feld), then R is automatically q-fat (resp. q-divisible). More generally, it is 
suÿcient to assume that q belongs to a subdomain (resp. subfeld) of R. 

We also defne the q-factorial of m P N as 

pmqq! :“ p1qqp2qq ̈ ¨ ¨ pmqq 

and, by induction, the q-binomial coeÿcients 
ˆ ˙ ˆ ˙ ˆ ˙ ˆ ˙ ˆ ˙ 
n 0 n n ́  1 n ́  1k:“ 1, :“ 0 pk ‰ 0q and :“ ` q0 k k k ́  1 k q q q q q 

when n, k P N. Note that we recover the twisted analog of m P N as a special occurrence 
of a twisted binomial coeÿcient since 

ˆ ˙ 
m 

pmqq “ .1 q 

There will appear a lot of formulas involving q-binomial coeÿcients. They can be proved 
rather easily if one reduces to the case where q ́  charpRq “ 0 and R is q-divisible and uses 
proposition 2.6 of [LQ15]. 

The authors thank the referee for the careful reading of the manuscript. 

Twisted powers 

Recall that R denotes a commutative ring and q P R. We assume in this section that A is 
a commutative R-algebra (with unit) and we also fx some y P A. 

We denote by Ar˘s the polynomial ring over A and by Ar˘sďn the A-module of polynomials 
of degree at most n. We set for all n P N, 

n
ź́

1 
˘pnq :“ p˘ ̀ piqqyq P Ar˘sďn. (5) 

i“0 

5 
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If we want to make clear that these elements depend on q and y, we might write ̆ pnqq,y 

but we will try to avoid as much as possible this clumsy notation. As we will see later, 
notation (5) is related to the twisted powers of [LQ15] but we do not need to know this 
at the moment. 

Note that, by defnition, we have 

˘p0q “ 1, ˘p1q “ ˘, . . . , ˘pnq “ ˘p˘ ̀  yq ¨ ¨ ¨ p˘ ̀ pn ́  1qqyq, . . . 

We will also use the induction formula 

˘pn`1q “ ˘pnqp˘ ̀ pnqqyq. (6) 

Lemma 1.1. The ̆ pnq’s for n P N form a basis of the A-module Ar˘s. More precisely, the 
˘pmq’s for m ď n form a basis of Ar˘sďn. 

In other words, the map ̆ n ÞÑ ˘pnq defnes an automorphism of Ar˘s as fltered A-module 
(by the degree). 

Proof. This follows from the fact that each ̆ pnq is monic of degree n. 

Lemma 1.2. In Ar˘s, we have for all m, n P N, 

min pm,nq ˆ ˙ ˆ ˙ 

˘pmq˘pnq “ 
ÿ 

p´1qi !q 
ipi´ 

2
1q m n

y i˘pm`n´iq.piqq 
i i 

i“0 q q 

Proof. This is proved by induction on n. The formula is trivially true for n “ 0 and we 
will have 

˘pmq˘pn`1q “ ˘pmq˘pnqp˘ ̀ pnqqyq (7) 
min pm,nq ˆ ˙ ˆ ˙ 

“ 
ÿ 

p´1qipiqq!q 
ipi´ 

2
1q m n

y i˘pm`n´iqp˘ ̀ pnqqyq. (8)
i i 

i“0 q q 

Now, we know from proposition 1.3 of [LQ15] that for all 0 ď i ď m ̀  n, we have 

npnqq “ pm ̀  n ́  iqq ́  q pm ́  iqq. 

Therefore, we see that 

˘pm`n´iqp˘ ̀ pnqqyq “ ˘pm`n´iq p˘ ̀ pn ̀  m ́  iqqy ́  q npm ́  iqqyq

“ ˘pm`n`1´iq ´ q npm ́  iqqy˘
pm`n´iq. 

We can replace in (8) and get 
˘pmq˘pn`1q “ S ̀  T 

with 
min pm,nq ˆ ˙ ˆ ˙

ÿ ipi´1q m n 
S “ p´1qipiqq!q 2 y i˘pm`n`1´iq

i i 
i“0 q q 

and 
min pm,nq ˆ ˙ ˆ ˙ 

i i nT “ ´ 
ÿ 

p´1q piqq!q 
ipi´ 

2
1q m n

y q pm ́  iqqy˘
pm`n´iq. 

i i 
i“0 q q 
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/

Changing i to i ́  1, we obtain 

min pm,nq`1 ˆ ˙ ˆ ˙

ÿ ipi´1q m n 
T “ p´1qi q n`1´ipi ́  1qq!pm ̀  1 ́  iqqq y i˘pm`n`1´iq.2 

i ́  1 i ́  1 
i“1 q q 

Now we can compute for 1 ď i ď min pm, nq, 
ˆ ˙ ˆ ˙ ˆ ˙ ˆ ˙ 
m n m nn´i`1piqq! ` q pi ́  1qq!pm ́  i ̀  1qq
i i i ́  1 i ́  1 q q q q 

ˆ ˙ ˆ ˙ 
m n ̀  1

“ piqq! ,
i i q q 

and the assertion will follow once we have checked the side cases. For i “ 0, this should be 
clear and the case i “ minpm, nq` 1 has to be split in two. First, if m ď n, then i “ m` 1 
and pm´ i`1qq “ 0: there is no contribution as expected. Second, if m ą n and i “ n` 1, 
we do have 

ˆ ˙ ˆ ˙ ˆ ˙ ˆ ˙ 
m n m n ̀  1 

pnqq!pm ́  nqq “ pn ̀  1qq! . 
n n n ̀  1 n ̀  1 q q q q 

Remarks 1. In the case m “ 1, we fnd 

˘˘pnq “ ˘pn`1q ´ pnqqy˘
pnq 

which we can also directly derive from the induction formula (6). 

2. The coeÿcients of yi˘pm`n`iq are polynomials in q with integer coeÿcients. Actually, 
in order to prove the lemma, it would be suÿcient to consider the case R “ Zrts and 
q “ t. Or even R “ Qptq. However, this does not seem to make anything simpler at 
this point. 

3. In the case q “ 1, we will rather write ! instead of ̆  for the extra variable. Then, 
the multiplication formula simplifes a little bit to 

min pm,nq ˆ ˙ˆ ˙

ÿ m n 
!pmq!pnq “ p´1qii! y i!pm`n´iq. 

i i 
i“0 

Lemma 1.3. Assume that q “ 1. Then, under the morphism of A-algebras 

�
Ar!s / Ar!s bA Ar!s (9) 

�! / 1 b ! ̀  ! b 1, 

we have 
ˆ ˙

´ ¯

ÿ

n 

!pnq !pn´iq b !piq� :“ 
n

. 
i 

i“0 

Proof. The formula is proved to be correct by induction on n. First of all, since � is a ring 
homomorphism, we have 

´ ¯ 
�p!pn`1qq “ � !pnqp! ̀  nyq “ �p!pnqq�p! ̀  nyq. 

Moreover, we can write for all i “ 0, . . . , n, 

�p! ̀  nyq “ 1 b ! ̀  ! b 1 ̀  ny “ 1 b p! ̀  iyq ` p! ̀ pn ́  iqyq b 1. 
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2 

Thus, by induction, we will have 
ˆ ˙n

ÿ n 
�p!pn`1qq “ p!pn´iq b !piqqp1 b p! ̀  iyq ` p! ̀ pn ́  iqyq b 1q

i 
i“0 

ˆ ˙ ˆ ˙n n
ÿ ÿn n

“ !pn´iq b !piqp! ̀  iyq ` !pn´iqp! ̀ pn ́  iqyq b !piq
i i 

i“0 i“0
ˆ ˙ ˆ ˙n n

ÿ ÿn n 
!pn´iq b !pi`1q ` !pn´i`1q b !piq“ 

i i 
i“0 i“0 

ˆ ˙ ˆ ˙n
ÿ̀

1 
ÿ

n 
n n 

!pn´i`1q b !piq ` !pn´i`1q b !piq“ 
i ́  1 i 

i“1 i“0 
ˆˆ ˙ ˆ ˙˙n

ÿ̀

1 
n n 

!pn`1´iq b !piq“ ` 
i ́  1 i 

i“0 
ˆ ˙n

ÿ̀

1 
n ̀  1

“ !pn`1´iq b !piq. 
i 

i“0 

Twisted divided powers 

We let as before A be a commutative R-algebra with a distinguished element y. 

We denote by Ax˘y the free A-module on the (abstract) generators ̆ rns with n P N. We will 
set 1 :“ ˘r0s and ̆  :“ ˘r1s. We will also denote by Irn`1s the free A-submodule generated 
by all ̆ rks with k ą n and 

Axx˘yy :“ lim
Ý Ax˘y{I

rn`1s .
Ð 

We will soon turn Ax˘y into a commutative A-algebra that will depend on q and y. If 
necessary, we will then write 

Ax˘yq,y, ˘rnsq,y , Irn`1s and Axx˘yyq,y.q,y 

The next result is elementary but fundamental. 
Proposition 2.1. There exists a unique morphism of fltered A-modules 

/Ar˘s Ax˘y (10) 
�˘pnq / pnqq!˘rns . 

It is an isomorphism if all positive q-integers are invertible in R. 

The last condition means that R is q-divisible of q-characteristic zero. 

Proof. This follows from the facts that the ̆ pnq’s form a basis of Ar˘s thanks to lemma 
1.1, and that the ̆ rns’s form a basis of Ax˘y by defnition. 

In the latest case, we will turn the bijection into an identifcation. In other words, we will 
write 

˘pnq ˘p˘ ̀  yq ¨ ¨ ¨ p˘ ̀ pn ́  1qqyq
˘rns “ “ . 

pnqq! 1 ̈ ¨ ¨ pn ́  1qqpnqq 
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Proposition 2.2. The multiplication rule 

min pm,nq ˆ ˙ ˆ ˙

ÿ 
i 

ipi´1q m ̀  n ́  i m i˘rm`n´is@m, n P N, ˘rms˘rns “ p´1q q 2 y (11) 
m i 

i“0 q q 

defnes a structure of commutative A-algebra on Ax˘y and the linear map (10) is a 
morphism of A-algebras. Moreover, for all n P N, Irn`1s is an ideal in Ax˘y. 

Note that we have 
ˆ ˙ ˆ ˙ ˆ ˙ ˆ ˙ 
m ̀  n ́  i m m ̀  n ́  i n

“ 
m i n i q q q q 

so that the formula is actually symmetric in m and n. 

