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Determining the Number of Attributes
in Cognitive Diagnosis Modeling
Pablo Nájera, Francisco José Abad and Miguel A. Sorrel*
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Cognitive diagnosis models (CDMs) allow classifying respondents into a set of discrete

attribute profiles. The internal structure of the test is determined in a Q-matrix, whose

correct specification is necessary to achieve an accurate attribute profile classification.

Several empirical Q-matrix estimation and validation methods have been proposed

with the aim of providing well-specified Q-matrices. However, these methods require

the number of attributes to be set in advance. No systematic studies about CDMs

dimensionality assessment have been conducted, which contrasts with the vast existing

literature for the factor analysis framework. To address this gap, the present study

evaluates the performance of several dimensionality assessment methods from the

factor analysis literature in determining the number of attributes in the context of CDMs.

The explored methods were parallel analysis, minimum average partial, very simple

structure, DETECT, empirical Kaiser criterion, exploratory graph analysis, and a machine

learning factor forest model. Additionally, a model comparison approach was considered,

which consists in comparing the model-fit of empirically estimated Q-matrices. The

performance of these methods was assessed by means of a comprehensive simulation

study that included different generating number of attributes, item qualities, sample

sizes, ratios of the number of items to attribute, correlations among the attributes,

attributes thresholds, and generating CDM. Results showed that parallel analysis (with

Pearson correlations and mean eigenvalue criterion), factor forest model, and model

comparison (with AIC) are suitable alternatives to determine the number of attributes

in CDM applications, with an overall percentage of correct estimates above 76% of the

conditions. The accuracy increased to 97% when these three methods agreed on the

number of attributes. In short, the present study supports the use of three methods in

assessing the dimensionality of CDMs. This will allow to test the assumption of correct

dimensionality present in the Q-matrix estimation and validation methods, as well as to

gather evidence of validity to support the use of the scores obtained with these models.

The findings of this study are illustrated using real data from an intelligence test to provide

guidelines for assessing the dimensionality of CDM data in applied settings.

Keywords: cognitive diagnostic models, dimensionality assessment, parallel analysis, machine learning, model

comparison, Q-matrix validation
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INTRODUCTION

The correct specification of the internal structure is arguably the
key issue in the formulation process of a measurement model.
Hence, it is not surprising that the determination of the number
of factors has been regarded as the most crucial decision in the
context of exploratory factor analysis (EFA; e.g., Garrido et al.,
2013; Preacher et al., 2013). Since the very first proposals to
address this issue, such as the eigenvalue-higher-than-one rule or
Kaiser-Guttman criterion (Guttman, 1954; Kaiser, 1960), many
methods have been developed for assessing the dimensionality in
EFA. Despite the longevity of this subject of study, the fact that
it is still a current research topic (e.g., Auerswald and Moshagen,
2019; Finch, 2020) is a sign of both its relevance and complexity.

In contrast to the vast research in the EFA framework,
dimensionality assessment remains unexplored for other
measurement models. This is the case of cognitive diagnosis
models (CDMs). CDMs are restricted latent class models in
which the latent variables or attributes are discrete, usually
dichotomous. The popularity of CDMs has increased in the last
years, especially in the educational field, because of their ability
to provide a fine-grained information about the examinees’
mastery or non-mastery of certain skills, cognitive processes, or
competences (de la Torre and Minchen, 2014). However, CDM
applications are not restricted to educational settings, and they
have been employed for the study of psychological disorders
(Templin and Henson, 2006; de la Torre et al., 2018) or staff
selection processes (García et al., 2014; Sorrel et al., 2016).

A required input for CDMs is the Q-matrix (Tatsuoka, 1983).
It has dimensions J items × K attributes, in which each q-
entry (qjk) can adopt a value of 1 or 0, depending on whether
attribute k is relevant to measure item j or not, respectively.
Hence, the Q-matrix determines the internal structure of the test,
and its correct specification is fundamental to obtain accurate
structural parameter estimates and, subsequently, an accurate
classification of examinees’ latent classes or attribute profiles
(Rupp and Templin, 2008; Gao et al., 2017). However, the Q-
matrix construction process is usually conducted by domain
experts (e.g., Sorrel et al., 2016). This process is subjective
in nature and susceptible to specification errors (Rupp and
Templin, 2008; de la Torre and Chiu, 2016). To address this,
several Q-matrix estimation and validation methods have been
proposed in the recent years with the aim of providing empirical
support to its specification. On the one hand, empirical Q-
matrix estimation methods rely solely on the data to specify
the Q-matrix. For instance, Xu and Shang (2018) developed
a likelihood-based estimation method, which aims to find
the Q-matrix that shows the best fit while controlling for
model complexity. Additionally, Wang et al. (2018) proposed
the discrete factor loading (DFL) method, which consists in
conducting an EFA and dichotomizing the factor loading matrix
up to some criterion (e.g., row or column means). On the other
hand, empirical Q-matrix validation methods aim to correct a
provisional, potentially misspecified Q-matrix based on both its
original specification and the data. For instance, the stepwise
method (Ma and de la Torre, 2020a) is based on the Wald test to
select the q-entries that are statistically necessary for each item,

while the general discrimination index method (de la Torre and
Chiu, 2016) and theHullmethod (Nájera et al., 2020) aim to find,
for each item, the simplest q-vector specification that leads to an
adequate discrimination between latent classes. These methods
serve as a useful tool for applied researchers, who can obtain
empirical evidence of the validity of their Q-matrices (e.g., Sorrel
et al., 2016).

Despite their usefulness, the Q-matrix estimation and
validation methods share an important common drawback,
which is assuming that the number of attributes specified by
the researcher is correct (Xu and Shang, 2018; Nájera et al.,
2020). Few studies have tentatively conducted either a parallel
analysis (Robitzsch and George, 2019) or model-fit comparison
(Xu and Shang, 2018) to explore the dimensionality of the Q-
matrix. However, to the authors’ knowledge, there is a lack of
systematic studies on the empirical estimation of the number of
attributes in CDMs. The main objective of the present research is
precisely to compare the performance of a comprehensive set of
dimensionality assessment methods in determining the number
of attributes. The remaining of the paper is laid out as follows.
First, a description of two popular CDMs is provided. Second,
a wide selection of EFA dimensionality assessment methods
is described. Third, an additional method for assessing the
number of attributes in CDMs is presented. Fourth, the design
and results from an exhaustive simulation study are provided.
Fifth, real CDM data are used for illustrating the functioning
of the dimensionality assessment methods. Finally, practical
implications and future research lines are discussed.

THE DINA AND G-DINA MODELS

CDMs can be broadly separated into general and reduced,
specific models. General CDMs are saturated models that
subsume most of the reduced CDMs. They include more
parameters and, consequently, provide a better model-data fit
in absolute terms. As a counterpoint, their estimation is more
challenging. Thus, reduced CDMs are often a handy alternative
to applied settings because of their simplicity, which favors both
their estimation and interpretation. Let denote by K∗

j the number

of required attributes for item j. Under the deterministic inputs,
noisy “and” gatemodel (DINA; Junker and Sijtsma, 2001), which
is a conjunctive reduced CDM, there are only two parameters per
item regardless of K∗

j : the guessing parameter (gj), which is the

probability of correctly answering item j for those examinees that
do not master, at least, one of the required attributes, and the slip
parameter (sj), which is the probability of failing item j for those
examinees that master all the attributes involved. The probability
of correctly answering item j given latent class l is given by

Pj (αl) = g
1−ηlj
j (1− sj)

ηlj (1)

where ηlj equals 1 if examinees in latent class l master all the
attributes required by item j, and 0 otherwise.

The generalized DINA model (G-DINA; de la Torre, 2011) is
a general CDM, in which the probability of correctly answering
item j for latent class l is given by the sum of the main effects of
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the required attributes and their interaction effects (in addition
to the intercept):

Pj
(

α
∗
l

)

= δj0 +

K∗
j

∑

k=1

δjkαlk +

K∗
j

∑

k′=k+1

K∗
j −1
∑

k=1

δjkk′αlkk′ . . .

+δj12...K∗
j

K∗
j

∏

k=1

αlk (2)

where α
∗
l
is the reduced attribute profile whose elements are the

K j
∗ required attributes for item j, δj0 is the intercept for item

j, δjk is the main effect due to αk, δjkk′ is the interaction effect
due to αk and αk′ , and δj12...K∗

j
is the interaction effect due to

α1, . . . ,αK∗
j
. Figure 1 depicts the probabilities of success of the

four possible latent groups for an item requiring two attributes
(K∗

j = 2) under the DINA and G-DINA models. For the DINA

model, the probability of success for the latent group that masters
all attribute is high (P (11) = 1 − sj = 1 − 0.2 = 0.8), while
the probability of success for the remaining latent groups is very
low (P (00) = P (10) = P (01) = gj = 0.1). For the G-DINA
model, the baseline probability (i.e., intercept) is also very low
(P (00) = δj0 = 0.1). The increment in the probability of success
as a result of mastering the first attribute (P (10) = δj0 + δj1 =

0.1+ 0.25 = 0.35) is slightly lower than the one due to mastering
the second attribute (P (01) = δj0 + δj2 = 0.1 + 0.35 = 0.45).
Finally, although the interaction effect for both attributes is low
(δj12 = 0.1), the probability of success for the latent group that
masters both attributes is high because the main effects are also
considered (P (11) = δj0 + δj1 + δj2 + δj12 = 0.1+ 0.25+ 0.35+
0.1 = 0.80).

