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Abstract

The goal of this thesis is to push the limits of the Swampland Distance Conjecture (SDC).
This is one of the most relevant conjectures in the Swampland program, whose aim is to
identify the criteria that an effective field theory must satisfy in order to be consistently
coupled to quantum gravity. For this purpose, we study the SDC in two different contexts:
Running solutions and AdS/CFT. After an introduction motivating the subject, we give a
short review of the Swampland program. Special attention is given to the SDC and to the
limitations that motivate this thesis.

We start by presenting a first example of running solution and its interplay with the
SDC. It teaches us that the naive extension of the conjecture to this context fails. However,
we argue that this is not a violation of the SDC in its usual formulation, but that it is
protected in a non-trivial way. Motivated by these results, we propose that consistency of
the SDC along the RG flow of the theory imposes constraints on the potentials that are
attainable in quantum gravity. To characterize them, we consider the behaviour of the
SDC along non-geodesic trajectories in field space. We first study some examples and then
generalize the results by providing a geometric formulation of the SDC. It turns out to be
equivalent to a convex hull condition, similar to the one appearing in a extension of the
Weak Gravity Conjecture.

We then move to another type of running solutions, the so-called dynamical cobor-
disms. They receive this name for being the spacetime realization of cobordisms between
different theories. Based on several examples in theories with dynamical tadpoles, we pro-
pose that the behaviour of scalars as one hits a cobordism wall allows for a distinction
between two types of them: On one hand there are interpolating domain walls, in which
scalars remain at finite field distance and after which spacetime continues. On the other
hand, scalars explore infinite field distance as we approach a wall of nothing ending space-
time. For the latter case, we furthermore find some universal scaling relations between
spacetime geometric quantities such as the distance to the wall or the scalar curvature and
the field space distance. By performing a bottom-up effective field theory analysis of these
kind of solutions, we moreover relate this universal scalings to the presence of exponen-
tial potentials at infinite field distance limits. These results suggest a relation between
Cobordism, de Sitter (dS) and Distance conjectures.

Finally, we turn our attention to the SDC in the context of AdS/CFT. In all the
examples we consider, infinite distance limits in the CFT turn out to be weak coupling
points in which some sector decouples. The SDC tower of states from the CFT perspective
is then formed by the higher-spin conserved currents that characterize these points. After
reviewing the main entries of the AdS/CFT dictionary that are relevant for the conjecture,
we warm up with the most well-known example of this duality in String Theory. We then
perform some purely CFT analysis in the context of 4d N = 2 theories. For those with
Einstein gravity dual, we are able to show that the exponential decay rate of the tower of
states is at least order one. In addition, we take a closer look to an specific example with
known bulk dual in String Theory. It exhibits interesting features such as infinite field
distance limits induced by quantum corrections, parametrically large exponential decay
rate for the tower and intriguing candidates for the stringy object that give rise to it.



Resumen

El objetivo de esta tesis es empujar los limites de la Conjetura de la Distancia (SDC por
sus siglas en inglés). Esta es una de las conjeturas més relevantes en el programa Ciénaga,
que trata de encontrar criterios que una teoria de campos efectiva debe satisfacer para
poder acoplarse a gravedad cuéntica de manera consistente. Para ello, estudiamos la SDC
en dos contextos: Soluciones dinamicas y AdS/CFT. Tras una introducciéon motivando el
tema, daremos un corto repaso al programa Ciénaga. Prestaremos especial atenciéon a la
SDC y a las limitaciones que motivan esta tesis.

Empezamos presentando un primer ejemplo de solucién dindmica y su relacién con
la SDC. Esta nos ensena que la extensiéon mas directa de la conjetura a este contexto no
funciona. Sin embargo, argumentamos que esto no conlleva una violacion de la SDC, sino
que esta se ve protegida de una forma no trivial. Con estos resultados como motivacién,
proponemos que el que la SDC sea consistente a lo largo del flujo de renormalizacién de
la teorfa impone ciertas restricciones sobre los potenciales posibles en teorias de gravedad
cuantica. Para caracterizarlas, consideramos el comportamiento de la SDC a lo largo de
trayectorias no geodésicas en espacio de campos. Primero estudiamos algunos ejemplos
v luego generalizamos los resultados dando una formulacion geométrica de la SDC. Esta
resulta ser equivalente a una condicion sobre la envolvente convexa similar a la que aparece
en una extensiéon de la Conjetura de Gravedad Débil.

Tras esto pasamos a otro tipo de soluciones, los llamados cobordismos dindmicos.
Este nombre se debe a que describen cobordismos entre distintas teorias de forma dinamica
en el espacio-tiempo. Basandonos en ejemplos en teorias con renacuajos dindmicos, pro-
ponemos que el comportamiento de los escalares al alcanzar el muro de cobordismo permite
distinguir entre dos tipos: Por un lado, encontramos muros de dominio en los cuales los
escalares permanecen a distancia de campos finita y tras los cuales el espacio-tiempo con-
tinta. Por otro lado, los escalares exploran distancia de campos infinita al acercarnos
a un muro de la nada tras el cual deja de haber espacio-tiempo. Ademads, en el ultimo
caso encontramos ciertas relaciones universales entre cantidades geométricas espaciotem-
porales tales como la distancia al muro o la curvatura escalar y la distancia en espacio de
campos. Tras realizar un andlisis de este tipo de soluciones en teorias efectivas genéricas,
también vinculamos estas relaciones universales a la presencia de potenciales exponenciales
en limites distancia de campos infinita. Estos resultados sugieren una conexién entre las
conjeturas Cobordismo, de Sitter (dS) y de la Distancia.

Por altimo, estudiamos la SDC en el contexto de AdS/CFT. En todos los ejemplos
que consideramos, los limites a distancia infinita en la CFT resultan ser puntos de acople
débil para algiin subsector de la teoria. La torre de estados de la SDC desde la perspectiva
de la CFT esta formada por las corrientes conservadas de espin alto que caracterizan estos
puntos. Tras repasar las entradas del diccionario AdS/CFT mas relevantes para el estudio
de la conjetura, la ponemos a prueba en el ejemplo mas famoso de esta dualidad en Teoria
de Cuerdas. Después llevamos a cabo un anélisis centrado en la CFT, més concretamente
en teorfas en 4d y con N’ = 2. Para aquellas con dual gravitacional Einstein, somos capaces
de demostrar que la velocidad de caida exponencial de la torre de estados es como poco de
orden uno. Ademads, estudiamos més a fondo un ejemplo especifico cuyo dual gravitacional
es conocido en Teorfa de Cuerdas. Este muestra ciertas caracteristicas interesantes, como
por ejemplo distancias infinitas inducidas por correcciones cuanticas, velocidades de caida
exponencial paramétricamente grandes para la torre de estados y candidatos intrigantes
para el objeto cuerdoso del que surgen.
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Part 1

PRELIMINARIES



Introduction

Fundamental or basic research seeks to understand what happens around us. Thanks to
it, today we enjoy deep knowledge about the laws of Nature. In the long run, this has led
to enormous technological progress. Despite this, it is important to keep in mind that this
research is not driven by economical profit, but rather by pure curiosity.

The Two Pillars of Modern Physics

Even having such a deep knowledge, we can not claim to understand everything at the
fundamental level. Coming back to the end of the 19th century, one could have thought
that this was the case thanks the huge successes in physics. But Nature is always more
impressive than we expected. At that same time, the physicist William Thomson (Lord
Kelvin) was mentioning a couple of ‘clouds’ that were challenging our understanding. Ul-
timately, these challenges were so great that required a paradigm shift and led to the two
pillars of modern physics: Relativity and Quantum Mechanics. These very fascinating and
counter-intuitive set of principles have granted us an even better understanding of the laws
of Nature, from the very small to the very large scales.

The search for a relativistic and quantum mechanical framework led to the for-
mulation of quantum field theory (QFT), that allows us to describe the (in our current
understanding) most fundamental objects in Nature, particles. Within this framework the
Standard Model of particle physics (SM) was born. This very successful model reproduces
to an incredible precision all currently available experiments probing the smallest scales.
It contains a set of particles as basic constituents. On one side we have matter particles,
such as the electron. These are the building blocks forming all the matter that we see. On
the other hand we have force mediators, responsible for transmitting the electromagnetic,
the strong and the weak interactions. An example of such is the photon (the particle of
light), mediator of the electromagnetic interactions. Finally we have the Higgs Boson, a
very special particle that comes as a byproduct of the mechanism that generates for the
rest of particles their masses. Its discovery at the LHC in 2012 [6, 7] represented the final
piece of evidence for this model.

Despite its great success, we know that the Standard Model can not be the end of
the story. Even ignoring its own theoretical issues, there is something that we experience
in our everyday life that it is missing. Only three out of the four fundamental interactions
that have been observed are described within this model. In fact, the one that is missing
is the most relevant when going to the largest scales. It is the responsible for keeping us
standing on the ground, or for making the apples fall from the trees to the floor. The
Standard Model does not describe gravity.



Chapter 1. Introduction

Coming back to the one of the two pillars of modern physics, formulating a relativistic
theory of gravity led to a very striking feature: Gravity is about the dynamics of spacetime
itself. Such a theory was proposed by Albert Einstein in 1915 [8] under the name of General
Relativity (GR). Among its successes, this theory is the basis of the ACDM model of
cosmology, which describes most of the history of our Universe with astonishing precision.
Furthermore, Einstein’s theory predicts very fascinating objects and phenomena that after
many years we have been able to observe. Such an example are gravitational waves, a
form of radiation in which spacetime oscillates. They were famously observed by the Laser
Interferometer Gravitational Wave Observatory collaboration (LIGO) in 2016 [9]. Another
example is that of black holes. These amazing objects were found as the first solution to
Einstein’s equations and have played a central role in the study of the theory. Even though
their existence had been confirmed in many different ways, a few years ago the Event
Horizon Telescope collaboration (EHT) presented new direct evidence in the form of the
first picture of a black hole [10]. Even more recently, a picture of Sagittarius A* (the black
hole in the center of our own galaxy) has been achieved by the same collaboration [11].

Quantum Gravity, String Theory and the Swampland

Again, despite the great success of General Relativity, it can not be the end of the story.
It is a relativistic theory of gravity, but it is not a quantum one. In fact, when regarded
as a QFT it turns out to be what we call UV incomplete. This means that the theory
breaks down when trying to describe very high energy processes, i.e., very small scales.
It is then an effective field theory (EFT) that must be completed to something more
fundamental, a theory of Quantum Gravity (QG). Even though a deep understanding of
gravity at the quantum level is missing, we have some good insights coming from black
hole physics. QFT arguments close to the horizon of a black hole suggest that it evaporates
by releasing Hawking radiation [12,13]|. This in turn implies that these objects have an
entropy controlled by the area of the horizon. This led to a very important insight into
quantum gravity, the holographic principle. It states that, in a theory of quantum gravity,
the number of fundamental degrees of freedom describing a system should grow with its
area, and not with its volume as we are used to.

A theory describing all interactions in a single framework is said to be a theory of
everything. Remarkably, we have a candidate: String Theory (ST). This very rich and
yvet poorly understood theory proposes a paradigm shift. The fundamental objects are no
longer point-like particles but extended objects such as strings. It is thus not a QFT, but
at low energies it reproduces the physics of such. The strings are so tiny that without
enough energy we cannot resolve them as an extended object. Their vibrational modes
are then seen as different point-like particles, and we describe the lightest ones within an
effective field theory that would be ultimately completed to the full string theory.

Even though there is no experimental evidence for string theory and one may not
expect to have it anytime soon, it is a very interesting theory. A good reason for this
is that it is known to be a consistent theory of quantum gravity. First, it is known to
be a UV complete quantum theory unlike General Relativity. Second, it always contains
the graviton (particle mediator of gravity) as one of the light vibrational modes of the
string. Therefore, the EFT that one obtains at low energies is coupled to gravity and
is known to be completed to quantum gravity by full-fledged string theory. Regardless
whether it describes our Universe or not, string theory is a fantastic arena to draw lessons
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about quantum gravity. Among its successes, it has been possible to reproduce the entropy
of certain black holes by counting the microstates that form them in string theory [14].
Moreover, it has led to the first explicit realization of the holographic principle in the form
of the AdS/CFT correspondence [15,16]. This fascinating duality proposes that quantum
gravity in AdS space in d dimensions is described by Conformal Field Theory (CFT) in
d — 1 dimensions, a theory without gravity. Even outside of string theory, this duality has
motivated a lot of research and has applications in many different contexts.

A beautiful feature of string theory is that it fixes the number of spacetime dimensions
as something fundamental. Unfortunately, every string theory we know predicts more
dimensions than we have observed in our Universe. For instance, in the case of Superstring
Theory we are forced to work with ten space-time dimensions. If this theory describes
our Universe, six of them must be hidden to us in the form of compact dimensions. It
turns out that this process of compactification from ten to four dimensions is highly non-
unique, leaving us with a huge amount of possible 4d EFTs coming from string theory at
low energies. The set of all these different effective field theories was dubbed as the string
theory Landscape, and the large number of possibilities motivated the idea that ‘everything
is possible in string theory’. This means that any effective field theory can be found in the
Landscape, this is, can be completed to a theory of quantum gravity. If this were true,
then string theory (or in general quantum gravity) will not teach us anything about our
Universe at low energies.

In contraposition to this way of thinking, the idea of the Swampland arises. Not
everything is possible in string theory, there are EFTs that cannot be consistently com-
pleted to quantum gravity. These theories are said to belong to the Swampland [17], and
it is the goal of the Swampland program to characterize the constraints that an effective
field theory must satisfy so that it does (not) belong to the Swampland. Unfortunately,
the lack of a framework describing quantum gravity in full glory makes it very difficult to
identify these constraints. The best we can do now is to look for common patterns in EFTs
that are known to be consistent with quantum gravity (for example coming from string
theory) and promote them to conjectures.

These so-called Swampland conjectures are usually supported by a plethora of ex-
amples in string theory. Some others also enjoy evidence or even proofs in the context
of AdS/CFT. As a complement to this top-down approach, it is of great interest to give
bottom-up arguments for the conjectures. Despite their sometimes heuristic nature, they
provide a good motivation based on physical principles and/or expectations about quantum
gravity. For instance, basic principles of physics such as unitarity, causality and locality
usually play a central role in these arguments. In addition, they also involve considera-
tions that are more intrinsic to quantum gravity such as black hole evaporation or entropy
bounds. Last but not least, there are known connections between different conjectures.
Some of them can be derived from others (usually in restricted setups) or are shown to
be merged in different contexts. This leaves us with a web of Swampland conjectures,
rather than with a number of disconnected statements. This fact could be pointing to
some underlying principle and gives support to the program as a whole.

The Swampland Distance Conjecture and its Limitations

Among these conjectures we find the Swampland Distance Conjecture (SDC), to which
this thesis is mostly devoted. It is one of the most studied ones and plays a central role in
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the whole program, as it has been heavily tested in string theory and enjoys connections
to most of the other conjectures. In what follows we describe its content without entering
into technicalities. The idea is to give an intuition, leaving the precise formulation of
the conjecture for later. We comment on a couple of limitations of this conjecture. In
particular, the ones motivating the research presented in this thesis.

A very important concept in QFT is the vacuum or ground state of the theory. It is
the state of minimum energy and things like particles can be viewed as states built over it.
It can happen that this state is not unique. In fact, it there can be a set of continuously
connected vacua. We call this the moduli space of the theory. Importantly, in the case of
continuously connected vacua it is possible to define a notion of distance that measures
how long is a trajectory between two of them.

The SDC uncovers an universal behaviour when exploring infinite distances in the
moduli space of an EFT coupled to gravity. It asserts that the regime of validity in energy
of the effective field theory description, beyond which it must be completed to quantum
gravity, goes to zero when going to infinite distances in moduli space. In particular, it
states that this happens exponentially fast in the moduli space distance. This is pretty
remarkable, since there is no reason to believe that an EFT becomes less powerful when
trying to describe more far away vacua.

This conjecture has very interesting phenomenological implications, since it limits
the regime of validity of the effective field theory for describing processes in which different
states are explored. However, it is not directly applicable to phenomenologically interesting
scenarios for two reasons. First, the states that are explored in them are not the ones with
minimum energy. What naturally happens is that states with less and less energy are
explored as the theory tries to reach one of minimum energy. Furthermore, this happens
dynamically as an observer moves in spacetime. On the other hand, the conjecture is stated
as a property of the moduli space itself, without taking into account these dynamics. This
is the first limitation of the SDC to which this thesis is dedicated. We push this limit of
applicability by studying different types of dynamical configurations and their interplay
with the SDC.

The SDC enjoys a huge amount of evidence, but lacks a fundamental reason ex-
plaining why it should be true. In addition, all this evidence comes from string theory.
Since we have no proof that string theory is the only theory of quantum gravity, one could
worry that the the conjecture is telling us something about string theory but not about any
theory of quantum gravity. These two facts call for new perspectives on this conjecture.
This is the second limitation of the SDC to which this thesis is dedicated. We give a new
perspective by studying the SDC in the context of AdS/CFT. This opens up a new window
for finding more evidence and understanding this conjecture.

Plan of the Thesis

This thesis is divided in six parts. Part I contains this introduction and some background
material in the form of a brief review of the Swampland program in section 2. The main
results are contained in parts II, III and IV. Some conclusions and outlook are presented
in V. Additionally, part VI contains various appendices extending the material in the rest
of the thesis.

Parts II and III are dedicated to the study of the SDC in dynamical configurations.
We start part II by studying a first and specially interesting example in chapter 3. It



will teach us that the naive extension of the SDC to dynamical settings does not work.
Motivated by what we learn in chapter 3, we propose in chapter 4 that the SDC constrains
the potentials that can appear in quantum gravity. We study them by considering the
interplay between the SDC and non-geodesics (trajectories that do not minimize the dis-
tance). This will allows us to reformulate it in a way that strengthen its connection to the
Weak Gravity Conjecture (WGC), another very important conjecture in the Swampland
program.

Another type of dynamical configuration is studied in part I11. They are particularly
interesting because they represent a dynamical realization of cobordisms, the protagonist of
a very profound Swampland conjecture called Cobordism Conjecture. We start in chapter
5 by studying the behaviour of the fields spaces distance in this kind of configurations.
We argue that infinite field distance is related to a special type of them, the ones we call
dynamical cobordisms to nothing. They are further studied in chapter 6. There we uncover
a universal behaviour in a large number of examples as they explore infinite field distance,
which calls for a relation to the SDC. Furthermore, we present a bottom-up effective
field theory analysis that suggest a relation between this and asymptotically exponential
potentials, also suggesting a link to the dS Conjecture.

Finally, in IV we investigate the realization of the SDC in AdS/CFT. It contains
section 7, which starts introducing the natural tools for studying the SDC within the
AdS/CFT dictionary. As a warm up, we show how the SDC is satisfied in the most well-
known example of this duality in string theory. We then turn to a purely CFT analysis
that gives new evidence for this conjecture through the AdS/CFT dictionary. Finally,
we come back to an specific example of AdS/CFT duality coming from string theory in
which we can further extend the previous analysis. Furthermore, we find that this example
shows several interesting behaviours from the string theory perspective. These include
infinite field distance limits induced by quantum corrections, the SDC being satisfied more
radically than in the usual examples and some intriguing candidates for the stringy object
responsible for it.



Review of the Swampland Program

In this chapter we provide a review of some aspects of the Swampland program. The main
focus will be in the Swampland Distance Conjecture, as it is the main protagonist of this
thesis. This review is intended to be brief and focused on topics that will be relevant for
the rest of the thesis. For this reason, some very important conjectures in the Swampland
program will not appear here, but will be stated when necessary along the rest of the thesis.
For more complete reviews and lecture notes on the Swampland program see [18-21]. Some
of the material in this chapter already appeared in the author’s publication [20].

We first start introducing some generalities about the Swampland program in Sec-
tion 2.1. In Section 2.2 we introduce the Swampland Distance Conjecture. A couple of
limitations of this conjecture are discussed, since filling this gap is the goal of the thesis. In
sections 2.3 and 2.4 we introduce the No Global Symmetries and Weak Gravity Conjecture
(WGQC) respectively. In both cases we discuss their relations to the SDC, as well as some
refinements and generalizations that will be relevant for the rest of the thesis.

2.1 Generalities of the Swampland Program

The punchline of the Swampland program is that not every EFT (weakly coupled to
Einstein gravity) can be obtained as the low energy limit of a UV complete theory of
quantum gravity. It is then said that an EFT that falls in this category belongs to the
Swampland [17], and the goal of the program is to stablish the criteria that an EFT should
satisfy for it to be embeddable in quantum gravity. This idea is depicted in figure 2.1.

The progress made so far is in the form of several conjectures presenting candidates
for these criteria. The lack of a definitive quantum gravity framework makes it impossible
to prove these conjectures in full glory, but it does not mean that we cannot make any
progress. There are many ways in which these constraints can be studied, here we describe
five of them:

e Gathering evidence: It is very important to gather evidence for the conjectures (or
disprove them). This has to be done in models that are known to be consistent with
quantum gravity. The landscape of string theory vacua is the perfect playground
for this purpose. In fact, all the conjectures are supported with evidence coming
from string theory when they are proposed. However, the lack of a non-perturbative
definition of string theory makes it impossible to prove them in full generality even
within this framework. Another complementary way of gathering evidence is through
AdS/CFT. The caveat is that it can only be used for testing conjectures in AdS vacua.
The advantage is that we do have full non-perturbative definition of what a CFT is.
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Figure 2.1: The Swampland and Landscape of EFTs. The space of consistent EFTs forms a cone
because Swampland constraints become stronger at high energies. This figure is taken from [20].

This, together with the techniques that have been developed for studying them,
allows us to attempt for fairly general derivations of certain conjectures within this

framework (see e.g. [22-25]).

e Finding bottom-up rationales: Given that the evidence is gathered in restricted
quantum gravity settings, one can worry about a “lamppost effect”. This is, that
the conjectures are not about quantum gravity, but only about string theory and/or
AdS/CFT. For this reason, it is very appealing to look for model independent bottom-
up rationales for the conjectures. Even though these are not proofs by any means,
they provide a motivation based on physical principles and/or expectations about
quantum gravity. Also related to this, maybe such a lamppost effect is not pos-
sible because string theory is the only theory of quantum gravity. This is called
the String Universality Principle or String Lamppost Principle, and there has been
progress in showing that under some restrictions in the dimensionality and number
of supercharges of the theory, any EFT consistent with Swampland conjectures can
be derived from string theory (see e.g. |26 32]).

e Self-consistency tests: There are operations that, given a consistent EFT should
render another consistent one. The archetypical example is dimensional reduction.
It is then interesting to consider the consistency of the conjectures under it. This has
led to many interesting results like strong forms and refinements of the conjectures

(see e.g. [33,34]).

e Connections between conjectures: Usually some criteria are used to motivate others,
or links between two conjectures are found. Thanks to this, today we have a web
of Swampland conjectures rather than a series of disconnected statements. This
means that evidence for some conjectures can be taken as evidence for others. In
the same way, a counterexample for a single conjecture can shake the grounds of the
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whole program. But most importantly, these links motivate the existence of some
underlying principle behind all these criteria, and gives credence to the program as
a whole.

e Phenomenological implications: Finding the phenomenological implications of these
criteria is a goal by itself. It could be that quantum gravity actually has some impact
well below the Planck scale. This is of great interest since it can potentially lead to
connections with experiments. From other perspective, this also serves as a test for
the conjectures, as they could be disproved by experiments in a rather straightforward
way. For a review focused on phenomenological aspects of the Swampland we refer
to [21].

All these approaches (and any other that has not been mentioned here) are very
interesting by themselves and help us in making progress towards the final goal of the
Swampland program. Nevertheless, it is important to keep in mind that this is not a one
way road map. Progress is made in a series of back and forward interactions between
conjectures and any way that is available to learn about them. In fact, this makes it more
exciting. As an example, a conjecture can be proposed based on relations to other conjec-
tures and on certain amount of evidence, but it may lack a bottom-up rationale. Finding
some exciting phenomenological implication motivates studying it. Finding new evidence
and imposing self-consistency test may then lead to some refinement or strong version
of the conjecture. After this, the relation to other conjectures and its phenomenological
implications can be revisited. Moreover, one may find some bottom-up rationale based on
the physical mechanisms that are relevant for the conjecture in several setups.

Thanks to all this, today we have a web of Swampland conjectures with a fair amount
of proposed criteria and relations among them. Some conjectures are of course in firmer
ground than others. Interestingly, it is usually the case that the more phenomenologically
interesting a conjecture is, the less supported it is and viceversa. In figure 2.2, some
of the most relevant criteria are presented in a map of conjectures. Among them, the
No Global Symmetries, Weak Gravity and Distance conjectures are arguably the most
supported ones. They are not only the very well established, but also the pillars of the
whole program because of the strong relations that they enjoy among themselves and to
other conjectures. They will be the main focus of this review, and other conjectures that
are relevant for the rest of the thesis will be presented in relation to them.

Trivial Cobordism ompleteness Hypothesis
‘ > Global Symmetri

ak Gravity Conject

AdS Instability Conjectur
AdS Distance Conjecture
dS Conjecture ransplanckian Censorshi

Figure 2.2: Map of the Swampland conjectures. The conjectures in black are at the core of the
Swampland program, and they will be introduced in later sections. This figure is taken from [20].
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2.2 The Swampland Distance Conjecture

We start with the conjecture to which this thesis is mainly devoted. In later sections we
introduce other conjectures, always keeping in mind their relations to this one. Let us
first give the statement, leaving the physical intuition for the discussion about evidence in
string theory.

Consider a D-dimensional effective field theory coupled to Einstein gravity and with
some moduli space M parametrized by massless scalar fields. The action includes the term

So>ME™? / dPx/—g <€ - ;Gi]—am"a%j) ( (2.1)

where Gy is identified as the metric in moduli space, measuring distances in Planck units.

The first statement of this conjecture is that the moduli space is non-compact. Start-
ing from a point, there always exist another point at infinite geodesic moduli space distance.
Note that a point is at infinite distance if every trajectory approaching the point has in-
finite length. The second and more important statement describes what happens if we try
to approach some point at infinite moduli space distance:

Swampland Distance Conjecture: There is an infinite tower of states that becomes
exponentially light at any infinite field distance limit as

Mspc | -aDy ywien Dy — oo, (2.2)
Mpy

in terms of the geodesic moduli space distance Dy [35].

The exponential rate «, apart from being positive, is not specified by the conjecture.
It is expected to be an O (1) constant, as otherwise it could spoil the exponential behaviour,
but its origin is not known. Concrete lower bounds have been proposed in the literature
[36-39].

The infinite tower of states signals the breakdown of the EFT, as it is impossible to
have an effective field theory description weakly coupled to Einstein gravity with infinitely
many light degrees of freedom. Hence, there is a QG cut-off associated to the infinite tower
of states, which decreases exponentially in terms of the field distance,

Age  _ap
"~ e ¢, 2.3
Vo (2.3)

For simplicity, here we are taking this cut-off to coincide with the first state of the tower. An
arguably more accurate way of defining it is via the species bound cut-off [40—43], whose
exponential rate will differ from « by an order one factor depending on the space-time
dimension and the details of the tower of states (see [44]).

The SDC enjoys large amounts of evidence in string theory, it has been heavily tested
in the context of 4d N/ = 2 theories from Type II compactifications [45-49], 5d N = 1
from M-theory and its 6d F-theory uplifts [50-53] and 4d N' = 1 from type II [39,54,55]
and F-theory [56]. These studies not only give evidence for the SDC, but also uncover
interesting connections to cutting-edge mathematics. They provide tools for describing
the physics near to a plethora of infinite field distance limits beyond the one corresponding
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to weak coupling and large volume. As a consequence, we get a much deeper understanding
of string theory compactifications.

To have a better intuition about the SDC, let us describe how it usually works
in compactifications of string theory on Calabi-Yau (CY) manifolds without entering in
much detail (for a detailed discussion see [20| and references therein). The moduli space
is parametrized by scalars controlling the string coupling and the size and shape of the
CY manifold. They control the mass of different towers of states in Planck units. For
example: the string coupling controls the mass of the tower of string excitations, the size
of some internal dimension controls the mass of the KK tower related to it, and the volume
of some 2- or 3-cycle controls the mass of any extended object that may be wrapped on
it. Ome or many of these towers become massless at any infinite moduli space distance
limit. Their mass scale usually behaves as a power-law way in some coupling and/or size.
It then happens that the moduli space line element behaves logarithmically with them,
thus recovering the exponential law of the SDC.

The SDC is an example of conjecture that enjoys a refinement motivated by how it
is realized in a plethora of examples that were studied to find evidence for it (see discus-
sion in Section 2.1). Notice that the conjecture by itself does not say anything about the
nature of the tower of states. The Emergent String Conjecture (ESC) fills this gap with
the following statement:

Emergent String Conjecture: Any infinite distance limit is either a decompactification
limit or a limit in which there is a weakly coupled string becoming tensionless |[53].

Most importantly, this refinement makes more apparent the already present connec-
tion between the SDC and dualities. It can be interpreted as predicting the existence of a
duality at every infinite distance limit such that the tower provides the new fundamental
(weakly coupled) degrees of freedom of the dual description. Then the ESC further implies
that this new weakly coupled description will involve a weakly coupled string and/or new
spacetime dimensions.

To make this point clearer, let us give an archetypical example for each of these
cases, namely the strong coupling limit of type II theories. The case of an emergent string
is found in type I1B. At strong coupling the D1 is becoming tensionless exponentially with
the field space distance. This signals a new duality frame in which it is the fundamental
object. In this case one finds that it behaves exactly as the type IIB fundamental string,
uncovering the famous type IIB S-duality. On the other hand, the case of a KK tower
is found in type ITA. At strong coupling the tower of D0s become massless exponentially
with the field space distance. Again, this signals a new frame in which these modes are
fundamental. This dual frame is M-theory on S!, and from this perspective the D0s are
indeed the KK modes.

Despite the great amount of evidence gathered for this conjecture, the SDC still lacks
a firm bottom-up rationale (see [57| for a proposal valid in limits with vanishing U (1) gauge
couplings). Combined with having only evidence for string theory, one may worry about
a possible string lamppost effect as discussed in Section 2.1. For this reason, in Chapter 7
we discuss realizations of the SDC in AdS/CFT and provide evidence from a purely CFT
perspective, a priori independent of string theory.
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Another aspect of the SDC is its phenomenological implications. An immediate
consequence is that effective field theories are only valid for finite scalar field variations.
From (2.3) and taking into account that Ay < Mp; one gets

Dy < élog j&;z ; (2.4)
which is telling us that the maximum field variation actually depends on the QG cut-off
of the EFT. This means that the higher the energies involved in the process changing the
vev of the scalar, the smaller is the maximum field distance that can be described within
the effective field theory. This statement has direct implications for inflation, for which
one would require the cut-off to be above the Hubble scale.

However, the SDC is stated for the moduli space parametrized by exactly massless
scalars. In order to apply it to an inflationary scenario, it is necessary to understand what
happens when a potential is added. Based on physical grounds, one would expect that
the SDC should also apply to the valleys of the potential, i.e. to directions along which
the potential may not be exactly flat but the relevant energies are smaller than a given
cut-off. Furthermore, the SDC is an asymptotic statement as the field space distance goes
to infinity. For phenomenological implications, it is needed to quantify how much field dis-
tance can be traversed before the exponential behaviour kicks in. Again based on physical
grounds, one would expect that this happens after at most some order one distance (in
Planck units). These expectations, together with the one that a ~ O(1) stated before, are
encapsulated in the refined SDC:

Refined SDC: The exponential behaviour with o ~ O(1) should be manifest when Dy 2
O(1). In addition, the conjecture should also hold for scalars with nearly flat potential [58].

The second statement of this refined version will be of special interest to us, since
in chapter 4 we will argue that it leads to constraint on the potentials that are consistent
with quantum gravity.

Even considering the Refined SDC, applications of the SDC to phenomenological
scenarios require extending it to spacetime solutions in which scalars run, exploring large
field space distances. A priori this is not trivial. For instance consider cosmological scen-
arios such as multi-field inflation. The field space trajectory that is explored as the cos-
mological time advances is not necessarily a geodesic, while the SDC as it is formulated
only applies to geodesic field distance. This motivates the study of the SDC in solutions
in which scalars run with some spacetime coordinate, dubbed in this thesis as running
solutions. As advanced, this will be the focus of most of the thesis, including chapters 3,
5 and 6.

2.3 No Global Symmetries and Cobordism Conjectures

The No Global Symmetries Conjecture is probably the first Swampland conjecture ever
made. In fact, it is hard to give the reference in which it was proposed because it has
been a common lore since the early days of quantum gravity, well before the concept of
Swampland was even introduced.

A global symmetry can be defined as a transformation described by a unitary local
operator that commutes with the Hamiltonian and acts non-trivially on the Hilbert space

14



2.3. No Global Symmetries and Cobordism Conjectures

of physical states.! The latter requires the existence of at least one charged local operator,
so we say that the symmetry acts faithfully. The content of the conjecture is then that
this should not be present in a complete theory of quantum gravity. This is:

No Global Symmetries: There are no global symmetries in quantum gravity (i.e. any
symmetry is either broken or gauged).

