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Abstract: At present, the world is at the peak of production of traditional fossil fuels. Much of the
resources that humanity has been consuming (oil, coal, and natural gas) are coming to an end. The
human being faces a future that must necessarily go through a paradigm shift, which includes a
progressive movement towards increasingly less polluting and energetically viable resources. In
this sense, nanotechnology has a transcendental role in this change. For decades, new materials
capable of being used in energy processes have been synthesized, which undoubtedly will be the
cornerstone of the future development of the planet. In this review, we report on the current progress
in the synthesis and use of one-dimensional (1D) nanostructured materials (specifically nanowires,
nanofibers, nanotubes, and nanorods), with compositions based on oxides, nitrides, or metals, for
applications related to energy. Due to its extraordinary surface–volume relationship, tunable thermal
and transport properties, and its high surface area, these 1D nanostructures have become fundamental
elements for the development of energy processes. The most relevant 1D nanomaterials, their different
synthesis procedures, and useful methods for assembling 1D nanostructures in functional devices
will be presented. Applications in relevant topics such as optoelectronic and photochemical devices,
hydrogen production, or energy storage, among others, will be discussed. The present review
concludes with a forecast on the directions towards which future research could be directed on this
class of nanostructured materials.

Keywords: 1-D nanomaterials; nanotubes; nanofibers; nanowires; nanorods; hydrogen production;
batteries; supercapacitors; photochemical cells; energy

1. Introduction

Today, the world economy runs on fossil fuels. Several decades ago, the depletion of
natural reserves of oil and natural gas was forecast, thus unlocking the full potential to
develop alternative energy procedures to those based on oil. This development was also
driven by the search for more ecological and less damaging processes for the environment.
In the 21st century, and although it is difficult to recognize, the advances have been
enormous but not enough to transform the old energy production systems. This change is
an inescapable necessity, if we hope that future generations can live on the only planet we
have. In this sense, one-dimensional (1D) nanostructured materials represent alternatives
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that have been shown to improve many energy processes, due to their extraordinary
properties. In this work, we review the most relevant findings and advances in the synthesis,
characterization and technological applications of 1D nanomaterials in energy generation
and storage processes.

2. Synthesis

There are very varied synthesis procedures available for obtaining nanomaterials
with applications in energy. Synthesized materials can, in turn, be assembled into higher
structures with more specific applications. There are two different approaches to the
synthesis of nanomaterials and the manufacture of nanostructures: (i) smaller materials
can be made, reducing the scale from bulk materials, and (ii) building materials from
others of smaller scale. The first method is known as "top-down" and the second as the
"bottom-up" approach [1]. The top-down approach is widely used in the microelectronic
industry, which pursues the miniaturization of components and circuits, with spatially
arranged structures with an accuracy of only a few nanometers [2]. The most interesting
feature of this method of synthesis is that the properties and some characteristics of the
bulk material are maintained in the processed material, for example the composition, phase
and crystalline orientation, etc. One of the most important disadvantages is the yield.
From a bulk material, structured nanomaterials are obtained in a very low proportion,
which represents an important economic cost and a great limitation when implementing
productive processes and applications that require high yields. Top-down techniques, in
turn, encompass several procedures, including ion etching [3–5], metal-assisted chemical
etching (MACE) [6–12], or anodic oxidation [13–33].

Unlike top-down techniques, the “bottom-up” approach is based on molecular recogni-
tion and chemical self-assembly of molecules, which allows obtaining structures with sizes
that can vary from a few nanometers to several microns. This approach, in turn, includes
different methodologies, among which it is worth mentioning vapor-phase growth [34–50],
liquid-phase growth [51,52], template-assisted etching [53–57], and electrospinning [58–62].

3. Applications
3.1. Photochemical Applications

Some calculations estimate that the total amount of solar radiation received over a few
hours would be sufficient for the planet’s energy consumption for 1 year. For many years,
systems have been developed to improve the capture processes of this solar energy. Much
of the difficulty stems from the need to cover large areas in order to capture radiation, and
also from the fact that solar radiation is highly dependent on the geographic region.

Recent advances in the development of more efficient semiconductors have improved
the efficiency of some systems to values of around 20%. However, we are still far from
values that really are a real advantage to the use of fossil fuels. Over the past few decades,
tremendous strides have been made in the development and improvement of photovoltaic
systems, photoelectrochemical cells, and solar hydrogen production, although we are still
far from the fact that these processes may represent the first option for the planet.

3.1.1. Photovoltaic Cells

Sunlight represents the most abundant renewable source of clean energy uninterrupt-
edly available almost at any place in the globe. This resource can be utilized for various
purposes which range from heating water to producing electricity through the use of
photovoltaic (PV) technologies. Harvesting this incoming energy represents one of the
most promising and hardly researched topics for chemists and physicists as it represents a
green approach to produce energy from a source considered to be infinite. In addition, the
relevant advantage of this approach over other new clean energy technologies is that sun-
light can be directly converted into solar energy through solar cells. This technology offers
a method to produce electrical energy in a cost-effective way avoiding the production of
toxic materials as byproduct. Therefore, it stands as a pioneer within the green approaches
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available so far. It is expected that within the next seven years PV technologies will deliver
approximately a range between 345 GW and 1081 GW and by 2050 the world energetic
requirements will build up to approximately 30 TW. It is suggested that at least 20% of that
necessity will be fulfilled by PV-based technologies [63].

A photovoltaic cell is a device capable to harvest solar light and further convert it into
electricity. Such device is composed of semiconductor materials, among which various
1-D nanomaterials are employed within the system [64]. In brief, the main mechanism
starts when the photons from sunlight are absorbed by the semiconductor, generating
electrons and creating electron holes (h+), which are subsequently filled by other electrons
resulting from the same process happening in a cascade effect in adjacent molecules. As
consequence, an electron flow along the material is produced. Such an effect is known as
the photovoltaic effect, and PV devices work directing these flows in a specific direction,
resulting in an electrical current [65].

The PV device is made of a sandwich-like stack of n-type and p-type semiconductors
joined by a n-p junction where the charge separation takes place. Herein, upon light
incidence, the p-type semiconductor undergoes a charge separation producing a surplus
of h+ in the valence band. These h+ reach the system anode. This material is the electron
donor. Simultaneously, the n-type semiconductor makes the role of electron acceptor and
therefore the electrons flux flows through the material to finally reach the system cathode.
A very illustrative way to visualize how this system works is thinking of the stacked layers,
as presented in Figure 1 [64]. The h+ will migrate to the anode like an air bubble emerging
from a water body, whereas the electrons being transferred at the n-p junction interphase
to the acceptor can be visualized as drops of water falling. A very important aspect to
take into account is that a charge separation occurs when impacting with the material
and, therefore, the system depends on two main factors: the absorption efficiency of the
material, which in fact is related to the capacity that has the material to absorb photons
efficiently, and the optimal charge separation. Whenever charge separation occurs, these
species are called excitons and describe the promotion of electrons from the valence band
to the electron band of a semiconductor. Moreover, if the recombination rate increases, the
cell efficiency will decrease [66–68].

The PV effect previously described was first reported by Alexandre-Edmond Becquerel
in 1839 [69] while studying the effect of light on electrolytic cells. Nonetheless, it was only
until more than 100 years later when the first modern Si solar cell was assembled by Russel
Ohl [69]. Furthermore, the energy crisis of the 1970s stimulated the development of this
technology.

Current solar cell devices present significant challenges for their technological im-
provement. Speaking strictly of PV cells (PVCs), such devices in its common configurations
are brittle, and generally with a low flexibility. Therefore, their projection for use in indus-
tries such as textiles, for wearable application seems challenging. The scientific community,
nonetheless, started to propose 1D materials as a means to include a flexible component to
these devices that has not been considered until 2001 [70]. This development was closely
followed by the implementation of 1D polymer solar cells in coaxial configurations onto
optical fibers [71]. Moreover, in 2008 a testing approach was proposed instead of a coaxial
path to reach the same aim [72]. From then on, different materials have been tested, looking
to improve harvesting efficiencies, energy densities, and the obtention of more lightweight
devices. Such approaches, materials, and results will be discussed throughout the rest of
this section.
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Figure 1. Device structures (a,b); and basic photovoltaic effect process (c). Reprinted with permission
from reference [64].

The implementation of 1D materials for energy harvesting has been achieved by
using coaxial structures [73] (see Figure 2). Polymorphic core/multishell NWs exhibit
excellent photovoltaic properties, enhancing absorption in different regions of the solar
spectrum, for the development of next-generation, ultrathin solar cells. Other exam-
ples of coaxial structures are composed of a core-shell architecture with a fiber electrode
core, another electrode coating the whole system, and an active material sandwiched
in-between [74] (see Figure 3).
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loidal solution followed by sintering at 500 °C for 60 min. Authors attributed the high TiO2 
NPs adsorption onto the CNT in part to the high surface area of the fiber, reaching particle 

Figure 2. Three-dimensional schematic of a core/shell NW and cross-sectional schematics of
four core/shell diode geometries, and SEM image of an as-grown, core/shell p/in Si NW,
scale bar = 100 nm (a), and TEM image of a NW cross-section showing a core surrounded by crys-
talline shell, scale bar = 50 nm (b). Reprinted with permission from reference [73].
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Typically, the semiconductor layer is composed either of TiO2 or ZnO nanostructures,
the photoactive material (dye) and the counter electrode shell (conducting polymer or
carbonaceous material). Such devices have been named as Fiber Solar Cells (FSCs), when
intended for PV uses. FSCs have been proposed following two different charge transport
mechanisms, photochemical and solid-state transport. For the purpose of this review, it
will only be discussed photochemical transportation. In-depth solid-state transport PV
materials can be found elsewhere [74]. One, is based on a photoelectrochemical trans-
port mechanism consisting of a dye sensitized TiO2 nanoparticles (NPs) or nanotubes
(NTs) [75–77], commonly referred to as dye-sensitized solar cells (DSSC). Yang et al. [78],
for instance, reported an approach to produce stretchable fibers initially intended for photo-
voltaic technologies applied onto textile technologies, with efficiencies up to 7.13%. Herein,
the fibers were initially created by winding multi walled carbon nanotubes (MWCNTs),
synthesized by chemical vapor deposition (CVD) onto rubber fibers [79] following an
angle α of coating ranging from 60◦ to 75◦ as the optimal values to keep the mechanical
properties of the material stable, while gaining resistance thereof (0.27 to 2.4 kΩ/cm when
passing from 15◦ to 75◦). These resistances can be reduced by increasing the fiber sheath.
Similarly, approaches for the fabrication of FSCs have been reported using semiconducting
nanowire arrays such as CdSe [80,81], and quantum dot-sensitized ZnO nanowires [82].
Twisted structures represent the second structure used in FSCs (see Figure 4). Herein, the
fiber photoanode is deposited with a semiconductor layer and further coated with a dye is
wound with a fiber counter electrode [72]. Specifically, Chen et al. [83], described a system
where CNT fibers dye-loaded with TiO2 NPs, as the working electrode and another CNT
fiber used as the counter electrode were developed as FSCs. The CNT/TiO2 fibers were
prepared by repeatedly dipping the CNT fiber into a TiO2 colloidal solution followed by
sintering at 500 ◦C for 60 min. Authors attributed the high TiO2 NPs adsorption onto the
CNT in part to the high surface area of the fiber, reaching particle thicknesses ranging from
4 to 30 µm, depending on the dipping times. This device reached an efficiency of 2.94%.

