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1. Introduction

Optomechanical manipulation, demon-
strated by Ashkin,[1] opened numerous
venues in fundamental and applied sci-
ence, e.g., in Refs. [2–4] Classical configu-
rations of optical tweezers include a high
numerical aperture objective, which
focuses a laser beam into a small yet dif-
fraction-limited spot. Typically, zero-order
Gaussian beams are the preferable choice
for achieving a stable trapping. In the case
of subwavelength particles, the main con-
tributing terms are the gradient force and
radiation pressure—finding a balance
between those two enables immobilizing
an object. While this classical configuration
has been widely explored and used nowa-
days, introducing new degrees of freedom
in optomechanical manipulation is the
subject of intensive research. Those inves-
tigations are partially inspired by new
microfluidic applications, where fast
sorting[5–7] and mixing[8] of colloidal
substances are essential functions to have.
Optomechanical tools are also frequently

used in biological and biomedical investigations, where noninva-
sive in vivo manipulations are done with tissue-penetrating laser
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Focused laser beams allow controlling the mechanical motion of objects and can
serve as a tool for assembling micro and nanostructures in space. While small
particles mainly experience attractive gradient forces and repulsive radiation
pressure, introducing additional flexibility suggests approaching new capabilities.
Herein, optical forces acting on a high refractive index sphere in a focused
Gaussian beam are analyzed and new regimes are revealed. Multipolar analysis
allows separating an optical force into interception and recoil components,
resulting in different mechanical actions. In particular, interplaying interception
radial forces and multipolar resonances within a particle can lead to either trapping
or antitrapping, depending on the system parameters. At the same time, the recoil
force generates a significant azimuthal component along with an angular-
dependent radial force. Those contributions enable enhancing either trapping or
antitrapping and also introduce bending reactions. These effects are linked to the
far-field multipole interference and, specifically, to asymmetric scattering patterns.
The latter approach is extremely useful, as it allows assessing the nature of
optomechanical motion by observing far-fields. Multipolar engineering of optical
forces, being quite a general approach, is not necessarily linked to simple spherical
shapes and paves a way to new possibilities in microfluidic applications, including
sorting and microassembly.
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beams.[9–11] Furthermore, light-assisted targeted drug delivery
(yet in vitro)[12,13] and biosensing[14] are areas where a flexible
optomechanical manipulation can find use.

Enlarging a number of optomechanical degrees of freedom
can be obtained with three fundamentally different approaches;
at least the main reports in the field can be classified by the
following logic. The first method is based on shaping a laser
beam. One of the main experimental techniques here is to
use holographic masks, either static[15,16] or reconfigurable[17,18]

(spatial light modulators are typically used in the latter case).
Holographic optical tweezers are used to trap multiple particles
simultaneously.[19] Holographic masks are also used to generate
non-Gaussian beams for optical trapping, e.g., Bessel beams[20,21]

and beams with inherent orbital angular momentum.[22,23]

Another approach to flexible manipulation is to introduce aux-
iliary photonic structures, which assist configuring optical forces.
Getting started with the goal of nanoscale localization of particles
beyond the classical diffraction limit, the plasmonic tweezers
concept[4,24] and related auxiliary tools were found to be an
efficient approach for tailoring nanoscale mechanical motion
with light.[25–28] For example, hyperbolic metamaterials and
metasurfaces introduced a bunch of new effects, including
tractor beams, antitrapping, and several others.[29–35] Other types
of auxiliary optomechanical structures include metalenses,[36]

laser-printed manipulators,[37] plasmonic Archimedes spiral
lenses,[38] photonic hooks,[39,40] photonic nanojets[41–43] and
many others.

