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We present a family of designer Horndeski models, i.e., models that have a background exactly equal to
that of the ΛCDM model but perturbations given by the Horndeski theory. Then, we extend the effective
fluid approach to Horndeski theories, providing simple analytic formulas for the equivalent dark energy
effective fluid pressure, density, and velocity. We implement the dark energy effective fluid formulas in our
code EFCLASS, a modified version of the widely used Boltzmann solver CLASS, and compare the solution of
the perturbation equations with those of the code HI_CLASS which already includes Horndeski models. We
find that our simple modifications to the VANILLA code are accurate to the level of ∼0.1%with respect to the
more complicated HI_CLASS code. Furthermore, we study the kinetic braiding model both on and off
the attractor, and we find that even though the full case has a proper ΛCDM limit for large n, it is not
appropriately smooth, thus causing the quasistatic approximation to break down. Finally, we focus on
our designer model (HDES), which has both a smooth ΛCDM limit and well-behaved perturbations, and
we use it to perform Markov Chain–Monte Carlo analyses to constrain its parameters with the latest
cosmological data. We find that our HDES model can also alleviate the soft 2σ tension between the
growth data and Planck 18 due to a degeneracy between σ8 and one of its model parameters that
indicates the deviation from the ΛCDM model.
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I. INTRODUCTION

Not long ago, measurements of the distance-redshift
relation from distant Supernovae type Ia (SNIa) revealed
that the Universe is not only expanding as time goes by, it is
actually accelerating [1,2]. The consequences of these
observations are far-reaching and several analyses of the
datasets have been carefully carried out ever since (see
Ref. [3] and references therein). Although there were some
concerns about possible systematic errors, analyses of new
and improved datasets have shown that results in previous
works are robust [4,5]. Moreover, most recent astrophysical
measurements of the cosmic microwave background
(CMB) anisotropies and the distribution of galaxies in
the Universe, when interpreted in the context of the
cosmological constant cold dark matter model (ΛCDM),
are in very good agreement with a late-time accelerating
phase [6,7].
Current Bayesian analyses of astrophysical measure-

ments indicate that ΛCDM beats alternative models [8]. In
spite of being successful at fitting most datasets, ΛCDM
is just a very good phenomenological model as its main
constituents are either unknown or misunderstood. First,

cold dark matter (CDM) has not been directly detected thus
far despite the huge effort this research field has attracted
over the past years [9]. Second, there exists an important
disagreement between both predicted and inferred values of
the cosmological constant Λ whose solution will possibly
lead to new physics [10,11].
Even though reconciling the quantum field theory

prediction with the observed value of the cosmological
constant seems unlikely, it has become clear that a dark
energy (DE) component resembling a cosmological con-
stant not only can alleviate several problems present in a
CDM model but also can drive the current accelerating
expansion of the Universe [12]. Although several mecha-
nisms have been proposed in the literature which could be
responsible for speeding up the Universe, nowadays there
are two main approaches. On the one hand, one finds
modified gravity (MG) models [13]. Einstein’s theory of
general relativity (GR), the theory of gravity that is
assumed in the ΛCDM model, seems to break down on
tiny scales and possibly will require modifications on large
scales to account for current observations [14]. However,
modifying GR can be laborious as several tests carried out
up to cosmological scales agree very well with GR [15–28].
On the other hand, there are DE models [29] which rely on
yet unobserved scalar fields that would dominate the
energy content of the Universe at late times and also avoid
fine-tuning issues [30,31].
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Although DE and MG models are clearly motivated by
different underlying physics, it is possible to study both
kinds of models on the same footing. In an effective fluid
approach departures from GR can be interpreted as an
effective fluid contribution in such a way that comparison
with DE models might become relatively simple [32–36].
When interpreted as fluids, MGmodels can be described by
an equation of state wðaÞ, a sound speed c2sða; kÞ, and an
anisotropic stress πða; kÞ: background is affected by the
behavior of wðaÞ while perturbations are mainly governed
by c2sða; kÞ and πða; kÞ. Since both DE and MG models
predict different behavior for these three functions, in an
effective fluid approach different models can be, to a certain
degree, distinguished.
It is well known that both DE and MG models can

accommodate background astrophysical observations as
well as the standard cosmological model ΛCDM [e.g., the
so-called designer fðRÞ models [37–40]]. As a conse-
quence, these models are degenerated at the background
level even though there have been various attempts to
disentangle them by using model independent approaches
[41,42]. Fortunately, the study of linear order perturbations
might break this degeneracy because DE and MG models
predict different growths of structures and could in prin-
ciple be distinguishable from ΛCDM [39,43].
Given the wide range of both DE and MG models it is

useful to have a unified framework which encompasses
several of them. It turns out that such a theory exists since
1974 when Horndeski found the most general Lorentz-
invariant extension of GR in four dimensions [44]. This
theory can be obtained by using a single scalar field and
restricting the equations of motion to being second order in
time derivatives. The Horndeski Lagrangian comprehends
theories such as kinetic gravity braiding, Brans-Dicke
and scalar tensor gravity, single field quintessence, and
K-essence theories, as well as fðRÞ theories in their scalar-
tensor formulation [45]. Although the range of models
encompassed by the Horndeski Lagrangian was severely
reduced (see, for instance, [46–58]) with the recent dis-
covery of gravitational waves by the LIGO Collaboration
[59], an interesting remaining subclass of models [includ-
ing fðRÞ theories [60–63] and kinetic gravity braiding [64]]
is well worth an investigation.
Recently we employed an effective fluid approach to

study fðRÞ theories [65]. Even though it is not easy to
obtain expressions for quantities describing perturbations
(e.g., pressure perturbation δP) in MG models [66], by
using the quasistatic and subhorizon approximations we
found analytical expressions for the effective DE perturba-
tions as well as the quantities describing the effective DE
fluid, namely, wðaÞ, c2sða; kÞ, and πða; kÞ. We implemented
our approach in the code CLASS

1 [67] and found excellent
agreement with the so-called equation of state (EOS)

approach [68,69], which does not use any approximation.
In this paper we extend our work [65] to the remaining part
of the Horndeski Lagrangian which contains fðRÞ theories
as a special case. Horndeski theories have been imple-
mented in the code HI_CLASS [70] which solves the full set
of dynamical equations without using the quasistatic
approximation. In our approach we find analytical expres-
sions for the effective DE perturbations that give us a better
understanding of the underlying physics and also allow us
to compare with our numerical implementation. Moreover,
we show that it is possible to find “designer Horndeski
theories” matching a given background evolution. We
implement one such model in the HI_CLASS code and show
there is good agreement with our approach; namely, our
effective fluid approach assuming both quasistatic and
subhorizon approximations performs quite well.
The paper is organized as follows. In Sec. II we discuss

the equations for perturbations in a Friedmann-Lemaître-
Robertson-Walker (FLRW) metric and set our notation.
Then, we introduce the Horndeski Lagrangian and discuss
both background and perturbation equations in Sec. III.
In Sec. IV we study the remaining subclass of Horndeski
theories by utilizing the effective fluid approach, we
discuss the subhorizon and quasistatic approximations
and present analytical results for two classes of models,
those in which we have dark energy anisotropic stress and
those in which we do not. In Sec. V we show analytical
results for a family of models named “designer Horndeski”
which mimic the ΛCDM background, and in Sec. VI we
compare our analytical solutions for DE perturbations with
a fully numerical solution of the system of differential
equations and show they are in very good agreement. We
then constrain the parameter space for a viable designer
Horndeski model in Sec. VII, and in Sec. VIII we present
our conclusions. In Appendixes A and B we give details
about our analytical computations.

II. THEORETICAL FRAMEWORK

In the standard cosmological model one assumes the
Einstein-Hilbert action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ
Rþ Lm

�
; ð1Þ

where g is the determinant of the metric gμν, R is the Ricci

scalar, κ≡ 8πGN
c4 , and Lm is the Lagrangian for matter

fields.2 Applying the principle of least action to Eq. (1)
one obtains the field equations

1http://class-code.net/.

2Throughout this paper we set the speed of light c ¼ 1 and κ ¼
8πGN withGN being the bare Newton’s constant. Our conventions
are ð−þþþÞ for the metric signature, and the Riemann and Ricci
tensors are given, respectively, by Vb;cd − Vb;dc ¼ VaRa

bcd and
Rab ¼ Rs

asb.
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Gμν ¼ κTðmÞ
μν ; ð2Þ

where Gμν ≡ Rμν − 1
2
gμνR is the Einstein tensor and TðmÞ

μν is
the energy-momentum tensor for matter fields. At this point
one needs to make more assumptions about the geometrical
properties and the matter content in the Universe. First,
since observations indicate the Universe on large scales is
statistically homogeneous and isotropic [71,72] (also hav-
ing tiny inhomogeneities which can be treated within linear
perturbation theory), one further assumes a perturbed
FLRW metric

ds2 ¼ −ð1þ 2Ψðx⃗; tÞÞdt2 þ aðtÞ2ð1þ 2Φðx⃗; tÞÞdx⃗2; ð3Þ

where a is the scale factor, x⃗ represents spatial coordinates, t
is the cosmic time, and Ψ and Φ are the gravitational
potentials in the Newtonian gauge. Second, one can suppose
the matter fields are ideal fluids (with small perturbations)
having an energy-momentum tensor given by

Tμ
ν ¼ Pδμν þ ðρþ PÞUμUν; ð4Þ

where P is the pressure, ρ is the energy density, and
Uμ ¼ ð1 −Ψ; u⃗

aðtÞÞ is the velocity four-vector. As a result,

the elements of the energy-momentum tensor up to first
order are given by

T0
0 ¼ −ðρ̄þ δρÞ; ð5Þ

T0
i ¼ðρ̄þ P̄ÞaðtÞui; ð6Þ

Ti
j ¼ðP̄þ δPÞδij þ Σi

j; ð7Þ

where ρ̄ is the background energy density, P̄ is the back-
ground pressure, ui ¼ aðtÞ _xi, Σi

jðx⃗; τÞ≡ Ti
j − δijT

k
k=3 is an

anisotropic stress tensor, and δρðx⃗; τÞ and δPðx⃗; τÞ are the
density and pressure perturbations, respectively.3

A. Background

If one only considers zero order quantities in the Einstein
field equations (2), then there are two independent
Friedmann equations describing the background evolution
of the Universe:

H2 ¼ κ

3
ρ̄; ð8Þ

H2 þ _H ¼ −
κ

6
ðρ̄þ 3P̄Þ; ð9Þ

where H ≡ _a
a is the cosmic Hubble parameter.4

B. Linear perturbations

Considering just the first order perturbations in the
Einstein field equations (2) we obtain

−
k2

a2
Φþ 3

_a
a

�
_a
a
Ψ − _Φ

�
¼ κ

2
δT0

0; ð10Þ

k2
�
_a
a
Ψ − _Φ

�
¼ κ

2
aðρ̄þ P̄Þθ; ð11Þ

−
k2

3a2
ðΦþΨÞþ

�
2
ä
a
þ _a2

a2

�
Ψþ _a

a
ð _Ψ−3 _ΦÞ−Φ̈¼ κ

6
δTi

i;

ð12Þ

−k2ðΦþΨÞ ¼ 3κ

2
a2ðρ̄þ P̄Þσ; ð13Þ

where we defined the velocity θ≡ ikjuj and wrote the
anisotropic stress as ðρ̄þ P̄Þσ ≡ −ðk̂ik̂j − 1

3
δijÞΣij.

From the conservation of the energy-momentum tensor
Tμν
;ν ¼ 0 one obtains the equations for the evolution of

perturbations. Defining the equation of state parameter as
w≡ P̄

ρ̄ and the sound speed c2s ≡ δP
δρ we find the equations

governing the evolution of density and pressure perturba-
tions are given by

_δ ¼ −ð1þ wÞ
�
θ

a
þ 3 _Φ

�
− 3

_a
a
ðc2s − wÞδ; ð14Þ

_θ ¼ −
_a
a
ð1 − 3wÞθ − _w

1þ w
θ þ c2s

1þ w
k2

a
δ −

k2

a
σ þ k2

a
Ψ:

ð15Þ

The system of differential equations (14) and (15)
presents problems when the equation of state crosses −1
because there is a singularity. However, a simple change of
variable turns out to be helpful in solving this inconven-
ience. We will use the scalar velocity perturbation
V ≡ ikjT

j
0=ρ ¼ ð1þ wÞθ instead of the velocity θ. In terms

of this new variable the evolution equations (14) and (15)
become

δ0 ¼ −3ð1þ wÞΦ0 −
V

a2H
−
3

a

�
δP
ρ̄

− wδ

�
; ð16Þ

3In our notation, a dot over a function f denotes the derivative
with respect to the cosmic time: _f ≡ df

dt . In addition, Greek indices
run from 0 to 3, whereas Latin indices take on values from 1 to 3.

4The conformal Hubble parameter H and the Hubble param-
eter H are related via H ¼ aH.
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V 0 ¼ −ð1 − 3wÞV
a
þ k2

a2H
δP
ρ̄

þ ð1þ wÞ k2

a2H
Ψ

−
2

3

k2

a2H
π; ð17Þ

where a prime 0 denotes a derivative with respect to the
scale factor and we defined the anisotropic stress param-
eter π ≡ 3

2
ð1þ wÞσ.

III. HORNDESKI

Horndeski theory constitutes the most general Lorentz-
invariant extension of GR in four dimensions and encom-
passes several DE and MG models. Although in its most
general form the Horndeski Lagrangian has several free
functions, the recent discovery of gravitational waves
by the LIGO Collaboration significantly constrained the
allowed models. In particular, it has been shown that the
constraint on the speedof gravitationalwavesmust satisfy [48]

−3 × 10−15 ≤ cg=c − 1 ≤ 7 × 10−16; ð18Þ

which for Horndeski theories implies that

G4X ≈ 0; G5 ≈ const; ð19Þ

as can be seen from the sound speed formula for tensor
perturbations [73]

c2T ¼ G4 − XG5ϕ − XG5Xϕ̈

G4 − 2XG4X − XðG5X
_ϕH −G5ϕÞ

: ð20Þ

In this section we will derive evolution equations for the
remaining parts of the Horndeski Lagrangian, namely,

S½gμν;ϕ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �X4
i¼2

Li½gμν;ϕ� þ Lm

�
; ð21Þ

where

L2 ¼ G2ðϕ; XÞ≡ Kðϕ; XÞ; ð22Þ

L3 ¼ −G3ðϕ; XÞ□ϕ; ð23Þ

L4 ¼ G4ðϕÞR: ð24Þ

Here ϕ is a scalar field, X ≡ − 1
2
∂μϕ∂μϕ is a kinetic term,

and□ϕ≡ gμν∇μ∇νϕ;K,G3, andG4 are free functions of ϕ
and X.5 Since we are mainly interested in the late-time
dynamics of the Universe, hereafter we will further assume

Lm is the Lagrangian of a CDM component. As has been
mentioned in [52], although the functions K, G3, and G4

are able to modify the background with a general depend-
ence on X and ϕ, this does not hold at the perturbations
level. For instance, Kðϕ; XÞ encloses the k-essence and
quintessence theory and is partly responsible for the
background and the perturbations; however, KðϕÞ does
not contribute to the perturbations.
The term G3ðϕ; XÞ includes the kinetic gravity braiding

with G3X ≠ 0 being in charge of combining the kinetic term
of the scalar and the metric, but the term G3ðϕÞ only
modifies the background as a dynamical dark energy.
Finally, G4 is the only function that is able to modify the
nonminimal coupling of the scalar to the Ricci curvature.
Among the theories embedded in the action (21) one

finds, for example,
(i) f(R) theories. When interpreted as a nonminimal

coupled scalar field, these theories can be written
using [74]

K ¼ −
Rf;R − f

2κ
; ð25Þ

G4 ¼
ϕ

2
ffiffiffi
κ

p ; ð26Þ

where ϕ≡ f;Rffiffi
κ

p has units of mass and f;R ≡ df
dR.

