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A B S T R A C T   

Nitrate (NO3
–) pollution of water bodies is a serious environmental problem worldwide. One of the major 

concerns about NO3
– contamination is the lack of cost-effective solutions for its removal from potential drinking 

water resources. Current technologies, such as ion exchange, reverse osmosis and electrodialysis, produce a reject 
with high NO3

– concentration. Catalytic reduction is an emerging technology, capable of transforming NO3
– into 

harmless N2. A critical issue is to achieve almost complete selectivity to this last species so that the final con-
centrations of NO2

– and NH4
+ can fit the stringent allowed limits. Numerous studies have been carried out 

evaluating the activity and N2 selectivity of bimetallic catalysts. Catalyst deactivation by surface fouling, irre-
versible oxidation of the metal promoter, metal leaching and aggregation of metallic particles remain a major 
challenge for full-scale implementation of catalytic nitrate reduction. Therefore, it is necessary to develop highly 
stable catalyst and/or effective solutions for catalyst regeneration. The existing literature on this respect is 
reviewed hereby.   

1. Introduction 

One of the main problems associated with the use of natural sources 
of water is the presence of nutrients, mainly nitrate (NO3

–) and phos-
phate (PO4

3-), which mainly contaminate groundwater, exceeding in 
many cases the limit values recommended by the World Health Orga-
nization (WHO) and other national and supranational regulations. The 
presence of NO3

– in water bodies is caused by the discharge of poorly 
treated industrial and urban wastewater, the deposition of livestock 
manure and the use of nitrogen fertilizers in the intensive agriculture 
because of it is considered that 50 % of them drains from fields to pollute 
surface and groundwater [1–4]. 

Nitrate discharges in water are associated to eutrophication, which 
causes undesired effects as macroalgal biomass blooms, oxygen deficits, 
and the decrease in the abundance of fish and decapods as well as the 
number of their species [5–7]. On the other hand, the ingestion of NO3

– 

can produce several human health problems [8–10]. This leads to the 
need of establishing concentration limits in drinking waters. The Euro-
pean Union [11] establishes maximum concentrations of 50, 0.1 and 0.5 
mg/L for NO3

–, NO2
– and NH4

+, respectively. The WHO recommends 
lower NO3

– concentration of 10 mg/LN-NO3
– (44 mg/LNO3

-). Nitrite can 
undergo nitrosation reactions in the gastrointestinal tract and bladder 
with amines and amides giving rise to N-nitroso compounds, which are 
some of the most potent known carcinogens [10,12,13]. NH4

+ can 

influence metabolism by shifting the acid-base equilibrium, disturbing 
the glucose tolerance, and reducing the tissue sensitivity to insulin [14]. 
Several methods are currently available to remove NO3

– from water. 
There are two different groups of techniques on the fate of the NO3

–, 
which can be classified as non-destructive and destructive treatments, 
whose main features are summarized in Table 1. The first group includes 
ion exchange, reverse osmosis and electrodialysis, which produce a 
reject with a high concentration of NO3

–. On the other hand, the 
destructive treatments (biological denitrification and catalytic reduc-
tion) are addressed to convert NO3

– into harmless nitrogen gas (N2). As 
can be seen in Table 1, the advantages of catalytic denitrification over 
other conventional environmental technologies are the absence of 
sludge production and pre-treatment, low energy consumption and low 
space requirements. However, the production of NO2

– and NH4
+ above 

the allowed limits and the common catalyst deactivation have so far 
hindered full-scale implementation of catalytic nitrate reduction. 

Catalytic reduction of NO3
– (CRN), first studied by Vorlop and Tacke 

[16], emerged as a destructive treatment based on the transformation of 
NO3

– and NO2
– to N2. It operates at mild conditions (ambient temper-

ature and pressure) using, mainly, hydrogen in low amount as reactant, 
its efficiency depending on the activity and selectivity of the catalysts 
[1,3,4,15]. In general, bimetallic catalysts are more effective for nitrate 
reduction than monometallic ones [17–19]. The formation of undesir-
able NH4

+ is the main drawback hindering thus far the application of 
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catalytic NO3
– reduction [3,4,16], together with catalyst deactivation 

when used in real waters [20–24]. Therefore, the efforts of the scientific 
community are focused on the development of new catalysts exhibiting 
high N2 selectivity and proven stability. 

Several review papers about catalytic reduction of nitrate have been 
published in the last decade [3,4,25]. Barrabés and Sá [25] offering an 
overview on monometallic and bimetallic catalysts used to date. Mar-
tínez et al. [3] included a detailed analysis of the reduction mechanism, 
together with the influence of pH, the use of continuous reactors, 
membrane-assisted systems and electrocatalytic reduction. Tokazhanov 
et al. [4] offered an exhaustive review of monometallic and bimetallic 
catalysts supported on active and passive materials, where the effect of 
important factors such as noble and promoter metal loading, pH and 
buffer systems, catalyst loading, nitrate concentration, and H2 flow rate 
were evaluated. 

The main objective of this review is the analysis of the scientific 
literature focused on the study of the performance of bimetallic catalysts 
in terms of reaction rate, nitrate conversion and NH4

+ formation, 
updating the state of the art. Besides, a reaction mechanism based on the 
different routes proposed by other authors is presented. In addition, 
unlike other previously published reviews, the current one collects the 
existing information on catalyst deactivation by analysing the studies on 
the stability of catalysts both in batch reaction cycles and in continuous 
systems. Finally, this overview reports on catalyst regeneration pro-
cedures presented in the literature, which can increase the catalyst 
useful life, a crucial issue regarding potential application. 