Among the most relevant favorable points to exalt from these two structures of FSCs,
one can mention the high flexibility reachable by following methods as those described
above. Interestingly, this flexibility allows the curves of current density as a function of
voltage for the twisted architecture remains close to unchanged after bending [84].

In other modifications used to improve both the efficiency and robustness of these
cells, the implementation of noble metals in junction with carbonaceous materials have
been reported. For instance, MWCNTs have been dispersed and mixed with Fe3O4 or Ni
NPs to reach hybrid FSCs, with efficiencies of 16.6% for the fibers coated with Fe3O4 and
11.2% for fibers with Ni NPs [85].
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As we delve deeper into further considerations to improve the performance of PVCs
limited to 1D materials, the power efficiency becomes a critical aspect to look upon, as
it guarantees an acceptable output of electric power. To meet this aim, it is necessary
to develop materials with good mechanical, electrical, and chemical properties [73]. For
instance, the incorporation of Pt NPs to a carbonaceous material (e.g., CNTs) has been
proposed as the counter electrode of titanium nanowires, with enhanced Pt-electrolyte
interfacial area and a reduced charge-transfer resistance. Zhang et al. [86], reported the
fabrication of TiO2-based dye sensitized fiber solar cells with a Pt- CNT yarns, yielding
a considerable shift in current and voltage depending on the yarn diameter. The higher
increase in current density (from 5.22 to 13.52 mA/cm2) occurred in a diameter range of
20–90 µm, with a cell efficiency change from 0.49 % to 3.38 %. However, beyond these wire
dimensions, the current dropped to approximately 8 mA/cm2, with an efficiency of 200%.
Figure 5 shows the improvement of current density as a function of yarn diameter and its
corresponding cell efficiency.
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The noble metal chosen as fiber electrode, must ensure proper conductivity. Among
the most common materials employed, Ti [84–86], Al [87], and stainless-steel wires [72]
stand out. Nonetheless, the implementation of materials with higher electrochemical
activities such as Pt with improved methods to rough their surfaces will determine future
improvements in these systems as it will enhance the further interaction of the carbonaceous
materials used in these devices [73].

Electrospun nanofibers have also been applied to dye solar sensitive cells [88], specifi-
cally combining them with metallic compounds, giving rise to systems with high efficiency
and stability. Chemical composition, shape, and other properties can be easily controlled
by adjusting key parameters during synthesis, which has enabled the development of elec-
trode materials for solar cells and more recently to manufacture bulk organic heterojunction
solar cells and perovskite solar cells [89].

Finally, it is necessary to mention 1D perovskite NWs. Growing these materials in a
low dimensional manner was first proposed as a vapor-liquid-solid growth, which enabled
the growth of anisotropic perovskite NWs [90]. In this approach, a catalytic nanodroplet
of a eutectic liquid alloy adsorbs the precursor in its vapor state. Furthermore, inducing
a 1D anisotropic growth in the liquid-solid interphase between the crystalline material
and the semiconductor [91]. Perovskites represent a material of great interest due to
specific properties, such as the fact that these materials have more “softer“ crystalline
lattices if compared to other semiconductors, which enables a fast crystal formation unlike
other crystalline materials [92]. Moreover, various approaches can be taken to come
around the production of 1D perovskites such as solution phase recrystallization growth
processing [93], the vapor phase conversion method [94], direct vapor-phase growth [95],
colloidal nanowire synthesis [96], space confined nanowire growth [97], nanowire growth
via intermediate adducts [98], ion exchange of existing perovskite NWs [99], and NW
heterostructures [100].

3.1.2. Photochemical Cells

A photoelectrochemical cell converts light to electric power leaving no net chemical
change behind [101] (see Figure 6). Photons of energy exceeding that of the band gap
generate electron–hole pairs and the negative charge carriers move through the bulk of
the semiconductor to the current collector and the external circuit [101]. The positive holes
are driven to the surface where they are scavenged by the reduced form of the redox
relay molecule (R), oxidizing it to O by the following reaction: h+ + R → O [101]. The
oxidized form O is reduced back to R by the electrons that re-enter the cell from the external
circuit [101]. In the following, some interesting examples of 1-dimensional nanomaterials
used for photoelectrochemical cell applications are described.

1–D morphologies (Figure 7) have shown progress when it comes to energy applica-
tions in the last five years [102–105]. For instance, it has been shown that Bi2O3/BiAl oxides
nanowires (NWs) arrays (Figure 7) enhance PEC’s performance showing a hydrogen gener-
ation of up to 696 µmol cm−2, which corresponds to a Faradaic efficiency of 93% [102]. CuO
NWs photocathodes fabricated via hydrothermal method have also shown a photocurrent
of ~1.4 mA cm-2 at 0 V vs. RHE under AM 1.5G irradiation, which is one of the highest
photocurrents based on bare CuO photocathode [103]. Hydrogenated TiO2/ZnO hetero-
junction nanorod arrays for PEC energy applications have shown photocurrent densities of
nearly 2.5 mA cm−2, demonstrating a promising candidate for PEC cells [104]. Gold (Au)
nanoparticles decorated highly ordered ZnO/CdS nanotube arrays (ZnO/CdS/Au NTAs)
photoanodes exhibits a photocurrent density of 21.53 mA/cm2 at 1.2 V vs. Ag/AgCl and
3.45% photoconversion efficiency (PCE) among the parallel photoanodes under visible
light illumination (λ > 420 nm) [105].
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Figure 7. SEM characterization of (a) Bi:Al 21:1 photocathode [100], (b) CuO NWs [101], (c) Hydro-
genated TiO2/ZnO heterojunction (TZ10-H) [102], and (d) ZnO/CdS/Au NTAs [103]. Reproduced
with permission from references [102–105].
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1–D materials (Figure 8) have also been integrated in PEC cells for sensing applica-
tions [106–109]. For instance, Au–NiO1−x (0 < x < 1) hybrid NWs arrays are used as glucose
sensors that exhibits an ultrahigh sensitivity of 4.061 mA cm−2 mM−1, low detection limit
and a wide level of glucose concentration in the detection range of 0.005–15 mM in PEC
cells [106]. In addition, TiO2 NWs prepared by template sol-gel synthesis are practical for
a hydrazine photoelectrochemical sensor having a limit of detection (LOD) of 1.91 µM
and a limit of quantification (LOQ) 8.91mM [107]. Nanorods such as high-performance
anatase-branch@hydrogenated rutile-nanorod TiO2 have also been used for detecting chem-
ical oxygen demand (COD) in wastewater [108]. Featuring a detection limit of 0.2 ppm
and a wide linear detection range of 1.25–576 ppm [108]. A propyl gallate PEC sensor
based on ZnO nanorods and MoS2 flakes showed a wide linear range from 1.25 ×10−7 to
1.47 ×10−3 mol L−1 with a detection limit as low as 1.2 ×10−8 mol L−1 [109].

Materials 2021, 14, x FOR PEER REVIEW 10 of 49 
 

 

 
Figure 8. (a) Au–NiO1−x (0 < x < 1) hybrid nanowire arrays [106], (b) TiO2 nanowires [107], (c) anatase-
branch@hydrogenated rutile nanorod TiO2 [108], (d) ZnO nanorods and MoS2 flakes [109]. Repro-
duced with permission from references [106–109]. 

In conclusion, 1–D morphologies have been used in various PEC’s applications rang-
ing from hydrogen production and sensors to even degradation of pollutants in the last 
five years. They have been shown to enhance performance, used for electrode stabiliza-
tion, as support materials and even in conjunction with biological organisms in the case 
of photo-MFC. The work presented in this section proves that 1–D morphologies can 
adapt various roles when it comes to PEC applications, making these materials excellent 
candidates for multi-purpose applications given by their versatility, ease of modification, 
as well as their many benefits that comes from their composition characteristics. 

Figure 8. (a) Au–NiO1−x (0 < x < 1) hybrid nanowire arrays [106], (b) TiO2 nanowires [107],
(c) anatase-branch@hydrogenated rutile nanorod TiO2 [108], (d) ZnO nanorods and MoS2 flakes [109].
Reproduced with permission from references [106–109].