The last method, to be mentioned in this context, is to shape a
particle itself. In a vast majority of cases, optomechanical manip-
ulation is conducted on spherical particles. Those are typically
made of transparent low-index dielectric materials[44,45] or plas-
monic metals.[46,47] In both cases, however, particles’ polarizabil-
ity is linked to its dipolar response and governs the interaction.
Here, the balance between gradient forces and radiation pressure
dictates the dynamics.[48] The latter can be quite complex due
to nontrivial near fields, created by auxiliary structures.[49–51]

However, high-index dielectric particles supporting a variety of
Mie resonances[52,53] introduce new interaction channels beyond
simple dipolar polarizability terms.[54,55] For example, coherent
interaction between the electric and magnetic responses of sili-
con particles was shown to provide either pulling or pushing
forces, depending on system parameters.[56] Sorting of silicon
particles with laser beams was shown in the study by Shilkin
et al.[57] Core�shell geometries allow designing multipole reso-
nances within a structure.[58]

Careful tailoring of multipole interference can provide supe-
rior capabilities to control optical forces. Intuitively, a proper
combination of multipoles can lead to quite arbitrary far-field
scattering patterns. As a result, recoil forces can be flexibly engi-
neered, though electromagnetic interactions in their complete
form should be addressed—this is the goal of this article.
The influence of conservative and nonconservative forces on
particles’ dynamics will be studied, and novel optomechanical
effects delivered by different electric and magnetic multipoles
will be introduced.

The article is organized as follows. After discussing the math-
ematical formulation of optical forces and linking them to mul-
tipolar expansion, conditions for trapping/antitrapping will be
introduced. The detailed studies of force components will follow,

unraveling the emergence of new enhanced trapping, antitrap-
ping, and bending phenomena.

2. Optical Forces in Multipolar Description

A typical setup under consideration is shown in Figure 1, show-
ing an interaction of an optical beam with a particle. Typically,
optical trapping is conducted with a focused Gaussian beam,
which will be used here. The formalism, however, can be
extended to an arbitrary waveform by applying a plane wave
expansion (discussed below, e.g., in the study by Kashter
et al.[59]). As plane wave scattering on a sphere has closed-form
analytical solutions (Mie theory), optical force computation rely-
ing on the knowledge of self-consistent electromagnetic fields is
also computationally efficient. Figure 1 shows the layout, which
will be used for the subsequent investigations. A spherical parti-
cle is situated at the waist of a linearly polarized Gaussian beam.
The forces will be analyzed at the focal plane, transverse to the
propagation direction (Figure 1a). The emphasis will be done on
far-field scattering diagram analysis (panel (b)), which will be
responsible for controlling trapping/antitrapping conditions.

Time-averaged optical force ( Fh i) is calculated by integrating

Maxwell’s stress tensor (T
↔
) over a virtual surface (S) enclosing the

particle.

Fh i ¼ 1
2
Re

I
S

T
↔
⋅ndS (1)

where n is an outward normal to the enclosing surface.
Hereinafter, we will use phasor notation, considering e�iωt as
the time dependence. The medium enclosing the particle is
assumed to be vacuum. In this case the stress tensor is given by

T
↔
¼ ε0E ⊗ E� þ μ0H ⊗ H� � 1

2
ε0E ⋅ E� þ μ0H ⋅H�ð Þ I↔ (2)

where E ¼ Einc þ Esca and H ¼ Hinc þHsca are total self-
consistent electromagnetic fields, decomposed into the sum of
incident and scattered contributions. As the shape and size of
the enclosing surface does not affect the resulting force, as
shown in Equation (1), a sphere with a radius ensuring far-field
conditions on its boundary will be chosen. In this case, the total
force can be decomposed into two contributions.