Notice that in this form of the conjecture the symmetry may be broken at an arbit-
rarily high scale or gauged as weakly as desired. For this reason, it is not very useful for
putting tight constraints on phenomenological models. Nevertheless, it has very profound
theoretical implications. First, it is forbidding at the fundamental level one of the most
important concepts in theoretical physics.? Moreover, some of the most important conjec-
tures such as the WGC or SDC can be thought of as strong versions or consequences of
the No Global Symmetries Conjecture.

Consider a theory with an U(1) gauge symmetry. The limit of vanishing gauge
coupling ¢ — 0 can be thought of as restoring the global symmetry. When one tries to
engineer this limit in quantum gravity, it turns out to be at infinite field space distance. In
some sense, it seems like quantum gravity is forbidding the restoration of a global symmetry
by pushing it infinitely far away in the space of vacua. But this is not the end of the story,
by virtue of the SDC an infinite tower of states become massless in this limit. From this
perspective, the SDC is a mechanism that protects quantum gravity from having global
symmetries. The more you restore it, the lower is the cutoff of your effective field theory.
Notice however that this not a good bottom-up rationale for the SDC. The missing piece is
having a good reason for the restoration of a global symmetry in all infinite field distance
limits in quantum gravity. Despite this, it is a very interesting connection that gives some
physical meaning to the SDC tower in this context.

The No Global Symmetries Conjecture enjoys great amounts of evidence in very
different contexts. This ranges from a proof in perturbative string theory [60], non-
perturbative checks in various string theory setups and even a proof in AdS/CFT under
certain assumptions [22,23]. Moreover, there is a bottom-up rationale based on black hole
physics that motivates the conjecture. It can be summarized as follows: Hawking radiation
is blind to any kind of global charge. This is, gravity does not distinguish between positive
or negative global charge, and there is no interaction that does as in the case of gauge
charges. Therefore, if a global symmetry is to be exactly conserved, the evaporation of a
black hole with a certain amount of global charge has to lead to a planckian size remnant.
Since this happens for any black hole with any arbitrary amount of global charge, we end
up with a theory with infinite number of states below a certain energy scale. Even though
there is not a rigorous argument that rules out this possibility, it certainly sounds prob-
lematic [61]. Moreover, it has been argued that this would go against holographic entropy
bounds such as the Covariant Entropy Bound [62].

A natural extension of this conjecture also forbids the presence of p-form global sym-
metries. These are generalizations of the concept of global symmetry in which the charged
operators are supported on p-dimensional manifolds. This generalized global symmetries

'Here we avoid entering into more formal and general definitions in terms of topological operators. For
this we refer to [59].

20f course, this does not imply that global symmetries are not useful and explain many things at low
energies.
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were introduced in [59], and we refer to it for a proper definition. Let us only mention that
the p = 0 case recovers the usual picture of a symmetry acting on local charged operators.
The main idea for extending the conjecture is that a p-form global symmetry leads to
a regular one upon compactification on a p-dimensional torus. As the conjecture should
hold upon compactification of the theory, one concludes that generalized global symmetries
should also be absent in quantum gravity.

Let us introduce another very profound conjecture whose basis is the absence of
global symmetries in quantum gravity, the Cobordism Conjecture. Two k-dimensional
compact manifolds are said to be cobordant if their union is the boundary of another
k 4+ 1-dimensional compact manifold, called cobordism manifold. The set of cobordant
manifolds, together with the operation of disjoint union, form the cobordism group of k-
dimensional manifolds. This notion can be refined by imposing some further structure in
the two manifolds and the cobordism between them, leading to the cobordism group of
k-dimensional manifolds with some structure s, denoted as €2}.

It was argued in [63] that the presence of a non-trivial cobordism group leads to a
(D — k — 1)-form global symmetry in the theory. Let us summarize the agument here:
If a k-dimensional compact manifold is a consistent compactification of a D-dimensional
theory, then one can use it to build (D —k—1)-dimensional gravitational solitons. A cobor-
dism between two such compact manifolds can then be interpreted as a process in which a
gravitational soliton turns into another. In this way, each cobordism class is translated to
an invariant that cannot be changed under time evolution, i.e., a global charge. Following
the logic that there cannot be p-form global symmetries in quantum gravity, we end up
with the conjecture:

Cobordism Conjecture: All cobordism groups in a D-dimensional theory of quantum
gravity must vanish

0% =0, (2.5)

Otherwise they give rise to a (D —k—1)-form global symmetry with charges [M] € QgG [63].

Notice that here the superscript QG means the yet unknown structure that a back-
ground in quantum gravity has. In practice one has an effective field theory with some
gauge and matter content, i.e. with some given structure. If it has some non-trivial cobord-
ism group, the conjecture is used to predict a refinement of this structure that trivialises it.
This in turn can be related to either breaking or gauging the cobordism charge. The latter
is naturally related to having some condition (usually a Bianchi identity) forbidding any
background with non-zero cobordism charge [64]. On the other hand, breaking it predicts
the presence of defects that should trivialise it [63]. This, together with other Swampland
constraints, has been used to test the string universality principle (see e.g. [30,32,65]).

The cobordism group encodes some notion of connectedness between manifolds. By
considering compactifications of a D-dimensional theory on these k-dimensional manifolds,
this also leads to a notion of connectedness between effective field theories. This is depicted
in figure 2.3. The Cobordism Conjecture then encodes the expectation that all EFTs com-
ing from quantum gravity are connected if one allows for arbitrarily high energy processes.
Equivalently, the Cobordism Conjecture asserts that any effective field theory must admit
the introduction of a boundary ending spacetime into nothing. This has been used in [66]
to argue that there is no topological obstruction for bubbles of nothing (see [67]) in any
effective field theory coming from quantum gravity.
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EFT, Domain Wall EFT,

Figure 2.3: Cobordism between two manifolds. The EFTs arising from compactifications on
them are then connected by a domain wall. This picture is taken from [20].

In chapters 5 and 6 we will study running solutions featuring cobordisms in a dynam-
ical way. We will find some interesting connections between these dynamical cobordisms
and field space distances. We will relate infinite field distance to cobordisms to nothing,
suggesting some connection between the SDC and the Cobordism Conjecture.

2.4 The Weak Gravity Conjecture

The Weak Gravity Conjecture can be viewed as a strong version of the No Global Symmet-
ries. One of the implications of the latter is that limits in which some gauge coupling goes
to zero should be forbidden in some way. However, it does not impose any strict bound on
the gauge coupling g. The WGC puts a constrain on the spectrum of charged objects with
respect to any U(1) gauge symmetry and to the cut-off of the EFT. The smaller is the
gauge coupling, the stronger these constraints become. Thus, it realizes in a quantitative
way the fact that ¢ — 0 limits should be obstructed in quantum gravity. In what follows
we introduce the conjecture and some generalizations and refinements that will be relevant
for the rest of the thesis. For an extensive review dedicated to this conjecture see [68].

The WGC has an electric and a magnetic version. The first one states:

Electric Weak Gravity Conjecture: Given a U(1) gauge theory, weakly coupled to
Einstein gravity, there exists an electrically charged state with

% > 2 =0(1) (2.6)

extremal

in Planck units. Here Q and M are the charge and mass of an extremal black hole, and

Q@ =4q9, (2.7)

where ¢ is the quantized charge of the state and g is the gauge coupling [69].
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Unlike the SDC, this conjecture has no unknown parameters. The extremal charge
to mass ratio is computed by looking for extremal black hole solutions in the theory. It
is model dependent since, for example, it gets contributions coming from massless scalars
controlling the kinetic term of the U(1) (see e.g. [36,70]). This very precise formulation is
due to the bottom-up rationale based in black hole physics that was used to derive it in the
first place. It is obtained by imposing that extremal black holes should be able to decay.
Otherwise they would lead to an infinite number of stable remnants, which is argued to be
pathological as it was done for the motivation of the No Global Symmetries Conjecture. In
fact, (2.6) is nothing but the kinematical condition for an extremal black hole to be able
to emit the particle while remaining subextremal.

Another interpretation for this conjecture, and the one giving it its name, is that
gravity should be the weakest force. Indeed, if the inequality (2.6) is satisfied then gravity
is not stronger than the electric repulsion between a pair of the particles. This has been
argued to be necessary to avoid the formation of an arbitrary number of bound states.
We should note however that the precise bound obtained by this requirement is in general
different from the one in (2.6). We would then distinguish between the WGC and the
Repulsive Force Conjecture [70,71]. Interestingly, it has been argued that in asymptotic
limits in field space these two actually coincide [36].

Now we turn to the magnetic version. It asserts that:

Magnetic Weak Gravity Conjecture: The EFT cut-off A is bounded from above by the
gauge coupling as [69]

A< gm0 (2.8)

This is indeed obtained as the magnetic dual of the electric WGC, in the sense that
the gravitational interaction should be weaker than the magnetic one. This requires the
existence of a magnetic monopole whose mass is smaller than its charge in Planck units.
Taking into account that the magnetic coupling is the inverse of the electric one and that
the mass of the magnetic monopole is of the order of the cutoff divided by the gauge
coupling squared one arrives to (2.8). Equivalently, it can also be obtained by imposing
that the theory should have some monopole that is not a black hole. This is, that the
radius of the monopole should be larger than its Schwarzschild radius.

The WGC is probably one of the best studied conjectures in the Swampland pro-
grams. It enjoys evidence coming from a variety of different approaches. These include:
Higher derivative corrections to black holes and positivity bounds coming from unitarity
and causality (see e.g. [72-76]), relations to weak cosmic censorship [77], AdS/CFT (see
e.g. [24,25,78-80]) and, of course, string theory compactifications (see [19] for a summary
and references therein).

As said before, the two versions of the WGC obstruct in some sense the g — 0 limit
in quantum gravity. However, they are not sufficiently strong to put a QG cutoff in the
sense that no EFT (weakly coupled to Einstein gravity) will be valid above that energy
scale. This was the case for the SDC because it predicts an infinite tower of states. In
the case of the electric WGC one only needs to include a charged particle, something that
of course can be done withing effective field theory. For the magnetic version, the cutoff
is related to the fact that one cannot describe the dynamics of magnetic monopoles in a
U(1) theory. However, beyond that cutoff one could realize that the U(1) comes from the

18



2.4. The Weak Gravity Conjecture

spontaneous symmetry breaking of a gauge symmetry. In that case there is an effective
field theory description which is valid above the magnetic WGC cutoff.

Nevertheless, there are stronger versions of the WGC that are powerful enough to
set a QG cutoff. These are the sublattice [24,25,33] and tower [75] versions. They impose
that there should be an infinite tower of states satisfying the electric WGC. In the case of
the sublattice version, it is further imposed that they should fill a sublattice of the charge
lattice. Let us mention that there is a potential counterexample to the Sublattice WGC,
but further analysis would be needed to confirm it [51]. These two versions also enjoy
a profound connection to the SDC. It has been confirmed in many setups that they are
essentially the two sides of the same coin. This happens because some gauge coupling g
goes to zero at infinite distance in field space, and the same tower is the responsible for
satisfying both the SDC and Tower/Sublattice WGC [36,81|. Interestingly, in this case
one can fix the parameter « in the SDC in terms of the massless scalars contribution to
the charge to mass ratio of extremal black holes appearing in the WGC.

There are also a couple of very natural generalizations to the WGC. The first one
extends it to theories with multiple U(1) gauge symmetries. It comes from the same phys-
ical principle as the WGC using black holes physics. Imposing that extremal black holes
with several U(1) charges should be able to decay one obtains:

Convex Hull WGC: For multiple U(1) gauge fields, the WGC is satisfied if the convex
hull of the charge to mass ratio 2= ()/m of all the states contains the extremal region [82].

The extemal region is obtained by looking for multi-charged extremal black hole
solutions in the theory and can take diverse shapes (see e.g. [36]). Interestingly, the Con-
vex Hull WGC is stronger than just imposing that the WGC should hold for each U(1)
separately. For example, having a extremal state for each U (1) would suffice for satisfying
the latter but would clearly violate the former.

In chapter 4 we will formulate a Convex Hull version for the SDC, similar in spirit to
the Scalar WGC proposed in [71]|. This formulation of the SDC strengthen the connection
with the WGC that was mentioned before.

The second generalization extends the WGC to p-form gauge symmetries. This is
precisely what is obtained by gauging the p-form global symmetries that were mentioned in
section 2.3. The charged objects are in general extended, in particular their worldvolume is
(p+1)-dimensional. For example, a string can be charged under a 1-form gauge symmetry,
whose gauge field is a 2-form. Then, the WGC asserts that there should exist some charged
state whose tension to charge ratio is smaller than the one corresponding to extremal p-
branes in the theory.

For the case p = —1 we have the so-called Axion WGC. In this case we have 0-form
gauge fields, this is, axions. The charged objects are instantons and the analogous to the
mass and gauge coupling are the action S and the inverse of the axion decay constant f
respectively. The conjecture then implies that:

Axion WGC: In the presence of an axion, there should be an instanton with charge ¢
satisfying

(2.9)
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Notice that we have replaced the strict inequality in terms of the extremal charge to
mass ratio of the black object by an inequality up to an order one factor. This is due to
the lack of a well-defined notion of extremality for instantons (see [33,83,84] for a couple
of proposals). It also looses the bottom-up rationale in comparison with the usual WGC.
Despite this, it has been tested in several scenarios (see e.g. [85 96]).

An interesting aspect of the Axion WGC is its implications for models of natural
inflation. In this scenarios the inflaton is an axion rolling down a non-perturbative potential
generated by instantons. This potential is computed in the diluted gas approximation,
which requires that S = 1 for all instantons in order to keep control of the instanton
expansion. A property of these models is that the maximum displacement during inflation
is bounded by the periodicity of the potential, given by the axion decay constant f. Putting
these two bounds together with the Axion WGC we recover a bound on the maximum field
excursion during inflation of the form

Dy S f S Mpy. (2.10)

This means that if the instanton giving the leading contribution to the potential is
the one satisfying the Axion WGC the field excursion cannot be transplanckian. Notice
that we have assumed this instanton to have unit charge, otherwise the field range available
for inflation would be even smaller. In conclusion, the Axion WGC disfavours large field
natural inflation scenarios. A loophole to this argument should be noted: It could happen
that the (unit charge) instanton giving the leading contribution to the potential is not the
one satisfying the Axion WGC, but it is another one with charge ¢. In this case the bound
is relaxed by a factor of ¢. This shows the relevance of finding how large can be the charge
of the WGC conjecture satisfying state in a theory.

An alternative to natural inflation that also involves an axion as the inflaton is the
so-called axion monodromy inflation [97], see also [98-105]. In this models, the axion peri-
odicity is unfolded in the potential so that it does not limit the maximum field excursion.
The periodicity of the axion is still respected by having a multi-branched potential. In fact,
fixing a branch of the potential can be understood as the spontaneous symmetry breaking
of the 0-form gauge symmetry corresponding to the axion periodicity.

There are also partial studies trying to rule out transplanckian excursions in axion
monodromy models by invoking the backreaction on the scalar kinetic terms reducing the
effectively traversed distance [106].> There are also discussions ruling out particular models
using 10d lifts [108,109] or other mechanisms [110]. In Chapter 3 we show that this is not
conclusive by presenting a fully backreacted transplanckian axion monodromy model and
its interplay with the SDC when considered in running solutions.

#For other discussions of backreaction related to flattening of the potential, see [107].

20



Part 11

TRANSPLANCKIAN FIELD RANGES
AND NON-GEODESICS
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Transplanckian Axion Monodromy

In this chapter we present a first type of running solution exploring infinite field distance
and its interplay with the SDC and other Swampland conjectures. Not only the former
constrain the possibilities to attain field ranges larger than the Planck scale. As reviewed
in section 2.4, some mechanisms constraining transplanckian excursions in natural infla-
tion and axion monodromy models have been considered in the literature. These results
would seem to motivate that transplanckian field ranges are not physically attainable in
Quantum Gravity. If correct, this statement would have profound implications for cer-
tain phenomenological applications, like the construction of inflation models with sizable
gravitational wave backgrounds (which for single-field inflation are directly related to the
distance traversed by the inflaton).

In what follows we prove that this is in fact incorrect, and that transplanckian field
excursions are physically realized in string theory. Indeed, the running solution that we
consider is a completely explicit example of axion monodromy model exploring infinite
field distance, with full backreaction taken into account in terms of the complete 10d
supergravity solution. The complete background turns out to be given by a simple and
well-known warped throat, the Klebanov-Strassler throat [111,112], when regarded as a
flux compactification on a Sasaki-Einstein manifold X5, with a 5d axion rolling in the
radial direction of a (locally) AdSs spacetime.

The dynamics of the transplanckian axion can be described within an effective field
theory, which we discuss explicitly based on a consistent truncation provided in [111]. This,
together with the full 10d solution, allows for a discussion of the validity of effective actions
for the transplanckian excursion. We show that the configuration is free from oftentimes
feared problems: no pathology arises neither when the axion winds its period a large
number of times, and no infinite tower of states becomes exponentially light as we explore
infinite distance in field space. As a consequence, this represents a counterexample to the
naive extension of the SDC to running solutions stating that the exponential behaviour
of the tower should be dynamically realised in all of them. As we will see, the falloff of
the tower is delayed by having a strongly non-geodesic trajectory in field space. In turn,
this will be tightly related to the transplanckian axion, since it is the responsible of both
delaying the tower and having a non-geodesic trajectory.

Freund-Rubin vacua such as AdSs; x X5 with 5-form flux on X5 are often described
as not yielding good effective field theories, since the compactification radius is comparable
to the AdS radius. However, we are not interested in describing an effective field theory
which describes the stabilization of the compactification breathing mode, which cannot be
decoupled (in the Wilsonian sense) from the KK tower of states. We are interested in the
effective dynamics of a parametrically less massive field giving the running in field space.
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Our effective theory is suitable for that purpose, and can be regarded as describing the
low energy dynamics of a scalar in a gravitational background which is fixed at higher
scales, save for backreaction effects which are duly included in the effective field theory
description.

We focus on 5d models because the kinds of Klebanov-Strassler throats we need
(either for the conifold or for generalizations) have been most studied in this setup. On
the other hand, there are less studied but completely analogous throats based on locally
AdS4 x X7 configurations in M-theory, which we also discuss and lead to 4d transplanckian
axion monodromy configurations in precisely the same fashion as the 5d models.

We work in configurations with negative vacuum energy. This is not an obstruction
from the fundamental viewpoint of establishing the existence of transplanckian field excur-
sions in string theory. On the other hand, it does not yield realistic models for inflation.
Related to this, our configurations have scalars depending on spatial directions, rather than
time-dependent ones. In fact, formally the sign flip required to switch from space to time
dependent scalar profiles correlates with the sign flip for the vacuum energy. This suggests
a tantalizing link between positive cosmological constant and time dependent background,
which in the present context is reminiscent of the dS/CFT correspondence [113].

The rest of the chapter is organized as follows. In Section 3.1 we describe the KS
solutions from the perspective of producing 5d axion monodromy models, focusing on the
conifold example. In section 3.1.1 we describe the 5d compactification on X5 with no 3-
form fluxes, leading to the AdSs vacuum. In section 3.1.2 we describe the KS solution [112]
(actually, its KT asymptotic form [111]) and in section 3.1.3 we establish that it describes
an axion monodromy solution in which the field range traversed is arbitrarily large, in
particular transplanckian. In section 3.1.4 we relate hypothetical backgrounds with finite
axion field ranges with duality walls in the UV of the holographically dual field theories,
which have so far not been shown to admit a gravitational description. In Section 3.2 we
turn to the effective field theory description. In section 3.2.1 we review the effective field
theory in [111] for the axion and compactification moduli. In section 3.2.2 we obtain an
effective action at energies hierarchically below the KK scale, which actually encodes the
axion dynamics and its backreaction effects. In section 3.3 we discuss 4d configurations
from M-theory compactifications, with exactly the same axion monodromy physics as the
previous 5d examples. Finally, we give a summary of the chapter in section 3.4. Appendix
A discusses a dual Hanany-Witten configuration of D4- and NS5-branes useful to illustrate
the absence of pathologies as the axion winds around its period.

The content of this chapter already appeared in the author’s publication [1]. Here it
has beeen adapted with slight modifications for a better fit in the context of this thesis.

3.1 Warped throats and transplanckian axion monodromy

In the following we review the Klebanov-Strassler (KS) throat [112]. We intentionally em-
phasize its structure as a 5d compactification in which the introduction of the RR 3-form
flux yields a 5d axion monodromy model, for which the KS throat is an explicit fully back-
reacted solution. We then show that the axion roll in this configuration is transplanckian.
Actually, for this purpose it suffices to focus on the region far from the tip of the throat, so
we use the simpler expressions of the Klebanov-Tseylin (KT) throat [111], supplemented
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3.1. Warped throats and transplanckian azion monodromy

with the boundary conditions derived from the KS smoothing of its naked singularity. For
the latter reason, we still refer to the configuration as KS throat.

3.1.1 The 5d theory

Consider as starting point the type IIB Freund-Rubin AdSs x 71! background

dr? 72
ds* = R? =+ ﬁmwdx“dx” + R*dsii, (3.1)
with
R = 4r(d/)*gsN (3.2)

and with N units of RR 5-form flux through TV!'. The type IIB complex coupling is
constant, and we will keep it set at 7 = i/gs (introduction of non-trivial constant Cj is
straightforward via minor changes in the fluxes below).

This is the near horizon limit of a set of N D3-branes at a conifold singularity [114].
The line element dsZ,, corresponds to a (unit volume) 5d horizon T'!, which is an S!
bundle over Py x Py with first Chern classes (1, 1), hence the name. Topologically, it is
an S? x S3. Denoting by o2 and o) the volume forms of the two P1’s, we have a harmonic
2-form we = g9 — 0b and its (dual in TH1) harmonic 3-form w3. They are Poincaré duals
of the 3- and 2-spheres, and ws A ws is the volume form on T

On top of the complex dilaton, the resulting effective 5d theory has a massless axion,
given by the period of the NSNS 2-form over S ¢ 7!

/(Bg =¢ mnamely By = ¢ws. (3.3)

The periodicity ¢ ~ ¢ + 1 is set by the exponential of the action of a fundamental string
wrapped on the S2. Above the scale of massless fields, there is the scale 1/R. This is the
scale of KK modes, but also the scale of stabilization of the breathing mode of TH!. It is
possible to write an effective action for this dynamical mode'; in this action, the potential
is minimized at the value (3.2), and with a negative potential energy cosmological constant,
such that the maximally symmetric solution is the AdSs space in (3.1). For a simplified
discussion in the completely analogous case of AdSs x S°, see [115]; we will discuss such
effective actions in a more general context later on.

The above background is a particular case of the general class of AdS5 x X5 vacua,
where X5 is a Sasaki-Finstein variety. These are gravitational duals to systems of D3-
branes at singularities, and have been intensely explored in the literature. Large classes
of these models admit also the introdution of 3-form fluxes to be described below, and
thus lead to axion monodromy models. To emphasize this direct generalization, we will
oftentimes write X5 instead of 711,

1Since this scale is not hierarchically lower than the KK masses, this effective action should be inter-
preted as arising from a consistent truncation, rather than a Wilsonian one.

25



Chapter 3. Transplanckian Azion Monodromy

3.1.2 The KS solution

Once we have described the compactification to 5d, we would like to describe the intro-
duction of a RR flux on 83 ¢ TH!

(27:)20//&(3 Fy = M. (3.4)

Our key observation is that the resulting 5d theory is an axion monodromy model
for ¢. This simply follows because the self-dual 5-form field strength

- 1 1
F5=dC4—§C'2/\H3+§BQ/\F3 (3.5)
satisfies the modified Bianchi identity
d+ Fy = dFy = Hs A\ F3. (3.6)

From the KK perspective the flux (3.4) induces a 5d topological coupling

/Fg/\Bg/\Fg, —>M/ ¢ F. (3.7)
10d d

As already noted in [103,116] 2, this is a 5d version of the Dvali-Kaloper-Sorbo term
[118,119] associated to a monodromy for the axion. Clearly, as ¢ winds around its basic
period, there is a corresponding increase for the flux of F through 71! (and, by self-duality,
through the non-compact 5d space), as follows,

N:/11F5:NU+M¢. (3.8)

In the following we take the reference value Ny to be reabsorbed into a redefinition of ¢.

The presence of a scalar potential of the axion monodromy kind, arising from the
reduction of the 10d |F5|? terms, will be manifest in the 5d effective action discussed in
Section 5.3. We are interested in the behaviour of this theory as the value of ¢ changes
over a large range. Clearly, the presence of this potential term implies that moving the
scalar vev adiabatically away from the minimum leads to off-shell configurations, for which
the computation of the backreaction is not clearly defined. A natural solution is to instead
consider configurations in which the scalar ¢ is allowed to roll, so that the spacetime
dependent background allows to remain on-shell®>. The KS solution is precisely an explicit
10d solution of this rolling configuration in which the axion ¢ is allowed to roll along one of
the spatial directions. (As discussed in the introduction, the realization of time dependent
roll suggests an interesting interplay with the question of realizing de Sitter vacua). We
now review the 10d KS solution (actually, its KT limit with KS boundary conditions) from
this perspective.

The K8 throat describes a configuration in which the axion has a dependence on the
radial direction. Concretely, ¢ is a harmonic form in the radial direction in the underlying
AdSs, hence

Ap=0 — ¢~ Mlogr. (3.9)

*While finishing this paper, we noticed the recent [117], which involves a similar structure of flux and
axion, albeit in a different approach to axion monodromy.

3This is in fact a natural viewpoint in inflationary axion monodromy models, in which the interesting
solutions correspond to physical time-dependent rolls of the scalar down its potential.
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This corresponds to the fact that the combination G3 = F3 — g%Hg is imaginary self-dual,
and in fact (2,1) i.e. supersymmetry preserving, when regarded as a flux in the conifold
CY threefold Xg, i.e. when combining the radial coordinate r with the angular manifold
T, The metric then simply corresponds to a warped version of My x Xg of the general
class in [120,121]

ds3y = hYV2 (P da,day, + WY () (dr? + r?ds3a,y) (3.10)
with
h(r) = - M2log (3.11)
4t 8 T '

with 7, some reference value. In short, the metric is of the form (3.1) with the radius (3.2)
including a radial dependence

N ~ M? logr, (3.12)

which follows from (3.8). As explained, this is the KT solution, which has a naked sin-
gularity at » — 0. The KS solution provides a smoothing of this based on the deformed
conifold*. In fact we will be interested in the region of large r, and how it extends to
infinity, so the KT solution suffices.

The above solution describes precisely all the effects of the backreaction for arbitrarily
large values of the axion and number of windings along its period. As one moves towards
large r, the axion is climbing up its potential and inducing larger flux N due to the
monodromy. The flux and stored energy backreact on the stabilization of the breathing
mode of the compactification space, whose minimum tracks the value of ¢ from (3.2), (3.8)
and (3.12)

R* ~ gsM¢ ~ gsM?logr. (3.13)

The non-compact geometry is locally AdSs with varying radius R. Hence, there is also a
backreaction in the vacuum energy, with runs towards less negative values as

Vo ~ (logr)~t. (3.14)

The slow growth of the vacuum energy can be regarded as a flattening of the potential,
albeit different from the polynomial ones in [107].

From the holographic perspective, each winding of ¢ on its period corresponds to a
cycle in the cascade of Seiberg dualities, in which, as one moves to the UV (larger r), the
effective number of colors increases by (actually twice) a factor M

SU(No) x SU(Ng + M) — SU(No + 2M) x SU(Ny + M) —
— SU(No + 2M) x SU(Ny + 3M). (3.15)

When regarded from the 5d perspective, this implies that the direction r “ends” at a finite distance. Of
course this is not relevant for the discussion below, which only deals with the large r regime. Moreover, even
if one would be interested in having a radial dimension with no end, it is straightforward to modify (3.11) or
even its full KS version, e.g. by introducing a large number P of additional explicit D3-branes, producing
an AdSs at the bottom of the KS throat, effectively removing the endpoint for r. This corresponds to the
mesonic branches of the cascade [122].
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Although we will not exploit this holographic picture (as the supergravity solution speaks
for itself), we will use it in Appendix A to explain why no disaster arises when the axion
rolls around its period®. In particular there are no states becoming massless or light as
one crosses the “zero” value, an effect often feared to play a lethal role for the discussion
of monodromy dynamics in effective field theory. The fact that this effect is absent in
our model supports the expectation that it is not a generic problem of axion monodromy
models (but rather, either of particular models realizing the idea, or of partial analysis of
those models without full inclusion of backreaction).

3.1.3 Transplanckian axion field range

Let us use the above solution to quickly show that the 5d field ¢ traverses a transplanckian
distance in field space. A more systematic discussion is presented in Section 5.3.

The distance traversed by ¢ from a reference point rg to infinity is given by

do d 3 1d
D(z,:/C <G¢¢di)df> dr:/f (G¢¢)2 dfi)dﬁ (3.16)

where G4 is the metric in field space, which is determined by the 5d kinetic term for ¢,
in the 5d Einstein frame

1
S5 = 22 /d5$ —35 <<Z5 — Ggo 8m¢5n¢>9mn>-< (3.17)

Since the compactification volume varies, certain care is required. We must define a fixed
reference radius R determining the 5d Planck scale, and introduce a 5d dynamical breathing
mode R encoding any variation (see [115] for a similar parametrization). Hence, focusing
just on the parametric dependence, we write

Vx. = R° R, (3.18)

ds® = 97(221 dx™ dx"™ + (R}N%)2 (9x5)ij dy' dy’ . (3.19)

We now focus on the reduction on X5 of the 10d action for the metric and kinetic term of
Bs. In the 10d Einstein frame we have

1
Si0d = 75 dl%\/%( 10 — Hynp HMNP>. (3.20)
264 12 g
As explained, the reference value R fixes the 5d Planck scale
5
1
26{y  2kKg

and the factor R® is reabsorbed by rescaling the 5d metric to the 5d Einstein frame

(QB)mn — Ril‘?’o (QS)mn' (322)

5See [99] for some discussion of periodic effects in axion monodromy.
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3.1. Warped throats and transplanckian azion monodromy

We follow the effect of this rescaling in the kinetic term of the component of By given by
(3.3). The dependence on R is as follows:

/dlom\/_glogmngikgjlamBijaanl COI@;‘E- (323)
compact. / B/ g5 (RR) (95)™ Oo Oy 28" /(d%r—gfs (RR) (g5)™ O 90

Hence, we have R* ~ M?logr and thus
Gy ~ (M?* logr)~". (3.24)

We have ¢ ~ M logr, hence the distance (3.16) is

L d¢ _1 dr ds
Dy = /(G;qbdrdr ~ /(clr(M2 logr)™2 M —~ = /<s% (3.25)

for s = logr. This becomes arbitrarily large for large r, showing that the 5d scalar ¢ rolls
through a transplanckian distance in field space.

The 10d backreacted solution for this transplanckian axion monodromy configuration
allows to address many of the objections to transplanckian field excursions in string theory
or quantum gravity, and study how the present models avoid those potential pitfalls. As
many of these are related to the regimes of validity of effective field theories for the axion
dynamics, we postpone their discussion until section 5.3.

The above AdSs vacua admit generalizations associated to D3-branes at more general
CY threefold singularities, which have been extensively studied in the toric case. The dual
backgrounds correspond to type IIB Freund-Rubin AdSs x X5, where X5 is the 5d horizon
of the 6d CY cone. The construction of KT backgrounds by introducing (possibly a richer
set of) 3-form fluxes is a straightforward extension of our above discussion (see for instance
[123] for complex cones over del Pezzo surfaces), so there is a large class of constructions
leading to transplanckian axion monodromy. Being more careful, we should make clear
that only CY singularities admitting complex deformations can complete their KT throats
into smooth supersymmetric KS-like throats [124]; other choices admit no supersymmetric
KS completion [123,125,126], and actually lead to runaway instabilities [123, 127], a fact
which has recently motivated the “local AdS - Weak Gravity Conjecture" [116], generalizing
the “AdS-WGC" in [128]. However, even with the restriction to CY singularities admitting
complex deformations, there is an enormous class of such explicit constructions (built with
standard toolkits, see e.g. [129]), and thus leading to transplanckian axion monodromy.

3.1.4 Duality walls

The fact that the axion traverses an arbitrarily large distance in field space as one moves to
larger distances in r is intimately related to the RG flow structure in the holographic field
theory. As mentioned in section 3.1.2, the axion winding around its period corresponds to
completing a cycle in the Seiberg duality cascade of the SU(N) x SU(N + M) field theory.
The steps in the energy scale in each duality cycle relate to the radial distance required
for the scalar to wind around its period. The infinite range in energy as one moves up to
the UV in the field theory provides an infinite range in radial distance on the gravity side,
which allows for an arbitrarily large axion field range with finite gradient energy density.
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Chapter 3. Transplanckian Azion Monodromy

Hence, the nice properties of the holographic field theory RG flow relates to the fact that
the gravity side is described by a supergravity background.