Proof. In order to show that these formulas defne a ring structure, it is suÿcient to 
consider the case where R “ Zrts, A “ Zrt, Y s are polynomial rings with q “ t and y “ Y . 
But then, we can even assume that R “ Qptq and A “ QptqrY s. In particular, we are in 
a situation where all positive q-integers are invertible in A. Then the map (10) becomes 
bijective. Moreover, using lemma 1.2, we see that that the multiplication on both sides 
coincide because 

ˆ ˙ ˆ ˙ ˆ ˙ ˆ ˙ 
m ̀  n ́  i m m n 

pmqq!pnqq! “ pm ̀  n ́  iqq!piqq! 
m i i i q q q q 

as one easily checks. 

Finally, assume that n ą k. Then, for i ď minpm, nq, we have i ď m and therefore 
m ̀  n ́  i ě n ą k. It follows that ̆ rms˘rns ” 0 mod Irk`1s, and Irk`1s is an ideal. 

Example 1. For all k P N, we have 

˘rks˘ “ pk ̀  1qq˘rk`1s ´ pkqqy˘
rks . 

2. We have 
p˘r2sq2 “ p2q 2 p3qq˘r4s ´ p3qqp2qqy˘r3s ` qy 2˘r2s .q 

Defnition 2.3. The free A-module Ax˘y on the (abstract) generators ˘rns with n P N, 
endowed with the multiplication rule of proposition 2.2, is the twisted divided power 
polynomial ring over A. 

Remark 1. It is important to remind that q and y are built into this defnition. As 
already mentioned, if we want to make clear the dependence on the parameters, we 
will write Ax˘yq,y. 

2. The coeÿcients in the multiplication formula (11) are polynomials in q. Actually 
if we consider the map ZrtsrY s Ñ A that sends t to q and Y to y, there exists an 
isomorphism of A-algebras 

A bZrtsrY s ZrtsrY sx˘y » Ax˘y. 

3. The fltration of Ax˘y by the ideals Irn`1s will be called the divided power fltration or 
ideal fltration. Note that Axx˘yy inherits the structure of a commutative A-algebra. 

Example 1. In the case q “ 1 and y “ 0, we fall back onto the usual divided power 
polynomial ring. 
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/

2. When q ‰ 1 but still y “ 0, it is possible to develop a general theory of q-divided 
powers, and Ax˘y will be the divided power polynomial ring for this theory. We do 
not know how to achieve this in general. 

3. Assume R “ A “ F2, q “ 1 and y “ 1. In this situation, we have ̆ 2 “ ˘ in Ax˘y
but there exists no non trivial idempotent of degree 1 in the usual divided power 
polynomial ring. Thus we see that when q “ 1 but y ‰ 0, the ring Ax˘y is not 
necessarily isomorphic to the usual divided power polynomial ring. 

Lemma 2.4. Assume R is q-divisible of q-characteristic p ą 0. Then, the ideal generated 
by ̆  in Ax˘y is the free A-module generated by all ̆ rks with p - k. 

Proof. The formulas 

@k P N, ˘rks˘ “ pk ̀  1qq˘rk`1s ` pkqqy˘
rks (12) 

show that the ideal Ax˘y˘ is contained in the A-module generated by all pkqq˘rks’s. Since 
pkqq “ 0 when p | k, we see that Ax˘y˘ is actually contained in the free A-module generated 
by all ̆ rks’s with p - k. Conversely, formula (12) also tells us that 

pk ̀  1qq˘rk`1s ” pkqqy˘
rks mod ˘ 

for all k. Using the fact that we always have pkp ̀  iqq “ piqq, we see that for all k P N, we 
have 

˘rkp`1s “ pkp ̀  1qq˘rkp`1s ” pkpqqy˘
rkps “ 0 mod ˘. 

Then, by induction on i, we get for 1 ă i ă p, 

piqq˘
rkp`is ” pi ́  1qqy˘rkp`i´1s ” 0 mod ˘ 

and we easily conclude since piqq P Rˆ for 0 ă i ă p because R is q-divisible. 

Defnition 2.5. Assume that q´charpRq “ p ą 0. Then the unique A-linear map 

Ax!y1,yp / Ax˘yq,y (13) 
!rks � / ˘rkps 

is the twisted divided p-power map. 

Remark We will not need it but it should be noticed that when p is not the q-
characteristic of R, the defnition has to be modifed a little bit: the twisted divided power 
map will be given by 

Ax!yqp /
,yp Ax˘yq,y

` ˘ 
!rks � / śk ip´1 ˘rkps .i“2 p´1 

Theorem 2.6. Assume that q´charpRq “ p ą 0. If R is q-fat, then the twisted divided 
power map is a ring homomorphism. If R is q-divisible, then it induces an isomorphism 
of A-algebras 

Ax!y1,yp » Ax˘yq,y{p˘q. (14) 

Recall that the frst condition means that q is a primitive pth root of unity or that q “ 1 
and R has positive characteristic p. Moreover, q-divisibility is satisfed if p is prime or if 
q belongs to a subfeld K of R for example. 
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Proof. By defnition, if we denote by u the twisted divided power map (13), we have 

up!rksq “ ˘rkps . 

Therefore, it follows from lemma 2.4 that the map (14) is an isomorphism of A-modules 
when R is q-divisible. Thus, it only remains to show that u is a ring homomorphism when 
R is q-fat. In other words, we want to check that 

@k, l P N, up!rks!rlsq “ up!rksqup!rlsq. (15) 

Since 
min

ÿ

pk,lq ˆ ˙ˆ ˙ 
k ̀  l ́  i k 

!rks!rls “ p´1qi yip!rk`l´is ,
k i 

i“0 

the left hand side of equality (15) is equal to 
min

ÿ

pk,lq ˆ ˙ˆ ˙ 
k ̀  l ́  i k

p´1qi yip˘rkp`lp´ips . 
k i 

i“0 

We can also compute the right hand side 
min pkp,lpq ˆ ˙ ˆ ˙ 

ipi´1q kp ̀  lp ́  i kp 
˘rkps˘rlps “ 

ÿ 
p´1qi q 2 y i˘rpk`pl´is . 

kp q i qi“0 

Our assertion therefore follows from the twisted Lucas theorem (proposition 2.13 of [LQ15]) 
thanks to lemma 2.7 below. 

Lemma 2.7. Assume that p :“ q´charpRq ą 0 and, in case p is even, R is q-fat. Then 
ippip´1q

ip ip´1q q 2 “ p´1q . 

Proof. If p is odd, then either i is even or ip is odd and we may therefore write 
ippip´1q ipip´1q

pq 2 “ pq q 2 “ 1 

because qp “ 1. Now one easily sees that p´1qip “ pp´1qpqi “ p´1qi. 

If we assume that p is even so that p “ 2k with k P N, then we know from proposition 
k1.11 of [LQ15] that, when R is q-fat, we have q “ ´1 and the formula also holds. 

We want to consider now the paring of A-modules 

ă , ą : Ar�s ˆ Ax!y Ñ A 

given by 
" 

1 if n “ m
@m, n P N, ă �m, !rns ą “ 0 otherwise. 

Strictly speaking, this is not a perfect pairing. However, it induces for each n P N, a 
perfect pairing between the A-submodule (or quotient) 

Ar�sďn » Ar�s{�n`1 

of polynomials of degree at most n and the A-submodule (or quotient) 

Ax!yďn » Ax!y{Irn`1s 

of twisted divided power polynomials of degree at most n. Alternatively, we can say that it 
induces perfect parings between Arr�ss and Ax!y as well as between Ar�s and Axx!yy. 
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Proposition 2.8. Assume that q “ 1. Then, 

1. multiplication on Ar�s is dual to the morphism of A-algebras 

� /Ax!y Ax!y b Ax!y (16)
ř� n!rns / 
i“0 !

ris b !rn´is . 

2. multiplication on Ax!y is dual to the morphism of A-algebras 

/Ar�s Ar�s b Ar�s 
�� / 1 b � ̀  � b 1 ́  y� b �. 

Proof. We essentially use the fact that the �n’s and the !rns’s become dual basis under 
our pairing and that the dual to a matrix is its transpose. 

Since multiplication on the polynomial ring Ar�s is given by 
ÿ

�m�n “ �m`n “ �k , 
k“m`n 

comultiplication on Ax!y will be given by 
ÿ 

!rms b !rns!rks ÞÑ 
m`n“k 

and changing indexes (k becomes n, m becomes i and therefore n “ k´m has to be turned 
into n ́  i) will give what we want. 

We also have to show that this comultiplication map is a ring morphism. As usual, we 
may assume that all the non zero integers are invertible. We may then refer to lemma 1.3 
which identifes the morphism (16) with the morphism (9). 

We proceed in the same way for the second assertion. Multiplication on Ax!y is given by 
ˆ ˙ˆ ˙

ÿ k m 
!rms!rns i i!rks“ p´1q y 

m i 
k`i“m`n 

and comultiplication will therefore be given by 
ˆ ˙ˆ ˙

ÿ k mi i�m b �n�k ÞÑ p´1q y . (17) 
m i 

m`n´i“k 

On the other hand, we have 
ˆ ˙ˆ ˙

ÿ k jk k´j ip1 b � ̀  � b 1 ́  y� b �q “ p1 b �q p� b 1qj´ip´y� b �q
j i 

iďjďk 
ˆ ˙ˆ ˙

ÿ k j
“ p´1qi y i�j b �k´j`i 

j i 
iďjďk 

which is exactly the same as (17) (up to the renaming of m into j). 
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3 Twisted divided powers and twisted algebras 

We assume now that A is a twisted commutative R-algebra (a commutative R-algebra 
endowed with an R-linear ring endomorphism ̇ A) and that ̇ Apyq “ qy. We will investigate 
the relation of ̇ A with twisted divided powers relative to q and y. 

We endow the polynomial ring Ar˘s with the unique ˙A-linear endomorphism such 
that 

˙A,yp˘q “ ˘ ̀  y. 

In practice, we will usually write ̇  instead of ̇ A or ̇ A,y in order to make the notations 
lighter. 
Proposition 3.1. We have in Ar˘s, 

˙n@n P N, p˘q “ ˘ ̀ pnqqy. (18) 

Actually, if ̇  is bijective on A and q P Rˆ, then ̇  is bijective on Ar˘s and formula (18) 
holds for any n P Z. 

Proof. By induction, we will have for all n P N, 

˙np˘q “ ˙p˘ ̀ pn ́  1qqyq “ p˘ ̀  yq ` pn ́  1qqqy “ ˘ ̀ p1 ̀  qpn ́  1qqqy 

and we know that 1 ̀  qpn ́  1qq “ pnqq. 
´1Assume that ̇  is bijective on A and q P Rˆ. Then, from ̇ pyq “ qy, we get ̇  ´1pyq “ q y. 

If moreover, ̇  is bijective on Ar˘s, then we deduce from the equality ̇ p˘q “ ˘ ̀  y that 
´1˘ “ ˙ ´1p˘ ̀  yq “ ˙ ´1p˘q ` ˙ ´1pyq “ ˙ ´1p˘q ` q y 

and it follows that 
´1˙ ´1p˘q “ ˘ ́  q y. 

