
 

 
 Repositorio Institucional de la Universidad Autónoma de Madrid 

https://repositorio.uam.es 

 
 Esta es la versión de autor del artículo publicado en: 
 This is an author produced version of a paper published in: 

 

Deep Support Vector Classification and Regression. In: Ferrández Vicente, J., 
Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) From 
Bioinspired Systems and Biomedical Applications to Machine Learning, IWINAC, 
Lecture Notes in Computer Science 11487 (2019): 33-43 
 
DOI: https://doi.org/10.1007/978-3-030-19651-6_4 

Copyright: © Springer Nature Switzerland 2019 

El acceso a la versión del editor puede requerir la suscripción del recurso   
Access to the published version may require subscription  
 

https://repositorio.uam.es/
https://doi.org/10.1007/978-3-030-19651-6_4


Deep Support Vector Classification 

and Regression 

David Díaz-Vico1 , 2 ([81), Jesús Prada1 , Adil Omari3 , and José R. Dorronsoro1 ,
2 

1 Dpto. lng. Informática, Universidad Autónoma de Madrid, Madrid, Spain 
david.diazv@estudiante.uam.es 

2 Instituto de Ingeniería del Conocimiento, 
Universidad Autónoma de Madrid, Madrid, Spain 

3 Signal Theory and Communications Department, 
Universidad Carlos 111, Madrid, Spain 

Abstract. Support Vector Machines, SVM, are one of the most popular 
machine learning models for supervised problems and have proved to 
achieve great performance in a wide broad of predicting tasks. However, 
they can suffer from scalability issues when working with large sample 
sizes, a common situation in the big data era. On the other hand, Deep 
Neural Networks (DNNs) can handle large datasets with greater ease 
and in this paper we propase Deep SVM models that combine the highly 
non-linear feature processing of DNNs with SVM loss functions. As we 
will show, these models can achieve performances similar to those of 
standard SVM while having a greater sample scalability. 

1 Introduction 

Support Vector Machines (SVM; [17]) are one of the state of the art methods 
for supervised classification and regression and, as such, widely used. One key 
fact for this is their ability to work implicitly with kernels such as the Gaussian 
one, which map the initial features to a possibly infinite dimensional reproducing 
kernel Hilbert space. But, on the other hand, this capability also hinders their 
ability to cope with large datasets, as the handling of the kernel matrix becomes 
too costly or, sometimes, unfeasible and, even if a model is finally built, the so 
called "kernelization curse", i.e., the fact that the number of Support Vectors 
grows linearly with sample size, implies that the model may be too costly in 
memory or time to exploit. 

Many proposals have appeared in the literature to overcome these problems, 
usually for Support Vector classification (SVC) problems. Among them we can 
mention the incremental learning of SVMs [1], ensemble learning of SVMs [6] 
or cutting planes [15] but, nevertheless, it can be said that, unless substantial 
hardware resources are committed, current kernel SVM training methods are 
not competitive for datasets with more than about 100,000 patterns. 



D. Díaz-Vico et al.

These problems are largely mitigated when working with linear SVMs [21] for which efficient algorithms, such as Pegasos [19] or dual coordinate descent [14], exist. However, efficient linear SVM models can only be expected when the original features have very large dimension so that projections are no longer needed. When sample dimension is just moderate, linear SVM models are usually less powerful that their Gaussian counterparts. In principle, the main difficulty when working with SVMs is the non differen­tiable nature of the SVC hinge loss that, at first sight, forces a dual probem to be solved. However, its non differentiability is rather mild and subgradient descent is used, for instance, in the Pegasos algorithm. In fact, the SVM losses have the same non-differentiable behavior of the ReLU loss [11] routinely used in Deep Neural Networks (DNN) to compute gradients by backpropagation and which are easily handled automatically by DNN backends such as TensorFlow [12]. In fact, the hinge loss is already predefined in the Keras wrapper [5] for Tensor­Flow. Also, and although not predefined in Keras, the E-insensitive loss used in Support Vector regression (SVR) has the same nondifferentiable behavior. This suggests to consider an alternative to non linear SVMs by means of DNNs for which the standard cross entropy for classification or squared error for regression are replaced by the hinge and E-insensitive losses respectively. This approach has been already applied in [20], where it is compared with standard softmax DNNs on classification problems, and by [22] in speech recognition. Here we will also extend it to Deep Support Vector Regression models and we will compare these Deep SV Classifiers and Regressors with their standard Gaussian SVC and SVR counterparts in a number of medium to large classification and regression problems. The paper is organized as follows. In Sect. 2 we will briefly review standard kernel based SVC and SVR models while their deep counterparts are explained in Sect. 3. Numerical experiments are presented in Sect. 4 and the paper ends with a discussion, conclusions and pointers to further work. 
2 Support Vector Machines 