In contrast with this picture, it is interesting to point out that a different kind of
RG flow behaviour of duality cascades has been contemplated, purely from the field theory
perspective. These are known as duality walls, and correspond to duality cascade RG flows
in which, as one moves to the UV, the energy steps in each duality cycle decrease; more
concretely, the number of duality cycles in a given energy slice increases as one moves up
to the UV, in such a way that there is a limiting energy, at which the number of cycles
per energy interval diverges. Such RG flows have been introduced in [130], and proposed
to relate to quiver gauge theories of D-branes at singularities in e.g. [131 133]. However,
there is no concrete string theory D-brane realization of such RG flows. In particular,
systematic searches for gravity backgrounds dual to gauge theories with duality walls have
produced no such results [123].

The absence of such backgrounds, at least in the context of supergravity, has an
interesting implication for our perspective on field ranges in axion monodromy models.
Gravitational solutions dual to duality walls would require an axion winding around its
period an infinite number of times in a finite range in the radial distance. This is compatible
with finite gradient energy densities only if the kinetic term of the axion varies so as to
render finite the traversed distance in field space. This kind of behaviour would produce
axion monodromy models where superplanckian field ranges cannot be attained. Hence,
the absence of supergravity backgrounds of this kind is a signal that superplanckian axion
monodromy models are actually generic in the present setup, whereas those with limiting
field ranges are exotic, if at all existent.

3.2 Effective field theory analysis

In the previous section we have shown a fully backreacted explicit 10d solution for ax-
ion monodromy models with arbitrarily large field ranges. In this section we bring the
discussion to the context of the 5d effective field theory, where much of the discussion of
swampland conjectures is carried out.

3.2.1 Effective field theory for axion and breathing mode

From the 10d solution it is clear that the relevant dynamics in 5d involves the axion ¢
and the breathing mode of X5 = T'%!', coupled to 5d gravity. It is interesting to device
an effective field theory describing the dynamics for these degrees of freedom in the KS
solution®. This provides a concrete context in which to test the regime of validity of
the effective field theory to describe transplanckian axion monodromy, or to test other

swampland conjectures.

The 5d effective field theory can be obtained starting from the 10d type IIB effective
action, and using a suitable ansatz for the compactification, which allows for general dy-
namics for the relevant 5d fields. This strategy was in fact put forward in [111] to produce
the 5d action we are interested in. We review the key ingredients relevant for our purposes,
and adapted to our present notation.

5Tnclusion of the dilaton is discussed in section 3.2.3
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3.2.  Effective field theory analysis

We consider the metric ansatz
dsiy = L*(e " ds? + €*dsF..) ( (3.26)

Here ¢ is a 5d field encoding the breathing mode of T11. Also)ds? is the line element in
the 5d non-compact spacetime, defined in the 5d Einstein frame thanks to the prefactor
€54, The explicit L scales out the line elements to geometries of unit radius.

There are M units of F3 flux over the S3 € T™! and there is a 5d axion defined by
(3.3). The modified Bianchi identity (3.6) implies that the flux of F5 over TV is given by
(3.8).

The 5d effective action for the 5d scalars ¢ and ¢, collectively denoted by ¢®, is given
by

5= 2 [er v [{R - 5Cu()9905" - V()] < (3.2
5

with the kinetic terms and potential given by

Gusl)05°05" = 15(00)° + 19" 1(00)? (3.28)
V(p) = —be 8 4 éMzgs e 149 4 é(No + M¢)2e2%. (3.29)

The different terms in the potential have a clear interpretation. The first negative con-
tribution corresponds to the curvature of the compactification space 7!, the second is
the contribution from the M units of F3 flux on the S3, and the third corresponds to
the contribution from the 5-form flux over T™!, and has the typical axion monodromy
structure. We note that, despite the bare quadratic dependence, the backreaction of ¢
on the geometry will produce a different functional dependence of the potential energy at
the minimum, as shown below. Also, as already explained, the above action should be
regarded as a consistent truncation in supergravity, so we will take special care to discuss
the role of other physical degrees of freedom, like KK modes.

Since the above effective theory is general, it should reproduce the basic AdS5 back-
ground for M = 0. The potential becomes

1
V(p) = —5e 8 + 3 Ze204, (3.30)

The potential has a minimum at
el = — (3.31)
with negative potential energy at the minimum
Vo = =37 (3.32)

Comparing (3.26) with the standard expression for AdS; x T! metric (3.1), we recover
the scaling of the 7! radius R with Ny

R? ~ &3 — R*~ N, (3.33)
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Chapter 3. Transplanckian Azion Monodromy

with other factors reabsorbed in L in (3.26). Taking the value for V (3.32) and removing
a factor of 77 to change to the 10d frame, we recover the same scaling for the radius of
the AdS5 vacuum.

The KS throat (actually its asymptotic KT form) is a solution of the above effective
action. Following [111], we take the following ansatz for the metric

ds?y = s7V2(r) N dat dx” + K2 (r) (dr? + rds3i.). (3.34)
In terms of (3.26), this corresponds to
1 =r2pl2(r) , ds? = [V (r) mu dat da? + B2 (r) dr?). (3.35)
The effective theory admits a solution where

1
¢ = Mlogr , s(r) = h(r) M?log ri’ (3.36)

pu— 477.4 i
with r, some reference value. This is just the throat solution discussed in Section 3.1.2.

The effective action can be exploited to recover the result of the transplanckian field
range covered by the axion. Since the 5d effective action is already in the 5d Einstein
frame, we can read out and evaluate the kinetic term for ¢ in (3.28)

Gop ~ €% = [ h(r)]"t ~ (M? logr)~". (3.37)

We thus recover, in a more precise setting, the result (3.24), and thus the corresponding
unbounded (and hence transplanckian) field range.

3.2.2 The axion effective field theory

As explained, the above action should be regarded as a consistent truncation in supergrav-
ity, but not as a Wilsonian effective action. In other words, at the scale 1/R at which the
stabilization of the breathing mode occurs, there are many other modes, corresponding to
KK excitations of the 10d fields in X5 which are not included in the action. Note that this
scale goes as 1/R ~ (logr)~'/%. On the other hand, the effective dynamics for the axion
occurs at far lower scales, set by d¢ = 1/r. Similarly, the scale of the backreaction on the
compactification radius or the vacuum energy is measured by their derivatives with respect
to r, which are similarly suppresed by 1/r (or even with additional inverse powers of logr).
It is therefore interesting to construct an effective field theory including just the axion and
intended to describe its dynamics at those scales (hence, including the backreaction on the
volume and vacuum energy).

For this, we minimize the scalar potential for ¢ keeping ¢ fixed. This gives the
condition

5 7

5 (Vo + M¢)?a? + ngM% — 40 =0 , witha=e%, (3.38)
Rather than solving the above exactly, since we are focusing on the large r regime, where
¢ is large and z is comparably small, we drop the subleading second term, and obtain

e = i(]\f0 + Mg). (3.39)
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3.2.  Effective field theory analysis

This reproduces the result of the KS solution that €% ~ M?logr for ¢ ~ Mlogr, so we
are capturing the relevant physics.

We should replace that value in the potential. Again restricting to large r, we drop
the second term in (3.29) and obtain

= L+ gt (3.40)

V = —e % [
This has the same structure as (3.30) with the replacement Ny — No+ M ¢. The potential
should be regarded as a function of ¢ only, by simply replacing (3.39) in this expression.
It is therefore clear that considering a profile ¢ = M logr leads to the appropriate change
in the vacuum energy, so that the backreaction of the axion monodromy is duly included.

The complete axion action should include its kinetic term, obtained from that in
(3.28) by using (3.39). We recover a kinetic term

~ (No + M¢) 1 (99)%, (3.41)

which again reproduces the familiar result about the transplanckian distance traveled in
the rolling solution considered.

This effective action suffices to describe the dynamics of the transplanckian axion
monodromy, so it is a well-defined setup to test/propose swampland conjectures on effective
actions. For instance, one natural idea is to consider if there is an analog of the swampland
distance conjecture, and there is a tower of states becoming exponentially light as the
axion travels at arbitrarily large distances. This is not the case, as follows. The invariant
distance in axion field space goes (for large ¢) as d ~ #'/2: on the other hand, the masses
of KK modes (which are the primary suspects for fields becoming light at large ¢, since
R increases), scale as mgg ~ e 44 ~ ((;5)_2/3, hence mig ~ d=4/3 and there is no tower
of exponentially light states. This is compatible with the swampland distance conjecture,
if interpreted as applying to field ranges approaching points at infinite distance in moduli
space [35,45]. It is also compatible with the oftentimes used version for transplanckian
geodesic distances, since in the next section we will show that our axion travel does not
follow a geodesic. However the model provides a beautiful way in which a fully backreacted
monodromic axion can travel arbitrarily large distance in field space without triggering the
appearance of exponentially light states.

There are other interesting questions that can be addressed in the present setup,
such as the application of swampland constraints on the scalar potential, or the realization
of the weak gravity conjecture in the present setup, etc. Since the underlying model is
a string theory compactification on a smooth geometry with fluxes, we expect no new
surprises or novel mechanisms related to these other swampland conjectures.

3.2.3 Inclusion of the dilaton

As announced, in this section we show that the underlying reason for the compatibility
of the transplanckian axion monodromy model with the swampland distance conjectures
is that the axion does not follow a geodesic in the moduli of light fields. The crucial
ingredients to understand this are the spacetime dependence of the axion, and the inclusion
of the dilaton in the moduli space.
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Chapter 3. Transplanckian Azion Monodromy

The original KT 5d effective action [111] includes further fields beyond those included
in the earlier discussion. Indeed, it contains fields ¢* = q, f, ®, », where f describes a
possible asymmetric volume for the S? and S? of %!, and @ is the dilaton. The 5d action
for these fields has the structure (3.27) with
G g L1 o456
a(p) = diag <15, 10, 116 )
(3.42)
V(p) = e84 (6—12f _ 66—2f) %M26<1>+4f—14q + é(No + Mg)2e=204,

The pure AdSxT"! solution for M = 0 shows that in this action the breathing mode ¢
and asymmetric mode f are heavy modes, while the axion ¢ and dilaton ® remain as light
fields. Morally, we should thus consider the later as parametrizing a moduli space at scales
hierarchycally below the KK scale, with a potential induced by the introduction of non-
zero M. This is manifest because the terms including M in the potential are subdominant
with respect to the first, M-independent, one.

This allows to integrate out ¢ and f. We may minimize the leading potential for f,
and set f = 0 (as implicit in the previous section). For the minimization of ¢, we proceed
as in the previous section and recover (3.39).

Note that, in the resulting theory for the axion and the dilaton, there is a non-trivial
potential for the dilaton. This is however compatible with its constant value in the axion
monodromy solution in an interesting way: the spacetime dependence of the axion has
a non-trivial backreaction in the dilaton, through the dilaton dependence of the axion
kinetic term, which induces an effective potential for the dilaton balancing the original one
and allowing for a constant dilaton solution. Quantitatively, the equation of motion for a
general field in the presence of a spacetime-dependent axion background reads

10Gsg ov
2 Op¢ Op°

(V99" GacOpp®) (06)% + =—. (3.43)

1
—0
N
For the dilaton, the condition to allow for a constant dilaton e® = g, is the vanishing of
the right-hand side, which is proportional to

—e %7 (9¢)% + e T M2, (3.44)

This indeed vanishes in the KT solution, allowing for a constant dilaton. As anticipated,
the spacetime dependence of the axion exerts a force on the dilaton keeping it constant on
the slope of its bare potential.

The scale of this effect is set by the gradient of the axion d¢, which is hierarchycally
below the KK scale. This implies that the corresponding backreaction effect for the other
fields ¢ and f is negligible, and can be ignored when they are integrated out, as implicit
in our above discussion. It also implies that it is not appropriate, in a Wilsonian sense, to
integrate out the dilaton dynamics, as it occurs at the scale relevant for axion dynamics.

This last observation raises an important point. In checking the interplay of our
axion monodromy model with the swampland distance conjectures, the moduli space on
which distances should be discussed is that spanned by the axion and the dilaton, as
their potential on this moduli space is hierarchically below the KK scale cutoff. As we
have shown, in this moduli space the KT solulion describes an axion monodromy model
traversing transplanckian (and actually arbitrarily long) distances without encountering
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3.8. The 4d case

infinite towers of light states. However, as we now argue, this does not contradicts swamp-
land distance conjectures, since the trajectory does not correspond to a geodesic in the
axion-dilaton moduli space.

After replacement of ¢ and f by their values at the minimum of their potentials, the
kinetic term for ¢, ® reads

-

) 71 2 e 5M2 2
R Yo T I (No + M¢>2> <a¢) ' )

At large ¢ we can neglect the subleading second term in the kinetric term of ¢ and get

1 e ®
(D)2
8(8 ) + 2

Fr 2N+ 319)

(09)2. (3.46)

To look at the geodesics of this theory it is convenient to change variables

z = /Ny + Mg,

y = 2¢%2 = 2,/g;. (3.47)
This leads to ]
_ 2 2
Liin = Tyg (0x)* + (0y)*| , (3.48)

which is the metric of the hyperbolic plane. Geodesics of this space, considering y the
vertical axis, are vertical lines or half-circles centered in the horizontal axis. On the other
hand, the KT solution corresponds to horizontal lines at different constant values of the
dilaton.

3.3 The 4d case

The above discussion has been carried out in the 5d context because, being holographically
dual to 4d gauge theories, these are the best studied warped throats. However, there are
well studied supergravity solutions of the form AdS, x X7, and supergravity solutions of
the KT kind when the horizon variety X7 admits the introduction of fluxes [134]. In the
following we review these backgrounds and show that they realize in 4d the same kind of
transplanckian axion monodromy as the 5d configurations described above.

The starting point is the AdS4 x X7 background, which can be regarded as arising
from the near-horizon limit of a stack of N coincident M2-branes [15]

ds* = h(r)§ N dat dz” + h(r)% (dr? + r? als)%7 ), (3.49)

where now Greek indices label non-compact coordinates spanning, together with r, the 4d
spacetime. The harmonic function is

2572 N Eg
h(r) = —% (3.50)
Namely, we have
R* dr?
ds? = " dat da” + R TLQ + R2ds%., (3.51)
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where
RS =227 N 45, (3.52)

There are N units of flux of the 7-form field strength F7 (dual to the 4-form field strength
Fy) through Xs.

Consider an X7 with a non-trivial 4-cycle”, on which we turn on M units of 4-form
field strength flux F);. Taking the dual 3-cycle II3 in X7, there is a 4d axion

¢ = /(303. (3.53)

This axion is monodromic, as follows from the reduction of the 11d Chern-Simons coupling

/ Fy,NFyNC3 — [Q M ¢ Fy. (354)
11d

The monodromy implies that the value of N varies with ¢ as
N = Ny + M ¢, (3.55)

with Ny a reference value, which we take zero in what follows.

This leads to a 4d analog of the KT throat found in [134] and given by a flux
background

Fy, = Bz ANdh™! + M %7 w3 — M% N w3. (356)

Here ws is the Poincare dual to the 4-cycle in X+, so the second term corresponds to the F)
flux through the 4-cycle. The third term corresponds to a rolling scalar profile d¢ = dr/r,
hence

¢ ~ Mlogr. (3.57)

Hence we have the axion rolling logarithmically up its monodromic potential, exactly as in
the the 5d KS solutions discussed above. The first term correspond to the dual of the flux
of F%7 through X7, which varies with the radial coordinate due to the axion monodromy.

The harmonic function h(r) is

log r 1
)

2
M) = M (G5 + 36,0

(3.58)

(up to some p/r® factor, which defines a reference value which we take to be zero). Tt also
determines the metric by replacement in (3.49).

The solution, just like in the 5d KT example, has a naked singularity at r = 0,
which is presumably smoothed out at least for certain geometries X7, although no analog
of the full KS solution has been found. It would be interesting to develop the dictionary

"Such horizons can be obtained for instance by taking the near horizon limit of M2-branes at toric
CY3 x C (leading to 3d N' = 1 theories), where the CY3 admits a complex deformation corresponding
to the size of a 3-cycle. The horizon X7 then contains (an S' worth of) such 3-cycle, and hence its dual
4-cycle.
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of fractional M2-brane theories and their gravity duals further to gain insight into such
smoothings. This however lies beyond the scope of the present paper.

It is straightforward to compute the 4d kinetic term of the axion ¢ as in the simplified
5d calculation in section 3.1.3. Specifically, the Einstein-Hilbert and 3-form kinetic term
in the 11d action read

1 1
Si1 = 5 <d11$ \/—911( 11 + 3 |F4‘2). (3.59)

2541

Define the volume of X7 = (RR)7, where R defines the backgound value and R its breathing
mode. The KK reduction to 4d contains the terms

1 - -
Sy = 32 (d“x\ﬁ—ﬂ (R"R4 + cRg™ aman¢).< (3.60)
4
Here we have introduced
2
K
,i42 = # (3.61)

Also, the factor R in the axion kinetic term arises from an R from the compactification
volume and a factor R~% from three inverse metrics of X7 required for the contractions of
lws|?. Finally c is a constant that depends on geometrical properties of the cycles in X7.

Going to the 4d Einstein frame we have

1

Sy = —=
1 2/€42

/(dnm —g1 (R4 + cRCgmn 8m8n¢).< (3.62)
So the kinetic term for the axion gives
Gyp ~ R0 ~ (M*logr)~". (3.63)

This is exactly as in the 5d example, and again leads to arbitrarily large, in particular
transplanckian, field ranges traversed by the axion roll.

3.4 Summary

In this chapter we have considered a first example of running solution in String Theory
and its interplay with the SDC. This is a particularly interesting case since it goes against
the naive extension of the SDC to running solutions. This is, there is no tower of states
becoming light exponentially with the field space distance travelled by the scalars in the
running solution. As we have explained, the KK modes do become light but as a power
law in the field space distance. We showed however that this is not against the usual
formulation of the SDC in section 3.2.3. The key point is that field excursion of the scalar
in the running solution is a highly non-geodesic trajectory in the field space of the EFT.
In this way, even though the SDC in its usual formulation in terms of the geodesic field
distance is satisfied, the falloff of the tower is delayed in the running solution. For this
argument it is crucial that the dilaton has to be included in the EFT describing the field
space trajectory of the running solution in section 3.2.2.
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Chapter 3. Transplanckian Azion Monodromy

The complete 10d background is the well-known Klebanov-Strassler throat [111,112]
and was reviewed in 3.1. When regarded as a flux compactification on a Sasaki-Einstein
manifold X5, the 10d uplift encodes the full backreaction of the field dynamics on the
geometry and other scalar fields.

The 5d effective field theory was described in Section 5.3. The kind of flux compac-
tifications discussed in 3.2.1 are usually argued not to yield good effective field theories,
but rather only consistent truncations. The reason is the coincidence of the stabilization
scale of the breathing mode, the AdS scale and the KK scale. However, we argue in 3.2.2
that the dynamics of the running solution lie well-below these scales. We use this build an
a priori well-behaved EFT in the wilsonian sense describing these dynamics.
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The Convex Hull Swampland Distance Conjecture
and Bounds on Non-geodesics

An important point in the discussion of SDC is that it should apply to adiabatic motion
in moduli space. Morally, this amounts to varying the scalar values as vevs, i.e. with
no spacetime variation. In fact, as shown Chapter 3, backgrounds with spacetime varying
scalars can lead to transplanckian motion without encountering exponentially falling towers
of states.! A useful way to understand this point is that adiabatic motion corresponds to
moving along geodesics in moduli space, while spacetime dependence introduces extra
forces in moduli space motion, leading to non-geodesic trajectories. This would seem to
imply that the SDC, in the adiabatic sense, should apply only to geodesic trajectories in
moduli space.

On the other hand, although the SDC and its variants are most precisely stated and
studied for exactly massless moduli, on physical grounds they should be expected to hold
in the presence of scalar potentials, as long as the relevant masses and energies remain
smaller than the cutoff, i.e. a pseudomoduli space. From this perspective, consider a
theory with a moduli space M parametrized by a set of scalars ¢’, such that the SDC is
satisfied. If a potential V(¢) is now introduced, the motion of scalars is restricted to the
valleys of this potential, which can either correspond to left-over massless moduli, or to
directions along which the potential may not be exactly flat but the relevant energies are
smaller than a given cutoff A. Let us denote this (pseudo)moduli space M. At energies
below A, we may integrate out the heavy directions of M and obtain and effective theory
for the light scalars % parametrizing M .

Now this leads to the following conundrum. In the effective theory below A, one can
study the SDC by considering geodesic trajectories in the moduli space M. On the other
hand, the trajectory can be regarded as uplifted to a trajectory in M, so that distances
along it can be computed as in the parent theory.” But these trajectories in general do not
correspond to geodesics in M, and could in principle violate the SDC, even if the SDC is
obeyed for geodesics in M !

A most relevant aspect of this apparent puzzle is that, if actually realized, the SDC

would cease to make sense as a swampland constraint. Given an effective theory violating
the SDC in its moduli space, one could always argue that this corresponds to the theory

!For spacetime dependence and transplanckian scalar travel, see also [58,135,136].

2 An important point is that the kinetic terms on the effective theory in M are affected by the integration
of the heavy modes; this is captured by the statement that in the effective theory below A, the metric on
M is the induced metric from the embedding of M C M. This is equivalent to the statement that the
distance is obtained from the trajectory when embedded in M.
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on M, and that above certain scale A the theory is completed to a larger moduli space M
which obeys it, and which can in principle be completed into a quantum gravity theory.
In fact, there is no reason why this cannot occur in a nested manner with several effective
theories scalating up to some higher energy scale at which finally the SDC is fulfilled. In
other words, since the notion of moduli scape in the presence of multi-scale potentials is a
scale-dependent notion, the SDC constraint would only apply in a certain energy regime,
but then, which energy regime?

We have guided the reader through this argument to make our main point manifest.
We propose that the above situation cannot occur in a theory of quantum gravity, and that
the SDC must apply at any energy scale, namely, in any of the effective theories valid at
any intermediate energy scale. This has the following profound implication: since arbitrary
scalar potentials in a moduli space M can easily lead to subspaces M violating the SDC,
the validity of the SDC at all scales in quantum gravity theories constitutes a non-trivial
constraint on consistent potentials in quantum gravity theories.

Notice that the discussion in chapter 3 is a very non-trivial example of these ideas.
The 5d theory presented in section 3.2.1 indeed satisfies the SDC for any geodesic. Due to
the presence of the potential we were able in section 3.2.2 to integrate out a combination
of the breathing mode and the axion. The resulting light mode is the one describing the
transplanckian excursion in the spacetime varying solution that avoids the exponentially
falling tower of states. However, as argued in section 3.2.3, the effective theory at that
energy scale has to include the dilaton. Crucially, it was found that the light mode para-
metrizes a non-geodesic trajectory in this two-dimensional pseudomoduli space. All in all,
the SDC is respected for geodesics of the pseudomoduli space at any energy scale and only
in truly spacetime varying solutions the exponentially falling tower can be avoided.

The realization of the SDC in moduli spaces of light fields in the presence of po-
tentials® has been explored in diverse examples in flux compactifications in string theory
e.g. [106,139,140]. These top-down approaches are valuable, yet very model dependent.
In this paper we instead initiate a model-independent bottom-up approach, closer to the
spirit of the swampland program. Our strategy is instead to characterize the non-geodesic
trajectories which are nevertheless ‘sufficiently geodesic’ to allow the realization of the
SDC. The approach is very model independent, since it only involves geometrical proper-
ties of the moduli space, and some information about the towers hiding at its asymptotic
regions. Characterization of the non-geodesicity allowed by the SDC for trajectories in a
moduli space, leads in interesting examples to explicit bounds. These bounds can be sub-
sequently tested against concrete models, and are interestingly saturated in string theory
flux compactification in the asymptotic limits [141].

The model-independent approach allows us to devise an illuminating rephrasing of
the SDC in terms of a Convex Hull condition, similar in spirit to that arising in the context
of the Weak Gravity Conjecture [82], or its scalar WGC (SWGC) extensions [71,142-146].
In particular, we characterize SDC towers by a scalar charge to mass ratio as in the SWGC;
this controls the exponential decay rate along asymptotic trajectories characterized in terms
of their asymptotic unit tangent vectors. Conversely, by considering the space of such
vectors for all possible trajectories, we define an ‘extremal region’ by the set of charge to
mass ratios ensuring a fixed minimum decay rate along any possible trajectory. Although

*In the original work [35] (see also [137,138]), it was already noted that the SDC also applies to the
subspaces parametrizing minimum loci for the potential for a given effective cutoff scale, and that this can
imply powerful constraints on the potentials consistent with QG.
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4.1. Non-geodesic bounds in the hyperbolic plane

in the original formulation of the SDC [35], the decay rate is an undetermined O(1) factor,
concrete lower bounds have been proposed in [36-39,45,147]. This allows to express the
SDC in a given physical system as the condition that the convex hull of the scalar mass
to charge ratios of its towers contains the extremal region. If the convex hull condition is
not satisfied for arbitrary trajectories, one can use the convex hull to recover the above
mentioned bounds on the non-geodesicity of the trajectories. Alternatively, it can also be
used to predict the existence of new towers.

The fact that the scalar charge to mass ratio in our Convex Hull SDC agrees with
the SWGC is a tantalizing hint, although the physical requirement of ‘extremality’ in both
situations does not seem to be necessarily identical. It would be interesting to explore the
relationship between the WGC states and the SDC towers in this Convex Hull context,
possibly along the lines of [36,81].

The chapter is organized as follows. In Section 4.1 we consider the example of non-
geodesic trajectories in a moduli space given by one hyperbolic plane (section 4.1.1) or
products thereof (section 4.1.2), and derive bounds on the non-geodesicity of trajectories
obeying the SDC. The analysis of the multi-moduli cases motivates Section 4.2, where we
frame the multi-axion examples in a general reformulation of the SDC (section 4.2). This
allows us in Section 4.3 to formulate our Convex Hull SDC (section 4.3.1), and recover and
vastly generalize results of the previous sections, as we show in several explicit examples
(section 4.3.2). In Section 4.4 we revisit the results about asymptotic flux compactifications
in [141], and show that they realize the critical behaviours of non-geodesicity. Section 4.5
contains a summary of the chapter.

This chapter is based on the author’s publication [3] with slight modifications for a
better fit in the context of this thesis.

4.1 Non-geodesic bounds in the hyperbolic plane

We focus our analysis on trajectories approaching points at infinity in moduli space, in
the spirit of the SDC, since the interesting physics occurs in the asymptotic region near
infinity. Also, it often corresponds to weakly coupled regimes, where effective actions and
scalar potentials can be reliably computed. Moreover, fairly general moduli spaces simplify
in the asymptotic regime, so that very simple moduli space geometries are useful templates
for the asymptotics of general moduli spaces.

In this section, we discuss moduli spaces given by a hyperbolic plane, or products
thereof. Despite their apparent simplicity, they are key to describing moduli spaces of
general CY compactifications near their boundaries at infinity [45,46, 141], to the extent
of encoding much of the dynamics of these models [148]. Moreover, they allow for explicit
computations which will be useful to motivate our generalizations in later sections.

4.1.1 One hyperbolic plane

Consider a 4d effective theory with two real moduli s and ¢ with kinetic terms

2
S (050" + 0,09"9), (4.1)

41



Chapter 4. The Convexr Hull SDC and Bounds on Non-geodesics

where n is a free parameter. In other words, the moduli space M is given by the upper

half-plane with metric
2

n
aD% = = (d82 + d¢2) ( (4.2)
We note that n determines the Ricci scalar curvature
2

This geometry is ubiquitous in string theory, with ¢ corresponding to some periodic axion
and s its ‘saxion’ partner (although we do not assume susy, we stick to this name). For
instance, the type IIB complex coupling in 10d, the 4d axio-dilaton in string compactifica-
tions, and the Kéhler and complex structure moduli of 2-tori in toroidal (and orbifold and
orientifolds thereof) compactifications.

In many of these, the SL(2,R) symmetry of the above geometry lead to an exact
infinity discrete SL(2,Z) duality symmetry. However, we work in a more general perspect-
ive, so that our analysis is valid in the absence of this symmetry. On one hand, in many
compactifications, we would like to regard the above metric as a good approximation to
the moduli space (or suitable subspaces thereof) of CY compactifications, in the large s
asymptotic region; hence the region near s = 0 is not relevant to this physics context,
and the duality s — 0 and s — oo is a mere artifact. Second, the discrete axion peri-
odicity (which would be present even near s — oo) is in general spontaneously broken in
the presence of potentials of axion monodromy* kind [97,119], a generic situation in flux
compactifications [101,102]. Hence we consider ¢ to take real values, with no identification
whatsoever.

We consider that the SDC is satisfied on this moduli space M, namely there exists
a tower of states with mass scale’

M~s% a>0. (4.4)

If s parametrizes the vertical axis, all geodesics in this space are either vertical lines
or half-circles with centers on the s = 0 line. Thus, the only geodesics approaching s — oo
are vertical lines with ¢ = const. For these geodesics, the distance behaves as

Dy ~ nlogs (4.5)

(with n taken positive herefrom). The mass scale of the tower reads

M ~ exp (—ZDd)) 6 exp (—aDy) (4.6)

thus leading to the SDC with decay rate a = . This is indeed 'O (1) in many realizations
in string theory.

More precisely, the discrete periodicity is preserved due to the multiple-branched structure of the
potential. However, it is spontaneously broken when the problem under study (e.g. adiabatic motion in
moduli space) is restricted to a single branch.

5The fact that the overall scale is independent of ¢ does not imply that the masses of individual states
in the tower can not depend on ¢. Indeed, a typical structure is given by M,, = M|n + ¢|, with n labeling
states in the tower and M depending only on s, as required for our analysis. Here the ¢-dependence is
determined by the fact [45,47] that the different states in the tower are generated by monodromy in ¢, i.e.
¢ — ¢+ 1 is equivalent to n — n + 1. More general axion dependences in the tower scale will be easily
included in the analysis in Section 4.3.
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4.1. Non-geodesic bounds in the hyperbolic plane

Let us now consider a general trajectory approaching s — oo in this moduli space.
For reasonable trajectories, we can can use s to parametrize it,% so that the curve is defined
by the expression

¢ = f(s) (4.7)

for some function f that we assume sufficiently smooth. This is a template to describe the
moduli space of an effective theory in which there is partial moduli stabilization, and the
light direction can be parametrized by s.

Recalling footnote 2, note that the distance in this effective theory is not measured by
just the metric component gss, but rather by the effective metric obtained upon replacing
the s-dependent value of ¢ in the underlying metric. This is equivalent to measuring
distance along the trajectory with the ambient space metric (4.2) in M. This yields

dD, = % 1+ f(s)% ds. (4.8)

We can now classify general trajectories in three different kinds, according to the
asymptotic behaviour of f’(s) in the s — oo limit:
e The Asymptotically Geodesic case:
This corresponds to f’(s) — 0, and we have

d
dDy = nf (4.9)

Trajectories of this class approach a geodesic when s — oco. Therefore the SDC is
automatically satisfied with decay rate

a
Ogeod. = - (4.10)

e The Critical case:

This corresponds to f’(s) — 8 = const. and we have

d
dDy = \/(Jr B2n e (4.11)
s
The tower of states has mass scale

M ~ exp —O‘D¢> ( (4.12)

+ B2
which is consistent with the SDC, but modifies the scale of the exponential. We can
define a factor o
y=_—eod (4.13)

Qnon-geod

that measures such a modification, so that M ~ exp(—@D(ﬁ). In this case we
have

a (4.14)

Verit, = + 82 = Quit = m
Hence, v — oo corresponds to a violation of the SDC\in a non-geodesic trajectory.

SActually, requiring that the trajectory eventually goes to s — oo makes this parametrization always
valid for sufficiently large s.
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e The Swampy case:

This corresponds to f’(s) — oo, and we have

f"(s)

dDg = n ds. (4.15)

Here we can evaluate the behaviour of the tower by computing

dlog M dlog M ds
dD¢ N ds dD¢

- _% F(s) = (4.16)

This violates the SDC since the tower mass scale is no longer falling exponentially
with the distance.

We note that the critical case corresponds to the maximum deviation from a geodesic
still consistent with the SDC. It therefore provides a non-trivial bound that any light
direction in the moduli space (after partial moduli stabilization by some scalar potential)
must obey. Notice that this is the class of curves in which the saxion varies linearly with the
axion (s ~ a). This will be contrasted with explicit string models of flux compactifications
in Section 4.4, where we show that this class of models saturates the bound.

It is interesting to explore the characterization of these classes in terms of a geo-
metrical quantity of the trajectories. A natural scalar measure of non-geodesicity is the
modulus |Q| of the proper acceleration”

Q= TIV;T", (4.17)

where 7' is the normalized tangent vector of the trajectory and V is de covariant derivative
in moduli space. In our case we have

(f/(s) + f'(s)* = sf"(s))”
n? (1 + f’(s)2)3 .