(ii) Brans-Dicke theories. In our notation we have

K ¼ ωBDX
ϕ

ffiffiffi
κ

p − VðϕÞ; ð27Þ

G4 ¼
ϕ

2
ffiffiffi
κ

p ; ð28Þ

where VðϕÞ is the field potential and ωBD is the
Brans-Dicke parameter [75].

(iii) Kinetic gravity braiding. This kind of scalar-tensor
models exhibit mixing of scalar and tensor kinetic
terms [64] and can be written as

K ¼ KðXÞ; ð29Þ

G3 ¼ G3ðXÞ; ð30Þ

G4 ¼
1

2κ
: ð31Þ

(iv) Nonminimal coupling (NMC) model [76]. In our
notation and for a coupling constant ζ

K ¼ ωðϕÞX − VðϕÞ; ð32Þ

G4 ¼
�
1

2κ
−
ζϕ2

2

�
; ð33Þ5From now on we define Gi ≡ Giðϕ; XÞ, Gi;X ≡ GiX ≡ ∂Gi∂X ,

and Gi;ϕ ≡ Giϕ ≡ ∂Gi∂ϕ where i ¼ 2, 3, 4.
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G3 ¼ 0: ð34Þ

In the context of inflation, a Higgs-like inflation
model corresponds to ωðϕÞ ¼ 1, VðϕÞ ¼
λðϕ2 − ν2Þ2=4.

(v) Cubic Galileon [76]. The simplest case is when

K ¼ −X; ð35Þ

G3 ∝ X; ð36Þ

G4 ¼
1

2κ
: ð37Þ

(vi) Four-dimensional static and spherical symmetric
solution of black hole with scalar hair [77].

K ¼ X; ð38Þ

G3 ¼ −
α logð−XÞffiffiffi

κ
p ; ð39Þ

G4 ¼
1

2κ
: ð40Þ

As previously done for the Einstein-Hilbert action (1), here
we apply the principle of least action to (21) in order to find
evolution equations for both the gravitational field and the
scalar field. Varying Eq. (21) with respect to the metric and
the scalar field one finds6 [73]

δ

� ffiffiffiffiffiffi
−g

p X4
i¼2

Li

�
¼ ffiffiffiffiffiffi

−g
p �X4

i¼2

Gi
μνδgμνþ

X4
i¼2

ðPi
ϕ−∇μJiμÞδϕ

�

þ total derivative; ð41Þ

which allows us to find the field equations. First, the
gravitational field equation is given by

X4
i¼2

Gi
μν ¼

1

2
TðmÞ
μν ; ð42Þ

where we have defined

G2
μν ¼ −

1

2
KX∇μϕ∇νϕ −

1

2
Kgμν; ð43Þ

G3
μν ¼

1

2
G3X□ϕ∇μϕ∇νϕþ∇ðμG3∇νÞϕ

−
1

2
gμν∇λG3∇λϕ; ð44Þ

G4
μν ¼ G4Gμν þ gμνðG4ϕ□ϕ − 2XG4ϕϕÞ − G4ϕ∇μ∇νϕ

−G4ϕϕ∇μϕ∇νϕ; ð45Þ

and TðmÞ
μν is the energy-momentum tensor of a CDM

component. Note that from Eq. (42) we retrieve the GR
field equations (2) if we set K ¼ G3 ¼ 0 and G4 ¼ 1

2κ.
Second, the scalar field equation reads

∇μ

�X4
i¼2

Jiμ

�
¼

X4
i¼2

Pi
ϕ; ð46Þ

where

P2
ϕ ¼ Kϕ; ð47Þ

P3
ϕ ¼ ∇μG3ϕ∇μϕ; ð48Þ

P4
ϕ ¼ G4ϕR; ð49Þ

J2μ ¼ −L2X∇μϕ; ð50Þ

J3μ ¼ −L3X∇μϕþG3X∇μX þ 2G3ϕ∇μϕ; ð51Þ

J4μ ¼ 0: ð52Þ

As it is mentioned in Ref. [73], one could think ∇μJiμ
leads to higher than second-order derivatives. However, this
is not the case since commutations of higher derivatives
can be substituted by the curvature tensor and are hence
canceled. In particular, one can prove that

∇μð□ϕ∇μϕþ∇μXÞ¼ð□ϕÞ2−ð∇α∇βϕÞ2−Rμν∇μϕ∇νϕ;

ð53Þ

which will be of paramount importance when we will
discuss perturbation equations.
It is possible to find a relatively simple expression for the

scalar field equation (46) if we consider the case i ¼ 3,
namely,

0 ¼ 2G3ϕ□ϕþ∇μG3ϕ∇μϕþ∇μϕ∇μG3X□ϕ

þ∇μðG3X∇μXÞ þ G3Xð□ϕÞ2 þG3X∇μϕ∇μ
□ϕ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}:

ð54Þ

The terms on top of the brace in Eq. (54) can be
expanded as

∇μG3X∇μXþG3X□XþG3Xð□ϕÞ2þG3X∇μϕ∇μ□ϕ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}¼ 0;

ð55Þ6See Appendix A for a derivation of the field equations.
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and the terms on top of the brace in Eq. (55) can in turn be
written as

G3X½∇μϕ∇μ□ϕþ ð□ϕÞ2 þ□X�
¼ G3X½∇μð□ϕ∇μϕþ∇μXÞ�: ð56Þ

Using Eq. (53) in Eq. (56) we find

G3X½∇μϕ∇μ□ϕþ ð□ϕÞ2 þ□X�
¼ G3X½ð□ϕÞ2 − ð∇α∇βϕÞ2 − Rμν∇μϕ∇νϕ�; ð57Þ

and the scalar field equation (46) can be written as

−∇μKX∇μϕ − KX□ϕ − Kϕ þ 2G3ϕ□ϕþ∇μG3ϕ∇μϕ

þ∇μG3X□ϕ∇μϕþ∇μG3X∇μX þ G3X½ð□ϕÞ2
− ð∇α∇βϕÞ2 − Rμν∇μϕ∇νϕ� −G4ϕR ¼ 0: ð58Þ

In what follows, in order to simplify the notation we will
denote the kinetic term of the scalar field evaluated at the
background simply by X and its linear order perturbation
as δX.

A. Background

Thus far the discussion of the field equations has
been quite general. Now, as previously done in Sec. II,
we assume a perturbed FLRW as given in Eq. (3). If we
consider only zero order quantities in the gravitational field
equation (42), we obtain

E ≡X4
i¼2

Ei ¼ −ρm; ð59Þ

P ≡X4
i¼2

Pi ¼ 0; ð60Þ

where

E2 ≡ 2XKX − K; ð61Þ

E3 ≡ 6X _ϕHG3X − 2XG3ϕ; ð62Þ

E4 ≡ −6H2G4 − 6H _ϕG4ϕ; ð63Þ

P2 ≡ K; ð64Þ

P3 ≡ −2XðG3ϕ þ ϕ̈G3XÞ; ð65Þ

P4 ≡ 2ð3H2 þ 2 _HÞG4 þ 2ðϕ̈þ 2H _ϕÞG4ϕ þ 2 _ϕ2G4ϕϕ:

ð66Þ

Equations (59) and (60) are the modified Friedmann
equations describing the background evolution of the
Universe. Collecting terms they, respectively, read

2XKX − K þ 6X _ϕHG3X − 2XG3ϕ − 6H2G4

− 6H _ϕG4ϕ þ ρm ¼ 0; ð67Þ

K − 2XðG3ϕ þ ϕ̈G3XÞ þ 2ð3H2 þ 2 _HÞG4

þ 2ðϕ̈þ 2H _ϕÞG4ϕ þ 2 _ϕ2G4ϕϕ ¼ 0: ð68Þ

Note that from Eqs. (67) and (68) we, respectively, retrieve
the Friedmann equations (8) and (9) if we set K ¼ G3 ¼ 0

and G4 ¼ 1
2κ. Rearranging terms in Eqs. (67) and (68) we

can define an effective DE density

ρ̄DE ¼ _ϕ2KX − K þ 3 _ϕ3HG3X − _ϕ2G3ϕ

þ 3H2

�
1

κ
− 2G4

�
− 6H _ϕG4ϕ; ð69Þ

and an effective DE pressure

P̄DE ¼ K − _ϕ2ðG3ϕ þ ϕ̈G3XÞ þ 2 _ϕ2G4ϕϕ

þ 2ðϕ̈þ 2H _ϕÞG4ϕ − ð3H2 þ 2 _HÞ
�
1

κ
− 2G4

�
;

ð70Þ

in such a way that we can write the modified Friedmann
equations (67) and (68) as

3H2 ¼ κðρ̄DE þ ρmÞ; ð71Þ

−ð2 _H þ 3H2Þ ¼ κP̄DE; ð72Þ

where we are assuming that matter is pressureless P̄m ¼ 0
as indicated by current constraints [78]. The effective DE
density and pressure in Eqs. (69) and (70) allow us to define
an effective DE equation of state as

wDE ¼ K − _ϕ2ðG3ϕ þ ϕ̈G3XÞ − ð3H2 þ 2 _HÞð1κ − 2G4Þ þ 2ðϕ̈þ 2H _ϕÞG4ϕ þ 2 _ϕ2G4ϕϕ

_ϕ2KX − K þ 3 _ϕ3HG3X − _ϕ2G3ϕ þ 3H2ð1κ − 2G4Þ − 6H _ϕG4ϕ

: ð73Þ
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Let us now consider the scalar field equation (58) and
only keep zero order quantities; that is to say,

Kϕ − ðKX − 2G3ϕÞðϕ̈þ 3H _ϕÞ − KϕX
_ϕ2

− KXXϕ̈ _ϕ2 þ G3ϕϕ
_ϕ2 þ G3ϕX

_ϕ2ðϕ̈ − 3H _ϕÞ
− 3G3Xð2H _ϕ ϕ̈þ3H2 _ϕ2 þ _H _ϕ2Þ − 3G3XXH _ϕ3ϕ̈

þ 6G4ϕð2H2 þ _HÞ ¼ 0; ð74Þ

which fully agrees with [79]. Note that defining

Jμ ≡
X4
i¼2

Jiμ; ð75Þ

Pϕ ≡
X4
i¼2

Pi
ϕ; ð76Þ

we can write the scalar field equation (46) as

∇μJμ ¼ Pϕ; ð77Þ

and it becomes clear that there exists a Noether current
for Lagrangians invariant under constant shifts of the field
ϕ → ϕþ c [64], namely,

Jμ ¼ ðL2X þ L3X − 2G3ϕÞ∇μϕ −G3X∇μX: ð78Þ

Taking into consideration that X ¼ 1
2
_ϕ2, the charge density

of the Noether current can be written as

J ≡ J0 ¼ _ϕðKX − 2G3ϕ þ 3H _ϕG3XÞ; ð79Þ

so that the scalar field equation is given by the simple
expression

_J þ 3HJ ¼ Pϕ: ð80Þ

When Pϕ ¼ 0, then it is easy to see that the solution to the
previous equation is

J ¼ Jc
a3

; ð81Þ

where Jc is a constant. When Jc ¼ 0, then the system is on
the attractor solution, but when Jc ≠ 0, then the system is
not on the attractor and, as we will see in Sec. IV B 3,
interesting dynamics may arise.

B. Linear perturbations

Considering only first order quantities in the gravita-
tional field equations (42) one obtains [80,81]

A1
_Φþ A2

_δϕþ A3

k2

a2
Φþ A4Ψþ

�
A6

k2

a2
− μ

�
δϕ

− ρmδm ¼ 0; ð82Þ

C1
_Φþ C2

_δϕþ C3Ψþ C4δϕ −
aρmVm

k2
¼ 0; ð83Þ

B1Φ̈þ B2δ̈ϕþ B3
_Φþ B4

_δϕþ B5
_Ψþ B6

k2

a2
Φ

þ
�
B7

k2

a2
þ 3ν

�
δϕþ

�
B8

k2

a2
þ B9

�
Ψ ¼ 0; ð84Þ

G4ðΨþΦÞ þ G4ϕδϕ ¼ 0: ð85Þ

Note that when K ¼ G3 ¼ 0 and G4 ¼ 1
2κ, Eqs. (82)–(85),

respectively, correspond to the GR limit given by
Eqs. (10)–(13) with σm ¼ 0.
If we now consider the scalar field equation (58) and take

into account only first order quantities, we find

D1Φ̈þD2δ̈ϕþD3
_ΦþD4

_δϕþD5
_Ψþ

�
D7

k2

a2
þD8

�
Φ

þ
�
D9

k2

a2
−M2

�
δϕþ

�
D10

k2

a2
þD11

�
Ψ ¼ 0: ð86Þ

Expressions for the coefficients Ai, μ, ν, Bi, Ci, and Di can
be found in Appendix B and are in agreement with those
found in [80,81], except for D8 which is actually equal to
zero as can be seen by using the expression found in [81]
and using the background equations of motion for the
scalar field.