Given a sample S = {(xP, yP),p = 1, ... , N, yP = ±1}, if we have a linear model 
� = f(x) = w · x + b and h denotes the hinge loss 

h(y, f(x)) = max{O, 1 - yf(x)} = max{O, 1 - y�}= h(y, �), 
the optimization problem to be solved for a linear SVC is 

1 
N arg min-llwll2 

+ C¿h(yP,w · xP + b)
w, b 2 

l 

( 
1 1 N 

)arg��r 2CN llwll2 
+ N � h(yP, w. xP + b) 

- arg min (_!_ t h(yP, w · xP + b) + allwll2) 
w, b N 

1 

(1)



Deep Support Vector Classification and Regression 

with a = 2JN. In general, SVCs are usually built solving the dual problem of 
(1), namely 

(2) 

subject to O < ai < C, i = 1, ... , N, ¿:[:
1 

ªiYi = O. 
Notice that problems (1) and (2) only involve dot products; this is also the 

case of the final SVM model. As a consequence, all can be written as just done but 
replacing x with a kernel-related projection <J>(x). The map <P can be implicit, 
as is the case with standard kernel SVCs, where the dot product only enters 
through sorne kernel, or it can be an explicit one, as it will be the case here, 
where <J>(x) = F(x, Wh) will be the vector of last hidden layer values of a MLP 
with input to last hidden layer weighs Wh. Moreover, if the kernel representation 
<J>(xP) is known explicitly, the primal problem (1) can be directly solved, as done 
by the Pegasos algorithm [19] (see also [3], where the primal problem is solved 
for the squared hinge loss). We will also exploit the explicit kernel knowledge in 
the Deep SVC approach that we describe in the next section. 

Given now a sample S = {(xP, yP),p = 1, ... , N} with the yP here being 
numerical targets, and a linear model � = f(x) = w • x + b, the E-insensitive loss, 
E > O, would now be 

The optimization problem to be solved now for linear SV Regression (SVR) is 

(3) 

As it was the case in SVC, the E-insensitive loss is convex but only piecewise 
differentiable and because of this, here again, the task solved in practice is the 
following dual problem derived through the Lagrangian formalism 

N l N N 

L Yi(a¡ - ai) - 2 ¿¿(a¡ - ai)(a; - aJ)xi · Xj -

i=l i=l j=l 

N 

E¿ (a¡+ ai) 
i=l 

subject now to O� ai, a¡ � 2;N
, i = 1, ... , N, ¿:[:

1 (aI - ai) = O. 

(4) 

The kernel trick can also be applied here and, if it is known explicitly, gradient 
or subgradient descent can be used. We describe next how to exploit this for Deep 
SVR. 



D. Díaz-Vico et al.

3 Deep Support Vector Machines 

3.1 Deep Learning 

Artificial Neural Networks (ANNs) can be seen as an extension of the classi­
cal linear and logistic regression models. They can generate an arbitrarily good 
latent representation of the data [8, 13] that can be efficiently used to build pow­
erful models. Starting with the multi layer perceptrons (MLPs), whose basic 
theory was already well established in the 80s, and the backpropagation algo­
rithm for gradient computation during ANN training, they can be considered as 
the first example of modern machine learning algorithms that could be applied 
to both regression and classification problems with minimal conceptual varia­
tions. However, technical difficulties, essentially due to knowledge gaps about 
their training plus the lack of computing power at the time, led to their relative 
decline in the late 90's and the rise of competing methods, particularly SVMs, 
for classification and regression. 