2. Mechanism of nitrate catalytic reduction 

The reaction mechanism for NO3
– removal using bimetallic catalysts 

has been widely studied [16,26–32]. H2 has been most commonly used 
as reducing agent, although some researchers have evaluated the use of 
HCOOH [33,34]. The most widely used bimetallic catalysts consist of a 
noble (Pd or Pt) and a promoter (Cu, Sn or In) metal. Bimetallic sites, 
consisting of noble metal active sites adjacent to the promoters, coexist 
in the catalyst along with monometallic sites, both noble metal and 
promoter sites. However, monometallic sites isolated from the promoter 
metal do not show activity for the catalytic reduction of nitrate. In a first 
step, NO3

– adsorbs on the promoter metal surface of bimetallic sites, 
where it is reduced to NO2

– [28]. This reduction causes oxidation of the 
promoter metal, which returns to its initial state due to hydrogen acti-
vation by the noble metal [27]. Nitrite can be desorbed into solution and 
readsorbed on a monometallic active site of the noble metal where it can 
be reduced to NO and subsequently to end products (N2 or NH4

+) 
directly or producing N2O as reaction intermediate. Nitrite can be also 
reduced in situ at the metal noble bimetallic sites [29,30,35]. The main 
nitrogenated compounds involved in catalytic reduction of NO3

– are: 
NO2

–, NO, N2O, N2, NH2OH, NH3/NH4
+ [27–29,31,32,36–46]. Hy-

droxylamine (NH2OH) has been detected as intermediate with Pd/TiO2, 

Pd/Al2O3, Pd/SiO2, Pd/CeO2 catalysts at concentration below 0.25 
mmol/L [44]. Fig. 1 shows an overall reaction pathway elaborated from 
the results obtained in several works, using a Pd bimetallic catalyst, the 
most used noble metal in catalytic reduction of nitrate. 

The NO reduction step controls the selectivity towards the reaction 
products, being NO3

– reduction to NO2
– the rate-controlling reaction of 

the process. The hydrogenation of NO2
– leads to a double reaction 

pathway. This species can be reduced to NH4
+ through the production of 

NH2OH, while the most accepted reaction pathway describes that NO2
– 

is reduced to NO and then to final products. Some works suggest that this 
last starts from NO adsorption on the catalyst surface [26,38,39,47]. 
Mikami et al. [48] proposed a reaction scheme where N2 is produced by 
recombination of N atoms or by the reaction between N and NO on Pd 
sites, whereas NH4

+ is formed by the reaction between N and chem-
isorbed H [49]. 

As an overall process, the catalytic reduction of nitrate by bimetallic 
catalysts can be summarized in eqs. (1) and (2). In both, hydroxide ions 
(OH–) are formed in stoichiometric amounts:.  

2 NO3
– + 5 H2 → N2 + 4 H2O + 2 OH–                                            (1)  

2 NO3
– + 8 H2 → 2 NH4

+ + 2 H2O + 4 OH–                                     (2) 

These OH– can be adsorbed on the active sites of the bimetallic 
catalyst, competing with NO3

– and NO2
–, restricting the nitrate reduc-

tion and favoring the accumulation of nitrites in the aqueous phase at 
high pH values [3,48,50]. Moreover, the hydroxide species adsorbed on 
the catalyst surface can act as blocking barriers disabling the pairing of 
N-species diffusing on the surface [3,27]. This results in a lower avail-
ability of noble metal active sites where only NH4

+ can be formed. 
Carbon dioxide [19,23,24,51–56], formic [33,34,57] or hydrochloric 
[58–62] acids have been the most used agents to maintain acidic pH. 
Among them, CO2 allows better control of the pH inside the catalyst 
pores because its efficient distribution in the reaction system [3]. 

3. Bimetallic catalysts 

Table S1 provides information on the catalysts used, including metal 
phase, metal loading and supports, reaction conditions, reactor used, 
initial NO3

– concentration, catalyst loading, and initial pH. In addition, 
it includes values of the kinetic constant (k) or reaction rate (-rA) re-
ported or calculated from results shown in the papers, nitrate conversion 
(X-NO3

–) and ammonium (S-NH4
+) and nitrogen (S-N2) selectivities. The 

most used noble metal is Pd, which appears in about 80 % of the cata-
lysts reported in those studies, followed by Pt and with a lesser presence 
Rh, Ru and Ir. Respect to the promoter metal, Cu has been the most 
studied followed by Sn and In, and in less extent Ni, Ag, Zn and Fe. 

The first generation of catalysts, developed in the early 1990s, con-
sisted of bimetallic Pd-Cu catalysts [16,65]. In general, these catalysts 
showed fairly good activity, although within a relatively wide range 

Table 1 
Main features of NO3

– removal techniques from water [1,4,15].   

Ion exchange Reverse osmosis Electrodialysis Biological denitrification Catalytic reduction 

Full-scale system Yes Yes Yes Yes No 
Multiple contaminant 

removal 
Yes Yes Yes Potential Potential 

Rejected effluent Waste brine Waste brine Waste brine Bacteria sludge No 
Pre-treatment 

needs 
Yes Yes Yes Yes No 

Water recovery > 97 % > 85 % > 95 % > 99 % > 99 % 
Movable Yes Yes Yes No Yes 
Good manageability Yes Yes Yes No Yes 
Energy demands Low High High Medium Low 
Space requirement Low Medium Medium High Low 
Toxic by-product formation Concentrate ions brine Concentrate ions brine Concentrate ions brine NO2