Q] = (4.18)

We can now characterize the three classes of paths above in terms of the asymptotic
behaviour for || as follows. The Asymptotically Geodesic case corresponds to f'(s) — 0
which translates to |Q[> — 0. The proper acceleration vanishes asymptotically, since the
trajectory approaches a geodesic. Contrary, for the Swampy case, one has f’(s) — oo
leading® to |Q? — # Thus, the proper acceleration at s — oo attains a maximal value,
and signals a hard violation to the SDC. Finally, the Critical case corresponds to

1 p?
/ _ 2
f'(s) = B8 =const. = |Q° — 1 (4.19)
The change in the parameter of the exponential defined in (4.13) can be written as
1
V= (4.20)

— n2[Q?
" Actually, since our trajectories are not worldlikes, we should use the term “extrinsic curvature”, but

we stick to the kinematical language.

80ne also needs that ‘}’i; — 0. This is satisfied for all functions of the form f(s) = s, (log s)", e*".
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We can thus recast the criterion that the trajectory respects the SDC as a bound on the

non-geodesicity: )
9 R 1
|QI* < o T2 (4.21)
In the next subsection, we will generalize these bounds to higher dimensional moduli
spaces in which there is more than one hyperbolic plane. We will see that they cannot be
stated simply in terms of the modulus of the proper acceleration, as the direction will also
matter. In other words, the bounds will vary depending on the type of trajectory/ the

growth sector to which the trajectory belongs.

4.1.2 Product of hyperbolic planes

We now consider a moduli space given by a product of hyperbolic planes. For simplicity,
we consider the case of two, which suffices to illustrate the point. The metric is

dp% =" (d + d¢2) ’Zj <du2 + d¢2) . (4.22)

As in Section 4.1.1, we focus in paths approaching the infinite distance regime s, u — co.
Note that this setup (4.22) nicely models the asymptotic behaviour of CY moduli spaces,
cf. Section 4.4, thus our discussion is of direct relevance to the study of non-geodesic paths
in CY moduli space.

In order to satisfy the SDC for geodesics, it is enough to introduce a tower of states
for each of the hyperbolic planes, with mass scales

My ~ s, M, ~u~?, a,b> 0. (4.23)

It is clear that these towers enforce the SDC for geodesic paths contained in a single
hyperbolic plane. Moreover, one can show that they also suffice to recover the SDC for
more general geodesics.”

Let us consider non-geodesic paths approaching infinity in different ways, some of
which correspond to different growth sectors, in the terminology of [46]. For instance, we
can consider paths that only move on one of the hyperbolic planes, namely approaching
s — oo while keeping u, ¢ fixed, or alternatively, approaching u — oo with s, ¢ fixed. In
that case, the situation is equivalent to the one discussed in section 4.1.1 and we can simply
borrow the classification of asymptotically geodesic, critical and swampy trajectories. We
could also apply the criterion (4.21) on the proper acceleration |2|?, although this would
vield two different bounds for the two different curvature paratemeters n and m. In other
words, there is no single discriminating criterion on || which applies to both kinds of
paths.

On the other hand, we may consider a path
Y= f(s) with ¢, u const. (4.24)

so that we move along a trajectory involving the axion and saxion of different hyperbolic
planes. The distance along this curve is given by

dD¢—\/g+2f’ s)2ds = — \/(_’_771252 (s)2ds. (4.25)

9Physical realizations like CY compactification may produce additional towers. This is ignored in this
section for simplicity, but is included in the general analysis in later sections.
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In the second equality we recognize the two terms in the square root to be the geodesic
and the non-geodesic contribution to the field distance.

As done in section 4.1.1, we can classify the trajectories in the same three different
families, depending on the relevance of the non-geodesic contribution in the asymptotic
limit s — oo. We thus see that the critical case is:

m? s?

ﬁﬁf/(s)2 — const. 5 (426)

which means that sf’ — v = const., implying the critical behaviour
f(s) = ~ylogs. (4.27)

If f(s) grows slower or faster than this critical case one gets the asymptotically geodesic
and the swampy case respectively.

The SDC will only be satisfied for asymptotically geodesic or critical trajectories.
Only for those paths, the towers of states in (4.23) will still exhibit the exponential beha-
viour in terms of the distance along the path. Recall that the critical case is the maximum
deviation from a geodesic still consistent with the exponential behaviour required by the
SDC, although the factor in the exponential changes. For a tower with My ~ s~ one finds

M, ~ exp <—(j) ( (4.28)

with a = % being the geodesic decay rate, and the factor of violation of the SDC given by

m2 ~2
In comparison with the case of dual axion-saxion pair, we find that this factor varies when
choosing different u = const. planes.

This also produces a direct relation, albeit a different one, between v and the modulus
of the proper acceleration. Indeed we find

1
S (4.30)
— m|Q]

Hence the existence of two axionic directions on which the path can wind lead to
different relations between v and |2|. An implication is that, taking the v — oo limit,
they lead to different discriminating criteria. The critical values correspond to || — %
and |Q] — %, when moving along ¢ or 1) respectively.

The difficulty in finding a criterion based solely on the modulus of the proper accel-
eration is that || misses the information about the direction in moduli space. And trying
to include this information more explicitly may quickly run into nasty and unphysical de-
pendences on the coordinates chosen in moduli space. In the next section we provide a
concrete description which avoids these pitfalls, and yet allows to provide a purely geo-
metrical reformulation of the SDC in general moduli spaces. We will then translate this
general criterion into a Convex Hull SDC condition in section 4.3.
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4.2 A Geometric formulation of the SDC

Let us recap our approach in general language. Consider some theory satisfying the SDC,
i.e. containing towers of states decaying exponentially for every geodesic approaching an
infinite distance limit of the moduli space M. When adding a scalar potential lifting some
of the directions, we will be left with a new moduli space M whose geodesic trajectories
might lift to non-geodesic trajectories in M. To satisfy the SDC in the new IR theory, we
need that the level of non-geodesicity of these trajectories is small enough to still allow for
exponentially falling towers. Given the field metric of M and the towers of states, we can
always identify the non-geodesic trajectories that are consistent with satisfying the SDC
in the IR theory, where the limiting cases are dubbed critical paths. This was done in
Section 4.1 for the case of products of hyperbolic planes, obtaining specific bounds for the
critical paths. However, this procedure requires specific information about the geometry
of the moduli space, so it needs to be worked out case by case.

In this section, we are going to take a step back and reformulate the SDC in a
language that will allow us to generalise the results of section 4.1 for general moduli spaces.
This will be later translated into a Convex Hull condition in analogy to the WGC in section
4.3. The strategy is to provide a geometric description of the criteria for trajectories to
fulfill or violate the SDC. We will keep the nomenclature introduced in section 4.1 to
distinguish between the different types of trajectories, namely:

e Agymptotically geodesic paths: they approach a geodesic in the asymptotic limit, so
the exponential rate is that of the geodesic.

e Critical paths: non-geodesics that still marginally allow for the exponential decay of
the tower, although the exponential rate differs from the geodesic one.

e Swampy paths: they highly deviate from geodesics so the tower does no longer fall
exponentially.

4.2.1 Geometric formulation

The general formulation of the SDC establishes that, for any geodesic in moduli space in
an infinite distance limit there exists a tower of states with mass scale

M = exp(—aDy) (4.31)

with positive @ > 0. Stronger versions of the conjecture further require a > O (1), motiv-
ated by string theory setups. Let us now focus in the mildest version and simply require
a > 0, leaving the study of the implications of a > O (1) for the next subsection.

Consider a trajectory « approaching an infinite distance point in moduli space. We
start by rewriting the exponential decay rate « of the tower mass scale as

dlogM

Dy)=——2" = —T"9;log M 4.32

where T is the normalized tangent vector of v, and M is implicitly evaluated along it.

This rewriting shows that the only information about v relevant for the SDC is the
limiting tangent vector when approaching the infinite distance point. This agrees with our
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observation that the modulus of the proper acceleration (4.17) is not the right quantity to
discriminate the behaviour of asymptotic trajectories.

An important observation is that the set of allowed asymptotic tangent vectors T’
near a point at infinity is in general restricted, in particular for asymptotically geodesic
trajectories.'’ For instance, in the hyperbolic plane case, any curve approaching s — oo
with bounded ¢ must have ¢ — 0; hence only the asymptotic tangent vector in the s
direction is allowed. On the other hand, relaxing the asymptotic geodesicity requirement
allows to explore more general vectors T, as in the case of critical or swampy trajectories.
To reflect this fact, we define the subspace G as that spanned by asymptotic tangent vectors
of asymptotically geodesic trajectories.'!

Let us now consider the implications of the SDC (in its milder version) for such
asymptotically geodesic trajectories. We note that what appears in (4.32) is the scalar
product between the (limit) tangent vector and the gradient of log M. This implies that a
single tower of states along an asymptotically geodesic direction suffices to satisfy the SDC
for any other direction, except for the orthogonal ones. Thus, the minimal requirement of
the SDC is that there exist as many towers as orthogonal limit tangent vectors in G.

Actually, in general, there may exist other towers of states beyond the above minimal
set. Hence it is convenient to consider a new subspace, denoted by M, spanned by the
gradient vectors of (log of) the scale M, for all existing towers of states. Note that in many
string theory realizations the directions associated to such towers are “dense”; for instance,
in a KK compactification on S x S' near the decompactification limit Ry, Ry — oo, there
are towers of KK states with masses

2 2
M= (B + () (4.33)
1 2
Hence, for any rational direction of v i.e. R = R1/q1 = Ra/qe, there is a tower of states
with mass M ~ n/R by taking the states ny = ngi, na = ngo.

In terms of these spaces, the mildest version of the SDC (with « > 0) can be ex-

pressed as:

one non-orthogonal vector in M (i.e. a suitable tower of states becoming massless).

For any vector in G (i.e. any asymptotically geodesic tangent vector), there must be at least

Equivalently, the projection of Ml onto G should completely fill the latter:
PcM =G. (4.34)

Incidentally, this implies that their dimensions satisfy dim M > dim G.

This geometric formulation of the SDC resembles a kind of Completeness Hypothesis
where the towers of states play the role of the charge spectra in gauge field theories.
Analogously, here the role of the charge space is played by the space of asymptotic tangent
vectors of asymptotically geodesic trajectories. Stronger conditions - similar to the WGC -
will appear when further requiring the towers to satisfy a lower bound for the exponential

ONotice that for this it is crucial that the point at infinity is singular. For a regular point, space is
locally flat and thus any tangent vector corresponds to a geodesic passing through it.

HStrictly speaking, we are interested in the subset containing all asymptotically geodesic vectors, which
may not necessarily form a vector subspace. However, being it the case in all the examples at hand
motivated by string theory, we will treat G as a well-defined vector subspace.
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rate a > agp, with ag some order one constant. This mild formulation, though, already
allows us to extract interesting conclusions. The first observation is that a single tower
of states might not suffice to satisfy the SDC whenever the space G is spanned by more
than one tangent vector while M remains one-dimensional. This can occur e.g. in higher
dimensional moduli spaces in which the tower misses to depend on at least one of the
saxions. A second observation is that, by satisfying the above criterion, we are actually
fulfilling the SDC along a more general set of trajectories beyond geodesics. We will
characterize this set of trajectories in the next subsection.

4.2.2 Non-geodesic bounds

We can now turn to characterizing which trajectories could satisfy or violate the SDC.
Indeed, the presence of a single tower makes the mild version of the SDC satisfied for all
its non-orthogonal directions, and not only geodesics. Taking into account all possible
towers, this defines a subset Tgpc composed by all the directions that satisfy the SDC. In
this way, the SDC can be reformulated as imposing that this subset must contain all the
asymptotically geodesic directions,

G C %DC- (4.35)

Clearly, swampy trajectories violating the SDC will therefore correspond to those not
belonging to Tspc. Notice that, for this mild version, Tgpc is just the whole set of
directions in moduli space minus the orthogonal complementary of the subspace M. Hence,
critical trajectories also belong to Tgpc in this mild formulation.

Let us now turn to the stronger version of the SDC, in which we impose a lower
bound for the exponential rate a« > ag with ag some O(1) constant. It is reasonable
to assume that « cannot take arbitrarily small values as otherwise it would violate the
exponential behaviour required by the SDC. Moreover, all string theory examples studied
so far have O(107!1—10), and precise bounds have been given in the context of towers of BPS
particles in Calabi-Yau compactifications [36,45]. There, one finds that o > \/% for a C'Y,,,

implying o > % for a C'Y3 Type Il compactification to four dimensions. A lower bound

has also been motivated by using the Transplanckian Censorship Conjecture [37,38,147] or
by identifying infinite distance limits with RG flow endpoints of BPS strings in 4d N' =1
EFTs [39]. Here, we will not commit to any of these specific values for «g although it
would be extremely interesting to get a better understanding of this.

We can now extend the last formulation in (4.35) to include the lower bound on «
by finding an appropriate definition of Tspc. To do this, let us recast the scalar product
in (4.32) in terms of the angle 6 between the (limit) tangent vector and the gradient of
log M, and get

a = —|0log M|cos@. (4.36)
Here we see that a single tower will make the SDC with o > « satisfied for any direction

such that
&%)

|9log M|
This is, each tower will then come with an associate cone of directions satisfying the
SDC, Cps(a), and defined by (4.37). Therefore, Tgpc will be formed by the union of the
associate cones of all the towers of states (see figure 4.1), this is,

Tspe = JCu, (an). (4.38)

cosf < (4.37)
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With this definition, the SDC with a > «ag reduces again to (4.35). Notice that not all
critical trajectories will satisfy (4.37), so only a subset of them will belong to Tspc, whose
definition now depends on ag. We will translate this condition into a convex hull condition
in Section 4.3, which provides an equivalent but simplified and more elegant formulation
of the above criterion.

Figure 4.1: Pictorial representation of the subset of directions Tgpc. There are two towers of
states and their associated cones are represented. Every direction outside both of these cones does
violate the SDC for a@ > «y.

In general, determining Tgpc is not only associated to the non-geodesicity of the
trajectory but requires full information about the tower of states. However, it becomes a
purely geometric condition in the particular case that

M=G. (4.39)

In this situation, the realization of the SDC is such that the non-geodesicity of trajectories
is directly related to the slow-down of the exponential falloff of state masses along them.
It is in this case when the moduli space geometry completely determines the structure of
the towers near infinity, as indeed occurred in earlier examples, and in most string theory
examples. Hence, it is a natural framework to discriminate the asymptotically geodesic,
critical and swampy trajectories, generalizing our discussion in Section 4.1.

Our approach allows to go even further, and also obtain the modification factor v in
the exponential decay rate for the non-geodesic cases, as follows. The exponential rate in
(4.32) can be written as

o= —(PyT)'d;log M = —(PgT)'d;log M . (4.40)

where we have used (4.39) in the last step. Notice that Py7 is nothing else than cos(0)
defined in (4.36). For a unit vector in G, the result of this expression is the non-vanishing
exponential decay rate required to fulfil the SDC along geodesics, i.e.

a = |PgT| ageod- (4.41)
Hence, the factor v in (4.13) is given by
v=|PT|™" = (1 - |PeT*) /2 (4.42)
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It is straightforward to apply these concepts to recover the results for the hyperbolic
space in Section 4.1.1. As can be readily checked from (4.4), the relevant subspaces are
spanned by 0Os,

G =M= (). (4.43)

For trajectories ¢ = f(s) we have the tangent vector

S

T=—c— (0s+ f'(5)0y) (4.44)

ny/ !+ f'(s)? (
Non-geodesic trajectories are thos&with a nontrivial 0, component in their limit tangent

vector. Finally, the criterion depending on the modulus of the proper acceleration (4.20)
is recovered from (4.42) by checking, in the limit s — oo, the relation

PerT = n|Q. (4.45)

One can similarly recover the results for products of hyperbolic spaces from these
considerations, as the interested reader in encouraged to check. We instead move on to
provide an even more intuitive formulation of these criteria in terms of a Convex Hull
condition similar to that used for WGC.

4.3 The Convex Hull SDC

In this Section we formulate the SDC in terms of a Convex Hull condition in the space
of asymptotic trajectories. This will let us to easily recover our earlier results about
different classes of asymptotic trajectories in a pictorial way which is more familiar in
the Swampland program. Moreover, it will also allow us to generalize the story for any
combination of towers of states and any asymptotic structure of the field space.

4.3.1 General formulation

Consider a trajectory v approaching an infinite distance point in moduli space and T its
normalised tangent vector. As in section 4.2, we denote by G the subspace spanned only
by asymptotically geodesic vectors, i.e. that approach a geodesic trajectory at infinite
distance. We have seen that requiring the existence of an infinite tower of states becoming
light along any of these asymptotically geodesic trajectories, actually allows for satisfying
the SDC along a more general set of trajectories characterised by vectors in Tspo O G.
This larger space allows for a certain level of non-geodesicity, including critical paths but
excluding swampy trajectories, according to the nomenclature summarised at the beginning
of section 4.2. If we require a stronger version of the SDC in which the exponential rate in
(4.32) satisfies a lower bound « > ag, only a subset of the critical paths will be included
in Tgpc. In other words, the SDC with o > ag is equivalent to requiring that, for
any direction in G, there must exist a tower of states such that the gradient vector of
log M projected onto that direction is sufficiently large. Our goal now is to translate this
statement into a convex hull condition.

The key observation is that there is a formal analogy with WGC quantities. The
gradient of M can be regarded as the scalar charge of the tower under the moduli. We
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can also think of G as the vector space of possible ‘charge’ directions. Hence, the previous
criterion can be rephrased as requiring that for every charge direction, there must exist a
charged infinite tower of states satisfying a(Dg) > ag asymptotically, where o is a fixed
contant (of order 1) which quantifies the criterion of fast enough decay to satisfy the SDC.

The SDC conditions can thus be formulated in analogy with the scalar version of the
WGC [71]. In particular for a tower with (scalar dependent) mass scale M, we can define
a scalar charge to mass ratio

7= g 2VlgM, (4.46)

where 91/2 is a matrix whose square is the field metric (more precisely, introducing the
n-vein e?e?éab = gij, we have 2% = —e%g*9; log M). The inclusion of the metric absorbs a
piece in (4.32), such that scalar products become cartesian in the following.

The scalar WGC requires the existence of at least one state satisfying |Z] > O(1),
such that the gravitational force acts weaker than the scalar force [71] (see [146] for a
different motivation of this proposal). Hence, the order one factor is typically fixed such
that states saturating the scalar WGC should feel no force. Unlike with the usual WGC,
the order one factor is not associated to extremality of black holes but, for convenience, we
will keep the terminology extremal to refer to those states saturating the bound. At first
glance, it seems that the scalar WGC is different to the SDC, as for the latter what matters
is not the modulus of the scalar charge to mass ratio but the projection over a trajectory.
However, we will se that the SDC can actually be understood as a Convex hull Scalar
WGC in which the extremal states are instead identified as those decaying exponentially
with a minimum rate «p.

Consider a vector space of dimension equal to the number of scalars under consid-
eration, and a general unit vector 77 therein to parametrize the asymptotic behaviour of a
general trajectory. This is related to the earlier vector T by n® = e?Ti, and is unit norm
with respect to the Cartesian dot product. We define the extremal states as those with a
scalar charge to mass ratio vectors 2 satisfyng

i 7= o (4.47)

for some fixed ag > 0 determining the lower bound for the SDC exponent. From (4.32),
we see that for fixed 77, this corresponds to the full set of towers with exponential rate ag
along the asymptotic trajectory defined by 7. It corresponds to a hyperplane orthogonal to
i, at a distance o from the origin. Scanning over all possible unit vectors,'? we define the
extremal region as the enveloping hypersurface defined by the set of all such hyperplanes.
It corresponds to a sphere or radius «g, see figure 4.2.

By allowing the sphere in Figure 4.2 to take any radius, we recover the mildest
version of the SDC in which « is an undetermined positive constant, a > 0. However, it
seems reasonable to consider a finite radius for the extremal ball which cannot be taken
parametrically small, as that would spoil the exponential behaviour and violate the SDC.
Determining how small o can get is one of the biggest open questions of the SDC and, as
explained above, specific lower bounds have been proposed in the literature [36-39,45,147].

12Note that we allow for both positive and negative values of all components of 7. This is unphysical
for the scalars becoming large in trajectories going off to points at infinity. However, we allow for this
possibility at the formal level, to produce a simpler formulation of the convex hull condition, out of which
the physical constraints follow from simple restriction of the allowed trajectories.
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21

Figure 4.2: The extremal region as envelope of hyperplanes.

One possibility motivated by the key role of the scalar charge to mass ratio above is that ag
can indeed be determined by using the scalar WGC or some sort of no-force requirement,
as it was probably envisioned in [71]. This would be very interesting as it might be used
to provide a bottom-up rationale for the SDC.
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It is now straightforward to define the SDC in terms of a convex hull'® condition:

Convex Hull SDC: In a theory with a set of towers corresponding to scalar charge to
mass ratios Z;, the requirement that the SDC is satisfied (with at least decay rate ag) by
any trajectory is exactly the condition that the convex hull of the vectors z; contains the
above defined extremal region, namely the unit ball of radius «g.

Alternatively, it is possible that the the SDC convex hull condition is not satisfied,
so the SDC does not hold (with decay rate ag) for all trajectories, but it still applies to
some trajectories. In this situation we can put bounds on the trajectories not to become
swampy, constraining the level of non-geodesicity allowed such that the SDC is satisfied.
This situation naturally occurs when we start with a UV theory satisfying the SDC and
then add a scalar potential lifting some directions, so we are left with a IR moduli space
whose geodesics might lift to non-geodesics from the UV perspective. In this case, we can
use the convex hull SDC in the UV theory to constrain the allowed set of non-geodesic
trajectories that would still allow us to comply with the SDC in the IR. The advantage of
this formulation is that it also allows us to incorporate the possibility that new towers of
states appear in the IR theory when adding the scalar potential. Hence, the Convex Hull
SDC can be used to constrain either:

e the spectra of the theory, by requiring as many towers as needed to satisfy the convex
hull condition,

e or the possible trajectories along which the SDC can be satisfied for a fixed set of
towers and, therefore, the scalar potentials consistent with quantum gravity.

13T achieve a full convex hull, we formally use the method of images and also include the mirror vectors
along the negative directions mentioned in footnote 12.
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This latter option is not possible in the usual WGC, as the charge lattice is typically a
fixed input of the theory.'* However, it is very natural in the context of the SDC, as the
allowed set of trajectories consistent with quantum gravity is still an open question, as it
depends in turn on what scalar potentials can be realised in quantum gravity.

4.3.2 Examples

In this Section we illustrate these ideas with examples, reproducing and generalizing the
results in previous sections.

4.3.2.1 The hyperbolic plane complex scalar revisited

Consider the case of the hyperbolic plane in section 4.1.1. Using the metric (4.2) the charge
to mass ratio vector for a tower with mass scale M is

—

Zz =

S
—— (0glog M, 0slog M) . (4.48)
n
Asymptotically geodesic trajectories have a tangent vector which approaches 77 =
(0,1) asymptotically. Critical trajectories are parametrised by (4.7) with constant f' = g,
so the unit vector is

Pe (1), (4.49)

\/i(Jr 32
For these trajectories the vector 7 is constant so that (4.47) corresponds to the equation
of a straight line in the plane (21, 22). Different trajectories with different values of f will
give rise to different straight lines, e.g. horizontal lines correspond to a purely saxionic
trajectory, and bigger 3 leads to bigger slopes.

For the particular case of a single tower M ~ s~ c.f. (4.4), we have a single point
(and its image) at 2 = (0, £a/n). Clearly, the convex hull of these two points does not
contain the ball of radius ag, hence it does not satisfy the SDC for any trajectory. The
SDC is satisfied only in the purely saxionic (geodesic) direction if a/n > «ap, or trajectories
close enough to it. We can then use the convex hull condition to put a bound of how much
a trajectory can deviate from the geodesic saxionic trajectory. For this porpuse, we just
need to compute the angle cos = 1/4/1 + 2, at which a tangent trajectory to the ball
passes by the point 2= (0,4a/n) (see Figure 4.3). This occurs for a trajectory with

a

Bmax = (cos )2 — 1 = ()2 —1 (4.50)

nog
Hence, critical trajectories with 8 < SBpax will satisfy the SDC with a exponential rate
given by

Ogit, = ——m (4.51)

n + 32

recovering the result (4.14) in section 4.1.1.

1 Actually, the charge lattice can vary after higgsing a gauge group. If the higgsing is too large, this can
lead to a violation of the WGC in the IR, even if it was originally satisfied in the UV. This is a known
loophole of the WGC [149]. From our perspective, by analogy with the SDC, the resolution is that the the
amount of higgsing should be restricted in quantum gravity, so the WGC could also be used to constrain
the allowed IR charge lattices.

54



4.8. The Convex Hull SDC
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Figure 4.3: The bound on almost saxionic trajectories.

Alternatively, if one is interested in enforcing the SDC for any trajectory, we have to
introduce more towers, such that the convex hull of their 2’s encloses the extremal region.
In Figure 4.4 we depict situations with different towers and fulfilling, or not, the SDC for
any trajectory. It is instructive to compare with the criterion in section 4.2.1 in terms of

the cones comprising Tgpc, see Figure 4.5.
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Figure 4.4: The convex hull satisfied or not.

4.3.2.2 Two saxions

Let us consider now a theory with two saxion-like real scalars, namely with a metric

2 2
n n
dD? = =L ds? + 2 ds?.
¢ 2 2
51 52

(4.52)

This can be considered as template for the situation with two complex scalars, with hy-
perbolic space metric (4.22), if we restrict to trajectories not involving the corresponding

axions.
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> >
> 2o

Figure 4.5: Same setups as those shown in Figure 4.4 from the perspective of the subset Tspc

The scalar charge to mass ratio for a general tower with mass scale M (s, s2) is

- s 52
Z = —(n—llasl logJ\J,n—Qas2 log M) . (4.53)

A typical situation is to have two towers, each ensuring the SDC along its corresponding
saxionic direction

—ay —asg
M1 ~ Sl , M2 ~ SQ (4.54)
This corresponds to the values Z; = (a1/n1,0) and Z5 = (0, az/ng) respectively. In Figure
a) = b) =
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Figure 4.6: The convex hull satisfied or not for two saxions, depending on the specific values of
a;,ni. For simplicity, we only show the positive quadrant.

4.6 we depict some examples of the corresponding convex hull conditions. Note that even
if the SDC is satisfied along each saxion direction individually, it may fail along some other
mixed trajectories, see Figure 4.6b. This is reminiscent of similar behaviours in the WGC,

see e.g. [89]. The condition that the SDC is satisfied (with decay rate ag) for any trajectory
is straightforward to get from the geometric figure:

(ORI
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4.8. The Convex Hull SDC

It is interesting to compare this with the case in which the states are, or are not,
mutually BPS. For instance, if we consider that the two towers of states are mutually BPS
and can form threshold bound states, we expect there are towers with mass scales

M = q My + g2 M. (456)
For these, the scalar charge to mass ratio is given by

o ar q1 — az q2
2q1,q2 — (n*lﬂﬁalanfzﬂ(%@) (4.57)

Denoting its two components Z' = (z1, z2), they all lie in the hyperplane

Ezl + @22 =1, (4.58)

a a2
which is the line joining the two towers, namely the red dashed line in Figure 4.6. Hence,
mutually BPS states do not need to comply with our definition of extremal in the context
of the SDC convex hull. This can be important in the case in which the towers correspond
to excitation modes of mutually BPS strings, as e.g. in [39]. It also contrasts with the
usual WGC, where only BPS states are expected to have a gauge charge to mass ratio
equal to an extremal black hole. It would be interesting to clarify the interplay of the two
notions of extremality to possibly improve on the SDC convex hull formulation.

On the other hand, if we consider towers of states which are not mutually BPS, they
might form an ellipse in the scalar charge to mass ratio plane, satisfying the SDC convex
hull condition more easily. This can play an important role when checking the SDC in the
context of BPS towers of particles in CY compactifications and patching the results from
different growth sectors.'?

4.3.2.3 Decoupled Saxion-Axion

In this section we consider trajectories involving a saxionic scalar s, and an axionic scalar
1 corresponding to a different saxion u, namely the metric reads

2 2
D2 = %d.ﬁ + %d@zﬁ. (4.59)

Clearly the prefactor of the second term can be removed by redefining 1, but we prefer to
keep it. This allows an easier interpretation of the results as a subsector in a model with
two hyperbolic plane complex scalars, c.f.(4.22).

The scalar charge to mass ratio has the form

7= —( 8¢logM,%8510gM) (4.60)

Asymptotically, the trajectory can be parametrized with s, so it reads ¢ = f(s).
The corresponding unit vector is

. 1 m ., n 1 m s
n = T (Zf“;) = 7 2 (ﬁaflvl ) ) (461)
‘/PZQ 45 \/% TRl

Y Each growth sector\C0rresp0nds to an specific ordering of the saxions, regarding which one grows faster
when approaching the infinite distance loci. Typically, the tests of the SDC in this context focus on each
growth sector independently [36,46].
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where the last equality is just a convenient rewriting. As derived in section 4.1.2, critical
trajectories in this subsector (with w constant) obey sf’ — 4 = const., yielding f(s) —
v log s. For these trajectories, the unit vector reads

et (31), (4.62)

+ B
where we have defined 8 = "v. If f(s) grows faster, we recover 77 = (1,0) (swampy

paths), while if it grows slower we obtain 77 = (0, 1) (asymptotically geodesic paths). Asin
the previous examples, (4.62) scans over different directions in the 2d plane of Z, covering
all possible critical trajectories.

It is straightforward to consider different possible towers and analyze whether the
Convex Hull SDC is satisfied, or else, which bounds it sets on the parameters of the model
and the allowed trajectories. For instance, since (4.62) is formally like (4.49), if we consider
a single tower with scaling M ~ s™%, we obtain a critical value of the decay rate along the
trajectory (4.51). In other words,

nu a?

V= 2.2
m acrit

—1. (4.63)
from which we can extract the value of ac in terms of v. Only along trajectories with
v < Y(aerit = o) the SDC is satisfied. This defines the maximal amount of excitation the
axion 1) can have not to spoil a given exponential decay rate aqt along the trajectory.

Interpreting the result as applied to subsector of a two complex scalar model, a
trajectory deviating from a geodesic single saxionic direction by exciting the axion of the
second complex scalar preserves the SDC if the axion grows with at most the log dependence
= f(s) — 7 logsand~above. We leave to the interested reader the discussion of further
possibilities of tower distributions and the corresponding bounds.

Combining the results of sections 4.3.2.1, 4.3.2.2 and 4.3.2.3, we complete the analysis
of a two complex dimensional moduli space given by a product of hyperbolic planes. This
can be trivially generalised to products of more than two hyperbolic planes. As explained
in section 4.4, they are good templates of the asymptotic geometry realised at the infinite
distance limits of Calabi-Yau compactifications.

4.4 Constraints on the potential and asymptotic flux com-
pactifications

Throughout this paper, we have argued that consistency of the SDC at any energy scale
put constraints on the set of nearly-flat field trajectories allowed by quantum gravity. This
is because the moduli space of a theory, and consequently the identification of geodesic
paths, varies when going to the IR and integrating out heavy scalar degrees of freedom.
But by placing bounds on the trajectories we are actually constraining the scalar potentials
consgistent with quantum gravity! In this section, we give some first steps translating
our bounds to the potential and comparing with previous literature on the asymptotic
behaviour of scalar potentials in string theory.

A natural setup in which to apply our above strategy is string theory flux compac-
tifications. These are most often described by starting with a flux-less compactification,
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with a moduli space on which a potential is subsequently introduced by means of a flux
superpotential. The resulting theory may maintain a moduli space of smaller dimension,
if moduli stabilization is only partial, or the resulting potential may admit valleys which
can be discussed as pseudomoduli. From our vantange point we are thus led to propose
that the most general flux compactification must necessarily lead to potentials such that
the resulting (pseudo)moduli space still satisfies the SDC. In particular, this implies that
geodesics in this (pseudo)moduli space must belong to Tgpc defined in (4.38), and it should
be impossible to get a valley along a highly turning trajectory which is not in Tgpo. We
will see below that that in a fairly general class of models, the flux potentials precisely
yield nearly-flat trajectories which are critical according to the definition at the beginning
of section 4.2. In other words, the valleys of the potential have the maximum level of
non-geodesicity (from the perspective of the original UV moduli space) that it is allowed
to satisfy the SDC in the IR.

The asymptotic behaviour of the potential have been considered in quite some detail
in CY flux compactifications in [141]. The setup is compactifications of M-theory on
Calabi-Yau fourfolds with G4 fluxes [120, 150], for which the mathematical machinery of
asymptotic Hodge theory allows to study the asymptotic form of the flux potential near
any infinite distance limit in complex structure moduli space. By taking the F-theory limit,
one recovers a 4d N = 1 theory with a flux-induced scalar potential. This allows us to
study, not only the more familiar infinite distance limits in perturbative Type IIB/A, but
also other types of limits for finite gs. In the following, we summarize the results of [141]
that are relevant to our discussion, in order to reinterpret them from the new perspective
advocated in this paper.