But about 2010, the wide availability of powerful computing facilities, 
advances on the theoretical underpinnings of MLPs, many refinement of their 
training procedures and a better understanding of the difficulties related to many 
layered architectures [10] have produced a spectacular expansion under the deep 
neural network (DNN) paradigm. To all this we can add the appearance of sev­
eral development frameworks such as TensorFlow [12], CNTK [18], MXNET [4] 
or Torch [7], as well as wrappers for them such as Keras [5], that have allowed 
the practitioners to experiment with different architectures, non-differentiable 
activations and, even, non-differentiable loss functions. Last, but not least, the 
iterative nature of backpropagation and its linear cost growth with respect to 
sample size imply that DNNs are much less affected from the bad scalability of 
kernel methods, and can be applied with relative ease to datasets with hundreds 
of thousands of patterns. As mentioned, mildly non-differentiable functions such 
as ReLUs or the hinge loss, can be handled within the DNN framework and are 
relatively simple to incorporate into DNN tools. We discuss next how the hinge 
and E-insensitive loss can be introduced in a DNN set up. 

3.2 Deep SVC and SVR 

Consider a more or less standard DNN architecture where an input layer is 
followed by a number of hidden layers that can be either convolutional or fully 
connected or of any other type, and, finally, linear output activations. The trans­
formation of such a network can be thus written as 

where Wh denotes the set of weights and biases up to the last hidden layer, w, b 
denote the linear weights and bias acting on this last hidden layer, and F(x, Wh) 
the last hidden layer outputs. We also denote these outputs as <I>(x) when we 
want to emphasize a kernel perspective. 



Deep Support Vector Classification and Regression  

Considering first SVCs, the hinge loss is differentiable, as mentioned, every­
where except at e = O; the same is true for the ReLU activations commonly 
used in deep networks. As it is the case of ReLUs, the hinge loss can be imple­
mented using the primitives of backends such as TensorFlow, and loss gradients 
are derived automatically when network models are compiled. Here, the optimal 
weights are to be obtained minimizing the following regularized cost 

l N 
J(w, b, Wh) = 

N 
L h (yP, w · F(xP, Wh) + b) + asllwll2 + aHR(Wh); (5)

1 

here llwll2 is the squared norm of the linear output weights and R(Wh) can be 
any regularizer function acting on the weights of the hidden layers. The preceding 
formulation points for instance to the regularization given by the Frobenius norm 
ofthe weights of fully connected or convolutional layers. Notice that, as explained 
below, we would keep in principle different weight penalties as and aH for the 
linear output weights and for the hidden layer ones; if dropout was to be used, 
aH would be the dropout probability. 

The minimization of (5) can be achieved by standard DNN solvers such as 
stochastic gradient descent, Adam [16], Adagrad [9] or others. The regulariza­
tion parameters as, aH are to be selected by sorne form of cross validation (as 
well as the DNN architecture, if desired). If we work with a predefined DNN 
architecture, we will have to optimize here two hyperparameters, as, aH, the 
same number than in Gaussian SVC, where the C penalty and I kernel width 
have to be adjusted. 

Notice that after optimization, the w*, b* weights correspond to a linear SVC 
acting on the hidden layer outputs F(xP, w,:), for they must solve 

l N 
arg min - L h(yP , w · zP + b) + asllwll2

w,b N 1 

(6) 

with zP 
= F(xP, w,:). This is just the problem solved by a linear SVC on the zP

patterns; in particular, its margin is given by II�* 11. Since llw* 11 will be controlled
by as while the other layers have different goals, this seems to point to the conve­
nience of working with separa te penalties as and aH. Observe also that although 
the network's outputs e= w* · F(x, W,:) + b* are continuous real numbers, the 
class prediction fj is obtained as fj = sign (e). Therefore, it is straightforward 
to obtain discrete classification seores such as accuracy, precision or recall, but 
sorne further work would be needed to achieve a more fine-grained prediction 
that makes possible to compute, for instance, ROC curves or their AUC. Possible 
ways of doing so would be to consider moving classification thresholds or to have 
a predict_proba method where the raw outputs of the Deep SVC were calibrated 
m sorne way. 