DIMENSIONALITY ASSESSMENT
METHODS

In the following, we provide a brief explanation of seven
dimensionality assessment methods that were originally
developed for determining the number of factors in EFA and will
be explored in the present study.

Parallel Analysis
Parallel analysis (PA; Horn, 1965) compares the eigenvalues
extracted from the sample correlation matrix (i.e., sample
eigenvalues) with the eigenvalues obtained from several
randomly generated correlation matrices (i.e., reference
eigenvalues). The number of sample eigenvalues that are higher
than the average of their corresponding reference eigenvalues is
retained as the number of factors. The 95th percentile has also
been recommended rather than the mean to prevent from over-
factoring (i.e., overestimate the number of factors). However,
no differences have been found in recent simulation studies
between both cutoff criteria (Crawford et al., 2010; Auerswald
and Moshagen, 2019; Lim and Jahng, 2019). Additionally,
polychoric correlations have been recommended when working
with categorical variables. Although no differences have been
found for non-skewed categorical data, polychoric correlations

perform better with skewed data (Garrido et al., 2013) as long
as the reference eigenvalues are computed considering the
univariate category probabilities of the sample variables by, for
instance, using random column permutation for generating
the random samples (Lubbe, 2019). Finally, different extraction
methods have been used to compute the eigenvalues: principal
components analysis (Horn, 1965), principal axis factor analysis
(Humphreys and Ilgen, 1969), or minimum rank factor analysis
(Timmerman and Lorenzo-Seva, 2011). The original proposal
by Horn has consistently shown the best performance across
a wide range of conditions (Garrido et al., 2013; Auerswald
and Moshagen, 2019; Lim and Jahng, 2019). Simulation studies
have shown the superiority of PA above other dimensionality
assessment methods. Thus, it is usually recommended and
considered the gold standard (Garrido et al., 2013; Auerswald
and Moshagen, 2019; Lim and Jahng, 2019; Finch, 2020). As a
flaw, PA tends to under-factor (i.e., underestimate the number
of factors) in conditions with low factor loadings or highly
correlated factors (Garrido et al., 2013; Lim and Jahng, 2019).

Minimum Average Partial
The minimum average partial (MAP; Velicer, 1976) method
has also been recommended for determining the number of
factors with continuous data (Peres-Neto et al., 2005). It is based
on principal components analysis and the partial correlation
matrix. The MAP method extracts one component at a time and
computes the average of the squared partial correlations (MAP
index). The MAP method relies on the rationale that extracting
the first components, which explain most of the common
variance, will result in a decrease of the MAP index. Once the
relevant components have been partialled out, extracting the
remaining ones (which are formed mainly by unique variance)
will make the MAP index to increase again. The optimal number
of components corresponds to the lowest MAP index. A variant
where theMAP index is computed by averaging the fourth power
of the partial correlation was proposed by Velicer et al. (2000).
However, Garrido et al. (2011) recommended the use of the
original squared partial correlations, in addition to polychoric
correlations when categorical variables are involved. They found
that MAP method performed poorly under certain unfavorable
situations, such as low-quality items or small number of variables
per factor, where the method showed a tendency to under-factor.

Very Simple Structure
The very simple structure (VSS; Revelle and Rocklin, 1979)
method was developed with the purpose of providing the best
interpretable factor solution, understood as the absence of cross-
loadings. In this procedure, a loadingmatrix withK factors is first
estimated and rotated. Then, a simplified factor loading matrix
(S′vk) is obtained, given a prespecified complexity v. Namely, the
v highest loadings for each item are retained and the remaining
loadings are fixed to zero. Then, the residual correlation matrix is
found by

Rvk = R− Svk8kS
′
vk (3)
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FIGURE 1 | Illustration of item parameters and probabilities of success of the different latent groups for the DINA and G-DINA models involving 2 attributes (K = 2).

where R is the observed correlation matrix and 8k is the factor
correlation matrix. Then, the VSS index is computed as

VSSvk = 1−
MSRvk

MSR
(4)

whereMSRvk
andMSR are the average of the squared residual and

observed correlations, respectively. The VSS index is computed
for each factor solution, and the highest VSS corresponds to
the number of factors to retain. The main drawback of the
procedure is that the researcher must prespecify a common
expected complexity for all the items, which is usually v =

1 (VSS1; Revelle and Rocklin, 1979). In a recent simulation
study, the VSS method obtained a poor performance under most
conditions, over-factoring with uncorrelated factors and under-
factoring with highly correlated factors (Golino and Epskamp,
2017).

Dimensionality Evaluation to Enumerate
Contributing Traits
The dimensionality evaluation to enumerate contributing traits
(DETECT; Kim, 1994; Zhang and Stout, 1999; Zhang, 2007)
method is a nonparametric procedure that follows two strong
assumptions: first, a single “dominant” dimension underlies
the item responses, and second, the residual common variance
between the items follows a simple structure (i.e., without
cross-loadings). The method estimates the covariances of
item pairs conditioned to the raw item scores, which are
used as a non-parametric approximation to the dominant
dimension. If the data are essentially unidimensional, these
conditional covariances will be close to zero. Otherwise,
items measuring the same secondary dimension will have
positive conditional covariances, and items measuring different

secondary dimensions will have negative conditional covariances.
The DETECT index is computed as

D(P) =
1

J(J − 1)/2

∑

j<j′

(−1)cjj′ (Ĉjj′ − C) (5)

where P represents a specific partitioning of items into clusters,
Ĉjj′ is the estimated conditional covariance between items j and

j′, C is the average of the estimated conditional covariances,
and cjj′ = 0 or 1 if items j and j′ are part of the same cluster
or not, respectively. The method explores different number of
dimensions and the one that obtains the highest DETECT index
is retained. Furthermore, the method also provides which items
measure which dimension. In a recent study, Bonifay et al. (2015)
found that the DETECT method had a great performance at the
population level, retaining the correct number of dimensions in
97% of the generated datasets with N = 10,000. As a limitation
of the study, the authors only tested a scenario in which the
generating model had no cross-loadings (i.e., simple structure).

Empirical Kaiser Criterion
The empirical Kaiser criterion (EKC; Braeken and van Assen,
2017) is similar to PA in that the sample eigenvalues are
compared to reference eigenvalues to determine the number of
factors to retain. Here, reference eigenvalues are derived from
the theoretical sampling distribution of eigenvalues, which is
a Marčenko-Pastur distribution (Marčenko and Pastur, 1967)
under the null hypothesis (i.e., non-correlated variables). The first
reference eigenvalue depends only on the ratio of test length to
sample size, while the subsequent reference eigenvalues consider
the variance explained by the previous ones. The reference
eigenvalues are coerced to be at least equal to 1, and thus it cannot
suggest more factors than the Kaiser-Guttman criterion would.
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In fact, EKC is equivalent to the Kaiser-Guttman criterion at
the population level. EKC has been found to perform similarly
to PA with non-correlated variables, unidimensional models,
and orthogonal factors models, while it outperformed PA with
oblique factors models and short test lengths (Braeken and van
Assen, 2017). The performance of EKCwith non-continuous data
remains unexplored.

Exploratory Graph Analysis
EGA (Golino and Epskamp, 2017) is a recently developed
technique that has emerged as a potential alternative for PA.
EGA was first developed based on the Gaussian graphical model
(GGM; Lauritzen, 1996), which is a network psychometric model
in which the joint distribution of the variables is estimated by
modeling the inverse of the variance-covariance matrix. The
GGM is estimated using the least absolute shrinkage and selector
operator (LASSO; Tibshirani, 1996), which is a penalization
technique to avoid overfitting. Apart from EGA with GGM,
Golino et al. (2020) recently proposed an EGA based on the
triangulated maximally filtered graph approach (TMFG; Massara
et al., 2016), which is not restricted to multivariate normal
data. Regardless of the model (GGM or TMFG), in EGA each
item is represented by a node and each edge connecting two
nodes represents the association between the two items. Partial
correlations are used for EGA with GGM, while any association
measure can be used for EGAwith TMFG. A strong edge between
two nodes is interpreted as both items being caused by the same
latent variable. A walktrap algorithm is then used to identify the
number of clusters emerging from the edges, which will be the
number of factors to retain. Furthermore, EGA also provides
information about what items are included in what clusters, and
clusters can be related to each other if their nodes are correlated.
EGAwithGGM seems to have an overall better performance than
EGA with TMFG (Golino et al., 2020). EGA with GGM has been
found to perform similarly to PA in most situations, with slightly
worse results with low factor correlations, but better performance
with highly correlated factors (Golino and Epskamp, 2017). On
the other hand, EGA with TMFG tends to under-factor when
there are many variables per factor or highly correlated factors
(Golino et al., 2020).

Factor Forest
Factor forest (FF; Goretzko and Bühner, 2020) is an extreme
gradient boosting machine learning model that was trained to
predict the optimal number of factors in EFA. Specifically, the
model estimates the probability associated to different factor
solutions and subsequently suggests the number of factors with
the highest probability. As opposed to the previously described
dimensionality assessment methods, the FF is not based on any
particular theoretical psychometric background, and its purpose
is to make accurate predictions based on a combination of
empirical results obtained from the training datasets. This is
commonly referred to as the “black box” character of themachine
learning models (Goretzko and Bühner, 2020). In the original
paper, the authors trained the FF model using a set of 181
features (e.g., eigenvalues, sample size, number of variables,
Gini-coefficient, Kolm measure of inequality) while varying

the sample size, primary and secondary loadings, number of
factors, variables per factor, and factor correlations, through
almost 500,000 datasets. The data were generated assuming
multivariate normality. The FF model obtained very promising
results, correctly estimating the number of factors in 99.30% of
the evaluation datasets. The Kolm measure of inequality and
the Gini-coefficient were the most influential features on the
predictions of the model. It is remarkable that some evaluation
conditions were different from those used in the training stage.
Thus, the FF model trained in Goretzko and Bühner (2020) for
the EFA framework will be explored in the present paper.