IFh i ¼ lim
r!∞

I
S

Re � 1
2

ε0Einc ⋅ E�
sca þ μ0Hinc ⋅H�

scað Þn
� �

dS

RFh i ¼ � 1
4
lim
r!∞

I
S

Re ε0Esca ⋅ E�
sca þ μ0Hsca ⋅H�

scað Þ ⋅ n½ �dS

¼ � 1
2
lim
r!∞

I
S

Re ε0Esca ⋅ E�
scað Þ ⋅ n½ �dS

(3)

where IFh i (interception or extinction force) emerges from the
interference between incident and scattered fields, whereas RFh i
(recoil force) depends only on scattering. The latter is governed by
multipolar interference, as shown in other studies.[60–63] The recoil
force can be directly linked to the scattering diagram asymmetry.[64]

Multipolar decomposition of the far-field is given by[65]
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(
Esca rð Þ ¼ k2

4πε0
eikr0
r0

n� p� nð Þ þ 1
c m� nð Þ þ ik

2 n� n� Qe ⋅ nð Þ½ � þ ik
2c n� Qm ⋅ nð Þ� �

Hsca rð Þ ¼ 1
μ0
Bsca rð Þ ¼ 1

Z n� Esca rð Þ (4)

where Z is the wave impedance and the expansion is made up of
the quadrupole order. Multipolar moments (electric and mag-
netic dipoles, electric and magnetic quadrupoles, respectively)
are given by

p ¼ ε0αeEinc, m ¼ αm
μ0

Binc, Qe ¼ ε0αQe
∇Einc þ Einc∇

2
,

Qm ¼ αQm

μ0

∇Binc þ Binc∇
2

(5)

where the relation ∇Aþ A∇ð Þij ¼ ∂iAj þ ∂jAi is used.
Polarizabilities are linked to Mie coefficients (a1, a2, b1, and
b2

[66]) as follows:

αe ¼ i
6π
k3

a1, αm ¼ i
6π
k3

b1, αQe ¼ i
40π
k5

a2, αQm ¼ i
40π
k5

b2

(6)

By substituting Equation (4) into (3), the following force
decomposition is obtained:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

Fih i ¼ IFih i þ RFih i
IFih i ¼ 1

2 Re pj∇iE�
inc,j

h i
þ 1

2 Re mj∇iB�
inc,j

h i
þ 1

4 Re Qeð Þjk∇i∇kE�
inc,j

h i
þ

þ 1
4 Re Qmð Þjk∇i∇kB�

inc,j

h i
RFih i ¼ � k4

12πε0c
Re εijkpjm�

k

h i
� k5

40πε0
Im Qeð Þijp�j

h i
� k5

40πε0c2
Im Qmð Þijm�

j

h i
�

� k6
240πε0c

Re εijk Qeð Þlj Qmð Þ�lk
h i

, i, j, k can be x, y, or z

(7)

Figure 1. a) A particle in a Gaussian beam with w0 beam waistþ coordinate system. b) An example of scattered field formation by interfering magnetic
dipole (my) and a magnetic quadrupole (Qm

xy) for θ¼ 0 and (Qm
yy) for θ¼ π/2. The asymmetry of the far-field scattering pattern leads to recoil forces

shown by arrows. c) Transverse component of a gradient optical force, acting on a subwavelength dipolar particle. Black point indicates the position,
where the subsequent calculations are carried out.
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This expression, as Equation (4), includes contributions up to
quadrupole order, which is typically sufficient for describing
interactions with submicrometer particles having refractive indi-
ces about 3�4. Equation (7) includes self-consistent electromag-
netic fields and their spatial derivatives. It is worth noting that
these expressions include cross-terms resulting from far-field
interference of multipole contributions. Intuitively, their appear-
ance can be understood by revising a simplified scenario.
Consider optomechanical interactions with a Kerker particle,
where constructive interference of electric and magnetic dipoles
leads to the backscattering suppression. As a result of this rather
dramatic scattering diagram reshaping (recall that a Gaussian
beam can be decomposed into a sum of plane waves), new trans-
verse forces, orthogonal to both gradient contribution and the
radiation pressure, can emerge.[54]

To verify the contribution of different multipoles and justify
the series truncation at the quadrupolar term in Equation (7),
scattering efficiency of a silicon 140 nm-radius nanoparticle was
calculated. From Figure 2 we can see that, in this particular
case, electric and magnetic octupoles (OE and OM) provide
minor contribution to the interaction and they can be safely
neglected. It is worth noting that in this investigation we use
spherical multipoles as a basis. In this case, toroidal moments,
which should be explicitly introduced in Cartesian expansion,
are included by construction.