Turning our attention to SVR, we again consider a more or less standard 
DNN architecture with linear outputs that defines a nonlinear transformation 
f(x, w, b, Wh) = w · F(x, Wh) + b = w · <f>(x) +band a loss 



 D. Díaz-Vico et al.

l N 

JE(w, b, Wh) =
N 

�,eE (yP,w · F(xP, Wh) + b) + asllwll2 + aHR(Wh) (7)
1 

where the regularization parameters as, ªH (and, if desired, the DNN archi­
tecture) are selected again by sorne form of cross validation. The optimal w*, b* 

will now coincide with those obtained by a linear SVR model acting on the last 
hidden layer outputs zP 

= F(xP, w,:). In Deep SVR we will have to optimize
now three hyperparameters, as, aH and the E-insensitivity value, again the same 
number than in Gaussian SVRs. 

In summary, essentially the same network structure is used for Deep SVC 
and SVR and the only differences are in the targets (±1 for classification, real 
numbers for regression) and the loss used in each situation. In principle, we 
could expect classification accuracies or regression errors to be more or less the 
same when standard Gaussian or Deep SVC /SVR models are used, although 
the greater flexibility of the Deep SVC /SVR architectures should also result in 
a better performance in sorne problems, such as for instance, those dealing with 
images. In any case, the main advantage of the Deep SVC /SVR networks is likely 
to be manageable training times and, perhaps, more importantly, the ability to 
build models over large samples. Current kernel SV models have substantial 
difficulties with sample sizes above 100,000 and sizes above 500,000 are often 
outside their present reach unless really substantial computing resources are 
available. On the other hand, Deep SV models will be costly but still possible 
to be trained on those sample sizes. Moreover, prediction times will certainly be 
much faster for Deep SV models than for kernel based ones. 

4 Experiments 

4.1 Classification Experiments 

We compare the performance of Kernel and Deep SVC over the datasets a4a, asa,

australian, cod-rna, diabetes, german.numer, ijcnn1, w7a and w8a from the LibSVM repos­
itory [2]. Their training and, when available, test sample sizes and dimensions 
are given in Table l. In the Deep SVC (DSVC) models we will use ReL U hidden 
layer activations and Adam over minibatches as the loss optimizer. To lighten 
the hyper-parameterization costs we will use the default values in the Keras 
implementation of Adam for the initial learning rate (0.001) and the {31 (0.9) 
and {32 (0.999) parameteres. We shall also use in all cases a minibatch size of 200. 
Notice that network architecture, i.e., the number of hidden layers and of their 
units, could also be considered as hyper-parameters to be optimized. However 
we will work with DSVC models with 1 to 5 hidden layers and 100 units in all 
layers but the last one, which will have 0.1 x ISI units, with ISI denoting sample 
size, with a lower bound of 100 and an upper bound of 1000. The rationale for 
this is to enlarge the dimension of the last hidden layer projections of the sam­
ple patterns, so that the linear SVC models that act on them can have a large 
enough representation power. 



Deep Support Vector Classification and Regression  

Table l. Number of train and test patterns and dimensions in the two-class problems. 

No. patterns train No. patterns test Dimension 

a4a 4781 27780 123 

a8a 22696 9865 123 

australian 690 14 

cod-rna 59535 271617 8 

diabetes 768 8 

german.numer 1000 24 

ijcnnl 49990 91701 22 

w7a 24692 25057 300 

w8a 49749 14951 300 

Table 2. Accuracies in the two-class problems. 

svc DSVCl DSVC2 DSVC3 DSVC4 DSVC5 Best DSVC 

a4a 84.32 (1) 84.19 (5.5) 84.20 (4) 84.19 (5.5) 84.29 (2) 84.27 (3) 84.29 

a8a 84.92 (6) 85.18 (1) 84.95 (5) 85.14 (2.5) 85.08 (4) 85.14 (2.5) 85.18 

australian 85.50 (5) 85.51 (4) 87.09 (1) 86.82 (2) 86.09 (3) 85.21 (6) 87.09 

cod-rna 96.58 (5) 96.66 (1) 96.62 (2) 96.61 (3) 96.60 (4) 96.45 (6) 96.66 

diabetes 77.60 (1) 76.95 (4) 77.47 (2) 76.43 (5) 76.43 (6) 77.21 (3) 77.47 

german.numer 76.10 (2) 75.80 (3.5) 75.20 (5) 75.10 (6) 76.60 (1) 75.80 (3.5) 76.60 