Conversely, this formula can be used to defne an inverse to ̇  on Ar˘s. Finally, applying 
this to ̇ n (and therefore replacing y by pnqqy and q by qn), we obtain as claimed: 

˙ ´n ´np˘q “ ˘ ́  q pnqqy “ ˘ ̀  p´nqqy. 

Remark 1. As a consequence of the proposition, we see that if q´charpRq “ p ą 0, 
then ̇ pp˘q “ ˘ (and of course, also ̇ ppyq “ y). 

2. As usual, most formulas will be polynomial in q, y and ̆ . More precisely, we may 
usually reduce to the case R “ Zrts (and often to R “ Qptq) and q “ t. In other 
words, we would work in Zrt, Y, ̆s with ̇ ptq “ t, ̇ pY q “ tY and ̇ p˘q “ ˘ ̀  Y . 

Recall that we defned in section 4 of [LQ15] the twisted powers of f P Ar˘s with respect 
to ̇  as 

f pnq˙ “ f˙pfq ¨ ¨ ¨ ̇ n´1pfq. 

Corollary 3.2. We have 
n
ź́

1 
npn´1q

@n P N, ypnq˙ “ q 2 y n and ˘pnq˙ “ ˘pnqq,y :“ p˘ ̀ piqqyq. 
i“0 

Proof. Immediately follows from the condition ̇ pyq “ qy and proposition 3.1. 
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We will drop the index ̇  when we believe that no confusion will arise (in particular, this 
pnqqis consistent with the notations of the previous section). But we might also write y 

and ̆ pnqq,y respectively if we want to insist on the choice of q and y. 

We will need below the following formula: 
Lemma 3.3. In Ar˘s, we have for all n P N, 

ˆ ˙n
ÿ n 

˙p˘pnqq “ piqq! y i˘pn´iq. 
i 

i“0 q 

Proof. By induction, we will have 

˙p˘pnqq “ ˙p˘pn´1qq˙np˘q

“ ˙p˘pn´1qqp˘ ̀ pnqqyq

“ ˘˙p˘pn´1qq ` pnqqy˙p˘
pn´1qq

ˆ ˙n
ÿ́

1 
n ́  1 i˘pn´1´iq“ ˘pnq ` pnqqy piqq! y
i 

i“0 q
ˆ ˙n

ÿ n ́  1
“ ˘pnq ` pnqqpi ́  1qq! y i˘pn´iq

i ́  1 
i“1 q 

and the result follows from the identity
ˆ ˙ ˆ ˙ 
n ́  1 n 

pnqqpi ́  1qq! “ piqq! . 
i ́  1 i q q 

Proposition 3.4. The unique ̇ -linear endomorphism of Ax˘y such that 
n 

˙p˘rns 
ÿ 

i˘rn´is@n P N, q “ y , 
i“0 

is a ring homomorphism. Moreover, the map (10) is a morphism of twisted R-algebras. 

Recall that a morphism of twisted rings (or algebras) is a morphism which commutes with 
the given endomorphisms. 

Proof. As we did several times in section 2, we can easily reduce to the case of R “ Qptq
and q “ t and we may therefore assume all q-integers are invertible in R. Then the map 
(10) becomes bijective. We may then use lemma 3.3 and the equality

ˆ ˙ 
n 

pn ́  iqq!piqq! “ pnqq!. 
i q 

Again, if necessary, we will write ̇ q,y to make clear the dependence in q and y. 

Remark 1. The endomorphism ̇  of Ax˘y is not continuous and does not extend to a 
ring endomorphism of Axx˘yy. 

2. We have to be careful that, in general, ̇ p will not be the identity on Ax˘y even if it 
is so on Ar˘s. For example, if q “ ´1, we will have 

2˙p˘q “ ˘ ̀  y and ˙p˘r2sq “ ˘r2s ` y˘ ̀  y , 

and therefore 
2˙2p˘r2sq “ ˙p˘r2sq ´ y˙p˘q ` y 2 “ ˘r2s ` y˘ ̀  y 2 ´ yp˘ ̀  yq ` y 2 “ ˘r2s ` y . 
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Actually, we can give a general formula for the powers of ̇  on Ax˘y: 
Proposition 3.5. We have 

ˆ ˙n
ÿ p ̀  i ́  1

@p P N, @n P N, ˙pp˘rnsq “ y i˘rn´is . 
i 

i“0 q 

Proof. By induction, we will have 
˜

ÿ 
¸

ˆ ˙n 
p ̀  k ́  1 

˙p`1p˘rnsq “ ˙ y k˘rn´ks 
k 

k“0
ˆ ˙ 

q 

n
ÿ p ̀  k ́  1 k“ ˙py q˙p˘rn´ksq

k qk“0 

ÿ 
˜

ÿ

¸

n ˆ ˙ n´k 
p ̀  k ́  1 k k j˘rn´k´js“ q y y

k 
k“0 q j“0 

ÿ

˜

ÿ 
¸

n i ˆ ˙ 
p ̀  k ́  1 k i˘rn´is“ q y . 

k 
i“0 k“0 q 

In order to get the formula, is is suÿcient to notice that, by defnition (and induction), 
we have 

i ˆ ˙ ˆ ˙

ÿ p ̀  k ́  1 p ̀  ik q “ . 
k i q qk“0 

The multiplication rule is quite involved in Ax˘y but the twisted multiplication is much 
simpler: 
Proposition 3.6. We have 

ˆ ˙ 
m ̀  n

@n, m P N, ˘rns˙np˘rmsq “ ˘rn`ms 

n q 

Proof. We may assume that all q-integers are invertible in R and use assertion 1) of lemma 
4.3 of [LQ15] which gives ̆ pnq˙np˘pmqq “ ˘pn`mq. 

Given any natural number p, we have 

p p p˙py q “ ˙pyqp “ pqyqp “ q y . 

We may therefore also apply all the above considerations to the situation qp P R and yp P A, 
and consider the twisted R-algebra Ax!yqp,yp . In the particular case q´charpRq “ p, we 
fall onto Ax!y1,yp . Recall that the twisted divided power map induces an isomorphism of 
A-algebras 

Ax!y1,yp » Ax˘yq,y{p˘q. 

when R is q-divisible of positive q-characteristic p. 
Proposition 3.7. Assume R is q-divisible of q-characteristic p ą 0. Then, the canonical 
map 

Ax˘yq,y Ñ Ax˘yq,y{p˘q » Ax!y1,yp (19) 

is a morphism of twisted A-algebras. 
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Proof. If we denote by u the twisted divided p-power map (13), we need to check that 

@k P N, pu ̋ ˙qp!rksq ” p˙ ̋  uqp!rksq mod ˘. (20) 

From proposition 3.4, we know that 

k 

˙p!rksq “ 
ÿ 

yip!rk´is 

i“0 

and it follows that 
k

ÿ

pu ̋ ˙qp!rksq “ yip˘rkp´ips . 
i“0 

On the other hand, using proposition 3.4 again, we have 

kp
ÿ

p˙ ̋  uqp!rksq “ ˙p˘rkpsq “ y i˘rkp´is 

i“0 

and we are done thanks to lemma 2.4. 

The next result is interesting mostly in the case q “ 1 and we will therefore use ! instead 
of ̆ . 
Proposition 3.8. We have 

@f P Ar�s, @g P Ax!y, ă p1 ́  y�qf, ̇ pgq ą“ ˙pă f, g ąq 

Proof. By ̇ -linearity, it is suÿcient to compute for m, n P N, 
n

ÿ 
i!rn´is ąă p1 ́  y�q�m, ˙p!rnsq ą “ ă �m ´ y�m`1 , y 

i“0 
n n

ÿ ÿ

“ y i ă �m, !rn´is ą ´ y i`1 ă �m`1, !rn´is ą 
i“0 i“0 

n
ÿ

“ ă �m, !rns ą ` y i ă �m, !rn´is ą 
i“1 

n
ÿ́

1 
´ y i`1 ă �m`1, !rn´is ą ´y n`1 ă �m`1 , 1 ą . 

i“0 

The middle sums cancel each other and the last term is 0. 

Remark We may also wonder about the dual (for the above pairing) to the endomorphism 
˙ of Ax!y when ̇ A “ IdA. We just transform 

n
ÿ ÿ

˙p!rnsq “ y i!rn´is “ y i!rjs 

i“0 i`j“n 

to its dual formula and get 

8
ÿ ÿ

�j ÞÑ y i�n “ y i�i`j 

n´i“j i“0 
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4 

which shows that we must introduce power series. More precisely, writing n instead of j, 
we obtain 

˜ ¸

8 8
ÿ ÿ

i�i`n “ i�i �n�n ÞÑ y y . 
i“0 i“0 

ˆ:In other words, we see that the dual to ̇  on Ax!y is exactly division by 1 ́  y� P Arr�ss

/Arr�ss Arr�ss 

fp�q�fp�q / .1 ́  y� 

This is not a surprise according to proposition 3.8. Of course, in order to defne this 
map, we may as well work over the localized ring Ar�, 1´ 

1 
y� s. This map is not a ring 

homomorphism. 

Twisted principal parts of level zero 

We still assume that A is a twisted commutative R-algebra but we also assume that there 
exists a twisted coordinate (we recall below what it means) x P A such that ̇ pxq “ qx ̀  h 
with q, h P R. We set y :“ x ́  ˙pxq. 

In order to apply the results of the previous section, we need to check the following: 
Lemma 4.1. In the ring A, we have ̇ pyq “ qy. 

Proof. We have y “ p1 ́  qqx ́  h and therefore 

˙pyq “ p1 ́  qqpqx ̀  hq ´ h “ qp1 ́  qqx ́  qh “ qy. 

As we did before, we will endow the polynomial ring Ar˘s with the unique ̇ -linear ring 
endomorphism such that 

˙p˘q “ ˘ ̀  y. 

We now review some material from [LQ18a]. We endow P :“ A bR A with the 
endomorphism ˙P :“ ˙A b IdA. We will always see P as an A-module via the action 
on the left and simply write z :“ z b 1 P P when z P A. By contrast, we set z̃ :“ 1 b z. 
We will also write the morphism giving the right action as 

/� : A P 
� /z z.̃ 

We denote by I Ă P the kernel of multiplication on A and consider the modules of twisted 
principal parts of infnite level Pp8q :“ P{Ipn`1q˙ with

pnq˙ 

Ipnq˙ “ I˙pIq ¨ ¨ ¨ ̇ n´1pIq. 