MODEL-FIT INDICES FOR DETERMINING
THE NUMBER OF ATTRIBUTES IN CDM

All the aforementioned methods were developed with the
purpose of assessing the number of factors in the EFA framework
and, thus, their assumptions might not fit the nature of CDM
data.Table 1 shows that some of themost important assumptions
required by some of the methods might be usually violated
when analyzing CDM data. There is, however, one additional
procedure that can be applied to CDMs without any further
assumptions: the model comparison approach based on model-
fit indices. This approach has also been widely explored in EFA.
Previous studies have shown that, even though the traditional
cutoff points for some commonly used fit indices (e.g., CFI,
RMSEA, SRMR) are not recommended for determining the
number of factors (Garrido et al., 2016), the relative difference
in fit indices between competing models might even outperform
PA under some conditions, such as small loadings, categorical
data (Finch, 2020), or orthogonal factors (Lorenzo-Seva et al.,
2011). Additionally, Preacher et al. (2013) recommended to use
AIC for extracting the number of factors whenever the goal of
the research was to find a model with an optimal parsimony-fit
balance, while they recommended RMSEAwhenever the goal was
to retain the true, generating number of factors.

In the CDM framework, relative and absolute fit indices have
been used to select the most appropriate Q-matrix specification.
Regarding relative model-fit indices, Kunina-Habenicht et al.
(2012) and Chen et al. (2013) found that Akaike’s information
criterion (AIC; Akaike, 1974) and Bayesian information criterion
(BIC; Schwarz, 1978) perform really well at selecting the correct
Q-matrix among competing matrices. In this vein, AIC and
BIC always selected the correct Q-matrix when a three-attribute
model was estimated for data generated from a five-attribute
model, and vice versa (Kunina-Habenicht et al., 2012). Regarding
absolute fit indices, Chen et al. (2013) proposed to inspect the
residuals between the observed and predicted proportion correct
of individual items (pj), between the observed and predicted
Fisher-transformed correlation of item pairs (rjj′ ), and between
the observed and predicted log-odds ratios of item pairs (ljj′ ).
Specifically, they used the p-value associated to the maximum z-
scores of pj, rjj′ , and ljj′ to evaluate absolute fit. While pj obtained
very bad overall results, rjj′ and ljj′ performed appropriately at
identifying both Q-matrix and CDM misspecification, with a
tendency to be conservative.
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TABLE 1 | Dimensionality assessment methods assumptions.

Method Based on Latent variable Essential unidim. Simple structure

PA Eigenvalues No No No

MAP Partial correlations No No No

VSSa Factor loadings Continuous No Yes

DETECT Conditional covariances Continuous Yes Yes

EKC Eigenvalues No No No

EGA Network psychometrics No No No

MC Model-fit indices Discrete No No

The methods assumptions that are aligned with cognitive diagnosis modeling characteristics are highlighted in bold. The factor forest (FF) model has not been included due to its

dependence on the conditions employed for training the model. Essential unidim., essential unidimensionality; PA, parallel analysis with principal components extraction; MAP, minimum

average partial; VSS, very simple structure; DETECT, dimensionality evaluation to enumerate contributing traits; EKC, empirical Kaiser criterion; EGA, exploratory graph analysis; MC,

model comparison based on fit indices.
aSimple structure (understood as a single factor being measured by each item) is technically assumed only by VSS with complexity v = 1.

The aforementioned studies pointed out that these fit indices
are promising for identifying the most appropriate Q-matrix.
However, further research is required to examine their systematic
performance in selecting the most appropriate number of
attributes across a wide range of conditions. The use of fit
indices to select the most appropriate model among a set of
competing models, from 1 to K number of attributes, requires
the calibration of K CDMs, each of them requiring a specified Q-
matrix. This task demands an unfeasible amount of effort if done
by domain experts, but it is viable if done by empirical means.
The idea of using an empirical Q-matrix estimation method to
generate Q-matrices for different number of attributes and then
compare their model-fit has been already suggested by Chen
et al. (2015). Furthermore, the edina package (Balamuta et al.,
2020a) of the R software (R Core Team, 2020) incorporates a
function to perform a Bayesian estimation of a DINA model
(Chen et al., 2018) with different number of attributes, selecting
the best model according to the BIC. In spite of these previous
ideas, the performance of fit indices in selecting the best model
among different number of attributes has not been evaluated
in a systematic fashion, including both reduced (e.g., DINA)
and general (e.g., G-DINA) CDMs. More details about the
specific procedure used in the present study for assessing the
number of attributes usingmodel comparison are provided in the
Method section.

GOALS OF THE CURRENT STUDY

Themain goal of the present study is to compare the performance
of several dimensionality assessment methods in determining
the generating number of attributes in CDM. Additionally,
following the approach of Auerswald and Moshagen (2019),
the combined performance of the methods is also evaluated
to explore whether a more accurate combination rule can be
obtained and recommended for applied settings. As a secondary
goal, the effect of a comprehensive set of independent variables
and their interactions over the accuracy of the procedures is
systematically evaluated.

Table 1 provides the basis for establishing some hypotheses
related to the performance of the methods. First, while CDMs
are discrete latent variable models, most methods do not

consider the existence of latent variables (PA with principal
components extraction, MAP, EKC, EGA) or consider the
existence of continuous latent variables (VSS, DETECT). The
violation of this assumption might not be too detrimental, given
that PA with component analysis violates EFA assumptions
and is the current gold standard. On the other hand, both
essential unidimensionality and simple structure assumptions are
expected to have a great disruptive effect, since CDMs are usually
highly multidimensional and often contain multidimensional
items. Accordingly, VSS with v = 1 (VSS1) and DETECT are
expected to perform poorly. Although VSS with complexity v >

1 is not technically assuming a simple structure (understood as a
single attribute being measured by each item), its performance
is still expected to be poor because of its stiffness and
inability to adapt to the usual complex structure (i.e., items
measuring a different number of attributes) of CDM items.
Even though the remaining methods (i.e., PA, EKC, MAP, and
EGA) do not assume a simple structure, their performance under
complex structures remains mostly unexplored. Assessing the
dimensionality of complex structures is expected to be more
challenging compared to simple structures, in a similar fashion
as correlated factors are more difficult to extract than orthogonal
factors. The extent to which the performance of these methods
is robust under complex structures is unknown. All in all, and
considering the assumptions of eachmethod, PA, EKC,MAP, and
EGA, as well as the CDM model comparison approach based on
fit indices (MC), are expected to perform relatively well, except
for their idiosyncratic weakness conditions found in the available
literature as previously described. Finally, the performance of
FF is difficult to predict due to its dependency on the training
samples. Even though no training samples were generated based
on discrete latent variables in Goretzko and Bühner (2020), the
great overall performance and generalizability of the FF model to
conditions different from the ones used to train the model might
extend to CDM data as well.

METHODS

Dimensionality Estimation Methods
Eight different dimensionality estimation methods, with a total
of 18 variants, were used in the present simulation study.
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The following text describes the specific implementation of
each method.

Parallel Analysis
Four variants of PA were implemented as a function of the
correlation matrix type (r = Pearson; ρ = tetrachoric) and the
reference eigenvalue criterion (m=mean; 95= 95th percentile):
PArm, PAr95, PAρm, and PAρ95. All variants were implemented
with principal components extraction and 100 random samples
generated by random column permutation (Garrido et al., 2013;
Lubbe, 2019). The sirt package (Robitzsch, 2020) was used to
estimate the tetrachoric correlations for PA, as well as for the
remainingmethods that alsomake use of tetrachoric correlations.

Minimum Average Partial
MAP indices were based on the squared partial tetrachoric
correlations computed with the psych package (Revelle, 2019).
The maximum number of dimensions to extract was set to
9 (same for VSS, DETECT, and MC), so there was room for
overestimating the number of attributes (the details of the
simulation study are provided in the Design subsection).

Very Simple Structure
VSS was computed using tetrachoric correlations and the psych
package. In addition to the most common VSS with complexity v
= 1 (VSS1), VSS with complexity v= 2 (VSS2) was also explored.

Dimensionality Evaluation to Enumerate Contributing

Traits
The DETECT index was computed using the sirt package,
which uses the hierarchicalWard algorithm (Roussos et al., 1998)
for clustering the items.

Empirical Kaiser Criterion
EKC was implemented by using tetrachoric correlations and the
semTools package (Jorgensen et al., 2019).

Exploratory Graph Analysis
Two variants of EGA were implemented: EGA with GGM
(EGAG) and EGA with TMFG (EGAT). The EGAnet package
(Golino and Christensen, 2020) was employed for computing
both variants.

Factor Forest
The R code published by Goretzko and Bühner (2020) at Open
Science Framework1 was used for the implementation of the FF
model trained in their original paper. With this code, FF can
recommend between one and eight factors to retain.

Model Comparison Based on Fit Indices
The MC procedure was implemented varying the number of
attributes from 1 to 9 as follows. First, the DFL Q-matrix
estimation method (Wang et al., 2018) using Oblimin oblique
rotation, tetrachoric correlations, and the row dichotomization
criterion was used to specify the initial Q-matrix, and the Hull
validation method (Nájera et al., 2020) using the PVAF index was
then implemented to refine it and provide the final Q-matrix.