ijcnnl 97.93 (6) 98.88 (4) 99.03 (2) 99.07 (1) 98.84 (5) 98.99 (3) 99.07 

w7a 98.87 (1) 98.82 (5) 98.85 (2) 98.83 (3.5) 98.79 (6) 98.83 (3.5) 98.85 

w8a 99.04 (2) 98.99 (5) 98.92 (6) 99.16 (1) 99.04 (3) 99.03 (4) 99.16 

rank mean 3.2222 3.6667 3.2222 3.2778 3.7778 3.8333 

We thus will hyperparameterize the L2 ( or Tikhonov) regularization penal­
ties. We will consider two different such penalties one as, for the output weights 
and another one ªH which is the same for all the hidden layer weights. In 
both cases we will explore 5 values evenly spaced on a log scale in the inter­
val ¡2-30, 21º] selecting the optimal one by 4-fold cross validation as described
below. As customary with neural networks, the Deep SVC inputs have been 
normalized feature-wise to O mean and 1 standard deviation. 

The SVC models require two hyperparameters, the C regularization term and 
the width 'Y of the Gausian kernels exp (-'Yllx - x'll2 ). For C we will explore 5
values in the interval [10-3, 106 ]. In order to select the Gaussian kernel width 'Y, 
we scale feature-wise the SVC inputs to a [O, 1] range; the rationale for this is 
that after this normalization, we have llx - x'll2 ::S; d with d pattern dimension. 
Because of this we will explore 'Y values of the form 2; , with k in the [-3, 6]
range. 



 D. Díaz-Vico et al.

Table 3. Number of patterns and dimensions in the regression problems. 

No. patterns Dimension 

abalone 4177 8 

bodyfat 252 14 

cpusmall 8192 12 

housing 506 13 

mg 1385 6 

mpg 392 7 

pynm 74 27 

space_ga 3107 6 

Turning now to the cross validation (CV) procedure, when there is a separate 
test set, we find model hyperparameters by 4-fold stratified CV over the train set 
and then report the performance of the best hyperparameter model over the test 
set. When there is only one dataset, we use a nested two loop CV approach in 
order to assess model performance. More precisely, we apply stratified 4-fold CV 
on both loops. In the outer loop each one of the four outer folds is set apart for 
testing and the dataset made of the other three folds is passed to the inner loop, 
where again 4 fold CV is applied to determine the best hyperparameters, which 
are then tested on the test fold set apart. Model performance is measured as the 
average over these 4 test folds. Notice that while in the first case a single best 
parameter set is found, in the nested procedure optimal model hyperparameters 
may be different for each one of the outer test folds. In all cases the score used 
is model accuracy. 

We report in Table 2 the accuracies of the Gaussian SVCs (SVC) and of Deep 
SVCs with 1 (DSVCl) to 5 (DSVC5) layers. For a better reading the table also 
gives in parenthesis the ranking of these accuracies. Similarly, we also give in 
the last column the accuracy of the best performing deep SVC model. This is 
done on a descriptive basis, as we have not performed a statistical analysis of 
the accuracy table, given the relatively small number of datasets considered. 
Gaussian SVCs give the largest accuracies on four datasets, a4a, cod-rna, diabetes

and w7a. For the other five datasets the highest accuracy is achieved by a Deep 
SVC model. The row at the bottom of the table gives the average rankings. The 
better performing models appear to be SVC, DSVC2 and DSVC3. But, in any 
case, notice that all accuracy values are quite similar; this seems to imply that 
a statistical analysis of these accuracies would show them to be essentially the 
same. As mentioned befare, the difference would lie in training and, particularly, 
test times, much lower for the deep models over the larger datasets. 

4.2 Regression Experiments 

Turning our attention to the regression problems, the datasets used to assess the 
performance of Kernel SVR and Deep SVR are abalone, bodyfat, cpusmall, housing, mg,



abalone 

bodyfat ( x 100) 

cpusmall 

housing 

mg (xlO0) 

mpg 

pyrim ( X 100) 

space_ga ( X 100) 

rank mean 

Deep Support Vector Classification and Regression  

Table 4. MAEs in the regression problems. 

