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Abstract: The cocoa shell is a by-product generated by the cocoa processing industry that could
be used as a nutraceutical owing to the significant amounts of bioactive compounds it contains.
This work aimed to study the bioaccessibility of phenolic compounds present in the flour (CSF)
and an aqueous extract (CSE) from cocoa shells through an in vitro simulated digestion and to
assess their antioxidant capacity in vitro by using intestinal and hepatic cell culture models (IEC-6
and HepG2 cells). The bioaccessibility of phenolic compounds was determined using a simulated
in vitro digestion model (INFOGEST). Total phenolic compounds (TPC) and antioxidant activity
were measured using in vitro techniques. Reactive oxygen species (ROS) were evaluated in IEC-
6 and HepG2 cells after t-BOOH stimulation. TPC present in CSE were more bioaccessible than
phenolic compounds present in CSF. During digestion, the bioaccessibility of phenolic compounds
from CSF fluctuated in the gastric (2.8 mg/g), intestinal (7.6 mg/g), and colonic (5.7 mg/g) phases.
Similarly, for the phenolics of CSE, the bioaccessibility increased from 50.6 mg/g in the gastric phase
to 53.4 mg/g in the intestinal phase and decreased in the colonic phase to 37.2 mg/g. The in vitro
antioxidant capacity followed a similar behavior, increasing throughout the digestion in CSF (8.8- to
10.6-fold) and CSE (6.0- to 7.4-fold). Digested CSF and CSE were not cytotoxic for IEC-6 and HepG2
cells and protected their viability under oxidative stress conditions (93–100%). t-BOOH-induced ROS
were prevented by CSF (72–88%) and CSE (81–94%) bioaccessible fractions in both intestinal and
hepatic cells. In conclusion, cocoa shells are a source of potentially bioavailable antioxidant phenolic
compounds that may protect cells from oxidative stress.

Keywords: cocoa by-products; cocoa shell; in vitro digestion; bioaccessibility; oxidative stress;
antioxidant capacity

1. Introduction

The cocoa processing industry generates large quantities of by-products, including
cocoa shells, representing between 12 and 20% of the cocoa bean [1]. Global cocoa pro-
duction is estimated at 4.8 million tons in 2019–2020, resulting in a substantial amount of
cocoa shells [2]. Cocoa shells are generally underused as fuel, fertilizer, or animal feed. The
scarcity of natural resources and severe environmental problems have increased interest
in utilizing agricultural by-products such as cocoa shells for use as new food sources [3].
Several studies have reported the attractive nutritional value of cocoa shells, owing to their
high content of bioactive compounds such as dietary fiber, phenolic compounds, theo-
bromine, and a lipid profile similar to cocoa butter [1]. Recently the cocoa shell has been
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validated as a novel antioxidant dietary fiber food ingredient, allowing for its incorporation
to develop foods with health-promoting properties [4]. In this regard, the determination of
bioactive compounds is not enough to predict the possible beneficial effects in vivo of the
cocoa shell, as the digestive process can transform the original compounds present in food
into metabolites that finally reach the blood system. It is, therefore, essential to determine
the bioaccessibility. This term refers to the fraction of a food constituent released from
the food matrix in the gastrointestinal tract that is potentially available for absorption [5].
The bioaccessibility of the compounds can be evaluated using an in vitro digestion model.
Although in vitro models do not entirely simulate human conditions, they provide a more
straightforward and cheaper alternative to in vivo models [6]. In this sense, evaluating the
impact of bioactive antioxidant compounds at the cellular level is essential since they can
exert a protective effect against oxidative stress conditions. Oxidative stress is caused by
the imbalance between reactive oxygen species (ROS) and antioxidants’ availability. The
imbalance in favor of ROS can cause molecular and cellular damage [7]. Cocoa shells as a
source of phenolic compounds with antioxidant potential could modulate ROS levels [8,9].
Thus, the objective of this study was to evaluate the bioaccessibility of phenolic compounds
in cocoa shell flour and in an extract obtained from cocoa shell flour through an in vitro di-
gestion model, as well as to investigate the antioxidant capacity in vitro by using intestinal
and hepatic cell culture models (IEC-6 and HepG2 cells).