All infinite distance limits in complex structure moduli space of Calabi-Yau can be
described as the loci of 7 intersecting complex divisors. In an appropriate parametrization,
these are described by

= ¢ +is’ — ioco, j=0,...,7, (4.64)

while all the other coordinates remain finite. Taking ¢/ and s/ to be the axion and saxion
of complex scalars, the above limits correspont to sending to infinity some of the saxion
vevs. Using the Nilpotent Orbit Theorem [151], one can show (see e.g. [45,46]) that the
Kahler potential takes the following form in the asymptotic limit,

K = —log(pa(s’) + O(e*™)) (4.65)

where pg(s?) is a polynomial of degree d on the saxions, and d characterizes the type
of singular limit.'® More concretely, d is associated to the properties of a monodromy
transformation encoding the action of the axionic discrete shift symmetry in the limit. For
single moduli limits, i.e. j = 1, the field metric exhibits the hyperbolic behaviour studied
in Section 4.1.1:

n2
AD% = =5 |(ds)? + (d)?] - A% e (4.66)
with n = d/4 and dA i, only depending on the moduli that are not taken to the asymp-

totic limit. The same behaviour occurs if we restrict to paths in some growth sector in
multi-moduli limits. This amounts to approaching the infinite distance limit in such a way

16 Although this also holds for singular loci at finite distance in moduli space, we restrict the discussion
to infinite distance regimes, so d # 0.
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that some axion vevs are much bigger than others. Namely, choosing as suitable ordering,
we have s' > s2, s > s3, ... and so on. In this so-called strict asymptotic regime we can
neglect polynomial terms of the form s7/s7*1. The leading term of the Kéhler potential
can then be factorized,'” yielding

22 |
D3 =" @ [(ds’)Q + (dqy)?} 6 o (4.67)

to leading order in the asymptotic limit. Namely, each complex modulus whose saxion is
taken to the asymptotic limit parametrizes a hyperbolic plane, c.f. Section 4.1.2. Hereby
our motivation to use hyperbolic metrics as toy models to illustrate our proposal and results
in this paper.

Interestingly, not only the field metic, but also the flux-induced scalar potential is
highly constrained in the infinite distance limits. In particular, it is possible to build an
adapted basis of 4-cycles for each growth sector such that the corresponding cohomology
group is divided in orthogonal subspaces under the Hodge norm in the strict asymptotic
regime [141]. This induces a split of the G4 flux in different components G4, such that
the scalar potential behaves as V ~ S /|GY||?. Here ||G4||> denotes the Hodge norm of
each flux component, whose moduli deplendence can be completely determined using the
discrete data characterizing the singular Yimit. Amusingly, the moduli dependence is such
that the potential behaves as an homogeneous function'® to leading order in the large field
limit,

V(As?, A7) ~ X"V (s, ¢) (4.68)

This was exploited in [141] to consider the question of the backreaction on the saxions
due to the motion of the axion away from its minimum e.g. along an inflationary valley
in an axion monodromy scenario [101,102] (see [97,98,119] for early axion monodromy
models unrelated to flux compactifications).

As explained in [141], the resulting backreaction for potentials satisfying (4.68) is of
the form

s ~ B (4.69)

with § a flux-independent parameter. The above relation holds for each individual hy-
perbolic plane independently; namely, a trajectory in which the axions are excited away
from their minima necessarily requires the saxions to have a backreaction linear in the
corresponding axions. This implies that the valleys of the potential at the asymptotic
regimes occur along (4.69), so that e.g. highly turning axionic trajectories are not realised.
Therefore, a tower of states decaying exponentially in the saxionic field, will also decay
exponentially in terms of the axion, eventually signaling the EFT breakdown for large field
variations.

This linear backreaction, and their correlation to the SDC, had previously been noted
in certain models of Type IT flux compactifications [106], see also [139,140, 155]. Tt is also

""For each saxion s7, it is possible to define some integer d; characterizing the singularity. If all d; # 0,
then one simply has n; = d;/4. However, the factorization of K breaks down when some d; = 0 and a
more detailed analysis is required. We refer the reader interested in the details of these degenerate cases
to [152,153].

¥ There were a few exceptions in [141] in which the potential was not homogeneous to leading order (see
also [154]). However, they are not relevant for our analysis as they do not allow for parametrically large
axionic field variations in a controlled regime with s > 1.
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highly correlated to the difficulties for obatining mass hierarchies in these flux compac-
tifications, as studied in [110, 156]. The analysis in [141] supports that this behaviour is
universal in flux Calabi-Yau compactifications, as it is tied to asymptotic properties of
the moduli space inherited from Hodge Theory. But is it a general feature of potentials
consistent with quantum gravity?

We are now ready to reinterpret (4.69) from a new perspective and provide an answer
to the above question in view of the results of our paper. Noticing that the asymptotic
moduli space metric is that of a hyperbolic plane, the linear result (4.69) corresponds
to the critical case of non-geodesic trajectories in Section 4.1.1. Namely, it corresponds
to traveling along a trajectory which is as non-geodesic as possible in a way compatible
with the distance conjecture. It is very exciting that string theory flux compactification
thus saturate the non-geodesicity bound of the hyperbolic plane. It also implies that the
flux potentials are consistent with the SDC being satisfied at any energy scale, providing
evidence for our proposal.

Clearly, other asymptotic metrics could lead to different parametrizations of the crit-
ical paths. But the conclusion of our work is equivalent: the potential should be such that
it only generates (pseudo)moduli spaces that ensure consistency of the SDC along the RG
flow. This has interesting implications for single field inflation, including axion monodromy
models. It would be interesting to turn the question around, and determine from a bottom-
up perspective what is the more general form of the potential that generates nearly-flat
trajectories corresponding to critical paths. In other words, such that the lightest field is
associated to a field direction that coincides with a critical trajectory. One could then try
to compare these general bounds on the potentials coming from the Convex Hull SDC with
other swampland conjectures constraining the asymptotic form of the potential as the de
Sitter conjecture [157].

Before closing this section, we would like to point out that a counterexample to the
linear backreaction above was presented in |1] by considering field variations with a spatial
dependence. There, it was shown that the stabilization of the breathing mode is such
that the resulting light mode avoids the KK tower to fall exponentially when approaching
infinite distance. However, this does not contradict our proposal, since this dangerous
direction is not a geodesic from the perspective of the low energy pseudomoduli space. In
other words, it belonged to the subspace G of the low energy pseudomoduli space, and
thus the SDC was still satisfied in the IR.

4.5 Summary

In this chapter we have discussed the interpretation of the Swampland Distance Conjecture
in effective theories with scalar potentials leading to valleys of light fields. We have argued
that the SDC is meaningful as a swampland constraint only if it applies at any scale, and
that this poses non-trivial constraints of the potentials. We have approached the problem
of characterizing these contraints by first studying the structure of non-geodesic trajectories
near points at infinity in moduli spaces, and characterizing the constraints implied by the
SDC. The analysis is carried out in hyperbolic spaces or products thereof, which provide a
good template of general CY moduli spaces near infinite distance loci. We have shown that
the critical behaviour of maximal non-geodesicity compatible with the SDC corresponds
to axion variations with a linear backreaction on their corresponding saxions. We have
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argued that this agrees with the structure of flux compactifications near infinite distance
loci. This suggests that string theory flux potentials are the most generic ones compatible
with the SDC.

We have also reformulated the SDC in terms of a Convex Hull condition, in which
scalar charge to mass ratio of SDC towers determine the exponential falloff o along asymp-
totic trajectories. The SDC is satisfied with an exponential rate lower bounded by «q if
the convex hull of the scalar charge to mass ratio of the towers includes the ball of radius
ap. This allowed a very intuitive pictorial rederivation of the above mentioned results. For
a given set of towers, it can be used to determine the set of trajectories consistent with
the SDC, recovering the critical behaviour of maximum non-geodesicty above. Conversely,
it can be used to argue for the existence of more than one tower in higher dimensional
spaces.
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Field Space Distances in Dynamical Cobordisms

In this chapter we turn our attention to another type of running solutions and the field
distance that they explore. Their study was pioneered in [158|, where they received the
name dynamical cobordisms. The reason is that they describe how cobordisms between
different theories happen dynamically, i.e., in a spacetime-varying solution to the equations
of motion.

As reviewed in section 2.3, the Cobordism Conjecture [63] states that any config-
uration in a consistent theory of quantum gravity should admit, at the topological level,
the introduction of a boundary ending spacetime into nothing. Accordingly, we will refer
to such boundaries as walls of nothing. Equivalently, it implies that any two consistent
theories of quantum gravity must admit, at the topological level, an interpolating config-
uration connecting them, as a generalized domain wall separating the two theories. We
will refer to such configurations as interpolating domain walls. The Cobordism Conjecture
is topological in nature, and it assures the existence of walls of nothing and interpolating
domain walls. However it is important to endow them with dynamics to see how they are
actually realized in spacetime. This further motivates to study these dynamical cobordisms
as running solutions.

An exploration of the Cobordism Conjecture beyond the topological level was under-
taken in [158] via the study of spacetime varying solutions to the equations of motion in the-
ories with dynamical tadpoles, namely, potentials which do not have a minimum and thus
do not admit maximally symmetric solutions (see [159-162] for early work and [163-166]
for related recent developments, and [167,168] for a complementary approach to cobord-
ism solutions). In the solutions in [158], which we refer to as Dynamical Cobordisms, the
fields run along a spatial coordinate until the solution hits a singularity at finite distance
in spacetime, which (once resolved in the full UV theory) ends spacetime.

In [158], these solutions were studied in theories with tadpoles for dynamical fields
(dubbed dynamical tadpoles, as opposed to topological tadpoles, such as RR tadpoles,
which lead to topological consistency conditions on the configuration'). These are ubi-
quitious in the presence of scalar potentials, and in particular in non-supersymmetric string
models. In theories with dynamical tadpoles the solutions to the equations of motion vary
over the non-compact spacetime dimensions’. Based on the behaviour of large classes of
string models, it was proposed in [158] that such spacetime-dependent running solutions
must hit singularity at a finite distance A in spacetime (as measured in the corresponding

Note however that dynamical tadpoles were recently argued in [169] to relate to violation of swampland
constraints of quantum gravity theories.

see [159-162] for early work and [163-166| for related recent developments, and [167,168] for a com-
plementary approach to cobordism solutions
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Einstein frame metric), scaling as A™" ~ T with the strength of the tadpole 7. Further-
more, it was argued that this singularity is resolved in the full UV description to the wall
of nothing of the Cobordism Conjecture. On the other hand, interpolating cobordism walls
connecting different theories were not discussed. We will address them in this chapter.

In the presence of a dynamical tadpole, the scalars are forced to vary over spacetime
in this running solution. It is then a perfect arena for our purpose of studying field
excursions in dynamical setups. As the main result of this chapter, we argue that, when
a running solution in theories with dynamical tadpoles hits a wall, the sharp distinction
between interpolating domain walls and walls of nothing is determined by the behaviour
of scalar fields as one reaches the wall via a remarkable correspondence:

e When scalars remain at finite distance points in field space as one hits the wall,
it corresponds to an interpolating domain wall, and the solution continues across it in
spacetime (with jumps in quantities as determined by the wall properties);

e On the other hand, when the scalars run off to infinity as one reaches the wall
(recall, at a finite distance in spacetime), it corresponds to a wall of nothing, capping off
spacetime beyond it.

We also argue that scalars reaching singular points at finite distance in moduli space
upon hitting the wall still define interpolating domain walls, rather than walls of nothing;
hence, walls of nothing are not a consequence of general singularities in moduli space,
but actually to those at infinity in moduli space. This suggests that, in the context of
dynamical solutions®, the walls of nothing of the Cobordism Conjecture are closely related
to the Swampland Distance Conjecture. Following this logic, and motivated by the Distant
Axionic String Conjecture [55], we propose the Cobordism Distance Conjecture. It states
that any infinite field distance limit in QG can be explored in a dynamical cobordism
configuration, as we approach a wall of nothing. In addition,

We illustrate these ideas in several large classes of string theory models, including
massive IIA, and M-theory on CY threefolds. Moreover, we also argue that our framework
encompasses the recent discussion of EFT string solutions in 4d N’ = 1 theories in [55]
(see also [39]), where saxion moduli were shown to attain infinity in moduli space at the
core of strings magnetically charged under the corresponding axion moduli. We show that
EFT string solutions are the cobordism walls of nothing of S' compactifications of the 4d
N =1 theory with certain axion fluxes on the S!.

The chapter is organized as follows. In Section 5.1 we present the main ideas in the
explicit setup of running solutions in massive ITA theory, and their interplay with type
I’ solutions [170]. In Section 5.2 we carry out a similar discussion for M-theory on CY
threefolds with G4 flux (in Section 5.2.1) and their relation to strongly coupled heterotic
strings [171]. In Section 5.2.2 we use it to discuss domain walls across singularities at finite
distance in moduli space, following [172]. In Section 5.3 we discuss the S! compactification
of general 4d N' = 1 theories. In Section 5.3.1 we introduce dynamical tadpoles from axion
fluxes, whose running solutions hit walls of nothing at which saxions run off to infinity. In
Section 5.3.2 we relate the discussion to the EFT strings of [55]. In Section 5.4 we discuss
the moduli space distances in walls of nothing and interpolating walls in 4d A" = 1 theories

®Note that, in setups with no dynamical tadpole, one can still have e.g. cobordism walls of nothing
without scalars running off to infinity: for instance, 11d M-theory, which does not even have scalars,
admits walls of nothing defined by Horava-Witten boundaries; similar considerations may apply to potential
theories with no moduli (or with all moduli stabilized at high enough scale).
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5.1. Cobordism walls in massive IIA theory

with non-trivial superpotentials of the kind arising in flux compactifications. In Section
5.5 we discuss our proposal in non-supersymmetric string theories, in particular the 10d
USp(32) string. In Section 5.6 we offer a summary of the chapter. Appendix B provides
some observations on cobordism walls in holographic throats.

This chapter contains part of the results already published in the author’s paper [4].
The rest of results in this paper are left for the next chapter.

5.1 Cobordism walls in massive ITA theory

Walls of nothing and infinite moduli space distance

In this section we consider different kinds of cobordism walls in massive IIA theory [173],
extending the analysis in [158]. The Einstein frame 10d effective action for the relevant
fields is

1 1 1 1
S0, = 2.3 (dloﬂﬁ V-G {[R~- 5(3@2] - 562¢F02 - §€§¢(F4)2 I (5.1)

where the Romans mass parameter is denoted by Fpy to suggest it is a 0-form field strength
flux. This theory is supersymmetric, but has a dilaton tadpole

T ~ e3F2 (5.2)

so the theory does not admit 10d maximally symmetric solutions. The solutions with
maximal (super)symmetry are 1/2 BPS configurations with the dilaton depending on one
coordinate a9, closely related to that in [174]. In conventions closer to [170], the Einstein
frame metric and dilaton are

(Ge)un = Z(@) =gy, € = Z(%) ¢, with Z(2°) ~ —Fpa? (5.3)

where we have set some integration constant to zero. The solution hits a singularity at
29 = 0. The spacetime distance from a general position z” to the singularity is [158]

A = /f Z(2%)2 da® ~ Z(x°)5 Fy '~ Fyle i ~ T2, (5.4)
9

in agreement with the scaling relation A=2 ~ T, that was dubbed Finite Distance lesson
in [158]. Following the Dynamical Cobordism proposal therein, the singularity is resolved
in string theory into a cobordism wall of nothing, defined by an O8-plane (possibly dressed
with D8-branes to match the Fy flux to be absorbed)?, ending the direction 2 as a bound-
ary.

We now notice that, since Z — 0 implies ¢ — oo as 22 — 0, the dilaton runs off to
infinity in moduli space as one hits the wall, as befits a wall of nothing from our discussion
in the introduction.

According to the SDC, there is an infinite tower of states becoming massless in this
limit. It signals a breakdown of the effective field theory near the wall of nothing. This
fits nicely with our observation that the wall can only be microscopically defined in the

“This imposes a swampland bound on the possible values of Fy) that are consistent in string theory.
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Chapter 5. Field Space Distances in Dynamical Cobordisms

UV complete theory, and works as a boundary condition defect at the level of the effective
theory.

It is a natural question to ask whether this tower of states becoming light is apparent
in the description of the wall of nothing in the UV complete theory. From the effective
field theory perspective, the SDC tower corresponds to D0-branes which end up triggering
the decompactification of the M-theory eleventh dimension. However, in the UV complete
description, there are a finite number of extra massless states, responsible for the enhance-
ment of the perturbative open string gauge group to the exceptional symmetries which are
known to arise from the heterotic dual theory [170] (see also [175]). On the other hand,
there is no signal of an infinite tower of states becoming massless simultaneously. The
appearance of the SDC in this context has thus different implications in the EFT and UV
complete picture.

Interpolating domain walls

There is a well known generalization of the above solutions, which involves the inclusion
of D8-branes acting as interpolating domain walls across which Fy jumps by one unit.
The general solution of this kind is provided by (5.3) with a piecewise constant Fy and a
piecewise continuous function Z [170].

The D8-brane domain walls are thus (a very simple realization of) cobordism domain
walls interpolating between different Romans ITA theories (differing just in their mass
parameter). The point we would like to emphasize is that, since Z remains finite across
them, the dilaton remains at finite distance in moduli space, as befits interpolating domain
walls from our discussion in the introduction.

5.2 Cobordism walls in M-theory on CY3

In this section we recall results from the literature on the strong coupling limit of the
heterotic string, also known as heterotic M-theory [171,176-178] (see [179,180] for review
and additional references). They provide straightforward realizations of the different kinds
of cobordism walls in M-theory compactifications on CY threefolds. The discussion gener-
alizes that in [158], and allows to study the behaviour at singular points at finite distance
in moduli space, in particular flops at conifold points.

5.2.1 M-theory on CY3 with G, flux

We consider M-theory on a CY threefold X, with G4 field strength fluxes on 4-cycles. For
later convenience, we follow the presentation in [172]. We introduce dual basis of 2- and

4-cycles C* € Hy(X) and D; € Hy(X), and define

/DiG4:ai , /(Z_Cﬁ:%. (5.5)

We also denote by b; the 5d vector multiplet of real Kdhler moduli, with the usual Kahler
metric and the 5d N' = 1 prepotential

1 02 1
0= ganan, M k=g

dijrb Vb (5.6)
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5.2. Cobordism walls in M-theory on CY3

with d;; being the triple intersection numbers of X. We have the familiar constraint = 1
removing the overall modulus V', which lies in a hypermultiplet.

The 5d effective action for these fields is

1

Mg
p1l 16
= b7
55 2 2V2

VoMV + A(K — 1))

/ V=95 (R—I— Gij()Onb' oMY +
Ms

N+1
1

5 (b)as A xas + AN A a, () vl
+4V2G (b)a; A *aj + dX /\al} 6 Z a; /Mi”) (>(‘ + V@) . (5.7)

n=0

Here A is a Lagrange multiplier, and L the reference length scale of the Calabi-Yau. With
hindsight, we include 4d localized terms which correspond to different walls in the theory,
with induced 4d metric gq4.

The G4 fluxes a; induce dynamical tadpoles for the overall volume and the K&hler
moduli b;. There are 1/2 supersymmetric solutions running in one spacetime coordinate,
denoted by y, with the structure

dst = e*dsi+ dy?
vV = €6A , bz — e—Afi :

= (gar P ) (
([@N ) pvpr = €ppoe 04 (—anbi+2bian,4). (5.8)

The whole solution is determined by a set of one-dimensional harmonic functions. They
are given in terms of the local values of the G4 fluxes,

dijif’ f* = H; H; = ay+ec. (5.9)

Here the ¢; are integration constants set to have continuity of the H;, and hence of the
fi, across the different interpolating domain walls in the system, which produce jumps as
follows. Microscopically, the interpolating domain walls correspond to Mb5-branes wrapped
on 2-cycles [C] = > 11;C?, leading to jumps in the fluxes that in units of M5-brane charge
are given by (

Hence, interpolating domain walls maintain the theory at finite distance in moduli
space. This is not the case for cobordism walls of nothing, which arise when e — 0
(related to having a singular behaviour for the metric), and hence V' — 0, which sits
at infinity in moduli space.” This regime was already discussed (in the simpler setup of
K3 compactifications) in [158], where the cobordism domain was argued to be given by
a Horava-Witten boundary (dressed with suitable gauge bundle degrees of freedom, as
required to absorb the local remaining G4 flux), in agreement with the strong coupling
singularity discussed in [171]. The wall appears at a finite spacetime distance A following
the scaling A=2 ~ T in [158].

5In fact, in general CYs this limit is not under perturbative control due to instanton corrections. Here
we ignore this with the intention of exemplifying a possible behaviour. It would be certainly interesting to
include those corrections to this setting.
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5.2.2 Traveling across finite distance singularities in moduli space

The setup of M-theory on a CY3 X allows to address the question of whether walls of
nothing could arise at finite distance in moduli space, if the scalars hit a singular point in
moduli space. This is actually not the case, as can be explicitly shown by following the
analysis in [172| for flop transitions.

Specifically, they considered the flop transition between two Calabi-Yau manifolds
with (hi1,1,h21) = (3,243), in the setup of a CY3 compactification of the Horava-Witten
theory, namely with two boundaries restricting the coordinate y to an interval. In our more
general setup, one may just focus on the dynamics in the bulk near the flop transition as
one moves along y. Hence we are free to locate the flop transition point at y = 0.

In terms of the Kihler moduli ¢ = V%bz- of X, and changing to a more convenient
basis

th=U t2:T—%U—W , 2 = WU, (5.11)

and similar (proper transforms under the flop) for X, the Kihler cones of X and X are
defined by the regions

1
X: W>U>0,T>§U+W, (5.12)
- 3
X: U>W>O,T>§U. (5.13)

This shows that the flop curve is Cs, and the area is W — U, changing sign across the flop.

Near the flop point y = 0, the harmonic functions for the two CYs X and X have
the form

Xaty <0 X at y>0
Hr=-18y+kr , Hp=18y+kr,
Hy=-25y+ky , Hy=24y+ko,
Hw =6y+ko , Hw=—by+ko. (5.14)
Hence
Xaty <0 Xaty>0
Hw y=3ly , Hwy.y=-29. (5.15)

Even though the flop point is a singularity in moduli space, and despite the sign flip for
W —U, the harmonic functions are continuous and the solution remains at finite distance in
moduli space. This agrees with the picture that it corresponds to an interpolating domain
wall. In fact, as discussed in [172], the discontinuity in their slopes (and the related change
in the G4 fluxes) makes the flop point highly analogous to the above described interpolating
domain walls associated to Mb-branes.

The above example illustrates a further important aspect. It provides an explicit
domain wall intepolating between two different (yet cobordant) topologies. It would be
extremely interesting to extend this kind of analysis to other topology changing transitions,
such as conifold transitions® [182]. This would allow for a further leap for the dynamical

®For a proposal to realize conifold transitions dynamically in a time-dependent background, see [181].
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cobordism proposal, given that moduli spaces of all CY threefolds are expected to be
connected by this kind of transitions [183].

We have thus established that physics at finite distance in moduli space gives rise to
interpolating domain walls, rather than walls of nothing, even at singular points in moduli
space. The implication is that the physics of walls of nothing is closely related to the
behaviour near infinity in moduli space and hence to the SDC. In the following section we
explore further instances of this correspondence in general 4d A/ = 1 theories.

5.3 S! compactification of 4d A/ = 1 theories and EFT strings

In this section we study a systematic way to explore infinity in moduli space in general 4d
N =1 theories. This arises in a multitude of string theory constructions, ranging from
heterotic CY compactifications to type II orientifolds on CY spaces [184]. Our key tool is
an S! compactification to 3d with certain axion fluxes. We will show that the procedure
secretly matches the construction of EFT strings in [55] (see also [39]). Actually, this
correspondence was the original motivation for this paper.

5.3.1 Cobordism walls in 4d N =1 theories on a circle

We want to consider general 4d N' = 1 theories near infinity in moduli space. According
to [45,47,141], the moduli space in this asymptotic regime is well approximated by a set of
axion-saxion complex fields, with metric given by hyperbolic planes. We start discussing
the single-field case, and sketch its multi-field generalization at the end of this section.

Consider a 4d A/ = 1 theory with complex modulus S = s + ia, where a is an axion
of unit periodicity and s its saxionic partner. We take a Kéhler potential

2 _
K = —ﬁlog(s +9). (5.16)

The 4d effective action is

M2 n
o ;4/(#1’ — {64 — 2 [(68)2 + (8a)2] } ( (5.17)

- Mf4 / Ao/ =g {R4 — (09)* — e7?¢ <6a>2} (

where in the last equation we have defined ¢ = %10g ns.

We now perform an S' compactification to 3d with the following ansatz for the
metric’ and the scalars

ds? = e V¥ds} + eV R3d6?,
0
¢ = o), a=_—q+ala"), (5.18)
27
where z# denote the 3d coordinates and 6 ~ 6 + 27 is a periodic coordinate. Regarding
the axion as a O-form gauge field, the ansatz for a introduces ¢ units of its field strength

"We omit the KK U(1) because it will not be active in our discussion.
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flux (we dub it axion flux) on the S'. We allowed for a general saxion profile to account
for its backreaction, as we see next.

The dimensional reduction of the action (5.17) gives (see e.g. [185])

M
5= s /(d% gg{Rgaabamoaawbv«a)}( (519)
where
Gapdup 0" = (80)* + (99)* + e~ 2% (9a)? | (5.20a)
2
_ —2V20-2n¢ q
Vip)=e (%RU) : (5.20b)

and Mp3 = 27rR0M1234 is the 3d Planck mass.

The last term in the 3d action corresponds to a dynamical tadpole for a linear
combination of the saxion and the radion, induced by the axion flux. We thus look for
running solutions of the 3d equations of motion. We focus on solutions with constant axion
in 3d a(a*) = 0, for which the equations of motion read

1 2

\/?ggay (V _939lwaua) —V/2 V2 ne <27TQR%)> ) (5.21a)
1 — oc—2n ’

ﬁ@y (\/ —939/“/8“(;5) —ne 2v20-2 ¢ <2ﬂ'q_R%)> . (521b)

We consider solutions in which the fields run with one of the coordinates =3 (which with
hindsight we denote by r = 23). We focus on a particular 3d axion-saxion ansatz

s(r)=so— =log— , a(r)=a. (5.22)
2w To
for which the radion can be solved as
2 r 2 q r r
20 = — (¢ — 2log — = —1 1-— log — 2log — . 5.23
V20 =~(¢ = o) + 8 5 = s og( Srse ogr(]) +2log - (5.23)

This, together with (5.22), provides the scalar profiles solving the dynamical tadpole. The
motivation for this particular solution is that it preserves 1/2 supersymmetry, as we discuss
in the next section in the context of its relation with the 4d string solutions in [55].

Note that as r — 0, the radion blows up as ¢ — —oo, implying that the S' shrinks to
zero size, and the metric becomes singular. As one hits this singularity, the saxion goes to
infinity, so we face a wall at which the scalars run off to infinity in moduli space. According
to our arguments, it must correspond to a cobordism wall of nothing, capping off spacetime
so that the r < 0 region is absent; hence the suggestive notation to regard this coordinate
as a radial one, an interpretation which will become more clear in the following section.
The finite distance A to the wall can be shown to obey the scaling A=2 ~ T introduced
in [158].

Note that the asymptotic regime near infinity in moduli space s > 1 corresponds to

the regime

27 (50—1) _

r <L roe 4 (5.24)
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Hence the exploration of the SDC’s implications requires zooming into the region close to
the wall of nothing.

Let us emphasize that the microscopic structure of the wall of nothing cannot be
determined purely in terms of the effective field theory, and should be regarded as provided
by its UV completion®.

Multi-field generalization

Let us end this section by mentioning that the above simple model admits a straight-
forward generalization to several axion-saxion moduli a’, s*. One simply introduces a vector
of axion fluxes ¢* and generalizes the above running solution to

al =al + iqi si(r) = st — q—l log T (5.25)
0 2w ’ 0 27 To ’ .
The corresponding backreaction on o is
\@a:—K(r)—i—Ko—i—ﬂogRL. (5.26)
0

We leave this as an exercise for the reader, since the eventual result is more easily recovered
by relating our system to the 4d string-like solutions in [55], to which we now turn.

5.3.2 Comparison with EFT strings

The ansatz (5.22) is motivated by the relation of our setup with the string-like solutions to
4d N =1 theories discussed in [55], which we discuss next. This dictionary implies that
those results can be regarded as encompassed by our general understanding of cobordism
walls of nothing and the SDC.

In a 4d perspective, (5.22) corresponds to a holomorphic profile z = re?

S =5+ £ log a (5.27)
2w 20

The axion flux in (5.18) implies that there is a monodromy a — a + ¢ around the origin
z = 0. Hence, the configuration describes a BPS string with ¢ units of axion charge. The
solution for the metric can easily be matched with that in [55]. The 4d metric takes the

form
ds? = —dt® + da* + €*? dzdz (5.28)

with the warp factor
2
27 = —K + Ko = —5 log —. (5.29)
n S0

This matches the 3d metric (5.28) by writing
ds3 = V2o (—dt2 + de) 27 V2042 (5.30)

and (5.23) ensures the matching of the S' radion with the 4d angular coordinate range.

2m 2
/ dfe”/V2R, :/ doe?r . (5.31)
0 0

®In particular, possible constraints on ¢ could arise from global consistency of the backreaction.
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Hence, in 4d /' = 1 theories there is a clear dictionary between running solutions
in S! compactifications with axion fluxes and EFT string solutions. The compactification
circle maps to the angle around the string; the axion fluxes map to string charges; the
coordinate in which fields run (semi-infinite, due to the wall of nothing) maps to the
radial coordinate away from the string; the saxion running due to the axion flux induced
dynamical tadpole maps to the string backreaction on the saxion, i.e. the string RG flow;
the scalars running off to infinity in moduli space as one hits the wall of nothing map to
the scalars running off to infinity in moduli space as one reaches the string core. Note that
the fact that the wall of nothing is not describable within the effective theory maps to the
criterion for an EFT string, i.e. it is regarded as a UV-given defect providing boundary
conditions for the effective field theory fields.

This dictionary allows to extend the interesting conclusions in [55] to our context.
For instance, the Distant Axionic String Conjecture in [55] proposes that every infinite
field distance limit of a 4d N' = 1 effective theory consistent with quantum gravity can
be realized as an RG flow UV endpoint of an EFT string. We can thus map it into the
proposal that every infinite field distance limit of a 4d N' = 1 effective theory consistent
with quantum gravity can be realised as the running into a cobordism wall of nothing in
some axion fluxed S' compactification to 3d. It is thus natural to extend this idea to a
general conjecture

Cobordism Distance Conjecture: Every infinite field distance limit of a effective
theory consistent with quantum gravity can be realized as the running into a cobordism wall
of nothing in (possibly a suitable compactification of ) the theory.

The examples in the previous sections provide additional evidence for this general
form of the conjecture, beyond the above 4d A/ = 1 context.

5.4 4d N =1 theories with flux-induced superpotentials

In the previous section we discussed cobordism walls in compactifications of 4d N = 1
theories on S! with axion fluxes. Actually, it is also possible to study running solutions and
walls in these theories without any compactification. This requires additional ingredients
to introduce the dynamical tadpoles triggering the running. Happily, there is a ubiquitous
mechanism, via the introduction of non-trivial superpotentials, such as those arising in flux
compactifications. We discuss those vacua and their corresponding walls in this section.
The discussion largely uses the solutions constructed in [186], whose notation we largely
follow.

Let us consider a theory with a single axion-saxion complex modulus ® = a + iv.
The 4d effective action, in Planck units, is

2
S——/d4x\/fg[;R+m+V(¢,®)}< (5.32)

with the A/ = 1 scalar potential
V(®,3) = X (K®® |DeW|? = 3[W[2). (5.33)

We focus on theories of the kind considered in [186], where the superpotential is induced
I er, with I = 0,1, and is given by

W = erfH(®) — m!Gi(®) (5.34)

from a set of fluxes m
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for f1. Gr some holomorphic functions whose detailed structure we do not need to specify.

In general, these fluxes induce a dynamical tadpole for ®, unless it happens to sit
at the minimum of the potential. The results in [186] allow to build 1/2 BPS running
solutions depending on one space coordinate y with

ds® = 22Wdg, dz" + dy?. (5.35)

For the profile of the scalar, the solution has constant axion a, but varying saxion.
Defining the ‘central charge’ Z = /2 W and Z, its value at the minimum of the potential
(and similarly for other quantities), the profile for the scalar v is

v(y) = v. coth? (%\Z*\y) (5.36)

Note that in [186] this solution was built as ‘the left hand side’ of an interpolating domain
wall solution (more about it later), but we consider it as the full solution in our setup.
Note also that we have shifted the origin in y with respect to the choice in [186].

