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Abstract
We evaluate the classic sum

∑
n∈Z

e−πn2 . The novelty of our approach is that it does
not require any prior knowledge about modular forms, elliptic functions or analytic
continuation. Even the � function, in terms of which the result is expressed, only
appears as a complex function in the computation of a real integral by the residue
theorem. Another contribution of this note is to provide a very simple proof of the
Kronecker limit formula. Finally, employing the evaluation of the sum and some other
ideas, we also obtain an undemanding proof of one of the most emblematic formulas
of Ramanujan.
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1 Introduction

Our primary goal is to give a proof of the following result with very few prerequisites.
In general, the special values of theta and allied functions are related to deep topics
in number theory (complex multiplication, class field theory, modular forms, elliptic
functions, etc., cf. [3–5]) which we avoid here.

Theorem 1 Consider θ(z) = ∑
n∈Z

eπ in2z . Then

θ(i) = (2π)−1/4

√
�(1/4)

�(3/4)
= �(1/4)

π3/4
√
2
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with � the classical Gamma function �(s) = ∫ ∞
0 t s−1e−t dt .

We will prove the first equality, and the second equality follows from the relation
�(s)�(1 − s) = π csc(πs) that do not use elsewhere. In fact, the � function only
appears as a complex function in the computation of an integral (Lemma 3) and,
beyond that, we barely use its defining integral representation for s > 1.

Except for a special case of the Jacobi triple product identity and the well-known
formula for the number of representations as a sum of two squares (both separated in
Sect. 2 and admitting elementary proofs, not included here), the proof is completely
self-contained. The techniques only involve basic real and complex variable methods.
No modular properties of θ and η and no functional equations of any L-function or
Eisenstein series nor their analytic continuations are required.

Our argument includes a proof of a version of the (first) Kronecker limit formula
(Proposition 1) simpler than the ones we have found in the literature (cf. [10]) which
may have independent interest. We address the reader to the interesting paper [6] for
the history and relevance of this formula.

We finish the paper showing that Theorem 1 and a self-contained argument allow
to deduce a remarkable formula of Ramanujan.

2 Two auxiliary results

We first recall the factorization of the θ function.

Lemma 1 For |q| < 1,

∞∑

n=−∞
qn

2 =
∞∏

n=1

(
1 − q2n

)(
1 + q2n−1)2.

The next result is the classic formula for r(n), the number of representations of
n as a sum of two squares, in terms of the nontrivial character χ modulo 4 (i.e.,
χ(n) = (−1)(n−1)/2 for n odd and zero for n even).

Lemma 2 For n ∈ Z
+ and s > 1, we have

r(n) = 4
∑

d|n
χ(n) or equivalently,

∞∑

n=1

r(n)n−s = 4ζ(s)L(s)

with ζ(s) = ∑∞
n=1 n

−s the Riemann zeta function and L(s) = ∑∞
n=1 χ(n)n−s .

We will say some words about their proofs.
Lemma 1 comes from the Jacobi triple product identity which admits elementary

combinatorial proofs (see [8,§8.3] and [1]) but arguably, even today, the conceptually
most enlightening proof is the classic one based on complex analysis [12,§10.1]. It
uses the invariance under two translations of certain entire function to conclude that
it is a constant, which is computed with a beautiful argument due to Gauss [11,§78].
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Lemma 2 can be derived from the triviality of some spaces ofmodular forms or from
some properties of elliptic functions [12,§10.3.1], [11,§84]. A less demanding proof,
requiring quadratic residues and almost nothing else, is to use the representations of
an integer by the quadratic forms in a class [8,§12.4]. A longer alternative is to show
that Z[i] is a UFD and deduce the result from r(p) = 4(1+χ(p)) for p prime, which
is essentially Fermat two squares theorem [7,Art.182] (see [13] for a “one-sentence”
proof of the latter).

3 The Kronecker limit formula and the theta evaluation

We first state a compact version of the Kronecker limit formula and provide a proof
only requiring the residue theorem and the very easy [9,p. 23] and well-known result
(s − 1)ζ(s) → 1 as s → 1+.

The Epstein zeta function ζ(s, Q) associated with a positive definite binary
quadratic form Q and the Dedekind η function are defined, respectively, by

ζ(s, Q) =
∑

n∈Z2\{0}

(
Q(n)

)−s and η(z) = eπ i z/12
∞∏

n=1

(
1 − e2π inz

)
.