– NH4
+, NO2

– 

Other Use of NO3
– selective resins   Post-disinfection is 

required 
Catalyst can suffer 
deactivation  
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(0.1–3.2 mmol min− 1 gcat
-1) [42,63,66–70]. The selectivity to N2 

showed important differences, falling between 27 and 84 % 
[29,48,67,68,71–81] and only in few cases exceeded 90 % [40,82]. A 
second generation consisting of Pd-Sn and Pd-In catalysts emerged 
looking for a more efficient alternative to Pd-Cu in terms of nitrate 
reduction activity, N2 selectivity and long-term stability [39]. Palomares 
et al. [83] and Franch et al. [84] compared the performance of Al2O3- 
supported Pd-Cu and Pd-Sn catalysts in the treatment of water from a 
polluted aquifer in the east cost of Spain and observed that the first one 
yielded higher selectivity to NH4

+ (65 vs 43 %), at similar nitrate con-
version (>90 %). Furthermore, comparing the catalytic performance of 
several catalysts (Pd-Zn, Pd-Cu, Pd-In and Pd-Sn) supported on red mud, 
Hamid et al. [23] concluded that Pd-Sn was the most active pair (11.6 ×
10-2 min− 1 rate constant value), followed by Pd-In (2.3 × 10-2 min− 1), 
achieving complete nitrate conversion with both catalysts. Meanwhile, 
under the same conditions, Pd-Cu and Pd-Zn yielded only 78 and 64 %, 
respectively (0.8 × 10-2 and 0.5 × 10-2 min− 1). 

Several studies have analyzed the influence of metal load and the 
noble to promoter metal mass ratio on the performance of the catalysts 
[18,27–29,36,54,67,74,79,80,85–94]. In most cases the noble metal 
content was in the range of 0.1–2 wt% and could reach values of 5 wt%. 
The promoter metal usually ranged from 0.1 to 2.5 wt%. Common noble 
to promoter metal mass ratios of were 4:1, 2:1 and 1:1. Pizarro et al. [18] 
observed that increasing the metal loading improved catalyst activity. 
These authors studied the effect of varying the metal load maintaining 
constant the noble to promoter metal ratio at 2:1 with Pd-Cu, Pd-Sn and 
Pd-In catalysts. They concluded that catalysts with metallic contents 
(Pd-promoter) of 5–2.5 wt% yielded higher activity (0.69, 0.83 and 0.57 
mmol min− 1 gPd

-1, respectively) than those with 1–0.5 wt% (0.20, 0.31, 
0.46 mmol min− 1 gPd

-1, respectively). Other authors, however, have 
reported less significant differences with the same metal ratio. Franch 
et al. [84] compared alumina-supported Pd-Sn catalysts with 5–2.5 and 
3–1.5 wt%, noble-promoter metal contents. Nitrate conversion with the 
first was only 1.2 times lower than the achieved with the second one at 7 
h reaction time. This can be due to the higher amount of promoter, 
giving rise to a higher coverage of the noble metal surface [54,95,96]. 
Thus, the H spillover from the noble to the promoter metal site decreases 
and, therefore the rate of NO3

– reduction. Jung et al. [95] observed, with 
a Pd-Cu catalyst supported on hematite, that at the highest Cu content 
tested (2.8 wt%) the surface concentration of Cu2+ was 2.2 times higher 
than that in the sample with 1.6 % Cu, indicating that coverage effect by 
an excess of Cu. 

Regarding NH4
+ selectivity, Mendow et al. [54] observed 

insignificant differences between Pd-Sn catalysts supported on a mac-
roporous anionic resin with equal amount of Pd (2 wt%) but fairly 
different of Sn (metallic ratios of 1:1 and 4:1). The respective selectiv-
ities were 28 and 29 % at NO3

– conversion of 65 % and 84 %, respec-
tively. However, with a very high ratio (10:1), the selectivity to NH4

+

increased to 50 %, decreasing the NO3
– conversion at 18 %. Thus, an 

excess of noble with respect to the promoter metal increases the 
hydrogen spillover rate and, consequently, the H:N ratio on the catalyst 
surface, favoring the formation of NH4

+. In addition, that the higher 
hydrogen spillover enhances NO2

– reduction on the bimetallic sites prior 
to its desorption, favoring NH4

+ formation as well [50,54,91,95–97]. 
The particle size of the noble and promoter metals has an important 

effect on the activity and selectivity of the catalysts. However, there is 
some controversy about the optimum size. Miyazaki et al. [98] achieved 
complete nitrate conversion with bimetallic Pt-Cu nanoparticles lower 
than 1.6 nm supported on alumina versus only around 60 % under the 
same operating conditions when the metallic particles size ranged 
4.7–7.0 nm. Marchesini et al. [62] observed that large Pd particles 
(around 28 nm) could enhance the availability of hydrogen on the 
catalyst surface and the consequent regeneration of the promoter metal 
active sites, resulting in a more efficient catalytic reduction of nitrate. 
Zhang et al. [79] reported that bimetallic Pd-Cu nanoparticles with sizes 
around 3.5–4.2 nm were suitable for simultaneous adsorption and 
activation of two N-containing species, obtaining higher selectivity to-
wards N2. On the other hand, on bimetallic ensembles lower than 3.5 
nm, the exposed noble metal particle becomes too small to adsorb and 
activate two molecules of N species simultaneously for the formation of 
N2. 