The backreaction of the scalar profile on the metric is described by
_ig 1 1
Z(y) =d + e 20 [ log(— smh(ilz*\ y)) + log cosh(ilz*\y)} < (5.37)

where d is just an integration constant and Ko is an additive constant in the Kihler
potential.

The solution exhibits a singularity at y = 0, which (since the metric along y is flat)
is at finite distance in spacetime from other points. On the other hand it is easy to see
that the scalar v runs off to infinity as we hit the wall, since

v(y) — 40, |2, 2y7? asy—0. (5.38)

This all fits very nicely with our picture that the solution is describing a cobordism
wall of nothing, and that the solution for y > 0 is unphysical and not realized. This
provides an effective theory description of the cobordism defects for general 4d N = 1
theories, in a dynamical framework. It would be interesting to find explicit microscopic
realizations of this setup.

Let us conclude this section by mentioning that it is possible to patch together sev-
eral solutions of the above kind and build cobordism domain walls interpolating between
different flux vacua. In particular in [186] the solution provided ‘the left hand side’ of one
such interpolating domain wall solution whose ‘right hand side’ was glued before reaching
(in our choice of origin) y = 0, hence before encountering the wall of nothing. The partic-
ular solution on the right hand side was chosen to sit at the minimum of the corresponding
potential, for which there is no tadpole and thus the functions D and v are simply set
to constants, fixed to guarantee continuity. Consequently, the solutions remain at finite
distance in moduli space, in agreement with our picture for interpolating domain walls.
In some sense, the flux changing membrane is absorbing the tadpole, thus avoiding the
appearance of the wall of nothing. We refer the reader to [186] (see also [39]) for a detailed
discussion.
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Chapter 5. Field Space Distances in Dynamical Cobordisms

5.5 Walls in 10d non-supersymmetric strings

The above examples all correspond to supersymmetric solutions, and even the resulting
running solutions preserve some supersymmetry. This is appropriate to establish our key
results, but we would like to illustrate that they are not restricted to supersymmetric
setups. In order to illustrate that these ideas can apply more generally, and can serve as
useful tools for the study of non-supersymmetric theories, we present a quick discussion of
the 10d non-supersymmetric USp(32) theory [187], building on the solution constructed
in [159] and revised in [158]%.
The 10d (Einstein frame) action reads

Sp 1/d10x\/—G[R— %((%)2] - TQE/dl%\/—Gmﬁ, (5.39)

= oK2

where T is the (anti)D9-brane tension. The theory has a dynamical dilaton tadpole

T ~ Tf gg/ 2, and does not admit maximally symmetric solutions. The running solution
in [159] preserves 9d Poincaré invariance, and reads

3 2
¢ = ZOZEZJQ - glog!\/aEy| + ¢o ,
2
Yy

dst = |1/aEy\%e_%; Nuda’dz” + |\/apy|te”

390 QQEyZ
2

e” s dy?, (5.40)

where ap = 64k®Ty. There are two singularities, at ¥ = 0 and y — oo, which despite
appearances are located at finite spacetime distance, satisfying the scaling A=? ~ T intro-
duced in [158]. In this case, there is no known microscopic description for the underlying
cobordism defect, but we can still consider the effective theory solution to study its prop-
erties as we hit the walls. For instance, given the profile for the scalar in (5.40), it is easy
to check that it goes to infinite field distance as any of the two singularities at y = 0, oo are
approached. This is in agreement with their interpretation as cobordism walls of nothing.'"

5.6 Summary

Let us finally summarize the results of this chapter. We have considered running solu-
tions solving the equations of motion of theories with tadpoles for dynamical fields. These
configurations were shown to lead to cobordism walls of nothing at finite distance in space-
time [158], in a dynamical realization of the Cobordism Conjecture. We have also dis-
cussed interpolating domain walls across which we change to a different (but cobordant)
theory/vacuum. We have shown that the key criterion distinguishing both kinds of walls is
related to distance in field space: walls of nothing are characterized by the scalars attaining
infinite distance in field space, while interpolating domain walls remain at finite distance.

Hence, cobordism walls of nothing provide excellent probes of the structure of the
effective theory near infinite distance points, and in particular the Swampland Distance
Conjectures. This viewpoint encompasses and generalizes that advocated for EFT strings

“For other references related to dynamical tadpoles in non-supersymmetric theories, see [160-165, 188].

Y9The interpretation of the y — 0 singularity as a wall of nothing was deemed unconventional, since it
would arise at weak coupling. It is interesting that we get additional support for this interpretation from
the moduli space distance behaviour.
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in 4d N/ = 1 theories in [55]. Motivated by this, we propose the Cobordism Distance
Conjecture, stating that any infinite field distance limit in QG can be explored dynamically
as a wall of nothing is approached.

We have illustrated the key ideas in several large classes of string models, most often
in supersymmetric setups (yet with nontrivial scalar potentials to produce the dynamical
tadpole triggering the running); however, we emphasize that we expect similar behaviours
in non-supersymmetric theories, as we have shown explicitly for the 10d non-susy USp(32)
theory.
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Dynamical Cobordisms to Nothing and
Swampland Conjectures

In the previous chapter we have studied the field excursion in solutions describing dynam-
ical cobordisms triggered by dynamical tadpoles. For the case of dynamical cobordisms to
nothing, one of the main results was that the solution actually explores infinite field dis-
tance as the wall is approached. This feature motivated some interplay with the Distance
conjecture. The aim of this chapter is to make this connection more quantitative. The
strategy is to look for universal behaviours of the solution as infinite distance in field space
is explored. Indeed, the SDC proposes an universal behaviour between the mass scale of
some towers of states and the field space distance in this limit. Therefore, it is natural to
expect some universal relation between the field space distance and spacetime geometric
quantities in the dynamical cobordism solution as one approaches the wall.

For this purpose we want to always keep the effective field theory perspective, from
which the solution exhibits a singularity. These singularities are resolved in the full UV
description, in terms of the corresponding cobordism configuration. In string theory ex-
amples, the latter often admits a tractable microscopic description involving geometries
closing-off spacetime', possibly dressed with defects, as explained in the previous chapter.
In this spirit, they were dubbed ‘cobordism defects’ or ‘walls of nothing’. In this chapter
we will mainly focus on the effective field theory description, where they remain as singular
sources. To keep this in mind, we will refer to them as End-of-The-World (ETW) branes”.

A common feature of these solutions is that the infinite field distance is explored in
a finite spacetime distance as the singularity is approached. Therefore, two spacetime geo-
metric quantities that are natural to consider for our purposes are the spacetime curvature
R and the spacetime distance A to the singularity. The main result of this chapter is that
they are indeed related to the field space distance Dy by interesting scaling laws, namely
(in Planck units)

A~ e 2De |R| ~ Do (6.1)

We will argue that this scaling relations (6.1) are universal by inspecting several
explicit examples. This suggests that a simple universal local description near the ETW
branes should be possible in the effective theory. We will also provide this local description
by studying Dynamical Cobordisms near walls at which the scalars run off to infinite
field space distance. In this local description, the solutions simplify dramatically and are

!Spacetimes with boundaries have also been considered in the holographic setup, see [189-195] for some
recent approaches.
2This follows the nomenclature in some of the references in footnote 1.
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Chapter 6. Dynamical Cobordisms to Nothing and Swampland Conjectures

characterized in terms of a critical exponent §, which controls the asymptotic profiles of
fields and the scaling relations (6.1) in a very direct way. The analysis does not rely on
supersymmetry and can be applied to non-supersymmetric setups.

This provides a powerful universal framework to describe ETW branes within effect-
ive field theory. For pedagogical reasons, we first present this analysis and the use it to
illustrate the many examples in which the scaling relations are found. We exploit it to de-
scribe Dynamical Cobordisms in several 10d string theories, including non-supersymimetric
cases. We also use it to characterize warped throats [111,112] as Dynamical Cobordisms.
We moreover show that the familiar 10d Dp-brane supergravity solutions can be regarded
as Dynamical Cobordisms of sphere compactifications with flux, and are described by our
local analysis with the D-branes playing the role of ETW branes. Finally, we argue that
4d small black hole solutions (see [196,197] for some reviews), including those of the recent
work [57], can be similarly regarded as Dynamical Cobordisms of S? compactifications with
flux, with the small black hole core playing the role of ETW brane.

The chapter is organized as follows. In Section 6.1 we present the general formalism
for the local description of Dynamical Cobordisms. In section 6.1.1 we present the general
equations of motion, and in section 6.1.2 we apply them to describe the local dynamics
near ETW branes, and derive the universal scaling relations. In Section 6.2 we apply the
local description to several 10d examples, including massive I[TA theory in section 6.2.1
and the non-supersymmetric USp(32) theory of [187] in section 6.2.2. In Section 6.3 we
interpret D-brane supergravity solutions as Dynamical Cobordisms (section 6.3.1) and
express them as ETW branes in the local description (section 6.3.2). Similar ideas are
applied in section 6.3.3 to the EFT string in 4d A/ = 1 theories in [55], and in section
6.3.4 to the Klebanov-Strassler warped throat [111,112]. In Section 6.4 we discuss small
black holes as Dynamical Cobordisms. In section 6.4.1 we warm up by expressing the
supergravity solution of D2/D6-branes on T# as a Dynamical Cobordism, and in section
6.4.2 we relate it to small black holes via a further T? compactification. In section 6.4.3 we
consider more general small black holes, such as those in [57|, and derive scaling relations
despite the absence of a proper Einstein frame in 2d. In Section 6.5 we discuss the interplay
of Swampland constraints with the results of our local description for the behaviour of
several quantities near infinity in field space. In section 6.5.1 we consider the Distance
Conjecture, the de Sitter conjecture and the Transplanckian Censorship Conjecture. In
section 6.5.2 we discuss potentially large backreaction effects when the UV description of
the ETW branes involve a large number of degrees of freedom, suggesting mechanisms to
generate non-trivial minima near infinity in field space. In section 6.6 we offer some final
thoughts. In Appendix C we generalize the ansatz in the main text to allow for non-zero
constant curvature in the ETW brane worldvolume directions (section 3.1), and apply it
to describe Witten’s bubble of nothing as a 4d Dynamical Cobordism and provide its local
description (section 3.2). In Appendix D we discuss subleading corrections to the local
description, specially relevant in cases where the leading contributions vanish.

6.1 Local Dynamical Cobordisms

In this section we formulate our local effective description near End of The World (ETW)
branes, in terms of gravity coupled to a scalar field. We would like to emphasize that
we consider a general scalar potential, but remarkably derive non-trivial results for its
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6.1. Local Dynamical Cobordisms

asymptotic behaviour near infinity in field space. The key input is just that the dynamics
should allow for the scalar to go off to infinity in field space in a finite spacetime distance.

Interestingly, the scalar potential generically behaves as an exponential near infinity
in moduli/field space, suggesting a first-principles derivation of the ‘empirical’ evidence for
such exponential potentials, coming from string theory and other swampland considera-
tions. In particular, exponential potentials and constraints on them have been discussed
in [167,168], for the restricted case of bubbles of nothing (i.e. UV completed to a purely
geometrical higher dimensional configuration, a la [67]). In contrast, our analysis holds for
fully general ETW branes (and hence, allows for more general potentials, including cases
without this asymptotic growth).

We focus on the case of a single scalar; however, our discussion also applies to setups
with several scalars, by simply combining them into one effective scalar encapsulating the
dynamics of the solutions (as illustrated in several of our examples in later sections).

6.1.1 General ansatz

Consider d-dimensional Einstein gravity coupled to a real scalar® field with a potential,

5= [dtav=g ( R~ (06) - V<<z>>> 7 (6.2)

where we are taking Mp; = 1 units. We focus on d > 2, and deal with the d = 2 case in
some explicit examples in section 6.4.

ETW branes define boundaries of the d-dimensional theory, hence they are described
as real codimension 1 solutions. We take the ansatz

ds? = e72°Wds? |+ dy?,
¢ =oy),

where y parametrizes the coordinate transverse to the ETW brane.

(6.3)

We consider flat metric in the (d — 1)-dimensional slices. The corresponding analysis
for general non-zero constant curvature, carried out in the same spirit and leading to
essentially similar results, is presented in Appendix C.

The equations of motion are

¢ —(d—1)o'¢) =93V =0, (6.4)
%(d—l)(d—2)o’2+V—é¢'2=0, (6.5)
(d—2)d" —¢'*=0, (6.6)

where prime denotes derivative with respect to y. The first one is the equation of motion
for the scalar; for the Einstein equations, they split into transverse and longitudinal com-
ponents to the ETW brane, giving two independent equations, subsequently combined into
the last two equations.

The analysis of these equations is more amenable in terms of a new quantity, the
tunneling potential introduced in [198,199] (see also [200 205])

1

V(@) = V(o) - 50, (67)

3Even though our analysis holds for general potential, we often refer to the scalar as modulus, and its
field space as moduli space.
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Using it to eliminate the scalar from the eoms we get

(d—1)2(V=Vi)o' —d3V; =0, (6.8)
%(d—l)(d—2)0’2+‘/}:0, (6.9)

(d—2)o" —2(V—-V;) =0. (6.10)
Finally, combining the first two equations to eliminate o we get
1
1(@=2) (V)" + (@~ 1) (V = V) Vi = 0. (6.11)

This is a d-dimensional generalization of a condition found in [203] in the context of domain
walls.

Now, given a potential V(¢), one can use this equation to solve for the tunneling
potential V;(¢), and then use (6.7) and (6.9) to solve for ¢(y) and o(y) respectively. In
addition, one should check that (6.10) is also satisfied.

Before moving on, let us comment on the implications that these equations have for
the signs of the relevant quantities. From equation (6.9) we learn that V; < 0. In addition,
from (6.7) we get that V' —V; > 0. Notice that these two facts are consistent with equation
(6.11). Finally, combining the last inequality with (6.10) we learn that ¢” > 0. When
solving our system of equations we will systematically pick signs so that these inequalities
are satisfied.

A nice way of parametrizing the freedom of choosing the potential is by writing

V() =a(¢)Vi(9), (6.12)

where we have to impose that a(¢) < 1 for the reason explained above. Plugging this into
(6.11) one can easily get to the solution

log “/fg) = ﬁ@/{M —a(¢)do, (6.13)

where we are taking V,° = V;(¢o) as boundary condition.

6.1.2 Local description of End of The World branes

As explained in the introduction, we are interested in solutions for which the scalar attains
infinity in field space i.e. ¢ — +oo at a point at finite distance in spacetime, defining an
ETW brane. Without loss of generality we take this boundary to be y = 0, and the infinity
in field space as ¢ — o0.

We note that, if ¢ — co at a finite spacetime distance, then we also have |¢/| — oo
asy — 0. Using ¢/? = 2(V —V;) from (6.7), this tell us that the difference of the potentials
goes to infinity at y — 0. One possibility would seemingly be that |V;| < |V]| (i.e.,
a(¢) — —o0). However, although one can cook up potentials realizing this possibility, we
have not encountered it in any of the string theory examples in later sections. We therefore
ignore this possibility in what follows, leaving open the question about the consistency of
such behaviors from the point of view of UV fundamental theories.
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6.1. Local Dynamical Cobordisms

From (6.13), it is then clear that the asymptotic behavior as y — 0, ¢ — oo is
controlled by the asymptotic constant value of a, so we restrict to constant a. Recalling the
constraint a < 1, note that it includes a = 0, which corresponds to solutions with potential
negligible with respect to the kinetic energy for the scalar (at least asymptotically).

Taking constant a, (6.13) gives
Vi(g) ~ —ce’?, (6.14)

where ¢ > 0 is related to the boundary condition used before. As explained in Appendix
D, we also allow ¢ to hide some ¢-dependence, corresponding to subleading corrections.
The leading behaviour is an exponential controlled by the critical exponent ¢, given by
-1
0=2 5 (1—a). (6.15)
Here we choose the plus sign for §. As we will see later this will imply that ETW brane
explores ¢ — oo as explained above.

The critical exponent 0 controls the structure of the local solution, in particular the
asymptotic profile of fields as y — 0, and the scaling relations among different physical
local quantities.

Recall that the freedom of choosing a potential is parametrized by a. It is then
interesting to ask how the potential itself looks like when approaching the end of the
world. Plugging (6.14) into (6.12) we find

V(g) ~ —ace?. (6.16)

Note that we get an exponential dependence, except for a = 1, in which case the potentials
V may take different forms e.g. power-like, growing strictly slower than exponentials.

Also notice that, since ¢ > 0, the sign of the potential is completely determined by
that of a. Moreover, using the relation between a and the critical exponent § in (6.15), we

can put bounds on the latter depending on the sign of the potential. Namely, for V > 0

we must have a < 0, which implies § > 2 %, while if V' < 0 then 0 < a < 1, yielding

0 < 2 zll_;%. We thus neither have negative potentials whose exponential behaviour is
arbitrarily strong, nor positive potentials whose exponential behaviour is arbitrarily mild.
The explanation is that such exponentials would lead to ¢> > V as we approach the ETW

brane, and therefore they correspond to the a = 0 case of our analysis.

It is interesting that we have derived fairly generically an exponential shape of the
potential near infinity in moduli space, from the requirement that the theory contains
ETW branes, namely configurations reaching infinity in moduli space at finite spacetime
distance. In section 6.5.1 we will study its interplay with a variety of swampland constraints
on scalar potentials. We note however that theories with milder growth of the potential
(most prominently, theories with vanishing potential and exact moduli spaces) are still
included in the analysis, and correspond to a(¢) — 0. The corresponding statement that
V' — 0 in this case actually means that the theory can have any potential as long as it
grows slower than ¢'2.

From (6.7) we can obtain the asymptotic profile of ¢ as y — 0

2 52 d—2
P(y) = —glog 2 V19 y> ( (6.17)
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Here we are ignoring an additive integration constant, irrelevant in the ¢ — oo limit. We
have also fixed another integration constant by demanding that the function blows up for
y — 0. The leading term as y — 0 is

o(y) ~ —glogy. (6.18)

Hence the scalar goes off to infinity as we approach the end of the world. This motivates
the appearance of a lowered cutoff as we approach the wall, above which a more complete
microscopic description simply resolves the singularity; this resonates with the swampland
distance conjecture, as we discuss in section 6.5.1.

Plugging (6.17) into (6.9) we can also solve for o(y). The final result is

4
~t+—— 1 . 6.19
o(y) 202 °8Y (6.19)
Here we ignore an integration constant which can be reabsorbed by a change of coordinates.
Note that, to comply with (6.10), we only need to pick the minus sign.

Furthermore, the d-dimensional scalar curvature is given by
1
— .

R=(d-1) (20" - da’2> ;

(6.20)
We thus recover that the curvature blows up as we approach the end of the world, leading
to a naked singularity in the effective field theory description.

Notice that we have ignored a prefactor that, interestingly, vanishes for the special

case 8% = dQ—_dQ. For that value one should consider the next-to-leading order term in the

y — 0 expansion. In what follows we ignore this case and keep the generic one.

Since the scalar ¢ is normalized canonically, the field space distance Dy as y — 0 is
(6.18). Also, the distance in spacetime to the singularity is given by y. Hence from (6.18)
and (6.20) we obtain the universal relations

A~e2Po | |R|~ Do, (6.21)

The solutions provides a simple universal description of dynamical cobordism in
terms of the effective field theory. The microscopic description of the cobordism defect is
available only in the UV complete theory, and is thus model-dependent (but known in many
cases, see our explicit examples in later sections). From our present perspective, the only
microscopic information we need is the very existence of such defects, guaranteed by the
swampland cobordism conjecture |63]. It is thus remarkable that, the simple requirement
that scalars go to infinity at finite spacetime distance leads to a complete local description
of the EFT behaviour near a dynamical cobordism. Moreover, it constrains the structure of
the theory, in particular it naturally yields an exponential behavior of the scalar potential
near infinity in field space.

The above local description can be used to prove a general relation, introduced
in [158], between the dynamical tadpole (defined as the derivative of the potential 7 =
04V (¢)) at a given point and the spacetime distance A to the ETW brane, which in our
examples is given by

A~ (T) 2. (6.22)
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Indeed, using (6.16) and (6.18), we obtain 7 evaluated at a point y*:
Tly=y = sV ly=y = —acé €6¢|y=y* =—acd(y)?, (6.23)

A is constructed as the distance from a point y* to the singularity at y = 0, we therefore
have A = y*. We hence have a general relation®

A= (a‘;y; ~(T)

This relation places a bound on the spacetime extent of a solution whose running is induced
by a dynamical tadpole, as emphasized in [158], due the dynamical appearance of an end
of spacetime. We would nevertheless mention that there exist solutions with spacetime
boundaries even in situations with no dynamical tadpole. The simplest example is Horava-
Witten theory, which corresponds to M-theory on an interval with two boundaries. Even
in our present context of scalars running off to infinity at finite spacetime distance, it is
possible to find ETW branes in cases with vanishing potential V' = 0 (or asymptotically
negligible potentials, a = 0).

=

(6.24)

6.2 Some 10d Examples

In this section we revisit the examples of 10d theories with Dynamical Cobordism solutions
in chapter 5, and use the above local description to easily derive their structure. The results
nicely match the asymptotic behavior of the complete solutions in the literature.

6.2.1 The 10d massive type ITA theory

We consider the 10d massive type ITA theory. The effective action in the Einstein frame
for the relevant fields is

1 1 1 v
Sup = 5 [ %23 {é SCOEE A B T PR

where Fy denotes the Romans mass parameter. The /2 factors in the exponents ensure
that the normalization of the scalar agrees with our conventions.

This theory has a potential

1 5
V= Qeﬂ‘ﬁFg, (6.26)

hence it does not admit 10d maximally symmetric solutions. On the other hand there are
9d Poincaré invariant (and in fact 1/2 supersymmetric) running solutions of the equations
of motion in which the dilaton (and other fields) depend on a space coordinate, e.g. z°.
The metric and dilaton profile read

1/12
dsto = 7Z (q:9) N dat dz”

V% — 7 (959) e ,

*For the particular case of the warped throat in 6.3.4 this corrects the statement in [158].

(6.27)

85



Chapter 6. Dynamical Cobordisms to Nothing and Swampland Conjectures

29 = 0, which was proposed to correspon{ to an end of the world brane in [158]. In the
microscopic theory, it corresponds to an O8-plane (possibly with D8-branes), as in one of
the boundaries of the interval of type I’ theory [170].

where the coordinate function is Z (xg)g —Fyz®. This solution hits a singularity at

In the following we show how the local structure of the Dynamical Cobordism can
be obtained from the analysis in the previous section.

The only input of the local analysis is the potential (6.26). Matching it with the
local analysis expression (6.16), we obtain the following values for ¢ and, using (6.15) for

a:
5 16
5 __1 6.28
5o 5 (6.28)

Plugging this into (6.18) we obtain the dilaton profile
2+/2
¢ ~ _\E)f log y. (6.29)

We can now obtain the profile for o (6.19)

1
~ 1 6.30
g 25 0gY , ( )

which determines the metric via (6.3). As usual, the local description predicts the scalings
__5_ 5
A~e 2P | |Rl~eviDe. (6.31)

These results from the local analysis are in agreement with the scaling relations obtained
in the paper [158] from the complete solution. In fact, this can be done very easily from
(6.27), by a change of coordinates

v /( (-ra’) e (6.32)

in terms of which the solution acquires the form of

dw — ansatz (6.33)
95 2/25
sty = |5y (“Fu]  dsh e,
—4/5
V2¢ _ % _F

This indeed corresponds to profiles for o (via (6.3)) and ¢ in agreement with (6.30) and
(6.29) respectively.

6.2.2 The 10d non-supersymmetric USp(32) string

Let us consider a second example in the same spirit, but in the absence of supersymmetry.
We consider the 10d non-supersymmetric USp(32) theory, built in [187] as a type 1IB
orientifold with a positively charged O9-plane and 32 anti-D9-branes. The 10d Einstein
frame action for the relevant fields is

Sp = %&2 d10m /G {R_ (8¢)2} _ TgE/dlol’\/—G646‘§§¢- (634)
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We have introduced factors of v/2 relative to the conventions in [187], to normalize the
scalar as in previous sections.

This theory has a dilaton tadpole, due to the uncanceled NSNS tadpoles, and hence
does not admit maximally symmetric 10d solution. On the other hand, there are 9d
Poincaré invariant running solutions of its equations of motion [159], given by

apr? _m 9o 12
dsp = | aEr\é e % Nudrtdz” + |\Jagr| e Vze~ S dr?,

3 5 V2

= ——apgr°+ —1lo agpr| + ¢o, 6.35

¢ o 3 glvapr| + ¢o (6.35)

where ag = 64H2T9E, and ¢q is a reference value for the dilaton. The coordinate r was

denoted by y in [159] but here, we preserve y for the coordinate of the local analysis near
end of the world branes.

The solution hits two singularities, at » — 0 and at r — +o00, which are at finite
spacetime distance, yet the scalar attains infinity in fields space (¢ — —oc at r — 0, and
¢ — oo at r — 0o, respectively). As discussed in section 5.5, it thus describes a Dynamical
Cobordism with two end of the world branes.

Let us now exploit the local analysis to display the scalings near these walls, with
the scalar potential in (6.34) as sole input.

6.2.21 r—0

From equation (6.35), we see that » — 0 corresponds to the limit ¢ — —oo. The potential
in (6.34) vanishes in that limit. As a consequence, we have an ETW brane in which the
potential becomes negligible, i.e., the critical exponents in for the local model are

§=-—— , a=0. (6.36)

The local analysis then leads to the dilaton and radion profiles

22 1
¢2ilogy , U:—§logy. (6.37)

3
Note that we have chosen the sign of ¢ — —o0 as y — 0.

These results allow to obtain the universal scalings for the curvature and spacetime
distance with the field space distance (6.21), namely

__3_ 3
An~e 3% R~ eva? (6.38)

It is easy to check that the above profiles and scaling reproduce the behaviour of the
complete solution (6.35). This can be shown by the following coordinate change to bring
it into the ansatz (6.3):

y = / \/(@r!_le—?ﬁgeﬁa?adr ~ K(i, 9357“2) -T <{, 0)] ~ T (6.39)

In the last step we have taken the leading behaviour as » — 0. By also taking the leading
behaviour in (6.35), plugging in y, and reading off o as it appears in (6.3) we finally recover
the profiles predicted by the local analysis in (6.37).
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6.2.2.2 r— o

This should be described by a local model where ¢ — +o00 at y — 0, i.e. the origin of a
new local coordinate (which corresponds to r — o0). In this case the potential in (6.34)
is blowing up, hence via (6.16) and (6.15), we get 6 = 3/v/2, a = 0, just as in (6.36).
The result @ = 0 may seem puzzling, since from (6.16) this would seem to imply V' — 0.
However, one should recall that in the local description a = 0 simply means that V < ¢/2.
Indeed, it may happen that ¢ blows up as ¢ — oo in such a way that it compensates having
a — 0 in this same limit. We will explicitly check this later on.

The dilaton and radion profiles read

2¢/2 1
¢:—\3[10gy , a:—§logy. (6.40)

The dilaton sign differs from (6.37) in order to have ¢ — +o00 as y — 0. We also recover
the scalings for A and R with Dy, which are again given by (6.38).

Let us now show that the above local model indeed reproduces the r — oo regime of
(6.35). The required change of variables is now

9o ppr 1 90[ jeleY
Yy = | aEﬂ*l/ze*gd’oe* 6 di ~T (=, 2242 rie 10T (6.41)
4" 16
The integration limits are chosen so that the finite distance singularity at » — oo is located

at the origin for the new coordinate. In the last step we have taken the leading behaviour
of the Gamma function as r — oo.

Taking the logarithm of this expression and keeping the leading behaviour we get

gaE 2

Finally, by also taking the leading behaviour in (6.35), reading off o as it appears in (6.3)
and plugging in our previous expression for y, we recover the profiles anticipated by the
local analysis in (6.40).

Let us now come back to the issue of having ¢ = 0 while not having vanishing
potential. First, let us check that indeed ¢"?/V — oo as we approach the ETW brane. We
can compute it, with no approximations, as

2
¢ 3agp V2 1)

~ — _—

v 2\/§T+ 3r

where we are ignoring irrelevant numerical prefactors. Importantly, for this computation
one has to remember that ¢’ is the derivative with respect to y, not with respect to r. As
advanced, we find that this blows up to infinity in both r — 0 and r — oo limits.

(6.43)

Moreover, using this result one can compute the tunneling potential as ¢ — oo as

¢’ 2 29 2 p+logo
VtNTerNgbeﬂ ~ ev2 , (6.44)

where we have plugged in the value of V from (6.34) and 72 ~ ¢ from the r — oo limit
of ¢(r) in (6.35). As advertised, we find a case in which the coefficient ¢ in (6.14) blows
up as we approach the wall of nothing. This is consistent with our local analysis because,
as we see in the last equality, ¢ does not blow up faster than the exponential, i.e., it gives
subleading corrections to log V; (see Appendix D for more details).
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6.3 Branes as cobordism defects

The local analysis of Section 6.1 provides a general framework to describe effective ETW
branes, encapsulating Dynamical Cobordisms of the underlying theory. An interesting
observation is that, in compactified theories with fluxes, the cobordism requires the intro-
duction of charged objects. Namely, those required to break the corresponding cobordism
charge to avoid a global symmetry, which should be absent in Quantum Gravity. A typical
example is the introduction of NS5- and D-branes in bubbles of nothing in compactifica-
tions with NSNS and RR fluxes (see [66] for a recent discussion on bubbles of nothing).

Therefore it is interesting to explore the description of such objects in the local picture
of section 6.1. As a simple illustrative setup, in this section we describe the geometry
around a stack of Dp-branes in the language of the local analysis of section 6.1. In local
terms, it corresponds to regarding the Dp-brane supergravity solution as a compactification
of the 10d theory on S8~ with flux, yielding a d = (p + 2)-dimensional running solution
along one of the coordinates (morally the radial coordinate), which has finite extent and
end on an effective ETW brane. The microscopic description of the latter is actually given
by the Dp-brane in the UV.

The above idea generalizes the description in 5.3 of the EFT strings solutions in [55]
as cobordism defects of S! compactifications of the underlying 4d A" = 1 theory with axion
flux along the S

We note that the compactification of the 10d theory on the S¥~7 around a Dp-brane
actually corresponds to a truncation onto the SO(9 — p)-invariant sector. Sphere trun-
cations have long been studied in the literature, in particular in the holographic context,
see [206] for a discussion for Dp-brane solutions. However, in our context we should regard
the sphere truncation as a fair local description of Dynamical Cobordisms in actual com-
pactifications, including those with scale separation, allowing for a more physical notion
of lower-dimensional effective theory. Our local analysis should be regarded as part of the
latter. This is depicted in figure 6.1, and is illustrated quantitatively in a similar example
for Witten’s bubble of nothing in appendix 3.2.

Finally, although we phrase our discussion in terms of Dp-branes, notice that other
string theory branes admit similar analysis; in fact, the NS5-brane is essentially the same
as the Db-brane, since we are working in the Kinstein frame, in which S-duality acts
manifestly.

6.3.1 Compactification to a running solution

Let us begin with a precise description of the general procedure of compactifying a codi-
mension (n + 1) brane-like solution in d + n dimensions down to a running solution (codi-
mension 1) in d dimensions. In next sections, we will apply this reasoning to the Dp-branes
as cobordism defects of S8 compactifications.

Take the general metric of a codimension n object in d + n-dimensions:
ds? = e 2 s | 4 2 (dr? +r2d02) . (6.45)

The directions in ds§71 span the worldvolume of the object, while we have split the trans-
verse directions into radial and angular ones.
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Xg_

Figure 6.1: Dp-branes as cobordism defect in theories with (8 — p) compact dimensions from
the higher and lower dimensional perspective. Our local (p + 2)-dimensional description of the
S8~P-truncation corresponds to the local structure of a Dynamical Cobordism of a more general
compactification on Xg_,.

p

We want to perform an S™ truncation to look at this solution from the d-dimensional
perspective. We thus take the compactification ansatz

ds? = e 20w g2 4 2002452 (6.46)

where r( is a reference scale. By requiring that the d-dimensional action is in the Einstein
frame and has canonically normalized kinetic term for the radion w we get the following
constraints for o and f:

d—2

2
= 6.47

P n(d+n — 2) (6.47)
The first one implements the Einstein frame requirement, while in the second one we
already apply both conditions. Note that for d = 2 we recover the familiar statement that
there is no Einstein gravity in 2 dimensions. We will deal with reductions to 2d in section

6.4, and consider d > 2 in what follows.