While the formalism of Equation (7) allows calculating optical
forces, it can be further modified and brought to the form, where
the link between scattering pattern asymmetry and recoil forces
is evident. After some mathematical manipulations, the recoil
force is given by

RFh i ¼ � 1
c

I
S

Ip þ Im þ IQe þ IQm þ cε0Re EQe ⋅ E�
m þ EQm ⋅ E�

p
� �� �

⋅ ndS�

�
I
S

ε0Re Ep ⋅ E�
m þ EQe ⋅ E�

Qm þ EQe ⋅ E�
p þ EQm ⋅ E�

m

h i� 	
⋅ ndS

(8)

where far-field intensities Ip, Im, IQe , IQm are obtained by substi-
tuting the electric field of the standalone multipole into the
expression I ¼ cε0

2 E ⋅ E� and all the subscripts correspond to
the field scattered from the indicated multipole. Electric fields
of multipoles can be either symmetric (do not change their sign
when the vector n is replaced by �n in Equation (4) for Ep, EQm )
or antisymmetric (in the opposite case: Em, EQe ). Consequently,
multiplying the fields of different symmetry leads to an angular
asymmetry in the cross-terms of Equation (8). Considering this
behavior, and due to the fact that single multipoles have a sym-

metric intensity distribution, the first integral in Equation (8)
vanishes, which leads to the simplified form of the recoil force.

RFh i ¼ �
I
S

ε0Re Ep ⋅ E�
m þ EQe ⋅ E�

Qm þ EQe ⋅ E�
p þ EQm ⋅ E�

m

h i� 	
⋅ ndS

(9)

Transverse components of the recoil optical force can be cal-
culated by projecting vectorial force on the Cartesian coordinate
system as follows:

RFpm
x ¼ � k4

12πε0c
Re pym�

z � pzm�
y

h i
; RFpm

y ¼ � k4

12πε0c
Re pzm�

x � pxm�
z½ �

RFQeQm

x ¼ � k6

240πε0c
Re

Qeð Þxy Qmð Þ�xz � Qeð Þxz Qmð Þ�xy þ Qeð Þyy Qmð Þ�yz � Qeð Þyz Qmð Þ�yyþ
þ Qeð Þzy Qmð Þ�zz � Qeð Þzz Qmð Þ�zy

" #

RFQeQm

y ¼ � k6

240πε0c
Re

� Qeð Þxx Qmð Þ�xz þ Qeð Þxz Qmð Þ�xx � Qeð Þyx Qmð Þ�yz þ Qeð Þyz Qmð Þ�yx�
� Qeð Þzx Qmð Þ�zz þ Qeð Þzz Qmð Þ�zx

" #

RFQep
x ¼ � k5

40πε0
Im Qeð Þxxp�x þ Qeð Þxyp�y þ Qeð Þxzp�z

h i
RFQep

y ¼ � k5

40πε0
Im Qeð Þyxp�x þ Qeð Þyyp�y þ Qeð Þyzp�z

h i
RFQmm

x ¼ � k5

40πε0
Im Qmð Þxxm�

x þ Qmð Þxym�
y þ Qmð Þxzm�

z

h i
RFQmm

y ¼ � k5

40πε0
Im Qmð Þyxm�

x þ Qmð Þyym�
y þ Qmð Þyzm�

z

h i

(10)

Equation (10) provides explicit expressions underlining the
link between the scattered pattern asymmetry and attraction/
repulsion recoil forces.

The next step is to analyze the conditions, at which optical
forces acting on a small particle are significantly different from
the standard case, where only dipolar polarizability is taken into
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account. The typical trapping layout is shown in Figure 1. The
following parameters are considered: the beam waist
w0¼ 5 μm (loosely focused beam) and electrical field amplitude
(at the beam’s center) E0¼ 106[Vm�1]. The beam is linearly
polarized along x-axis and the Continuous Wave laser

wavelength is the subject to the forthcoming parametric study.
Silicon nanoparticle is placed r¼ w0/2 (black point in
Figure 1a), whereas the azimuthal angle θ is a variable.