In addition, 1–D materials can also be used in PECs for other applications [110–113]
(see Figure 9). A photoelectrocatalytic microbial fuel cell (photo-MFC), consisting of a
palladium (Pd) NPs-modified p-type silicon (Si) NW photocathode used to degrade methyl
orange (MO), and to generate electricity simultaneously exhibited a MO removal effi-
ciency of 84.5% and maximum output power density of 0.119 W/m2 within 36 h [110]. A
WO3 NFs-C/Cu2O NWAs visible-light response dual-photoelectrode solar-charged photo-
electrochemical wastewater fuel cell (scPEWFC) was constructed for efficient hydrogen
production based on the promotion of phenol oxidation at the anode [111]. The hydrogen
production reaches as high as 93.08 µmol cm−2 by the photoelectrocatalytic oxidation of
phenol (total organic carbon (TOC) removal rate reached 82.12%) of WO3 NFs-C/Cu2O
NWAs under visible light irradiation for 8 h without additional bias, which is 3.02 times
higher than that of pure photocatalytic water splitting [111]. A microbial photoelectrochem-
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ical cell (MPEC) with a p-type Co3O4 nanorod-arrayed photocathode for CO2 conversion to
formic acid [112]. The yield of formic acid produced by this MPEC under visible light irra-
diation was 239 ± 10 µmol in 10 h and the maximum power density was 331 ± 4 mW m−2

under visible light [112]. In 2015, scientists developed a novel nanostructured plasmonic
Ag/AgCl @ chiral TiO2 nanofibers (Ag and AgCl NPs supported on chiral TiO2 nanofibers)
photoanode to treat urban wastewaters with simultaneous hydrogen production [113]. The
electrolyte in the dye-sensitized solar cell (DSSC) was actual wastewater with added estro-
gen (17-β-ethynyl estradiol, EE2) and a heavy metal (Cu2+) [113]. Almost total removal of
carbon (TOC), Cu2+, EE2, and 70% removal of total nitrogen (TN) were achieved under
visible-light irradiation [113]. A relatively high solar energy conversion efficiency (PCE
3.09%) was recorded and approximately 98% of the electricity was converted to H2 after
the consumption of dissolved oxygen (DO), Cu2+ and TN [113].
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Figure 9. (a) Si nanowires [110], (b) C/Cu2O NWAs [111], (c) Co3O4 nanorods [112], and (d) Ag/AgCl
@ chiral TiO2 nanofibers [113]. Reproduced with permission from references [110–113].

In conclusion, 1–D morphologies have been used in various PEC’s applications rang-
ing from hydrogen production and sensors to even degradation of pollutants in the last five
years. They have been shown to enhance performance, used for electrode stabilization, as
support materials and even in conjunction with biological organisms in the case of photo-
MFC. The work presented in this section proves that 1–D morphologies can adapt various
roles when it comes to PEC applications, making these materials excellent candidates for
multi-purpose applications given by their versatility, ease of modification, as well as their
many benefits that comes from their composition characteristics.

3.1.3. Hydrogen Production

It is well known that there is a necessity to find new, renewable, clean, and cost-
effective sources of energy able to replace fossil fuels. In that quest, hydrogen (H2) have
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been proposed as a good candidate for the following reasons: (1) can be obtained from
water; (2) is a renewable fuel; (3) can be stored as gas, liquid or solid; (4) can be transported
over long distances; (5) can be converted into other forms of energy in more ways and more
efficiently than any other fuel; (6) is compatible with the environment since its production,
storage and end use do not produce pollutants, greenhouse gases or any other harmful
effect on the environment [52,114].

In photocatalytic hydrogen production via water splitting, a catalyst with an appropri-
ate band gap is used to absorb light and to carry out the reaction [115,116]. Usually, metal
oxides such as titanium oxide (TiO2), copper (II) oxide (CuO), molybdenum (VI) oxide
(MoO3), zinc oxide (ZnO), zirconium oxide (ZrO2), among others, are used due to their
electronic structure, charge transport characteristics and light absorption properties [117].
Metal chalcogenides and metal nitrides are also widely used due to their suitable bandgaps,
high catalytic currents, and electrochemical stability [118].

In semiconductor photocatalysis, the electrons from the valence band (VB) are excited
to the conduction band (CB) with light with higher energy than the respective bandgap of
the semiconductor [117,119]. This migration results in the formation of an electron-pair
(e−cb / h+

vb) [119], where the electrons in the CB are good reducing agents whereas the
holes in VB are good oxidizing agents [116,120]. In the systems of complete water splitting,
the photo-process requires the use of a semiconductor with a VB with a potential greater
than the oxidation potential of water: 1.23 eV with respect to the normal hydrogen electrode
(NHE, E = 0.0 V at pH = 0) [121]. Once the electrons from the VB have gained enough
energy, they migrate to the CB. The holes that are formed in the VB migrate to the surface
of the semiconductor where they interact with the water molecule. Water then is oxidized,
releasing molecular oxygen (O2) and hydrogen ions (H+). The electrons that migrated to
the CB are gained by the hydrogen ions and transformed into molecular hydrogen (H2)
(see Figure 10). The reactions that take place are as follows:

Semiconductor + hv→ h+
VB + e−cb (1)

4h+
VB + 2H2O→ O2(g) + 4H (2)

4H+ + 4 e−cb → 2H2(g) (3)
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As a result of the loss of energy due to the existence of barriers in the transference
of electrons and the overpotential for the release of hydrogen and oxygen, the value of
1.23 eV increases to 1.7–1.9 eV [119,122]. This means that the photocatalytic conversion of
the solar energy should occur, more satisfactorily, in systems with semiconductors with
bandgaps over the range of 1.7–1.9 eV. There are multiple semiconductors that fulfill this
requirement and the most common are presented in Figure 11. Even though a lot of these
semiconductors have a suitable bandgap, some of them have a bandgap edge that does not
favor the decomposition of water (WO3), others are unstable (CdS, CdSe) or have bandgaps
over 3.0 eV (TiO2, ZnO) that do not allow the use of visible light [119,123].
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During the last decades, multiple efforts have been made to find suitable materials
that fit all the requirements mentioned previously. Among these, one-dimensional (1D)
nanostructured materials such as nanowires, nanorods, nanotubes and nanofibers have
been used as photocatalysts to produce hydrogen via water splitting. Some of the advan-
tages that these materials exhibit are high surface area, surface–volume relationship, and
tunable thermal and transport properties [124,125].

Nanowires are typically 1000 times, or more, larger than their diameter, and because of
this massive difference in length they have high surface area and, make them very sensitive
to changes in surface chemistry [126]. This property is not seen in bulk materials and this
gives them unique advantages to be used as catalysts in some reactions such as water
splitting. There are multiple synthesis processes to obtain nanowires and depending on
several factors (precursors, temperature, pressure, among others), their length, shape, and
catalytic properties could change.

For the last decade a lot of efforts have been made to obtain nanowires suitable to
be used as photocatalysts for the production of hydrogen via water splitting. Li and
group [127] synthesized cerium oxide (CeO2) nanowires on a copper (Cu) substrate via
an electrochemical deposition without templates. CeO2 is part of the rare earth oxides
and have gained attention in recent years due to its relatively small band gap of 3.2 eV
and strong redox capability [127]. To enhance the light-harvesting capability of the nanos-
tructure, and to be able to use visible light, the authors incorporated cadmium sulfide
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(CdS) nanoparticles onto the surface of the nanowires. CdS is a metal chalcogenide and
is known to act as a visible-light photocatalyst, photosensitizer and to have band-edges
suitable for water splitting [127]. The SEM and TEM images of the different catalysts are
shown in Figure 12. The selected area electron diffraction (SAED) and TEM of the CeOx
nanowires confirmed that the wires were polycrystalline with a lattice fringe of 0.31 nm
(inset of Figure 12b). The images also confirmed the incorporation of CdS nanoparticles
on the surface of the nanowires. The CdS/CeOx heterostructured nanowires exhibited
substantially higher photocatalytic activity for hydrogen production than the pristine
CeOx nanowires, showing hydrogen production of 1290.5 µmol g−1 h−1 under white light
irradiation and 473.6 µmol g−1 h−1 under visible-light irradiation.
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Figure 12. SEM (a) and TEM (b) images of the CeOx nanowires. The SEM and TEM images of the
CdS/CeOx nanowires are presented in (c–f). The inset in (b) corresponds to (a) HRTEM image and
SAED spectrum of the CeOx nanowires. Reproduced with permission from reference [128].

Other researchers [128,129] have employed solvothermal approaches to synthesize
nanowires. Solvothermal methods consist in placing reactants into an autoclave filled
with an organic compound to carry out the reaction under high temperature and pressure
conditions [130]. Zhang and coworkers [128] synthesized CdS nanowires by solvothermal
method adding cadmium (II) nitrate, thiourea and ethylenediamine in a Teflon-line auto-
clave. One of the main challenges of using semiconductors such as CdS is the low efficiency
in the hydrogen production due to fast recombination of photoexcited charge carriers and
the photo-corrosion of the material [128]. To deal with these limitations, graphitic carbon
nitride (g-C3N4) was incorporated to the as-synthesized CdS nanowires by a two-step
self-assembly procedure. The first step consisted in grounding g-C3N4 to a fine powder
and exfoliate them into thin sheets to create a homogeneous suspension, followed by the
addition of a desired amount of CdS nanowires. The authors synthesized CdS nanowires
with different amounts of g-C3N4 (0, 0.5, 1, 2, 3, and 4 wt %) (see Figure 13). The HRTEM
(Figure 13c) showed d-spacing of 0.67 nm corresponding to CdS, whereas the lattice fringes
with 0.326 nm corresponded to C3N4, ascribed to the (002) interlayer–stacking distance of
g-C3N4. To evaluate the hydrogen production, the authors also incorporated 0.6 wt% of
platinum (Pt) and reported that the catalyst with the higher hydrogen production via water
splitting was the catalyst containing 2 wt % of g-C3N4.
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Figure 13. TEM images of the CdS/g-C3N4 nanowires with 2 (a) and 4 (b) wt.% of g-C3N4. The
HRTEM image of CdS/g-C3N4 with 4 wt% g-C3N4 is presented in (c). Reproduced with permission
from reference [128].

Other authors [129] enhanced the H2 production, by adding different amounts of
cobalt (II) hydroxide (Co(OH)2; (0, 0.5, 4.8, 6.5, and 9.1 mol%) to the as-synthesized CdS
nanowires by a precipitation method. The incorporation of the Co(OH)2 effectively acceler-
ated the charge separation and transfer in photocatalytic reactions, leading to an enhanced
H2 production rate. Figure 14 shows the TEM images of the Co(OH)2/CdS NWs and it
can be observed that many pendant-like Co(OH)2 clusters with diameter ca. 10–30 nm
were deposited on the surface of CdS NWs with diameters of ca. 30–40 nm (Figure 14c).
HRTEM showed high crystallinity for the CdS NWs and low crystallinity of Co(OH)2
(Figure 14d). Among the different catalysts, the one with 6.5 mol% of Co(OH)2 obtained
the highest hydrogen production, 14.43 mmol g−1 h−1 at a wavelength λ ≥ 420 nm, which
was 206 times higher than the pristine CdS NWs and three times higher than the 1wt%
Pt/CdS NWs they used as a benchmark.
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15c,d), it consists of a randomly arranged material with different domains and sizes. To 
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amounts (1, 3, 5, and 10 wt.%) of gold nanoparticles (Au NPs) by a chemical reduction 
method using chloroauric acid (HAuCl4) and sodium borohydride (NaBH4). The incorpo-
ration of Au NPs reduced the fast recombination of the photogenerated charge carriers, 
enabling the use of visible light. The catalyst with the highest hydrogen production (1436 
µmol g−1 h−1) was the one with an Au loading of 10 wt.%. The enhancement in the hydro-
gen production was 11.5 times higher than that reported by bare TiO2 NWs catalyst (125 
µmol g−1 h−1). 