Using a suitable support is important for the catalyst performance 
[3,4,25]. Both active and passive supports have been used, with zero- 
valent iron (ZVI) standing out among the first group due to its reduc-
tion capacity, in addition to its availability, as well as low cost and 
environmental impact [99]. Suzuki et al. [100] used ZVI directly as a 
catalyst in the reduction of NO3

–. Electron transfer occurs through the 
oxidation of Fe0 to Fe2+ or Fe3+. However, some drawbacks have been 
observed such as particle agglomeration or high NH4

+ selectivity 
[101–103]. These drawbacks can be reduced by using ZVI nanoparticles 
(NZVI) as support of metals such as Pd or Cu, among others [104–107]. 
The introduction of a second metal has been studied, improving the rate 
of NO3

– reduction and the selectivity towards N2 [50,107–109]. Hamid 
et al. [106] studied the effect of incorporating Cu to a Pd/NZVI catalyst 
with different metal loading. They achieved complete nitrate conversion 
with Cu and Pd at 1.5 and 0.5 wt%, respectively, versus only 21 % with 

Fig. 1. Scheme of the reaction mechanism for catalytic reduction of nitrate by Pd bimetallic catalysts. Black section represents the most accepted mechanism 
[26–28,35,38,39,63,64]. Modifications are depicted in red [31,32]. Me represents the promoter metal. 
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Pd/NZVI at 0.5 Pd wt.%. Furthermore, the selectivity to NH4
+ was lower 

with the Pd-Cu catalyst, although frankly poor values were obtained in 
both cases. However, it was observed that the addition of a promoter 
metal increased the selectivity to NO2

–, due to its low affinity to the 
catalyst surface, which causes its accumulation as a final reaction 
product [106,107,110]. This species was negligible with the Pd/NZVI 
catalyst. Besides, the promoter metal enhances electron transfer, that 
can affect the lifetime of the catalyst [106]. 

The most commonly passive supports tested for bimetallic catalysts 
in nitrate reduction are Al2O3, activated carbon (AC), TiO2 and SiO2. In 
addition, a wide diversity of some other materials have been used, 
including CeO2 [44,70,111–113], ZrO2 [29,44,67,114,115], hydro-
talcites [72,73,116], zeolites [55,96,117], ionic exchange resins 
[54,82,118,119], carbon nanotubes (CNT) and multiwalled carbon 
nanotubes (MWCNT) [51,52,120–123], clays, pillared clays [18,77] and 
glass fiber [124,125]. 

The porous texture of the supports appears to influence the perfor-
mance of the bimetallic catalysts [19,126,127]. Krawczyk et al. [126] 
observed that the textural properties of the support modified the selec-
tivity to N2. Pd-In catalysts supported on SiO2 (BET area of 300 m2/g and 
mean pore diameter of 45 Å) and TiO2 (50 m2/g and 100–300 Å) yielded 
N2 selectivities of 55 and 90 %, respectively, at complete nitrate con-
version. This result can be explained by the fact that the neutralization of 
OH– ions, formed on active sites located in narrow pores, can take place 
after their diffusion from pores into the reaction mixture. Higher inter-
nal porosity would determine slower diffusion so that pH inside the 
pores may be higher than that of the solution, which would favour the 
formation of NH4

+. However, the point of zero charge (PZC) of the 
support has been reported as a key factor in the adsorption rate of nitrate 
ions. Marchesini et al. [61] reported that the high PZC of Al2O3 (PZC =
8) seems to improve the performance of Pd-In catalysts compared with 
SiO2 (PZC = 2), achieving a > 99 % and 35 % nitrate conversion, 
respectively. During the reaction, the pH of the solution (pH 5) leads to a 
net positive charge of the Al2O3 surface that would enhance adsorption 
of nitrate and nitrite ions and so their interaction with the catalyst active 
phase. Furthermore, the support can be important in connection with 
potential leaching of the metallic phases. Yoshinaga et al. [29] studied 
the effect of pH and the support in that respect, comparing Pd-Cu cat-
alysts supported on Al2O3 and AC at initial solution pH of 5.4 and 2.3. 
The highest metal loss occurred with Al2O3 at pH 2.3 (30.7 % of Cu), 
being significantly lower, although still of some importance, at pH 5.4 
(6.3 % of Cu). Meanwhile, the catalyst supported on AC did not suffer 
significant metal loss, which was attributed to the strong interaction 
between Cu and Pd on this support, giving rise to the of Pd-Cu particles. 
The stability of the support itself was also in favour of AC, especially at 
low pH, where 3.7 % of Al was dissolved from Al2O3. 

TiO2, despite not being the most used support, allow preparing cat-
alysts that have proven higher activity than those supported on other 
materials [44,68,111,121]. Wada et al. [44] reported significant dif-
ferences of activity using CeO2, TiO2, SiO2, Al2O3 or ZrO2 as support for 
Pd-Cu catalysts. They observed that Pd-Cu/TiO2 was the most active, 
yielding up to 10-fold higher reaction rate (36 × 10-2 mmol min− 1 gcat

-1) 
than catalysts supported on SiO2, Al2O3 and ZrO2 (2.5 × 10-2, 1.5 × 10-2, 
and 5.1 × 10-2 mmol min− 1 gcat

-1, respectively). The authors found that 
TiO2 markedly promotes the reduction of surface copper, key issue for 
the high catalytic activity. 

