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The boundary Green’s-function (bGF) approach has been established as a powerful theoretical technique for
computing the transport properties of tunnel-coupled hybrid nanowire devices. Such nanowires may exhibit
topologically nontrivial superconducting phases with Majorana bound states at their boundaries. We introduce
a general method for computing the bGF of spinful multichannel lattice models for such Majorana nanowires,
where the bGF is expressed in terms of the roots of a secular polynomial evaluated in complex momentum space.
In many cases, those roots, and thus the bGF, can be accurately described by simple analytical expressions, while
otherwise our approach allows for the numerically efficient evaluation of bGFs. We show that from the behavior
of the roots many physical quantities of key interest can be inferred, e.g., the value of bulk topological invariants,
the energy dependence of the local density of states, or the spatial decay of subgap excitations. We apply the
method to single- and two-channel nanowires of symmetry class D or DIII. In addition, we study the spectral
properties of multiterminal Josephson junctions made out of such Majorana nanowires.
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I. INTRODUCTION

The interest in proximitized nanostructures where topolog-
ical superconductor phases could be engineered is continuing
to grow [1–8]. In particular, the case of one-dimensional (1D)
semiconducting hybrid nanowires with strong Rashba spin-
orbit interaction has been intensely studied as a potential route
towards the generation of Majorana bound states (MBSs)
[9–17]. Such states are of high interest for topological quan-
tum information processing applications [4]. While a phase
with broken time-reversal symmetry (class D) can be expected
for the cited nanowire experiments because of the presence
of a magnetic Zeeman field (we use the abbreviation “TS”
for such topological superconductors below), a time-reversal
invariant topological superconductor (TRITOPS) phase has
been predicted from related wire constructions [18–35]. The
TRITOPS phase has symmetry class DIII and is still awaiting
experimental tests. The interest in hybrid nanowires goes well
beyond the generation of topological phases. For instance,
recent microwave spectroscopy experiments have investigated
the role of spin-orbit coupling effects on the formation of
Andreev bound states [36].

The physics of devices made from different types of
nanowires coupled by tunneling contacts has been explored
by a variety of theoretical models and techniques [1–3,5].
On one hand, minimal models restrict the Hilbert space to
include only subgap bound states. This key simplification then
allows for analytical progress (see, e.g., Refs. [37,38] for early
contributions). On the other hand, microscopic models aim
for a more detailed understanding of how material properties
can influence transport observables (see, e.g., Refs. [39–46]).

Recent works along this line have studied the electrostatic
potential profile along the nanowire [47–49] and the effects of
disorder on the phase diagram [50,51]. However, the solution
of such microscopic models requires information about many
model parameter values and generally can be obtained only
by performing a detailed numerical analysis. In this context,
theoretical approaches of intermediate complexity are of high
interest. Such a framework allows one to describe transport
properties by taking into account both subgap and continuum
states while keeping the algebra sufficiently simple so as to
permit analytical progress. The scattering matrix formalism
is a widely known representative for this type of approach
(see, e.g., Refs. [52–58]). The present paper will employ
the complementary boundary Green’s-function (bGF) method
[59–64], which is particularly useful for analyzing nonequi-
librium transport properties in different types of hybrid nano-
junctions. The bGF approach also allows one to examine
other electronic properties such as the tunneling density of
states (DoSs) or the bulk-boundary correspondence expected
for topological phases [65–67]. Furthermore, electron-phonon
and/or electron-electron interaction effects can in principle
also be taken into account.

In the present paper, we extend and generalize the bGF
approach for 1D or quasi-1D proximitized nanowires, which
has been introduced in Refs. [59–63], along several directions.
First, we demonstrate that a bGF construction in terms of the
roots of a secular equation extended to complex momenta
(as discussed in Ref. [59] for the Kitaev chain model) can
be generalized to arbitrary spinful multichannel (i.e., quasi-
1D) nanowires with topologically nontrivial superconducting
phases. In particular, by studying the evolution of the roots in
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the complex momentum plane under the variation of model
parameters, one can readily detect topological transitions,
determine bulk topological invariants, or compute the local
density of states as a function of energy for translationally
invariant cases. In addition, the same roots determine the
bGF and thereby give access to the transport properties of
devices made from tunnel-coupled (semi-infinite or finite-
length) nanowires. In particular, their knowledge also gives
access to the spatial decay profile of Majorana states.

Below we investigate the roots and the corresponding
bGFs for two widely used spinful single-channel nanowire
models harboring topologically nontrivial phases. First, we
study TS wires with broken time-reversal invariance using
the model by Lutchyn et al. [68] and by Oreg et al. [69].
Second, we consider TRITOPS wires using the model of
Zhang et al. [21]. Quasi-1D multichannel models in class D
or class DIII are then constructed by coupling several wires
of the respective symmetry class by tunnel couplings. We
show that also such multichannel models can be efficiently
tackled by our bGF method. As application, we will discuss
the Josephson current-phase relation both for a multiterminal
junction composed of three tunnel-coupled TS wires and for a
TRITOPS-TS Josephson junction.

The remainder of this paper is organized as follows. In
Sec. II, we describe a general formalism for analyzing 1D or
quasi-1D lattice models of proximitized nanowires, where we
only assume that the hopping amplitudes in the correspond-
ing tight-binding model are of finite range. We show that
the real-space bulk Green’s function (GF) adopts a compact
expression in terms of the roots of the secular polynomial
of the bulk Hamiltonian extended into complex momentum
space. We also show how the boundary GF can be obtained
from the bulk GF by solving a Dyson equation, and we discuss
general properties of the corresponding roots. In Sec. III, we
consider a discretized version of the single-channel class-D
model of Refs. [68,69]. We introduce a simple ansatz for the
respective roots in the trivial and in the topological phase. This
ansatz allows us to obtain analytical insights about the bulk
spectral density and the spatial variation of MBSs. In Sec. IV,
we extend the analysis to a two-channel model describing
two coupled class-D wires, where we can study spin-orbit
interaction effects in multichannel nanowires [70]. The phase
diagram and the spectral density of this model show a richer
behavior than in the single-channel case. In Sec. V, we apply
our methods to single- and multichannel models for TRITOPS
wires. Finally, in Sec. VI, we study the Josephson effect
and the formation of Andreev bound states in phase-biased
multiterminal TS junctions and for TRITOPS-TS junctions.
We finally offer some conclusions in Sec. VII. Technical
details have been delegated to two appendices. We often use
units with h̄ = 1 and focus on the zero-temperature limit
throughout.

II. BOUNDARY GREEN’S FUNCTION

A central aim of the present paper is to construct the bGF
for different hybrid nanowire models which are described by
a bulk Hamiltonian of the form

Hbulk = 1

2

∑
k

�̂
†
k Ĥ(k)�̂k, (1)

corresponding to an infinitely long and translationally in-
variant (quasi-)1D chain with lattice spacing a. Here, Ĥ(k)
is an N × N Bogoliubov–de Gennes (BdG) Hamiltonian in
reciprocal space, and the �̂k are fermionic Nambu spinor
fields. Specific examples for these spinor fields will be given
in the subsequent sections. The number N may include the
Nambu index, the spin degree of freedom, and channel indices
for multichannel models. Using Ĥ(k + 2π/a) = Ĥ(k), the
BdG Hamiltonian can be expanded in a Fourier series, Ĥ(k) =∑

n V̂neinka, where Hermiticity implies V̂−n = V̂†
n . For sim-

plicity, we here consider only models with nearest-neighbor
hopping, V̂n = 0 for |n| > 1, but the generalization to arbi-
trary finite-range hopping amplitudes is straightforward.