IV. THE EFFECTIVE FLUID APPROACH

We have seen in the previous section that the gravita-
tional field equations for the Horndeski Lagrangian can be
written in such a way that they resemble those found in
Sec. II where we assumed GR and a perfect fluid. Indeed,
defining an effective DE density and pressure given by
Eqs. (69) and (70) makes it possible to obtain an effective
DE equation of state [see Eq. (73)]. As mentioned in Sec. I,
a fluid can be described by its equation of state, sound
speed, and anisotropic stress, so in what follows we will
explicitly derive those quantities.
In this section we will present relatively simple expres-

sions for the effective DE sound speed and anisotropic
stress under the subhorizon and quasistatic approximations.
Actually, by defining an effective DE fluid we are con-
sidering a DE effective energy-momentum tensor TDE

μν

obtained via the gravitational field equations (42) and
defined explicitly as follows:
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Gμν ¼ κ
�
TðmÞ
μν þ TðDEÞ

μν

	
;

κTðDEÞ
μν ¼ Gμν − 2κ

X4
i¼2

Gi
μν: ð87Þ

Since we are taking into consideration expressions up to
linear order, TDE

μν also contains small perturbations which
allow us to define quantities such as DE effective pertur-
bations in the pressure, density, and velocity. These can be
extracted from the DE effective energy-momentum tensor
TDE
μν by considering the decomposition of the tensor into its

components, given by Eqs. (5)–(7). Qualitatively, these
expressions have the following structure:

δPDE

ρ̄DE
¼ ð� � �Þδϕþ ð� � �Þ _δϕþ ð� � �Þδ̈ϕþ ð� � �ÞΨþ ð� � �Þ _Ψ

þ ð� � �ÞΦþ ð� � �Þ _Φþ ð� � �ÞΦ̈; ð88Þ

δDE ¼ ð� � �Þδϕþ ð� � �Þ _δϕþ ð� � �ÞΨþ ð� � �ÞΦþ ð� � �Þ _Φ;

ð89Þ

VDE ¼ ð� � �Þδϕþ ð� � �Þ _δϕþ ð� � �ÞΨþ ð� � �ÞΦþ ð� � �Þ _Φ;

ð90Þ

where ð� � �Þ indicates expressions which might be cumber-
some. It is therefore very helpful to work out these
expressions under the subhorizon and quasistatic approx-
imations in order to gain a better understanding.
We have explained in great detail the way we carry out the

subhorizon and quasistatic approximations in our previous
paper (see Sec. II.A.1 in Ref. [65]), but in a nutshell, the
former refers to only considering modes deep in the Hubble
radius, i.e., those for which k2 ≫ a2H2, while the latter
refers to neglecting derivatives of the potentials during
matter domination as they are roughly constant but also
terms of similar order as ∂η ∼ 1=η ∼ aHðaÞ. For example,
the perturbation in the Ricci scalar is

δR ¼ −
12ðH2 þ _HÞ

a2
Ψ −

4k2

a2
Φþ 2k2

a2
Ψ

−
18H
a2

_Φ −
6H
a2

_Ψ −
6Φ̈
a2

≃ −
4k2

a2
Φþ 2k2

a2
Ψ:

Following the same procedure and applying the subhorizon
approximation to the linearized gravitational field equa-
tions (82) and (84), and to the linearized scalar field
equation (86), one finds, respectively,

A3

k2

a2
Φþ A6

k2

a2
δϕ − κρmδm ≃ 0; ð91Þ

B6

k2

a2
Φþ B8

k2

a2
Ψþ B7

k2

a2
δϕ ≃ 0; ð92Þ

D7

k2

a2
Φþ

�
D9

k2

a2
−M2

�
δϕþD10

k2

a2
Ψ ≃ 0: ð93Þ

Note that since B7 ¼ 4G4ϕ and B6 ¼ B8 (see Appendix B),
Eq. (92) leads to no anisotropic stressΦ ¼ −Ψ whenG4 is a
constant.
Solving Eqs. (91)–(93) for Φ, Ψ, and δϕ one finds

k2

a2
Ψ ¼ −

κ

2

Geff

GN
ρ̄mδ; ð94Þ

k2

a2
Φ ¼ κ

2
Qeff ρ̄mδ; ð95Þ

δϕ ¼ ðA6B6 − B6B7Þρmδm
ðA2

6B6 − 2A6B6B7 þ B2
6D9Þ k2

a2 − B2
6M

2
; ð96Þ

where Geff and Qeff are Newton’s effective constant

Geff

GN
¼ 2½ðB6D9 − B2

7Þ k2

a2 − B6M2�
ðA2

6B6 þ B2
6D9 − 2A6B7B6Þ k2

a2 − B2
6M

2
; ð97Þ

Qeff ¼
2½ðA6B7 − B6D9Þ k2

a2 þ B6M2�
ðA2

6B6 þ B2
6D9 − 2A6B7B6Þ k2

a2 − B2
6M

2
; ð98Þ

and we make use of the following correspondence
A3¼B6¼B8, D7¼B7, and D10¼A6 (see Appendix B).
One can also define the following anisotropic stress
parameters:

η≡ ΨþΦ
Φ

¼ ðA6 − B7ÞB7
k2

a2

ðA6B7 − B6D9Þ k2

a2 þ B6M2
; ð99Þ

γ ≡ −
Φ
Ψ

¼ ðA6B7 − B6D9Þ k2

a2 þ B6M2

ðB2
7 − B6D9Þ k2

a2 þ B6M2
: ð100Þ

The aforementioned expressions for Newton’s effective
constant and the anisotropic stress parameters are in
agreement with the ones in Ref. [80].
The subhorizon approximation is also useful as the

evolution equations for the growth of matter perturbations
δm given by Eqs. (16) and (17) can be reduced to a single
differential equation, where the variable Geff plays a
primary role,

δ00mðaÞ þ
�
3

a
þH0ðaÞ

HðaÞ
�
δ0mðaÞ −

3

2

Ωm;0Geff=GN

a5HðaÞ2=H2
0

δmðaÞ ¼ 0;

ð101Þ
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with Geff given by Eq. (97) and initial conditions δmðaiÞ ¼
ai and δ0mðaiÞ ¼ 1 for an initial value for the scale factor ai
deep in the matter era.
In what follows, we will present the effective DE

perturbations under the subhorizon and quasistatic approx-
imations for two classes of models: those in which there is
DE anisotropic stress and those where DE anisotropic stress
vanishes.

A. Horndeski models with DE anisotropic stress

We now apply the subhorizon and quasistatic approx-
imations in Eqs. (88)–(90) using the same prescription as in
Ref. [65]. We also found, in agreement with Ref. [79], that
the quasistatic approximation breaks down for this model
due to the rapid oscillations of the scalar field, so if we
eliminate the scalar field, then this can slightly increase the
accuracy of the numerical solutions of the effective fluid
equations. To eliminate δϕ and its derivatives, we use
Eq. (85) and insert the resulting equations in Eqs. (88)–(90).
Then, by keeping the dominant k2 terms (the subhorizon

approximation) and dropping time derivatives of the poten-
tials (the quasistatic approximation) in Eqs. (88)–(90),
we find

δPDE

ρ̄DE
≃

1

3F 4

k4

a4 F 1 þ k2

a2 F 2 þ F 3

k4

a4 F 5 þ k2

a2 F 6

ρ̄m
ρ̄DE

δm; ð102Þ

δDE ≃
k4

a4 F 7 þ k2

a2 F 8 þ F 9

k4

a4 F 5 þ k2

a2 F 6

ρ̄m
ρ̄DE

δm; ð103Þ

VDE ≃ a
k2

a2 F 10 þ F 11

k2

a2 F 5 þ F 6

ρ̄m
ρ̄DE

δm; ð104Þ

for the effective DE pressure perturbation, effective DE
density perturbation, and effective DE velocity perturbation,
respectively (the interested reader can find the expressions
for F i in Appendix B). It is now also possible to obtain an
expression for the effective DE anisotropic stress under the
subhorizon approximation

πDE ¼
k2

a2 ðΦþ ΨÞ
κρ̄DE

≃
k2

a2 F
2
4B7ðB7 − A6Þ

k2

a2 F 5 þ F 6

ρ̄m
ρ̄DE

δm

≃
k4

a4 F
2
4B7ðB7 − A6Þ

k4

a4 F 7 þ k2

a2 F 8 þ F 9

δDE: ð105Þ

Having found expressions for the effective DE equation
of state [see Eq. (73)] and the effective DE anisotropic
stress [Eq. (105)], the only missing ingredient for an
effective fluid description of the Horndeski Lagrangian
is the sound speed. This quantity can easily be found
using our equations for the effective DE pressure

perturbation (102) and the effective DE density perturba-
tion (103). The DE sound speed reads

c2s;DE ≡ δPDE

δρDE
¼ 1

3

k4

a4 F 1 þ k2

a2 F 2 þ F 3

k4

a4 F 7 þ k2

a2 F 8 þ F 9

: ð106Þ

Due to the presence of anisotropic stress, perturbations on
subhorizon scales in the effective DE fluid are not driven by
the sound speed (106), but by an effective DE sound speed
defined as [65,82]

c2s;eff ≡ c2s;DE −
2

3
πDE=δDE

¼ 1

3

k4

a4 ðF 1 − 2F 2
4B7ðB7 − A6ÞÞ þ k2

a2 F 2 þ F 3

k4

a4 F 7 þ k2

a2 F 8 þ F 9

:

ð107Þ

Finally, it is clear that for the cosmological constant
model, i.e., L2 ¼ − Λ

κ , L3 ¼ 0, L4 ¼ 1
2κR, L5 ¼ 0, we have

K ¼ − Λ
κ , G3 ¼ 0, G4 ¼ 1

2κ, and G5 ¼ 0, which implies that
wDE ¼ −1 and ðδPDE; δρDE; πDEÞ ¼ ð0; 0; 0Þ as expected.

1. f(R) models

Thus far we have kept the discussion quite general;
that is to say, we did not specify any function in the
Horndeski Lagrangian (21). To mention an example, we
will present the results for fðRÞ models. With the defi-
nitions in Eqs. (25) and (26) and using units where κ ¼ 1,
one obtains

B7 ¼ 2A6 ¼ 2; B6 ¼ B8 ¼ 2ϕ; D9 ¼ 0;

F 1 ¼ F 4 ¼ −1=2; F 2 ¼ −
15F̈
4

; F 3 ¼ −
2FF̈
4F;R

;

F 5 ¼ −
3F
2

; F 6 ¼ −
F2

2F;R
; F 7 ¼ −1þ 3F

2
;

F 8 ¼
ðF − 1ÞF
2F;R

; F 9 ¼ 0; F 10 ¼ −
3 _F
2
;

F 11 ¼ −
F _F
4F;R

; M2 ¼ −Kϕϕ ¼ 1

2fRR
; ð108Þ

where

Kϕ ¼ dK
dϕ

¼ dK
dR

dR
dϕ

¼ 1

2f;RR
ðRf;RRÞ ¼ −

R
2
; ð109Þ
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Kϕϕ ¼ d
dϕ

�
dK
dϕ

¼ −
R
2

�

¼ 1

f;RR

d
dR

�
−
R
2

�
¼ −

1

2fRR
; ð110Þ

and F ¼ f;R, F;R ¼ f;RR. Then, the effective DE fluid
quantities read

δPDE

ρ̄DE
≃

1

3F

2 k2

a2
F;R

F þ 3ð1þ 5 k2

a2
F;R

F ÞF̈k−2
1þ 3 k2

a2
F;R

F

ρ̄m
ρ̄DE

δm; ð111Þ

δDE ≃
1

F

1 − F þ k2

a2 ð2 − 3FÞ F;R

F

1þ 3 k2

a2
F;R

F

ρ̄m
ρ̄DE

δm; ð112Þ

VDE ≃
a _F
2F

1þ 6 k2

a2
F;R

F

1þ 3 k2

a2
F;R

F

ρ̄m
ρ̄DE

δm: ð113Þ

πDE ≃
1

F

k2

a2
F;R

F

1þ 3 k2

a2
F;R

F

ρ̄m
ρ̄DE

δm

≃
k2

a2
F;R

F

1 − F þ k2

a2 ð2 − 3FÞ F;R

F

δDE: ð114Þ

c2s;DE ≃
1

3

2 k2

a2
F;R

F þ 3ð1þ 5 k2

a2
F;R

F ÞF̈k−2
1 − F þ k2

a2 ð2 − 3FÞ F;R

F

; ð115Þ

c2s;eff ≃
ð1þ 5 k2

a2
F;R

F ÞF̈k−2
1 − F þ k2

a2 ð2 − 3FÞ F;R

F

: ð116Þ

These results are in perfect agreement with our previous
work [65].

B. Horndeski models with no dark energy
anisotropic stress

With the same approach that we followed in Sec. IVAwe
compute the DE perturbations for models where there is no
DE anisotropic stress, i.e., Φ ¼ −Ψ. With this restriction it
is easy to see from Eq. (85) that G4ϕ ¼ 0. Then applying
this condition under the subhorizon approximation in
Eqs. (88)–(90) leads to

δPDE

ρ̄DE
≃
1

3

k2

a2 F̂ 2 þ F̂ 3

k4

a4 F̂ 5 þ k2

a2 F̂ 6

ρ̄m
ρ̄DE

δm; ð117Þ

δDE ≃
k4

a4 F̂ 7 þ k2

a2 F̂ 8 þ F̂ 9

k4

a4 F̂ 5 þ k2

a2 F̂ 6

ρ̄m
ρ̄DE

δm; ð118Þ

VDE ≃ a
k2

a2 F̂ 10 þ F̂ 11

k2

a2 F̂ 5 þ F̂ 6

ρ̄m
ρ̄DE

δm; ð119Þ

and since Φ ¼ −Ψ, the anisotropic parameters read

η≡ΨþΦ
Φ

¼ 0; ð120Þ

γ ≡ −
Φ
Ψ

¼ 1; ð121Þ

as expected, while the DE anisotropic stress parameter is
zero πDE ¼ 0. Our general expression for the DE sound
speed (106) reduces in this case to

c2s;DE ¼
k2

a2 F̂ 2 þ F̂ 3

k4

a4 F̂ 7 þ k2

a2 F̂ 8 þ F̂ 9

; ð122Þ

which is equal to the DE effective sound speed since
πDE ¼ 0. Here we will show results for a few specific
models embedded in the Horndeski Lagrangian.