We assume s > 1 and �z > 0 to assure the convergence.

Proposition 1 Let Q(x, y) = ax2 +bxy+cy2 be a real form with D = 4ac−b2 > 0
and a > 0. Then

lim
s→1+

(√
D

4π
ζ(s, Q) − ζ(2s − 1)

)
= log

√
a/D

|η(zQ)|2 with zQ = −b + i
√
D

2a
.

Proof We consider p(x) = ax2 + bx + c and the following abbreviations:

gs(x) = p(x)−s + p(−x)−s, G(s) = −
∫ ∞

−∞
gs = −2

∫ ∞

−∞
p−s, K =

√
D

4π
.

The limit in the statement equals L1 − L2 with

L1 = K lim
s→1+

(
ζ(s, Q) + ζ(2s − 1)G(s)

)
, L2 = lim

s→1+ ζ(2s − 1)
(
KG(s) + 1

)
.

L’Hôpital’s rule shows L2 = 1
2KG ′(1) because (2s − 2)ζ(2s − 1) → 1 (and G(1) =

−K−1 by direct integration). Then the result follows if we prove

L1 = − log |η(zQ)|2 and G ′(1) = K−1 log(D/a). (1)
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We have G ′(1) = 2
∫ ∞
−∞(log p)/p. With the change of variables 2ax + b =√

D tan(t/2), we obtain

G ′(1) = − 4√
D

∫ π

−π

log
2 cos(t/2)√

D/a
= − 4√

D
�

∫

C
log

( 1 + z√
D/a

)dz

i z

with C the unit circle, where we have used log
(
2| cos(t/2)|) = � log(1 + z) with

z = eit . Cauchy’s integral formula gives the second identity in (1).
When we sum Q(m, n)−s , the contribution of n = 0 is 2a−sζ(2s). For n 	= 0,

the residue of i cot(πnz) at z = m/n is i/π . Then, the residue theorem in the band
Bε = {|�z| < ε}, with 0 < ε < �zQ , gives

ζ(s, Q) − 2
ζ(2s)

as
=

∞∑

n=1

1

n2s
∑

m∈Z

gs
(m

n

) =
∞∑

n=1

−1

2n2s−1

∫

∂Bε

gs(z)i cot(πnz) dz.

As gs is even,
∫
∂Bε

= −2
∫
Lε

with Lε = {�z = ε} oriented to the right and the sum

is
∑

n n
1−2s

∫
Lε
. Note that

∫
Lε

gs = ∫
L0

gs = −G(s). Then adding ζ(2s − 1)G(s) is
equivalent to replace i cot(πnz) by i cot(πnz)−1 in

∫
Lε
. The expansion i cotw−1 =

2e2iw/(1− e2iw) = 2(e2iw + e4iw + . . . ) assures an exponential decay and we have

L1 = K

(

2
ζ(2)

a
+

∞∑

n,k=1

2

n

∫

Lε

g1(z)e
2π inkz dz

)

.

Substitute ζ(2) = π2/6 and note that g1(z) = (
a(z − zQ)(z − z̄Q)

)−1 + (
a(z +

zQ)(z + z̄Q)
)−1. The residue theorem in {�z > ε} gives promptly

L1 = π
√
D

12a
+

∞∑

n,k=1

1

n

(
e2πnkizQ + e−2πnki z̄Q

) = π
√
D

12a
−

∞∑

k=1

log
∣
∣1 − e2πki zQ

∣
∣2,

where the second equality comes from log(1− w) + log(1− w̄) = log |1− w|2. The
sum is log

(|η(zQ)|2|e−π i zQ/6|) and the proof of (1) is complete. 
�
The evaluation of an integral will be played a role in the final step of our proof of

Theorem 1. We proceed again employing the residue theorem.

Lemma 3 Let

I = 1

π

∫ ∞

0

log t

cosh t
dt then exp(I ) = �(3/4)

�(1/4)

√
2π.