The retarded bulk GF of the infinite chain is defined as

ĜR(k, ω) = [ω + i0+ − Ĥ(k)]−1, (2)

where the N × N matrix structure is indicated by the hat nota-
tion. In real-space representation, the GF has the components
( j and j′ are lattice site indices)

ĜR
j j′ (ω) = a

2π

∫ π/a

−π/a
dk ei( j− j′ )ka ĜR(k, ω). (3)

By the identification z = eika, this integral is converted into a
complex contour integral:

ĜR
j j′ (ω) = 1

2π i

∮
|z|=1

dz

z
z j− j′ĜR(z, ω). (4)

Introducing the roots zn(ω) of the secular polynomial in the
complex-z plane,

P(z, ω) = det[ω − Ĥ(z)] = 1

zN

2N∏
n=1

[z − zn(ω)], (5)

the contour integral (4) can be written as a sum over the
residues of all roots inside the unit circle:

ĜR
j j′ (ω) =

∑
|zn|<1

z j− j′
n Â(zn, ω)∏
m �=n (zn − zm)

, (6)

where Â(z, ω) is the cofactor matrix of [ω − H(z)]z. For
notational simplicity, we omit the superscript “R” in retarded
GFs from now on.

Given the real-space components of the bulk GF in Eq. (6),
we next employ Ref. [59] (see also Ref. [71]) to derive the
bGF characterizing a semi-infinite nanowire. To that effect,
we add an impurity potential ε localized at lattice site j = 0.
Taking the limit ε → ∞, the infinite chain is cut into dis-
connected semi-infinite chains with j < −1 (left side, L) and
j > 1 (right side, R). Using the Dyson equation, the local GF
components of the cut nanowire follow as [59]

Ĝ j j (ω) = Ĝ j j (ω) − Ĝ j0(ω)[Ĝ00(ω)]−1Ĝ0 j (ω). (7)

The bGFs for the left and right semi-infinite chain, respec-
tively, are with Eq. (7) given by

ĜL(ω) = Ĝ−1,−1(ω), ĜR(ω) = Ĝ11(ω). (8)

We note that by proceeding along the lines of Refs. [60,72]
one can also compute reflection matrices from the
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corresponding bGF:

r̂L/R = lim
ω→0

1 − iV̂†
±1ĜL/R(ω)V̂±1

1 + iV̂†
±1ĜL/R(ω)V̂±1

. (9)

This relation allows one to express topological invariants of
the bulk Hamiltonian [66,67] in terms of bGFs.

The roots zn(ω) play an important role in what follows.
In particular, their knowledge allows us to construct both the
bulk and the boundary GFs. In simple cases, this can be done
analytically, and otherwise this route offers an efficient numer-
ical scheme. The roots can also provide detailed information
about the decay of subgap states localized at the boundaries of
semi-infinite wires, and they allow one to compute topological
invariants of the bulk system. Let us therefore summarize
some general properties of these roots.

(i) Hermiticity of the BdG Hamiltonian implies that every
root zn(ω) is accompanied by a root 1/z∗

n (ω), where “∗”
denotes complex conjugation.

(ii) Electron-hole symmetry of the BdG Hamiltonian im-
plies that zn(ω) = z∗

n (−ω). In the presence of an additional
symmetry Ĥ(k) = ÛĤ(−k)Û † with a unitary matrix Û , for
every root zn(ω), also z∗

n (ω) must be a root.
(iii) As a consequence of (i) and (ii),

∏2N
n=1 zn(ω) = 1.

(iv) Topological phase transitions can occur once a pair
of zero-energy roots hits the unit circle, |zn(0)| = 1, which
corresponds to the closing and reopening of a gap in the bulk
spectrum.

(v) Equations (6) and (7) imply that subgap bound states
(with energy E ) localized near the boundary of a semi-
infinite wire decay into the bulk in a manner controlled by
max(|zn(E )| < 1).

We illustrate the usefulness of these properties in the fol-
lowing sections for different models of proximitized (quasi-)
1D nanowires.

III. SPINFUL SINGLE-CHANNEL HYBRID NANOWIRES

As a first example, we consider the spinful single-channel
model of Refs. [68,69] for a proximitized semiconductor
nanowire. This model has been extensively studied as a
prototype for 1D wires harboring a TS phase with broken
time-reversal invariance. We use the Nambu bispinor �̂T

k =
(ck↑, ck↓, c†

−k↓,−c†
−k↑), i.e., N = 4 in Eq. (1). Here, ckσ is

a fermionic annihilation operator for momentum k and spin
σ =↑,↓, and the bulk BdG Hamiltonian in Eq. (1) takes the
form

H(k) = εkσ0τz + Vxσxτ0 + αkσzτz + 	σ0τx, (10)

where σx,y,z and τx,y,z are Pauli matrices in spin and Nambu
(electron-hole) space, respectively, with the identity matrices
σ0 and τ0. Regularizing the continuum model of Refs. [68,69]
by imposing a finite lattice spacing a, the kinetic energy εk =
2t[1 − cos(ka)] − μ includes the chemical potential μ and
the nearest-neighbor hopping amplitude t . Furthermore, Vx

encapsulates a magnetic Zeeman field oriented along the wire
axis, αk = α sin(ka) describes the spin-orbit interaction, and
	 refers to the proximity-induced on-site pairing amplitude.
The bulk dispersion relation, E = Ek,± � 0, then follows

from [68,69]

E2
k,± = 	2 + α2

k + V 2
x + ε2

k ± 2
√

	2V 2
x + (

α2
k + V 2

x

)
ε2

k .

(11)
This model exhibits a topological transition at Vx = Vc =√

	2 + μ2, where the TS phase is realized for Vx > Vc.
Although it is not essential for the subsequent discussion,

the parameters t and α can be assigned values appropriate
for InAs nanowires [59]. To that end, we put t = h̄2/(2m∗a2),
where m∗ is the effective mass, and α = h̄u/a, where u is the
spin-orbit parameter [69]. This parameter depends on material
properties and can be tuned by an external electric field.
Putting a = 10 nm and using typical InAs material parame-
ters, we estimate t ≈ 10 meV and α ≈ 4 meV [59]. On the
other hand, a proximity gap of order 	 ≈ 0.2 meV represents
the case of a nanowire in good contact with a superconducting
Al layer. (We will use this value in the figures below unless
noted otherwise.) The only remaining free variables are then
given by Vx and μ.

Using Eq. (5) and z = eika, the roots zn(ω) for this model
satisfy the condition

2	2
[
α̃2(z) + ε2(z) − V 2

x − ω2
]

+ 2α̃2(z)
[
V 2

x − ω2 − ε2(z)
] + α̃4(z) + V 4

x + 	4

+ [ω2 − ε2(z)]2 − 2V 2
x [ω2 + ε2(z)] = 0, (12)

with the functions

α̃(z) = −iα(z − z−1)/2, ε(z) = −t (z + z−1 − 2) − μ.

(13)
Equation (12) can be written as

4∑
n=1

Cn(ω)

(
zn + 1

zn

)
+ C0(ω) = 0, (14)

where the real coefficients Cn(ω) are given in Appendix A.
Clearly, Eq. (14) is consistent with the general properties
(i) and (ii) listed in Sec. II. Alternatively, Eq. (14) can be
expressed as an eighth-order polynomial equation:

8∑
m=0

am(ω)zm = 0, (15)

where the coefficients am are trivially related to the Cn and we
can impose the normalization conditions a0 = a8 = 1.