1. Quintessence

We can recover the Lagrangian of quintessence by
choosing the following functions:

K ¼ X − VðϕÞ; G4 ¼
1

2κ
; ð123Þ

where ϕ is the scalar field, X is the kinetic term defined as
X ¼ − 1

2
gμν∂μϕ∂νϕ, and VðϕÞ is the potential. Using a

variational approach one finds that the effective pressure,
density, and velocity perturbations for quintessence theo-
ries are given by

δPDE ¼ ð _ϕ _δϕ−Ψ _ϕ2Þ − Vϕδϕ;

ρDEδDE ¼ ð _ϕ _δϕ−Ψ _ϕ2Þ þ Vϕδϕ; ð124Þ

VDE ¼ k2

a
_ϕδϕ; ð125Þ

and these expressions are in agreement with [83]. Also,
the DE anisotropic stress parameter πDE is zero since for
quintessence Ψ ¼ −Φ. We find that under the subhorizon
approximation

A6¼0; B6¼−2; D9¼−KX; M2¼−Kϕϕ; ð126Þ

so that the effective pressure, density, and velocity pertur-
bations for quintessence theories are given by

δPDE

ρ̄DE
≃

_ϕ2

2k2=a2
ρ̄m
ρ̄DE

δm; ð127Þ
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δDE ≃
_ϕ2

2k2=a2
ρ̄m
ρ̄DE

δm; ð128Þ

VDE ≃ 0: ð129Þ

It is thus straightforward, using Eqs. (127) and (128), to see
that the DE sound speed is given by

c2s;DE ¼ 1: ð130Þ
Moreover, we also find that in the subhorizon approximation

δϕ ≃ 0;

Ψ ≃ −
ρ̄mδma2

2k2
: ð131Þ

2. K-essence

In our notation the Lagrangian of K-essence theories is
specified by the functions [84,85]

Kðϕ; XÞ ¼ Pðϕ; XÞ; G4 ¼
1

2κ
; ð132Þ

and as usual through the variation of the action it is possible
to find expressions for the pressure, density, and velocity
perturbations

δPDE ¼ Pϕδϕþ PXð _ϕ _δϕ− _ϕ2ΨÞ; ð133Þ

ρDEδDE ¼ δϕðPXϕ
_ϕ2 − PϕÞ − _ϕðPX þ PXX

_ϕ2Þð _ϕΨ − _δϕÞ;
ð134Þ

VDE ¼ k2

a
PX

_ϕδϕ: ð135Þ

Since for K-essence Ψ ¼ −Φ, the DE anisotropic stress
parameter πDE vanishes. We find that under the subhorizon
approximation

A6 ¼ 0; B6 ¼ −2; D9 ¼ −PX; M2 ¼ −Pϕϕ;

ð136Þ

and therefore the DE perturbations for K-essence theories
are given by

δPDE

ρ̄DE
≃

PX
_ϕ2

2k2=a2
ρ̄m
ρ̄DE

δm; ð137Þ

δDE ≃
_ϕ2ðPX þ PXX

_ϕ2Þ
2k2=a2

ρ̄m
ρ̄DE

δm; ð138Þ

VDE ≃ 0; ð139Þ

and the DE sound speed reads

c2s;DE ¼ PX

PX þ 2XPXX
; ð140Þ

in agreement with Refs. [84,85]. The perturbations of the
scalar field and the gravitational potential are, respectively,
given by

δϕ ≃ 0;

Ψ ≃ −
ρ̄mδma2

2k2
: ð141Þ

3. Kinetic gravity braiding

An interesting DE model is the kinetic gravity braiding
(KGB) which is characterized by the following Lagrangian:

K ¼ KðXÞ; G3 ¼ G3ðXÞ; G4 ¼
1

2κ
: ð142Þ

Since G4 is constant, it is easily shown from Eq. (92) that
the KGB model has no DE anisotropic stress and therefore
the anisotropic parameters

η≡ΨþΦ
Φ

¼ 0; ð143Þ

γ ≡ −
Φ
Ψ

¼ 1: ð144Þ

Furthermore, it follows that the effective Newton’s constant
Geff=GN is given by

Geff=GN ¼ M2 −D9
k2

a2

M2 − ðD9 þ A2
6=2Þ k2

a2
: ð145Þ

The effective DE density and pressure ρ̄DE and P̄DE read,
respectively,

κρ̄DE ¼ −K þ _ϕ2ð−G3ϕ þ KX þ 3G3XH _ϕÞ; ð146Þ

κP̄DE ¼ K − _ϕ2ðG3ϕ þG3Xϕ̈Þ; ð147Þ

and therefore the DE equation of state is given by

wDE ¼ K − _ϕ2ðG3ϕ þ G3Xϕ̈Þ
−K þ _ϕ2ð−G3ϕ þ KX þ 3G3XH _ϕÞ : ð148Þ

We also find that the scalar field equation at the background
level is

DESIGNING HORNDESKI AND THE EFFECTIVE FLUID … PHYS. REV. D 100, 063526 (2019)

063526-11



Kϕ − ðKX − 2G3ϕÞðϕ̈þ 3H _ϕÞ − KXϕ
_ϕ2 − KXXϕ̈ _ϕ2

þ G3ϕϕ
_ϕ2 þG3Xϕ

_ϕ2ðϕ̈ − 3H _ϕÞ − 3G3Xð2Hϕ̈ _ϕ

þ 3H2 _ϕ2 þ _H _ϕ2Þ − 3G3XXHϕ̈ _ϕ3 ¼ 0: ð149Þ

As a specific example we now discuss the KGB model of
Ref. [79] defined by

KðXÞ ¼ −X; ð150Þ

G3ðXÞ ¼
1ffiffiffi
κ

p ðκr2cXÞn ¼ αXn; ð151Þ

where n and α are parameters in the model. A number of
reasons make the KGB an attractive model. First, it passes
the recent observational constraints from gravitational
waves. Second, it is known that this model connects the
original Galileon model [64] and the ΛCDM model by the
parameter n, at least for the background and first order
perturbations: linear perturbations of the KGB model
reduce to those of ΛCDM (original Galileon) for n ¼ ∞
(n ¼ 1) [79].
The charge density of the Noether current Eq. (79) is in

this case

J0 ¼ _ϕð3 _ϕG3XH − 1Þ ð152Þ

and satisfies the differential equation

_J0 þ 3HJ0 ¼ 0; ð153Þ

whose solution reads

J0 ¼
Jc
a3

ð154Þ

with Jc a constant. It is therefore clear that J0 approaches
zero as the Universe expands. The simplest attractor
solution is located at J0 ¼ 0 and has two branches, namely,

_ϕ ¼ 0 ð155Þ

and

_ϕ ¼ 1

3G3XH
: ð156Þ

Because the first case has ghostly perturbations, as it is
shown in [79], we will focus on the attractor solution
Eq. (156). Using Eqs. (71) and (152) we find that the
modified Friedmann equation is given by

�
H
H0

�
2

¼ ð1 −Ωm;0Þ
�
H
H0

�
− 2
2n−1 þ Ωm;0a−3; ð157Þ

where we have neglected radiation. The background
equation of the KGB model reduces to that of ΛCDM
for n ¼ ∞ as can be seen from Eq. (157). Also, one can
easily find an expression for the parameter α by using
Eq. (157) at the present epoch

α ¼
�
2n−1

3n

��
1

6ð1 −Ωm;0Þ
�2n−1

2

: ð158Þ

The DE equation of state becomes

wDE ¼ P̄DE

ρ̄DE
¼ 2 _H

3ð2n − 1Þ − 1; ð159Þ

and through Eq. (156) it is also possible to find an
analytical expression for the kinetic term

X ¼ 1

2
a2H2ϕ0ðaÞ2 ¼ 3H2

0ð1 −Ωm;0Þ
�
H
H0

� 2n
1−2n

; ð160Þ

where the prime stands for the derivative with respect to the
scale factor.
To derive the ΛCDM limit for the perturbations in this

model we rewrite Eqs. (84) and (86) in terms of the kinetic
term perturbation δX ¼ _ϕ _δϕ− _ϕ2Ψ. Then, for n → ∞
the former equation reduces to δXð− 2

a −
H0ðaÞ
HðaÞ þOð1=nÞÞ,

while the latter equation gives

_δX þ 3HδX ¼ 0; ð161Þ

which implies that the kinetic term perturbation decays as
δX ∼ 1=a3 and thus can be ignored at late time. Since DE
perturbations in the KGB model are proportional to δX
for large n, then they reduce to zero as expected for the
ΛCDM model.
Finally, it should be noted that a standard hydrodynam-

ical description of the KGB in terms of an effective fluid
has been studied in Ref. [86]. There, it was shown that the
KGB model can also be described in terms of an imperfect
fluid with a chemical potential, in which the equations of
motion reduce to the standard diffusion equation. However,
in our current analysis we will only focus on the ideal fluid
approach, which is totally equivalent, as we are interested
in finding simple analytic solutions and with comparing
with our previous work.

V. DESIGNER HORNDESKI

In this section we will address the shortcomings found in
the KGB model defined by Eqs. (150) and (151). We will
show that it is possible, starting from the Lagrangian (142),
to find a model corresponding to a given background but
yet having different perturbations. Using the modified
Friedmann equation and the scalar field conservation
equation, we can find specific designer models such that
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the background is always that of the ΛCDM model,
namely, having wDE ¼ −1. This is particularly useful in
detecting deviations from ΛCDM at the perturbations level
and is a natural expansion of our earlier work [40,65].
We start with the modified Friedmann equation, which can
be written as

−HðaÞ2 − KðXÞ
3

þH2
0ΩmðaÞ þ 2

ffiffiffi
2

p
X3=2HðaÞG3X

þ 2

3
XKX ¼ 0; ð162Þ

while the scalar field conservation equation can be
written as

Jc
a3

− 6XHðaÞG3X −
ffiffiffi
2

p ffiffiffiffi
X

p
KX ¼ 0; ð163Þ

where Jc is a constant which quantifies our deviation from
the attractor, as in the case of the KGB model [79]. We now
have two equations given by (162) and (163), but three
unknown functions ðG3XðXÞ; KðXÞ; HðaÞÞ, and thus the
system is undetermined. Therefore, we need to specify
one of the three unknown functions ðG3XðXÞ; KðXÞ; HðaÞÞ
and determine the other two using Eqs. (162) and (163).
To facilitate this, we express the Hubble parameter as a
function of the kinetic term X, i.e., H ¼ HðXÞ and then
solve the previous equations to find ðG3XðXÞ; KðXÞÞ.
Doing so yields

KðXÞ ¼ −3H2
0ΩΛ;0 þ

Jc
ffiffiffiffiffiffi
2X

p
HðXÞ2

H2
0Ωm;0

−
Jc

ffiffiffiffiffiffi
2X

p
ΩΛ;0

Ωm;0
;

G3XðXÞ ¼ −
2JcH0ðXÞ
3H2

0Ωm;0
: ð164Þ

With Eqs. (164) we can make a whole family of designer
models that behave as ΛCDM at the background level but
have different perturbations. We now proceed to specify
some examples using our formalism.

A. Example 1

Choosing KðXÞ ¼ 0 and solving Eqs. (164) we find

KðXÞ ¼ 0;

G3ðXÞ ¼ −

ffiffiffiffiffiffiffi
2Jc

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛ;0ð2Jc

ffiffiffiffi
X

p þ 3
ffiffiffi
2

p
H2

0Ωm;0Þ
q

3H0X1=4Ωm;0
; ð165Þ

and the derivative of the scalar field ϕ0ðaÞ is

ϕ0ðaÞ ¼ 3a2H2
0ΩΛ;0

JcHðaÞ ; ð166Þ

where the prime is the derivative with respect to the scale
factor. However, this model has the problem that it does not
have a smooth limit to ΛCDM when Jc ¼ 0.

B. Example 2

On the other hand, specifying G3ðXÞ leads to another
interesting designer model, defined as

G3ðXÞ ¼ G30X;

KðXÞ ¼ −3H2
0ΩΛ;0 þ

9H2
0ðX − X0Þ2G2

30

ffiffiffiffi
X

p
Ωm;0

2
ffiffiffi
2

p
Jc

−
ffiffiffi
2

p
Jc

ffiffiffiffi
X

p
ΩΛ;0

Ωm;0
; ð167Þ

where the kinetic term is defined as

X ¼ 3G30H0X0Ωm;0 − 2JcHðaÞ
3G30H2

0Ωm;0
ð168Þ

and X0 is an integration constant. However, this model has
the problem that at early times the perturbations do not go
to zero and we do not recover GR, since the kinetic term
goes to infinity as it grows as X ∼HðaÞ.

C. Example 3 (HDES)

To solve the previous shortcomings we follow a different
approach. First, we demand that the kinetic term behaves as
X ¼ c0

HðaÞn, where c0 > 0 and n > 0. Then, from Eqs. (163)

and (162) we find

G3ðXÞ ¼ −
2Jcc

1=n
0 X−1=n

3H2
0Ωm;0

;

KðXÞ ¼
ffiffiffi
2

p
Jcc

2=n
0 X

1
2
−2
n

H2
0Ωm;0

− 3H2
0ΩΛ;0 −

ffiffiffi
2

p
Jc

ffiffiffiffi
X

p
ΩΛ;0

Ωm;0
:

ð169Þ

This specific model solves both previous problems, i.e., it
has a smooth limit to ΛCDM, and it also recovers GR when
Jc ∼ 0; thus we will designate this model as HDES and
focus on it in what follows.

D. Comparison with the α parameters

To facilitate comparisons with the literature we also
provide the expressions for our designer HDES model in
terms of the αi functions, where i ¼ M, K, B, T. The
functions Giðϕ; XÞ and αi are connected in the following
manner [70]:
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M2� ≡ 2ðG4 − 2XG4X − _ϕHXG5X þ XG5ϕÞ;

αM ≡ d lnM2�
d ln a

;

H2M2�αK ≡ 2XðG2X þ 2XG2XX − 2G3ϕ − 2XG3ϕXÞ
þ 12H _ϕX½G3X þ XG3XX − 3G4ϕX

− 2XG4ϕXX�
þ 12H2X½G4X −G5ϕ þ Xð8G4XX − 5G5ϕXÞ
þ 2X2ð2G4XXX −G5ϕXXÞ�
þ 4H3 _ϕXð3G5X þ 7XG5XX þ 2X2G5XXXÞ;

H2M2�αB ≡ 2 _ϕðXG3X −G4ϕ − 2XG4ϕXÞ
þ 8HXðG4X þ 2XG4XX −G5ϕ − XG5ϕXÞ

þ 2H2ϕ0X
a

ð3G5X þ 2XG5XXÞ;
M2�αT ≡ 4XðG4X −G5ϕÞ − 2Xðϕ̈ − 2H _ϕÞG5X; ð170Þ

where the dot is the derivative with respect to the cosmic
time, M2�ðτÞ is the cosmological strength of gravity, αT is
the tensor speed excess, αB is called the braiding, and αK is
referred to as the kineticity. For more information on
these αi functions see [87]. At all times we require D ¼
αK þ 3

2
α2B > 0 so that there are no ghostly instabilities and

that αM;K;B;T ≃ 0 at early times, so as to recover GR.
For our HDES designer model given by Eqs. (169), we

have that the αi functions of Eq. (170) are given by

M2� ≡ 1; ð171Þ

αM ≡ d lnM2�
d ln a

¼ 0; ð172Þ

αK ≡ −
4

ffiffiffi
2

p ffiffiffiffiffi
c0

p
Jcðn − 2ÞHðaÞ−n

2

H2
0n

2Ωm;0
; ð173Þ

αB ≡ 4
ffiffiffi
2

p ffiffiffiffiffi
c0

p
JcHðaÞ−n

2

3H2
0nΩm;0

; ð174Þ

αT ≡ 0: ð175Þ

Since in Eqs. (173) and (174) we have a degeneracy
with the coefficients c0 and Jc—they appear together asffiffiffiffiffi
c0

p
Jc—we can choose to absorb c0 in the definition of Jc.