SVR DSVRl DSVR2 DSVR3 DSVR4 DSVR5 Best DSVR 

1.48 (2) 1.49 (4) 1.49 (3) 1.50 (5) 1.48 (1) 1.51 (6) 1.48 

0.05 (1) 0.42 ( 4) 0.31 (3) 0.51 (5) 0.53 (6) 0.28 (2) 0.28 

2.13 (2) 2.21 (4) 2.12 (1) 2.19 (3) 2.31 (5) 2.40 (6) 2.12 

2.28 (1) 2.58 (6) 2.51 (4) 2.34 (3) 2.30 (2) 2.57 (5) 2.30 

9.26 (2) 9.68 (6) 9.65 (5) 9.13 (1) 9.36 (3) 9.58 (4) 9.13 

1.91 (1) 2.39 (4) 2.28 (2) 2.49 (6) 2.42 (5) 2.36 (3) 2.28 

5.62 (1) 6.78 (3) 8.39 (5) 6.45 (2) 8.81 (6) 8.02 (4) 6.45 

9.67 (6) 9.14 (4) 9.22 (5) 8.63 (1) 8.70 (2) 8.86 (3) 8.63 

2 4.375 3.5 3.25 3.75 4.125 

mpg, pyrim and space_ga, again taken from the LibSVM repository [2]. Their sample 
sizes and dimensions are given in Table 3; notice that in this case there are no 
test sets. 

The experimental setup is now exactly the same as in the classification set­
ting, with the exception of the extra hyper-parameter needed for the E-insensitive 
loss used in regression. This hyper-parameter E is searched in a grid of 5 values 
distributed in a log scale between 2- 10 x std(y) and 2- 1 x std(y). Since there 
are no separate test sets, model performance in all cases is estimated by nested 
4 fold CV. 

We report now in Table 4 the mean absolute errors (MAEs) of the Gaussian 
SVRs (SVR) and of Deep SVRs with 1 (DSVRl) to 5 (DSVR5) layers. Again, the 
table also gives in parenthesis the ranking of these MAEs for a better reading; no 
statistical analysis has been performed here, again because of the relatively small 
number of datasets involved. We also give here the MAE of the best performing 
deep SVR model in the last column. Gaussian SVRs give the smallest MAE 
on the four smaller datasets, bodyfat, housing, mpg and pyrim, and give the second 
smallest MAE in three others. A Deep SVR model gives the smallest MAE for 
the other four datasets. Looking at the bottom row of the table, which has the 
average rankings, the SVR is clearly in the first place but, nevertheless, here 
again all MAE values are quite similar, something that a statistical test would 
probably confirm. 

5 Conclusions and Further Work 

In this paper we have shown that Deep SVC or SVR models, i.e., more or less 
standard DNNs with linear outputs and either hinge or E-insensitive losses can 
give classification accuracies or mean absolute errors similar or even slightly bet­
ter than those of Gaussian SVC or SVR models, but with much more manageable 
computational training and, particularly, test costs. 

However, our experimental results open the way to more questions. A first 
one is which margin structure arises on the last hidden layer representations of 



 D. Díaz-Vico et al.

the sample patterns. Moreover, we have also seen that each problem seems to 
have its own optimal DNN architecture. Notice that Gaussian ( or other kernel) 
SVMs also define a particular kind of architecture in terms of the kernel width 
hyper-parameter 'Y and the concrete support vectors found during training. This 
suggests that possible Deep SVM architectures should also be considered as 
hyperparameters to be adequately found. If this is done, it is likely that we 
would find a tie between the SVC /SVR performance and that of the best deep 
counterpart. Finally, when used for classification, DNNs with softmax outputs 
and cross entropy loss automatically yield posterior probabilities. However, this is 
not the case with standard SVC and, thus, neither with the deep SVMs proposed 
here. These and other related questions are currently under study. 