1https://osf.io/mvrau/

Second, a CDM was fitted to the data using the final Q-matrix
with the GDINA package (Ma and de la Torre, 2020b). The CDM
employed to fit the data was the same as the generating CDM
(i.e., DINA or G-DINA). This resulted in a set of nine competing
models varying in K. Third, the models were alternatively
compared with the AIC, BIC, and rjj′ fit indices. For the AIC
and BIC criteria, the model with the lowest value was retained.
Regarding rjj′ , the number of items with some significant pair-
wise residual (after using Bonferroni correction at the item-level)
was counted. Then, themost parsimoniousmodel with the lowest
count was retained. The MC procedure with AIC, BIC, or rjj′

will be referred to as MCAIC, MCBIC, and MCr, respectively.
Given that the MC procedures rely on empirically specified Q-
matrices, their performance will greatly depend on the quality
of such Q-matrices. Even though the DFL and Hull methods
have provided good results in previous studies, their combined
performance should be evaluated to examine the quality of their
suggested Q-matrices. For this reason, the proportion of correctly
specified q-entries was computed for the estimated (i.e., DFL)
and validated (i.e., DFL and Hull) Q-matrices (more details are
provided in the Dependent variables subsection). The further the
DFL and Hull methods are from a perfect Q-matrix recovery,
the greater the room for improvement for the MC procedures.
In this vein, the set of nine competing models (using DFL
and Hull) were additionally compared to the model using the
generating Q-matrix, with the purpose of providing an upper-
limit performance for the MC methods when the Q-matrix is
perfectly recovered. The results of these comparisons will be
referred to as MCAIC−G, MCBIC−G, and MCr−G.

Design
Table 2 shows the factors (i.e., independent variables) used in the
simulation study: number of attributes (K), item quality (IQ),
sample size (N), ratio of number of items to attribute (JK),
underlying correlation among the attributes (AC), and attribute
thresholds (AT). The levels of each factor were selected in pursuit
of representativeness of varying applied settings. For instance, the
most common number of attributes (K) seen in applied studies
is 4 (Sessoms and Henson, 2018), while 5 is the most usual
value in simulation studies (e.g., de la Torre and Chiu, 2016;
Ma and de la Torre, 2020a). The levels selected for item quality
(IQ), sample size (N), and ratio of number of items to attribute
(JK) are also considered as representative of applied settings

TABLE 2 | Summary of the factors explored in the simulation study.

Factors Factor levels

Number of attributes (K) 4, 5, 6

Item quality (IQ) 0.40, 0.60, 0.80

Sample size (N) 500, 1,000, 2,000

Ratio of number of items to attribute (JK) 4, 8

Correlation among the attributes (AC) 0, 0.30, 0.60

Attribute thresholds (AT ) 0, 0.50, 1

Generating model (M) DINA, G-DINA

Frontiers in Psychology | www.frontiersin.org 7 February 2021 | Volume 12 | Article 614470

https://osf.io/mvrau/
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Nájera et al. Dimensionality Assessment in CDM

(Nájera et al., 2019; Ma and de la Torre, 2020a). Regarding
the attribute correlations, some applied studies have obtained
very high attribute correlation coefficients, up to 0.90 (Sessoms
and Henson, 2018). It can be argued that these extremely high
correlations may be indeed a consequence of overestimating the
number of attributes, where one attribute has been split into
two or more undifferentiated attributes. For this reason, we
decided to use AC levels similar to those used in EFA simulation
studies (e.g., Garrido et al., 2013). Additionally, different attribute
thresholds (AT) levels were included to generate different degrees
of skewness in the data, given its importance in the performance
of dimensionality assessment methods (Garrido et al., 2013).
Finally, both a reduced CDM (i.e., DINA) and a general CDM
(i.e., G-DINA) were used to generate data. A total of 972
conditions, resulting from the combination of the factor levels,
were explored.

Data Generation
One hundred datasets were generated per condition. Examinees’
responses were generated using either the DINA or G-
DINA model. Attribute distributions were generated using a
multivariate normal distribution with mean equal to 0 for all
attributes. All underlying attribute correlations were set to the
corresponding AC condition level. Attribute thresholds, which
are used to dichotomize the multivariate normal distribution
to determine the mastery or non-mastery of the attributes,
were generated following an equidistance sequence of length K
between –AT and AT. This results in approximately half of the
attributes being “easier” (i.e., higher probabilities of attribute
mastery) and the other half being “more difficult” (i.e., lower
probabilities of attribute mastery). For instance, for AT = 0.50
and K = 5, the generating attributes thresholds were {−0.50,
−0.25, 0, 0.25, 0.50}.

Item quality was generated by varying the highest and
lowest probabilities of success, which correspond to the latent
classes that master all, P(1), and none, P(0), of the attributes
involved in an item, respectively. These probabilities were drawn
from uniform distributions as follows: P(0)∼U(0, 0.20) and
P(1)∼U(0.80, 1) for high-quality items, P(0)∼U(0.10, 0.30) and
P(1)∼U(0.70, 0.90) for medium-quality items, and P(0)∼U(0.20,
0.40) and P(1)∼U(0.60, 0.80) for low-quality items. The expected
value for the item quality across the J items is then 0.80, 0.60, and
0.40 for high, medium, and low-quality items, respectively. For
the G-DINAmodel, the probabilities of success for the remaining
latent classes were simulated randomly, with two constraints.
First, a monotonicity constraint on the number of attributes was
applied. Second, the sum of the δ parameters associated to each
attribute was constrained to be higher than 0.15 to ensure the
relevance of all the attributes (Nájera et al., 2020).

The Q-matrices were generated randomly with the following
constraints: (a) each Q-matrix contained, at least, two identity
matrices; (b) apart from the identity matrices, each attribute
was measured, at least, by another item; (c) the correlation
between attributes (i.e., Q-matrix columns) was lower than
0.50; (d) the proportion of one-, two-, and three-attribute
items was set to 0.50, 0.40, and 0.10. Constrains (a) and (b)
are in line with the identifiability recommendations made by

Xu and Shang (2018). Constrain (c) ensures non overlapping
attributes. Finally, constrain (d) was based on the proportion of
items measuring one-, two-, and three-attributes encountered in
previous literature. We examined the 36 applied studies included
in the literature revision by Sessoms and Henson (2018) and
extracted the complexity of the q-vectors from the 17 studies
that reported the Q-matrix (see Table 3). The reason why we
used a higher proportion of one-attribute items was to preserve
constrain a). For instance, in the condition of JK = 4, at least 50%
of one-attribute items are required to form two identity matrices.

Dependent Variables
Four dependent variables were used to assess the accuracy of
the dimensionality assessment methods. The hit rate (HR) was
the main dependent variable, computed as the proportion of
correct estimates:

HR =

∑

I
(

K̂ = K
)

R
(6)

where I is the indicator function, K̂ is the recommended number
of attributes, K is the generating number of attributes, and R
is the number of replicates per condition (i.e., 100). A HR of 1
indicates a perfect accuracy, while an HR of 0 indicates complete
lack of accuracy. Additionally, given that a model selection must
be done according to both empirical and theoretical criteria, it is a
recommended approach to examine alternativemodels to the one
suggested by a dimensionality assessment method (e.g., Fabrigar
et al., 1999). The close hit rate (CHR) was assessed to explore the
proportion of times that a method recommended a number of
attributes close to the generating number of attributes:

CHR =

∑

I
[

(K − 1) ≤ K̂ ≤ (K + 1)
]

R
(7)

Finally, the mean error (ME) and root mean squared error
(RMSE) were explored to assess the bias and inaccuracy of
the methods:

ME =

∑

(

K̂ − K
)

R
(8)

RMSE =

√

√

√

√

∑

(

K̂ − K
)2

R
(9)

TABLE 3 | Complexity of q-vectors in applied studies (percentages).

q = 1 q = 2 q = 3 q > 3 q = K

Mean 34.9 42.7 14.2 8.2 1.5

Median 30.4 43.5 10.8 0 0

(q = 1, 2, 3) = q-vectors measuring 1, 2, or 3 attributes, respectively; (q > 3) = q-vectors

measuringmore than 3 attributes; (q=K)= q-vectorsmeasuring all the attributes included

in the Q-matrix.
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A ME of 0 indicates lack of bias, while a negative or positive
ME indicates a tendency to underestimate or overestimate the
number of attributes, respectively. It is important to note that an
ME close to 0 can be achieved either by an accurate method, or by
a compensation of under- and overestimation. On the contrary,
RMSE can only obtain positive values: the further from 0, the
greater the inaccuracy of a method.

Univariate ANOVAs were conducted to explore the effect of
the factors on the performance of each method. The dependent
variables for the ANOVAs were the hit rate, close hit rate,
bias, and absolute error, which correspond to the numerators of
Equations (6)–(9) (i.e., HR, CHR, ME, and RMSE at the replica-
level), respectively. Note that the RMSE computed at the replica

level is the absolute error (i.e.,
∣

∣

∣
K̂ − K

∣

∣

∣
). Effects with a partial

eta-squared (η2p) higher than 0.060 and 0.140 were considered as
medium and large effects, respectively (Cohen, 1988).