There exists a unique morphism of twisted R-algebras 

Ar˘s / P (21) 
� /˘ x̃ ́  x. 
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We assumed above that x is a twisted coordinate on A: it means that the map (21) induces 
an isomorphism 

» Pp8q
Ar˘s{˘pn`1q

pnq˙ 

for all n P N (see proposition 1.11 of [LQ18a]). We may then see Ar˘s as a subring of the 
Pp8q 

Ý P
p8qring p˙ :“ lim of twisted principal parts of infnite order. We might index all these 

Ð pnq˙ 

objects with A{R if we want to make clear the dependence on A and R. 
Defnition 4.2. The A-module of twisted principal parts of order at most n and level 0 
of A is 

Pp

A 
0 
{

q

R,pnq˙ 
:“ Ax˘y{Irn`1s , 

and the A-module of twisted principal parts of infnite order and level 0 of A is 

Ppp0q :“ lim
Ý P

p0q 
p“ Axx˘yyq.A{R,˙ Ð A{R,pnq˙ 

In order to lighten the notations, we will sometimes drop the index A{R. 

Remark 1. Unlike the infnite level analog, this notion depends on q and x and not 
only on ̇ . 

2. If we look at the case Zrt, s, Xs{Zrt, ss with ̇ ptq “ t, ̇ psq “ s and ̇ pXq “ tX`s, and 
consider the map Zrt, s, Xs Ñ A given by t ÞÑ q, s ÞÑ h, X ÞÑ x, then by construction, 
using the fact that x is a twisted coordinate, we get a canonical A-linear isomorphism 
of rings 

Pp0q 
» Pp0q 

.A bZrt,s,Xs Zrt,s,Xs{Zrt,ss,pnq˙ A{R,pnq˙ 

3. We might also have to consider the intermediate and completed ideals 

rks rks rks
IA{R,pnq˙ :“ Irks{Irn`1s and IpA{R,˙ “ lim

Ý IA{R,pnq˙Ð 

for k ď n ̀  1. 

4. By defnition, Pp0q is the fnite free A-module on the images of the ̆ ris for i ď n
pnq˙ 

rksand I is the free A-module on the images of the ̆ ris for k ď i ď n. It follows that 
Pp0q

pnq˙ 
rks ř

p (resp. Ip ) is the set of infnite sums zi˘
ris with zi P A and i P N (resp.A{R,˙ A{R 

and i ě k). 

5. Formula (11) shows that Irn`1s is an ideal inside Ax˘y. It follows that the quotients 
Pp0q Pp0qhave a natural structure of A-algebra and so does p .A{R,pnq˙ A{R,˙ 

Lemma 4.3. The map (10) sends ̆ pmq inside Irn`1s when m ą n. In particular, it induces 
a homomorphism 

Ar˘s{˘pn`1q Ñ Pp

A 
0 
{

q

R,pnq˙ 
. 

This is even an isomorphism if all pmqq are invertible in R for m ď n. 

Proof. Same arguments as for proposition 2.1. 

Proposition 4.4. There are canonical homomorphisms 

Pp8q Pp8q Pp0q
Ñ Pp0q and p Ñ pA{R,pnq˙ A{R,pnq˙ A{R,˙ A{R,˙ 

which are bijective when all pmqq are invertible (for m ď n in the frst case). 
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A 

p�p0q (( 

� // 
%% 

PA{R // 

Proof. Follows from proposition 2.1 and lemma 4.3. 

When this last condition is satisfed, we might identify both rings and drop the superscript, 
writing simply PA{R,pnq˙ or PpA{R,˙. 
Defnition 4.5. The twisted Taylor map of level zero is the composite homomorphism of 
R-algebras 

�p p8q 

Pp8q
p

A{R,˙ 

� 

Ppp0q .A{R,˙ 

Also, we will denote by 
�p0q : A Ñ Pp0q
n A{R,pnq˙ 

the composition of the twisted Taylor map and the projection. When there is no risk of 
confusion, we might simply write � for any of these Taylor maps. 

We can give an explicit expression for the twisted Taylor map as we shall see shortly. First 
of all, since x is a twisted coordinate on A, we know from proposition 2.10 of [LQ18a] that 
there exists a unique R-linear endomorphism B˙,A of A such that 

@z1, z2 P A, B˙,Apz1z2q “ z1B˙,Apz2q ` ˙pz2qB˙,Apz1q 

(a ̇ -derivation) and B˙,Apxq “ 1. We will often simply write B˙, but this endomorphism 
should not be confused with the abstract generator of the twisted Weyl algebra that we 
will denote later in the same way. 
Proposition 4.6. We have 

8 

�p p0q 
ÿ 

B˙
kpzq˘rks@z P A, pzq “ . 

k“0 

Proof. Recall from proposition 5.5 of [LQ18a] that there exists a family of endomorphisms 
B
rks 
˙ of A such that 

8 
p

ÿ 
Brks@z P A, �p8qpzq “ pzq˘pkq.˙ 

k“0 

The proposition then follows from corollary 6.2 of [LQ18a] where we showed that 

@k P N, @z P A, B˙
kpzq “ pkqq!Brkspzq.˙ 

Example 1. We always have �pxq “ x ̀  ˘. 

2. We have 
2�px q “ x 2 ` pp1 ̀  qqx ̀  hqq˘ ̀ p1 ̀  qq˘r2s . 

3. If ̇ pxq “ qx with q P Rˆ and x P Aˆ, one can show (see proposition 6.5 of [LQ18a] 
for example) that 

ˆ ˙ 81 ÿ pkqq!˘rks 1 ˘ p1 ̀  qq˘r2s k� “ p´1q 
kpk`1q “ ´ 2 ` 3 ´ ¨ ¨ ¨ . 

x k`1 x x q3x 
k“0 q 2 x 
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We will denote by 
AB˙ “0 :“ H0 pAq “ tz P A, B˙pzq “ 0uB˙ 

the subalgebra of horizontal sections of A. 
Proposition 4.7. There exists a left exact sequence 

can 
Pp0q

AB˙ “0 / pA / ˙ . 
� 

ř 
BkProof. We have �pzq “ ˙pzq˘

rks and it follows that �pzq “ z if and only if B˙pzq “ 
0. 

Proposition 4.8. There exists an epi-mono factorization 

Pp0qPA{R � A bAB˙ “0 A ãÑ pA{R,˙. 

When R is q-divisible of q-characteristic p ą 0, there exists another epi-mono factorization 

Pp8q � Pp8q
p ãÑ Ppp0qA{R,˙ A{R,pp´1q˙ A{R,˙. 

As a consequence, when R is q-divisible of q-characteristic p ą 0, we obtain an inclu-
sion 

A bAB˙ “0 A ãÑ Pp8q 
» Pp0q 

.A{R,pp´1q˙ A{R,pp´1q˙ 

Pp0qProof. If an element of P is sent to 0 P p , then it is also sent to 0 in Pp0q 
“ A and it

p0q˙
therefore belongs to I. Now an element of the form z̃  ́  z P I is sent to 

8
ÿ

�p p0qpzq ´ z “ B˙
kpzq˘rks P Ppp0q 

k“1 

and this is equal to 0 if and only if B˙pzq “ 0. Thus we see that the kernel of P Ñ Ppp0q is 
the ideal J generated by the z̃  ́  z with z P AB˙ “0 and we have P{J “ A bAB˙ “0 A. 

!˘rpsWhen q´charpRq “ p ą 0, the image of ̆ ppq in Ax˘y is ppqq “ 0. Therefore, there 
exists an epi-mono factorization 

Ar˘s � Ar˘s{˘ppq Ñ Ax˘y 

inducing an isomorphism of A-modules 

Ar˘s{˘ppq » Ax˘y{Irps 

when R is q-divisible. The second assertion follows immediately. 

Remark If R were not q-divisible (but still q´charpRq “ p ą 0), we would still get a 
decomposition 

Pp8q � Pp8q Pp0q � Pp0q
p Ñ pA{R,˙ A{R,pp´1q˙ A{R,˙ A{R,pp´1q˙ 

and an inclusion A bAB˙ “0 A ãÑ Pp

A 
0 
{

q

R,pp´1q˙ . 
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5 Twisted di˙erential operators of level zero 

We assume again that A is a twisted commutative R-algebra with twisted coordinate x 
such that ̇ pxq “ qx ̀  h and we set y :“ x ́  ˙pxq. 

We develop here the level zero analog of the theory of twisted di˙erential operators of level 
infnity that was presented in [LQ18a]. We will systematically add a superscript 8 in the 
latter case in order to avoid confusion. 

If M is an A-module, when we write Pp

p 
0 
n
q

q˙ 
b1 
A M , we mean that we endow Pp

p 
0 
n
q

q˙ 
with the 

action given by the twisted Taylor map. In other words, we have 

˘rks b1@z P A, s P M, zs “ �pzq˘rks b1 s. 

Pp0qIn particular, on Pp

p 
0 
n
q

q˙ 
b1 
A pmq˙ 

, we use the natural action of A for the left structure 
(action on the right) and the twisted Taylor map for the right structure (action on the 
left). Also, it will be convenient to set 

´ ¯ 
1Pp0q Pp0q Pp0q Pp0q

p bp p :“ lim b1 .˙ A ˙ ÐÝ pnq˙ A pmq˙ 
n,m 

This is the set of infnite sums 
ř 
i,jPN zi,j˘

ris b1 ˘rjs with zi,j P A (with Taylor switch on 
coeÿcients). 
Defnition 5.1. If M and N are two A-modules, a twisted di˙erential operator of level 
0 and degree at most n from M to N is an A-linear map 

Pp0q 
b1 
A M Ñ N.

pnq˙ 

In general, we will write 

b1Di� p0q
pnq˙ A M, Nqn,˙pM, Nq “ HomApPp0q 

and 
Di� p0qpM, Nq “ lim pM, Nq.

ÝÑ Di� p0q˙ n 

In the case N “ n,˙pMq and Di� p0qpMq. Moreover, we setM , we will simply write Di� p0q ˙ 

Dp

A 
0 
{

q

R,˙ :“ Di� ̇p0qpAq. 
Pp0qDefnition 5.2. The comultiplication on p˙ is the A-linear map 

1Pp0q
�pp0q : Ppp0q / p bp Ppp0q˙ ˙ ˙A 

ř� n˘rns / 
i“0 ˘

rn´is b1 ˘ris . 

We might also have to consider the partial comultiplication maps 

�p0q : Pp0q 
Ñ Pp0q 

b1 Pp0q 
.m,n pm`nq˙ pnq˙ A pmq˙ 

which are given by the same formulas. In practice, we should simply denote all these maps 
by �. 
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Proposition 5.3. There exists a commutative diagram 

Pp8qP / p / Ppp0qA bR A ˙ ˙ 

�pp8q �pp0q� � 
� � � � 

Pp8q Pp8q/ p / Ppp0q Ppp0qA bR A bR A P b1 P ˙ b1 
˙ ˙ b1 

˙A A A 

where the frst vertical map sends z1 b z2 to z1 b 1 b z2. 