Figure 14. TEM and HRTEM images of (a,b) for CdS NWs. (c) (insert: the particle distribution of
Co(OH)2 clusters on CdS NWs) and (d) Co(OH)2/CdS NWs with a 6.5 mol% of Co(OH)2. Reproduced
with permission from reference [129].

Machín et al. [131] used a hydrothermal approach [130] to synthesize TiO2 nanowires.
The synthesis consisted of a mixture of concentrated hydrochloric acid (HCl), titanium tetra-
chloride (TiCl4) and water placed in a Teflon-stainless stainless-steel autoclave. Figure 15
shows SEM images of the TiO2 NWs at different magnifications. TiO2 NWs consisted of
homogeneous and highly branched structures. At higher magnification (Figure 15c,d), it
consists of a randomly arranged material with different domains and sizes. To enhance
the photocatalytic activity of the nanowires, the authors incorporated different amounts (1,
3, 5, and 10 wt.%) of gold nanoparticles (Au NPs) by a chemical reduction method using
chloroauric acid (HAuCl4) and sodium borohydride (NaBH4). The incorporation of Au
NPs reduced the fast recombination of the photogenerated charge carriers, enabling the
use of visible light. The catalyst with the highest hydrogen production (1436 µmol g−1 h−1)
was the one with an Au loading of 10 wt.%. The enhancement in the hydrogen production
was 11.5 times higher than that reported by bare TiO2 NWs catalyst (125 µmol g−1 h−1).
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Figure 15. SEM images of the TiO2 NWs at different magnifications: (a) 2500×, (b) 5000×, (c) 33,000×,
and (d) 50,000× . Reproduced with permission from reference [131].

Another method to synthesize nanowires is by thermal decomposition. This method
involves a single-step process, it is inexpensive, environmentally friendly, and provides
high quality in terms of morphology, size, and particle-size distribution [130]. Machín
and coworkers [132] synthesized zinc oxide nanowires (ZnO NWs) by a simple thermal
decomposition method. The synthesis consisted in the thermal treatment of 0.5 g of
zinc acetate dehydrate (Zn(CH3COO)2 2H2O) in an alumina crucible at 300 ◦C for three
hours. The HRTEM images of the synthesized ZnO NWs are shown in Figure 16. The
lattice spacing of the ZnO NWs was ca. 0.52 nm between adjacent planes, revealing that
preferential growth of the ZnO NWs was oriented on the c-axis.

One of the main disadvantages of ZnO when compared with TiO2 is that photocor-
rosion often occurs, decreasing the catalytic activity [132]. As occurs with TiO2, the high
bandgap (3.37 eV) of the semiconductor does not allow the use of visible light to produce
hydrogen via water splitting. To deal with these limitations, the authors incorporated
different amounts of Au NPs (1–10 wt.%.) by a chemical reduction method using NaBH4
as a reducing agent. The highest hydrogen production was 853 µmol g−1 h−1, obtained
with an Au loading of 10 wt.% at a wavelength of 400 nm.
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Figure 16. HRTEM images of the ZnO NWs at different magnifications. The inset corresponds to the
SAED pattern of the ZnO NWs (D). Reproduced with permission from reference [132].

Other 1D nanostructured materials that have gained a lot of attention for the last
decade are nanorods. Nanorods have typically lengths of 10 to 20 nm and have the advan-
tage that can be made of metals, nonmetals, or mixed compounds [133]. The requirements
for their production are more flexible than those for nanotubes and nanowires.

Liu and group [134] synthesized ZnO nanorods by a hydrothermal method using
Zn(CH3COO)2, hexamethylenetetramine (HMTA, C6H12N4), sodium hydroxide and HCl
as precursors and heating the mixture at 95 ◦C for 6 hours. As mentioned before, some of the
disadvantages of ZnO as catalyst for hydrogen production include the low photocatalytic
efficiency, high bandgap (3.37 eV), recombination of photogenerated electrons and holes
and photocorrosion [131,134]. To overcome these difficulties, the authors synthesized a
hierarchically structure with a multi-scale organization by adding copper oxide (CuO)
to the as-synthesized ZnO nanorods. The advantages of these nanostructures include:
(1) enlarging the light utilization rate by shifting the light absorption to the visible range,
(2) maximizing the specific surface area for mass transfer and reactants access by creating
porous interior spaces, and (3) retarding the recombination of photogenerated electrons
and holes. The addition of CuO consisted in mixing the ZnO nanorods in a solution that
contained copper (II) sulfate pentahydrate (CuSO4 5H2O), and sodium chloride (NaCl).
Figure 17 shows the FE-SEM images of CuO/ZnO rods at different magnifications, showing
that only partial surface of the ZnO rods were covered by CuO nanoparticles and that there
is enough space between CuO nanoparticles. The bare ZnO nanorods had a negligible
H2 production but an estimated amount of 1700 µmol g−1 h−1 was obtained with the
CuO/ZnO catalyst. This enhancement was justified as due to the efficient use of the
irradiation, the specific surface area increased, and the recombination of the holes and
photo-excited electrons decreased.
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Figure 17. FE-SEM images of the CuO/ZnO nanorods at different magnifications. Reproduced with
permission from reference [134].

Other researchers [135] synthesized CdS nanorods by mixing cadmium (II) nitrate
(Cd(NO3)2), thiourea, and ethylenediamine at 160 ◦C. The efficiency of CdS nanorods
as photocatalyst for hydrogen production was affected by the fast recombination of the
photogenerated electron-hole pairs and the photoinstability due to its high tendency to be
oxidized by the photogenerated holes. To overcome these limitations, these catalysts were
modified by adding molybdenum carbide (Mo2C). Mo2C has high electric conductivity
and high catalytic properties compared to other Pt-group metal carbides. Figure 18a
shows the scheme of the preparation process as well as TEM images of the as-synthesized
CdS@1Mo2C-C core shells nanorods. The TEM images (Figure 18b) showed that, when
compared to pristine CdS, some nanolayers are coated on the surface of the CdS nanorods
to form the core-shell hybrid. The elemental mapping images (Figure 18c) identified the
presence of Cd, S, Mo, and C elements.

Other catalysts containing different amounts of Mo2C-C were prepared by modi-
fying the amounts of (NH4)6Mo7O24·4H2O and C6H12O6. The results (see Figure 19)
showed that the pure CdS nanorods produced 0.41 mmol g−1 h−1 and the CdS@Mo2C-C
ca. 17.24 mmol g−1 h−1. This huge difference in hydrogen production was ascribed to the
unique one-dimensional nanostructure, the strong interface interaction between the core
and shell materials, as well as the broadened visible-light absorption range. Furthermore,
the presence of C layers in the core-shell nanorods can facilitate the transferring of the
photogenerated holes to the outer shell of Mo2C-C, and thus protect the inner CdS from
photocorrosion.

Another technique that has been used to synthesize nanorods is heat-up method.
Chen and coworkers [136] used this method and synthesized colloidal gold (Au)–ZnSe
hybrid nanorods. These structures not only have properties of individual components
but also manifest synergistic behavior from the interaction which make them suitable for
multiple purposes such as hydrogen generation, CO2 reduction, photodynamic therapy,
among others. The synthesis of the ZnSe nanorods consisted in mixing Zn(CH3COO)2,
selenium, 1-dodecanethiol (DDT) and oleylamine (OLA), and then the temperature of the
mixture was raised to 260 ◦C. The growth of Au tips on ZnSe nanorods was made by
mixing ZnSe with toluene, gold (III) chloride (AuCl3), and dodecylamine (DDA). TEM and
high-angle annular dark-field-STEM (HAADF-STEM) images of the Au–ZnSe catalysts
are shown in Figure 20. It can be seen that very small gold tips (dark spots in Figure 20a,
bright spots in Figure 20d) with diameters of ca. 1.3 ± 0.2 nm grew onto one of the two
apices of the ZnSe nanorods. Higher the gold concentration, higher the number of Au tips
deposited on the ZnSe nanorods (Figure 20b,c,e,f).
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the enhanced charge separations [136]. 

Sol–gel is another popular method to synthesize nanorods [130]. This approach con-
sists in the hydrolysis of the metal precursor, followed by a condensation step. After stir-
ring, a gel is formed, that is subsequently submitted to a drying process. producing xero-
gels (evaporative drying) or aerogels (supercritical drying). TiO2 nanorods were synthe-
sized by a sol-gel method [137] and, after that, a solvothermal procedure was used to in-
corporate different amounts of bismuth sulfide (Bi2S3) onto the surface of the nanorods. 
TiO2 has been extensively used due its high stability, low cost, availability and nontoxicity 
but is not appropriate for hydrogen production by water splitting, due to the fast recom-
bination of the electron-hole pair [137]. By incorporating Bi2S3, the efficiency of electron-

Figure 19. Photocatalytic hydrogen generation activities on CdS and CdS@xMo2C-C (x = 0.5, 1, 2, and 5, where x refers to
the theoretical weight percent value of Mo2C). Reproduced with permission from reference [135].

The hydrogen production obtained with the Au–ZnSe hybrid nanorods was 437.8 µmol g−1 h−1

whereas the bare ZnSe obtained 49.8 µmol g−1 h−1. This result was justified by the en-
hanced charge separations [136].