Finally, it is straightforward to see that our αi functions
are dimensionless since through dimensional analysis
we found that ½c0� ¼ Hnþ2

0 , ½Jc� ¼ H0, the kinetic term
½X� ¼ H2

0, ½K� ¼ H2
0, and ½G3X� ¼ H−2

0 .
Notice that not all designer models satisfy the above

conditions, so in what follows we consider only HDES,
given by Eq. (169). Then, the stability condition D ¼
αK þ 3

2
α2B > 0 for our model Eq. (169) gives

J̃c

�
4J̃c − 3

ffiffiffi
2

p
ðn − 2ÞΩm;0

�
HðaÞ
H0

�
n=2

�
> 0; ð176Þ

where we have set J̃c ¼ Jc=H0 and c̃0 ¼ c0=H
nþ2
0 ¼ 1.

Then, inequality (176) implies that in order for the
system to be stable we must have either J̃c > 0 for
0 < n ≤ 2 or a complicated set of expressions that can,
however, be easily derived from Eq. (176) with algebraic
manipulations. For n ¼ 2 the inequality is automatically
satisfied for any value of J̃c as αK ¼ 0 as can be seen from
Eq. (173). We show the complicated parameter space that is
allowed for n ¼ 1 and n ¼ 3 as a function of scale factor a
but also as a function of n for a ¼ 1, in Fig. 1.

E. Analytic solutions for the growth

Furthermore, in this case we can also find approximate
solutions to the growth equation Eq. (101) in matter
domination for n ¼ 2. To do this, we first do a series
expansion around a ¼ 0 to theGeff of Eq. (97), which gives

FIG. 1. The allowed parameter space (shaded region) so thatD > 0 for n ¼ 1 (left) and n ¼ 3 (center) and a ¼ 1 forΩm;0 ¼ 0.3. In the
case of n ¼ 2, all values of J̃c are allowed.
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Geff=GN ¼ 1þ
ffiffiffi
2

p
J̃c

3Ωm;0HðaÞ=H0

; ð177Þ

which we can use to solve Eq. (101) in matter domination,

where HðaÞ=H0 ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm;0a−3

q
. Then, we get

δmðaÞ ¼
35=3Ω5=4

m;0Γð83Þ
25=4J̃5=6c

a−1=4I5
3

�
27=4

ffiffiffiffiffi
J̃c

p
3Ω3=4

m;0

a3=4
�
; ð178Þ

where InðzÞ is the modified Bessel function of the first
kind and ΓðnÞ is the usual Gamma function. Using
Eq. (178) and the definition of the growth rate fσ8ðaÞ≡
fðaÞ · σðaÞ ¼ σ8aδ0mðaÞ=δmða ¼ 1Þ, we can calculate the
latter exactly. However, it is instructive to perform a series
expansion around a ¼ 1, which gives

fσ8ðaÞ ≃ σ8

�
1

2

�
5α1
α2

− 3

�

þ 1

4

�
−
5α1
α2

þ 2
ffiffiffi
2

p
J̃c

Ω3=2
m;0

þ 9

�
ða − 1Þ þ � � �

�
;

ð179Þ

where we have defined the parameters

α1 ¼ 0F1

�
5

3
;
2

ffiffiffi
2

p
J̃c

9Ω3=2
m;0

�
; ð180Þ

α2 ¼ 0F1

�
8

3
;
2

ffiffiffi
2

p
J̃c

9Ω3=2
m;0

�
; ð181Þ

where 0F1ðc1; zÞ is a hypergeometric function.
As can be seen from Eq. (179) there is a strong

degeneracy between J̃c and σ8, which can also be dem-
onstrated by doing a series expansion of fσ8ða ¼ 1Þ for
small J̃c, which gives

fσ8ða ¼ 1Þ ≃ σ8

�
1þ J̃c

4
ffiffiffi
2

p
Ω3=2

m;0

þ � � �
�
; ð182Þ

which implies that if we keep the growth today given
constant, i.e., fσ8ða ¼ 1Þ ¼ C0 ¼ const, then σ8 will scale
roughly as

σ8 ≃ C0

�
1 −

J̃c
4

ffiffiffi
2

p
Ω3=2

m;0

þ � � �
�
: ð183Þ

Since Ωm;0 is strongly constrained from Planck, we expect
that the low redshift fσ8 data will exhibit a degeneracy
between J̃c and σ8. More specifically, by inspecting
Eq. (183) we expect a strong negative correlation between

the two parameters, and this is exactly what we see from
the actual Markov Chain–Monte Carlo (MCMCs) that we
present in later sections. This degeneracy is interesting as it
can potentially alleviate the soft 2σ tension between the
growth rate data (σ8 ¼ 0.88) and Planck (σ8 ¼ 0.831),
which has been extensively discussed in the literature; see
Refs. [27,88] and references therein.

VI. NUMERICAL SOLUTIONS

Here we present the numerical solutions of the two
models, the KGB and HDES, that we described in the
previous section.

A. The KGB model

1. The attractor

To explore the possibility of working outside the
attractor we only need to use Eqs. (71) and (152), as these
constrain Jc and α with Hða ¼ 1Þ ¼ H0. To parametrize
the deviation from the attractor we will use the parameter
Jc. An illustrative example is found in Fig. 2 where we
plot the dark energy density ΩDE with respect to the scale
factor for several values of n (left) and Jc (right). The values
of values for Jc were chosen so as to highlight the
differences of these models with respect to GR.
In the KGB model the DE density can be written via

Eq. (69) as

ΩDE ¼ ρDE
ρc

; ð184Þ

ρDE ¼ −K þ KX
_ϕ2 −G3ϕ

_ϕ2 þ 3G3XH _ϕ3: ð185Þ

From Fig. 2 we can see that working outside the attractor
for the KGB model (n ¼ 1) we might find new parts of the
parameter space and new phenomenology. In the right
panel of Fig. 2, we see that the orange line can be ruled out
because it predicts a very high value for the DE density at
early times. The red and green lines, although outside the
attractor solution, are plausible solutions that are interesting
to analyze in more depth.

2. Numerical solution

In this section we present the results of the numerical
solution of the evolution equations. In all cases we will
assume Ωm;0 ¼ 0.3, k ¼ 300H0, and σ8;0 ¼ 0.8, unless
otherwise specified. The reason we choose the specific
value of k ¼ 300H0 ∼ 0.1h=Mpc for the wave number is
that it corresponds to the largest value of k we can choose
without entering the nonlinear regime. Finally, we set the
initial conditions for the DE variables to zero at ai ¼ 10−3,
when we are well inside the matter dominated regime.
Next we will also present our results for the growth rate

of matter perturbations parameter fσ8ðaÞ≡ fðaÞ · σðaÞ,
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where fðaÞ ¼ dlnδ
dlna is the growth rate and σðaÞ ¼ σ8;0

δðaÞ
δð1Þ is

the redshift-dependent rms fluctuations of the linear density
field within spheres of radius R ¼ 8h−1Mpc, while the
parameter σ8;0 is its value today. The fσ8ðaÞ parameter is
important as it can be shown to be not only independent of
the bias b1 but also a good discriminator of DE models. The
reason for this is that in linear theory the quadrupole
contribution to the galaxy power spectrum in redshift space
is sensitive only to the combination fσ8ðaÞ.
Specifically, here we will compare the numerical sol-

utions for the following cases:
(i) The numerical solution of the full system of equa-

tions given by Eqs. (82)–(85), which, however, we
rewrite in terms of δX ¼ _ϕ _δϕ− _ϕ2Ψ as the system is
more stable this way. We call this case “full KGB.”

(ii) The numerical solution of the effective fluid ap-
proach given by Eqs. (16) and (17). We call this case
“eff. fluid.”

(iii) The numerical solution of the growth factor equa-
tion (101). We call this case “ODE-Geff.”

(iv) The ΛCDM model.
In the left panel of Fig. 3 we show the evolution of the

matter and effective DE perturbation variables ðδm; Vm;
δDE; VDEÞ for the KGB for n ¼ 2. In the right panel we
show the evolution of the fσ8ðzÞ parameter for the KGB
model for n ¼ 2 and σ8;0 ¼ 0.8 versus the fσ8 data
compilation from Ref. [88]. We show the theoretical curves
for the full KGB brute-force solution, the effective fluid
approach, the ΛCDM model, and the numerical solution of
the Geff equation. As can be seen, the agreement with all
approaches is excellent.
An interesting thing to note in Fig. 3 is that VDE >

δDE and VDE ∼ Vm at intermediate redshift. The reason
for this is that in the effective fluid approach the DE
velocity perturbations are not always subdominant, as it
would be expected in a general DE fluid. This can be
seen by remembering that the velocity perturbations are

FIG. 3. Left: The evolution of the matter and effective DE perturbation variables ðδm; Vm; δDE; VDEÞ for the KGB with n ¼ 2. Right:
The evolution of the fσ8ðzÞ parameter for the KGB model with n ¼ 2 and σ8;0 ¼ 0.8 versus the fσ8 data compilation from Ref. [88].
Here we show the theoretical curves for the “full KGB” brute-force solution, the effective fluid approach, the ΛCDM model, and the
numerical solution of the Geff equation. As can be seen, the agreement with all approaches is excellent.

FIG. 2. The DE density for the KGB model for various values of n (left) and for the KGB model (n ¼ 1) for the attractor and three
general cases outside the attractor given by different values of Jc, chosen so as to highlight the differences of these models with respect to
GR. The left panel clearly shows that as n grows, the DE density approaches that of the ΛCDM model.
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actually a component of the effective energy momen-
tum tensor, namely the T0

i part, and thus they contain
some of the main contributions of the modified gravity
theory and can be in some cases rather large. See, for
example, Eqs. (6) and (17) for the definition of VDE and
Eqs. (83) and (90) for all of the extra terms that are
rewritten as VDE.
As an example, also consider the case of quintessence

and k essense, where VDE is proportional to the scalar
field perturbations; see Eqs. (125) and (135), respectively.
In the case of fðRÞ, VDE is given by (113) and is
proportional to _F=F, which parametrizes the deviations
from GR, so it is a proxy for the fðRÞ modified gravity
perturbations.
However, in the case of the KGB model the subhorizon

approximation fails when the parameter n is large. This can
easily be seen by calculating the large n limit of the Geff
parameter via Eq. (97):

Geff=GN ≃ 1þ 2a3ð1 −Ωm;0Þ
5Ωm;0

; ð186Þ

which at a ¼ 1 tends to Geff=GN ≃ 3
5
þ 2

5Ωm;0
, which is

different from unity as expected at this limit. However,
in general deviations of Geff=GN from unity on such scales
are not problematic as screening mechanisms play an
important role. In any case, our finding is in agreement
with what was previously found in Ref. [79]; namely, the
quasistatic approximation breaks down for the model due to
the rapid oscillations of the scalar field. As a result, in what
follows we will only focus on our new designer model,
which does not suffer from this issue.

B. Designer model

We now focus on our designer model HDES, given by
Eq. (169). Again, we will consider the numerical solutions
for the following cases:

(i) The numerical solution of the full system of equa-
tions given by Eqs. (82)–(85), which, however,
we rewrite in terms of δX ¼ _ϕ _δϕ− _ϕ2Ψ as the
system is more stable this way. We call this case
“full-DES.”

(ii) The numerical solution of the effective fluid ap-
proach given by Eqs. (16) and (17). We call this case
“eff. fluid.”

(iii) The numerical solution of the growth factor equa-
tion (101). We call this case “ODE-Geff.”

(iv) The ΛCDM model.
As mentioned in the previous sections, we can absorb

the constant c0 in that of Jc, so we will only vary the latter;
i.e., we set c̃0 ¼ 1. Furthermore, since the model is stable
for all values of Jc when n ¼ 2, we will consider this case
when studying cosmological constraints. Again, we use
Ωm;0 ¼ 0.3, k ¼ 300H0, and σ8;0 ¼ 0.8, unless otherwise
specified.
In the left panel of Fig. 4 we show the evolution of the

fσ8ðzÞ parameter for the HDES model with n ¼ 2, J̃c ¼
5 × 10−2, and σ8;0 ¼ 0.8. The values of values for J̃c were
chosen so as to highlight the differences of these models
with respect to GR. We show the theoretical curves for the
HDES model for the full-DES brute-force numerical
solution, the effective fluid approach, the ΛCDM model,
and the numerical solution of the Geff equation. As can be
seen, the agreement with all approaches is excellent. In the
right panel of the same figure we show the percent
difference between the full-DES brute-force numerical

FIG. 4. Left: We show the evolution of the fσ8ðzÞ parameter for the HDES model with n ¼ 2, J̃c ¼ 5 × 10−2, and σ8;0 ¼ 0.8 versus
the fσ8 data compilation from Ref. [88]. The values of values for J̃c were chosen so as to highlight the differences of these models with
respect to GR. Here we show the theoretical curves for the HDES model for the “full-DES” brute-force numerical solution, the effective
fluid approach, the ΛCDM model, and the numerical solution of the Geff equation. As can be seen, the agreement with all approaches is
excellent. Right: The percent difference between the full-DES brute-force numerical solution and the effective fluid approach (magenta
dot-dashed line) and the numerical solution of the growth factor equation (101) (green dotted line).
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solution and the effective fluid approach (magenta dot-
dashed line) and the numerical solution of the growth factor
equation (101) (green dotted line).