Proof. Follows from theorem 3.5 of [LQ18a]. 

Proposition 5.4. The comultiplication map �pp0q is a homomorphism of rings. 

Of course, the same result holds for the partial comultiplications. 

Proof. First, we may clearly assume that A “ Rrxs is the polynomial ring in the variable 
x. We can then reduce to the case R “ Zrt, ss with q “ t and h “ s and fnally to the 
case R “ Qptqrss. In other words, we may assume that all q-integers are invertible in R. 
Then the assertion follows from proposition 4.4 and theorem 3.5 of [LQ18a] since we know 

Pp8qthat the comultiplication map is a ring morphism on p˙ . Actually, this last result itself 
follows from the fact that comultiplication is already a ring morphism on P (it corresponds 
to the projection that forgets the middle term). 

Defnition 5.5. The composition of two twisted di˙erential operators of level 0, � : 
Pp0q 

bA M Ñ N and : Pp0q 
bA L Ñ M , is the twisted di˙erential operator of level 0

pnq˙ pmq˙ 

Idb1 
� ̋  : Pp

p 
0 
m
q

`nq˙ 
bA 
1 L 

�bId / Pp

p 
0 
n
q

q˙ 
bA 
1 Pp

p 
0 
m
q

q˙ 
bA 
1 L 

A / Pp

p 
0 
n
q

q˙ 
bA 
1 M 

� / N. (22) 

Proposition 5.6. Composition of twisted di˙erential operators of level 0 is associative. 
In particular, it turns Dp

A 
0 
{

q

R,˙ into a ring. 

Proof. We can reduce again to the case where R “ Qptqrss, q “ t and h “ s and 
use the analogous result for twisted di˙erential operators of infnite level, in which case 
associativity is built-in and Proposition 4.6 of [LQ18a] provides the formula. 

Recall that we introduced in Defnition 6.4 of [LQ18b] the twisted Weyl algebra DA{R,˙,B˙ 

associated to the twisted di˙erential algebra A: this is the Ore extension of A by ̇  and 
B˙ as in proposition 1.4 of [Bou12]). Concretely, this is the free A-module on abstract 
generators Bk with the commutation rule B˙ ̋  z “ ˙pzqB˙ ̀ B˙pzq.˙ 

Proposition 5.7. There exists an isomorphism of fltered R-algebras DA{R,˙,B˙ » DA
p0 
{

q

R,˙. 

In the future, we will identify these two rings and simply write DA{R,˙. 

Proof. There exists an obvious isomorphism of fltered A-modules DA{R,˙,B˙ » DA
p0 
{

q

R,˙ 

obtained by making the Bk’s dual to the ˘rks’s. We only need to show that this is a˙ 

morphism of rings and, as usual, we may assume that all q-integers are invertible. But 
then, it follows from proposition 4.4 that there exists an isomorphism of fltered rings 
Dp8q 

» Dp0q . On the other hand, there exists also a canonical isomorphism of flteredA{R,˙ A{R,˙ 

Dp8qrings DA{R,˙,B˙ » A{R,˙ as we saw in theorem 6.3 of [LQ18a]. Our isomorphism is 
obtained by composing them. 
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Remark 1. This last result might give the feeling that we have been working quite 
hard for nothing: defning twisted divided powers required some energy. But this 
is not true. The dual approach to the twisted Weyl R-algebra introduces new tools 
that will prove to be quite proftable. Recall that it is also possible to defne twisted 
di˙erential operators of infnite level inductively as operators on the ring of functions 
and avoid the introduction of principal parts (and twisted powers). Again, this might 
sound simpler but it is not the best way to do it. 

2. The canonical map Ar˘s Ñ Ax˘y is essentially dual to the canonical map DA{R,˙ Ñ 

Dp8q

A{R,˙ whose image is the subring DA{R,˙ of small twisted di˙erential operators 
generated by functions and twisted derivations inside EndRpAq. 

Proposition 5.8. Assume R is q-divisible and q´charpRq “ p ą 0. Then, there exists a 
commutative diagram 

�� /EndAB˙ “0 pAq EndRpAqO O 

�� ?? � / / � / Dp8qDA{R,˙ DA{R,˙ A{R,˙O 7 g O 
» 

» 
� �? ? 

Di� p0q Di� p8q

p´1,˙pAq p´1,˙pAq. 

Proof. This is obtained by duality from proposition 4.8. 

Twisted p-curvature 

As before, A denotes a twisted commutative R-algebra with twisted coordinate x such 
that ̇ pxq “ qx ̀  h with q, h P R and we set y :“ x ́  ̇ pxq. We also assume in this section 
that q´charpRq “ p ą 0. 
Lemma 6.1. For all n P N, the diagram 

can 
A / Pp0q / Pp0q 

{p˘q
� pnq˙ pnq˙ 

is commutative. 

It means that, modulo ̆ , both A-algebra structures coincide on Pp0q .
pnq˙ 

Proof. If I denotes the ideal of the diagonal in P :“ A bR A as usual, we may consider 
the following commutative diagram 

A 
can 

� 
/ P / P{I “ A 

� � 

A 
can 

� 
/ Pp0q

pnq˙ 
/ Pp0q 

{˘
pnq˙ 

The upper left maps are given by left and right actions of A on P and it follows that the 
upper line is commutative. And all the squares are commutative. Therefore, the second 
line must be commutative too. 
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Proposition 6.2. For all m, n P N, the following diagram is commutative: 

Pp0q � Pp0q 1 Pp0q/ 
p p

ppn`mqpq˙ pnpq˙ 
bA pmpq˙ 

� �� � 

Pp0q / Pp0q
ppn`mqpq˙ 

{p˘q 
pnpq˙ 

{p˘q bA Pp0q 
{p˘q

pmpq˙O O 

rn`m`1s � rn`1s rm`1s
Ax!y{I! / Ax!y{I! bA Ax!y{I! . 

The upper map � comes from defnition 5.2 and the bottom one is the comultiplication 
map that we met in proposition 2.8. The bottom vertical maps are induced by the twisted 
divided p-power map (13). 

Proof. By defnition, all horizontal arrows are given by compatible formulas on the 
generators. However, the upper right tensor product is obtained by using the Taylor map 
on the right factor although the down right tensor product uses the canonical structure 
on both side. But this does not matter thanks to lemma 6.1. 

Proposition 6.3. Assume that R is q-divisible. Then, there exists a (unique) A-linear 
homomorphism of R-algebras 

Ar�s / DA{R,˙ (23) 
� 

Bp/� ˙. 

It induces an isomorphism between Ar�s and the centralizer ZAA{R,˙ of A in DA{R,˙ and 
an isomorphism between AB˙ “0r�s and the center ZA{R,˙ of DA{R,˙. 

Proof. We know from the frst part of proposition 2.8 that the bottom map of proposition 
6.2 is dual to multiplication on the polynomial ring Ar�s. And by defnition, the top map 
is dual to multiplication on DA{R,˙. Moreover, since we assume that R is q-divisible, it 
follows from theorem 2.6 that the bottom vertical maps of proposition 6.2 are bijective. 
Therefore, by duality, the top vertical maps corresponds to an injective morphism of 
R-algebras Ar�s Ñ DA{R,˙ that sends � to B˙p . Since Ar�s is a commutative ring, its 
image is contained into the centralizer ZAA{R,˙ of A in DA{R,˙. Conversely, since R is 
q-fat, it follows from the frst part of lemma 6.4 below that the image of Ar�s is exactly 
ZAA{R,˙. The assertion about ZA{R,˙ is then a consequence of the last assertion of the 
same lemma. 

Lemma 6.4. We denote by ArB˙ps (resp. AB˙ “0rB˙
ps) the A-submodule (resp. AB˙ “0-

submodule) of DA{R,˙ generated by Bpk with k P N. Then,˙ 

1. if A is q-fat, we have ZAA{R,˙ Ă ArB˙
ps, 

2. we always have ArBps X ZA{R,˙ “ AB˙ “0rBps X ZAA{R,˙.˙ ˙ 

Be careful that, in this lemma, ArB˙ps and AB˙ “0rB˙
ps denote the A-submodules generated 

by the powers of Bp which are a priori di˙erent from the R-subalgebra generated by A˙ 

and Bp (as long as this last ring is not known to be commutative for example).˙ 
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ř

Proof. If ' :“ zkB
k P DA{R,˙, we can use proposition 6.4 from [LQ18a] and write ˙ 

ÿ ÿ

'x “ zkB˙
k x “ zkp˙

kpxqBk ` pkqqB
k´1q˙ ˙ 

˙k ˙k Bk“ 
ÿ 

pxqzkB˙
k ` 

ÿ

pkqqzkB˙
k´1 “ 

ÿ

´ 
pxqzk ̀ pk ̀  1qqzk`1 

¯ 
˙. 

Therefore, if ' commutes with x, we will have 

˙k@k ě 0, pxqzk ̀ pk ̀  1qqzk`1 “ xzk. 

kSince ̇ kpxq “ q x`pkqqh, we see that for p | k we have ̇ kpxq “ x, and therefore zk`1 “ 0. 
If k is a positive integer such that zk´1 “ 0, we must have pkqqzk “ 0. If we assume that 
A is q-fat, we must have pkqq “ 0 or zk “ 0. Since q´charpRq “ p ą 0, this exactly means 
that ' P ArB˙

ps. 

We now prove the second assertion. We pick-up some 
ÿ

' :“ zkB
kp P ArBps X ZAA{R,˙.˙ ˙ 

Then, we have ' P ZA{R if and only if 'B˙ “ B˙ ' which means that 
ÿ 
zkB

kp`1 
ÿ 

B˙zkB
kp 

ÿ 
˙pzkqB

kp`1 ` B˙pzkqB
kp “ “ .˙ ˙ ˙ ˙ 

Thus we see that the condition is equivalent to 

@k P N, zk “ ˙pzkq and B˙pzkq “ 0. 

The second condition gives ArB˙ps X ZA{R,˙ Ă AB˙ “0rB˙
ps X ZAA{R,˙. Moreover, since it 

follows from proposition 7.4 of [LQ18b], for example, that the frst condition is implied by 
the second, we also get the reverse inclusion. 

Defnition 6.5. The map (23) is the twisted p-curvature map. 

Divided Frobenius 

In this section, the ring R is endowed with an endomorphism FR ˚, A denotes a commutative 
R-algebra and x is any element of A. We set y :“ p1 ´ qqx. We also fx a p P Nzt0u and 
at some point, we will use q1 :“ qp and y1 :“ ppqqy. 