Sol–gel is another popular method to synthesize nanorods [130]. This approach
consists in the hydrolysis of the metal precursor, followed by a condensation step. After
stirring, a gel is formed, that is subsequently submitted to a drying process. producing
xerogels (evaporative drying) or aerogels (supercritical drying). TiO2 nanorods were
synthesized by a sol-gel method [137] and, after that, a solvothermal procedure was
used to incorporate different amounts of bismuth sulfide (Bi2S3) onto the surface of the
nanorods. TiO2 has been extensively used due its high stability, low cost, availability and
nontoxicity but is not appropriate for hydrogen production by water splitting, due to the
fast recombination of the electron-hole pair [137]. By incorporating Bi2S3, the efficiency
of electron-hole separation increases, as well as the interfacial charge transfer rate of the
photogenerated charge carriers, leading eventually to a higher efficiency. The synthesis of
the TiO2 nanorods consisted in mixing water, 1-butanol, nitric acid and of titanium (IV)
butoxide. Different amounts of Bi2S3 (3, 6, 9 wt.%) were subsequently incorporated and the
catalytic activity was tested. The maximum hydrogen production was 2460 µmol g−1 h−1

under UV light, being four times greater than bare TiO2 (564 µmol g−1 h−1).
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cient electron conductivity, but little is known of their capacity as photocatalyst for hy-
drogen production. The synthesis of the TNT was made by hydrothermal method. The 
addition of CuO onto the as-synthesized TNT consisted in two different methods: adsorp-
tion–calcination (A-C) and wet impregnation (WI). CuO is a cost-effective material that 
possesses a good photocatalytic activity for water reduction, since copper compounds fa-
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Figure 20. (a–c) TEM images of Au–ZnSe hybrid nanorods with Au tips of variable size. (d–f) STEM images corresponding
to (a–c). (g–i) Particle size histograms corresponding to (a–c). Reproduced with permission from reference [136].

Other 1D materials that are often used for the production of hydrogen are nan-
otubes [138]. Xu et al. [139] incorporated CuO to TiO2 nanotubes to be used for hydrogen
production by water splitting. TiO2 nanotubes (TNT) have advantages over other struc-
tures due to their large specific surface area, mesoporous structure, high aspect ratio, and
efficient electron conductivity, but little is known of their capacity as photocatalyst for
hydrogen production. The synthesis of the TNT was made by hydrothermal method.
The addition of CuO onto the as-synthesized TNT consisted in two different methods:
adsorption–calcination (A-C) and wet impregnation (WI). CuO is a cost-effective material
that possesses a good photocatalytic activity for water reduction, since copper compounds
facilitate the charge separation and provide reduction sites for hydrogen formation. The
morphology of the catalysts was studied by HRTEM (see Figure 21). The TNT has a
multilayered nanotubular structure (Figure 21a), and most of the nanotubes were open at
both ends. With copper incorporation (Figure 21b,c), the sample still maintained a similar
tubular structure while some aggregation of nanotubes occurred (Figure 21c).
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This research reported negligible hydrogen production from the bare TNT but a sig-
nificant increase with the CuO-TiO2 catalysts. Chen et al. [138] synthesized TNTs and en-
wrapped them onto CdS nanoparticles. CdS nanocrystals, upon excitation with visible 
light, inject electrons into the TNTs and the photoexcited holes stay in the VB of CdS to 
react with the sacrificial agents (Na2SO3, Na2S). 

The morphology and structure of the catalysts is shown in Figure 22. As it can be 
seen, TNTs were uniformly distributed with an average outer diameter of ca. 10 nm and 
average inner diameter of 4 nm. The interlayer spacing of the multilayer nanotubes was 
about 0.75 nm (see Figure 22a,b). The lattice fringes of the CdS monocrystalline with spac-
ing of 0.36 nm is presented in Figure 22c. 

Figure 21. HRTEM images of photocatalysts: TNT showing a multilayered nanotubular structure (a); CuO incorporated
onto TNT by adsorption–calcination (b); and CuO incorporated by wet-impregation (c). The inset in c shows a higher
magnification of the aggregation of the nanotubes. Reproduced with permission from reference [139].

This research reported negligible hydrogen production from the bare TNT but a
significant increase with the CuO-TiO2 catalysts. Chen et al. [138] synthesized TNTs and
enwrapped them onto CdS nanoparticles. CdS nanocrystals, upon excitation with visible
light, inject electrons into the TNTs and the photoexcited holes stay in the VB of CdS to
react with the sacrificial agents (Na2SO3, Na2S).

The morphology and structure of the catalysts is shown in Figure 22. As it can be seen,
TNTs were uniformly distributed with an average outer diameter of ca. 10 nm and average
inner diameter of 4 nm. The interlayer spacing of the multilayer nanotubes was about 0.75
nm (see Figure 22a,b). The lattice fringes of the CdS monocrystalline with spacing of 0.36
nm is presented in Figure 22c.
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For comparative reasons, 2 wt.% of Pt was added to the as-synthesized CdS/TNTs. 
The hydrogen production was measured under irradiation at 430 nm. The highest hydro-
gen production was 353.4 µmol h−1 and was obtained with the catalyst with a 0.05 Cd to 
Ti molar ratio and 2 wt.% Pt (see Figure 23). 

Figure 22. TEM images of various samples: (a,b) CdS/TNTs; (c) the multipoint contacts between the CdS nanoparticles and
TNTs in CdS/TNTs; (d) CdS@TNTs. Reproduced with permission from reference [140].

For comparative reasons, 2 wt.% of Pt was added to the as-synthesized CdS/TNTs.
The hydrogen production was measured under irradiation at 430 nm. The highest hydrogen
production was 353.4 µmol h−1 and was obtained with the catalyst with a 0.05 Cd to Ti
molar ratio and 2 wt.% Pt (see Figure 23).
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Figure 23. Hydrogen evolution rates over CdS/TNTs, CdS@TNTs, CdS-h and CdS-p. The inset shows their time courses of
hydrogen evolution. Reproduced with permission from reference [140].

TNTs were also synthesized by an electrochemical method [141]. TNTs were fabri-
cated by potentiostatic anodization using Ti sheet as the working electrode and highly pure
graphite as counter electrode. Subsequently, TNTs were doped with Fe3+, and different
amounts Ag NPs. These chemical modifications allow absorption improvements in the
visible light region due to the effect of localized surface plasmon resonance (LSPR) pro-
duced by the collective oscillation of the surface electrons. Ag NPs enhance the efficiency
of electron-hole separation by forming a Schottky barrier at the Ag/TiO2, improving the
photocatalytic activity. The SEM images of the pure TNTs and Fe-doped and Ag NPs loaded
on TNTs are shown in Figure 24. It can be observed that highly ordered and vertically
aligned TNTs were obtained with an average pore diameter of 60 nm. Ag NPs were bound
uniformly both outside and within the TNTs, without affecting the ordered array structure
of the NTs.

Materials 2021, 14, x FOR PEER REVIEW 25 of 49 
 

 

 
Figure 23. Hydrogen evolution rates over CdS/TNTs, CdS@TNTs, CdS-h and CdS-p. The inset 
shows their time courses of hydrogen evolution. Reproduced with permission from reference [140]. 

TNTs were also synthesized by an electrochemical method [141]. TNTs were fabri-
cated by potentiostatic anodization using Ti sheet as the working electrode and highly 
pure graphite as counter electrode. Subsequently, TNTs were doped with Fe3+, and differ-
ent amounts Ag NPs. These chemical modifications allow absorption improvements in 
the visible light region due to the effect of localized surface plasmon resonance (LSPR) 
produced by the collective oscillation of the surface electrons. Ag NPs enhance the effi-
ciency of electron-hole separation by forming a Schottky barrier at the Ag/TiO2, improving 
the photocatalytic activity. The SEM images of the pure TNTs and Fe-doped and Ag NPs 
loaded on TNTs are shown in Figure 24. It can be observed that highly ordered and verti-
cally aligned TNTs were obtained with an average pore diameter of 60 nm. Ag NPs were 
bound uniformly both outside and within the TNTs, without affecting the ordered array 
structure of the NTs. 

 
Figure 24. SEM images: (a) pure TiO2 NTs, (b)Fe doped and Ag NPs loaded on TiO2 NT. Reproduced 
with permission from reference [141]. 

Figure 24. SEM images: (a) pure TiO2 NTs, (b)Fe doped and Ag NPs loaded on TiO2 NT. Reproduced with permission from
reference [141].



Materials 2021, 14, 2609 25 of 47

The highest hydrogen production (1.35 µmol cm−2 h−1) was achieved with the catalyst
containing 0.2 mM of Ag and 0.3 mMFe (0.2 mM Ag–0.3 mM Fe/TiO2) (see Figure 25).
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Atomic layer deposition (ALD) is a method that has also been used to synthesize
nanotubes. This process consists in a chemical route for thin film deposition wherein a
sequence of self-limiting surface reactions is repeated a discrete number of times [142].
Zhang et al. [143] synthesized porous tubular CoOx/TiO2/Pt photocatalysts with spatially
separated dual cocatalysts, Pt and CoOx, and measured their catalytic activity by the
production of hydrogen in an aqueous methanol solution. Porous TiO2 NTs were obtained
using carbon nanocoils (CNCs) as sacrificial templates. Figure 26 shows the TEM, HRTEM,
Fast Fourier Transform (FFT), HAADF-STEM, STEM and EDS of the different catalysts.
Figure 26a,b show the TEM and HRTEM images of CoOx/TiO2/Pt structures. TiO2 nan-
otubes are characterized by having uniform wall thickness (ca. 11.4 nm) and uniformly
distributed nanopores, with average size of 1.5 nm. The HAADF-STEM (Figure 26c) shows
individual Pt atoms as well as Pt nanocluster with dimension of less than 1 nm. The STEM
and EDS (Figure 26d–h) analysis confirmed that Co was distributed on the outer surface
of TiO2 nanotubes. The highest hydrogen production measured with these catalysts was
nearly five times higher than those observed with pristine nanotubes (275.9 µmol h−1).

Nanofibers have also been used to produce hydrogen via water splitting. The relevance
of nanofibers is based on the many basic components that constitute them, and infinite
combinations can be synthesized depending on the applications to which the material is
going to be dedicated [144].

Nanofibers can be obtained by a hydrothermal method. Wu et al. [145] reported the
synthesis of N-doped TiO2 nanofibers. By doping TiO2 with nitrogen, the bandgap of the
n-type TiO2 could decrease due to the mixing of N 2p states with O 2p states. Additionally,
Pt and Pd nanoparticles were incorporated to the as-synthesized N-TiO2 nanofibers by a
wet impregnation process. The TEM images and the nanoparticle size distribution of the
different catalysts are shown in Figure 27. The metal nanoparticles were well dispersed on
the surface, and the average size of Pt NPs was considerably smaller than that measured
for Pd on both types of supporting surfaces.
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area; inset in (b), fast Fourier transform (FFT) of crystalized TiO2 film). (c) Atomic-resolution HAADF-STEM image of the
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(f) oxygen, (g) platinum, and (h) cobalt. One ALD cycle for Pt and CoOx. Reproduced with permission from reference [143].
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The hydrogen production of the N-doped samples was higher than their undoped
counterparts, showing a good efficiency at the two wavelengths analyzed.