Proof Consider f (z) = i sec(2π z) log�(1/2 + z) on the vertical band B = {|�z| <

1/2
}
. It defines a meromorphic function (for certain branch of the logarithm because

� does not vanish) with simple poles at z± = ±1/4. Clearly the residues satisfy
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2π iRes( f , z±) = ± log�(1/2 + z±). This function is integrable along ∂B and the
residue theorem shows

log
�(3/4)

�(1/4)
=

∫

∂B
f =

∫ ∞

−∞
log�(1 + i t)

cosh(2π t)
dt −

∫ ∞

−∞
log�(i t)

cosh(2π t)
dt .

Using �(1 + i t) = i t�(i t) and taking real parts to avoid considerations about the
branch of the logarithm,

log
�(3/4)

�(1/4)
=

∫ ∞

−∞
log |t |

cosh(2π t)
dt = 1

π

∫ ∞

0

log(t/2π)

cosh t
dt = I −

∫ ∞

0

log(2π)

π cosh t
dt .

The last integral is log
√
2π just changing t = log tan u for u ∈ [π/4, π/2). 
�

Proof (of Theorem 1) From Lemma 1 with q = eπ i z , we obtain the identity θ(z) =
∏∞

n=1

(
1− e2π inz

)(
1+ eπ i(2n−1)z

)2. Elementary manipulations with the definition of
η show θ(z) = η2

( 1
2 z+ 1

2

)
/η(z+1). Let Q = x2+ y2 and Q′ = 2x2−2xy+ y2 with

zQ = i and zQ′ = 1+i
2 . We have ζ(s, Q) = ζ(s, Q′) because Q′ = x2 + (x − y)2.

Then Proposition 1 implies |η(zQ′)|2/|η(zQ)|2 = √
2 and, noting θ(i) = |θ(i)| and

|η(z + 1)| = |η(z)|,

θ(i) = θ(zQ) =
∣
∣
∣

η(zQ′)

η(zQ + 1)

∣
∣
∣
2|η(zQ + 1)| = √

2|η(i)|.

Recalling Lemma 3, Theorem 1 is equivalent to I = − log
(
2|η(i)|2). By Lemma 2,

we have ζ(s, Q) = 4ζ(s)L(s) and, since Proposition 1, we must prove

lim
s→1+

( 2

π
ζ(s)L(s) − ζ(2s − 1)

)
= I .

It is known ζ(s) ∼ (s − 1)−1 + γ as s → 1 with γ the Euler–Mascheroni constant,
and it admits a short elementary proof [9,p. 23]. Using1 �′(1) = −γ , we have ζ(s) −
2�(s)ζ(2s − 1) → 0 and the previous limit is

lim
s→1+

( 4

π
�(s)L(s) − 1

)
ζ(2s − 1) = lim

s→1+
4�(s)L(s) − π

2π(s − 1)
= 2

π

d

ds

∣
∣
∣
s=1

(
�(s)L(s)

)

by L’Hôpital’s rule. It only remains to show that this derivative is π I/2. Plainly
�(s)n−s = ∫ ∞

0 t s−1e−nt dt . Then

1 For a quick proof write �(s) = limn→∞
∫ n
0

(
1− x

n
)nxs−1 dx to obtain, by repeated partial integration,

lim n!ns
s(s+1)···(s+n)

(Gauss’ definition of �). The derivative of its logarithm at s = 1 gives finally �′(1) =
lim

(
log n − 1

1 − 1
2 − · · · − 1

n
) = −γ .
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�(s)L(s) =
∫ ∞

0
t s−1(e−t − e−3t + e−5t − e−7t + . . .

)
dt =

∫ ∞

0

t s−1

2 cosh t
dt

and Lemma 3 implies the result differentiating under the integral sign. 
�

4 A remarkable formula of Ramanujan

The purpose of this section is to use Theorem 1 to give a proof not requiring any
background in the theory of elliptic functions of the following result due to Ramanujan
[2,§18,Entry 11(i)]. It constitutes one of his most famous and emblematic formulas.
It is simple, beautiful and striking. As mentioned in [2,p. 163] “One wonders how
Ramanujan ever discovered this most unusual and beautiful formula”.

Theorem 2 (Ramanujan) For |z| < 1 we have

( ∞∑

n=−∞

cos(πnz)

cosh(πn)

)−2 +
( ∞∑

n=−∞

cosh(πnz)

cosh(πn)

)−2 = 4π�2(3/4)

�2(1/4)
.