We will frequently need the twisted binomial formula (see proposition 2.14 of [LQ15] for 
example) that we recall now: 

n
ź́

1 n ˆ ˙

ÿ kpk´1q ni k n´k
@z1, z2 P A, @n P N, pq z1 ` z2q “ q 2 z . (24)1 z2k 

i“0 k“0 q 

Recall also that we write for all n P N, 

n
ź́

1 n
ź́

1 n
ź́

1
` ˘ ` ˘ 

˘pnq :“ ˘pnqq,y :“ p˘ ̀ piqqyq “ ˘ ̀ p1 ́  q iqx “ x ̀  ˘ ́  q i x . 
i“0 i“0 i“0 
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Lemma 7.1. We have for all m P N, 
ˆ ˙m

ÿ mm “px ̀  ˘q x m´i˘piq. (25)
i 

i“0 q 

iProof. We have for all i P N, ̆ pi`1q “ ˘piqpx ̀  ˘ ́  q xq and it follows that ̆ piqpx ̀  ˘q “ 
˘pi`1q ` qix˘piq. Therefore, if the formula holds for some m, we will have 

ˆ ˙m
ÿ m 

px ̀  ˘qm`1 “ x m´i˘piqpx ̀  ˘q
i 

i“0 q 

m ˆ ˙

ÿ m m´i“ x p˘pi`1q ` q ix˘piqq
i 

i“0 q

ˆ ˙ ˆ ˙mm
ÿ̀

1 
ÿm mm´i`1˘piq ` i m`1´i˘piq“ x q x 

i ́  1 i 
i“1 q i“0 q 

m
ÿ̀

1 
¸˜

ˆ ˙ ˆ ˙ 
m mi m`1´i˘piq“ ` q x 
i ́  1 i 

i“0 q q 

ˆ ˙m
ÿ̀

1 
m ̀  1 m`1´i˘piq“ x . 
i 

i“0 q 

Defnition 7.2. A p-Frobenius on A (with respect to F ˚ and x) is a morphism of R-R 
palgebras FA 

˚
{R : A

1 :“ R 
F ̊  ÔbR A Ñ A such that FA 

˚
{Rp1 b xq “ x . 

R 

Example 1. If R is a ring of prime characteristic p ą 0 endowed with the pth power 
map, then the usual relative Frobenius is a p-Frobenius on A. 

2. If R is a ring of pN -torsion with p prime, F ˚ a lifting of the pth power map on R{p 
and x an étale coordinate on A, then there exists a unique p-Frobenius on A. 

3. If A “ Rrxs or A “ Rrx, x ´1s, then there exists a unique p-Frobenius on A. 
Defnition 7.3. If F ˚ is a p-Frobenius on A, then the p-Frobenius F ˚ on Ar˘s isA{R Ar˘s{R 
the F ˚ -linear morphism of R-algebrasA{R 

/F ˚ : A1r˘s Ar˘sAr˘s{R 
� p˘ / px ̀  ˘qp ́  x . 

Remark 1. The p-Frobenius on Ar˘s is both a p-Frobenius with respect to x and to 
x ̀  ˘. 

2. When R is q-fat and has q-characteristic p ą 0, it follows from lemma 7.1 and 
proposition 2.12 of [LQ15] that px ̀  ˘qp ́  xp “ ˘ppq. 

3. There exists a commutative diagram 

A1r˘s F ˚ 
/ Ar˘s 

� �F ˚bF ˚ 

A1 bR A
1 / A bR A 

where the vertical maps are respectively A1 and A-linear on the left and send ̆  to 
1 b x ́  x b 1. 
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Now, we become also interested in the Frobenius version of the twisted powers. Recall 
that we write q1 :“ qp and y1 :“ ppqqy and we have therefore 

n
ź́

1 n
ź́

1 n
ź́

1 ̀
˘ 

1 pi@n P N, ˘pnqq1,y :“ p˘ ̀ piqqp ppqqyq “ p˘ ̀ ppiqqyq “ x ̀  ˘ ́  q x . (26) 
i“0 i“0 i“0 

Defnition 7.4. The p-Frobenius coeÿcients are the polynomials 
ˆ ˙ ˆ ˙n 

An,i :“ 
ÿ 

p´1qn´jq 
ppn´jqp

2 
n´j´1q n pj 

P Zrqs. 
j i qpj“0 q 

Remark We will show later that An,i “ 0 unless n ď i ď pn but we may observe right 
now that An,pn “ 1 and that An,i “ 0 for i ą pn. 

From now on, we will often omit the index in the p-Frobenius maps and simply write 
F ˚. 
Proposition 7.5. If F ˚ is a p-Frobenius on A, then we have 

pn 

F ˚p˘pnqq1,y1 
ÿ 

pn´i˘piqq,y @n P N, q “ An,ix 
i“0 

where the An,i are the p-Frobenius coeÿcients. 

Proof. Using the twisted binomial formula (24) in the case z1 “ ´xp and z2 “ p˘ ̀  xqp 

(with qp instead of q) and the last equality of (26), we have 

n
ź́

1 ̀
˘ 

1 pi pF ˚p˘pnqq1,y q “ px ̀  ˘qp ´ q x “ 
i“0 
n ˆ ˙

ÿ ppn´jqpn´j´1q n
“ p´1qn´jq 2 xppn´jqpx ̀  ˘qpj . 

j qpj“0 

Using lemma 7.1, we obtain 

n ˆ ˙ pj ˆ ˙ 

F ˚p˘pnq 1,y1 q “ 
ÿ 

p´1qn´jq 
ppn´jqpn´j´1q n

xppn´jq 
ÿ pj 

xpj´i˘piqq,y q 2 
j i 

j“0 qp i“0 q
˜ ¸

pn n ˆ ˙ ˆ ˙

ÿ ÿ ppn´jqpn´j´1q n pj
“ p´1qn´jq 2 xpn´i˘piqq,y . 

j i 
i“0 j“0 qp q 

As a particular case of the proposition, we have the following: 
Corollary 7.6. If F ˚ is a p-Frobenius on A, then we have 

p ˆ ˙

ÿ p p´i˘piqF ˚p˘q “ x . 
i 

i“1 q 

As a preparation for the next statement, we prove now the following exchange lemma: 
Lemma 7.7. We have for all m, n P N, 

ˆ ˙ ˆ ˙n 
npn´1q m ÿ kpk´1q n 
q 2 p1 ́  qqnpnqq! “ p´1qn´k q 2 q mpn´kq. 

n k q qk“0 
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It means in particular that the right hand side is zero unless m ě n. 

mProof. Using the twisted binomial formula (24) for z1 “ 1 and z2 “ ´q , we get 

n ˆ ˙ n
ź́

1
ÿ kpk´1q n

p´1qn´k q 2 q mpn´kq “ pq k ´ q mq
k q 

n
ź́

1 n
ź́

1 
k m´k 

k“0 k“0 

“ q p1 ́  q q

k“0 k“0 
n
ź́

1 
npn´1q

“ q 2 p1 ́  qqn pm ́  kqq 
k“0 

ˆ ˙ 
npn´1q m

“ q 2 p1 ́  qqnpnqq! . 
n q 

Lemma 7.8. Given n, i P N, we have An,i “ 0 unless n ď i ď pn in which case 

i´n ˆ ˙ ˆ ˙ 
ipi´1q npn´1q ÿ lpl´1q i i ́  li´n n p i´n`l q 2 p1 ́  qq piqq!An,i “ ppqq pnqqp !q 2 p´1q q 2 . 

l n q qpl“0 

Proof. We will compute 
ipi´1q 

iLHS :“ q 2 p1 ́  qq piqq!An,i. 

In order to do that, we use lemma 7.7 twice (with qp instead of q the second time): 
ˆ ˙ ˆ ˙n 

iLHS “ q 
ipi´ 

2
1q 
p1 ́  qq piqq! 

ÿ 
p´1qn´k q 

ppn´kqp
2 
n´k´1q n pk 

k i qp qk“0 
˜ ¸

ˆ ˙ ˆ ˙n 
n i pk

“ 
ÿ 

p´1qn´k q 
ppn´kqp

2 
n´k´1q 

q 
ipi´ 

2
1q 
p1 ́  qq piqq! 

k i qp qk“0 
˜ ¸

n ˆ ˙ i ˆ ˙

ÿ pn´kqpn´k´1q n ÿ i lpl´1q
“ p´1qn´k qp 2 p´1qi´l q 2 qpkpi´lq

k l qp qk“0 l“0
˜ ¸

i ˆ ˙ n ˆ ˙

ÿ i lpl´1q ÿ pn´kqpn´k´1q n
“ p´1qi´n`l q p´1qk qp qpkpi´lq .2 2 

l k q qpl“0 k“0
˜ ¸

i´n ˆ ˙ ˆ ˙

ÿ i lpl´1q npn´1q i ́  li´n`l p p“ p´1q q 2 q 2 p1 ́  q qnpnqqp ! 
l n q qp 

i´n ˆ ˙ ˆ ˙ 
l“0 

npn´1q ÿ lpl´1q i i ́  ln p n i´n`l“ ppq pnqqp !q 2 p1 ́  qq p´1q q 2 
q l n q qpl“0 

psince 1 ´ q “ p1 ´ qqppqq. When i ă n, the right hand side is zero. Since An,i is a 
polynomial in q, it has to be zero too. Otherwise, we obtain the expected equality by 
moving p1 ́  qqn to the left hand side. 

Remark In particular, we have 
npn´1q

pnqq!An,n “ ppqnpnqqp !qpp´1q 2 .q 
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Proposition 7.9. Given n, i P N, there exists a unique polynomial Bn,i P Zrqs such that 
npiqq!An,i “ pnqqp !ppqq Bn,i, 

where An,i denote the p-Frobenius coeÿcients. We have Bn,i “ 0 unless n ď i ď pn with 
extreme values 

n p´1 
pp´1qnpn´1q ź ź 

Bn,n “ q 2 and Bn,pn “ pkp ́  iqq. 
k“1 i“1 

Proof. In the polynomial ring Zrqs, any non zero q-integer or qp-integer is prime to both 
1 ´ q and q. The frst assertion therefore follows from lemma 7.8. The precise values in 
the case i “ n and i “ pn are obtained from the remark before the proposition and from 
the fact that An,pn “ 1 since 

n p´1
ź ź 

ppnqq! “ pkp ́  iqq 
k“1 i“0 
n n p´1

ź ź ź 
“ pkpqq pkp ́  iqq 

k“1 k“1 i“1 
n p´1

ź ź 
“ ppqnpnqqp ! pkp ́  iqqq 

k“1 i“1 

because pkpqq “ pkqqp ppqq for each k. 

Example 1. We have B1,1 “ 1, B1,2 “ pp ́  1qq, B2,2 “ qp´1, B3,3 “ q3pp´1q. 