The resulting roots zn can be grouped into two different
classes associated with the two pairing gaps 	1 and 	2 in
the bulk spectrum [68,69] [see Fig. 1(a)]. In the limit 	 → 0,
these gaps 	1 and 	2 will also vanish. For 	 = 0, we
find from Eq. (12) that the zero-frequency roots zn(ω = 0)
simplify to e±ik1a and e±ik2a, with

k1,2 
 cos−1

(
2t (2t − μ)

α2 + 4t2
+

±
√

V 2
x (α2 + 4t2) + α4 + 4tμα2 − α2μ2

α2 + 4t2

)
. (16)

At these momenta, the dispersion relation becomes gapless
for 	 = 0 [see Fig. 1(a)]. We observe from Eq. (16) that k1

(corresponding to the + sign) becomes purely imaginary for
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FIG. 1. Bulk dispersion relation of the spinful single-channel
Majorana wire model [68,69]. (a) Ek,− vs k [see Eq. (11)] for the
topologically trivial regime Vx < Vc (solid red curve), indicating the
two pairing gaps 	1 and 	2 at k = k1 and k2, respectively [see
Eq. (16)]. We use μ = 5 meV, 	 = 2 meV, and Vx = 0.5Vc. All other
parameters are specified in the main text. The dashed yellow curve is
for 	 = 0. (b) Evolution of the two gaps (normalized to the velocities
v1,2) vs Zeeman parameter Vx for 	 = 0.2 meV and μ = 2 meV. We
note that 	1 and v1 simultaneously vanish as Vx → Vc.

Vx > Vc. We will then first discuss the topologically trivial
regime Vx < Vc.

Figure 1(a) shows that the low-energy physics will be
dominated by the regions with |k| ≈ k1 and k2. The pairing
gaps 	1,2 = |Ek1,2,−| then follow by substituting k1,2 into the
bulk dispersion relation (11). In particular, we find that 	1

closes and reopens when ramping Vx through the topological
transition at Vx = Vc. An approximate expression for the roots
is obtained by linearizing the 	 = 0 dispersion relation in
Eq. (11) for electrons and holes near k = k1 and k2. Defining
the respective velocities as vν=1,2 = |∂kEk=kν ,−|	=0, the effec-
tive low-energy Nambu Hamiltonian valid near the respective
momentum kν can be written as

Heff,ν=1,2(k) 

(

vν (k − kν ) 	ν

	ν −vν (k − kν )

)
, (17)

and similarly for k ≈ −kν . Using ika = ln z, the condition
det[ω − Heff,ν (z)] = 0 can readily be solved. In effect, the
roots are given by

zν (ω) 

(

1 ± a

vν

√
	2

ν − ω2

)
eikνa, (18)

plus the complex conjugate values. Inspired by Eq. (18), we
propose the following ansatz for the roots zn(ω) located inside
the unit circle:

zν (ω) = (
1 − τν

√
	2

ν − ω2
)
eiδν , (19)

where τ1,2 and δ1,2 are phenomenological coefficients. In
addition, the complex conjugate root z∗

ν (ω) is a solution. This
ansatz is expected to work well in the topologically trivial
regime Vx < Vc. For small 	 and |ω|, Eq. (18) implies the
limiting behavior τν = a/vν and δν = kνa. In addition, we

also impose the condition

τ1	1 = τ2	2 = η � 1, (20)

where η is a small parameter. In the small-	 case with τν ≈
a/vν , Eq. (20) implies that the effective pairing gap 	ν is
inversely proportional to the corresponding density of states
∝ 1/vν . Figure 1(b) shows that this condition is accurately
fulfilled as long as Vx stays well below Vc. However, Eq. (20)
becomes less precise for Vx → Vc. In Appendix A, we provide
more refined analytical expressions that determine the param-
eters η and δν in our ansatz for the roots [see Eqs. (19) and
(20)].

Next we turn to the topologically nontrivial regime
Vx > Vc, where the momentum k1 in Eq. (16) becomes purely
imaginary. We should then replace δ1 → iδ1 in the above
ansatz for the roots. As a consequence, the zν=1(ω) roots
become real valued, and the ansatz for Vx > Vc takes the form

z1,±(ω) = (
1 ± τ1

√
	2

1 − ω2
)

e−δ1 ,

z2,±(ω) = (
1 − τ2

√
	2

2 − ω2
)

e±iδ2 , (21)

where both δ1 and δ2 are real positive. We thus have only
a single pair of complex conjugate roots (z2) near the unit
circle for Vx > Vc. Accurate analytical results for the δν and τν

parameters can be obtained by solving a cubic equation (see
Appendix A). As illustrated in Figs. 2(c) and 2(d), Eq. (21)
captures the low-energy behavior of the roots rather well,
especially in cases where electron-hole symmetry is approxi-
mately realized.

For this model of symmetry class D, the Z2 bulk topologi-
cal invariant takes the form [1]

Q = sgn Pf Ĥ(k = 0)

sgn Pf Ĥ(k = π/a)
= ±1. (22)

Interestingly, the number Np of complex conjugate root pairs
near (but inside) the unit circle is in correspondence with
the topological invariant, Q = (−1)Np . These roots can be
unambiguously identified as the ones approaching the unit
circle from inside in the limit 	 → 0, corresponding to the
Fermi points in the normal phase. For an odd (even) number of
pairs, the phase is thus topologically nontrivial with Q = −1
(trivial with Q = 1). The upper panels in Fig. 2 illustrate
the distribution of the roots inside the unit circle for the
cases Vx < Vc and Vx > Vc. We observe that upon entering
the topologically nontrivial regime the complex conjugate z1

roots coalesce to form an almost degenerate root pair z1,±
[see Eq. (21)] located on the real axis inside the unit circle.
The roots on the real axis correspond to additional bands
at high energies above 	. At the same time, a single pair
of complex conjugate roots (z2) remains near (but inside)
the unit circle, as one expects for a topologically nontrivial
phase. As remarked above, this change in the structure of the
roots across the transition is consistent with the corresponding
change in the topological invariant. The transition between
both regions happens when the Pfaffian, or equivalently the
Hamiltonian determinant, at k = 0 vanishes. Using the re-
lation det Ĥ(k = 0) = ∏8

n=1[1 − zn(0)], we thus reproduce
property (iv) in Sec. II, which signals the phase transition.
It is also worth mentioning that the bulk invariant (22) can
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FIG. 2. Behavior of the roots zn(ω) for the spinful single-channel
Majorana wire model [68,69]. We use Vx = 0.5Vc and 1.2Vc as repre-
sentatives for topologically trivial and nontrivial cases, respectively,
with μ = 5 meV and other parameters as specified in the main text.
Upper panels: Roots zn(ω = 0) (black dots) inside the unit circle
(red) for (a) Vx < Vc and (b) Vx > Vc. For illustrative purposes, we
use 	 = 1 meV in panels (a) and (b). For additional information,
see Supplemental Material [73]. Middle panels: Modulus of the
roots inside the unit circle vs ω/	 for (c) Vx < Vc and (d) Vx > Vc.
Solid curves represent numerically exact results and dashed curves
follow from Eqs. (19) and (21), respectively. Bottom panels: Energy
dependence of the local bulk DoS, ρ(ω) (in meV−1), for (e) Vx < Vc

and (f) Vx > Vc. The solid red curves depict numerically exact results
using Eq. (3) and the dashed green curves show approximate results
obtained from Eq. (25).

be directly expressed in terms of bGFs for the semi-infinite
wire: Using Q = det r̂L = det r̂R (see Ref. [72]), the reflection
matrices r̂L/R and therefore also Q can be obtained from the
bGFs [see Eq. (9)].

The knowledge of the roots also gives access to other
electronic properties of interest. For instance, we can obtain
a compact expression for the energy-dependent local DoS at,
say, lattice site j = 0 of the translation-invariant chain:

ρ(ω) = − 1

π
Im Tr[Ĝ00(ω)]. (23)

We focus on the low-energy limit, where one can expand the
cofactor matrix Â(z, ω) in Eq. (6) to linear order in ω. The
local GF then follows as

Ĝ00(ω) 

∑
|zn|<1

Â(zn, ω) + ωÂ′(zn, ω)∏
m �=n (zn − zm)

, (24)

where Â′(zn, ω) = d
dω

Â(zn(ω), ω). From our ansatz in
Eqs. (19) and (21), the sum in Eq. (24) can be reconstructed.
A simple approximate expression follows for small 	 in the
low-energy limit, where one needs to keep just the first-order

FIG. 3. Spatial variation of the local DoS, ρ j (0) (in meV−1), vs
distance from the boundary, x = ja (in μm), for the ω = 0 Majorana
state in a semi-infinite TS wire with μ = 1 meV and Vx = 2Vc.
The solid blue curve gives numerically exact results obtained from
Eq. (7). Red-dotted and green-dashed curves show Eq. (26) with and
without 2kF oscillations, respectively.

terms ∝ τν

√
	2

ν − ω2 in the denominator. We then obtain

Ĝ00(ω) ≈
∑
ν=1,2

Âν + ωÂ′
ν√

	2
ν − ω2

, (25)

where Âν and Â′
ν are specified in Appendix A. We note that

for Vx > Vc the main contribution to Eq. (25) stems from
the residues associated to z2. The results for ρ(ω) depicted
in Figs. 2(e) and 2(f) demonstrate that Eq. (25) accurately
reproduces numerically exact calculations, both below and
above the topological transition.