2. Experiments
2.1. Materials

Dulbecco’s Modified Eagle’s Medium (DMEM) and 0.25% trypsin-EDTA were pur-
chased from GE Healthcare Life Sciences. Fetal Bovine Serum (FBS) and penicillin/
streptomycin (100×) were obtained from Gibco Life Technologies. Chlorogenic acid,
Folin–Ciocalteu reagent, 2,21-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) diammo-
nium salt (ABTS), potassium persulfate, (±)-6-Hydroxy-2,5,7,8-tetramethylchromane-2-
carboxylic acid (Trolox), tert-butyl hydroperoxide (t-BOOH), dimethyl sulfoxide (DMSO),
2′,7′-dichlorodihydro-fluorescein diacetate (DCFDA), quercetin, and insulin were pur-
chased from Sigma Chemical (Sigma-Aldrich, St. Louis, MO, USA). All other chemicals
and reagents were obtained from Panreac unless otherwise specified. Cocoa shell was
kindly supplied by Chocolates Santocildes (Castrocontrigo, León, Spain).

2.2. Cocoa Shell Flour and Aqueous Extract Preparation

Cocoa shell was ground in a mill, obtaining cocoa shell flour. The cocoa shell extract
was prepared according to the extraction conditions described by Aguilera et al. [10].

2.3. In Vitro Simulated Digestion

In vitro simulated gastrointestinal digestion was performed following the harmonized
INFOGEST method [11] with slight modifications. In vitro simulated colonic digestion was
carried out according to Papillo et al. [12].

2.4. Extraction and Analysis of Total Phenolic Compounds and Antioxidant Capacity
2.4.1. Extraction of Free and Bound Phenolic Compounds

Free and bound phenolic compounds were extracted according to the method de-
scribed by Rebollo-Hernanz et al. [13]. For the extraction of free phenolic compounds,
cocoa shell flour (1 g) was mixed with 50 mL of a solution of methanol: HCl (1‰)–water
80:20 (v/v). The mixture was ultrasonicated for 30 min, incubated under agitation (40 ◦C,
16 h), and finally centrifuged at 4000× g for 10 min, collecting the supernatants obtained.
The extraction process was repeated twice without incubation. The extracts obtained were
mixed and concentrated using a rotary evaporator. The residue obtained was reserved for
the extraction of bound phenolic compounds. A total of 5 mL of NaOH 4 mol L−1 was
added to the residue. Subsequently, the sample was stirred under nitrogen gas for 1 h,
and then the pH was adjusted to 2.0. The sample was centrifuged at 4000× g for 10 min,
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collecting the organic fraction. Finally, three additional extractions were performed with
methanol: HCl (1‰)–water 80:20 (v/v). The supernatants collected from each extraction
were mixed and concentrated using a rotary evaporator.

2.4.2. Total Phenolic Compounds

Total phenolic compounds were analyzed by the Folin–Ciocalteu assay [13]. The
experiment was carried out in a 96-well microplate. Briefly, 10 µL of the sample, 150 µL
of Folin–Ciocalteu reagent (diluted 1:14, v/v in Milli-Q water), and 50 µL of Na2CO3 20%
were added to each well. The plate was incubated in the dark at room temperature for 2 h.
Absorbance was measured at 750 nm in a microplate reader. A standard gallic acid curve
(0.01–0.2 mg mL−1) was performed, and the results were expressed as milligrams of gallic
acid equivalents per gram (mg GAE g−1).

2.4.3. In Vitro Antioxidant Capacity

Antioxidant capacity was assessed by the ABTS˙+ assay [14]. 2,2′-Azino-bis(3-
ethylbenzothiazoline-6-sulfonic) acid radical cations (ABTS˙+) were obtained by react-
ing 7 mmol L−1 ABTS solution with 2.45 mmol L−1 potassium persulfate and stirring it
in the dark at room temperature for 16 h before use. The ABTS˙+ solution obtained was
diluted in 5 mmol L−1 PBS, pH 7.4, by adjusting the solution to an absorbance of 0.70 at
734 nm. The assay was carried out in a 96-well microplate by adding 30 µL of the sample
and 270 µL of the diluted solution ABTS˙+ to each well. After 10 min of incubation, the
absorbance was read at 734 nm on a microplate reader. A calibration curve was made using
Trolox as a standard solution (0–0.06 mg mL−1). The results were expressed as milligrams
of Trolox equivalent per gram (mg TE g−1).

2.5. Cell Culture

HepG2 and IEC-6 cells were kindly provided by Dr. Blanca Hernandez-Ledesma and
the Bioanalytical Techniques Unit (BAT) from the Food Science Research Institute (CIAL)
(Madrid, Spain), respectively. HepG2 cells were cultured in Dulbecco’s Modified Eagle’s
Medium supplemented with 10% FBS, 1% L-glutamine, and 1% penicillin/streptomycin.
IEC-6 cells were cultured in DMEM, supplemented with 10% FBS, 1% L-glutamine, 1%
penicillin/streptomycin, and 0.1 U mL−1 insulin. Cells were grown in a humidified
incubator containing 5% CO2 and 95% air at 37 ◦C.