Electrospinning is another method to synthesize nanofibers [146]. In fact, nanofibers
of very varied composition have been obtained, including carbon nanofibers with different
metals, metal oxides or more complex structures, with interesting applications in the cat-
alytic production of hydrogen [147]. TiO2 nanofibers were obtained by this approach, and
subsequently decorated with Au and Pt nanoparticles to study the plasmon enhancement
on the photocatalytic hydrogen production. The XRD patterns, SEM, dark-field STEM and
HRTEM images of the Au0.75/Pt0.25/TiO2 nanofibers are shown in Figure 28. The XRD
pattern (Figure 28a) shows the signals of anatase TiO2 and the cubic phase of Au, but Pt
was not detected, probably due to the low concentration. The nanofibers (see Figure 29b)
have an average diameter of ca. 190 nm with lengths up to several micrometers. The dark
field STEM (Figure 29c) indicates that the metal NPs were deposited through the nanofiber,
with an average size of 7.2 nm. The HRTEM images (Figure 29d) show the interplanar
distances of 0.234, 0.203, and 0.224 nm, corresponding to the lattice spacing of the Au (111),
Au (200), and Pt (111) planes, respectively.

The hydrogen production was measured using a dual beam irradiation of 420 nm
and 550 nm. The results showed that the Au/Pt/TiO2 nanofibers exhibited certain activity
for H2 generation under single irradiation at 420 nm that excites the defect/impurity states
of TiO2. When secondary irradiation at 550 nm was introduced to simultaneously excite
Au surface plasmon resonance, higher activity for H2 generation was observed.

Hu et al. [148] also employed an electrospinning method to synthesize TiO2/WO3
nanofibers. WO3 is a semiconductor with a narrow band gap (~2.7 eV) and suitable band
edges which can match well with TiO2 to form a direct-solid-state Z scheme system. This
would allow the CB of TiO2 to act as strong reducing agent whereas the VB of WO3 would
exhibit strong oxidizing properties. Additionally, TiO2/WO3 nanofibers were coated with
carbon as sensitizers for increasing the absorptivity at wavelengths ranging from 400 to
800 nm. The SEM and HRTEM images of the 1% carbon coated TiO2/WO3 nanofibers
are shown in Figure 29. The 3D network structure is composed of uniform and straight
nanofibers (see Figure 29a). TEM images of Figure 29 show that the thickness of the carbon
layer is about 10 nm, coating the TiO2 core. The inset in Figure 29c shows three lattice
spacings (0.352 nm, 0.35 nm, and 0.445 nm) corresponding to the (101), (−101), and (001)
planes of anatase TiO2. Another set of the fringes spacing ca. 0.182 nm were ascribed to the
(002) lattice spacing of tungsten trioxide, which was dispersive in TiO2 matrix.
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that the nanofiber was coated by a thin carbon layer. Reproduced with permission from reference [148].

The hydrogen production with these catalysts was enhanced compared with pure
TiO2 nanofibers and TiO2/WO3 nanofibers. This effect was attributed to the multichannel-
improved charge-carrier photosyn-thetic heterojunction system with the carbon layer on
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the surface of TiO2 as an electron collector and WO3 as a hole collector, leading to effective
charge separation on these components. Furthermore, the addition of WO3 promoted the
graphitization of the carbon layer, improving the transport of electrons in the composite.

3.2. Piezoelectric and Thermoelectric Materials

Piezoelectric effect is the ability of some materials to produce an electrical charge
in response to applied mechanical stress. This effect is reversible, and also includes
the opposite behavior, that is, the generation of mechanical stress when an electric field
is applied to the material. Since the first nanomaterials capable of showing this effect
were reported, various high-performance materials have been developed with interesting
applications from an energy point of view. ZnO nanowires (ZnO NWs) are characterized
by a hexagonal structure with significant anisotropy along the c axis, and perpendicular to
it, so the application of stresses on this material gives rise to a piezoelectric effect [149–151].
When the curvature of the material is caused, a displacement of the cations and anions
that form the nanowire structure takes place, which causes the appearance of a dipole that,
macroscopically, will cause the appearance of an electrical potential.

In general, this effect can be observed in certain nanowires and nanobelts because, in
this conformation, the materials can withstand great mechanical stresses. These materials
include those based on ZnO, GaN, InN, CdTe, CdSe, and others, with really high efficiencies
for practical purposes (i.e., 0.4V in ZnO [150], 0.35V in GaN [152], 0.3 V in CdTe [153],
60 mV in InN [154], or 137 mV in CdSe [155]. Of these materials, ZnO is by far the easiest
to obtain; it is eco-friendly with the environment, and the synthesis of large quantities
can be obtained efficiently and at low temperature [150]. Other materials with large
piezoelectric coefficients include some ferroelectric nanowires such as Pb(Zr,Ti)O3 [156],
and BaTiO3 [157]. Xu et al. [158] reported high output voltages for Pb(Zr,Ti)O3, with values
as high as 0.7 V. In the case of BaTiO3 nanotubes, with perovskite structure, output voltages
of up to 5.5 V have been obtained, under a stress of 1 MPa [159]. When this material is
synthesized in the form of thin films by rf magnetron, the output voltages are certainly
lower, with values that can reach 1V. Other interesting materials capable of presenting a
high piezoelectric response are represented by composites. One of them is the NaNbO3
nanowire PDMS polymer composite, with which up to 3.2 V has been obtained. Of all the
materials described so far, vertically aligned Pb(Zr0.52Ti0.48)O3 nanowires with an output
voltage of 209 V are one of the most efficient systems.

In contrast to the piezoelectric materials described above, capable of generating
a voltage when subjected to mechanical stresses, there are some materials capable of
converting temperature differences to electricity and vice versa. If we consider that the
vast majority of energy consumption processes waste more than half of this in the form of
heat, there is no doubt that having systems capable of transforming this heat into reusable
energy would be very advantageous. Thermoelectricity is based on the Seebeck-effect, and
is due to the different Fermi electron distribution as a function of temperature. Although
this effect was initially observed in bimetal junctions, thermoelectric materials are now
generally based on semiconductor alloys of Co, Bi, Te, Pb, or Sr. The process implies
that a temperature difference occurs between the connected ends of p-type and n-type
semiconductors, causing the free carriers to diffuse from the hot side to the cold side,
generating a potential difference between both ends. Traditionally, 1D materials capable of
exhibiting this effect have been dominated by bismuth. This semimetal, when found with
low dimensionality, as in the case of nanowires, is characterized by a band structure and
an appropriate electron distribution to show these effects [160].

The basic property of the material that governs the efficiency of thermoelectric genera-
tors is the Figure of thermoelectric merit, defined as Z = S2σ / κ, where S is the Seebeck
coefficient, or thermoelectric power, and σ and κ are the electrical and thermal conductivity,
respectively [161]. Z is generally multiplied by the average temperature T to produce
a number ZT, which is the parameter used to determine the efficiency of the material.
The most advanced thermoelectric materials show a ZT > 3. In order to achieve this, the
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material is required to have high electrical conductivity (σ), and low thermal conductivity
(κ), which is not obvious. One way to achieve materials with this double behavior is
through the use of 1D-composites [162]. In this sense, 1D organic composites have recently
been developed with significant improvements. Among these, we can mention poly(3,4-
ethylenedioxythiophene): p-toluenesulfonic acid (PEDOT: p-TSA), which is synthesized
on glass fiber. In this material, and after post-processing, S and especially σ experienced a
significant increase, with a substantial improvement in behavior [163]. Other nanostruc-
tured organic materials based on carbon nanotubes have shown power factors (PF) of up
to 95 [164]. Materials based on PbTe-modified PEDOT nanotubes have also shown high
values of S, although in these cases the electrical conductivity is low [165]. Perhaps, future
developments of thermoelectric materials will mainly include conductive polymers, whose
doping will make it possible to control impurities and defects in the material, allowing to
effectively regulate the carrier mobility.

3.3. Electrochemical Energy Storage

Electrochemical energy storage devices (EESDs) have significantly increased their
presence in our day to day over the last few decades. They have allowed the development of
many portable electronics, and as they evolve, new applications arouse. Lately, the interest
in electric vehicles has accelerated the interest in EESDs, and their practical applications
now range from small and flexible wearables to large grid level systems. Despite the
huge improvements over the last few decades, there is a constant strive to improve the
energy/power density of the EESDs as new and more complex application are developed.

In this section, we will focus in two types of EESDs, the metal ion batteries, with
special focus on lithium ion, and the supercapacitors.

3.3.1. Batteries

Among the battery systems available today, rechargeable lithium ion batteries (LIBs)
are the most common and the ones with higher commercial importance due to their
outstanding energy density. However, state-of art LIBs are approaching their energy
density boundary and new materials and structures are being developed to push this
boundary further and meet the ever-increasing energy storage demand.

Batteries are usually characterized by high energy density but mediocre power density.
Their limitations come from the energy storage mechanism, which is based on redox reac-
tions that takes place in the volume of the electrode material. The incorporation of the metal
ions into the bulk of the material requires the diffusion of the latter from the electrolyte to
the reaction site, which is a process usually slow. This is the root of the low power density
and there is currently a great effort being made to improve it. In this aspect, nanoma-
terials, and specifically 1D nanomaterials, are a big asset. Their high surface to volume
ratio reduces the diffusion distances while their high aspect ratio assures good long-range
conduction, dramatically improving their charge/discharge rates [166–168] (see Figure 30).

Another important issue for the batteries is cycle performance. High capacity materials
tend to be mechanically unstable upon cycling because of the expansion and shrinking
produced during the accommodation of the metal ions. This mechanical stress induces the
pulverization of the active material which impacts the battery life by the loss of contact of
the crumbled pieces. In this regard, the nano scale can also help to improve the stability
of the materials, reducing the degradation by buffering the size changes and therefore
increasing the lifetime of the devices [169,170].

A number of other benefits can also be ascribed to the 1D nanomaterials in LIBs,
such as good flexibility compared to 2D and 3D nanomaterials [171–173], the capability
to create porous or hollow structures [166], or the possibility to create more complex
structures that can easily be grown on thin films to form flexible, self-standing energy
storage devices [173,174].
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One dimensional materials can be present in the LIBs fulfilling two different functions:
as an active material or as a conductive material. The advantages and representative
examples of 1D materials in both functionalities in LIBs are summarized in the following
points.