Next we turn to the case of a semi-infinite chain in the topo-
logical phase, Vx > Vc. Using the Dyson equation in Eq. (7)
and taking into account the behavior of the roots of the infinite
chain discussed above, we can deduce the spatial decay profile
of the zero-energy Majorana end state into the bulk. Noting
that the GF components Ĝ j,0 and Ĝ0, j in Eq. (7) are ∝ |z| j ,
we observe that for Vx > Vc the decay is dominated by the
z2 roots since |z2| > |z1|. Moreover, the decay profile exhibits
fast oscillations due to the complex phase δ2 in Eq. (21), which
for μ 
 	 can be approximated as δ2 
 kF a with kF ≡ k2. In
this approximation, the local DoS of the ω = 0 MBS thus has
the spatial profile

ρ j (ω = 0) ∝ |z2(0)|2 j cos2 ( jkF a + χ0), (26)

where χ0 describes a phase shift in the 2kF oscillations. Equa-
tion (26) reproduces the numerically exact results obtained
from Eq. (7) rather well, as illustrated in Fig. 3. The dashed
curve shows that the envelope function is accurately described
by |z2(0)|2 j , corresponding to an exponential decay into the
bulk of the chain.

IV. TWO-CHANNEL CLASS-D NANOWIRE

We next examine the case of spinful multichannel hybrid
nanowires with broken time-reversal symmetry. The bGF
approach could in principle be applied to nanowire models
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FIG. 4. Two-channel spinful Majorana wire model of class D [see Eq. (27)] with parameters as explained in the main text. Panel (a) shows
the bulk phase diagram in the μ-Vx plane. Topological nontrivial (trivial) phases are shown in red (blue). Panels (b) and (c) show the energy
dependence of the local DoS, ρ j=1(ω) (in meV−1), at the boundary of a semi-infinite two-channel wire along the trajectories marked by arrows
in panel (a). Panels (d)–(f) illustrate the roots zn(0) inside the unit circle at the three points indicated in panel (a) by a triangle (d), a square
(e), and a circle (f), respectively. For additional insights, see Supplemental Material [73]. Panel (g) shows the evolution of the roots within the
topologically trivial regime as Vx increases from 3 to 8 meV at constant chemical potential μ = 2 meV. In panels (d)–(g), we use 	 = 1 meV.

with an arbitrary number of channels. In practice, however,
the techniques in Sec. II are less efficient once the degree 2N
of the secular polynomial (5) becomes very large. We here
restrict ourselves to the two-channel case with N = 8, which
can be realized for two single-channel nanowires coupled by
tunneling terms. The resulting model already exhibits many
of the features expected for generic multichannel nanowires
[74,75].

Our model Hamiltonian is given by

Ĥ2ch(k) =
(
Ĥ(k) T̂

T̂ † Ĥ(k)

)
, (27)

where the 2 × 2 structure refers to wire space. We consider
two identical spinful single-channel Majorana wires described
by the model of Refs. [68,69] with Ĥ(k) in Eq. (10). The
interwire tunnel couplings are modeled by

T̂ = −tyσ0τz + iαyσxτz + 	yσ0τx, (28)

where ty and αy are spin-conserving and spin-flipping hopping
amplitudes, respectively. The coupling αy may arise due to
the presence of a Rashba spin-orbit coupling produced by an
electric field along the z direction. As in Sec. III, we write ty =
h̄2/(2m∗a2

y ) and αy = h̄u/ay, with the minimal distance ay

between the wires. In the concrete examples shown below, we
assume ay = 3a, which corresponds to a subband separation
of ≈ 3 meV. The interwire coupling (28) also includes a
nonlocal interwire pairing amplitude 	y. For the present class-
D case, however, we find that allowing for a small 	y �= 0

does not lead to significant changes in the phase diagram. We
thus put 	y = 0 in this section.

One can characterize the phase diagram of a translationally
invariant two-channel wire by using the bulk topological
invariant in Eq. (22) with the replacement Ĥ(k) → Ĥ2ch(k).
The Pfaffian at k = 0 is here given by

Pf Ĥ2ch(0) = α4
y + [

(μ − 3ty)2 − V 2
x + 	2

]
× [

(μ − ty)2 − V 2
x + 	2

]
+ 2α2

y

[ − (μ − 3ty)(μ − ty) − V 2
x + 	2

]
. (29)

The boundaries of the topological phase correspond to a
vanishing Pfaffian at k = 0, where Eq. (29) implies the two
critical Zeeman fields

Vc,± = (
α2

y + μ2 − 4μty + 5t2
y + 	2 +

± 2|μ − 2ty|
√

t2
y + α2

y

)1/2
. (30)

The resulting phase diagram in the μ-Vx plane is illustrated in
Fig. 4(a). We observe that the two-channel model (27) exhibits
a richer phase diagram than in the single-channel case (see
also Refs. [74,75]).

We next construct the bGF of a semi-infinite wire by
determining the roots of the secular polynomial in Eq. (5),
which here is a 16th-order polynomial equation that we solve
numerically. Figures 4(b) and 4(c) illustrate the evolution
of the energy-dependent local DoS, ρ1(ω), at the boundary,
i.e., taken at site j = 1 of a semi-infinite two-channel wire.
We consider two different trajectories in the μ-Vx plane as
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indicated by the arrows in Fig. 4(a). For constant Vx [panel
(b)], there are both topologically nontrivial and trivial regions
as μ is varied. In the topologically nontrivial regions, we
observe a zero-energy peak in the local DoS, signaling the
presence of MBSs. This ω = 0 peak is absent in the trivial
regime. For fixed μ [panel (c)], the topologically nontrivial
phase is reached for intermediate values of Vx. For larger
Vx, even though the system is in a trivial phase, we find
low-energy Andreev bound states that approach zero energy as
Vx increases. This effect has also been described in Ref. [75].

Additional insights follow by analyzing the evolution of the
roots zn(ω = 0) inside the unit circle in the complex momen-
tum plane. In Figs. 4(d)–4(f), we illustrate their distribution
for three different points in the phase diagram. For panels (d)
and (f), the system is in a topological phase and, as expected,
one finds an odd number of pairs of complex conjugate roots
close to the unit circle. As in Sec. III, the roots on the real
axis correspond to additional bands at higher energies well
above 	. Panel (e) instead corresponds to a topologically
trivial phase with an even number of conjugate root pairs near
the unit circle. Finally, Fig. 4(g) illustrates the evolution of
the roots in the topologically trivial regime as the Zeeman
parameter Vx increases. We find that both roots near the unit
circle in the first quadrant become almost degenerate for large
Vx. Such a behavior effectively amounts to having two replicas
of a single-channel TS wire, which in turn helps to explain
why Andreev bound states approach the zero-energy limit for
the strong Zeeman field [see Fig. 4(c) and Ref. [75]].

V. TRITOPS NANOWIRES

Next we turn to models for hybrid nanowires of symmetry
class DIII. Such TRITOPS wires constitute another interesting
system with topologically nontrivial phases. Below we first
study single-channel wires and subsequently turn to the two-
channel case.