2. When R is q-fat of positive q-characteristic p and 1 ď n ď p, we have, using lemma 
2.12 (and proposition 1.11 if p is even) from [LQ15], 

ˆ ˙ 
p

p1 ́  qqp´nBn,p “ p´1qn´1 . 
n 

? 
´1` ´3For example, if we write j “ , we obtain p1 ´ jqB2,3pjq “ ´3 and therefore 2 

B2,3pjq “ ´j ́  2. 
Defnition 7.10. Let F ˚ be a p-Frobenius on A. Then, 

1. the divided p-Frobenius coeÿcients are the polynomials Bn,i of proposition 7.9, 

2. the divided p-Frobenius map is the unique F ˚-linear map A1x!yqp,y Ñ Ax˘yq,y such 
that 

pn
ÿ 

pn´i˘ris@n P N, rF ˚sp!rnsq “ Bn,ix . 
i“n 

Remark 1. As a particular case of this defnition, we have 
p

ÿ

rF ˚sp!q “ pp ́  1qq ̈ ¨ ¨ pp ́  i ̀  1qqxp´i˘ris . 
i“1 

` ˘ 
p´1In more fancy terms, the ith coeÿcient is pi ́  1qq! i´1 q . 

2. The divided p-Frobenius map is continuous. More precisely, it is compatible with 
the ideal fltration and induces F ˚-linear maps 

rn`1s
A1x!y{Irn`1s Ñ Ax˘y{I .! ˘ 

29 



3. We may extend the divided Frobenius map by linearity and obtain an A-linear map 

Ax!yqp,p1´qqxp Ñ Ax˘yq,y 

given by the same formula (we have F ˚pyq “ p1 ́  qqxp). 
Lemma 7.11. Let F ˚ be a p-Frobenius on A. Then, under the canonical map Ar˘s Ñ 
Ax˘yq,y, we have for all n P N, 

pF ˚p˘pnqq1,y1 q ÞÑ pnqqp !ppqnrF ˚sp!rnsq ,y q.q 

Proof. This is a direct consequence of the defnitions. More precisely, since An,i “ 0 for
řpni ă n, we have F ˚p˘pnqq1,y1 q “ pn´i˘piqq,y and this is sent to i“n An,ix 

pn pn
ÿ ÿ

An,ix
pn´ipiqq!˘risq,y “ pnqqp !ppqnBn,ixpn´i˘risq,y q 

i“n i“n 

n p
“ pnqqp !ppq rF ˚sp!rnsq ,y q.q 

Proposition 7.12. If F ˚ is a p-Frobenius on A, then the divided Frobenius map 

rF ˚s : A1x!yqp,y Ñ Ax˘yq,y 

is a homomorphism of rings. 

Proof. We want to check that for all m, n P N, we have 

p p ˚ p p
rF ˚sp!rmsq ,y !rnsq ,y q “ rF s p!rmsq ,y qrF ˚sp!rnsq ,y q. (27) 

Note that it is suÿcient to do the case R “ Zrts, t “ q and A “ Rrxs, and then specialize 
our variables. In particular, we may assume that q´charpRq “ 0 in which case we will 
identify Ar˘s with Ax˘yq,y. Then, this essentially follows from the fact that F ˚ itself is 
a ring homomorphism. But we need to be careful. By F ˚-linearity, the left hand side of 
(27) is equal to 

min pm,nq ˆ ˙ ˆ ˙ 
i i pi pLHS “ 

ÿ 
p´1q q 

pipi 
2 
´1q m ̀  n ́  i m 

p1 ́  qq x rF ˚sp!rm`n´isq ,y q
m i qp qpi“0 

From proposition 7.11, we see that, for all i ď m ̀  n, we have 
ˆ ˙ 
m ̀  n 

piqqp ! ppqi F ˚p˘pm`n´iqq1,y1 q “ pm ̀  nqqp !ppqn`mrF ˚sp!rm`n´isqp,y qq qi qp 

and it follows that 
pm ̀  nqqp !ppqm`nLHS “ q 

min pm,nq ˆ ˙ ˆ ˙ ˆ ˙

ÿ pipi´1q m ̀  n ́  i m m ̀  n 
,yp´1qi q 2 piqqp ! ppqi p1 ́  qqi xpiF ˚p˘pm`n´iqq1 1 qqm i i qp qp qpi“0 

On the other hand, if we denote the right hand side of (27) by RHS, we have 
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ˆ ˙ 
m ̀  nm`n m ˚ p n ˚ p

pm ̀  nqqp !ppq RHS “ pmqqp !ppq rF s p!rmsq ,y qpnqqp !ppq rF s p!rnsq ,y qq q qn pq
ˆ ˙ 
m ̀  n 

1 1“ F ˚p˘pmqq1,y qF ˚p˘pnqq1,y q
n qp

ˆ ˙ 
m ̀  n

“ F ˚p˘pmqq1,y1 ˘pnqq1,y1 q
n pq 

and fnally 
m`npm ̀  nqqp !ppq RHS “ q 

ˆ ˙ min pm,nq ˆ ˙ ˆ ˙

ÿm ̀  n pipi´1q m n 
2 q1,yp´1qipiqqp !q ppqi p1 ́  qqi xpiF ˚p˘pm`n´iq 1 q.qn i i qp qp qpi“0 

Now, we may identify both sides because 
ˆ ˙ ˆ ˙ ˆ ˙ ˆ ˙ 
m ̀  n ́  i m ̀  n m ̀  n n

“ . 
m i n i qp qp qp qp 

Proposition 7.13. If R has positive q-characteristic p and F ˚ is a p-Frobenius on A, 
then rF ˚s induces a homomorphism of A-algebras 

pAr˘s{˘ppqq,y qx!y1,p1´qqxp » Ar˘s{˘ppqq,y bA1 A
1x!y1,y Ñ Ax˘yq,y 

When R is q-divisible, this is an isomorphism. 

˘rpsProof. There exists such a map because ̆ ppq is sent to ppqq “ 0. Moreover, when R is 
q-divisible, this map induces a bijection between basis on both sides as we can easily check. 
More precisely, one may defne a notion of degree on both sides by setting degp˘rnsq “ n 

k 
!rnson the right hand side and degp˘ q “ k ̀  pn when k ă p on the left hand side. By 

defnition, this homomorphism preserves the degrees and it is therefore suÿcient to prove 
kthat it induces a bijection on the associated graded modules. But then, ̆ !rns is sent to 

˘rpn`kspkqq!Bn,pn and one has 

Bn,pn “ ppp ́  1qq!qn P Rˆ 

since R is q-divisible. 

Remark 1. This homomorphism is continuous. Actually, it preserves the ideal fltra-
tions. Note however that it is not an isomorphism of fltered modules when R is 
q-divisible: the fltration on the left hand side is usually strictly smaller that the 
fltration on the right hand side. 

2. It is tempting to introduce a variant of the p-Frobenius coeÿcients by setting 
Cn,i “ Bn,i{Bn,pn P Qrqs. When R is q-divisible, Cn,i is well defned and satisfes 

piqq!An,i “ ppnqq!Cn,i. 

Then, if we replace B’s with C’s in the defnition of rF ˚s, the modifed version 
would send monic to monic (this was our approach in [GLQ10]). If moreover, we 
assume that q´charpRq “ p, then the modifed version of rF ˚s would still be a ring 
homomorphism (but this is not true anymore in general: this is why we had to be 
careful in the proof of proposition 7.12). 
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3. There exists an intermediate alternative for the coeÿcients that is only defned when 
R is q-divisible but which is always a ring homomorphism and coincides with the C’s 
when the q-characteristic is p. This is obtained by dividing out Bn,i by ppp ́  1qq!qn. 

Twisted Simpson correspondence 

We let A be a twisted R-algebra with twisted coordinate x such that ̇ pxq “ qx. We fx 
an endomorphism F ˚ of R and let F ˚ be a p-Frobenius on A with respect to F ˚ and xR R 

for some p P Nzt0u. We are mostly interested in the case where R is q-divisible of positive 
q-characteristic p. 
Proposition 8.1. Assume that R is q-divisible of q-characteristic p. Then, the divided 
p-Frobenius provides an A-linear map 

�A{R : DA{R,˙ Ñ ZAA{R,˙ Ă DA{R,˙. 

More precisely, we have for all n P N, 
n

ÿ

�pB˙
nq “ Bk,nx

pk´nB˙
pk (28) 

k“0 

where the Bk,n denote the divided p-Frobenius coeÿcients. 

rn`1s rn`1sProof. The linearized divided p-Frobenius maps Ax!y{I! Ñ Ax˘y{I coming from˘ 

section 7 provide by duality a compatible system of morphisms 

Di� p0qn,˙pAq Ñ Ar�sďn. 

We may then use proposition 6.3 in order to identify Ar�s with the centralizer ZAA{R,˙ 
of A in DA{R,˙. By duality, the coeÿcient of B˙kp in �pB˙

nq is the coeÿcient of ˘rns in 
pk´nrF ˚sp!rksq which is exactly Bk,nx . 

Remark 1. The morphism �A{R is not a ring homomorphism (as we already knew 
from the case q “ 1). 

2. If we do not assume that R is q-divisible of q-characteristic p, then we still get a 
map DA{R,˙ Ñ Ar�s given by an analogous formula but we cannot identify the target 
with ZAA{R,˙. 

3. In formula (28), the sum actually starts with the smallest integer k ě n{p. 

Example 1. We have �pB˙q “ xp´1B˙
p . 

2. We have �pB˙ 
2 q “ pp ́  1qqxp´2Bp ̀  qp´1x2p´2B˙ 

2p.˙ 

3. When q´charpRq “ p “ 3, we have 

�pB˙ 
3 q “ pq ̀  1qB˙ 3 ` pq 2 ´ 1qx 3B˙ 6 ` x 6B˙ 

9 . 

It follows from proposition 4.7 that F ˚pA1q Ă AB˙ “0 if and only if the diagram 

F ˚ can 
A1 / Ppp0qA / ˙

� 
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commutes. Under this hypothesis, rF ˚s will induce, for all n P N, an F ˚-linear morphism 
of R-algebras 

rF ˚s : A1x!yqp,y{I! 
rns bA1 A

1x!yqp,y{I! 
rns Ñ Pp

p 
0 
n
q

q˙ 
b1 
A P

p

p 
0 
n
q

q˙ 
. 

Proposition 8.2. If B˙ ̋  F ˚ “ 0, then the diagram 

rF ˚s 
A1 rns / Pp0q

x!yqp,y{I! pnq˙ 

� � 
� � 

rF ˚s 
A1x!yqp,y{I! 

rns 
bA1 A

1x!yqp,y{I! 
rns / Pp

p 
0 
n
q

q˙ 
b1 
A P

p

p 
0 
n
q

q˙ 
. 

is commutative. 

Proof. We want to prove that we always have 

�prF ˚sp!rnsqq “ rF ˚sp�p!rnsqq. 