One Dimensional Active Material

One dimensional nanostructures have recently received a significant attention in re-
spect of their application in batteries. The advantages above mentioned have contributed
to the development of an extensive variety of nanostructures (nanorods, nanowires, nan-
otubes, etc) for even a wider range of materials. Table 1 gives a brief outlook of the variety
and diversity of the materials and structures demonstrated in the literature.

In addition to the material and the shape it is presented, the electrode fabrication has
also a very decisive importance in nanomaterials. Some of the most attractive properties of
the 1D materials are only fully exploited in certain electrode configurations. In particular,
the growth of aligned 1D nanostructures on conductive substrates, maximize the exposed
surface, providing an efficient electron transfer, deep electrolyte penetration, and good
strain accommodation [175,176].

On the other hand, a wide variety of 1D nanomaterials have been developed as
active material in LIBs electrodes as a component of the slurry paste (in combination with
conductive additives and binders), or fabricating freestanding electrodes. In this case,
the key to achieve good electrochemical performances is usually related with the proper
arrangement of the materials inside the electrode and the smart combination with other
synergetic nanomaterials [52,177].
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The active materials for LIBs can be divided into three main groups based on their
reaction mechanisms: (1) intercalation, (2) alloying, and (3) conversion. In all of them, 1D
materials have been used and a clear performance improvement was accomplished.

• Intercalation

Intercalation is the most common of the lithiation processes in batteries. During this
process metal ions are inserted in the outer of the layered materials structure, producing
minimal structural changes and therefore provides a stable cycling performance [178].
In opposition to their stability, their capacity is generally low which handicaps their
energy density. Carbon materials, titanium dioxide and spinel lithium titanate (Li4Ti5O12,
LTO) are the most representative anode materials based on this mechanism. Among the
carbon materials, carbon nanotubes (CNTs) have gained huge interest due to the unique
structural, electrical, mechanical and electronic properties. In CNTs, Li+ has double space
to incorporate (inner and outer surfaces) and its flexible morphology offers a stable capacity
without pulverization in the electrode [179].

The 1D morphology of nanowires is particularly beneficial to maintaining firm elec-
tronic contacts with the conductive agents during charge/discharge cycles. Thus, TiO2-
based nanowires, nanorods, nanotubes and nanofibers [180–184] have been fabricated,
exhibiting excellent high-rate cycling performance.

LTO is a highly appealing anode materials for LIBs due to its extraordinary cycling
performance and high safety. Yet, its low conductivity and moderate Li+ diffusion coef-
ficient limits its rate capability, and its capacity is even lower than that of the graphite.
Still, the 1D nano-structural LTO (a nanorod material (NT-LTO/C) formed by a molecular
self-assembly has proven to be a good strategy to improve the properties of the material,
shortening the transport lengths, and thereby improving the rate performance [185] of
nanorod material (NT-LTO/C) by a novel in situ molecular self-assembly strategy.

• Alloying

Some materials can electrochemically form Lithium alloys in a reversible way. These
alloying materials are characterized by high specific capacities and safe operating po-
tentials. While the specific capacity of the alloy based anodes like Si (4200 mAh g−1),
Ge (1600 mAh g−1), Sn (994 mAh g−1), etc., are more than graphite (372 mAh g−1), the
poor cycling stability and the irreversible capacities at the initial cycles limit their practical
applications [186,187]. These effects arise from the swelling/shrinking during lithiation/de-
lithiation, reaching volume changes up to 400%, which results in pulverization of the active
materials and lose of electrical contact. To overcome these inherent limitations, it has been
proven that 1D nanostructures help to release the stress without breaking which helps to
retain the capacity [188,189].

A wide selection of 1D nanomaterials have been used as LIBs alloy anodes [190,191]
and comparatively, their electrochemical performance has been shown to be significantly
improved compared to the same material in different morphologies. Some examples are
displayed in Table 1.

• Conversion

At the turn of the 21st century, new perspectives for the development of LIBs brought
interest in the search of a new concept of reactivity with Li, different from those of intercala-
tion and alloy with Li. These circumstances encouraged the investigation of materials with
new functional mechanisms; those can make the reactions of "conversion" with lithium.
The reversible electrochemical reaction of lithium with transition metal oxides or sulfides,
conventionally called the "conversion reaction" [192].

Through this multi-electron transfer process, conversion-type materials can easily
accommodate more Li ions to achieve high specific capacities. Conversion type materials
such as transition metal oxides (TMOs) have become a promising alternative to graphite
due to their safety, low cost and the high theoretical specific capacity. However, the use
of these conversion materials also has its drawbacks, such as low conductivity, low initial
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coulomb efficiency, instability during long cycling, and high-volume expansion, which
limit their application in LIBs. Some of these limitations that can be overcome using
nanostructures, such as 1D metal nanostructure arrays oxides, sulphides, and hybrid
structures, as shown in Table 1.

One Dimensional Conductive Agent

One of the most common drawbacks of nanomaterials is their low conductivity and
poor connection with the conductive network composing the electrode [193,194]. Regarding
these limitations, an approach that has become popular lately is the use of carbon nanotubes
(CNTs) and nanofibers (CNFs) [195,196]. As opposition to other conductive agents, lD
conductive materials keeps long range of interconnection of active material particles,
while maintaining high porosity and allowing the electrolyte to penetrate deeper into the
electrode.

Table 1. Examples of different 1D battery nanomaterials by structure and storage mechanism.

Nanorods Nanowires Nanotubes Nanocables
3 ZnMnO3 [197] 2 Si [170] 1 g-CNTs [179] 2 Cu-Si [198]

950 mAh/g (0.5 A/g)
500 cycles

1200 mAh/g (2 A/g)
500 cycles

200 mAh/g (0.5 A/g)
400 cycles

1500 mAh/g (1.4 A/g)
100 cycles

3 ZnCo2O4 [199] 2 Si [200] 3 Co3O4 [201] 1,2 SnO2-TiO2 [202]
1050 mAh/g (0.4 A/g)

200 cycles
900 mAh/g (0.2 C)

100 cycles
1800 mAh/g (0.3 A/g)

100 cycles
300 mAh/g (0.1 C)

50 cycles
2 β-Sn [203] 1 TiO2 [52] 3 ZnMn2O4 [204] 3 CNT@Fe3O4@C [205]

600 mAh/g (0.2 C)
100 cycles

350 mAh/g (0.02 A/g)
35 cycles

670 mAh/g (0.2 A/g)
280 cycles

700 mAh/g (2 A/g)
200 cycles

3 α-Fe2O3 [206] 2 Ge [207] 2,3 SnO2-CuO [208] 1 MWNT@LTO [209]
970 mAh/g (0.5 C)

100 cycles
900 mAh/g (0.5 C)

1100 cycles
600 mAh/g (0.5 A/g)

100 cycles
130 mAh/g (10 C)

100 cycles
3 CuO [210] 2,3 Zn2GeO4 [211] 2 Si [212] 2 Ni-Si [213]

670 mAh/g (0.1 A/g)
150 cycles

1200 mAh/g (0.1 C)
100 cycles

600 mAh/g (12 C)
6000 cycles

1100 mAh/g (0.5 C)
100 cycles

3 V2O3 [214] 3 WO3 [215] 3 Zn4Sb3 [216] 2,3 Ag@γ-Fe2O3 [217]
200 mAh/g (0.1 C)

125 cycles
660 mAh/g (0.28 C)

140 cycles
450 mAh/g (0.1 A/g)

100 cycles
890 mAh/g (0.1 C)

60 cycles
1 Intercalation material; 2 Alloying material; 3 Conversion material.

The 1D carbon nanostructures cannot only provide better electrical connection to the
active materials, but also their porous structures are beneficial allowing the accommodation
of the volume expansion [179,195]. Furthermore, 1D carbon nanomaterials provide good
mechanical robustness and flexibility to the electrodes due to their excellent mechanical
properties.

In addition, the good interconnection that they provide, it allows a much lower weight
than other additives, further enhancing the energy density of the electrodes. This approach
is quite mature, and it has become a standard for the battery manufacturers, being currently
applied by OCSiAl (carbon nanotube manufacturer) in partnership with Shenzhen BAK
Power Battery (China), Haiyi Enterprise (China), and Polaris Battery Labs (USA).

3.3.2. Supercapacitors

In opposition to batteries, supercapacitors, have a very high-power density with much
lower energy density. The energy storage mechanism is based on electrostatic charge accu-
mulation on the surface of the electrode materials (electric double-layer capacitors, EDCLs)
or on fast reversible redox reactions on the surface of the materials (pseudocapacitors, PCs).
The raw capacitance of the material usually depends on the amount of available surface,
being one of the reasons why the nanomaterials have attracted so much attention in this
field. It is also worthy to highlight the importance of the porosity and conductivity of the
materials that compose the electrodes. These two properties are extremely important to
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keep the high-power density that characterizes the supercapacitors, and in this regard, 1D
nanomaterials show very promising candidates [164].

EDLCs Materials

This type of supercapacitors is characterized by a very fast charge/discharge response
due to the on-surface adsorption of ions, usually achieving much higher rates than PC
supercapacitors. Additionally, the limited interaction between adsorbed ions and the
inner structure of the material grant them long-term stability and longevity. On the other
hand, the high current and fast rates involved in the operation of this devices, makes
necessary very high conductivities and only low resistive materials can be used both as
active materials and as part of the composite.

The advantages that the 1D materials bring to EDLCs, mainly come from the high
surface area and long-range material interconnection. Since the charge is built up at the
electrode/electrolyte interface, the improvement of the later directly affects the capacitance.
Historically, the most common material for EDLCs is carbon as it compromises high
conductivity, high stability (both chemical and mechanical) and low cost [166]. In the
nanoscale, carbon is also the main choice for the EDCLs and the most common shapes in
which it is applied are nanofibers [218,219] and nanotubes. Commonly, CNTs electrodes do
not show a surface area as high as other carbon materials such as activated carbon [167,220]
and to overcome this problem, usually, two approaches are followed: 1) porosity increase
by chemically treating the CNTs and 2) vertically align the CNTs to allow deeper electrolyte
penetration.