Angular spectral decomposition of a Gaussian beam is used to
calculate the scattering pattern.[67] Fourier series for electric and
magnetic fields is given as follows.

Einc x, y, zð Þ ¼
Zþ∞

�∞

Z
Ê kx , ky; 0
� �

ei kxxþkyyþkzzð Þdkxdky

Hinc x, y, zð Þ ¼
Zþ∞

�∞

Z
Ĥ kx , ky; 0
� �

ei kxxþkyyþkzzð Þdkxdky
(11)

where Ê kx , ky; 0
� �

and Ĥ kx , ky; 0
� �

are the field amplitudes at the
beam waist and ki, i ¼ x, y, z are the wave vector components in
the Cartesian coordinate system. For x-axis linearly polarized
fundamental mode, the electric field Einc ¼ Ex , 0,Ezð Þ can be
written in as

Êx kx , ky; 0
� � ¼ E0

w2
0

4π
e� k2xþk2yð Þw204 (12)

where the longitudinal z-component is insignificant (in more
complex scenarios though it plays an important role[68]). Using
Faraday’s law, the magnetic field components are straightfor-
wardly derived. Finally, the incident fields are given by

Einc x, y, zð Þ ¼
Zþ∞

�∞

Z
Êx kx , ky; 0

� � 1
kz

kznx � kxnz½ �ei kxxþkyyþkzzð Þdkxdky

Hinc x, y, zð Þ ¼ Z�1
Zþ∞

�∞

Z
Êx kx, ky; 0

� � 1
kkz

�kxkynx þ k2x þ k2zð Þny � kykznz
� �

ei kxxþkyyþkzzð Þdkxdky

(13)

where ni, i ¼ x, y, z are unitary vectors.

3. Force Analysis

3.1. Antitrapping Conditions

Given the aforementioned plane wave decomposition of the beam,
theMie problem is solved and self-consistent electromagnetic fields
are calculated. Then, those fields are introduced within Equation (7)
and optical forces are calculated. Figure 3 shows the results of the
parametric study, where the transverse forces (Fx (θ;¼ 0) and Fy
(θ¼ π/2)) are investigated as the function of the particle radius
and the illumination wavelength. The colored areas on the map cor-
respond to the antitrapping regime, whereas the grayscale parts
show conditions where typical trapping takes place (recall the
particle’s position and coordinate system, defined in Figure 1). A
140 nm-radius silicon (material dispersion is from the study by
Schinke et al.[69]) particle is used in the subsequent studies.

The examination of the results from Figure 3 shows the emer-
gence of antitrapping regime, which is quite unusual to typical
optical trapping scenarios, when low-contrast particles are in use.
It is also worth noting that panels (a) and (b) are not entirely
symmetric—this is the result of the well-defined polarization

of the incident beam, which affects the interference terms in
Equation (10) quite differently. In other words, the asymmetry
of Fx and Fy is a direct consequence of the recoil forces’ radial
component contribution. To prove this statement, we will con-
sider the angular dependences of the interception and recoil
forces for both, the radial and azimuthal components.

3.2. Antitrapping: Angular Dependence

As previously mentioned, linear polarization breaks the rotational
symmetry of the problem and, hence, the optical force has an angu-
lar dependence. Figure 4 shows this behavior, where we have made
the transition between Cartesian and cylindrical coordinate systems.
The surfaces have color gradients along θ and underline the non-
uniform angular dependence. Overall, the optical force is not radial
(typical conservative gradient force), which will lead to nontrivial
particle’s trajectories, as will be discussed later. This angular depen-
dence of the radial force is especially pronounced for shorter wave-
lengths, where higher-order multipoles play a role (Figure 2).