A. Single-channel case

Many different proposals for physical realizations of
single-channel TRITOPS wires have been put forward in the
recent past [18–35]. For concreteness, we will here focus
on the model introduced by Zhang et al. [21]. Using the
spin-Nambu basis with N = 4 in Sec. II, the Hamiltonian is
given by

ĤDIII(k) = εkσ0τz + αkσzτz + 	kσ0τx, (31)

where in this section we use

εk = −2t cos(ka) − μ, αk = 2α sin(ka),

	k = 2	 cos(ka). (32)

Again t corresponds to a nearest-neighbor hopping amplitude,
μ is the chemical potential, a is the lattice spacing, and α is the
spin-orbit coupling strength. The parameter 	 corresponds
to a nearest-neighbor pairing interaction. In the examples
below, we use a = 10 nm, t = 10 meV, and α = 4 meV as in
Secs. III and IV.

By a simple rearrangement of the spin-Nambu spinor �̂k ,
one can block diagonalize the Hamiltonian in Eq. (31),
ĤDIII = diag(Ĥ−, Ĥ+). To that end, upon replacing

FIG. 5. Curve traced out by β−(k) in the σ̃x-σ̃z plane for a
single-channel TRITOPS wire in a topologically nontrivial phase
[see Eqs. (33) and (34)] with t = 0.5, α = 0.8, 	 = 1, and μ = 1.04
(all in meV). The evolution of the bulk Hamiltonian Ĥ−(k) upon
traversal of the Brillouin zone is described by an ellipse containing
the origin (O). For details, see main text and Appendix B.

�̂T
k → (ck↑, c†

−k↓, ck↓,−c†
−k↑), we arrive at the 2 × 2 block

Hamiltonians

Ĥ±(k) = (εk ∓ αk )σ̃z + 	k σ̃x = β±(k) · σ̃ , (33)

where σ̃ is the vector of σ̃x,y,z Pauli matrices in the respective
2 × 2 space obtained after block diagonalization. Each Hamil-
tonian Ĥ±(k) corresponds to a Dirac-type model where

β±(k) =
⎛
⎝ 2	 cos(ka)

0
−μ − 2t cos(ka) ± 2α sin(ka)

⎞
⎠ (34)

is a vector field mapping the first Brillouin zone onto a closed
curve.

At this stage, we can apply the formalism of Ref. [76] for
analyzing the roots of the secular polynomial of Dirac-like
Hamiltonians. By projecting Ĥ± to the σ̃x-σ̃z plane, we obtain
an elliptic curve as illustrated in Fig. 5. According to the
arguments in Ref. [76], if the ellipse encloses the origin of
the σ̃x-σ̃z plane, we know that for a semi-infinite wire Ĥ±(k)
will generate an edge state with energy equal to the modulus
of the component of β±(k) perpendicular to this plane. In our
case, [β±(k)]y = 0 implies that we have a pair of zero-energy
boundary states in the topological phase. In addition, this
argument also shows that there are no finite-energy Andreev
bound states in the trivial phase (where the ellipse does not
contain the origin). For the case in Fig. 5, where the origin is
displaced along the σ̃z axis, the topological transition occurs
at ka = ±π/2 and |μ| = 2α [see Eq. (34)]. This conclusion
is consistent with the fact that at the topological transition one
finds roots at z = eika = ±i (see also Ref. [77]), in agreement
with property (v) in Sec. II.

More generally, by determining the roots zn(ω), we can
again construct the bGF of a semi-infinite wire. In particular,
we thereby obtain the class-DIII bulk topological invariant
via the reflection matrices in Eq. (9). In the present case, the
invariant is given by Q = Pf(ir̂L,R) [72]. Furthermore, using
the results of Refs. [76,77], an analytical expression for the
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FIG. 6. Spatial variation of the local DoS at zero energy (in
meV−1), corresponding to Majorana end states of a semi-infinite
TRITOPS wire in its topological phase [see Eq. (31)] for μ = 0 (blue
solid curve). The green dashed curve shows an exponential decay on
the length scale λe = − a

2 ln |zmax| [see Eq. (B6)].

largest-modulus zero-frequency root, zmax, inside the unit cir-
cle can be computed from purely geometrical considerations
for the ellipse in Fig. 5 (see Appendix B for details). The
length scale governing the spatial decay profile of the pair
of Majorana states localized near the boundary of a semi-
infinite TRITOPS wire then follows as λe = − a

2 ln |zmax| [see
Eq. (B6) in Appendix B]. The validity of this expression is
confirmed in Fig. 6, where we show numerically exact results
for the spatial variation of the local DoS at ω = 0 together
with the prediction obtained from Eq. (B6).

B. Two-channel case

As in Sec. IV, we can also extend the TRITOPS model to
the two-channel case by coupling two single-channel wires.
More general multichannel wire constructions are also possi-
ble but will not be pursued here. The corresponding Hamilto-
nian is with Eq. (31) given by

ĤDIII,2ch(k) =
(
ĤDIII(k) T̂DIII

T̂ †
DIII ĤDIII(k)

)
, (35)

where the interwire tunneling couplings are modeled in a
similar manner as in Eq. (28):

T̂DIII = −tyσ0τz + iαyσyτz + 	yσ0τz. (36)

We here allow for spin-conserving (ty) and spin-flipping (αy)
hopping processes, as well as for nonlocal pairing terms (	y).
Below, ty and αy are parametrized as specified in Sec. IV.

The resulting phase diagram is illustrated in Fig. 7(a). To
make analytical progress, from now on we consider the case
	y = 0 and determine the conditions for gap closings, and
thus for phase transition curves in the two-channel TRITOPS
case. The gap closes again for ka = ±π/2 as in Sec. V A but
now for the chemical potential set to one of the critical values

|μ±| =
√

α2
y + (ty ± 2α)2. (37)

where the topological invariant is related to the product of
the signs of the effective pairing amplitude at different Fermi

FIG. 7. Two-channel TRITOPS nanowire [see Eq. (35)], with
parameters as explained in the main text. Panel (a) shows the phase
diagram in the μ-	y plane, with the topologically nontrivial (trivial)
phase in red (blue). (b) Local DoS, ρ j=1(ω) (in meV−1), at the
boundary of a semi-infinite wire in the μ-ω plane for 	y = 0. Panels
(c) to (f) depict the roots zn(ω = 0) inside the unit circle for different
μ as indicated by the respective symbol in panel (b). We use 	 = 1
meV in panels (c)–(f).

points [66]. As the critical momenta are as in Sec. V A,
the pairing function is directly determined by 	 cos(ka) [see
Eq. (31)]. For this reason, the topologically nontrivial (trivial)
phase has an odd (even) number of Fermi points between
ka = 0 and π/2.

The bGF can again be computed from the roots of the
secular polynomial. The latter also determine the behavior
of the edge modes of a semi-infinite two-channel TRITOPS
wire in different regions of the phase diagram. By continuity,
the condition of having an odd number of Fermi points with
0 < kF < π/2a corresponds to an odd number Np of roots
near the unit circle in the first quadrant. Our results for the
roots are illustrated in Figs. 7(c)–7(f). As expected, Np is odd
for panels (d) and (f), where panel (b) shows that Majorana
end states are present and thus a topological phase is realized.
By contrast, panels (c) and (e) show topologically trivial cases
with even Np.

VI. PHASE-BIASED TOPOLOGICAL
JOSEPHSON JUNCTIONS

In this section, we consider different examples for the
equilibrium supercurrent-phase relation in two- and three-
terminal Josephson junctions made of nanowires in topo-
logically nontrivial superconducting phases. These wires are
coupled together by tunnel junctions. We start in Sec. VI A
with the case of a trijunction of TS nanowires (see also
Ref. [61]) and then turn to TRITOPS-TS Josephson junctions
in Sec. VI B.
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FIG. 8. Three-terminal junction of spinful TS nanowires (see
Sec. III), with two parallel wires (L, R) and a central (C) wire at angle
θ . The red dots indicate MBSs with Majorana operators γL,R,C near
the junction, with tunnel couplings λL,R connecting the L and R wires
to the C wire. We assume that no direct tunnel coupling between the
L and R wires is present. A Zeeman field Vz is applied perpendicular
to the plane containing the three wires. Blue arrows show the positive
momentum direction in each wire.