Mixed supports have also been used to improve activity as well as 
selectivity to N2. Kim et al. [70] investigated the behaviour of Pd-Cu 
catalyst (3–1 wt%) on a mixed TiO2-CeO2 (Ti:Ce 18:1 wt) and found 
an increased activity of almost 70 % with respect to the TiO2-supported 
catalyst. The modification of the acid-base properties of TiO2 has also 
been studied and interesting results have been obtained relative to the 
reaction kinetics. Bou-Orm et al. [69] analyzed the effect of modifying 
the TiO2 support with Nb (1, 2 and 5 wt%) and Mg (7 wt%) as dopant 
agents, observing a decrease of the crystallinity and increase of the 
surface area, from 36 m2/g of the raw TiO2 to 59–98 m2/g of Nb-TiO2 

and 58 m2/g for Mg-TiO2. In addition, the acid-base properties of TiO2 
were strongly modified by including the doping agent, introducing the 
acidic character of Nb, whereas Mg-doped TiO2 becomes basic. The Mg 
doping increased the activity from 0.67 mmol min− 1 gcat 

-1 of the orig-
inal TiO2 to 0.76 mmol min− 1 gcat 

-1, while the Nb catalyst showed lower 
activity (0.43–0.47 mmol min− 1 gcat 

-1). 

4. Stability of the catalysts 

The possibility of applying catalytic nitrate reduction in real water 
matrices requires learning on the catalyst stability and understanding 
the causes of deactivation so to develop effective regeneration proced-
ures. Most of the articles including stability studies report results from 
continuous flow experiments, mostly using fixed bed (FBR) or contin-
uous stirred-tank (CSTR) reactors [19,21,29,33,48,54,61,78,114,115, 
118,127–136]. Typically, the FBR used in the experiments thus far are of 
fairly small size, with an internal diameter between 0.4 and 2 cm and 
3–30 cm length [61]. The CSTR are usually also lab-scale, with total 
volume ranging 250 mL − 1 L and working under continuous stirring at 
300–900 rpm, with powdered catalyst. Some studies, evaluate the sta-
bility of the catalyst by consecutive semi-batch reaction cycles. 

4.1. Catalyst deactivation 

Thus far, only few works devoted to the study of catalyst stability 
have reported truly promising results. Mendow et al. [54] observed a 
constant nitrate removal efficiency (≅ 60 %) and NH4

+ selectivity of 5 % 
upon 80 h on stream with a Pd-Sn (2–0.5 wt%) catalyst supported on an 
anionic resin working with an aqueous solution of 100 mg/L of NO3

–. 
Marchesini et al. [61] reported stable NO3

– conversion (close to 75 %) 
with 55 % N2 selectivity during 120 h of time on stream, in the presence 
of Cl- (125 mg/L), HCO3

– (150 mg/L) and SO4
2- (100 mg/L), with a Pd- 

In/Al2O3 catalyst (1–0.25 wt%). Hamid et al. [23] reported complete 
nitrate removal upon 11 consecutive 4 h-batch cycles, with a Pd-Sn 
catalyst supported on red mud, where the catalyst activity was main-
tained at a fairly high value (5.8 L min− 1 gPd

-1) and > 88 % N2 
selectivity. 

However, most of the studies on catalyst stability reported significant 
deactivation. Table S2 collects those studies, classified according to the 
causes of deactivation. Together with the catalyst the able contains in-
formation on the water matrix and the reactor system. Fig. 2 provides 
schematic representation of those causes, namely (i) fouling of the 
catalyst surface (ii) irreversible oxidation of the promoter metal (iii) 
leaching of the metallic phase and (iv) aggregation of metallic particles. 
Fouling of the catalyst surface by salts precipitation is the main cause of 
deactivation with natural waters and synthetic ones spiked with ions 
other than nitrate [21,22,56,61,83,84,114,116,118,120]. It is mainly 
caused by sulfur, calcium and magnesium salts, but also by organic 
matter [21,61,83,137,138]. From adsorption experiments with a Pd-Cu/ 
Al2O3 catalyst, Chaplin et al.[[20] established the following order for 
the fouling capacity: SO4

2- < HCO3
– < Cl- < humic acid < SO3

2- < HS-. 
Palomares et al. [83] tested the stability of a Pd-Sn/Al2O3 catalyst in a 
long-term experiment using tap water of 1000 µS cm− 1 conductivity, 
with the following composition (mg L-1) 185 Ca2+, 79Cl-, 200 SO4

2- and 
90 NO3

–. They observed complete nitrate conversion upon 8 h on 
stream, but then, the catalyst started to lose activity, showing monot-
onical deactivation up to 40 % nitrate conversion after 250 h. The au-
thors discarded metal leaching as a cause of deactivation, which was 
attributed to precipitation of calcium salts on the catalyst surface and 
formation of some reduced species of sulfur that slowly deactivate the 
palladium sites. Theologides et al. [22] reported that fouling of the Pd 
metal clusters by ions, particularly cations, is directly related to 
increased selectivity towards NO2

–. This occurs because reduced avail-
ability of Pd sites due to fouling hinders the consecutive reduction of 
nitrite ions, resulting in their accumulation as a reaction product. Santos 
et al. [137] integrated catalytic reduction of nitrate and ozonation for 
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the simultaneous removal of organic and inorganic species from water. 
They observed that the organic species resulting from ozonation, were 
responsible of the Pd-Cu/CNT catalyst deactivation upon selective 
adsorption on the Cu active centres of the catalyst. 