The sign of the radial component of the force dictates whether
the regime is trapping or antitrapping. As we will next show, the
angular asymmetry of radial component, shown in Figure 4a, is a

Figure 2. Scattering efficiency of a silicon 140 nm-radius nanoparticle—
total scattering efficiency and multipolar contributions (multipole abbre-
viations appear in the legend).
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direct consequence of the interplaying interception and recoil
components. The azimuthal component, in contrast, has a sym-
metric angular distribution (relative to π/4 angle) and is respon-
sible for the deviation of the particle’s trajectory from radial
motion. It drives the particle toward the x- or y-axis depending
on wavelength (see Figure S2, Supporting Information).

Figure 5a shows the interception force in the focal plane,
containing the beam waist. Interception forces are dominated
by a gradient-derived radial component not depending on the
angle.[70–72] Similar considerations were made by observing mul-
tipolar particle in a Bessel beam.[73] It is worth noting that the
conservative nature of the interception force in the beam waist
is determined exclusively by the structure of the electromagnetic
field. A flat wave front in the waist plane causes the light pressure
force acting on individual multipoles to be directed strictly along
the beam propagation direction with no contribution to the trans-
versal force. This effect does not depend qualitatively on the size
and material of the particle, provided that the latter is spherical
and isotropic.

Longitudinal forces can be compensated with several experi-
mental techniques, including counter propagating beams and
operation against the gravity. Other force components can be
than disentangled from the longitudinal contribution and stud-
ied directly.

In optical tweezers, the intensity gradient value is negative at
the point in space where the particle is localized in our study and,
to obtain an antitrapping interception force in a dipole, a negative
real part of the polarizability is needed. This is possible for plas-
monic materials like silver but not for a low-contrast nanoparti-
cle. However, it should be noted that, for the material considered
in the present study, when more multipoles are excited, the sign
of the interception force, determined by the sign of the corre-
sponding standalone multipole polarizability (Equation (6)),
may be negative, resulting in the existence of a repulsive force
for nonmetallic materials (see details in Figure S3, Supporting
Information).

The recoil force can also be divided into radial and azimuthal
components.[62,63] Figure 5b shows that the angular dependence

Figure 4. Force components’ color surfaces. a) Fr and b) Fφ as a function of the illumination wavelength and angular position of the particle with respect
to the beam polarization (Figure 1). For panel (a), color regions correspond to the antitrapping regime, whereas grayscale areas correspond to an
attractive force. For panel (b), color regions correspond to the azimuthal component of the force that deflects the particle trajectory toward the y-axis
and grayscale areas toward the x-axis (see Figure S1, Supporting Information).

Figure 3. Forces color maps, as a function of particle’s radius and the illumination wavelength. a) Fx, θ¼ 0 and b) Fy, θ¼ π/2. Color regions correspond to
the antitrapping regime. Grayscale areas correspond to conditions for an attraction force. The insets show the positions of the particle in the beam waist.
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of the total radial force (Figure 4) is completely determined by the
recoil force. The latter depends on the phase difference between
pairs of interacting multipoles, as shown in Equation (9).
Comparing Figures 4(b) and 5(c) we note that the recoil force
is responsible for increasing the azimuthal component.

3.3. Multipole Analysis of Optical Forces

While the general behavior of interception and recoil forces was
analyzed in the previous section, the contribution of multipoles
will be analyzed next. Figure 6a,b shows the radial force spectra
underlining the interception and recoil force term contributions.
The areas of interest are those where the force is positive (anti-
trapping regime).