2.5.1. Cell Viability

HepG2 and IEC-6 cells were seeded at 5 × 105 cells mL−1 in 96-well plates. After 24 h,
cells were treated with CSF and CSE diluted in DMEM culture medium (50–1000 µg mL−1)
and incubated for 24 h at 37 ◦C in a humidified atmosphere. Cell viability was measured
using the CellTiter 96® AQueous (MTS) assay (Promega Corporation, Madison, WI, USA)
according to the manufacturer’s instructions. The noncytotoxic concentrations were used
in further experiments.

2.5.2. Determination of Reactive Oxygen Species (ROS)

The production of reactive oxygen species was quantified by the dichlorofluorescein
assay [15]. The cells were treated with CSF and CSE extracts (50–500 µg mL−1) for 24 h.
After pretreatment, DCFDA (25 µM) was added for 30 min. The cells were washed with
PBS. Afterward, the cells were treated with CSF and CSE extracts for 1 h. Tert-butyl
hydroperoxide was used as an oxidant. The fluorescent intensity of the cell suspensions
was detected using a fluorescence spectrophotometer. Excitation and emission wavelengths
were 485 and 530 nm, respectively.

2.6. Statistical Analysis

Statistical analysis was performed using the statistical program SPSS 26.0. The results
were expressed as mean ± standard deviation (SD) (n = 3). The data were analyzed by one-
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way analysis of variance (ANOVA) and post hoc Tukey’s test. Differences were significant
at p < 0.05.

3. Results
3.1. Bioaccessibility of Total Phenolic Compounds and Antioxidant Activity

The effect of in vitro digestion on the total phenolic compound content of cocoa shell
flour is shown in Figure 1A. Digested cocoa shell flour exhibited a significantly lower
TPC content (p < 0.05) compared to undigested CSF. Significant differences (p < 0.05)
were found between all digestion stages. Bioaccessibility increased significantly (p < 0.05)
from the gastric to the intestinal phase and decreased in the colonic phase (p < 0.05).
Likewise, TPC’s content in CSE (Figure 1B) was higher in the undigested extract. No
significant differences (p < 0.05) were observed between the gastric and intestinal phases’
bioaccessibility. Bioaccessibility decreased from the intestinal to the colonic phase.

Med. Sci. Forum 2021, 2, 5 4 

detected using a fluorescence spectrophotometer. Excitation and emission wavelengths 
were 485 and 530 nm, respectively.

2.6. Statistical Analysis
Statistical analysis was performed using the statistical program SPSS 26.0. The results 

were expressed as mean ± standard deviation (SD) (n = 3). The data were analyzed by one-
way analysis of variance (ANOVA) and post hoc Tukey’s test. Differences were significant
at p < 0.05. 

3. Results
3.1. Bioaccessibility of Total Phenolic Compounds and Antioxidant Activity 

The effect of in vitro digestion on the total phenolic compound content of cocoa shell
flour is shown in Figure 1A. Digested cocoa shell flour exhibited a significantly lower TPC
content (p < 0.05) compared to undigested CSF. Significant differences (p < 0.05) were
found between all digestion stages. Bioaccessibility increased significantly (p < 0.05) from
the gastric to the intestinal phase and decreased in the colonic phase (p < 0.05). Likewise,
TPC’s content in CSE (Figure 1B) was higher in the undigested extract. No significant dif-
ferences (p < 0.05) were observed between the gastric and intestinal phases’ bioaccessibil-
ity. Bioaccessibility decreased from the intestinal to the colonic phase.

Figure 1. Total phenolic compounds in cocoa shell flour (A) and cocoa shell extract (B), and antiox-
idant capacity of cocoa shell flour (C) and cocoa shell extract (D) in the different stages of simulated 
in vitro digestion. Data are presented as mean ± SD (n = 3). Different letters among bars indicate
significant (p < 0.05) differences between samples.