By matching the compactification ansatz (6.46) with the metric in (6.45) we obtain

the profile for the radion
2
(280(r) _ 20(0) <T) , (6.48)

70

as well as the lower-dimensional metric
ds? = 2 () (ﬁ(QN(T)ds?i_l + eQV(T)dr2> ( (6.49)
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In order to put solutions in the general form (6.3) used for the local description in
section 6.1, we introduce a new coordinate

Yy = /(eaw(r)el’(r)dr, (6.50)

in terms of which we can borrow the results (6.16)-(6.21) from the local description.

From the viewpoint of the d-dimensional theory, there is a non-trivial potential
arising from the curvature of the S™, and possibly other sources (such as fluxes, etc).
Generically the total potential does not have a minimum, hence the running solutions
can be regarded as induced by a dynamical tadpole. Applying the results in [158], the
d-dimensional solution must describe a Dynamical Cobordism ending on an ETW brane,
to which we can apply the local analysis in section 6.1.

Note that however there are cases with a non-trivial minimum. A prominent example
is the S° compactification with a large number N of RR 5-form field string flux units
(see [115] for a discussion in similar terms). The minimum corresponds to a setup with no
tadpole, and admits a maximally symmetric solution, namely the celebrated AdSs x S°.
Because of this, we will not consider the D3-branes in our discussion, and focus on genuinely
running solutions.

6.3.2 D-branes as Dynamical Cobordisms

In this section we regard the 10d Dp-brane solutions as S®P compactifications and re-
express them in terms of the local description of ETW branes of the (p + 2)-dimensional
theory of section 6.1. Note that, in contrast with section 6.2, we do not intend to derive
the local solutions from a (p + 2)-dimensional scalar potential; rather we take the familiar
10d solutions and express their near brane asymptotics as local (p + 2)-dimensional ETW
brane solutions.

Consider the Dp-brane solution in the 10d Einstein frame, with 0 < p < 8. The 10d
metric and dilaton profile take the form

ds%o = Z(r)%nuydx“dx” + Z(r)%l(er + r2dQ§_p) , (6.51)
(3—-p)
4v2

where the warp factor is given by the harmonic functions

@:

log(Z(r)), (6.52)

T—p
Z(r)=1+ (i) for 0< p<6, (6.53)

Z(r)=1- % log (;) (for p="1, (6.54)

Z(r)=1- Ir] for p=8. (6.55)
P
Here p > 0 is a length scale. For the cases p # 7 it depends on the number of Dp-branes,

N, while for p = 7 this dependence does not enter in p but has been made explicit in the
solution.

91



Chapter 6. Dynamical Cobordisms to Nothing and Swampland Conjectures

As we have explained, these formulas should be regarded as the local description near
the D-branes in possibly more general compactifications, namely the above Z(r) should
be though of as local expansions around the D-brane location of the warp factor in more
general compactification spaces, c.f. Figure 6.1.

We immediately see that for p # 3, the dilaton reaches infinite values near the point
r = 0, the core of the Dp-brane. As explained above, we do not consider the case p = 3,
since it relates to AdS minimum of the theory. The solution does not run towards an ETW
brane but towards a minimum in the potential. Similarly, for p = 8, the dilaton reaches
finite values at r = 0. This fits with the identification of D8-branes as interpolating
walls instead of walls of nothing in section 5.1. In the following we restrict to p # 3 and
1 < p <7, the lower bound to avoid reduction to 2d (postponed until section 6.4), and the
upper bound to have non-trivial sphere compactification.

The Dp-brane is a solution of the following generic type II theory with a dilaton and
RR field:

2n!

1 1
Sto ~ 3 /(dmx\/ —g10 {RIO —(09)* - €aq>Fn!2} ~ (6.56)

where n = 8 —p. This 10d theory does not have a scalar potential. However, once compac-
tified on S¥7P with IV units of Fy_,, flux, the curvature of the sphere as well as the flux itself
will generate dynamical tadpoles for the ensuing radion and (p + 2)-dimensional dilaton.
Indeed, let us perform this compactification explicitly and show that we find ourselves in
an end-of-the-world scenario.

Taking a compactification ansatz of the form (6.46) we obtain the d = (p + 2)-
dimensional Einstein frame metric:
8—p

T2 p+1

2 = : 7 T % el 9o
ds; = T—2Z(r) 8 {Z(r) 8 Ndatds” + Z(r) s dr }, (6.57)
0

where the Greek indices correspond to directions along the world volume of the p-brane.
The (p+2)-dimensional dilaton inherits the same profile as the original one and one obtains
the radion’s profile through matching:

2
28w r ptl
e2owr) = %Z(T) 5 (6.58)
The radion is canonically normalized if 3% = 8(8p_p) .

The solution has a spacetime singularity at » = 0, at which both the dilaton and
radion blow up. We can now compute the relevant scaling quantities, namely the spacetime
distance Ay to the singularity, the curvature scalar |Ry4| near the singularity, and the
distance Dy traversed in field space. For the former two we obtain:

(p—3)2
2p

for p € [1,6] and p # 3,

Ag ~ (6.59)
/T forp="1.
. 1,6] and p # 3
|Ry| ~ or p € [1,6] and p # 3, (6.60)
716/ forp=17.
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For the field space distance near the singularity, we obtain the following by plugging in the
profiles of the radion (6.58) and dilaton (6.51):

BQ;M 9p%plogr for p € [1,6] and p # 3,

4

Dy(r) = / (dw? + d®*) 2 dr ~
V14

(6.61)
logr forp=17.

The solution thus describes Dynamickl Cobordisms with the following scaling relations:

[p—3| P 2lp=3| [ p_
Ag~e P VOP Ds , |Rg|~e P VOor Do for p € [1,6] and p # 3, (6.62)
and 2v/14 414
Ag~e "7 Do |Rg| ~ e 7 Dy forp=7. (6.63)

This shows that Dp-brane are cobordism defects, which reduced on the surrounding
S8-P can be described as ETW branes. In the following we describe their structure in terms
of the local description of section 6.1.2. This will allow us a much simpler computation of
the above scaling relations.

The objective is to put the d-dimensional metric in domain-wall form (6.3). In the
notation of section 6.3.1, one obtains:

o(r) = —aw(r) + u(r) = 8 ;p log Z(T)%1 (é)) 6 p1—67 log (Z(T)) ( (6.64)

The new coordinate y is obtained as

, 8—p
y:/( ea“(r)e”(r)dr:/ Z(r)% <T> " oar. (6.65)
o

For a general Dp-brane with p # 3,7, in the limit » — 0 we have

y= / ( <f)(7p)p; (%) T (6.66)

Using equation (6.64), this yields

o(r) ~ o <y <p3§>2> é _m logy . (6.67)

We may compare this to the profile for o put forward by the local description described in
section 6.1.2:

o(y) ~ Y logy. (6.68)
We can thus extract the value of § and, for completeness, that of a:
4(p — 3)* — 3)?
P k) P k) M (6.69)
p(9—p) (P=9)(p+1)

Thus, we have, from equation (6.18):

logr. (6.70)
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We have thus recovered exactly the profile (6.61), without having to use the explicit scalar
profile. From (6.21), we also recover the scaling relations (6.62), namely:

_lp=3] [/ p— lp=3] [ p_
Ad=y~e P 9—de>’ |Rd| ~e2 P 9—pD¢' (6.71)

Hence, in this case we have used the local description to recover the field-space distance and
scaling relations near the singularity without knowing the full details of the d-dimensional
theory. In fact, we can use the local description to derive the asymptotic behaviour of
interesting d-dimensional quantities. For instance, the scalar potential scales near the
singularity as (6.16):

_ (p—3)° DD,
V(Dy) = —c 1- (9—19)(p+1)> <e\/ et (6.72)

This is a very interesting bottom-up approach. In the actual d-dimensional action, the
potential would depend on the radion and dilaton with contributions from the curvature of
the sphere and the flux traversing it. However, the local description encapsulates only the
dependence on the effective scalar dominating the field distance Dy near the ETW brane,
erasing any other irrelevant UV information. From the previous equation we find that the
potential is negative as we approach the ETW brane (recall ¢ > 0). With the extra input
that the curvature and the flux contributions to the potential are negative and positive
respectively, the local description is then telling us that it is the curvature term the one
that dominates in this limit.

For the D7-brane, the coordinate y is given by

4 1
y= /( e er () gy — /( << Qﬁ log (r> ) ’ (r) ' dr ~ 17 ; (6.73)
s P 0

where we have neglected the logarithmic contribution compared to the polynomial one.
Similarly, we have:

1
o(r) ~ a(y%) ~ —aw(yg) ~ —glogy. (6.74)
Hence, comparing this to equation (6.19), we find:
32
52:7, a=0. (6.75)

This means that the asymptotic potential vanishes, in the sense of ¢’> > V. Plugging this
value of 6% into equation (6.18) and (6.21), we recover the same field space distance and
scaling relations as in the computations of the previous section:

4
Dy(y) ~ —\/glogy o~ ~ i logr, (6.76)

8 8
Ag =y~ eV Ds o Rl ~ VP (6.77)
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6.3.3 Revisiting the EFT strings

In [39,55] it was proposed that in 4d N/ = 1 theories the limits in which saxionic scalars
go to infinity in moduli space can be studied as radial flows in 4d supersymmetric EFT
string solutions magnetically charged under the corresponding axionic partners. In section
5.3 the result was recovered by considering running solution of the compactification of
the theory to 3d with axion fluxes along the S': the solutions implement a Dynamical
Cobordism ending spacetime along the running direction, and the EFT string arises as the
cobordism defect required to get rid of the axion flux. In this section we check the universal
scaling relations from the local description. As expected, the analysis is fairly similar to
the 10d D7-brane example in the previous section; indeed, upon compactification of the
10d theory on a CY3, the wrapped D7-branes turns into the simplest avatar of the EFT
strings in [39,55].
In the 4d EFT string solution [39,55|, the profile for the scalars is given by

q r
=59 — — log — .
() = 50— oL Tog - (6.78)
0
a(f) =ao+ —q. (6.79)
27

In our 3d interpretation, equation (6.79) describes the axionic flux over the S!, and equation
(6.78) solves the dynamical tadpole for the saxion.

The 4d metric takes the form
ds? = —dt?® + da* + e*Pdzdz (6.80)

with z = re’?. The warp factor is given by
2 s
2D =-K + K= —log—, (6.81)
n S0

where the Kahler potential is K = —% log s.

Matching the 4d metric (6.80) to the setup in section 6.3.1 with n = 1, we obtain
the 3d coordinate y:

2

T n2
Yy = / e e (1) dr = / <1 - log r) Zdr ~ 12 , (6.82)
2msg ) 0

where we have once more neglected the logarithm compared to the polynomial contribution.
Then, we can put the 3d metric in the domain-wall form (6.3), in the » — 0 limit, with:

1\ 2 1
" 1
o(y2) = —Buw(y?) ~ —log  1— ——log2 ) L)k —Zlogy. (6.83)
27T80 o 2

Comparing this to (6.19), we obtain
=8 , a=0. (6.84)

We can use these parameters to recover the profiles and scaling of the local solution. For
instance, we obtain that ¢> > V, as in the D7-brane case. We also obtain the field-space
profile and scaling relations from (6.18) and (6.21):

Dy(y) ~ —\/{logy, (6.85)
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A=y~eV2De R =e2V2Ds (6.86)

We thus find that the full solution can be described in terms of the local description,
with the EFT string described in terms of an ETW brane.

6.3.4 The Klebanov-Strassler throat

In the previous examples we have shown that D-branes can play the role of ETW branes
in running solutions of compactifications with fluxes. We would like to mention, however,
an alternative mechanisms in which Dynamical Cobordisms can get rid of fluxes in the
compactification, namely when the running involves axion monodromy”. This is most
clearly illustrated in the celebrated Klebanov-Strassler (KS) solution [112], related to the
compactification of type IIB theory on the 5d Sasaki-Einstein space TV with N units of
RR 5-form flux and M units of RR 3-form flux on an S ¢ TH!.

As shown in [158], the KS solution can be regarded as a Dynamical Cobordism,
in which the tip of the throat ends spacetime at finite spacetime distance in the radial
direction, smoothing out (or UV completing) the singularity of the related Klebanov-
Tseytlin (KT) solution [111]. In this section we show that the structure of the KT solution
is indeed that of an ETW brane from the viewpoint of the 5d effective theory.

Consider the KT solution [111]|, whose 10d Einstein frame metric reads:

ds3y = h™Y2(rynwdatdz” + b2 (r) <d7“2 + 7“2d32T1,1) < (6.87)
with )
M-~1 «
h(r) = bo + MZlog (r/r.) . (6.88)
4rd

The singularity is at s such that h(rs) = 0, signalling the location of the ETW
brane. One can show that d,.h # 0 at r = rg, hence we may expand this harmonic function
near this point as

h(r)y~r—rs=r7. (6.89)

We now take the compactification ansatz
ds?y = L* <e_5qu§ + eSqu%J) (6.90)

with L an overall scale. Matching with (6.87) we get the profile for the breathing mode

4
q(r) = élog (2) h(r)) o~ élogf, (6.91)

where in the last equality we have taken the near ETW limit. We also get the 5d Einstein

frame metric:
r

5
2 3
S5 = — 2 _%771,:1: x—l—%r . 6.92
L?ds? 7 h™ 2, da*ds” + hz dr?

From it we can derive the relation between 7 and the radial coordinate y in the local
analysis, which is

o

Py (6.93)

For axion monodromy in inflation, see [97-99,101,103, 104,119, 207)
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Reading off the warp factor

2
o—20 _ <T> hé) B2 ~ 73~ y% , (6.94)

we finally find

1
o(y) = =35 logy- (6.95)

Hence, the 5d KT solution near the singularity fits with the form of an ETW brane in our
local description with
24/30 3

b="%~ . a=-3. (6.96)

We can also check that the solution for the scalars also fits in the local model description.
The NSNS axion is given by

~ M
T(r)=T+ Mlogr ~Ts+ —T, (6.97)

Ts

again in the near ETW brane limit. Here Ty = T'(r,), which we can keep arbitrary. The
field space metric from the 5d action in [111] is given by

1
dD} = 30(dq)* + 2g*1 e %(0T)?. (6.98)

Using the profiles for ¢ and T" in the 7 — 0 limit, we have

00~ gy e~ (MY

T's

(6.99)

=< =

For 7 — 0, the breathing modes dominates the field space distance in field-space. Following
the discusion in chapter 4, it is then an asymptotically geodesic trajectory. This is in
contrast with the » — oo limit, for which the field-space trajectory was shown to be highly
non-geodesic in chapter 3. Hence we have

ot
2
|

I\

dD} ~ 30(9q)” ~ U (6.100)
Upon integration and using (6.93) we obtain
30
D(y) ~ —\ﬁ logy. (6.101)

10

This again takes the form found in our local analysis, for the above coefficients (6.96).

Finally, we also check that the 5d scalar potential from [111] scales as predicted by
the local model. The complete potential is

V(p) = —5e 81 + 89 GMZe 14 4 8(N + MT)?e 2%, (6.102)

Plugging in T'= T and D ~ —+/30¢ as dictated by (6.100), we get

44/30

V(Dy) = —5¢'Fs D¢+8g M2 D¢+8(N+MT) 280D

¢ (6.103)
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For N + MTs # 0, we find that the last term dominates as Dy — oo. As predicted by
our local analysis, it has an exponential behaviour with Dy with the coefficient § given in
(6.96). Moreover, as predicted by finding a < 0, the coefficient in front of this exponential
is positive.

We hope these examples suffice to convince the reader that the local description

provides a simple and efficient framework to discuss the structure of Dynamical Cobordisms
near the ETW brane.

6.4 Small Black Holes as Dynamical Cobordisms

The analysis of the previous section for single-charge D-brane solutions can be similarly
carried out for systems of multiple charges, namely combining D-branes of different di-
mensionalities. Such systems have been extensively employed in the construction and
microscopic understanding of black holes, both with finite horizon, starting with [14], or
with vanishing classical horizon area (small black holes) (see [196,197] for some reviews).
In this section we describe brane configurations, closely related to the celebrated D1/D5
system, leading to small black holes, and describe them as cobordism defects of suitable
sphere compactifications of the underlying theory. The resulting dimensionally truncated
theory corresponds to a 2d theory of gravity and an effective scalar (2d dilaton gravity),
for which we find scaling relations analogous to the higher dimensional cases. This de-
scription relates the Dynamical Cobordisms to the realization of the Swampland Distance
Conjecture in small black holes® in [57].

6.4.1 The D2/D6 system on T*

We consider a configuration of D6- and D2-branes in the following (1/4 susy preserving)
configuration
D6: 012 x x x 6789 (6.104)
D2: 012 x x x x x X (6.105)

where the numbers correspond to directions spanned by the brane worldvolumes and x’s
mark transverse directions. We consider all branes to coincide in the mutually transverse
directions 345. We moreover smear the D2-branes in the direction 6789. Eventually these
directions will be taken to be compact, so the smeared description is valid for small com-
pactification size.

In the 10d Einstein frame the metric and dilaton profile are given by harmonic
superposition (see [211] for background)

ds? = Zg(r)_%Zz(r)_%anx“de + ZG(T>%ZQ(T)%(CZ7“2 +72d03) + ZG(T)_éZQ(T)%dI'mdxm ,
O(r) = 515 log (iﬁ(r)‘ng(r)é) (6.106)

where 7 is the radial coordinate in 345, d)3 is the vo(lme of a unit S? in this R3, and
m = 6,7,8,9. The harmonic functions are

Z) =1+ By =1+2. (6.107)

®For other approaches to Swampland constraints using (large and small) black holes, see e.g. [208-210].
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As announced, we now consider compactifying the directions 6789 on a T* (similar
results hold for K3 compactification, as usual), with the compactification ansatz

ds? = 67%d5§ + e%ds%; . (6.108)
Matching this ansatz to (6.106), we obtain the canonically normalized radion
t(r) = v2log (26(r)—522(7«)%) . (6.109)
The 6d Einstein frame metric reduces to:
A3 = e (Zo(r) "3 Za(r) Rnpudatida” + Z(r)F Zo(r) (dr® + 12d03) ( (6.110)
= Z(r)_inu,,dw“dx” + Z(r)%(dr2 + r2d03) |

where Z(r) = Zg(r)Za(1).

One can see that the dilaton and radion are both blowing up upon reaching the point
r = 0, which is at finite spacetime distance, hence the configuration can be dubbed a 6d
small black 2-brane.

As in section 6.3, we can describe the configuration as a Dynamical Cobordism of
the 6d theory compactified on an S? with suitable 2-form fluxes (for the RR 2-form field
strength and the T? reduction of the RR 6-form field strength). To implement this, we
take the general ansatz:

dsz = e ds3 + 12e27d03 . (6.111)

In the resulting 4d theory, there are non-trivial potential terms for the new radion o
arising from the curvature of S? and the 2-form fluxes. Imposing the Einstein frame in

4d comes down to setting v = % = 1. One can then choose § such that the radion o(r)

has a canonically normalized kinetic term and one obtains g = % From matching this
compactification ansatz to equation (6.110), we obtain the canonically normalized radion

| r? 3
o(r) =log 7022(7“)4> ( (6.112)

and the following 4d Einstein frame metric

q 2 q
ds? = e < (r)*inwda;“dx” + Z(r)%dr2> = <T> (Z(r)%nwd:c“dx” + Z(T)%dTQ) .
To
This solution is a 4d Dynamical Cobordism, with the D2/D6-brane system playing the role
of cobordism defect. The solution has the structure of an ETW brane; there are 3 running
scalars going off to infinite distance at the singularity at r = 0, which is straightforward
to show lies at finite spacetime distance. Indeed, near r = 0, we have

T
A= / <T> <26(7«)22(7«))idr ~ T (6.113)
0o \To
Furthermore, near the singularity, the distance in field space goes like:

1dr? 1
dD? = d®*> +do? +dt? ~ ——— - Dy~ ———1 114
é +do” + 9 2 — Uy 2 og(r) (6 )
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Near the singularity, the Ricci scalar in 4d behaves as:
IR| ~ 7! (6.115)
These lead to the familiar scaling relations near r = 0:

IR|"3 ~ A~ e VD4, (6.116)

Since the above full solution has the structure of a Dynamical Cobordism, it should
be possible to express it in the framework of our local description, with the D2/D6-brane
system playing the role of the ETW brane. Let us define the new coordinate:

v=[ (0) (Z5(r) Z2(r)

where we have considered the leading behaviour near r = 0.

>

dr ~ /1, (6.117)

Using equation (6.48), we have:

N

4
o(y?) = —%log L 2() > é “logy. (6.118)

0

Matching this to the profile in (6.18), we see that 6> = 2 and a = % Then we automatically
fall back on the previous field-space distance and scaling relations using equations (6.18)
and (6.21):

Dy(y) =~ —V2logy, (6.119)

1
A=yn~e vaP LRI 2. (6.120)

This gives yet another nice check of the usefulness of the local analysis.

Beyond the Einstein frame

One last remark that will be relevant in the next sections is that scaling relations similar to
those of (6.116) can be found, independent of the frame chosen during the compactification.
Indeed, if one insists on keeping v (and thus, also 8) general and tracking it throughout
the computations, one obtains the new coordinate near r = 0:

Note that, if v < —1, then these scalings behave opposite to those we have seen for
ETW branes. This illustrates that the scalings mentioned rely on using the Einstein frame
metric to describe the ETW brane.

In setups where one needs (or finds convenient) to use general frames, the condition
for an ETW brane is that the picture of a scalar going off to infinity at finite spacetime
distance can be attained by a suitable change of frame. In this respect, we note that there
is an extra subtlety in dealing with the field space distance in general frames. Indeed,
not being in the Einstein frame implies that the radion is multiplying the Einstein-Hilbert
term in the action:

Sy D ;/(d{”v —946250(1_27){62670(34—(875)2—(8©)2—52(672—87+6)(60')2)}- (6.122)
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It thus makes sense to define the field space distance measured in units set by this coeflicient
of the Ricci scalar in the action. This field space distance near the singularity in this general
frame reads:

dD} = d®* + B*(67° — 87 + 6)do” + dt*

6.123)
VHZ =8y 110 (
Dy ~ — K 47 logr.

Hence, we can derive the following universal scaling relations in a general frame:

41

A~ e Vst o |R[E (6.124)

Note that these reduce to those of (6.116) when setting v = 1, as required by the Einstein
frame. As a side note, one cannot recover this result in the local description detailed in
section 6.1.2 as it was constructed in the Einstein frame. We leave such a more general
formulation of the local construction for future work.

6.4.2 Small Black Holes from the D2/D6 system on T* x T?

Let us now consider turning our D6/D2-brane systems into a (small) black hole, by a
further compactification on T?.

We take the ansatz
dsg = e 1ds: + elds3 . (6.125)

By matching this ansatz to the 6d metric obtained previously (6.110), we get the 4d
Einstein frame metric:

= 20,
asi = (gn)igda'da’ = 1) (=2 (r)"Rae? + Z(r)3 (ar? + 12d03) ) <
= —Z(r)"2dt® + Z(r)2 (dr® + r2d92) . (6.126)

This solution describes a small black hole (in fact, equivalent to the celebrated D1/D5-
brane one, by T-duality in one of the T? directions), of the kind considered in [57].

To motivate the relation with the more general discussion in the next section, let us
make the following heuristic argument. Although our solution has three scalar fields, the
radial evolution can be reduced to one effective scalar as follows. Near r = 0, all three
scalars have the same profile, so we may combine them in one effective scalar Dy whose
effective action near r = 0 is of the form

1 L
S1~ i/ (dg@{& — (D)2 = e P} (6.127)

where we have restricted to the U(1) linear combination under which the D2/D6 system
is charged.

With this proviso, we can frame this particular example with the more general class
of small Black Holes considered in [57], to be discussed next.
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6.4.3 General small Black Holes

In the context of the swampland program, [57] proposed the use of 4d small black hole
solutions to provide further evidence for a number of a number of Swampland conjectures.
A particularly important property is that the 4d solutions contain scalars going off to
infinite field space distance at the black hole core. In the spirit of previous sections, in
this section we show that these 4d solutions can be turned into 2d Dynamical Cobordisms
upon reducing on the S?, with the small black hole playing the role of the ETW brane. In
fact we will check that the 2d running solution satisfies the familiar scaling relations (for
a general frame, since there is no Einstein frame in 2d).

Let us briefly review the key features of such solutions. We consider 4d Finstein-
Maxwell coupled to a scalar controlling the gauge coupling. We take the action

S~ /(dx a1 (Bi— 00)° —>|BP) | (6.128)

We focus on exponential dependence, since it provided the most explicit class considered
in [57]. It also fits with the special role of exponential functions in local descriptions of
ETW branes.

Without loss of generality, we take a > 0 so that ¢ — oo corresponds to weak coupling
for the U(1) gauge field. Note that this a should not be confused with the parameter in
(6.12), and we trust the reader to distinguish them by the context.

In this theory, electrically charged extremal black holes take the form

dsi = —f(r)dt* + f(r)"'dr® + r*R(r)d03 (6.129)
where )
o= (1= = (=) (6.130)

In addition, the profile for the scalar is given by

o(r) = ¢o v2a log <1 - Th) ( (6.131)

C1+a? r
The scalar goes off to infinity at the horizon r = ry, which is however not smooth,

since the S shrinks to zero size, leading to a small black hole.

In the string theory context, small black holes can be easily built by using D-branes.
In fact, we now recast the above solution in a form closer to the solution (6.126), which
described our system of D2- and D6-branes on T4 x T2, This was already anticipated
when we obtained (6.127), which has the structure of (6.128) (for a = ﬁ)

Carrying out the coordinate change r — r + rp, the metric (6.129) becomes

—2, 2,
ds? = — <1 n T) a4 <1 n ’;?) T (m«? n r%mg) ( (6.132)

Similarly, the scalar reads

3(r) = o + 1?52 log (1 + T) ( (6.133)
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4
This has the structure of (6.126) with Z(r) = (1 4 7 /r)1+e?. Note that the core of the
small black hole now lies at r = 0.

We now perform the reduction on S? to express these solutions as 2d running solu-
tions describing a local Dynamical Cobordism, with the small black hole playing the role of
the ETW brane. We will also recover the corresponding (general frame) scaling relations.

Since there is no Einstein frame in 2d, we perform the S? reduction with the following

general ansatz:
ds? = e 2% (s2 4+ 2Pr2dQ, . (6.134)

The 2d action obtained from the compactification contains the terms

Saa O ;/<d2l“ Vg2 ¥ (R2 — (9¢)* — 63 (3w)2> . (6.135)

These expressions already show the impossibility to define an Einstein frame: it would
require 8 = 0, and this would kill the radion’s kinetic term. We therefore keep 5 general,
so we deal with a dilaton-gravity theory. By matching the ansatz (6.134) with the 4d
metric (6.132) we get the profile for the radion

1

w(r) = ;log % <1 + T)F : (6.136)

and the 2d metric

2y _2(17'2)/) 2(1+%{)
14a 1+a
ds? = <T> - <<+ rh) dt? + (1 + ”) ar? | (6.137)
70 r r
where v = %
Computing the 2d Ricci scalar and taking the leading order in 7 — 0 we get
_oly+1)a’
|R| ~r = 14a2 (6.138)

where we are ignoring a constant prefact0r7.

Similarly, the spacetime distance from a given r to the singularity, at leading order

in 7 — 0, scales as
(v+1)a?

A ~ g (14a?) | (6.139)

We note that, as expected, the scaling is the familiar ETW one if v > —1. As explained
above, the fact that 2d gravity is topological means that the criterion for an ETW brane
in a solution should be that the usual relations hold in some suitable frame.

Let us now recover the usual scalings with the field distance. Recalling the latter is
measured in units set by the coefficient of the Ricci scalar in the action, we can it read off
from (6.135) as:

dD} = d¢” + 6% dw” . (6.140)

"This prefactor vanishes for either a> = 1 or a? = —2v. We will skip these cases without further

discussion.
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Plugging the profiles (6.131) and (6.136) at leading order as » — 0 and integrating the line
element we recover

Dy(r) ~ ————— logr. (6.141)

Finally, together with the previous results for the distance to the end of the world and the
curvature, we obtain the scalings
An~e 2P |R|~efDs, (6.142)
with
2(y+1)a

Hence, we recover the general frame scaling relations introduced in section 6.4.1. This
shows that small black hole solutions can be regarded as just another instance of Dynamical
Cobordism, and that they admit local scaling relations identifying the small black hole core
with ETW branes in 2d.

6.5 Swampland constraints and Surprises from the UV

In this section we discuss interesting interplays of the scalar running off to infinity in field
space in Local Dynamical Cobordisms and the Swampland constraints.

6.5.1 Swampland Distance Conjecture and other constraints

Many studies of Swampland constraints are related to infinity in scalar moduli/field space.
Since Dynamical Cobordisms explore infinite field space distances, in this section we discuss
the interplay with different Swampland constraints, especially the Distance Conjecture [35]
(see [36,45,47,106,135,139,141,212 215] and the reviews above for other approaches).

Let us focus on the simplest expression of the Distance Conjecture, which states that,
when the scalars are taken to infinite field space distance Dy (in an adiabatic approach,
namely, by changing the spacetime independent vevs), there is a tower of states becoming
exponentially light, and thus the cutoff of the effective theory is lowered as

A~ e Do (6.144)

with some positive order 1 coefficient o.

This scaling can be combined in an interesting way with our scalings near ETW
branes. For instance, using (6.21), we have

A~ AT (6.145)

This matches with our intuition that the full description of the ETW brane requires UV
completing the effective theory. It is important to note that the appearance of an infinite
tower in the adiabatic version of the Distance Conjecture does not necessarily imply the
appearance of a tower in the present Dynamical Cobordism context. On the other hand, the
lowered cutoff certainly signals that there could be situations where the naive ETW brane
picture as described in effective theory may be corrected. We will see explicit examples in
section 6.5.2.
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Using also (6.21), we get that the cutoff scale relates to the spacetime curvature as
IR| ~ Ae (6.146)

(where we have taken the generic case § # (2d/(d — 2))'/? for concreteness). This relation
is reminiscent of (although admittedly different in spirit from) that in [215] for AdS vacua.

From this perspective, the correlation between the appearance of the naked singu-
larity and the running of the scalar going off to infinity suggests that the lowered cutoff
of the swampland distance conjecture is responsible for regulating the singularity, which
would be resolved in a more complete microscopic UV description. This remark is in the
spirit of [55] (see also [39]) and [57], where the singular behaviour of certain defects (EFT
strings or small black holes, respectively) is related to scalars going off to infinite distance.

From our perspective, the relation follows from the Dynamical Cobordism Distance
Conjecture put forward in chapter 5. In our present terms: Every infinite field distance limit
of an effective theory consistent with quantum gravity can be realized as a solution running
into a cobordism ETW brane (possibly in a suitable compactification of the theory).

In particular, in Sections 6.3 and 6.4 we provided a description of general defects as
ETW branes of Dynamical Cobordisms. This general framework encompasses the defects
in [55,57] as particular examples.

An interesting spin-off of our local analysis is that it constrains the asymptotic form
of the potential. Namely, whenever it is not vanishing (actually, negligible as compared
with the scalar kinetic energy) it has an exponential form with a critical exponent d,
c.f. (6.16). Tt is thus interesting to compare this asymptotic form of the potential with
Swampland constraints expected to hold near infinity in scalar field space.

Let us consider the de Sitter conjecture in the version of [157] (see |213,216] for the
refined one), namely |[VV|/V > O(1). From (6.16) we have

Y o5 14
=0 (6.147)

Since in general the critical exponent 6 ~ O(1), the potential satisfies the de Sitter con-
jecture. This fits nicely with the idea that the latter is expected to hold near infinity in
moduli/field space.

Moreover, let us compare with the Transplanckian Censorship Conjecture [37]

2

VV|> (6.148)

When V' < 0, the constraint is trivial; on the other hand, when V' > 0, in our setup we must
have a < 0, and the expression (6.15) for 6 guarantees that the above inequality is satisfied.
A caveat for the above statements is that both the de Sitter and the Transplanckian
Censorship conjectures involve the gradient VV', whereas our local description provides
the potential only along one direction, the effective scalar dominating the running near
the ETW brane. Hence, the comments above would hold under the assumption that the
effective scalar in the local description follows a gradient flow. It would be interesting to
assess this point in explicit models, and we leave this as an open question for future work.
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6.5.2 Large N surprises from the UV

In the previous section we have discussed that the Distance Conjecture implies a lowered
cutoff as one approaches the ETW brane. Indeed, as mentioned at several points, the
microscopic description of the ETW branes lies in the underlying UV completion. In most
of our examples, the corresponding cobordism defect is known, so that the end of the world
picture can be confirmed in the full theory. However, it is conceivable that in some specific
cases there exist UV effects hidden at the core of the ETW brane potentially modifying
this picture. In this section we present two examples, where such corrections exist and
lead to large backreactions, ultimately turning the candidate ETW brane into a domain
wall interpolating to a new region beyond the apparent singularity. A further interesting
observation is that both examples are related to large N physics and holography.