C. Modifications to CLASS and the ISW effect

Here we will present our modifications to the CLASS

Boltzmann code, which we call EFCLASS. We will compare
the outcome with the HI_CLASS code, which solves the full
set of dynamical equations but at the cost of significantly
more complicated modifications. At the same time, we
will also compare with a brute-force calculation of the
integrated Sachs-Wolfe (ISW) effect as in our previous
paper [65].
In order to modify the CLASS code in our effective fluid

approach we only need two functions, the DE velocity and
the anisotropic stress [65]. In the case of the HDES model,
the anisotropic stress πDE is zero, as can be seen from

Eq. (85), since G4ϕ ¼ 0. Therefore, we only need the DE
velocity which we can easily obtain from Eq. (119);
however, we found that this approach is not very stable
numerically. Hence, in order to have a consistent solution,
we solve Eq. (17) for VDE, and since wDE ¼ −1, the only
variable we need is the effective pressure δPDE given by
Eq. (117). The expressions are rather cumbersome, but for
n ¼ 1 we have

VDE ≃
�
−
14

ffiffiffi
2

p

3
Ω−3=4

m;0 J̃cH0a1=4
�

ρ̄m
ρ̄DE

δm: ð187Þ

In the left panel of Fig. 5 we show the low-l multipoles
of the temperature CMB spectrum for a flat universe
with Ωm;0 ¼ 0.3, ns ¼ 1, As ¼ 2.3 × 10−9, h ¼ 0.7,
and ðc̃0; J̃c; nÞ ¼ ð1; 2 × 10−3; 1Þ. Our EFCLASS code is
denoted by the green line, HI_CLASS by the orange line,

FIG. 5. Left: The low-l multipoles of the TT CMB spectrum for a flat universe with Ωm;0 ¼ 0.3, ns ¼ 1, As ¼ 2.3 × 10−9, h ¼ 0.7,
and ðc̃0; J̃c; nÞ ¼ ð1; 2 × 10−3; 1Þ. The values of values for J̃c were chosen so as to highlight the differences of these models with respect
to GR. Our EFCLASS code is denoted by the green line, HI_CLASS by the orange line, and for reference the ΛCDMwith a blue line. Right:
The percent difference of our code with HI_CLASS as a reference. As can be seen, our simple modification achieves roughly ∼0.1%
accuracy across all multipoles.

FIG. 6. The ISWeffect and a comparison with CLASS/HI_CLASS for the ΛCDM model (left) and the HDES model (right), for the same
parameters as in Fig. 5. We see that there is excellent agreement for all multipoles, except l ¼ 2 due to the use of the BBKS transfer
function which is accurate only up to 10% at large scales.
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and for reference the ΛCDMwith a blue line. On the right
panel of Fig. 5 we show the percent difference of our code
with HI_CLASS as a reference.7 As can be seen, our simple
modification achieves roughly ∼0.1% accuracy across all
multipoles.
We also compare our results with a brute-force calcu-

lation of the ISW effect. In this case the power spectrum is
given by [89]

CISW
l ¼ 4π

Z
dk
k
IISWl ðkÞ2 9

25

k3Pζ

2π2
; ð188Þ

where IISWl ðkÞ is a kernel that depends on the line of sight
integral of the growth and a bessel function, and Pζ is
the power spectrum (see Ref. [89] and Appendix A of
Ref. [65]) and is given by the primordial power spectrum
times a transfer function

k3Pζ

2π2
¼ As

�
k
k0

�
ns−1

TðkÞ2; ð189Þ

where As is the primordial amplitude, k0 is the pivot scale,
and TðkÞ is the usual matter-radiation Bardeen-Bond-
Kaiser-Szalay (BBKS) transfer function [see Eq. (7.71)
in Ref. [90]].
In Fig. 6 we present the results for the calculation of the

ISW effect and a comparison with CLASS/HI_CLASS for
the ΛCDM model (left) and the HDES model (right), for
the same parameters as in Fig. 5. We see that there is
excellent agreement for all multipoles, except l ¼ 2. The
reason for this is that we have used the BBKS formula for
the transfer function TðkÞ which is very accurate at small
scales, but only at the level of 10% on large scales, i.e.,
small multipoles.

TABLE I. TheHðzÞ data used in the current analysis (in units of
km s−1 Mpc−1). This compilation is partly based on those of
Refs. [102,103].

z HðzÞ σH Ref.

0.07 69.0 19.6 [104]
0.09 69.0 12.0 [105]
0.12 68.6 26.2 [104]
0.17 83.0 8.0 [105]
0.179 75.0 4.0 [106]
0.199 75.0 5.0 [106]
0.2 72.9 29.6 [104]
0.27 77.0 14.0 [105]
0.28 88.8 36.6 [104]
0.35 82.7 8.4 [107]
0.352 83.0 14.0 [106]
0.3802 83.0 13.5 [102]
0.4 95.0 17.0 [105]
0.4004 77.0 10.2 [102]
0.4247 87.1 11.2 [102]
0.44 82.6 7.8 [95]
0.44497 92.8 12.9 [102]
0.4783 80.9 9.0 [102]

z HðzÞ σH Ref.

0.48 97.0 62.0 [105]
0.57 96.8 3.4 [93]
0.593 104.0 13.0 [106]
0.60 87.9 6.1 [95]
0.68 92.0 8.0 [106]
0.73 97.3 7.0 [95]
0.781 105.0 12.0 [106]
0.875 125.0 17.0 [106]
0.88 90.0 40.0 [105]
0.9 117.0 23.0 [105]
1.037 154.0 20.0 [106]
1.3 168.0 17.0 [105]
1.363 160.0 33.6 [108]
1.43 177.0 18.0 [105]
1.53 140.0 14.0 [105]
1.75 202.0 40.0 [105]
1.965 186.5 50.4 [108]
2.34 222.0 7.0 [109]

TABLE II. Compilation of the fσ8ðzÞ measurements used in
this analysis along with the reference matter density parameter
Ωm0

(needed for the growth correction) and related references.

z fσ8ðzÞ σfσ8ðzÞ Ωref
m;0 Ref.

0.02 0.428 0.0465 0.3 [115]
0.02 0.398 0.065 0.3 [116,117]
0.02 0.314 0.048 0.266 [117,118]
0.10 0.370 0.130 0.3 [119]
0.15 0.490 0.145 0.31 [120]
0.17 0.510 0.060 0.3 [111]
0.18 0.360 0.090 0.27 [121]
0.38 0.440 0.060 0.27 [121]
0.25 0.3512 0.0583 0.25 [122]
0.37 0.4602 0.0378 0.25 [122]
0.32 0.384 0.095 0.274 [123]
0.59 0.488 0.060 0.307115 [124]
0.44 0.413 0.080 0.27 [95]
0.60 0.390 0.063 0.27 [95]
0.73 0.437 0.072 0.27 [95]
0.60 0.550 0.120 0.3 [125]
0.86 0.400 0.110 0.3 [125]
1.40 0.482 0.116 0.27 [126]
0.978 0.379 0.176 0.31 [127]
1.23 0.385 0.099 0.31 [127]
1.526 0.342 0.070 0.31 [127]
1.944 0.364 0.106 0.31 [127]

7In this case we did not use n ¼ 2 as we found that in this case
HI_CLASS crashes and we cannot compare with that code.
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VII. COSMOLOGICAL CONSTRAINTS

Here we present the cosmological constraints for the
n ¼ 2 HDES and ΛCDM models discussed in previous
sections. We use the latest cosmological observations
including the SnIa, baryon acoustic oscillations (BAO),
CMB, and the Hubble expansion HðzÞ data. Specifically,
we use the Pantheon SnIa compilation of Ref. [91], the
BAO measurements from 6dFGS [92], SDDS [93], BOSS
CMASS [94], WiggleZ [95], MGS [96], BOSS DR12 [97],
and DES Y1 [98]. For the CMB we use the shift parameters
ðR; laÞ based on the Planck 2018 release [6] and as derived
by Ref. [99]. We assume the existence of three families of
neutrinos with Neff ¼ 3.046.
Furthermore, we also incorporate the direct measure-

ments of the Hubble expansion HðzÞ data. These can be

derived in two ways: by the clustering of galaxies or
quasars and by the differential age method. The former
provides direct measurements of the Hubble parameter by
measuring the BAO peak in the radial direction from the
clustering of galaxies or quasars [100]. The latter method
obtains the Hubble parameter via the redshift drift of
distant objects over significant time periods, usually a
decade or longer. This is possible as in GR the Hubble
parameter can be expressed via the rate of change of the
redshift HðzÞ ¼ − 1

1þz
dz
dt [101]. These methods result in a

compilation of 36 Hubble parameter HðzÞ data points,
which for clarity we show in Table I along with their
corresponding references.
The growth-rate data used here are obtained via the

redshift-space distortions (RSD). These are sensitive probes

FIG. 7. The 68.3%, 95.4%, and 99.7% confidence contours for the ΛCDM model, along with the 1D marginalized likelihoods for all
parameter combinations. We also highlight with a black point the mean MCMC values and with a red point or dashed vertical line the
Planck 2018 concordance cosmology. The latter is based on the TT, TE, EEþ lowP spectra, a flat ΛCDM model, and the values are
shown in Table III.
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of the large scale structure (LSS) and can measure the
quantity fσ8ðaÞ≡ fðaÞ · σðaÞ, which is a product of the
growth rate fðaÞ ¼ d ln δ

d ln a and the redshift-dependent rms

fluctuations σðaÞ ¼ σ8;0
δðaÞ
δð1Þ of the linear density field

within spheres of radius R ¼ 8h−1 Mpc. In this notation
the parameter σ8;0 is the value of the rms fluctuations today
and is a direct measure of the amplitude of fluctuations in
linear scales.
We should mention that fσ8ðaÞ can be estimated via the

ratio of the monopole to the quadrupole of the redshift-space
power spectrum PðkÞ. The latter is sensitive on the quantity
β ¼ f=b1, where f is the growth rate as defined earlier and

FIG. 8. The 68.3%, 95.4%, and 99.7% confidence contours for the HDES (n ¼ 2) model, along with the 1D marginalized likelihoods
for all parameter combinations. We also highlight with a black point the mean MCMC values and with a red point or dashed vertical line
the Planck 2018 concordance cosmology. The latter is based on the TT, TE, EEþ lowP spectra, a flat ΛCDM model, and the values are
shown in Table III.

TABLE III. ΛCDM parameters with 68% limits based on TT,
TE, EEþ lowP and a flat ΛCDM model (middle column) or a
wCDM model (right column); see Ref. [6] and the Planck chains
archive.

Parameter Value (ΛCDM) Value (wCDM)

Ωbh2 0.02225� 0.00016 0.02229� 0.00016
Ωch2 0.1198� 0.0015 0.1196� 0.0015
ns 0.9645� 0.0049 0.9649� 0.0048
H0 67.27� 0.66 >81.3
Ωm 0.3156� 0.0091 0.203þ0.022

−0.065

w −1 −1.55þ0.19
−0.38

σ8 0.831� 0.013 0.983þ0.100
−0.055
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b1 is the galaxy bias [110–112]. In all cases we assume linear
theory. The combination fσ8ðaÞ not only is independent of
bias, as the latter completely cancels out, but it has also been
demonstrated to be an excellent discriminator of DE models
as it probes the dynamics of a given gravitational theory and
not only the geometric of spacetime [111]. The covariances
of the data and how to make the necessary corrections for
the Alcock-Paczynski effect are given in Refs. [27,88,113],
while other related analyses with these data can be found in
Refs. [24,26,28,65].
In this paper we use the growth-rate data compilation of

Ref. [88], which we show in Table II for completeness,
along with the corresponding references for each point.
This dataset was analyzed in Ref. [88] with the ‘internal
robustness method” of Ref. [114], by examining combi-
nations of subsets, and it was shown that this specific
dataset is indeed internally robust.
With these in mind, our total likelihood function Ltot

can be given as the product of the separate likelihoods of
the data (we assume they are statistically independent) as
follows:

Ltot ¼ LSnIa × LBAO × LHðzÞ × LCMB × Lgrowth;

which is related to the total χ2 via χ2tot ¼ −2 logLtot or

χ2tot ¼ χ2SnIa þ χ2BAO þ χ2HðzÞ þ χ2cmb þ χ2growth: ð190Þ

Calculating the best fit is not enough, but we also need
to study the statistical significance of our constraints.
To achieve this we make use of the well known Akaike
information criterion (AIC) [128]. The AIC estimator is
given (assuming Gaussian errors) by

AIC ¼ −2 lnLmax þ 2kp þ
2kpðkp þ 1Þ
Ndat − kp − 1

; ð191Þ

where kp and Ndat stand for the number of free parameters
and the total number of data points, respectively. For other

similar statistical tools see also Ref. [129]. In this analysis
we have 1048 data points from the Pantheon set, 3 from the
CMB shift parameters, 10 from the BAO measurements, 22
from the growth measurements, and finally 36HðzÞ points,
for a total of Ndat ¼ 1118.
The AIC can be interpreted similarly to the χ2; i.e., a

smaller relative value signifies a better fit to the data.
To apply this statistic to model selection we take the pair
difference between models ΔAIC ¼ AICmodel − AICmin.
This can in principle be interpreted with the Jeffreys’ scale
in the following manner: when 4 < ΔAIC < 7, this indi-
cates positive evidence against the model with a higher
value of AICmodel, while in the case whenΔAIC ≥ 10 it can
be interpreted as strong evidence. On the other hand, when
ΔAIC ≤ 2, then this means that the two models are
statistically equivalent. However, in Ref. [130] it has
been shown that in general the Jeffreys’ scale can some-
times lead to misleading conclusions, and thus it should be
interpreted with care.
Finally, our total χ2 is given by Eq. (190) while the

parameter vectors (assuming a spatially flat Universe) are
given by pΛCDM¼ðΩm;0;100Ωbh2;h;σ8Þ for the ΛCDM
and pHDES ¼ ðΩm;0; 100Ωbh2; h; J̃c; σ8Þ for the HDES
model. Using the aforementioned cosmological data and
methodology, we can obtain the best-fit parameters and
their uncertainties via the MCMC method based on a
Metropolis-Hastings algorithm. The codes used in the
analysis were written by one of the authors.8 The priors
we assumed for the parameters are given by Ωm;0 ∈
½0.1; 0.5�, Ωbh2∈ ½0.001;0.08�, J̃c ∈ ½−1; 12�, h ∈ ½0.4; 1�,
σ8 ∈ ½0; 2�, and we sample ∼105 MCMC points for each of
the two models.

A. Results

In Figs. 7 and 8 we show the 68.3%, 95.4%, and
99.7% confidence contours for the ΛCDM and the
HDES models, respectively, along with the one-
dimensional (1D) marginalized likelihoods for all param-
eter combinations in the familiar triangle plot. We also
highlight with a black point the mean MCMC values and
with a red point the Planck 2018 concordance cosmology.
The latter is based on the TT, TE, EEþ lowP spectra, a flat
ΛCDM model, and the values are shown in Table III.

TABLE IV. The best-fit parameters for the ΛCDM and the HDES (n ¼ 2) models, respectively.

Model Ωm;0 100Ωbh2 J̃c h σ8

Best-fit values
ΛCDM 0.311� 0.006 2.243� 0.014 0 0.680� 0.004 0.758� 0.025
HDES 0.313� 0.006 2.240� 0.014 −0.309� 0.244 0.678� 0.004 0.911� 0.068

TABLE V. The χ2 and AIC parameters for the ΛCDM and the
HDES models, respectively.