Increasing the oxidation state of the promoter metal irreversibly 
leads to the loss of activity of bimetallic catalyst because of interference 
in the redox cycle. Franch et al. [84] reported 20–25 % decrease in ni-
trate conversion with a Pd-Sn/Al2O3 catalyst (SBET = 125–134 m2/g, 
metal dispersion = 1.9–6.4 %, crystal size = 17.6–57.6 nm) after 8 h of 
reaction. However, using a high surface area alumina (HSA) (SBET = 277 
m2/g, crystal size = 2.9 nm) metal dispersion increased to 38.9 % and 
deactivation became almost negligible. The activity was also somewhat 
increased. XPS analyses of the catalysts before and after reaction 
revealed 24.6–26.7 % of oxidized Sn species (Sn2+ and Sn4+) in the used 
Pd-Sn/Al2O3 catalyst, whereas the one supported on HSA did not show 
significant variation of the Sn oxidation state. Therefore, using HSA 
appears a favourable alternative to alumina to avoid oxidation of the 
promoter metal. Hamid et al. [24] observed that, after a stable period of 
complete nitrate conversion (60 h), a Pd-Sn/kaolinite catalyst suffered 
deactivation for 110 h, decreasing NO3

– conversion by 20 %. Increased 
Sn oxidation after use was confirmed by XPS, negatively affecting to the 
catalyst performance. 

The loss of metal phase by leaching leads to irreversible deactivation 
of the catalyst and additionally provokes water pollution by the metal 
species. The intensity of leaching is pH dependent [17,139] and can be 
controlled by modifying the characteristics of the catalysts [29,140] or 
the reaction conditions [17,139]. The calcination temperature during 
catalyst preparation affects to further metal loss. Bae et al. [139] 
observed that air-calcination of a Pd-Cu/TiO2 (3–1 wt%) catalyst at 
temperature below 350 ◦C led to significant loss of Cu and Pd upon 
reduction with NaBH4, indicating that strong Cu and Pd bonding on TiO2 
did not occur at that temperature. Calvo et al. [17] observed that the 
operating pH affects to the stability of the active phase, especially 
through the leaching of the promoter metal. The authors tested a Pd-Cu/ 
AC catalyst buffering the reaction solution at different pH values within 
5–8. At pH 5 dramatic Cu leaching was observed after 28 h on stream, 
reaching almost 70 % of the initial Cu load of the catalyst and nitrate 
conversion strongly decreased upon that time on stream. At pH 6 and 7, 

leaching decreased drastically and the catalyst showed the highest ni-
trate conversion (80–90 %). Beyond that pH, Cu leaching raised again 
above 35 % of the initial load. Similar results have been reported by Bae 
et al. [139], who achieved complete nitrate conversion within the same 
optimum pH range (6–7) with a significant decrease (up to 58 %) at pH 8 
due to the loss of active phase by leaching of Cu (35 %) and Pd (54 %). In 
this sense, Pd and Cu did not leach when supported on AC, even at low 
pH (2.3), while a significant amount of Cu, and also appreciable 
amounts of Pd, were released from the surface of Pd-Cu/Al2O3, Pd-Cu/ 
SiO2, Pd-Cu/ZrO2 catalysts [29]. At pH 5.4, in the Pd-Cu/ZrO2 and Pd- 
Cu/ SiO2 catalysts, the concentration of Pd decreased by 1.4 and 3.9 
%, while the Cu loss reached values of 26 and 10.6 %, respectively. 
Under the same operating conditions, Pd leaching from the Pd-Cu/Al2O3 
catalyst was negligible, and the amount of dissolved Cu was 6.3 %, 
reaching up to 30.7 % at 2.3 initial pH. The ability of carbon supports to 
reduce metal leaching could be associated with their functional N- 
groups. Owing to the lone pair electrons of nitrogen, the N-rich sites in 
the carbon support can increase the local electron density and promote 
the formation of active centres which can coordinate with the metallic 
species thus favoring a more stable anchorage onto the support 
[141,142]. 

Aggregation of metal particles affects to the metal dispersion, 
decreasing the available surface area of the active phase and thus the 
adsorption of hydrogen onto the noble metal [91,96,119,143]. Hamid 
et al. [96] observed>50 % activity loss after five consecutive batch re-
action cycles with a Pd-Sn/Nanocrystalline ZSM-5 catalyst. They re-
ported an increase of the metal mean particle size from 4.5 to 9.8 nm, 
with the subsequent loss of dispersion (from 20.8 to 11.4 %), active 
metal surface area (from 92 to 51 m2/g) and cumulative hydrogen up-
take (from 0.35 to 0.19 cm3 g− 1). Mendow et al. [118] observed a 
decrease somewhat above 10 % of nitrate conversion after 3 reaction 
cycles with a Pd-Cu catalyst supported on anion exchange resin, 
attributed to a loss of metal dispersion of almost 15 %. 

Some other less common causes of deactivation have been observed 
related to the deterioration of the catalyst during the washing process. 
For instance, Bae et al. [107] attributed a slight loss of activity of a Pd- 
Cu/NZVI catalyst (from complete to 95 % nitrate conversion after 5 
successive batch reaction cycles), attributed to the continuous exposure 

Fig. 2. Main causes of catalyst deactivation. Me represents the promoter metal.  
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to NO3
– and the contact with O2 in the washing step following each 

reaction cycle. Similarly, Zeng et al. [144] observed that the active sites 
on the outer and internal surface of Fe, Cu/Fe and Mn/Fe nanoparticles 
were partly depleted after the third batch reaction cycle. In addition, 
they reported that the dissolved oxygen in the aqueous solution could 
provoke the formation of a less reactive oxide layer on the surface of the 
nanoparticles. 