A. Three-terminal TS junctions

We first consider a three-terminal junction formed by spin-
ful single-channel nanowires in the TS phase. For a schematic
layout, see Fig. 8. Such devices have been suggested, e.g., for
Majorana braiding implementations [78–80], for the engineer-
ing of artificial topological Weyl semimetal phases [81,82],
and for the observation of giant shot-noise features induced by
the single zero-energy MBS localized at the trijunction [83].
While most previous studies have been based on minimal
models or on spinless Kitaev chain models, a more realistic
description using the spinful nanowire model of Refs. [68,69]
discussed in Sec. III is desirable. In particular, one can then
assess the role of the spin degree of freedom and the effects of
various microscopic parameters such as the angle θ in Fig. 8.
We assume that each wire is sufficiently long such that the
overlap between MBSs located at different ends of the same
wire is negligibly small.

We model each nanowire in the setup of Fig. 8 in terms
of the spinful single-channel Hamiltonian of Eq. (10). All
three wires lie in a plane, with two of them aligned (L and
R in Fig. 8) and the third (the central wire, C, in Fig. 8) at
an arbitrary angle θ to the other two. We here assume that
the Zeeman field Vz is oriented perpendicular to the plane
(see Ref. [1]). For simplicity, we consider identical material
parameters for the three wires which are chosen such that the
TS phase is realized.

Let us next discuss the unitary rotations necessary to adapt
the bGFs of Sec. III to a common reference frame for all three
wires in Fig. 8. We first perform a π/2 rotation of the spin
axis around the y axis, which connects the intrinsic coordinate
system of the L and R wires to the common reference frame.
Defining

R(ϑ ) = [σ0 cos(ϑ/2) − iσy sin(ϑ/2)]τ0, (38)

the corresponding rotation matrix, Ry = R(ϑ = π/2), trans-
forms a Zeeman field along the x direction (see Sec. III) into a
Zeeman field along the negative z direction (as in Fig. 8). The
bGFs for the L and R wires in Fig. 8 are thus given by

Ĝ ′
L/R = RyĜL,RR−1

y , (39)

with ĜL,R as described in Sec. III. For the C lead, we ad-
ditionally have to rotate by the angle θ around the global z
axis. The corresponding rotation matrix, Rz(θ ), follows from
Eq. (38) with the replacements σy → σz and ϑ → θ . We
thereby obtain

ĜC = Rz(θ )RyĜLR−1
y R−1

z (θ ). (40)

In what follows, we rewrite Ĝ ′
L/R → ĜL/R to keep the notation

simple.
The coupling between the L and R wires and the C wire is

modeled by a spin-conserving tunneling term,

HT = 1

2

∑
ν=L,R

�̂†
ν λ̂ν�̂C + H.c., λ̂ν = λνσ0τze

iτzφν/2, (41)

where �̂L,R,C are boundary spinor fields and φν is the phase
of the superconducting order parameter in the respective
wire. We choose a gauge with φC = 0 and real-valued tunnel
couplings λν . The physical properties of the trijunction are
then determined by the full bGF,

Ĝ3TS =

⎛
⎜⎜⎝
Ĝ−1

L λ̂L 0

λ̂
†
L Ĝ−1

C λ̂R

0 λ̂
†
R Ĝ−1

R

⎞
⎟⎟⎠

−1

, (42)

where the 3 × 3 structure refers to wire space. From Eq. (42),
the energy dependence of the local DoS at the junction will be
given by

ρ3TS(ω) = − 1

π
Im Tr[Ĝ3TS(ω)]. (43)

Figure 9 shows the phase dependence of ρ3TS(ω) obtained by
numerical evaluation of Eqs. (42) and (43) for a trijunction
with φL = −φR = φ and φC = 0. (This is the series configu-
ration in the parlance of Ref. [61].)

Deep in the topological regime, the low-energy properties
of the trijunction are well described by a minimal model
keeping only the MBSs at the junction. To show this from the
above bGFs, we first derive an effective Hamiltonian for each
wire that only keeps track of the respective MBS:

Heff,ν = lim
ω→0

Ĝ−1
ν (ω). (44)

Using Eq. (44) and recalling that the z2 roots dominate for
Vx > Vc, we can read off the boundary spinors for each of the
wires (ν = L, R,C; see Ref. [61]):

�̂L 

√

	2

t

⎛
⎜⎝

0
1
−i
0

⎞
⎟⎠γL, �̂R 


√
	2

t

⎛
⎜⎝

0
−i
1
0

⎞
⎟⎠γR,

�̂C 

√

	2

t
Rz(θ )

⎛
⎜⎝

0
1
−i
0

⎞
⎟⎠γC, (45)

where the Majorana operators γν satisfy the anticommutation
relations {γν, γν ′ } = δνν ′ . The pairing gap 	2 has been defined
in Sec. III [see also Fig. 1 and Eq. (20)].

Next, we project the tunneling Hamiltonian (41) to the
Majorana sector by means of Eq. (45). We thereby arrive at

094511-9



M. ALVARADO et al. PHYSICAL REVIEW B 101, 094511 (2020)

FIG. 9. Phase dependence of the subgap spectrum of the tri-
junction of TS wires in Fig. 8, with the superconducting phases
φL = −φR = φ and φC = 0. The TS wires are modeled as spinful
nanowires with μ = 2 meV, Vz = 3Vc, and symmetric couplings,
λL = λR = λ. For other parameters, see Sec. III. Panel (a) [(b)]
is for λ = 2 meV and θ = π/2 [θ = π/10]. Panel (c) [(d)] is for
λ = 5 meV and θ = π/2 [θ = π/10]. From blue to yellow, ρ3TS(ω)
(in meV−1) gradually increases, where Eq. (43) has been evaluated
in a numerically exact manner. White dotted [dashed] curves show
the approximate Andreev bound state dispersion relation in Eq. (54)
[Eq. (51)].

a minimal model Hamiltonian,

Hmm = −i�L(φ)γLγC − i�R(φ)γRγC, (46)

with the energies

�L(φ) = 2	2λL

t
sin

(
φ + θ

2

)
,

�R(φ) = −2	2λR

t
cos

(
φ − θ

2

)
. (47)

Equation (46) is easily diagonalized by rotating the γL,R

operators to new Majorana operators γ̃L,R,(
γL

γR

)
=

(
sin κ − cos κ

cos κ sin κ

)(
γ̃L

γ̃R

)
, (48)

with sin κ = �L/� and

�(φ) =
√

�2
L(φ) + �2

R(φ). (49)

We thereby arrive at

Hmm = −i�(φ)γ̃LγC, (50)

where the decoupled Majorana operator γ̃R describes the
remaining zero-energy state [83]. The eigenstates of Eq. (50)
correspond to Andreev bound states with the phase-dependent
subgap energy [see Eq. (47)]:

E±(φ) = ± 1
2

√
�2

L(φ) + �2
R(φ). (51)

FIG. 10. Sketch of a TRITOPS-TS Josephson junction. Colored
dots indicate MBSs corresponding to the Majorana operators γL1,L2,R.
The tunnel coupling λL connects both wires, where blue arrows
shows the positive momentum direction in each wire. The spin-orbit
axes on both sides are tilted by the relative angle θ .

The phase derivative ∂φE−(φ) then yields the Josephson
current-phase relation. As illustrated in Fig. 9, Eq. (51) repro-
duces our numerically exact bGF calculations for small tunnel
couplings λL,R.