In order to explore the performance of the combination rules
(i.e., two or more methods taken together), the agreement rate
(AR) was used to measure the proportion of conditions under
which a combination rule recommended the same number of
attributes, while the agreement hit rate (AHR) was used to
measure the proportion of correct estimations among those
conditions in which an agreement has been achieved:

AR =

∑

I
(

K̂1 = K̂2

)

R
(10)

AHR =

∑

I
(

K̂1 = K|K̂1 = K̂2

)

∑

I
(

K̂1 = K̂2

) (11)

where K̂1 and K̂2 are the recommended number of attributes by
any two different methods. Note that these formulas can be easily
generalized for more than twomethods. Both a highAR andAHR
are required for a combination rule to be satisfactory, since this
indicates that it will be accurate and often applicable (Auerswald
and Moshagen, 2019).

Finally, for the MC methods, when the model under
exploration had the same number of attributes as the generating
number of attributes, the Q-matrix recovery rate (QRR) was
explored to assess the accuracy of the DFL and Hull methods.
Specifically, it reflects the proportion of correctly specified q-
entries. A QRR of 1 indicates perfect recovery. The higher the
QRR, the closer the methods based on model-fit indices (e.g.,
MCAIC) should be to their upper-limit performance (e.g., using
the generating Q-matrix as in MCAIC−G). All simulations and
analyses were conducted using the R software. The data were
simulated using the GDINA package. The codes are available
upon request.

RESULTS

Before describing the main results, the results for the QRR are
detailed. The overall QRR obtained after implementing both the
DFL and Hull method was 0.949. The lowest and highest QRR
among the factor levels were obtained with IQ = 0.40 (QRR =

0.890) and IQ = 0.80 (QRR = 0.985), respectively. These results
are consistent with Nájera et al. (2020). The DFL method alone
(i.e., before validating the Q-matrix with the Hull method) led
to a good overall accuracy (QRR = 0.939). However, despite this
high baseline, the Hull method led to a QRR improvement across
all factor levels (1QRR= [0.005, 0.013]).

Table 4 shows the overall average results, across all conditions,
for all the variants and dependent variables considered. The four
PA variants, FF, and MCAIC performed reasonably well, with a
HR > 0.700 and a CHR > 0.900. EGAG also obtained a high
CHR (CHR = 0.918), but a much lower HR (HR = 0.576). The
highestHRwas obtained by PArm (HR= 0.829), while the highest
CHR was provided by MCAIC (CHR = 0.954). Congruently with
these results, the PA variants, FF, MCAIC, and EGAG showed a
low RMSE (RMSE < 1), being the MCAIC the method with the
lowest error (RMSE= 0.633). The remaining methods (i.e., MAP,
VSS1, VSS2, DETECT, EKC, EGAT, MCBIC, and MCr) obtained a
poorer performance (HR ≤ 0.682 and CHR ≤ 0.853). Regarding
the bias, most methods showed a tendency to underestimate the

TABLE 4 | Overall performance for all dimensionality estimation methods.

Method HR CHR ME RMSE

PArm 0.829 0.947 −0.144 0.681

PAr95 0.801 0.919 −0.309 0.876

PAρm 0.805 0.938 −0.190 0.734

PAρ95 0.770 0.904 −0.369 0.941

MAP 0.518 0.618 −1.337 2.205

VSS1 0.278 0.378 −1.045 3.135

VSS2 0.424 0.522 −0.040 2.339

DETECT 0.492 0.691 1.043 1.956

EKC 0.502 0.625 2.200 3.988

EGAG 0.576 0.918 −0.257 0.870

EGAT 0.337 0.782 −0.831 1.231

FF 0.824 0.918 −0.191 0.746

MCAIC 0.768 0.954 0.010 0.633

MCBIC 0.682 0.824 −0.620 1.289

MCr 0.635 0.853 0.096 1.027

———————————————————————————————————

MCAIC−G 0.886 0.975 −0.022 0.458

MCBIC−G 0.713 0.829 −0.593 1.270

MCr−G 0.814 0.922 −0.086 0.774

The dashed line separates the MCmethods that are implemented using the generating Q-

matrix (i.e., MCAIC−G, MCBIC−G, MCr−G). Best results for HR, CHR, and RMSE are shown

in bold, considering the MCmethods with the generating Q-matrix separately. HR≥ 0.700

and CHR ≥ 0.900 results are underlined. HR, hit rate; CHR, close hit rate; ME, mean

error; RMSE, root mean squared error; PAr , parallel analysis with Pearson correlations;

PAρ, parallel analysis with tetrachoric correlations; PAm, parallel analysis with mean

eigenvalue criterion; PA95, parallel analysis with 95th percentile eigenvalue criterion; MAP,

minimum average partial; VSS1, very simple structure with complexity v = 1; VSS2, very

simple structure with complexity v = 2; DETECT, dimensionality evaluation to enumerate

contributing traits; EKC, empirical Kaiser criterion; EGAG, exploratory graph analysis with

Gaussian graphical model; EGAT , exploratory graph analysis with triangulated maximally

filtered graph; FF, factor forest; MCAIC, model comparison based on AIC; MCBIC, model

comparison based on BIC; MCr , model comparison based on the Fisher-transformed

correlations; MC*−G, model comparison using the generating Q-matrix when the number

of attributes coincides with the generating number of attributes.
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number of attributes, especially MAP, VSS1, and EGAT (ME ≤

−0.831). On the contrary, EKC and DETECT showed a tendency
to overestimate the number of attributes (ME ≥ 1.043). Among
the methods with low RMSE, FF (ME = −0.191), PArm (ME =

−0.144), and, especially, MCAIC (ME = 0.010), showed a very
low bias. Finally, the MC methods that rely on the generating
Q-matrix (i.e., MCAIC−G, MCBIC−G, MCr−G) generally provided
good results, outperforming their corresponding MC method.
Specifically, MCAIC−G obtained the highest overall accuracy (HR
= 0.886; CHR= 0.975; RMSE= 0.458).

Table 5 shows the results for the methods that obtained the
best overall performance as indicated by CHR > 0.900 (i.e.,
PArm, EGAG, FF, and MCAIC) across the factor levels. Only
PArm is shown among the PA variants because their results were
congruent and PArm obtained the better overall performance.
In addition to these methods, the MCAIC−G is also included to
provide a comparison with MCAIC. The results from Table 5 can
be easier interpreted by inspecting the main effect size values
obtained in the ANOVAs (see Table 6). These main effects offer
a proper summary of the results since only one interaction effect,
which will be described below, was relevant (η2p > 0.140).

Regarding the hit rate, IQ was the factor that most affected
all the methods (η2p ≥ 0.161), except for EGAG. These methods
performed very accurately with IQ = 0.80 (HR ≥ 0.916), but
poorly with IQ = 0.40 (HR ≤ 0.675). Other factors obtained a
medium effect size for one specific method. EGAG was affected
byM, obtaining a higher accuracy with the G-DINAmodel (HR=
0.709) than with the DINA model (HR = 0.443). On the other
hand, PArm was affected by N and AC. PArm obtained the highest
HR in most conditions, especially with large sample sizes (N =

2000), but was negatively affected by high correlations among the
attributes (AC = 0.60). In the cases in which PArm was not the
best performing method, the FF obtained the highest accuracy.
FF obtained the biggest advantage in comparison to the other
methods under N = 500 (1HR = 0.054). Results for the RMSE
showed a very similar pattern to those fromHR. Themost notable
difference was that MCAIC obtained the lowest RMSE under
most conditions, especially AC = 0.60 (|1RMSE| = 0.239). On
the contrary, PArm showed a smaller error with lower attribute
correlations, especially AC = 0.30 (|1RMSE|= 0.213).

The close hit rate of the methods was more robust than theHR
to the different simulation conditions. Only PArm and, especially,
FF were affected by IQ. PArm was also affected by AC, and FF by
JK. The CHR of both EGAG and MCAIC remained stable across
the factor levels. The highest CHR was obtained by MCAIC in
most conditions, obtaining the biggest advantage under AC =

0.60 (1CHR= 0.059). PArm and FF provided the highest CHR in
those conditions in which MCAIC did not obtain the best result.

With respect to the bias (i.e.,ME), Table 6 shows that the only
large effect was observed for AC on PArm. However, there was
a relevant effect for the interaction between AC and IQ (η2p =

0.194). This was the only interaction with a large effect among
all the ANOVAs. Namely, the strong tendency to underestimate
seen for PArm under AC = 0.60 was mainly due to IQ = 0.40.
Thus, under IQ = 0.40, PArm showed a strong tendency to
underestimate when AC = 0.60 (ME = −1.108), but a slight
tendency to overestimate when AC = 0 (ME = 0.258). With IQ

≥ 0.60 and AC ≤ 0.30, PArm obtained a low bias (ME ≤ |0.055|).
Apart from this interaction, other factors with relevant effect sizes
were: a) K, which had an effect on EGAG and MCAIC; b) IQ, with
an effect on PArm, FF, and MCAIC; and c) JK, which had an effect
on PArm, EGAG, and MCAIC. In general, the most demanding
levels of these factors (i.e., K = 6, IQ = 0.40, JK = 4) led to an
underestimation tendency for the methods. Finally, while PArm,
EGAG, and FF showed a negative bias (i.e.,ME< 0) across almost
all conditions, MCAIC showed a positive bias (i.e.,ME> 0) under
several conditions, especially K = 4 and the G-DINA model (ME
≥ 0.150).

Finally, MCAIC−G performed the best under almost all
conditions and dependent variables, with the only exception of
AC ≤ 0.30 and G-DINA generated data, where PArm obtained
slightly better results. As expected, MCAIC−G outperformed
MCAIC under all conditions. The ANOVA effects were similar
for both methods. One of the main differences is that the HR
of MCAIC−G was more affected by the sample size (a steeper
HR improvement as N increased) and the generating model
(performing comparatively better under the DINA model). On
the other hand, the ME of MCAIC−G was more robust under
different levels of K andM.