Model χ2 AIC ΔAIC

ΛCDM 1087.64 1095.68 0
HDES 1086.30 1096.35 0.678

8The MCMC code for Mathematica used in the analysis is
freely available at http://members.ift.uam-csic.es/savvas.nesseris/.
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In Tables IV and V we show the best-fit values of the
model parameters and the values for the χ2 and AIC
parameters for the ΛCDM and the HDES model, respec-
tively. As can be seen from Tables IV and V, we find that
as the difference in the AIC parameters is roughly ∼0.68,
then both models seem to be statistically equivalent with
each other. Furthermore, as seen in Fig. 8, there is a
clear negative correlation between J̃c and σ8 as we saw in
Sec. V E and Eq. (183) due to the strong degeneracy
between the parameters. This degeneracy is useful as it can
potentially alleviate and relax the tension that has been
recently observed, see Refs. [27,88]. In particular, in Fig 9
we show the 68.3%, 95.4%, and 99.7% confidence con-
tours for the ΛCDM (left) and the HDES (n ¼ 2) (right)
models, respectively, in the ðΩm;0; σ8Þ plane. As can be
seen, for the HDES model, the best fit in the ðΩm;0; σ8Þ
plane moves toward higher values of σ8, closer to those
of Planck.

VIII. CONCLUSIONS

The recent discovery of gravitational waves emission
from a binary neutron star merger with an optical counter-
part, signified a major breakthrough in astrophysics and
cosmology as it provided a direct measurement of the speed
of propagation of gravitational waves. This observation not
only represented an important advance for astronomy, but it
also served to greatly reduce the number of alternative
models aiming at explaining the current accelerating phase

of the Universe. In particular, since the constraint on the
speed of propagation of gravitational waves is extremely
close to the speed of light, the Horndeski Lagrangian
simplified to only three functions. Although this means a
notable progress in constraining cosmological models,
degeneracies with the ΛCDM model remain and must be
further investigated.
In this paper we used an effective fluid approach to study

the remaining Horndeski Lagrangian. This formalism
makes it possible to compare models with different under-
lying physics (e.g., DE and MGmodels) in a relatively easy
way: each model is mapped to three functions describing
the effective fluid, namely, the equation of state w, the
sound speed c2s , and the anisotropic stress π. Even though
the remaining Horndeski Lagrangian is now simpler than
its original version, finding exact analytical solutions
can be quite laborious. Nevertheless, the subhorizon and
quasistatic approximations are pretty helpful at overcoming
this difficulty.
One of our main results is the set of Eqs. (102)–(107).

These equations along with the equation of state Eq. (73)
describe the remaining Horndeski Lagrangian in an effec-
tive fluid approach under the subhorizon and quasistatic
approximations. In this paper, we provide explicit expres-
sions for the effective fluid description of several DE
and MG models.
In order to exemplify our results and since we focused

on explanations to the late-time accelerating universe, we
carried out an analysis where only DM and an effective DE

FIG. 9. The 68.3%, 95.4%, and 99.7% confidence contours for the ΛCDM (left) and the HDES (n ¼ 2) (right) models, respectively,
in the ðΩm;0; σ8Þ plane. We also highlight with a black point the mean MCMC values and with a red point or dashed vertical line the
Planck 2018 concordance cosmology. The latter is based on the TT, TE, EEþ lowP spectra, a flat ΛCDM model and the values are
shown in Table III.
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fluid are taken into consideration. A particularly interesting
model also included in our formalism is the KGB model. In
Sec. VI we show our analytical solutions agree pretty well
with a full numerical solution of the system of differential
equations describing the DM and effective DE perturba-
tions. We also confirm that the subhorizon approximation
breaks down for the KGB model due to the rapid oscil-
lations of the scalar field in the large n limit, in agreement
with Ref. [79]. Also, for the KGB model the background
equation for the expansion history HðaÞ can only be found
numerically for n > 1, thus slowing down the codes
significantly.
Due to these problems, we propose a completely new

class of Horndeski models based on the designing princi-
ple, i.e., fixing the background to a specific model, usually
that of the ΛCDM and then determining the Lagrangian.
Given the freedom in specifying the remaining functions
of the Horndeski Lagrangian, we propose a way to find
families of models which match a particular background
expansion, i.e., the equation of state wDE. Since current
observations are in good agreement with the standard
ΛCDM at the background level, we provide equations
specifying a wDE ¼ −1 designer Horndeski model [see
Eqs. (169)], which we call HDES. Furthermore, for this
model we are able to find exact solutions for the growth
δmðaÞ in the matter domination epoch by solving Eq. (101).
The solutions we found are given by Eq. (179), and they
imply a degeneracy between σ8 and the parameter of the
HDES model J̃c, which can approximately be described
via Eq. (183).
Although fixing the background to ΛCDM is a common

practice, the treatment of the perturbations might not be
rigorous enough in current studies. Public codes solving the
perturbation equations for the Horndeski Lagrangian (e.g.,
HI_CLASS) use ad hoc parametrizations for the αi functions
which differ significantly from our findings that approxi-
mate a realistic model [see Eqs. (171)–(175)]; see, for
example, Refs. [131–133].
We implemented the parametrized version for the DE

effective fluid of our wDE ¼ −1 designer Horndeski HDES
model in the public code CLASS, which we call EFCLASS, by
following the straightforward implementation explained in
our previous paper [65]. For the sake of comparison and in
order to check the validity of our effective fluid approach,
we compared results from our code EFCLASS with the
public code HI_CLASS, which solves numerically the full
perturbation equations.
In Fig. 5 we show the CMB angular power spectrum

computed with both codes, and as can be seen in the right
panel of Fig. 5, the agreement is remarkable and on average
on the order of ∼0.1%. Since the HI_CLASS code does not
utilize either the subhorizon or the quasistatic approxima-
tion, but our EFCLASS does it, we conclude our effective
fluid approach is quite accurate and powerful. Furthermore,
the main advantage of our method is that while HI_CLASS

requires significant and nontrivial modifications, our
EFCLASS code practically only requires the implementation
of Eq. (187), which is trivial.
We further investigated our wDE ¼ −1 designer

Horndeski HDES model by computing cosmological con-
straints with recent datasets using an MCMC analysis. The
results of our MCMC analysis are shown in Tables IV
and V, where we present the best-fit values of the model
parameters and the values for the χ2 and AIC parameters
for the ΛCDM and the HDES model, respectively. We
find that as the difference in the AIC parameters is
roughly ∼0.68, then both models seem to be statistically
equivalent with each other. Furthermore, as seen in Fig. 8,
there is a clear negative correlation between J̃c and σ8.
This can be understood, as we saw in Sec. V E, due to the
strong degeneracy between the parameters described by
Eq. (183). This degeneracy is useful as it can potentially
alleviate the σ8 tension that has been recently observed;
see Refs. [27,88].
Numerical analysis files: The numerical codes used

by the authors in the analysis of the paper and our
modifications to the CLASS code, which we call
EFCLASS, will be released upon publication of the paper
on the websites of the EFCLASS https://members.ift.uam-
csic.es/savvas.nesseris/efclass.html and https://github.com/
wilmarcardonac/EFCLASS.
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APPENDIX A: SCALAR AND GRAVITATIONAL
FIELD EQUATIONS

For completeness, in this appendix we show how to
compute both the gravitational and the scalar-field equa-
tions derived from the Horndeski action (21).

1. Scalar field equation

For a function of a single variable with higher deriva-
tives, the stationary values of the functional [134]

I½f� ¼
Z

x1

x0

Lðx; f; f0; f00;…; fðkÞÞdx; f0 ≡ df
dx

;

f00 ≡ d2f
dx2

; fðkÞ ≡ dkf
dxk

; ðA1Þ

can be obtained from the Euler-Lagrange equation
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∂L
∂f −

d
dx

�∂L
∂f0

�
þ d2

dx2

�∂L
∂f00

�

− � � � ð−1Þk dk

dxk

�∂L
∂fk

�
¼ 0: ðA2Þ

Since our LagrangianLi functions defined in the Horndeski
action (21) depend on the scalar field ϕ and its first
and second derivatives, we can use the Euler-Lagrange
equation (A2) to compute the scalar field equation for L2,
L3, and L4. For L2 we have

L2ðϕ; ∂μϕÞ ¼
∂L2

∂ϕ δϕþ ∂L2

∂μϕ
δð∂μϕÞ

¼ ∂L2

∂ϕ δϕ − ∂μ
∂L2

∂μϕ
δϕ; ðA3Þ

∂L2

∂ϕ − ∂μ
∂L2

∂μϕ
¼ P2

ϕ −∇μJ2μ ¼ 0: ðA4Þ

Since L2 ¼ Kðϕ; XÞ, applying Eq. (A4) leads to

P2
ϕ ¼ ∂L2

∂ϕ ¼ Kϕ; ðA5Þ

∇μJ2μ ¼ ∂μ
∂L2

∂μϕ

¼ ∇μ

�∂K
∂μϕ

�

¼ ∇μ

�∂K
∂X

∂X
∂μϕ

�

¼ −∇μðKX∇μϕÞ; ðA6Þ
where we have replaced the partial derivatives by covariant
derivatives and we are using the fact that X ¼ − 1

2
∂μϕ∂μϕ.

Hence, for L2 the scalar field equation reads

Kϕ þ∇μðKX∇μϕÞ ¼ 0: ðA7Þ
For the term L3 we follow the same approach,

L3ðϕ; ∂μϕ; ∂μ∂νϕÞ ¼
∂L3

∂ϕ δϕþ ∂L3

∂μϕ
δð∂μϕÞ

þ ∂L3

∂μ∂νϕ
δð∂μ∂νϕÞ

¼ ∂L3

∂ϕ δϕ − ∂μ
∂L3

∂μϕ
δϕ

þ ∂μ∂ν
∂L3

∂μ∂νϕ
δϕ; ðA8Þ

∂L3

∂ϕ − ∂μ
∂L3

∂μϕ
þ ∂μ∂ν

∂L3

∂μ∂νϕ
¼ 0: ðA9Þ

Knowing that L3¼−G3ðϕ;XÞ ½□ϕ¼gμν∇μ∇νϕ�, apply-
ing Eq. (A9) gives

∂L3

∂ϕ ¼ −G3ϕ□ϕ; ðA10Þ

∂μ
∂L3

∂μϕ
¼ ∇μ

�∂G3

∂μϕ
□ϕ

�

¼ ∇μ

�∂G3

∂X
∂X
∂μϕ

□ϕ

�

¼ −∇μðG3X∇μϕ□ϕÞ; ðA11Þ

∂μ∂ν
∂L3

∂μ∂νϕ
¼ −∇μð∇νgμνG3Þ

¼ −∇μðG3ϕ∇μϕþG3X∇μXÞ; ðA12Þ

where we have replaced again the partial derivatives by
covariant derivatives. We can then conclude that for L3 the
scalar field equation reads

−G3ϕ□ϕ −∇μðG3X∇μϕ□ϕÞ −∇μðG3ϕ∇μϕÞ
−∇μðG3X∇μXÞ ¼ 0; ðA13Þ

and we make the following assignment:

P3
ϕ ¼ ∇μG3ϕ∇μϕ; ðA14Þ

∇μJ3μ ¼ ∇μð−G3X∇μϕþ G3X∇μX þ 2G3ϕ∇μϕÞ: ðA15Þ

For L4 we have

L4ðϕÞ ¼
∂L4

∂ϕ δϕ; ðA16Þ

∂L4

∂ϕ ¼ P4
ϕ ¼ 0: ðA17Þ

Since L4 ¼ G4ðϕÞR, applying Eq. (A17) leads to

P4
ϕ ¼ G4ϕR: ðA18Þ

Our result for the scalar field equation considering
G4X ¼ 0 and G5 ¼ 0 is in full agreement with Ref. [73].
Hence, the scalar-field equation can be written as

∇μ

�X4
i¼2

Jiμ

�
¼

X4
i¼2

Pi
ϕ: ðA19Þ
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2. Gravitational field equations

Defining the arbitrary functions Li from the action (21) as

L2 ¼ Kðϕ; XÞ; ðA20Þ

L3 ¼ −G3ðϕ; XÞ□ϕ; ðA21Þ

L4 ¼ G4ðϕÞR; ðA22Þ

we can then vary the action with respect to the metric tensor;
using the principle of least action, this leads to

δS ¼ δS2 þ δS3 þ δS4 þ δð ffiffiffiffiffiffi
−g

p
LmÞ ¼ 0: ðA23Þ

For δS2 we have

δS2 ¼
Z

d4x½δ ffiffiffiffiffiffi
−g

p
K þ ffiffiffiffiffiffi

−g
p

δK�; ðA24Þ

and using the fact that

δ
ffiffiffiffiffiffi
−g

p ¼ −
1

2

ffiffiffiffiffiffi
−g

p
gμνδgμν; ðA25Þ

and that the variation of K with respect to the metric can be
written as

δKðϕ; XÞ ¼ KXδgμν
�
−
1

2
∇μϕ∇νϕ

�
; ðA26Þ

we get

δS2¼
Z

d4x
ffiffiffiffiffiffi
−g

p
δgμν

�
−
1

2
Kgμν−

1

2
KX∇μϕ∇νϕ

�
: ðA27Þ

For δS3 we have

δS3 ¼
Z

d4x½−δ ffiffiffiffiffiffi
−g

p
G3□ϕ −

ffiffiffiffiffiffi
−g

p
δðG3□ϕÞ�: ðA28Þ

The variations of G3 with respect to the metric can be
written as

δðG3ðϕ; XÞ□ϕÞ ¼ δG3□ϕþ G3δð□ϕÞ

¼ G3Xδgμν
�
−
1

2
∇μϕ∇νϕ

�
□ϕ

þ G3δð□ϕÞ; ðA29Þ

hence

δS3 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
gμνδgμνG3□ϕ

þ 1

2
δgμνG3X□ϕ∇μϕ∇νϕþG3δð□ϕÞ

�
: ðA30Þ

The last term of the above equation can be expanded in the
following way:

δ□ϕ ¼ δgab∇a∇bϕþ gabδð∇a∇bϕÞ
¼ δgab∇a∇bϕþ□ðδϕÞ − gabδΓγ

ab∂γϕ; ðA31Þ

since

∇a∇bϕ ¼ ∂a∂bϕ − Γγ
ab∂γϕ ðA32Þ

and

δð∇a∇bϕÞ ¼ ∇a∇bðδϕÞ − δΓγ
ab∂γϕ: ðA33Þ

Also we have that gabΓγ
ab ¼ � � � ¼ −∇aδgγa þ

1
2
gabgγλ∇λδgab, so we get for the last term in Eq. (A30)