However, for intermediate-to-large values of the tunnel
couplings, the Andreev bound-state dispersion may deviate
from Eq. (51) [see, e.g., the “bump”-like features in Fig. 9(c)].
Such deviations are due to the fact that the Majorana oper-
ators γL and γR will become connected through the virtual
excitation of continuum quasiparticle states with above-gap
energy E > 	. Within our minimal model, this physics can
be taken into account by adding an effective coupling λLR

between the L and R wires. For λν � 	, we estimate λLR 

λLλR/	. The corresponding tunneling term is given by

HT,LR = 1
2λLR�̂

†
Lσ0eiτzφτz�̂R + H.c. (52)

Using the Majorana spinors in Eq. (45) together with Eq. (46),
we arrive at an improved version of the minimal model
Hamiltonian:

Hmm = −i�L(φ)γLγC − i�R(φ)γRγC − i�LR(φ)γLγR,

�LR(φ) = 2	2λLR

t
cos φ. (53)

One can easily show that Eq. (53) still predicts a decou-
pled zero-energy MBS at the trijunction. The hybridization
between the remaining two Majorana states yields Andreev
bound states with the dispersion relation

E±(φ) = ± 1
2

√
�2

L(φ) + �2
R(φ) + �2

LR(φ). (54)

Of course, for λLR → 0, we recover Eq. (51). Only by includ-
ing the �LR term in Eq. (54), however, the bumps found in
the numerically exact dispersion in Fig. 9(c) can be accurately
reproduced.

We conclude that the minimal model in Eq. (53), which
has been derived from the bGF approach, captures the basic
physics of the Josephson effect in the three-terminal TS
junction shown in Fig. 8. In particular, the dependence of
the current-phase relation on the angle θ between the wires
resulting from the subgap spectrum in Fig. 8 will be correctly
reproduced.

B. TRITOPS-TS junction

We next consider the two-terminal Josephson junction in
Fig. 10 between a TRITOPS wire [see Eq. (33) in Sec. V A]
and a TS nanowire [see Eq. (10) in Sec. III]. Denoting
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the respective boundary spin-Nambu spinors by �̂L and �̂R,
respectively, the tunneling Hamiltonian is given by

HT = 1
2λL�̂

†
L σ0eiτzφ/2τz�̂R + H.c., (55)

where φ is the superconducting phase difference across the
junction and we assume a real-valued tunnel coupling λL.
Below we assume for simplicity that the pairing gap 	 is
identical for both nanowires. We will allow for a relative angle
θ between the directions of the spin-orbit field in each wire
(see the schematic device layout in Fig. 10). One could vary θ

by changing the orientation of a local electric field applied to
the TS wire only, which in turn will affect the corresponding
Rashba spin-orbit field. In addition, we need a Zeeman field to
induce the topological phase in the TS nanowire (see Sec. III),
while no Zeeman field should be present on the time-reversal
invariant TRITOPS side. To achieve this goal, one may use
mesoscopic ferromagnets for inducing a Zeeman field only
locally [84].

To account for the angle θ , we then apply the unitary trans-
formation Ry(θ ) to the bGF describing the TS nanowire. This
rotation simultaneously affects the spin-orbit and the Zeeman
field directions in the TS wire such that both directions can
never be parallel to each other. The junction spectral proper-
ties then follow again from a Dyson equation as in Eq. (41).
Assuming that both wires have model parameters putting them
deeply into the respective topological regime, we can compare
our numerically exact results for the subgap spectral prop-
erties to the corresponding predictions of a minimal model
Hamiltonian. The latter is obtained by retaining only the MBS
degrees of freedom indicated in Fig. 10. To that end, the
approximate expression for the boundary spinors can again
be derived from the respective bGFs as in Sec. VI A. Those
spinors involve the Majorana operators γL1,L2,R in Fig. 10 and
are given by

�̂L 

√

	

t

⎛
⎜⎝

1
0
i
0

⎞
⎟⎠γL1 +

√
	

t

⎛
⎜⎝

0
i
0
1

⎞
⎟⎠γL2,

�̂R 

√

	2

t
Ry(θ )

⎛
⎜⎝

i
−i
1
1

⎞
⎟⎠γR. (56)

The resulting minimal model Hamiltonian is

Hmin = −i[w1(φ)γL1 + w2(φ)γL2]γR (57)

with the energies

w1(φ) = 2λL
√

		2

t
cos

φ

2
cos

θ

2
,

w2(φ) = −2λL
√

		2

t
sin

φ

2
sin

θ

2
. (58)

The structure of Hmm in Eq. (57) is similar to the minimal
model (46) for the TS trijunction in Sec. VI A without any
coupling between the γL1,L2 operators. The subgap spectrum
is therefore characterized by a decoupled zero-energy Majo-
rana state, and the hybridization of the two other Majorana

FIG. 11. Phase-dependent subgap spectrum of a TRITOPS-TS
Josephson junction for different values of the tilt angle θ in Fig. 10.
The spinful single-channel model parameters are as described in
Secs. III and V, with μ = 1 meV, λL = 2 meV, and Vx = 1.5Vc on
the TS side. The tilt angle is θ = 0 in panel (a), θ = 0.3π in panel
(b), θ = π/2 in panel (c), and θ = 0.7π in panel (d). From blue
to yellow, the color code indicates increasing DoS values at the
junction, ρ(ω) (in meV−1). White dashed curves show the Andreev
bound states (59).

operators yields the Andreev bound-state dispersion:

E±(φ) = ± 1
2

√
w2

1 (φ) + w2
2 (φ). (59)

We compare Eq. (59) to numerically exact results for the
subgap spectral properties of the TRITOPS-TS junction in
Fig. 11. Clearly, the general subgap spectrum is rather well
described by the minimal model (57). In contrast to the case
of a triterminal TS junction, for TRITOPS-TS junctions it
is not necessary to take into account higher-order tunneling
processes for obtaining accurate agreement with numerically
exact bGF calculations (but see Ref. [85]).

VII. CONCLUDING REMARKS

In the present paper, we have generalized the boundary
Green’s-function approach of Refs. [59,61] to quasi-1D spin-
ful models of Majorana nanowires. For single-channel class-D
and class-DIII wire models, we have obtained an analytical
understanding of the behavior of the roots of the correspond-
ing secular polynomial in complex momentum space. This
advance helps physical intuition and allows for a practical
and numerically efficient method for computing the bGF, and
thereby also physical observables. The method has also been
extended to spinful multichannel models, where it appears to
allow for more efficient numerical bGF calculations than the
alternative recursive technique [60,77]. Let us remark that the
computational complexity of the method is only limited by
the ability to evaluate the roots of a polynomial. Typically, the
numerical demands are therefore much smaller than those for
a recursive calculation of the bGF.
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Given the efficient construction of the bGF put forward
in this paper, one can now apply the general bGF approach
[59] to study the transport properties of many different hybrid
devices composed of Majorana nanowires and/or conven-
tional metals or superconductor electrodes. In Sec. VI, we
have provided two examples for such devices, namely, phase-
biased trijunctions of TS wires and TRITOPS-TS junctions.
In both cases, we have carried out an analysis of the subgap
Andreev (or Majorana) state dispersion at zero temperature.