To get a closer inspection of the behavior shown in Figure 6,
multipolar components will be investigated in detail. Several
characteristic points have been selected (shown in Figure 6a,b)
with vertical gray dashed lines). 1) Point “A” (λ ¼ 500 nm), in
the x-axis direction (θ¼ 0) and y-axis direction (θ¼ π/2), optical
“trapping” is observed (the value of the net force is negative [see
Figure 6a,b]), whereas the main contribution to the force is made
by the recoil term (the value of the interception term can be
neglected). 2) Point “B” (λ ¼ 555 nm), optical “bending” is
obtained. At θ¼ 0, the trapping effect is observed, whereas at

θ¼ π/2, the value of the net force changes sign to “plus” and
the particle is pushed out of the beam. The sign of the net force
in this case is determined by the recoil term (as the value of the
interception term is always negative and does not depend on the
angle θ). 3) Point “C” (λ ¼ 620 nm), for any angle θ, the “antitrap-
ping” effect is observed, whereas the contributions of the inter-
ception term and interference multipole terms to the value of the
net force are comparable. 4) Point “D” (λ ¼ 700 nm), there is also
an angle-independent “anti-trapping” effect in this case defined
by the conservative interception force component. The influence
of the recoil term is insignificant.

Figure 6c,d shows the far-field patterns for conditions of
points “A”, “B”, “C”, and “D.” Relationships between the angular
asymmetry of the radiation patterns in the plane of the beam
waist and the recoil force, arising from the interaction between
the multipoles, can be seen. The asymmetry is the result of the
fact that the integrand in Equation (9) can have both negative and
positive values. The construction of an asymmetric radiation pat-
tern of interacting multipoles is a good heuristic method for
determining the direction of the recoil optical force vector,
whereas Equation (9) is an alternative way to calculate its numer-
ical value.

The nature of the optical forces described earlier is demon-
strated on vector field maps, showing the spatial distribution

Figure 5. Color surfaces of radial and azimuthal force components, as a function of the illumination wavelength and angular position of the particle.
a) Interception force; b,c) recoil force. Color regions for (a) and (b) correspond to antitrapping regime and grayscale areas correspond to the conditions
for an attractive force. For panel (c), color regions correspond to the azimuthal component of the recoil force that deflects the particle.
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Figure 6. Contribution of the radial interception (green) and recoil components (blue) to the total transversal force (black) acting on a silicon particle
(R¼ 140 nm). a) θ¼ 0 and b) θ¼ π/2. The red dots show the net force obtained by integrating Maxwell’s stress tensor (Equation (1)). Note how inter-
ception forces are angle independent and how both, negative and positive values, are possible. c,d) E-plane scattering patterns. The asymmetry is
obtained by subtracting the intensity angular dependence in the x-axis negative direction from the intensity angular dependence in the x-axis positive
direction (c) and y-axis (d). The scattering asymmetry determines the direction and magnitude of the recoil force. Particle’s location and field polarization
are indicated in the insets.

Figure 7. Spatial distribution of the net force in the xy plane for points “A,” “B,” “C,” and “D.”
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of the net force F (Figure 7). For “C” and “D,” the force is pre-
dominantly radial, whereas the forces calculated for points “A”
and “B” include a significant azimuthal component (see angular
distribution of azimuthal components of the net force in
Figure S2a, Supporting Information). The radial component
in these cases has a pronounced angular dependence and, for
point B, the force changes sign, allowing for bending in the par-
ticle trajectory from a horizontal direction to a vertical route. The
change in the sign of the total force is the result of the interaction
between the interception and recoil terms (see Figure 5a,b) (see
also vector maps of radial and azimuthal components of the net
force in Figure S1 and S4, Supporting Information).

Next, we will investigate contributions of individual multipole
components to the resulting optical force. Figure 8 shows curves
of different components from Equation (7). As can be seen from
the comparison of Figure 8a,b, the antitrapping at point “D” is
determined by the magnetic components of the optical force IFm

and IFQm
.

Note that for the considered nanoparticle in the spectral win-
dow from 625 to 730 nm, the interception term also makes the
main contribution to the net force. For example, at the wave-
length of 630 nm, the trapping effect is observed, whereas the
main contribution to this phenomenon is made by the electrical
multipole terms of the optical forces IFp and IFQe

. Recall that in
this case, when we consider the terms of the force corresponding
to the interaction of individual multipoles with an external

electromagnetic field, its sign is determined by the phase of these
multipole moments.