Table 7 shows the results for the combination rules split by
sample size. VSS1, VSS2, DETECT, EKC, and EGAT are not
included because they were not usually consistent with any other
method (i.e., AR < 0.50). Both the AR and the AHR tended
to increase as the sample size increased. As expected from the
results above, the best performing combination rules were mainly
formed by PA (especially PArm), FF, and MC (especially MCAIC).
The combination rule formed by PArm and FF obtained arguably
the best balance between agreement and accuracy (AR ≥ 0.70;
AHR ≥ 0.923), while FF and MCAIC obtained a higher accuracy
with a slightly lower agreement (AR ≥ 0.65; AHR ≥ 0.953).
The best accuracy was obtained by the combination rule formed
by MCAIC and MAP (AHR ≥ 0.980), although at the cost of a
lower agreement (AH ≈ 0.46). In addition to these two-method
combination rules, the performance of the three best methods
(i.e., PArm, FF, and MCAIC) taken together was also explored.
This combination rule showed a very high overall accuracy while
keeping anAR> 0.50. Specifically, forN = 500, 1000, and 2000, it
obtainedAHR (AR)= 0.976 (0.57), 0.985 (0.65), and 0.992 (0.70),
respectively.

REAL DATA EXAMPLE

Real data were analyzed to illustrate the performance of the
dimensionality estimation methods explored in the simulation
study. This section can be also understood as an illustration
of how to approach the problem of determining the number
of attributes in applied settings. The data employed for this
example was previously analyzed by Chen et al. (2020). The
dataset consists of dichotomous responses from 400 participants
to 20 items from an intelligence test. Each item consists of nine
matrices forming a 3 rows× 3 columns disposition, in which the
ninth matrix (i.e., the lower right) is missing. Participants must
select the missing matrix out of eight possible options. There
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TABLE 5 | Performance of the best methods by factor level.

K IQ N JK AC AT M

Method 4 5 6 0.40 0.60 0.80 500 1,000 2,000 4 8 0 0.30 0.60 0 0.50 1 D G-D

Hit rate (HR)

PArm 0.870 0.828 0.789 0.606 0.911 0.970 0.726 0.844 0.918 0.772 0.886 0.895 0.905 0.687 0.857 0.838 0.793 0.810 0.848

EGAG 0.662 0.571 0.494 0.447 0.625 0.655 0.543 0.590 0.594 0.525 0.627 0.607 0.591 0.529 0.565 0.586 0.576 0.443 0.709

FF 0.858 0.785 0.827 0.596 0.894 0.981 0.780 0.823 0.868 0.768 0.879 0.897 0.832 0.741 0.883 0.843 0.745 0.803 0.845

MCAIC 0.721 0.788 0.794 0.552 0.835 0.916 0.719 0.774 0.811 0.754 0.782 0.812 0.774 0.718 0.811 0.772 0.721 0.791 0.745

MCAIC−G 0.899 0.893 0.866 0.675 0.984 0.999 0.796 0.895 0.967 0.863 0.909 0.895 0.890 0.872 0.907 0.897 0.853 0.966 0.806

Close hit rate (CHR)

PAm 0.973 0.949 0.921 0.860 0.983 0.999 0.900 0.959 0.983 0.913 0.982 0.979 0.983 0.879 0.942 0.951 0.949 0.947 0.948

EGAG 0.951 0.929 0.875 0.855 0.954 0.946 0.898 0.926 0.931 0.902 0.934 0.944 0.934 0.877 0.879 0.934 0.942 0.891 0.945

FF 0.936 0.961 0.858 0.787 0.969 0.999 0.886 0.918 0.950 0.854 0.983 0.960 0.926 0.869 0.939 0.924 0.891 0.916 0.921

MCAIC 0.949 0.970 0.942 0.891 0.980 0.989 0.928 0.961 0.972 0.948 0.960 0.966 0.957 0.938 0.964 0.956 0.941 0.948 0.959

MCAIC−G 0.979 0.981 0.963 0.924 0.999 1 0.945 0.982 0.997 0.968 0.981 0.978 0.977 0.969 0.980 0.979 0.965 0.982 0.967

Mean error (ME)

PArm −0.076 −0.136 −0.219 −0.325 −0.100 −0.006 −0.228 −0.134 −0.068 −0.271 −0.016 0.100 −0.044 −0.487 −0.174 −0.148 −0.109 −0.150 −0.137

EGAG −0.007 −0.266 −0.498 −0.412 −0.275 −0.083 −0.240 −0.249 −0.281 −0.507 −0.007 −0.164 −0.217 −0.389 −0.169 −0.291 −0.310 −0.282 −0.232

FF −0.128 −0.258 −0.188 −0.430 −0.137 −0.008 −0.161 −0.227 −0.186 −0.309 −0.074 −0.126 −0.202 −0.245 −0.104 −0.178 −0.292 −0.217 −0.166

MCAIC 0.232 0.006 −0.207 −0.203 0.140 0.095 −0.107 0.021 0.118 −0.124 0.145 0.038 0.031 −0.037 0.047 0.042 −0.057 −0.129 0.150

MCAIC−G 0.067 −0.003 −0.129 −0.069 0.004 0.001 −0.069 0.002 0.003 −0.127 0.084 0.011 −0.012 −0.064 0.007 −0.009 −0.063 −0.056 0.013

Root mean squared error (RMSE)

PArm 0.491 0.661 0.844 1.098 0.389 0.184 0.926 0.619 0.386 0.858 0.436 0.447 0.403 1.014 0.708 0.656 0.677 0.690 0.672

EGAG 0.749 0.839 1.003 1.076 0.737 0.754 0.940 0.840 0.826 0.928 0.808 0.777 0.817 0.999 0.978 0.817 0.804 1.002 0.713

FF 0.685 0.663 0.871 1.201 0.452 0.149 0.884 0.724 0.604 0.921 0.514 0.520 0.693 0.958 0.635 0.708 0.875 0.759 0.733

MCAIC 0.671 0.555 0.668 0.925 0.477 0.348 0.748 0.600 0.533 0.669 0.596 0.555 0.616 0.719 0.562 0.624 0.706 0.642 0.625

MCAIC−G 0.416 0.405 0.539 0.781 0.134 0.024 0.646 0.411 0.205 0.513 0.395 0.425 0.441 0.502 0.406 0.429 0.528 0.339 0.551

Best results for HR, CHR, and RMSE are shown in bold, considering MCAIC−G separately. Results for HR, CHR, and RMSE that are higher than MCAIC−G are also underlined. K, number of attributes; IQ, item quality; N, sample size; JK,

ratio of the number of items to attribute; AC, correlation among the attributes; AT, attribute thresholds; M, generating model; D, DINA model; G-D, G-DINA model; PArm, parallel analysis with Pearson correlations and mean eigenvalue

criterion; EGAG, exploratory graph analysis with Gaussian graphical model; FF, factor forest; MCAIC, model comparison based on AIC; MCAIC−G, model comparison based on AIC and using the generating Q-matrix when the number

of attributes coincides with the generating number of attributes.
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TABLE 6 | Univariate ANOVAs main effect size values (η2
p ).

K IQ N JK AC AT M

Hit rate

PArm 0.014 0.251 0.076 0.041 0.117 0.009 0.005

EGAG 0.024 0.042 0.003 0.014 0.006 0.000 0.085

FF 0.009 0.218 0.013 0.031 0.041 0.034 0.005

MCAIC 0.009 0.161 0.011 0.001 0.012 0.011 0.004

MCAIC−G 0.005 0.344 0.103 0.012 0.002 0.013 0.131

Close hit rate

PArm 0.014 0.109 0.037 0.036 0.068 0.000 0.000

EGAG 0.016 0.031 0.003 0.004 0.014 0.012 0.011

FF 0.040 0.161 0.015 0.084 0.030 0.009 0.000

MCAIC 0.004 0.051 0.010 0.001 0.004 0.003 0.001

MCAIC−G 0.003 0.059 0.023 0.002 0.001 0.002 0.003

Bias

PArm 0.015 0.073 0.019 0.067 0.216 0.003 0.000

EGAG 0.074 0.035 0.001 0.111 0.018 0.008 0.001

FF 0.007 0.069 0.002 0.032 0.006 0.014 0.002

MCAIC 0.126 0.094 0.037 0.075 0.005 0.010 0.080

MCAIC−G 0.048 0.009 0.009 0.078 0.007 0.007 0.009

Absolute error

PArm 0.026 0.260 0.089 0.064 0.145 0.002 0.002

EGAG 0.029 0.056 0.005 0.013 0.014 0.005 0.071

FF 0.008 0.223 0.017 0.054 0.045 0.024 0.002

MCAIC 0.006 0.167 0.017 0.002 0.013 0.011 0.001

MCAIC−G 0.007 0.280 0.090 0.011 0.003 0.010 0.074

η2p > 0.060 and η2p > 0.140 are shown underlined and bolded, respectively. K, number of attributes; IQ, item quality; N, sample size; JK, ratio of the number of items to attribute;

AC, correlation among the attributes; AT, attribute thresholds; M, generating model; D, DINA model; G-D, G-DINA model; PArm, parallel analysis with Pearson correlations and mean

eigenvalue criterion; EGAG, exploratory graph analysis with Gaussian graphical model; FF, factor forest; MCAIC, model comparison based on AIC; MCAIC−G, model comparison based

on AIC and using the generating Q-matrix when the number of attributes coincides with the generating number of attributes.

are no missing data. The dataset is available at the edmdata
package (Balamuta et al., 2020b) and item definitions can be
found at Open Psychometrics.2 Chen et al. (2020) defined four
attributes involved in the test: (a) learn the pattern from the
first two rows and apply it to the third row, (b) infer the best
overall pattern from the whole set of matrices, (c) recognize
that the missing matrix is different from the given matrices
(e.g., applying rotations or stretching), and (d) recognize that the
missingmatrix is exactly as one of the givenmatrices. The authors
did not explicitly define a Q-matrix for this dataset because they
focused on the exploratory estimation of the item parameters.
However, they described a procedure to derive a Q-matrix from
the item parameter estimates by dichotomizing the standardized
coefficients related to each attribute (Chen et al., 2020, pp. 136).
This original Q-matrix, which is here referred to as QO, is shown
in Figure 2.