We believe that this approach offers many interesting
perspectives for future research. In particular, one can study
nonequilibrium transport properties away from the linear-
response regime, and one can also include electron-electron
or electron-phonon effects, at least on a perturbative level.
We are confident that the results of our paper can also be
helpful for the interpretation of transport experiments carried
out on hybrid devices containing nanowires with topologically
nontrivial superconducting phases.
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APPENDIX A: SPINFUL SINGLE-CHANNEL MODEL

In this Appendix, we provide technical details pertaining
to our discussion of the spinful single-channel Majorana
wire model [68,69] in Sec. II. First, the explicit form of the
coefficients Cn(ω) in Eq. (14) is given by

C0 = 3α4

8
+ 	4 + μ4 − 8μ3t + 36μ2t2 − 80μt3

+ 70t4 − 2μ2V 2
x + 8μtV 2

x − 12t2V 2
x V 4

x

− 2
(
μ2 − 4μt + 6t2 + V 2

x

)
ω2 + ω4

+ 2	2
(
μ2 − 4μt + 6t2 − V 2

x − ω2
)

+α2
[
	2 − μ2 + 4μt − 5t2 + V 2

x − ω2
]
,

C1 = −(μ − 2t )t
[
α2 − 4

(
	2 + μ2 − 4μt

+ 7t2 − V 2
x − ω2

)]
,

C2 = { − α4 + 8t2
(
	2 + 3μ2 − 12μt + 14t2 − V 2

x − ω2
)

+ 2α2
[ − 	2 + (μ − 2t )2 − V 2

x + ω2
]}

/4,

C3 = (tμ − 2t2)(α2 + 4t2), C4 = [t2 + (α/2)2]2. (A1)

It is convenient to renormalize these coefficients such that C4

appears as a common factor of the polynomial.
The Cn coefficients in turn determine the coefficients am(ω)

appearing in the eighth-order polynomial equation (15). The

roots zn(ω) therefore have to satisfy the Vieta relations

Sk (z1, . . . , z8) =
∑

i1<i2<···<ik

zi1 zi2 · · · zik

= (−1)8−k ak

a8
. (A2)

Using the condition (20) and the ansatz (19), the first three
invariants are given by S1 = 2AB, S2 = 2(A2 − 2)(1 + C) +
4B2, and S3 = 2AB(A2 − 1) + 4ABC with

A = 1 − η + 1

1 − η
, B = cos(δ1) + cos(δ2),

C = 2 cos(δ1) cos(δ2). (A3)

As a consequence, the parameter C obeys a cubic equation
that can be solved analytically,

w3 + w2C + w1C
2 + C3 = 0, (A4)

with the coefficients

w1 = 1 − S3

S1
,

w2 = S2

4
− S3

S1
− 1

4
+

(
S3

2S1

)2

,

w3 = −S2S3

8S1
− S2

8
+ S2

1 − 1

4
+

(
S3

2S1

)2

. (A5)

For Vx < Vc, the physical solution of Eq. (A5) is given by

C = −2
√

−Q cos(θ0/3) − w1/3, (A6)

with

θ0 = cos−1

(
− R√

−Q3

)
,

Q = 3a2 − w2
1

9
,

R = 9w1w2 − 27w3 − 2w3
1

54
. (A7)

For Vx > Vc, the solution is given by C = P1 − Q/P1 − w1/3
(assuming P1 �= 0), with

P1 = sgn(R)(|R| +
√

R2 + Q3)1/3. (A8)

The coefficients A and B then follow from

A2 = S3

S1
+ 1 − 2C, B = S1

2A
. (A9)

Finally, the parameters in our ansatz [see Eqs. (19) and (21)]
can be determined from the relations

cos δ1 = B + √
B2 − 2C

2
,

cos δ2 = B − √
B2 − 2C

2
,

η = 1 − A

2
+

√
A2

4
− 1. (A10)

We proceed by providing the detailed form of the matrices
Âν and Â′

ν in Eq. (25). Using the definition in the main text,
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for Vx < Vc, they are with zν (ω) in Eq. (19) given by

Âν = Â(zν )

bν

+ Â(z∗
ν )

b∗
ν

, Â′
ν = Â′(zν )

bν

+ Â′(z∗
ν )

b∗
ν

, (A11)

where an expansion of
∏

zν �=zm
(zν − zm) to first order in

τν

√
	2

ν − ω2 yields

bν = 32e3iδν τν sin2(δν )[cos(δ2) − cos(δ1)]2. (A12)

Explicitly, the components of the symmetric 4 × 4 matrix Â
in Eq. (A11), Âi j = Â ji, follow from

Â11(z) = −Â33(z) = z3V 2
x [ε(z) − α̃(z)]

+ z3[ε(z) + α̃(z)]{−	2 − [ε(z) − α̃(z)]2},
Â22(z) = −Â44(z) = z3V 2

x [ε(z) + α̃(z)]

+ z3[ε(z) − α̃(z)]{−	2 − [ε(z) + α̃(z)]2},
Â12(z) = Â34(z) = z3Vx

[
	2 + ε2(z) − α̃2(z) − V 2

x

]
,

Â13(z) = z3	
{
V 2

x − 	2 − [ε(z) − α̃(z)]2
}
,

Â14(z) = −Â23(z) = 2z3Vx	α̃(z),

Â24(z) = z3	
{
V 2

x − 	2 − [ε(z) + α̃(z)]2
}
. (A13)

Similarly, by taking a derivative with respect to ω, the non-
vanishing matrix elements of the symmetric matrix Â′

i j = Â′
ji

follow as

Â′
11(z) = Â′

33(z) = −z3
{
	2 + [ε(z) − α(z)]2 + V 2

x

}
,

Â′
22(z) = Â′

44(z) = −z3{	2 + [ε(z) + α(z)]2 + V 2
x

}
,

Â′
12(z) = −Â′

34(z) = 2z3Vxε(z),

Â′
14(z) = Â′

23(z) = 2z3Vx	. (A14)

In the topologically nontrivial phase, Vx > Vc, trigonometric
functions associated with the roots z1,± in Eq. (21) turn into
hyperbolic functions. The matrices with ν = 1 in Eq. (A11)
are then replaced by

Â1 = Â(z1,+)

b̃1
− Â(z1,−)

b̃1
,

Â′
1 = Â′(z1,+)

b̃1
− Â′(z1,−)

b̃1
, (A15)

with the quantities

b̃1 = 32e−3δ1τ1 sinh2(δ1)[cos(δ2) − cosh(δ1)]2,

b̃2 = 32e3iδ2τ2 sin2(δ2)[cos(δ2) − cosh(δ1)]2. (A16)

The ν = 2 matrices follow from Eq. (A11) with the replace-
ment b2 → b̃2. Finally, we note that for very large Vx one

approaches the Kitaev limit of the nanowire, and the relevant
residues come from the z2 roots only.

APPENDIX B: TRITOPS WIRES

According to Theorem 1 of Ref. [76], the largest-modulus
root zmax inside the unit circle can be determined from the
relative position of the origin inside the ellipse discussed in
Sec. V A. For that purpose, we first determine the major (M)
and minor (m) axes of the ellipse in Fig. 5. Using Eq. (34) and
focusing on the case of Ĥ−(k), the defining equation of the
ellipse is given by

BT

(
(t2 + α2)/	2 t/	

t/	 1

)
B = 4α2 (B1)

with BT = (β−,x, β−,z + μ). From the eigenvalues of the 2 ×
2 matrix in Eq. (B1),

λ± = t2 + 	2 + α2

2	2
±

√
(t2 + 	2)2 + 2(t2 − 	2)α2 + α4

2	2
,

(B2)
we obtain

m = 4α/
√

λ+, M = 4α/
√

λ−. (B3)

The distance between the foci of the ellipse then follows as
f = √

M2 − m2.
To obtain the distance l = |OF1| + |OF2| between the foci

and the origin (corresponding to the red dashed line in Fig. 5),
we first compute the rotation angle θ of the ellipse using the
eigenvectors of the conic section matrix:

cos θ = 1√
1 + X 2/(2t	)2

,

X = 	2 − t2 − α2

−
√

(t2 + 	2)2 + 2(t2 − 	2)α2 + α4. (B4)

As a consequence, l follows from the relation

|OF1,2| =
√

( f /2)2 + μ2 ± μ f sin θ. (B5)

The largest-modulus root inside the unit circle is then given
by (see Refs. [76,77])

|zmax| = l +
√

l2 − f 2

M + m
. (B6)

The same result follows for the other block, Ĥ+(k). As
discussed in Sec. V A, Eq. (B6) determines the decay length
of Majorana end states into the bulk of a TRITOPS wire.
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