On the contrary, the trapping effect observed for point “A” is
determined only by the interference terms RFQep and RFQmm (see
Figure 8c,d). As shown earlier, such a force can be associated
with the asymmetry of the scattered radiation pattern.

Point “B” corresponds to an intermediate scenario where the
contribution of both, interception and recoil terms, must be con-
sidered. However, as the magnitude and sign of the interception
term do not depend on the angle θ, the change of the direction of
the net force and the bending effect is determined by the dipole
interference term RFpm. Point “C” also has contributions from
interception and recoil terms, but, in this case, the dipole�
quadrupole interference term RFQep is the one governing the
force direction. It should be noted that this transverse antitrap-
ping effect, obtained because of the two electric multipole inter-
ferences, is reported for the first time. In a Gaussian beam, the
antitrapping effect was previously obtained only for interfering
electric and magnetic dipoles.[54] Obtaining an antitrapping
regime on the dipole�quadrupole interference of the same
nature moments is inherent for high-index particles only.

We stress that the main difference between cases “C” and “B”
is that, in the former case, as RFQep does not change its sign
depending on the angle θ, the anti-trapping effect is always real-
ized, whereas, in the last case, as the angular dependence of RFpm

is accompanied by a change of sign (Figure 8c,d), a bending

Figure 8. Radial component of the a) total force and multipole expansion of b) interception. c,d) Recoil optical force components, acting on a 140 nm
silicon particle. Total force and multipolar contributions appear in legends: (c) Fr, θ¼ 0 and d) Fr, θ¼ π/2.

www.advancedsciencenews.com www.adpr-journal.com

Adv. Photonics Res. 2021, 2, 2100082 2100082 (9 of 11) © 2021 The Authors. Advanced Photonics Research published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.adpr-journal.com


effect is induced with a trapping regime at θ¼ 0 and antitrapping
at θ¼ π/2.

In addition, we should pay attention to the following.
While the constructive interference between the terms in
Equation (7) has quite a minor impact on the force behavior,
the destructive one does take place and results in a complete nul-
ling of the overall force. This occurs even though there is a mod-
erately high gradient of the field intensity. The total optical force
is equal to zero only for a set of wavelengths and at θ¼ 0 and at
θ¼ π/2 (Figure 8a). There are also areas in which the net force
approaches zero for any angle, although strictly not equal to zero.
These are the regions with a wavelength of 600, 625, and 750 nm
(see the spectral-angular dependences of the contours where net,
interception, and recoil forces are zero in Figure S5, Supporting
Information.).

4. Conclusion

The impact of higher-order multipoles on optomechanical inter-
actions between focused laser beams and high-refractive-index
particles has been investigated. It was shown that a proper bal-
ance between multipolar contributions allows controlling direc-
tion of optical forces, switching between trapping, antitrapping,
and bending regimes almost on demand. In particular, it was
shown that quadrupole moments are responsible for achieving
antitrapping behavior. Furthermore, the interception force acting
on a particle with a high refractive index can change sign depend-
ing on the incident light wavelength. For example, the transverse
antitrapping regime governed by conservative interception forces
(recoil forces in this case can be neglected) corresponds to the
magnetic dipole and quadrupole moments of a particle. This
effect is atypical for the classical optical tweezers, where the trap-
ping regime is usually implemented. A transverse antitrapping
regime can also emerge in the case of interplaying electrical
modes only, where the recoil force dominates. Moreover, the very
special regime of bending, particle’s motion in a curved trajec-
tory, could be also realized via different angle dependencies of
the recoil and interception forces. All those regimes can be
viewed in the light of far-field interference between higher-order
multipoles, where asymmetry factor plays the key role.

Introduction of multipolar degrees of freedom into optome-
chanical interactions enlarges the capabilities of motion control
at the nanoscale, opening a room of opportunities for new pos-
sible applications in optics, biology, medicine, and lab-on-a-chip
platforms.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
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