4.2. Catalyst regeneration 

The literature also reports on the regeneration of catalysts used for 
nitrate reduction, as summarized in Table 2. Partial recovery of the 
activity has been reported in cases where deactivation is attributed to 
fouling of the catalyst surface or promoter metal oxidation 
[24,137,145,146]. However, loss of metal phase by leaching and 

aggregation of metal particles cannot be reversed. Chaplin et al. [145] 
applied an oxidative treatment to Pd-In/Al2O3 and Pd-Cu/Al2O3 cata-
lysts affected by sulfide deactivation. The authors used several agents of 
different strength (NaOCl, H2O2, dissolved oxygen, air) and under 
different conditions of concentration, pH and temperature. The Pd-In/ 
Al2O3 catalyst was partially regenerated to 60 % of the initial activity 
with NaOCl (28–56 mM, pH = 7.8) or air at 120 ◦C. The S fouling 
increased the undesired selectivity to NH4

+, which was not restored to 
the original value. They applied the same treatments (except for pH, 
now 11) to the used Pd-Cu/Al2O3 catalyst, which partially recovered its 
initial activity, increasing the nitrate conversion from 51.7 % to 78 and 
72 %, respectively. Santos et al. [137] recovered the activity of a Pd-Cu/ 
CNT catalyst whose Cu sites were partially covered by adsorbed organic 
species (loss of 61 % of the catalytic activity) by thermal treatment at 
200 ◦C for 1 h under N2 flow, followed by reduction under H2 flow for 3 

Table 2 
Results reported in the literature on the regeneration of bimetallic catalysts for nitrate reduction.  

Deactivation cause Catalyst Fresh catalyst Used catalyst Regeneration agent/process* Regenerated catalyst Ref. 

Oxidation of the 
promoter metal 

Pd-Sn/ 
kaolinite 

X-NO3
- = 100 

S-N2 = 77 % 
X-NO3

- = 80 
S-N2 = 42 % 

DDIW washing and H2 reduction X-NO3
- = 100 

S-N2 = 70 % 
[24] 

Pd-Sn/Al2O3- 
diatomite  

S-N2 = 60 % 
Catalytic activity = 0.30 
mg/L g− 1 min− 1 

NaOH washing S-N2 = 63 % 
Catalytic activity = 0.32 
mg/L g− 1 min− 1 

[146] 

HCl washing S-N2 = 74 % 
Catalytic activity = 0.46 
mg/L g− 1 min− 1 

Fouling of the 
catalyst surface 

Pd-Cu/CNT  Catalytic activity = 1.6 ⋅ 
10-5 mmol min-1gcat

-1 

X-NO3
- = 9 % 

S-NH4
+ = 64 % 

Thermal treatment with N2 at 200 ◦C 
during 1 h and 3 h of H2 reduction 

Catalytic activity = 2.3 x 
10-4 mmol min-1gcat

-1 

X-NO3
- = 100 % 

S-NH4
+ = 57 % 

[137] 

Pd-In/Al2O3 Catalytic activity = 190 
x 10-3 L min− 1 gcat

-1 

X-NO3
- = 100 % 

S-NH4
+ = 29.7 % 

S-NO2
- = 0 % 

S-NH4
+ (X-NO3

- = 50 
%) = 3.8 % 

Catalytic activity = 38.1 
x 10-3 L min− 1 gcat

-1 

X-NO3
- = 52.2 % 

S-NH4
+ = 12.1 % 

S-NO2
- = 0 % 

S-NH4
+ (X-NO3

- = 50 
%) = 23.2 % 

Air-saturated water washing Catalytic activity = 39.9 x 
10-3 L min− 1 gcat

-1 

X-NO3
- = 48.7 % 

S-NH4
+ = 19.3 % 

S-NO2
- = 0.7 % 

S-NH4
+ (X-NO3

- = 50 %) =
39.4 % 

[145] 

H2O2 washing Catalytic activity = 41.5 x 
10-3 L min− 1 gcat

-1 

X-NO3
- = 55.7 % 

S-NH4
+ = 17.6 % 

S-NO2
- = 0.8 % 

S-NH4
+ (X-NO3

- = 50 %) =
31.4 % 

Air (120 ◦C) for 4 h Catalytic activity = 91.4 x 
10-3 L min− 1 gcat

-1 

X-NO3
- = 93.7 % 

S-NH4
+ = 28.6 % 

S-NO2
- = 0.1 % 

S-NH4
+ (X-NO3

- = 50 %) =
17.3 % 

NaOCl washing Catalytic activity = 96.9 x 
10-3 L min− 1 gcat

-1 

X-NO3
- = 100 % 

S-NH4
+ = 14.7 % 

S-NO2
- = 0 % 

S-NH4
+ (X-NO3

- = 50 %) =
11.5 % 

Pd-Cu/Al2O3 Catalytic activity = 187 
x 10-3 L min− 1 gcat

-1 

X-NO3
- = 51.7 % 

S-NH4
+ = 28.0 % 

S-NO2
- = 0 % 

S-NH4
+ (X-NO3

- = 50 
%) = 14.9 % 

Catalytic activity = 38.1 
x 10-3 L min− 1 gcat

-1 

X-NO3
- = 51.7 % 

S-NH4
+ = 14.7 % 

S-NO2
- = 0.2 % 

S-NH4
+ (X-NO3

- = 50 
%) = 28.4 % 

NaOCl washing Catalytic activity = 64.1 x 
10-3 L min− 1 gcat

-1 

X-NO3
- = 77.9 % 

S-NH4
+ = 9.8 % 

S-NO2
- = 0.1 % 

S-NH4
+ (X-NO3

- = 50 %) =
9.4 % 

Air (120 ◦C) for 4 h Catalytic activity = 65.0 x 
10-3 L min− 1 gcat

-1 

X-NO3
- = 72 % 

S-NH4+ = 19.3 % 
S-NO2

- = 0 % 
S-NH4

+ (X-NO3
- = 50 %) =

20.6 % 

* Ambient conditions unless other indicated. 
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h. 
Regeneration of catalysts suffering of promoter metal oxidation has 

been investigated by several authors. Chen et al. [138] used NaBH4 and 
H2 as reducing agents with a Cu-Pd/Titanate nanotubes catalyst. Around 
60 % of the initial activity was restored but not the N2 selectivity. 
Regeneration of a Pd-Sn/Al2O3-diatomite catalyst was performed by 
acid washing (HCl 2 M), which favoured the reduction of SnO2 to Sn 
[146]. Hamid et al. [24] used H2 to regenerate a sn-Pd-kaolinite catalyst 
that suffered oxidation of Sn to Sn+2 and Sn+4 after 60 h on stream. After 
1 h under continuous H2 flow the initial activity for NO3