Und
ige

ste
d

Gas
tric

Int
es

tin
al

Colo
nic

An
tio

xi
da

nt
 c

ap
ac

ity
 (m

g 
TE

 g
−1

)

Und
ige

ste
d

Gas
tric

Int
es

tin
al

Colo
nic

0

20

40

60

80

An
tio

xi
da

nt
 c

ap
ac

ity
 (m

g 
TE

 g
−1

)

a

b b

c

Und
ige

ste
d

Gas
tric

Int
es

tin
al

Colo
nic

0

20

40

60

80

TP
C

 (m
g 

G
AE

 g
−1

)

a

b
b

c

Und
ige

ste
d

Gas
tric

Int
es

tin
al

Colo
nic

0

10

20

30

40

TP
C

 (m
g 

G
AE

 g
−1

)

a

b
c

d

A B

C D

Figure 1. Total phenolic compounds in cocoa shell flour (A) and cocoa shell extract (B), and antioxi-
dant capacity of cocoa shell flour (C) and cocoa shell extract (D) in the different stages of simulated
in vitro digestion. Data are presented as mean ± SD (n = 3). Different letters among bars indicate
significant (p < 0.05) differences between samples.

In vitro antioxidant activity showed similar behavior. The antioxidant activity of CSF
(Figure 1C) increased through the digestive process, being lower (p < 0.05) in the gastric
phase than in the intestinal and colonic phases. The antioxidant activity of CSE (Figure 1D)
increased significantly (p < 0.05) from the gastric phase to the intestinal and colonic phases.
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3.2. Evaluation of CSF and CSE Cytotoxicity

A cell viability assay was performed to determine nontoxic concentrations of CSF and
CSE in HepG2 and IEC-6 cells. No significant decrease (p < 0.05) in cell viability was ob-
served compared to untreated control cells when cells were treated with CSF at the highest
concentration (1000 µg mL−1). In cells treated with CSE (intestinal extract) at 1000 µg mL−1,
a significant reduction (p < 0.05) in cell viability was observed compared to untreated con-
trol cells. Thus, noncytotoxic concentrations in intestinal and hepatic cells (50–500 µg mL−1)
were selected to study their effect in preventing intracellular ROS formation.

3.3. Effect of CSF and CSE on ROS Production

CSF and CSE’s effect on induced intracellular ROS was evaluated in intestinal (IEC-6)
and hepatic (HepG2) cells. Oxidation was induced by t-BOOH, which significantly in-
creased (p < 0.05) intracellular ROS production. In contrast, quercetin significantly reduced
induced ROS formation (p < 0.05). HepG2 and IEC-6 cells treated with CSF and CSE
(50–500 µg mL−1) evoked a significant reduction (p < 0.05) in the cellular ROS generation.

4. Discussion

Cocoa shell is an agro-food by-product that is currently discarded and could be
revalued due to its high concentration of bioactive compounds [16]. The present study in-
vestigated for the first time the bioaccessibility of the antioxidant compounds contained in
cocoa shell flour and a cocoa shell extract by in vitro enzymatic digestion. The knowledge
generated in this study is essential since phenolic compounds released from cocoa shells
can exert antioxidant activity. TPC’s low bioaccessibility in cocoa flour might be due to the
fact that phenolic compounds in vegetable matrices are bound to nondigestible components
resistant to digestion, mainly dietary fiber [17]. Several studies have shown that cocoa shell
contains a high amount of dietary fiber [18]. Phenolic compounds that are bound to dietary
fiber and not released in the gastrointestinal tract can reach the colon intact and can be
released by microflora bacteria, promoting an antioxidant environment [19]. Moreover, the
bioaccessibility of bound phenolic compounds can be increased by using processing tech-
nologies, such as mechanical treatment, thermal treatment, or extrusion cooking [20]. The
antioxidant capacity of CSF and CSE is attributed to the presence of phenolic compounds.
The simulated digestive process released phenolic compounds with antioxidant capacity
from the matrix. Antioxidant capacity could play an important role in protecting against
oxidative damage [21]. To determine CSF and CSE’s potential in preventing oxidative
damage, intestinal and hepatic cells were used. Our results show that polyphenols from
the digested samples managed to inhibit and reverse the production of ROS, protecting the
cells from oxidation. Some studies have shown the ability of cocoa and cocoa shell phenolic
extracts to protect cells from oxidative stress [22,23]. However, this study describes for
the first time the effect of digested cocoa shells on the formation of intracellular ROS. Our
study confirms that cocoa shells represent a potential source of antioxidant compounds
potentially bioavailable, which can protect cells from oxidative stress.

5. Conclusions

In conclusion, the cocoa shell is an agri-food by-product that can be revalued for
use as a novel food ingredient since it is a source of potentially bioavailable antioxidant
compounds that can protect cells from oxidative stress.
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