Acknowledgments. With partial support from Spain's grants TIN2016-76406-P and 
82013/ICE-2845 CASI-CAM-CM. Work partially supported also by project FACIL­
Ayudas Fundación BBVA a Equipos de Investigación Científica 2016, and the UAM­
ADIC Chair for Data Science and Machine Learning. We also gratefully acknowledge 
the use of the facilities of Centro de Computación Científica (CCC) at UAM. 

References 

l. Bordes, A., Ertekin, S., Weston, J., Bottou, L.: Fast kernel classifiers with online
and active learning. J. Mach. Learn. Res. 6, 1579-1619 (2005)

2. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM
Trans. lntell. Syst. Technol. 2(3), 27:1-27:27 (2011). http://www.csie.ntu.edu.tw/
~cjlin/libsvm

3. Chang, K., Hsieh, C., Lin, C.: Coordinate descent method for large-scale L2-loss
linear support vector machines. J. Mach. Learn. Res. 9, 1369-1398 (2008)

4. Chen, T., et al.: MXNet: a flexible and efficient machine learning library for het­
erogeneous distributed systems. CoRR abs/1512.01274 (2015)

5. Chollet, F.: Keras: deep learning library for Theano and TensorFlow (2015).
https://github.com/fchollet/keras

6. Claesen, M., Smet, F.D., Suykens, J.A.K., Moor, B.D.: Ensemblesvm: a library
for ensemble learning using support vector machines. J. Mach. Learn. Res. 15(1),
141-145 (2014)

7. Collobert, R., Kavukcuoglu, K.: Torch7: a matlab-like environment for machine
learning. In: BigLearn, NIPS Workshop (2011)

8. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math.
Control Sig. Syst. (MCSS) 2(4), 303-314 (1989)

9. Duchi, J.C., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learn­
ing and stochastic optimization. J. Mach. Learn. Res. 12, 2121-2159 (2011)

10. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: JMLR W&CP: Proceedings of the Thirteenth International
Conference on Artificial lntelligence and Statistics (AISTATS 2010), vol. 9, pp.
249-256, May 2010

11. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: JMLR
W &CP: Proceedings of the Fourteenth International Conference on Artificial Intel­
ligence and Statistics (AISTATS 2011), April 2011



Deep Support Vector Classification and Regression  

12. Google: Tensorflow, an open source software library for machine intelligence.
https://www.tensorflow.org/

13. Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural
Netw. 4(2), 251-257 (1991)

14. Hsieh, C., Chang, K., Lin, C., Keerthi, S.S., Sundararajan, S.: A dual coordinate
descent method for large-scale linear SVM. In: Machine Learning, Proceedings of
the Twenty-Fifth International Conference (ICML 2008), Helsinki, Finland, 5-9
June 2008, pp. 408-415 (2008)

15. Joachims, T., Yu, C.J.: Sparse kernel SVMs via cutting-plane training. Mach.
Learn. 76(2-3), 179-193 (2009)

16. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR
abs/1412.6980 (2014)

17. Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regu­
larization, Optimization, and Beyond. Adaptive Computation and Machine Learn­
ing Series. MIT Press, Cambridge (2002)

18. Seide, F., Agarwal, A.: CNTK: Microsoft's open-source deep-learning toolkit. In:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Francisco, CA, USA, 13-17 August 2016, p. 2135
(2016)

19. Shalev-Shwartz, S., Singer, Y., Srebro, N., Cotter, A.: Pegasos: primal estimated
sub-gradient solver for SVM. Math. Program. 127(1), 3-30 (2011)

20. Tang, Y.: Deep learning using support vector machines. CoRR abs/1306.0239
(2013). http://arxiv.org/abs/1306.0239

21. Yu, H., Hsieh, C., Chang, K., Lin, C.: Large linear classification when data cannot
fit in memory. TKDD 5(4), 23:1-23:23 (2012)

22. Zhang, S., Liu, C., Yao, K., Gong, Y.: Deep neural support vector machines for
speech recognition. In: 2015 IEEE International Conference on Acoustics, Speech
and Signal Processing, ICASSP 2015, South Brisbane, Queensland, Australia, 19-
24 April 2015, pp. 4275-4279 (2015)


	deep_diaz-vico_IWINAC_2019_ps
	deep support vector