– reduction was 
completely recovered together with 70 % of the selectivity to N2. Jung 
et al. [91] and Hamid et al. [23,117] developed a treatment for the 
catalyst to prevent the loss of activity. That treatment consisted of 
washing with deaerated deionized water (DDIW), drying at 100 ◦C, air- 
calcination at 350 ◦C and reduction with NaBH4. It was tested with 
several catalysts (Cu-Pd/maghemite, sn-Pd-red mud, In-Pd/N-Beta 
zeolite, Cu-Pd/N-Beta zeolite, sn-Pd/N-Beta zeolite), which showed no 
significant loss of activity after eleven 75 min-batch cycles. However, 
some sintering of Cu particles was observed in the Cu-Pd/maghemite 
catalyst, which slightly reduced the catalytic activity but increased the 
selectivity to NO2

–. 

5. Conclusions 

The results reported in the literature on the topic of this review allow 
summarizing the following conclusions: 

(i) Pd-Sn and Pd-In based bimetallic catalysts have emerged as 
competitive alternative to Pd-Cu pair in terms of nitrate reduction ac-
tivity, N2 selectivity and long-term stability. 

(ii) Regarding the metallic phase, an excess of promoter metal can 
provoke adverse effects on catalytic denitrification, due to partial 
blockage of the noble metal active surface, thus decreasing the rate of 
hydrogen adsorption and spillover, essential for continuous regenera-
tion of the promoter oxidation state. On the other hand, excess of noble 
metal increases the H concentration on the catalyst surface and the H:N 
ratio, favoring the formation of undesired NH4

+. The optimum metal 
content in bimetallic catalysts appears to be in the range of 0.5–2 % of 
each metal, with a noble:promoter metal ratio between a fairly wide 
range of 1:1 to 4:1. 

(iii) PZC of the support affects to the catalyst performance. A value 
above that of the solution pH, leads to a net positive charge of the 
catalyst surface, favouring the attraction of negative nitrate and nitrite 
ions and, thus, their interaction with the metallic active phase. Among 
the metal oxides, TiO2, despite not being the most used support, has 
proven to enhance the activity more than other materials. Activated 
carbon has shown a better stability in terms of metal loss by leaching. It 
is worth to highlight the growing interest for the use of waste materials, 
such as red mud or biomass residues-derived materials, like biochars and 
hydrochars. 

The main catalyst deactivation causes identified in the literature are. 
Fouling of the catalyst surface by salt precipitation and organic 

matter, the main cause of deactivation with natural and synthetic waters 
spiked with ions other than nitrate. 

Irreversible oxidation of the promoter metal. 
Metal loss by leaching, with the additional adverse effect of water 

contamination. 
Aggregation of metal particles, decreasing the available surface area 

of the active metal phase. 
Different regeneration procedures have been investigated in the 

literature. Sulfide-fouled catalysts have been partially regenerated by 
oxidative treatment with NaOCl or air at 120 ◦C. The adsorption of 
organic compounds on the catalyst surface could be reduced by thermal 
treatment at 200 ◦C under N2 flow followed by reduction by H2. For 
catalysts deactivated by oxidation of the promoter metal combined 
treatments of washing followed by calcination at 350 ◦C and reduction 
by NaBH4 have been used, as well as more simple methods based on H2- 

reduction. 

6. Challenges and future outlook 

Catalytic reduction is not yet a demonstrated technology to be 
implemented as a full-scale solution for effective removal of nitrate from 
drinking water sources. In principle it has potential advantages over the 
currently employed methods, based on the use of membranes or ion- 
exchange resins, which produce residual streams with high nitrate 
concentrations, requiring proper disposal. Biological denitrification is 
mostly used for wastewater treatment and produces waste sludge to deal 
with. Its application to water for human consumption would require 
deep disinfection. Catalytic reduction emerged to avoid those drawbacks 
but needs to solve important challenges related to the catalyst selectivity 
to N2 and lifetime. Nitrite and ammonium are undesired byproducts 
from nitrate reduction, which need to be almost completely avoided 
given their harmful character, which determines highly stringent 
allowed limits. That demands a very high selectivity towards N2, which 
must be compatible with the high levels of nitrate conversion commonly 
required. Growing research efforts addressed to the development of 
novel catalytic systems fulfilling those requirements are expected in the 
next future. This has to go in parallel with the stability of the catalysts, a 
crucial issue regarding potential application in cost-effective terms with 
natural waters, commonly containing other accompanying ions that 
have proven to provoke deactivation of the catalysts tested thus far. 
Long-term continuous experiments must be an extended practice asso-
ciated to the stability studies. Gaining in-dept knowledge on the causes 
of deactivation is also a main task for the future. That knowledge can be 
comprehensively applied to the development of effective regeneration 
procedures capable of enlarging the catalyst lifetime. The design of re-
actors advantageously adapted to the characteristics of the catalyst is 
also a challenge requiring resolute research efforts including pilot-scale 
studies. 
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