According to the findings from the simulation study, the
following steps are recommended to empirically determine the
number of attributes in CDM data: (a) if PArm, FF, and MCAIC

agree on their suggestion, retain their recommended number of
attributes; (b) if any two of these methods agree, retain their

2https://openpsychometrics.org/_rawdata/

recommended number of attributes; (c) if none of these methods
agree, explore the recommended number of attributes by those
that suggest a similar (i.e., ±1) number of attributes; (d) if these
methods strongly disagree, explore the recommended number
of attributes by each of them. Constructing several Q-matrices
is a very challenging and time-consuming process for domain
experts; thus, the Q-matrices suggested by the DFL and Hull
methods (which are already used to implement theMCmethods),
can be used as a first approximation. Domain experts should be
consulted to contrast the interpretability of these Q-matrices.

All the dimensionality assessment methods included in the
simulation study were used to assess the number of attributes of
the dataset. Their recommendations were as follows: 1 attribute
was retained by MAP and VSS1; 2 attributes by PAρ95, PAρm,
VSS2, and EGAT; 3 attributes by PArm, PAr95, and MCBIC; 4
attributes by EGAG, MCAIC, and MCr; 5 attributes by EKC
and FF; and 8 attributes by DETECT. In accordance with the
simulation study results, MAP, VSS1, and EGAT, which showed a

tendency to underestimate, suggested a low number of attributes,

while DETECT, which showed a strong tendency to overestimate,

suggested the highest number of attributes.
Following the previously described guidelines, we focused on

the recommendations of PArm, MCAIC, and FF (i.e., 3, 4, and
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TABLE 7 | Performance of the combination rules by sample size.

PArm PAr95 PAρm PAρ95 MAP EGAG FF MCAIC MCBIC MCr

N = 500

PAr95 0.816 (0.80)

PAρm 0.732 (0.93) 0.789 (0.80)

PAρ95 0.828 (0.74) 0.697 (0.92) 0.777 (0.79)

MAP 0.939 (0.52) 0.876 (0.55) 0.926 (0.50) 0.854 (0.53)

EGAG 0.848 (0.54) 0.841 (0.52) 0.837 (0.51) 0.833 (0.49) 0.904 (0.38)

FF 0.923 (0.70) 0.896 (0.70) 0.913 (0.67) 0.885 (0.67) 0.935 (0.53) 0.903 (0.52)

MCAIC 0.914 (0.66) 0.912 (0.64) 0.911 (0.62) 0.910 (0.60) 0.980 (0.47) 0.862 (0.49) 0.953 (0.65)

MCBIC 0.885 (0.61) 0.843 (0.62) 0.873 (0.58) 0.834 (0.59) 0.849 (0.57) 0.837 (0.45) 0.873 (0.62) 0.884 (0.59)

MCr 0.893 (0.56) 0.861 (0.56) 0.887 (0.53) 0.854 (0.53) 0.915 (0.42) 0.847 (0.40) 0.915 (0.56) 0.849 (0.61) 0.843 (0.52)

Single 0.726 0.687 0.687 0.646 0.507 0.543 0.780 0.719 0.572 0.584

N = 1,000

PAr95 0.891 (0.89)

PAρm 0.849 (0.96) 0.877 (0.89)

PAρ95 0.897 (0.84) 0.821 (0.95) 0.866 (0.88)

MAP 0.974 (0.53) 0.953 (0.54) 0.974 (0.51) 0.946 (0.52)

EGAG 0.900 (0.61) 0.885 (0.60) 0.884 (0.60) 0.871 (0.59) 0.899 (0.41)

FF 0.957 (0.79) 0.929 (0.80) 0.948 (0.77) 0.916 (0.78) 0.960 (0.54) 0.911 (0.58)

MCAIC 0.951 (0.73) 0.947 (0.72) 0.950 (0.71) 0.946 (0.69) 0.994 (0.46) 0.910 (0.52) 0.967 (0.70)

MCBIC 0.933 (0.70) 0.904 (0.72) 0.927 (0.69) 0.899 (0.69) 0.934 (0.55) 0.866 (0.52) 0.900 (0.73) 0.930 (0.65)

MCr 0.936 (0.63) 0.926 (0.62) 0.934 (0.61) 0.924 (0.59) 0.984 (0.38) 0.879 (0.44) 0.945 (0.60) 0.861 (0.67) 0.908 (0.56)

Single 0.844 0.815 0.818 0.781 0.522 0.590 0.823 0.774 0.684 0.645

N = 2,000

PAr95 0.937 (0.95)

PAρm 0.925 (0.98) 0.935 (0.95)

PAρ95 0.944 (0.92) 0.907 (0.97) 0.929 (0.95)

MAP 0.985 (0.53) 0.980 (0.53) 0.990 (0.52) 0.982 (0.52)

EGAG 0.935 (0.62) 0.922 (0.62) 0.927 (0.62) 0.911 (0.62) 0.883 (0.41)

FF 0.972 (0.86) 0.956 (0.87) 0.969 (0.86) 0.950 (0.87) 0.974 (0.54) 0.911 (0.61)

MCAIC 0.978 (0.78) 0.977 (0.77) 0.978 (0.77) 0.978 (0.75) 0.998 (0.45) 0.953 (0.50) 0.983 (0.73)

MCBIC 0.966 (0.80) 0.950 (0.81) 0.964 (0.79) 0.949 (0.79) 0.985 (0.53) 0.890 (0.57) 0.928 (0.81) 0.960 (0.70)

MCr 0.970 (0.65) 0.968 (0.64) 0.970 (0.65) 0.968 (0.63) 0.996 (0.36) 0.932 (0.41) 0.974 (0.62) 0.866 (0.72) 0.952 (0.59)

Single 0.918 0.900 0.909 0.884 0.526 0.594 0.868 0.811 0.791 0.675

Each cell shows the agreement hit rate (AHR) and the agreement rate (AR; within the parentheses) for each combination rule. The AHR of combination rules with AR > 0.70 are shown

in bold, and those with AR < 0.50 are shown in italics. PAr , parallel analysis with Pearson correlations; PAρ, parallel analysis with tetrachoric correlations; PAm, parallel analysis with

mean eigenvalue criterion; PA95, parallel analysis with 95th percentile eigenvalue criterion; MAP, minimum average partial; EGAG, exploratory graph analysis with Gaussian graphical

model; FF, factor forest; MCAIC, model comparison based on AIC; MCBIC, model comparison based on BIC; MCr , model comparison based on the Fisher-transformed correlations; N,

sample size.

5 attributes, respectively). Step c of the guidelines apply to this
case because none of the methods agreed on their suggestion,
but PArm and MCAIC, as well as MCAIC and FF, recommended
a close number of attributes. Thus, we explored solutions from
3 to 5 attributes in terms of model fit. A G-DINA model was
fitted using each of the Q-matrices from 3 to 5 attributes (Q3-
Q5) suggested by the DFL and Hull methods (see Figure 2).
Additionally, QO was also used to fit a G-DINA model for
comparison purposes. Table 8 shows the fit indices for each
model. Overall, Q4 obtained the best model fit. This result is in
agreement with the number of attributes defined by Chen et al.
(2020). Thus, a solution with four attributes was considered the
most appropriate. The differences between Q4 and QO were not

very pronounced: 81.25% of the q-entries were the same for both
matrices. In an applied study in which no original Q-matrix had
been prespecified,Q4 could be used as a starting point for domain
experts to achieve a Q-matrix specification that provides both
good fit and theoretical interpretability.

DISCUSSION

The correct specification of the Q-matrix is a prerequisite
for CDMs to provide accurate attribute profile classifications
(Rupp and Templin, 2008; Gao et al., 2017). Because the Q-
matrix construction process is usually conducted by domain
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FIGURE 2 | Q-matrices of the real data example. White cells represent qjk = 0 and black cells represent qjk = 1. QO is the Q-matrix from Chen et al. (2020); Q3 to Q5

are the suggested Q-matrices by DFL and Hull methods from 3 to 5 attributes.

TABLE 8 | Model-fit for the real data illustration Q-matrices.