The first approach is further discussed in the pseudocapacitance section, as this type
of treatments, aside of increasing the surface, usually adds functional groups that provides
pseudocapacitive behaviour. Still, pure EDLCs made from porous CNTs can be found. For
instance, Xu et al. [220] were able to increase CNTs capacitance from 18 F/g to 54 F/g after
KOH treatment. More common is to find the use of aligned CNTs to enhance the electrolyte
penetration, which has proved to provide good performance [221,222] and feasible in roll
to roll synthesis [223]. More examples of these two types can be found in Table 2.

Pseudocapacitors

By definition, pseudocapacitive materials should have a linear dependence of the
charge with the potential window (capacitance should be constant over a voltage win-
dow) [224]. However is well accepted that systems with redox reversible peaks with no
separation and without phase changes, can be also considered pseudocapacitive materi-
als [225].

Despite the very similar macroscopic response from the EDCLs and pseudocapacitive
materials, the nature of their capacitance is clearly different, being non faradaic for the
first and faradaic for the later. Pseudocapacitive materials are characterized by a much
higher capacitance than the EDLCs, but due to the kinetics of the redox reactions, their
charge/discharge rates are usually slower. It is important to highlight that there is cur-
rently a huge confusion and discussion in the literature with the proper classification
of some pseudocapacitive materials. Specially with TMOs, many authors have miss la-
belled classic battery-like behaviours with pseudo-capacitive ones. Example of this are
Ni(OH)2, Zn(OH)2, Co3O4, IrO2 or NiCo2S4 as discussed in references [224,226]. All of
these materials show distinctive redox peaks that makes the use of capacitance as charge
storage metric, simply wrong. The miss-use of capacitance, has deeper implications than
just wrong categorization, and can lead to a huge inaccuracy when calculating the energy
density, as illustrated in reference [225]. The correct classification of pseudocapacitive
materials becomes even more confusing when the size of the materials goes below a certain
size threshold. Due to the short diffusion distances, the ions insertion/extraction in the
nanosized battery-type materials are much faster (because of the time scale) and their
voltagrams show linear relationships between voltage and time, not displaying the com-
mon redox plateau and showing a capacitive-like behaviour [227]. This is named by some
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authors “extrinsic” pseudocapacitance [228] but as discussed in the references [224,226,228],
it should not be confused with true pseudocapacitive materials due to the differences in
their performance and on the reaction kinetics.

Taking this discussion into account, in this section, we will only consider true pseudo-
capacitive materials. However, it is worth noting that the use of battery-type nanomaterials
in combination with capacitive electrodes to assemble hybrid energy storage devices
(HESDs), is a valid strategy that lately is getting more attention and interest [229]. Those
devices won’t be reviewed here as they will require a more extensive discussion, but more
information can be found in literature [229,230].

The most common pseudo-capacitive materials are: heteroatom-doped carbonaceous
materials, conductive polymers and some transition metal oxides (RuO2, MnO2, V2O5).
Similar to EDLCs, the nanostructuration of pseudocapacitive materials helps to bring the
material/electrolyte interface up, increasing the number of accessible active redox sites.
Even in bulk, the whole mass of the pseudocapacitive materials is theoretically accessible
for charge storage through ion diffusion. However, the fast operation of the SCs only
allows the most superficial material to contribute to the capacitance. This is where the
nanomaterials really shine, as they can potentially make the whole mass accessible for
energy storage at very fast operation rates.

In comparison with common EDLCs, one of the problems of pseudocapacitive materi-
als is their conductivity. Most of them have poor conductivity that, due to the very high
operation current densities, the polarization coming from the electrode resistance have
a huge impact on the device output. This can be overcome using conductive additives,
commonly, carbonaceous species as discussed in the battery section.

• Doped Carbonaceous Materials

A common approach to increase the performance of carbonaceous materials in pseu-
docapacitors (SCs) is their chemical activation and functionalization. These processes
introduce defects and functional groups in the materials, enabling a pseudocapacitive
behaviour that enhances the specific capacitance of the materials [226]. As a side effect,
the functionalization processes are usually accompanied by a substantial porosity increase
but also a change on the resistance and self-discharge characteristics [231]. There are
many types of different functional groups which influence the energy storage properties
differently. For instance, oxygen and nitrogen groups increase carbon nanostructures
capacitances [232], while carboxyl groups improve the hydrophilicity in aqueous elec-
trolytes [231]. Some examples can be seen in Table 2, where one can observe a significant
performance increase compared to EDLCs materials.

• Conductive Polymers

They are cheap, easy to synthetize, have pseudocapacitive behaviour in the whole
volume, high capacitance (PANI 1284 F/g, PPy 480 F/g and PEDOT 210 F/g [233]) and
good conductivity [226]. However, they are accompanied by a few drawbacks too: they
swell and shrink during charge/discharge affecting the mechanical integrity of the elec-
trodes [234], they show poor ion mobility [235] and they have a reduced working potential
range [233]. Combined, these effects usually produce poor cycling stability [233] which
prevent any commercial application. Designing 1D nanostructures from these conductive
polymers can effectively supress some of their drawbacks in a similar way as described for
alloying materials in the LIBs section. Moreover, as in the CNTs, it is a common practice
to use vertically aligned nanowires to ensure the electrolyte infiltration and a fast ion ex-
change [236] (Table 2). Due to its higher capacitance, PANI is the most common conductive
polymer to use as standalone material (Table 2), while PPy and PEDOT are commonly used
as conductive/capacitive additive with other capacitive materials [237–239].

• TMOs

The first pseudocapacitive material studied was a TMO, specifically, the RuO2. Ac-
tually, the definition of pseudocapacitance was introduced by Conway et al. [239] while



Materials 2021, 14, 2609 36 of 47

studying the RuO2. The nanostructuration of RuO2 has proved to maximize the exposed
surface and therefore its performance, obtaining capacitances over 1000 F/g at decent
rates [240]. However, RuO2 price and availability restrict its application, and cheaper alter-
natives has been actively explored. One of the most promising ones is MnO2, which have
a lower cost and high theoretical capacitance (1100–1300 F/g). Nevertheless, only a very
thin superficial layer of the material is electrochemically active [226], so it usually shows
lower capacitances than RuO2. For this reason, the preparation of MnO2 nanostructures
has been such a common approach for SCs, as it helps to improve the material utilization.
A few examples can be found in Table 2. It is also important to highlight that MnO2 does
not have any oxidation states below 0 V, what limits its use in symmetric devices [234].

Table 2. Summary of supercapacitors performance for different active materials.

Storage
Mechanism

Active
Material Electrode Composition Capacitance (F/g) P–E * Ref.

EDLCs Carbon MWCNTs/CB/PVDF
(85/5/10) 135 F/g (1 mV/s) - [241]

EDLCs Carbon Single-wall CNTs 150 F/g 20 k W/Kg
6.5 Wh/kg [242]

EDLCs Carbon Carbon nanofibers + CNTs 130 F/g (5 mV/s) [243]

EDLCs Carbon Vertically Aligned CNTs +
CNFs 180 F/g (150 A/g) 40 kW/Kg

20 Wh/Kg [244]

PS Functionalized
Carbon

Oxygen functionalized CNT
fibres 46 F/g (50mV/s) 20 kW/Kg

1.29 Wh/Kg [245]

PS Functionalized
Carbon

Vertically aligned, Oxygen
functionalized CNTs 440 F/g 100 kW/Kg

100 Wh/Kg [246]

PS Functionalized
Carbon

Template based, vertically
aligned CNTs 365 F/g (2 A/g) - [247]

PS Functionalized
Carbon N–doped CNF network 175 F/g (50 A/g) 1200 W/Kg

5.9 Wh/Kg [248]

PS Functionalized
Carbon N–doped CNTs 228 F/g (1 mA/cm2)

7.75 kW/Kg
29 Wh/Kg [249]

PS TMO–RuO2
Hydrous RuO2 nanotubular

array ≈1000 F/g (100 mV/s) 4320 kW/Kg
7.5 Wh/Kg [250]

PS TMO–MnO2 MnO2 nanotube array 325 F/g (2 A/g) - [251]

PS TMO–MnO2
MnO2 NW (80%)/CB

(15%)/PTFE (5%) 279 F/g (1 A/g) - [252]

PS TMO–V2O5 V2O5 nanowires/CNTs 216 F/g (5 mV/s)–460
F/cm2

6.5 kW/L
29 Wh/L [173]

PS TMO–V2O5 V2O5 + PPy 308 F/g (0.1 A/g) 2.5 KW/Kg
24 Wh/kg [253]

PS Conductive
polymer PPy nanowires arrays 250 F/g (2.75 A/g) 10 kW/Kg

50 Wh/Kg [236]
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Table 2. Cont.

Storage
Mechanism

Active
Material Electrode Composition Capacitance (F/g) P–E * Ref.

PS Conductive
polymer PPy nanowire network 332 F/g (1 mA/cm2)

7.75 kW/Kg
29 Wh/Kg [249]

PS Conductive
polymer PANI nanowire hydrogel 636 F/g (2 A/g) - [254]

PS Conductive
polymer

RGO–PANI nanowires
paper

PANI nw/RGO/PANI nw
sandwich

956 F/g (1 A/g)–172
F/cm3

363 F/g (1 A/g)–722
F/cm3

[255]

PS Conductive
polymer

PANI arrays/graphene
foams 936 F/g (1 A/g) 103 kW/Kg

21 Wh/Kg [256]

* Power and energy density of the reported device.

There are other well studied pseudocapacitive materials such as V2O5 and other
similar layered materials (such as MoO3, Nb2O5 or HxTiyOx) that shows what is known as
intercalation pseudocapacitance. In this type of pseudocapacitance, the ions diffuse through
the layered structure of the materials but their crystallographic structure is not significantly
altered and the voltametric response is not diffusion limited, which distinguishes it from
the intercalation in batteries [225,226].

4. Summary and Outlook

Current technological advances and developments require the use of reliable sources
of energy that guarantee the sustainability of our near future. Over the last 30 years,
increasingly evolved systems have been developed that allow the best use of the planet’s
energy resources. Solar cells, piezo, and thermoelectric generators, and even obtaining
hydrogen as an energy vector, are examples of an unprecedented development towards a
more technologically advanced and sustainable world. The developments in increasingly
efficient energy storage systems, specifically batteries and capacitors, already allow energy
autonomy that is crucial for the vast majority of devices to which we are accustomed. For
all of these applications, and others that will emerge over the years, 1D nanostructured
materials have shown promising prospects for improving efficiency and will be key in new
developments that promote a sustainable future for humanity.
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