We can compute the left hand side 
˜

ÿ 
¸

ÿ

pn pn 

�prF ˚sp!rnsqq “ � Bn,kx
pn´k˘rks “ Bn,kx

pn´k�p˘rksq
k“n k“n 

ÿ

˜

ÿ 
¸

pn k 
pn´k ˘rk´js b1 ˘rjs“ Bn,kx . 

k“n j“0 

We can also compute the right hand side 
˜

ÿ 
¸

ÿ

n n 

!rn´ks b !rksrF ˚sp�p!rnsqq “ rF ˚s “ rF ˚sp!rn´ksq b1 rF ˚sp!rksq. 
k“0 k“0 

Our assertion therefore follows from lemma 8.3 below. 

Lemma 8.3. We have 

ÿ 
˜

ÿ 
¸

ÿ

pn k n 
pn´k ˘rk´js b1 ˘rjs “ rF ˚sp!rn´ksq b1 rF ˚sp!rksq

k“n j“0 k“0 
Bn,kx 

1 Pp0qin Ppp0q bp p .A{R A A{R 

Proof. Since it is a generic question, we may assume that all q-integers are invertible in R 
and also, if we wish, that A “ Rrxs is simply the polynomial ring. Using proposition 5.3 
and remark 3) after defnition 7.3, as well as lemma 7.11 and the defnition of Bn,k given 
in proposition 7.9, it is therefore suÿcient to check the equality 

˜ ¸

pn k ˆ ˙ ˆ ˙n
k n

F ˚ 1,y q

ÿ 
An,kx

pn´k 
ÿ 

˘pk´jq b1 ˘pjq “ 
ÿ 

p˘pn´kqq 1 q b1 F ˚p˘pkq 1,y q
j q k pqk“n j“0 k“0 

in P b1 P “ A bR A bR A. This follows from theorem 3.5 of [LQ18a] applied both to ̇A 

and ̇ p since F ˚ is a ring homomorphism. 
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Lemma 8.4. Assume that R is q-divisible of q-characteristic p. If B˙ ̋  F ˚ “ 0, then we 
have 

1. A bAB˙ “0 A » Pp8q

pp´1q˙ p“ Ar˘s{˘ppqq and 

2. A bAB˙ “0 A is a direct factor in A bA1 A. 

Proof. First of all, the condition B˙ ̋  F ˚ “ 0 implies that there exists a natural surjection 

A bA1 A � A bAB˙ “0 A. 

On the other hand, proposition 4.8 provides a canonical injection A bAB˙ “0 A ãÑ Pp8q .
pp´1q˙

Let us consider now the following commutative diagram 

A1r˘s / A1 bR A
1 / A1 

F ˚ F ˚ 

� � � 
/ /Ar˘s A bR A A bA1 A. 

The upper line sends ̆  to 0 and it follows that the bottom line sends ̆ ppq “ F ˚p˘q to 0. 
In the end, we obtain the commutative diagram 

A bA1 A O 
/ / A bAB˙ “0 A � (29) 

_ 

� 
» / Pp8q

Ar˘s{˘ppq
pp´1q˙ 

from which both assertions follow. 

Defnition 8.5. We say that F ˚ is adapted to ̇  if F ˚ fnite fat or rank p and B˙ ̋ F ˚ “ 0. 

Example If R has q-characteristic p and A is a localization of the polynomial ring Rrxs, 
then F ˚ is always adapted. 
Proposition 8.6. Assume that R is q-divisible of q-characteristic p. If F ˚ is adapted to 
˙, we can make the identifcations 

A bA1 A “ A bAB˙ “0 A “ Pp8q 
“ Pp0q

pp´1q˙ pp´1q˙ “ Ar˘s{˘ppq. 

Proof. Only the frst equality needs a proof. We know from the second part of lemma 8.4 
that A bAB˙ “0 A is a direct factor in A bA1 A. But the frst part of the lemma tells us that 
A bAB˙ “0 A is free of rank p over A1 and our assumption implies that A bA1 A is locally 
free of the same rank p over A1. Therefore, they must be equal. 

Remark By duality, lemma 8.4 tells us that, when B˙ ̋  F ˚ “ 0, we have DA{R,˙ “ 
EndAB˙ “0 pAq and that this is a direct factor in EndA1 pAq. Moreover, the proposition says 
that when F ˚ is adapted to ̇ , then all three rings are equal. As a consequence, F ˚ will 
actually induce an isomorphism of rings A1 » AB˙ “0. 

We denote by ZpA{R,˙, ZxAA{R,˙ and DpA{R,˙ the completions with respect to Bp (or B˙ for˙ 

the last one: it gives the same thing). Recalling that we introduced in proposition 8.1 an 
A-linear map 

�A{R : DA{R,˙ Ñ ZAA{R,˙, 

we may now state our Azumaya splitting result: 
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Theorem 8.7. Assume that R is q-divisible of positive q-characteristic p. If F ˚ is adapted 
to ̇ , then �A{R provides an A-linear ring homomorphism 

DA{R,˙ Ñ EndZA{R,˙ pZAA{R,˙q (30) 

that induces an isomorphism 

of A-algebras 
pA bA1 Aq bA1 A

1x!y » Ax˘y. 

Moreover, it follows from proposition 8.2 that this morphism is compatible with the 
comultiplication maps. Therefore, it produces by duality (and base change) an A-linear 
homomorphism (in fact an isomorphism) of rings: 

pDA{R,˙ » End
p pZxAA{R,˙q. (31)ZA{R,˙ 

Proof. We deduce from propositions 7.13 and 8.6 that there exists a canonical isomorphism 

pDA{R,˙ Ñ EndA1 pAq bA1 

completion. 

Remark 1. The frst assertion of the theorem means that �A{R turns ZAA{R,˙ into a 
DA{R,˙-module via 

B˙
k ¨ zBpi “ �pB˙

k ˝ zqB˙
pi.˙ 

p 

2. As a consequence of the theorem, we see that �A{R induces an endomorphism of the 
A-algebra ZA{R,˙, and that it gives rise to an automorphism of the topological ring 
ZA{R,˙.p

3. Since the bijectivity of a morphism of free modules of fnite rank can be checked 

ZA{R,˙ Ñ End
p pZxAA{R,˙q.ZA{R,˙ 

Actually, since the twisted divided p-Frobenius is continuous, this map is defned before 

after completion, we therefore have an isomorphism 

ZA{R,˙ �ÔbZA{R,˙ DA{R,˙ » EndZA{R,˙ pZAA{R,˙q. 

Example Since B˙ ˝ z “ B˙pzq ` ˙pzqB˙ for all z P A, we have for all n P N, 
nB˙ ̋  xn “ pnqqx

n´1 ` q xnB˙. It follows that 

B˙ ̈ 1 “ �pB˙q “ xp´1B˙
p , 

and for n ě 1, 

B˙ ̈ x n “ �pB˙ ̋  x nq “ pnqqx 
n´1 ` q n x n xp´1Bp “ ppnqq ̀  q n xpB˙

pq x n´1 .˙ 

In other words, the matrix of B˙ will be 
fi »

0 qxpBp ̀  1 0 ¨ ¨ ¨ 0˙
ffi

ffi

ffi

ffi

ffi

ffi

fl 

— .. . . . . . . ..
— . 0 .
— 
— .. .. . . . . . .— . . 0 . 
— 
– 0 0 ¨ ¨ ¨ 0 qp´1xpB˙

p ̀ pp ́  1qq 
Bp 0 ¨ ¨ ¨ ¨ ¨ ¨ 0˙ 

Note that this is slightly di˙erent from the formulas of proposition 4.1 of [GL14] because 
we use here Ogus-Vologodsky divided Frobenius (the coeÿcients B and not the coeÿcients 
C). 
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Corollary 8.8. Assume that R is q-divisible of positive q-characteristic p and that F is 
adapted to ̇ . Then, �A{R induces an equivalence between the category of DpA{R,˙-modules 
and the category of ZpA{R,˙-modules. 

Proof. This is Morita equivalence which follows formally from the Azumaya splitting (see 
lemma 5.6 of [GLQ10]). 

In order to state the twisted Simpson correspondence, we need to recall some vocabulary. 
An endomorphism uM of an abelian group M is said to be quasi-nilpotent if 

N@s P M, DN P N, uM psq “ 0. 

The category of abelian groups M endowed with a quasi-nilpotent endomorphism is 
isomorphic to the category of discrete Zrrtss-modules (meaning that the t-adic topology 
on M is discrete). Given an A1-module H, we will call a quasi-nilpotent A1-linear 
endomorphism uH of H a Higgs feld. Finally, a ˙-derivation on an A-module M is 
an R-linear map B˙,M : M Ñ M that satisfes the twisted Leibniz rule 

@z P A, @s P M, B˙,M pzsq “ B˙A pzqs ̀  ˙pzqB˙,M psq. 

We can now reformulate the previous corollary in more down-to-earth terms: 
Corollary 8.9 (Twisted Simpson correspondence). Assume that R is q-divisible of positive 
q-characteristic p and F is adapted to ̇ . Then, the category of A-modules M endowed with 
a quasi-nilpotent ̇ -derivation B˙,M is equivalent to the category of A1-modules H endowed 
with a Higgs feld uH . 

Proof. The frst category is isomorphic to the category of discrete DpA{R,˙-modules, the 
second to the category of discrete p -modules. Discrete p -modules correspond ZA{R,˙ DA{R,˙ 

under the Morita equivalence to discrete p -modules. ZA{R,˙ 

Remark 1. The equivalence is explicit and, as in proposition 5.7 of [GLQ10], shown 
to be given by 

M ÞÑ H :“ M�“1 and H ÞÑ M :“ A bA1 H. 

More precisely, 
! )

M�“1 :“ s P M, @k P N, �pBk ˙,M psq˙,M qpsq “ Bk 

(which is not easy to compute) will be endowed with the action of Bp and AbA1 H˙,M 

will be endowed with the unique ̇ -derivation such that 

B˙,M p1 b sq “ xp´1 b uH psq. 

Morita equivalence also provides an isomorphism 

u B˙R�HodgepHq :“ rH ÝÑ Hs » rM ÝÑ M s “: R�dR,˙pMq. 

(see [Sch17], Prop. 3.4 (iii) for an example). 

2. Twisted Simpson correspondence holds for example in the following situations: 
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(a) R a ring of prime characteristic p and x is an étale coordinate on A (Ogus-
Vologodsky). 

(b) R contains a feld K, q P K is a primitive pth root of unity and A “ Rrxs or 
´1Rrx, x s. 

(c) R is pN -torsion with p prime, the pth power map of R{p lifts to R, q is a 
non trivial pth root of unity and x is an étale coordinate on A (we intend to 
investigate in the future this particular situation). 
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