δSlast-term ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ð−G3Þ
�
δgab∇a∇bϕþ□δϕþ

�
∇aδgγa −

1

2
gabgγλ∇λδgab

�
∂γϕ

�

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−δgμνð∇μ∇νÞG3 þ δgγa∇aðG3∇γϕÞ −

1

2
δgabgabgγλ∇λðG3∇γϕÞ

�

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−δgμνð∇μ∇νÞG3 þ δgμν∇νðG3∇μϕÞ −

1

2
δgμνgμν∇γðG3∇γϕÞ

�

¼
Z

d4x
ffiffiffiffiffiffi
−g

p
δgμν

�
ð∇ðμϕÞð∇νÞG3Þ −

1

2
gμν∇γðG3∇γϕÞ

�
: ðA34Þ
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Combining all terms we have

δS3 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
δgμν

�
1

2
G3X□ϕ∇μϕ∇νϕ

þ∇ðμG3∇νÞϕ −
1

2
gμν∇λG3∇λϕ

�
: ðA35Þ

For δS4 we have

δS4 ¼
Z

d4x½δ ffiffiffiffiffiffi
−g

p
G4Rþ ffiffiffiffiffiffi

−g
p

G4δR�; ðA36Þ

where

δR ¼ δðgμνRμνÞ
¼ Rμνδgμν þ gμνδRμν

¼ Rμνδgμν þ gμνð∇ρδΓ
ρ
νμ −∇νδΓ

ρ
ρμÞ: ðA37Þ

Since δΓλ
μν is the difference of two connections, it should

transform as a tensor. Therefore, it can be written as

δΓλ
μν ¼

1

2
gλαð∇μδgαν þ∇νδgαμ −∇αδgμνÞ: ðA38Þ

Then, substituting Eq. (A38) into (A37), we get

δR ¼ Rμνδgμν þ gμν□ðδgμνÞ −∇μ∇νðδgμνÞ; ðA39Þ

hence

δS4 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
gμνδgμνG4RþG4Rμνδgμν þ G4ðgμν□ðδgμνÞ −∇μ∇νðδgμνÞÞ

�

¼
Z

d4x
ffiffiffiffiffiffi
−g

p
δgμν½GμνG4 þ gμν□G4 −∇μ∇νG4 þ total derivatives�

¼
Z

d4x
ffiffiffiffiffiffi
−g

p
δgμν½GμνG4 þ gμνðG4ϕ□ϕ − 2XG4ϕϕÞ −G4ϕ∇μ∇νϕ −G4ϕϕ∇μϕ∇νϕþ total derivatives�; ðA40Þ

where

−∇μð∇νG4Þ ¼ −∇μð∇νϕG4ϕÞ
¼ −∇μ∇νϕG4ϕ −∇μϕ∇νϕG4ϕϕ; ðA41Þ

gμν□G4 ¼ gμνðgab∇a∇bG4Þ
¼ gμνðgab∇að∇bϕG4ϕÞÞ
¼ gμνðgab∇a∇bϕG4ϕ þ gab∇bϕ∇aG4ϕÞ
¼ gμνð□ϕG4ϕ − 2XG4ϕϕÞ: ðA42Þ

Since the energy-momentum tensor is defined as

TðmÞ
μν ¼ −

2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp
LmÞ

δgμν
; ðA43Þ

the gravitational field equation can be written

TðmÞ
μν ¼ −KX∇μϕ∇νϕ − Kgμν þG3X□ϕ∇μϕ∇νϕ

þ 2∇ðμG3∇νÞϕ − gμν∇λG3∇λϕþ 2G4Gμν

þ 2gμνðG4ϕ□ϕ − 2XG4ϕϕÞ − 2G4ϕ∇μ∇νϕ

− 2G4ϕϕ∇μϕ∇νϕ: ðA44Þ

APPENDIX B: COEFFICIENTS

Here we show the coefficients for the perturbations in the
Horndeski theory in Eq. (21). They are given by

A1 ¼ −3 _ϕ3G3X þ 12HG4 þ 6 _ϕG4ϕ; ðB1Þ

A2 ¼ − _ϕðKX þ _ϕ2KXXÞ þ 2 _ϕG3ϕ

− 3H _ϕ2ð3G3X þ _ϕ2G3XXÞ þ _ϕ3G3ϕX

þ 6HG4ϕ; ðB2Þ

A3 ¼ 4G4; ðB3Þ

A4 ¼ _ϕ2ðKX þ _ϕ2KXXÞ − 2 _ϕ2G3ϕ − _ϕ4G3ϕX

þ 3H _ϕ3ð4G3X þ _ϕ2G3XXÞ − 12HðHG4 þ _ϕG4ϕÞ;
ðB4Þ

A6 ¼ − _ϕ2G3X þ 2G4ϕ; ðB5Þ

μ ¼ −Kϕ þ _ϕ2KϕX − _ϕ2G3ϕϕ þ 3H _ϕ3G3ϕX

− 6H2G4ϕ − 6H _ϕG4ϕϕ; ðB6Þ

B1 ¼ 12G4; ðB7Þ
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B2 ¼ −3 _ϕ2G3X þ 6G4ϕ; ðB8Þ

B3 ¼ 12ð _ϕG4ϕ þ 3HG4Þ; ðB9Þ

B4 ¼ 3½ _ϕKX − 2 _ϕG3ϕ − 2 _ϕ ϕ̈G3X

− _ϕ3ðG3ϕX þ ϕ̈G3XXÞ þ 4HG4ϕ þ 4 _ϕG4ϕϕ�; ðB10Þ

B5 ¼ 3ð _ϕ3G3X − 4HG4 − 2 _ϕG4ϕÞ; ðB11Þ

B6 ¼ 4G4; B7 ¼ 4G4ϕ; B8 ¼ 4G4; ðB12Þ

B9 ¼ −3KX
_ϕ2 þ 6G3ϕ

_ϕ2 þ 3G3ϕX
_ϕ4 þ 12G3X

_ϕ2ϕ̈

þ 3G3XX
_ϕ4ϕ̈ − 36G4H2 − 24G4

_H

− 24G4ϕH _ϕ − 12G4ϕϕ
_ϕ2 − 12G4ϕϕ̈; ðB13Þ

and using Eq. (68) to eliminate G4 in favor of K we can
express B9 as

B9 ¼ 3ð2K − _ϕ2KX þ 2 _ϕ2ϕ̈G3X þ _ϕ4G3ϕX þ _ϕ4ϕ̈G3XXÞ;
ðB14Þ

ν ¼ Kϕ − _ϕ2ðG3ϕϕ þ ϕ̈G3ϕXÞ þ 2ð3H2 þ 2 _HÞG4ϕ

þ 2ðϕ̈þ 2H _ϕÞG4ϕϕ þ 2 _ϕ2G4ϕϕϕ; ðB15Þ

C1 ¼ 4G4; ðB16Þ

C2 ¼ − _ϕ2G3X þ 2G4ϕ; ðB17Þ

C3 ¼ _ϕ3G3X − 4HG4 − 2 _ϕG4ϕ; ðB18Þ

C4 ¼ _ϕðKX − 2G3ϕ þ 2G4ϕϕÞ þHð3 _ϕ2G3X − 2G4ϕÞ;
ðB19Þ

D1 ¼ −3ð _ϕ2G3X − 2G4ϕÞ; ðB20Þ

D2 ¼ −KX − _ϕ2KXX þ 2G3ϕ − 6H _ϕG3X þ _ϕ2G3ϕX

− 3H _ϕ3G3XX; ðB21Þ

D3 ¼ −3ð _ϕKX − 2 _ϕG3ϕ þ 6H _ϕ2G3X þ 2 _ϕ ϕ̈G3X

þ _ϕ3G3ϕX þ _ϕ3ϕ̈G3XX − 8HG4ϕÞ; ðB22Þ

D4 ¼
d
dt

D2 þ 3HD2

¼ −3HKX − KϕX
_ϕ − KϕXX

_ϕ3 − KXXX
_ϕ3ϕ̈ − 3KXXðH _ϕ2 þ _ϕ ϕ̈Þ þ 6HG3ϕ þ 2G3ϕϕ

_ϕ − 6G3Xð3H2 _ϕþ _H _ϕþHϕ̈Þ
þ G3ϕXð−3H _ϕ2 þ 4 _ϕ ϕ̈Þ þ G3ϕϕX

_ϕ3 − 3G3XX
_ϕ2ð3H2 _ϕþ _H _ϕþ5Hϕ̈Þ þ GϕXXðH _ϕ3ϕ̈ − 3H _ϕ4Þ − 3G3XXXH _ϕ4ϕ̈;

ðB23Þ

D5 ¼ _ϕðKX þ _ϕ2
XX − 2G3ϕ − _ϕ2G3ϕXÞ þ 3Hð3 _ϕ2G3X þ _ϕ4G3XX − 2G4ϕÞ; ðB24Þ

D7 ¼ 4G4ϕ; ðB25Þ

D8 ¼ 9H _ϕ−1K þ 3Kϕ − 3ðϕ̈þ 3H _ϕÞKX − 3 _ϕ2ðKϕX þ ϕ̈KXXÞ þ 3ð2ϕ̈þ 3H _ϕÞG3ϕ

− 9 _ϕð3Hϕ̈þ 3H2 _ϕþ _H _ϕÞG3X þ 3 _ϕ2G3ϕϕ þ 3 _ϕ2ðϕ̈ − 3H _ϕÞG3ϕX − 9H _ϕ3ϕ̈G3XX

þ 18H _ϕ−1ð3H2 þ 2 _HÞG4 þ 18 _ϕ−1ðHϕ̈þ 4H2 _ϕþ _H _ϕÞG4ϕ þ 18H _ϕG4ϕϕ; ðB26Þ

and using Eqs. (68) and (74) we find that

D8 ¼ 0; ðB27Þ

D9 ¼ −KX þ 2G3ϕ − 4H _ϕG3X − ϕ̈ð2G3X þ _ϕ2G3XXÞ − _ϕ2G3ϕX; ðB28Þ

D10 ¼ − _ϕ2G3X þ 2G4ϕ; ðB29Þ
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D11 ¼ Kϕ þ ðϕ̈þ 3H _ϕÞKX þ _ϕ2ð4ϕ̈þ 3H _ϕÞKXX þ _ϕ4ðKϕXX þ ϕ̈KXXXÞ − 2ðϕ̈þ 3H _ϕÞG3ϕ

þ 9 _ϕð2Hϕ̈þ 3H2 _ϕþ _H _ϕÞG3X − _ϕ2G3ϕϕ − _ϕ2ð5ϕ̈ − 3H _ϕÞG3ϕX − _ϕ4G3ϕϕX

þ 3 _ϕ3ð7Hϕ̈þ 3H2 _ϕþ _H _ϕÞG3XX − _ϕ4ðϕ̈ − 3H _ϕÞG3ϕXX þ 3H _ϕ5ϕ̈G3XXX − 6ð2H2 þ _HÞG4ϕ; ðB30Þ

M2 ¼ −Kϕϕ þ ðϕ̈þ 3H _ϕÞKϕX þ _ϕ2KϕϕX þ _ϕ2ϕ̈KϕXX − ϕ̈½2G3ϕϕ þ _ϕ2G3ϕϕX − 3H _ϕð2G3ϕX þ _ϕ2G3ϕXXÞ�
− 6H _ϕG3ϕϕ þ 3 _ϕ2ð3H2 þ _HÞG3ϕX − _ϕ2G3ϕϕϕ þ 3H _ϕ3G3ϕϕX − 6ð2H2 þ _HÞG4ϕϕ: ðB31Þ

For the DE effective perturbation equations we found the following coefficients:

F 1 ¼ ðA6 − B7ÞB7G4G2
4ϕðB7G4 − ðB6 − 2ÞG4ϕÞ; ðB32Þ

F 2 ¼ ðA6 − B7ÞB7G4ð3νG2
4ϕ þ 2B2G2

4ϕϕ
_ϕ2 −G4ϕðB4G4ϕϕ

_ϕþ B2G4ϕϕϕ
_ϕ2 þ B2G4ϕϕϕ̈ÞÞ

þG2
4ϕðB2B7ðB7 − A6ÞG4ϕϕ

_ϕ2 þ G4ϕðB9ðB2
7 − 2D9Þ þ ðA6 − B7ÞB7ðB4

_ϕþ B2ϕ̈ÞÞÞ; ðB33Þ

F 3 ¼ B6B9M2G3
4ϕ; ðB34Þ

F 4 ¼ G4ϕ; ðB35Þ

F 5 ¼ B6ðA2
6 − 2A6B7 þ B6D9ÞG2

4ϕ; ðB36Þ

F 6 ¼ −B2
6M

2G2
4ϕ; ðB37Þ

F 7 ¼ G4ϕðA6ðA6 − B7ÞB7G4

þ ðB6 − 2ÞðB6D9 − A6B7ÞG4ϕÞ; ðB38Þ

F 8 ¼ ðG2
4ϕðA4ðB2

7 − B6D9Þ − ðB6 − 2ÞB6M2

þ 6ðB2
7 − B6D9ÞH2 þ A2ðA6 − B7ÞB7

_ϕÞ
− ðA6 − B7ÞB7G4ðμG4ϕ þ A2G4ϕϕ

_ϕÞÞ; ðB39Þ

F 9 ¼ B6M2G2
4ϕðA4 þ 6H2Þ; ðB40Þ

F 10 ¼ G4ϕððA6 − B7ÞB7C4G4

þ ðB2
7 − B6D9ÞG4ϕðC3 þ 2HÞÞ

þ ðA6 − B7ÞB7C2ðG2
4ϕ −G4G4ϕϕÞ _ϕ; ðB41Þ

F 11 ¼ B6M2G2
4ϕðC3 þ 2HÞ: ðB42Þ

The coefficients for the KGB DE effective perturbation
equations are

F̂ 2 ¼ −B9D9 þ 3A6ν − 6D9ð3H2 þ 2 _HÞ; ðB43Þ

F̂ 3 ¼ M2ðB9 þ 18H2 þ 12 _HÞ; ðB44Þ

F̂ 5 ¼ A2
6 þ B6D9; ðB45Þ

F̂ 6 ¼ −B6M2; ðB46Þ

F̂ 7 ¼ −A2
6 − ðB6 − 2ÞD9; ðB47Þ

F̂ 8 ¼ A4D9 þM2ðB6 − 2Þ þ A6μþ 6D9H2; ðB48Þ

F̂ 9 ¼ −M2ðA4 þ 6H2Þ; ðB49Þ

F̂ 10 ¼ M2ðC3 þ 2HÞ; ðB50Þ

F̂ 11 ¼ A6C4 − C3D − 9 − 2D9H: ðB51Þ
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