Note that using the reflection property of the � function, the constant equals
2π−1�4(3/4), which is the original form appearing in [2].

For the proof, we consider the function

p(z) =
∏

2�m

cosh(πm) + cos(π z)

cosh(πm) − cos(π z)
=

∏

2�m

coth
(π

2
(m − i z)

)
coth

(π

2
(m + i z)

)

with m ∈ Z
+. The trained reader will notice the relation between p and the Jacobi

function dn in part of the proof, but we avoid any reference to properties of elliptic
functions. The equality between both products follows easily from coth x = (ex +
e−x )/(ex −e−x ). The function p is meromorphic with simple poles at

{
i +2(k+ i�) :

k, � ∈ Z
}
and it enjoys the symmetries

p(z + 2) = p(z), p(z + 1) = 1

p(z)
, p(z) = p(−z), p(z + 2i) = −p(z). (2)

Excepting the last, they are trivial consequences of the first product representation.
Using the second product, the effect of z → z + 2i is shifting m forward in the
first factor and backwards in the second. Then p(z + 2i)/p(z) equals coth

(
π
2 (−1 +

i z)
)
/ coth

(
π
2 (1 − i z)

) = −1, proving the last equality.

Lemma 4 For certain constant K0 ∈ C, we have

p2(z) + p2(i + 1 + i z) = 1

p2(z)
+ 1

p2(i z)
= K0.
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Proof Using (2), p(i + z) = p(−i − z) = −p(i − z). Then p is odd around the
pole z = i and we have p(z) = A(z − i)−1 + B(z − i) + · · · This proves that
p2(z) + p2(i + 1 + i z) has not a pole at z = i because the principal parts cancel
out. By the periodicity under z → z + 2 and z → z + 2i , we conclude that it is
a bounded entire function and hence a constant K0. The remaining equality follows
from (2) changing z → z + 1. 
�
Lemma 5 There exists a constant K1 ∈ C such that

p(z) = K1

∞∑

n=−∞

cos(πnz)

cosh(πn)
for |�z| < 1.

Proof It is enough to consider z = t ∈ R because the formula extends analytically
to the convergence region |�z| < 1. As p(t) is 2-periodic, we only need to prove
that the Fourier coefficients match. This means

∫ 2
0 p(t)e−iπnt dt = K2 sech(πn)

for some K2 ∈ C. Consider the parallelogram P with vertexes 0, 2, 2i and
−2 − 2i . By the first and the last equalities in (2), we have

∫
∂P p(z)e−iπnz dz =

(
1 + e2πn

) ∫ 2
0 p(t)e−iπnt dt . On the other hand, by the residue theorem, this is also

2π ieπnRes(p, i) and the proof is complete. 
�
Lemma 6 We have

∞∑

n=−∞

1

cosh(πn)
= �(1/4)

�(3/4)
√
2π

.

Proof The Taylor expansion of x/(1 + x2) shows for n > 0

1

cosh(πn)
= 2e−πn

1 + e−2πn = 2
∞∑

m=0

(−1)me−πn(2m+1) = 2
∞∑

d=1

χ(d)e−πnd .

Then the sum in the statement is, by Lemma 2,

1 + 4
∞∑

n=1

∞∑

d=1

χ(d)e−πnd = 1 + 4
∞∑

m=1

∑

d|m
χ(d)e−πm =

∞∑

m=0

r(m)e−πm .

The last sum is θ2(i) which is evaluated with Theorem 1. 
�
Proof of Theorem 2 From Lemmas 4 and 5, we get the result except for the value of
the constant, which follows choosing z = 0 by Lemma 6. 
�

The same argument using p2(z − 1) + p2(1 + i z) = K0 (by Lemma 4) shows

( ∞∑

n=−∞
(−1)n

cos(πnz)

cosh(πn)

)2 +
( ∞∑

n=−∞
(−1)n

cosh(πnz)

cosh(πn)

)2 = �2(1/4)

2π�2(3/4)
,
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which, to our knowledge, does not appear in Ramanujan’s work. An immediate variant
of the proof of Lemma 6 shows that for z = 0, the quantities in the parentheses are
θ2(i + 1), giving the evaluation θ(i + 1) = 2−1/4θ(i).
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