−2LL np AIC BIC min.p(r) items(r)

Q3 8,584 59 8,702 8,938 0.006 5

QO 8,498 97 8,692 9,079 0.000 8

Q4 8,441 97 8,635 9,022 0.098 0

Q5 8,390 133 8,656 9,187 0.096 0

Best result for AIC, BIC, and items(r), as well as min.p(r) > 0.05, are shown in bold. −2LL, deviance; np, number of parameters; AIC, Akaike’s information criterion; BIC, Bayesian

information criterion; min.p(r), minimum p-value (adjusted for multiple comparisons) associated to the residual Fisher-transformed correlations; items(r), number of items showing a

statistically significant (adjusted for multiple comparisons) Fisher-transformed correlation with at least another item. Q3, Q4, Q5, Q-matrix specified by DFL and Hull methods with 3, 4,

and 5 attributes, respectively; QO, Q-matrix from Chen et al. (2020).
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experts, many Q-matrix validation methods have been recently
developed with the purpose of empirically evaluating the
decisions made by the experts. Additionally, empirical methods
to specify the Q-matrix directly from the data (i.e., Q-matrix
estimation methods), without requiring a previously specified
one, have been also proposed. The problem with the Q-matrix
estimation and validation methods proposed so far is that
they do not question the number of attributes specified by
the researcher. The assumption of known dimensionality has
not been exhaustively explored in the CDM framework. This
contrasts with the vast literature on dimensionality assessment
methods in the factor analysis framework, where this problem is
considered of major importance and has received a high degree
of attention (e.g., Garrido et al., 2013; Preacher et al., 2013). All
in all, the main goal of the present study was to explore the
performance of several dimensionality assessment methods from
the available literature in determining the number of attributes in
CDMs. A comprehensive simulation study was conducted with
that purpose.

Results from the simulation study showed that some
methods available can be considered suitable for assessing the
dimensionality of CDMs. Namely, parallel analysis with principal
components and random column permutation (i.e., PA), the
machine learning factor forest model (i.e., FF), and using the
AIC fit index to compare CDMs with different number of
attributes (i.e., MCAIC) obtained high overall accuracies (HR
≥ 0.768). PA with Pearson correlations and mean eigenvalue
criterion (i.e., PArm) obtained the highest overall accuracy, while
MCAIC obtained the best close accuracy, considering a range of
±1 attribute around the generating number of attributes. Item
quality was found to be the most relevant simulation factor,
severely affecting the performance of PArm, FF, and MCAIC.
Thus, the percentage of correct estimates varied from around
60% with low-quality items to more than 90% with high-quality
items. Apart from item quality, PArm was also affected by the
sample size and the correlation among the attributes, showing a
bad performance with highly correlated attributes. These results
are in line with previous studies (e.g., Garrido et al., 2013;
Lubbe, 2019). MCAIC and, especially, FF, were more robust
to the different explored conditions (other than item quality).
However, it should be noted that, unlike PArm and FF (which
consistently tended to underestimate the number of attributes
under almost all conditions), MCAIC bias might show a slightly
under- or overestimation tendency depending on the number of
attributes, item quality, ratio of number of items to attribute, and
generating model.

The remaining methods (i.e., MAP, VSS1, VSS2, DETECT,
EKC, EGAG, EGAT, MCBIC, and MCr) obtained an overall poor
performance, and thus their use cannot be recommended for
the assessment of CDM data dimensionality. Of these methods,
DETECT and EKC showed a heavy tendency to overestimate.
Even though EKCwas expected to perform better, it was observed
that the first reference eigenvalue was usually very high, leaving
the remaining ones at low levels. These resulted in the EKC often
performing identically to what the Kaiser-Guttman criterion
would (which is known for its tendency to overestimate the
number of dimensions). On the other hand, MAP, VSS1, EGAT,

and MCBIC showed a strong tendency to underestimate. Even
though a higher performance was expected for MAP and EGAT,
their underestimation tendency is aligned with previous findings
(Garrido et al., 2011; Golino et al., 2020). As for the MCmethods,
while both AIC and BIC have shown good results in selecting
the correct Q-matrix among competing misspecified Q-matrices
(Kunina-Habenicht et al., 2012; Chen et al., 2013), it is clear
that the higher penalization that BIC applies compared to AIC
is not appropriate for the dimensionality assessment problem.
Finally, EGAG was the only remaining method that obtained a
good performance in terms of close hit rate. However, its overall
hit rate was low, especially due to its poor performance when the
generating model was the DINA model.

Although the influence of the generating model was most
noticeable for EGAG, most dimensionality assessment methods
from the EFA framework performed worse under the DINA
model than under the G-DINAmodel. These results might be due
to the non-compensatory nature of the DINA model, in which
the relationship between the number of mastered attributes and
the probability of correctly answering an item clearly deviates
from being linear (in a more pronounced way that under the G-
DINA model, as illustrated in Figure 1). A greater depart from
linearity might produce a greater disruption to the performance
of all the methods that are based on correlations (e.g., PA, FF,
EGA). On the contrary, the MCmethods performed better under
the DINA model. Since the MC methods are precisely modeling
the response process, they benefit from the parsimony of reduced
models. The performance of the dimensionality assessment
methods under other commonly used reduced CDMs (e.g., the
deterministic inputs, noisy “or” gatemodel or DINO; Templin and
Henson, 2006) is expected to follow a similar pattern as the one
obtained for the DINA model.

An important finding regarding the MC methods is that
the performance of the variants that made use the generating
Q-matrix (e.g., HR = 0.886 for MCAIC−G) was notably better
than that of their corresponding methods (e.g., HR = 0.768
for MCAIC). Given that the Q-matrices specified by the DFL
and Hull methods obtained a very high overall recovery rate
(QRR = 0.949), these results imply that a small improvement
in the quality of the Q-matrices might have a big impact on the
dimensionality assessment performance of the MC procedures.
This reiterates the importance of applying empirical Q-matrix
validation methods such as the Hull method, even though
the improvement over the original Q-matrix (be it empirically
estimated or constructed by domain experts) might seem small.

The exploration of combination rules showed that PArm and
FF often agreed on the recommended number of attributes
(AR ≥ 0.70), providing a very high combined accuracy (AHR
≥ 0.923). FF and MCAIC obtained an even higher accuracy
(AHR ≥ 0.953) with a slightly lower agreement rate (AR ≥

0.65). When these three methods agree on their number of
attributes, which occurred in more than 60% of the overall
conditions, the percentage of correct estimations was, at least,
of 97.6%. Given these results, the following guidelines can be
followed when aiming to empirically determine the number of
attributes in CDM data: (a) if PArm, FF, and MCAIC agree on
their suggestion, retain their recommended number of attributes;
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(b) if any two of these methods agree, retain their recommended
number of attributes; (c) if none of these methods agree,
explore the recommended number of attributes by those that
suggest a similar (i.e., ±1) number of attributes; (d) if these
methods strongly disagree, explore the recommended number of
attributes by each of them. The number of attributes provided
by the dimensionality assessment methods should be understood
as suggestions; the final decision should consider theoretical
interpretability as well.

These guidelines were used to illustrate the dimensionality
assessment procedure using a real dataset. The number of
suggested number of attributes greatly varied from 1 attribute
(MAP and VSS1) to 8 attributes (DETECT). The best three
methods from the simulation study, PArm, MCAIC, and FF
recommended 3, 4, and 5 attributes, respectively. After inspecting
the model fit of the Q-matrices suggested by the DFL and Hull
methods from 3 to 5 attributes, it was found that 4 was the
most appropriate number of attributes, which was consistent
with Chen et al. (2020). The interpretability of the Q-matrices
suggested by the DFL and Hull method should be further
explored by domain experts, who should make the final decision
on the Q-matrix specification.

The present study is not without limitations. First, the
CDMs used to generate the data (i.e., DINA and G-DINA)
were also used to estimate the models in the MC methods. In
applied settings, the saturated G-DINA model should be used
for both estimating/validating the Q-matrix and assessing the
number of attributes to make sure that there are no model
specification errors. After these two steps have been fulfilled,
item-level model comparison indices should be applied to check
whether more reduced CDMs are suitable for the items (Sorrel
et al., 2017). The main reason why the DINA model was used
to estimate the models in the MC methods (whenever the
generating model was also the DINA model) was to try to
reduce the already high computation time of the simulation
study. Nevertheless, it is expected that the results of these
conditions would have been similar if the G-DINA model were
used to estimate these models: it provides similar results as
the DINA model given that the sample size is not very small
(i.e., N < 100; Chiu et al., 2018). Second, the generalization of
the results to other conditions not considered in the present
simulation study should be done with caution. For instance,
the range of the number of attributes was kept around the
most common number of attributes encountered in applied
settings and simulation studies. Highly dimensional scenarios
(e.g., K = 8) were not explored because the computation
time increases exponentially with the number of attributes and
the simulation study was already computationally expensive.
Hence, the performance of the dimensionality assessment
methods under highly dimensional data should be further
evaluated. In this vein, an important discussion might arise
when considering highly dimensional CDM data. As Sessoms
and Henson (2018) reported, many studies obtained attribute

correlations higher than 0.90. These extremely high correlations
imply that those attributes are hardly distinguishable, which
might indicate that the actual number of attributes underlying
the data is lower than what has been specified. It can be
argued that CDM attributes are expected to show stronger
correlations than EFA factors because attributes are usually
defined as fine-grained skills or concepts within a broader
construct. However, it is important to note that each attribute
should be still distinguishable from the others. Otherwise, the
interpretation of the results might be compromised. The proper
identification of the number of attributes might be of help in
this matter.

Finally, only one of the best three performing methods
(i.e., FF) can be directly implemented by the interested
researcher in assessing the dimensionality of CDM data, using
publicly available functions. With the purpose of facilitating
the application of the other two best performing methods,
the specific implementations of parallel analysis and model
comparison approach used in the present study have been
included in the cdmTools R package (Nájera et al., 2021). A
sample R code to illustrate a dimensionality assessment study of
CDM data can be found in Supplementary Materials.
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