Large number of M2-branes

Consider as our first example a stack of N D2-branes in flat 10d spacetime (or at
a smooth point in any other compactification). Locally around the D2-brane location the
SO truncation yields a 4d theory with an ETW brane, at which a scalar (a combination
of the radion and the dilaton) goes to infinity in field space. One may follow the theory
in this limit and, as noted in [206], realize that the strong coupling is solved by lifting to
M-theory, and turning the D2-branes into M2-branes. For small N, the UV completion
of the effective ETW brane is thus merely a stack of M2-branes removing the flux and
allowing spacetime to end, as befits a Dynamical Cobordism.

On the other hand, for N large we have a different behavior: the large number of
M2-branes backreact on the geometry and generate an infinite AdS; x S” throat. The
effective theory ETW brane has a UV description with so many degrees of freedom that
it actually generates a gravity dual beyond the the wall.

From the perspective of the running scalars, the AdS; x S” represents a minimum
of the (S” radion) potential. Hence the full D2/M2 solution describes the running of the
theory from the slope of the potential down to a stable minimum, at which the theory
relaxes to a maximally symmetric solution, instead of hitting an end of the world. The
location of the minimum in field space is hidden near infinity in the original D2-brane
effective description. Hence, the large N allows for the appearance of a minimum at strong
coupling, which is nevertheless tractable®.

Moreover, the full D2/M2 solution describes a dynamical cobordism from the M-
theory perspective. Far away from the stack of branes we can use the description in terms
of D2-branes. As described above the 4d theory would be obtained by compactifying Type
ITA on an S®. This would be further lifted to M-theory on S x S'. On the other hand, we
have just argued that close to the stack of branes the 4d theory is given by M-theory on
S7. We then see that this solution describes a dynamical cobordism between to different
compactifications. Notice that this is not a cobordism to nothing, described by ETW brane
solutions.

Warped KS throat with large number of D3-branes

Our second example is based on the warped throat considered in section 6.3.4. Recall
we have type IIB theory compactified on T™! with N units of RR 5-form flux and M units
of RR 3-form flux on the S3, and we focus on the choice of parameters N = KM + P. At

8This is reminiscent of the argument [155] that the scale separation (and hence the tractability) of the
AdS minima in [217,218] is controlled by a large number of flux units.
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the level of the 4d effective theory, we recover a KT solution with a singularity at a finite
spacetime distance, at which a scalar (a combination of the T'%! radion and the dilaton,
but dominated by the former) goes off to infinite field space distance.

The UV smoothing of this singularity is slightly trickier than the N = KM case of
section 6.3.4. It involves the smoothing of the singular conifold geometry into a deformed
conifold, with a finite size S3, but there remain P D3-branes at the tip of the throat. This
can be shown using the holographic dual field theory, as follows. There is a Seiberg duality
cascade from the initial SU(N) x SU(N + M) theory in which N effectively decreases in
multiples of M; hence, in the last step of the cascade we have an SU(P) x SU(M + P)
gauge theory, whose strong coupling dynamics leads to an remnant ' = 4 SU(P) theory,
as befits the above mentioned P probe D3-branes.

Hence, for small P the ETW brane of the 5d theory is microscopically described
by the smooth Klebanov-Strassler throat dressed with P explicit D3-branes, required to
absorb the remnant 5-form flux and allow spacetime to end.

On the other hand, for P large we have a different behavior: the large number of
D3-branes backreact on the geometry and generate an infinite AdSs x S® throat. The
effective theory ETW brane has a UV description with so many degrees of freedom that
it actually generates a gravity dual beyond the the wall. The interpretation of this strong
correction in terms of the running scalars is similar to the one mentioned above, as the
apperance of an AdS minimum hidden near the infinite field space distance limit of the
effective description.

We have seen two examples in which a naive ETW brane in the effective description
has a UV description encoding large backreactions on the geometry recreating a geometry
beyond the wall. Alternatively, the corrections generate minima in the scalar potential
in the region near field space infinity of the effective description. It would be interest-
ing to explore in more detail these and other possible classes of examples exhibiting this
phenomenon. We hope to report on this in the future.

6.6 Summary

In this chapter we have studied Dynamical Cobordism solutions in which theories of gravity
coupled to scalars develop an end of spacetime. The latter is encoded in the effective theory
as the appearance of a singularity at finite spacetime distance, at which some scalars run off
to infinite field space distance. We have provided a local description of the configurations
in the near ETW brane regime, and shown that the solutions are largely simplified, and fall
in universality classes characterized by a critical exponent §, which controls the profiles of
the different fields and the scaling relations among the field space distance Dy, spacetime
distance A and scalar curvature R.

We have studied several explicit models of ET'W branes and characterized them in
the local description, computing their critical exponent. The different examples and their
key parameters are displayed in Table 6.1. This list is intended to illustrate typical values
of these parameters. It would be interesting to explore more examples and to explore
possible connections among ETW branes described by the same parameters.

We have moreover shown that small black holes can also be regarded as Dynamical
Cobordisms, and satisfy similar scaling laws. It would be interesting to explore from the
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Example d 1 a
Massive ITA 10 % ?
Non-susy USp(32) string | 10 % 0
D7 branes 9 @ 0

D6 branes 8 V2 %

D5 branes 7 % %

Dj branes 6 % %
Klebanov-Strassler 5 @ -2
Bubble of Nothing 4 | V6 0
D2 branes 4 @ 2
D2/D6 on T* x S* 4| v2 | 2
D1 branes 3 NG} %
EFT string 3| 2v2 0

Table 6.1: Table of examples in this chapter, with the corresponding parameters for the local
description near the ETW brane.

cobordism perspective the recent applications of small black holes to the derivation of
swampland constraints.
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Part IV

THE SWAMPLAND DISTANCE
CONJECTURE IN ADS/CFT
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Tackling the SDC in AdS with CF'Ts

As discussed in 2.2, the SDC has been mainly studied in the context of four- [45,46,50,51,
71,81,212,219] or six-dimensional |52] Minkowski theories with eight or more supercharges
obtained by dimensional reduction of type Il string theories, or their lifts to strong coupling.
Using the beautifully-intricate web of dualities of string theory, it was proposed that the
tower of massless states corresponds to either a decompactification limit or a tensionless
weakly-coupled fundamental string in disguise [50,51,81], although it may be required to
take quantum corrections into account to make them manifest [48,49,51,56]. Note that, in
the latter case, the tower of states generically contains arbitrarily large higher-spin fields.
See [220] for implications in (quasi-)dS spaces.

A variation of this framework is the inclusion of a potential [51,54,58,95,106, 139
141,213,221 224|, which may lift the flat spacetime geometry to an AdS space. In the limit
of large AdS radius in Planck units, LMp; — oo, a similar behaviour is expected, with an
infinite tower of states also becoming massless, behaving as m/Mp; ~ (LMp;)™, A > 0
[215]. In supersymmetric cases a strong version of the conjecture suggests A = %, usually
interpreted as a consequence of the no-scale-separation condition between the internal
manifold and the AdS radius. In string-theoretic realisations of these AdS geometries, the
tower is often identified with a sector of Kaluza—Klein modes. Part of the internal manifold
and the AdS space are stabilised by the same fluxes and, as a consequence, the AdS radius
and a breathing mode of the compact space are linked together. The limit of large radius

will then also lead to a decompactification. For recent works, see [155,225 228|.

This proposal is somewhat different from what one would naively call the Swamp-
land Distance Conjecture for moduli spaces of AdS vacua. Even though it is exploring the
possible AdS vacua of the theory, it is not about the continuously-connected part paramet-
rised by massless scalars, which we refer to in this work as the moduli space. It is rather
about the different branches of vacua parametrised by massive scalars. In string theory
constructions, the presence of fluxes will give masses to the scalars controlling these limits
and can therefore no longer be considered as moduli in the usual sense. Typically one
consider different branches of vacua in this setup by changing the flux quanta.

This raises the question of whether the SDC extends to moduli spaces of AdS vacua
in the sense described above, and what kind of towers of states can be expected to appear.
In those setups, the AdS scale in Planck units, LMp;, remains fixed throughout all the
moduli space. This is the kind of trajectories we want to tackle in this work.

In this context, an open question is whether it is possible to consider decompactific-
ation limits. Such trajectories would imply the possibility of tuning the size of an internal
dimension without changing the AdS radius at all. Current models featuring a separation
of scales always link the AdS radius and the internal dimensions in some way, while the
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limits we are interested in would require them to be independent. Although inconclusive,
current understanding of AdS vacua seems to disfavour such trajectories and leads to the
intriguing possibility that equi-dimensional and non-equi-dimensional limits in AdS are
distinguished, being called SDC and ADC directions, respectively.

In the case of equi-dimensional limits it is reasonable to expect the appearance of
tensionless strings. However, an immediate challenge one faces is that those points are out
of the regime of parametric control of the usual supergravity description of these vacua.
Indeed, the tension of these strings will eventually fall below the AdS scale, leading to the
notoriously difficult problem of quantising strings in highly-curved backgrounds. To retain
control over the theory one conversely assumes a weakly-curved background, corresponding
to a semi-clagsical approximation. A possible way to go around the issue is to make use of
the AdS/CFT correspondence [15]. Our aim here is to analyse a possible extension of the
SDC by studying the evolution of physical quantities through their CFT duals.

Using holography as a tool to study the Swampland programme has already bore
fruits. Proofs of no-go theorems applied to global symmetries as well as the Weak Gravity
Conjectures in AdS were established by relating black hole quantities to conformal data
[22,23,80]. More recently, positivity bounds were related to moduli stabilisation constraints
in AdS4/CFTs3, as well as possible connections to the SDC [229]. Closer to our setup, the
classical moduli space has further been shown to be a coset in the case of AdSs gauged
supergravity with sixteen (real) supercharges [230].

Moduli and Marginal Deformations

In AdS/CFT, each field of mass m in the bulk is associated on the boundary to a conformal
operator of dimension A. The dictionary between scalars and ¢-symmetric traceless tensors
is given in AdS5/CFTy by:

m?L* = A(A —4), (scalars) ; (7.1)
m2iL* = (A +0—2)(A—-10—2), (¢-symmetric traceless tensors).

The variation of any mass as a function of the moduli in the bulk can thus be controlled
by tuning parameters of the CFT. We note that, as we demand the AdS radius, L, to be
fixed in Planck units, we can use these expressions to evaluate the mass of a given state in
Planck units up to some numerical coefficients which are irrelevant to our analysis.

The moduli space, parametrised by the vacuum expectation value (vev) of the mod-
uli, 2%, is then identified with the conformal manifold, the space of exactly marginal de-
formations, ¢, of the CFT, see e.g. [231,232]. This conformal manifold is endowed with
the so-called Zamolodchikov metric, x, that is the dual of the bulk moduli space metric,

G:
(Mmoa, Gij(2)) «— ((/ICFTyXij(/\))(h (7.3)

More specifically, the Zamolodchikov metridis mapped to the metric in moduli space
measured in AdS units up to a constant prefactor, such that in Planck units we have:

(LMpy)® Gij(z) ~ xi5(A) - (7.4)

The specific form of the metric can be computed as a series in large N, dual to the weakly-
coupled quantum-gravity expansion in the bulk [233]. As the partition function of the bulk
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on the boundary is identified with the generating functional of correlation functions of the
CFT, corrections on either side are guaranteed to match on the other. This means that
we can use (7.4) to compute, at least in principle, the metric in moduli space from the
Zamolodchikov metric in any regime of the theory.

As it is well known, unitarity furthermore imposes constraints on the CFT data. For
instance the dimension is bounded from below, and an operator with spin ¢ must satisfy:

A>1, {=0;
A>0+2, £>0.

For ¢ = 0 the bound is saturated by a free scalar field and maps to tachyonic fields in
the bulk, while the flavour currents and the energy-momentum tensor sit at the bound for
¢ =1,2, regpectively. For £ > 2, the bound is associated to so-called higher-spin conserved
currents. By the Maldacena-Zhiboedov theorem [234] and its extensions [235-239], having
a single higher-spin conserved current implies the existence of an infinite number of them.
Moreover this can only occur in the presence of (generalised) free fields. Such higher-spin
currents will be a central part of this work.

With this framework, the study of the Swampland Distance Conjecture for AdS
spacetime can then be rephrased as an analysis of the possible infinite-distance points of
conformal manifolds. We will focus on four-dimensional N' = 2 SCFTSs, corresponding to
supergravity theories with sixteen (real) supercharges on AdSs, although we will comment
on implications in other dimensions. In those theories, (N = 2)-preserving exactly marginal
deformations can only correspond to variations of (complexified) gauge couplings [240,241],
and it is then easy to give a physical interpretation to the towers of states in terms of gauge
data.

(7.5)

In particular, we will be able to track how the dimension of certain operators behaves
near a class of infinite-distance points corresponding to weakly-coupled gauge subsectors of
the SCFT. Among them, we find the above-mentioned infinite tower of higher-spin currents
that saturate the unitarity bound (7.2) in the presence of free fields. In the bulk, this leads
to an infinite tower of higher-spin fields becoming massless and satisfying the condition

M,y
Mpy
We will further estimate the decay rate «, that will be shown to be at least of order one.

~ e Ds (7.6)

This chapter is structured as follows: in section 7.1 we describe how to use AdS/CFT
to study the SDC in the bulk by working in the moduli space of AdS5xS® vacua of type IIB
string theory. The high degree of supersymmetry is enough to compute the metrics exactly
and therefore constitutes the simplest example to study. In section 7.2 we review some
important properties of the conformal manifolds associated to four-dimensional N = 2
SCFTs and study the SDC on general grounds. In section 7.3 we make contact again with
the bulk by examining a specific family of A = 2 SCFTs with known bulk duals. We give
a summary and discuss applications to other dimensions in section 7.4. Additionally, we
briefly review unitary representations of the N' = 2 superconformal algebra in appendix E.

7.1 A Warm-up: Type IIB AdS; x S° Vacua

As a first example and to set our nomenclature and conventions, we consider the family
of AdSs vacua obtained by compactifying Type IIB on S° with N units of Fy-flux. It
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is the most celebrated example of the holographic principle, being dual to N' = 4 super-
Yang-Mills theory with gauge group SU(N) in four dimensions. Due to the high amount
of supersymmetry, non-renormalisation theorems makes it possible to compute relevant
quantities exactly.

This case will be useful to exemplify the inclusion of the moduli space into the scalars
manifold, including the stabilised scalar fields. It will make a clear distinction between the
limits we want to explore and the “ADC directions”, where the AdS scale, L, is allowed to
vary [215]. It will also serve to illustrate the issues of parametric control that occur when
approaching infinite-distance points in AdS moduli space and how the dual CFT picture
allows one to circumvent them.

This family of solutions is parametrised by N and the complex axio-dilaton,

1
7=Cy+i—, (7.7)
9s
made out of the string coupling, gs, and the Type IIB axion, Cy. The AdS radius, L, is
forced to coincide with the radius of the five-sphere and is set to:

1
L* = drg,Na'? = HgSNM;‘*. (7.8)

In terms of the five-dimensional Planck mass, it is rewritten as
LMp;~N?3 Mp~ g7 YVAN2), (7.9)

so that keeping the AdS scale fixed in Planck units corresponds to fixing N. Thus, the
moduli space of AdS vacua is parametrised solely by the axio-dilaton.

From the perspective of compactification, this is understood as a stabilisation of the
scalar associated to the breathing mode of the sphere through fluxes, such that it is no
longer a modulus. Note that with the nomenclature established in the introduction, this
stabilised scalar is associated to the ADC direction and not part of the moduli space of
massless scalars.

Computing the moduli space metric usually requires one to perform the dimensional
reduction of type IIB supergravity on S°, including kinetic terms for the axio-dilaton and
the breathing mode, and substitute (7.8)." However, we can here take full advantage of
type IIB S-duality which is preserved in this background, and constrains the metric to be:

drdt

D2~ T
g Im(7)2’

(7.10)
up to numerical factors that will be irrelevant for our purposes. It is then obvious that
there are only two infinite-distance points: Im7 — 0,00, which are physically equivalent.
We focus the rest of the discussion on the latter.

One could naively expect the SDC to work exactly as it does in flat space: using
the metric (7.10) any geodesic approaching Im7 — oo is forced to move only along the
Im7-direction, and as a consequence the distance behaves logarithmically with gs. The
associated tower of states is then identified with string excitations controlled by the string

! According to the generalised SDC [215], this should also include the contribution to the distance due
to the change of the AdS scale, which is irrelevant here as it is kept fixed.
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scale, My, which falls polynomially to zero in Planck units. Putting the two together, we
find the expected exponential behaviour.

However, for this argument to work a key point is to remain under parametric control
along the trajectory. In particular the quantisation of the string with the usual methods
requires one to be in the weakly-curved regime. This imposes the string scale to be above
the AdS scale:

LM, ~ (gsN)Y4>1. (7.11)

As the AdS scale is fixed along the trajectory, we are no longer under parametric control
as Im7 — oco. This extra condition does not arise when considering the moduli spaces of
Minkowski vacua such as those considered in the usual compactification to flat backgrounds.

We are therefore leaving the phase of the moduli space where the supergravity de-
scription is valid, making a qualitative assessement of the SDC impossible, as the two
infinite-distance points, 7 = 0,700, are both inaccessible in that regime. However, we are
conversely entering a phase where a weakly-coupled description in terms of the conformal
theory is appropriate. There, the bulk axio-dilaton is identified with the complexified gauge

coupling,
0 A
T=TyM = 5— +1 2 (712)
27 Ivm
and parametrises the only possible (N = 4)-preserving marginal deformation. Due to the
amount of supersymmetry, the Zamolodchikov metric, y, is found to be quantum exact
and can be computed through usual diagrammatic methods, or by localisation techniques
reviewed next section:
NZ -1

Xor ™~ T (7.13)

The numerator is set by the dimension of the gauge group G = SU(N), and we once
again ignored irrelevant order one prefactors. As expected from the bulk, there are also
two physically-equivalent infinite-distance points related by S-duality, and the bulk limit
Im7 — oo corresponds to a free theory, gym = 0, on the CFT side.

The operators of the CFT are gauge-invariant composite operators made out of fields
in the N = 4 vector multiplet.? Their conformal dimensions are given by the sum of the
free value and their anomalous dimension, ~:

A = Agree + 7(7-) : (7-14)

In the free limit, the conformal dimension is obtained by naive dimensional analysis. For
instance, the lowest-lying operators is given by Tr¢? and is of dimension A = 2 in the
limit Im7 — oo. Using the dictionary (7.1), it therefore corresponds to a field at the
Breitenlohner-Freedman (BF) bound in the bulk.

From the SDC one expects a tower of states becoming massless exponentially with
the distance at the infinite-distance point. To see what happens on the CF'T side, we can
use perturbation theory to write the leading contribution in the gy s — 0 limit as

A = Aﬁ-ee + ngéM + O(gé—f\_/[l) - Aﬁ-ee + 77 e—OCX DX(T) ) (715)

2For simplicity, we do not take into consideration the R-symmetry structure of these fields, and gener-
ically denote any of the scalars transforming in the 6 of SU(4)r, or later any other scalar, by ¢. For our
purpose, it will be irrelevant.
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where a, , 3,7 are coefficients depending on the type of operator considered. In the second
equality we have used the expression for the distance with respect to the Zamolodchikov
metric in terms of the Yang Mills coupling. We can easily see that with the exception
of operators whose dimensions are protected by a selection rule—the conformal dimension
falls exponentially fast to its free value. An important class of such operators are spin-/¢
operators of the form:

— <= Rpd
Jpgog =@ 0 (g - 0 )¢ — (traces) . (7.16)

These operators have an anomalous dimension at a generic point of the conformal manifold
but—using the equations of motion—become conserved in the free limit and saturates the
unitarity bound (7.5). The presence of these higher-spin conserved currents in a CFT in
fact implies that the theory is free by the Maldacena—Zhiboedov theorem [234].

In the bulk they are identified with higher-spin fields that become massless exponen-
tially fast:

ML = (A+0—-2)(A—({+2) ~e @D (7.17)

We therefore indeed have a tower of massless modes in the bulk when going to the infinite-
distance point, behaving according to the Swampland Distance Conjecture.

However, the unitarity bound (7.5) implies that fields dual to scalar operators of
the CFT—e.g. single-trace operators, O ~ Tr¢"—remain massive in the bulk and are
regularly spaced for sufficiently large n:

M2, L? ~n? +O(e P?), (7.18)
This is a striking difference with respect to the usual results of the SDC for Minkowski
backgrounds: in this case the tower is formed by higher-spin modes, which are in principle
interacting,® but there are only a small number of massless scalar fields. In flat space, the

tower always contains an infinite number of massless scalars. These residual masses in our
setup are likely related to the presence of curvature and fluxes.

The origin of the tower is however clear: as gs — 0, the higher-spin fields are those
expected from a tensionless fundamental string. The density of the tower is moreover
linear, M£2 ~ £, which agrees with the flat space expectation, while that of a Kaluza—Klein
tower is M? ~ k? for sufficiently large k [53]. As we elaborate in the following section,
this is a very generic behaviour when a tower of higher-spin conserved currents appears in
the CFT, and lends credence to the expectation that infinite-distance points at fixed AdS
radius should not be decompactification limits.

One can also ask about the order of magnitude of a in equation (7.17). From (7.13) we
see that a, in equation (7.16) is, up to order one factors, given by a, ~ dim(SU(N))~'/2.
However, we recall that the relation between the moduli space metric and that of the
conformal manifold (7.4) introduces a dependence on (LMp;), which in turn depends on
N (7.9). This factor enters in the relation between ay, and o, which is nothing but taking
into account that they are measured in AdS and Planck units. All in all, we find that the
exponential rate is order one in Planck units:

a~ (LMp)*? oy ~ O(1). (7.19)

#For a review of the higher-spin/CFT duality, see e.g. [242]
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Before closing this section, let us come back to the issue of a well-defined supergravity
description. Parametric control is lost when LM, < 1, the scale at which the tower
of higher-spin modes falls below the one set by the AdS radius. To obtain an effective
description in that regime, it would be required to integrate out these fields in a consistent
way, and the new cut-off of the theory would be below the AdS scale. This does not seem to
be a meaningful description of the physics in AdS. This suggests that an infrared description
of quantum gravity in terms of AdS5 supergravity is not appropriate to describe an infinite-
distance limit, and such a point has to be located at the boundary of the quantum moduli
space. One is instead forced to go to the CFT dual to probe such a limit, where the theory
is free.

While A/ = 4 super-Yang-Mills and type IIB AdS5 x S® vacua are very constrained by
symmetries and their respective metrics can be understood throughout the entire moduli
space, they illustrate a behaviour that is quite universal: when a subsector of the theory
becomes free, an infinite number of higher-spin conserved currents always appear at that
point in the conformal manifold. In addition, single-trace operators, as the ones we used in
equation (7.18), are omnipresent in conformal gauge theories. It is also general that there
can only be a small number of scalar fields sitting at the BF bound, as the dual operators
must take the form Tr(¢?).

7.2 N =2 Conformal Manifolds in Four Dimensions

Strengthened by the observations made in the previous section, we would now like to
extend these arguments to theories with less supersymmetry. We will focus on theories
with sixteen real supercharges in the bulk, in particular those obtained by compactifying on
an orbifold of S°. In the SCFT dual, half of the five-dimensional supercharges are mapped
to superconformal generators, and one obtains four-dimensional N' = 2 SCFTs. Before
studying the infinite-distance points in both description in more details, let us review some
well-established facts about N = 2 theories.

As mentioned above, to be able to define a notion of distance on the conformal
manifold, Mgpr, the relevant object is the so-called Zamolodchikov metric, xy. Denoting
the set of all exactly marginal operators by O; and their associated coupling constants by
T;, it is defined as the coefficient of the two-point correlators of marginal operators:

(0:@)0l(n) ) ‘X_% (7.20)

Supersymmetry as well as the number of spacetime dimensions constrain the struc-
ture of the superconformal multiplets, the possible marginal deformations, and the proper-
ties of the metric. For N' = 2, a relevant class of multiplets are the chiral (resp. anti-chiral)
multiplets, denoted &, (resp. £_,), with 7 their U(1) charge. They have the property of
being annihilated by four of the supercharges:*

[Qaa: &) =0,  A=r. (7.21)

Our convention for the quantum numbers and the relevant notions pertaining to supercon-
formal multiplets and their primaries are reviewed briefly in appendix E.

4We use the nomenclature of A" = 2 superconformal multiplets of [243] and, by abuse of notation, also
denote their superconformal primaries by &,.
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These multiplets form a ring under the operator product expansion, and can be
used to probe a host of properties of a given SCF'T. For us, their importance comes from
the fact that the chiral ring contains the only possible marginal operator preserving eight
supercharges.

To be able to define the N' = 2 Zamolodchikov metric (7.20), an operator, O, must
satisfy the following properties: be exactly marginal, Ap = 4; be a singlet under the R-
symmetry group, SU(2)xU (1), namely (R, r) = (0,0); and annihilated by all supercharges,
Q,Q (up to total derivatives). Note that such an operator need not be a superconformal
primary, but simply a conformal primary. It turns out that in the case of four-dimensional
N = 2 theories the only such operator is the bottom component of & (or its conjugate)
[240,241]. This operator is indeed by definition annihilated by all anti-chiral supercharges,
@, and is reached from the superconformal primary by successive applications of the four
remaining supercharges, (). As each application of a supercharge increases the conformal
dimension by 1/2, it is also exactly marginal, A = 4. One can further verify that all these
marginal operators are then proportional to #- or gauge kinetic terms,

O=Q % ~Tr(FA*F +iFAF). (7.22)

When a Lagrangian description is available, the deformation term is obtained by integrating
the multiplet over superspace and corresponds to an F-term:

6L =1 /(d49(52)i +c.c. (7.23)

As such, the only possible marginal deformations preserving N' = 2 correspond to a modi-
fication of Yang—Mills couplings.

7.2.1 The Zamolodchikov Metric

From the discussion above, the conformal manifold metric is therefore related to the two-
point functions of the superconformal primaries of the chiral multiplets, &z g_g’j . The
structure of the conformal manifold of four-dimensional N' = 2 SCFTs is extremely con-
strained. It was indeed shown that superconformal symmetry imposes the conformal man-
ifold to be Hodge—Kéhler, and that its Kahler potential, K, is related to the partition
function on the four-sphere [244 246]:

xi; = 192 0,0;K , K =12log(Zg4). (7.24)
This is a very powerful statement, as the four-sphere partition function of such theories can
then be computed via localisation techniques [247]. Indeed, if the SCFT has a Lagrangian

description anywhere in the conformal manifold, the partition function can be written as
a an integral over the Cartan subalgebra, b, of the gauge group:

Zga(73,71) = [(daA(a) Za(a,) * (7.25)
where A(a) is the Vandermonde determinant, and the integrand factorises as

Zo = Zoa(a,7i) - Zaoop(@) - Zajinst (@, 75) - (7.26)
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The classical contribution is universal,

Zac(a) 2= exp <27TIH1(T)TTCL2> < (7.27)

while the one-loop and instanton contributions depend on the spectrum of the theory
under consideration. For the special subset of N' = 4 super-Yang-Mills theories, there are
no one-loop or instanton contributions, and the computation is reduced to performing a

Gaussian integral: .
2747, 7) ~ (Im7) ~4im@/2, (7.28)

Taking derivatives, one arrives again to the result advertised in equation (7.13).

For a generic N’ = 2 theory one can obtain the metric as a formal power series by
performing an expansion with respect to marginal couplings. This technique has been
used to find the perturbative expansion of the Zamolodchikov metric to high order in
SQCD [245,248] and the large-N limit of necklace theories [249].

7.2.2 The SDC and Weakly-gauged Points

It is easy to see that at any point of the manifold for which a subset {7,} of the marginal
couplings go to the free limit, Im7, — oo, the four-sphere partition function is dominated
by the classical term (7.27). After performing a change of variable, the contribution from
one-loop and instanton terms is negligible, and one recovers the same Gaussian integral
obtained for N' =4 (7.28) for each sector:

Zsa(r;) ~ [ 6&4(%) . asIm7, — 0o, (7.29)

a

We can now see that the behaviour we observed for N' = 4 is very generic in this
limit. We can again construct infinite towers of composite operators out of all possible
fields of the theory. In the N’ = 2 case, we now have as many directions as there are gauge
couplings—or equivalently chiral multiplets of R-charge two—setting the dimension of the
conformal manifold. The relevant operators will be those made out of combinations of ¢
appropriately-symmetrised derivatives and n scalars coming from the vector multiplets.®
Their conformal dimensions is then

Ao, , =n+L+y(T1,. .., Tdimm) - (7.30)

A particularity of operators constructed out of scalars coming from vector multiplets is
that any interaction term involving them will either come from gauged kinetic terms or
from F-terms, and therefore always involve powers of the coupling. In the limit where
Im7, — o0, the anomalous dimensions will be proportional to the gauge couplings, and
using the form of the Zamolodchikov metric (7.29) one finds:

Ao, , ~ n+4 £ 4 ne xPx(ma) (7.31)

Note that, while for N = 4 super-Yang—Mills the case-dependent coefficient  was a pure
number, it now can depend on the other couplings that are not taken to the free limit.

SNote that these operators must be bona fide conformal operators, i.e. eigen-operators of the dilatation
generator, and there will in general be mixing between operators with the same quantum numbers. This
point is irrelevant to our analysis, as we are only interested in the qualitative behaviour near the infinite-
distance point.
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We therefore obtain the same qualitative behaviour observed for N = 4: in the bulk
there is an infinite tower of scalar fields of mass (m,,L)?
required by Maldacena Zhiboedov theorem [234], there is also an infinite number of higher-
spin currents of the form (7.16) that become conserved. The latter class of operators are
again mapped to the bulk as an infinite tower of higher-spin modes becoming exponentially
light with the distance as in (7.17), as required by the SDC. Similarly, the density of the
tower being linear with the spin, we can again expect that these limits do not correspond
to a partial decompactification in the string theory description.

~ n?, but more importantly, and as

Since the tower of states satisfies the SDC, moving away from the “interior” of the
moduli space towards an infinite-distance point, the mass of the higher-spin states will
eventually fall below the constant AdS radius. Similarly to what happens in the case of
the moduli space of AdS5x S® discussed in the previous section, the supergravity regime will
again break down, and the appropriate description will be that of a weakly-coupled CFT.
As will be discussed shortly, superconformal representation theory severely restricts the
possible infinite-distance points of the conformal manifold. This means that moduli spaces
of consistent AdSs supergravity theories with sixteen supercharges does not contain any
infinite-distance points—at least of the type considered here—where an effective description
does not completely breaks down when taking into account quantum corrections.

This breakdown is in spirit similar to what happens in flat space when trying to
reach the small-volume point of Calabi—Yau moduli spaces. As one tries to approach it,
one leaves geometric phase of the moduli space, and the usual classical moduli are not
appropriate quantum variables, leading to a quantum obstruction. Such examples have
been studied in the context of the SDC in [49,53].

Conversely, an obvious difference with N' = 4 is that many of the operators will not
2o to their free value, even when they contain fields charged under the gauge group that
decouples. The anomalous dimension of such composite operators will generically not be
proportional to the associated couplings and there can be mixing with fields of another
sector, if for instance they are in the bifundamental representation of groups whose coupling
does not go in the free limit.

Having found a tower of states compatible with the SDC, we can now inquire about
the order of magnitude of the exponential rate, . One can consider several sectors de-
coupling at different paces, and this will be reflected in the value of o. Let us introduce a
parameter, t, describing the fastest gauge couplings satisfying Imr, — oco. Those going to
the same limit, but slower, can be described similarly by introducing an exponent, p,:

Im(r,) =tP*, 0<p, <1. (7.32)

Of course, p, = 1 only for the parameter—or family of parameters—going to the free limit
the fastest. We note that all these trajectories are geodesics, as can be seen by using flat
coordinates ®, ~ log(Im7,) with respect to the Zamolodchikov metric derived from (7.29)
and checking that they are straight lines.

Using (7.29) and (7.24) one can estimate the distance in the Zamolodchikov metric
in terms of this parameter, and then translate it to a distance in the moduli space using
(7.4). One proceeds in the same fashion as for N/ = 4 to obtain the usual logarithmic
behaviour, and a decay rate,

Lip)? \*
z{pgdﬂ(ga)) . (7.33)
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When the theory admits a point in the moduli space where a supergravity description in
terms of Kinstein gravity is available, we can estimate the value of LMp; by computing
the trace-anomaly coefficients of the CFT, a,c. Going through the usual holographic
computation, one obtains that at leading order in N, (LMp;)®> ~ a. The coefficients
further agree up to linear corrections in N, 24(a — ¢) = n, — ny, = O(N), where ny ,n,
correspond to the number of N’ = 2 hyper- and vector multiplets, respectively. For large-
enough values of N, the standard formulas therefore yield:

_ 5””2# ~ I %dim(g). (7.34)
Further gravitational corrections in the bulk will modify the value of the trace-anomaly
coefficients, but those will always be subleading in N and will not modify the overall
scaling. For our purpose, we can therefore use them to estimate the scaling of (LMp;)? in
terms of the dimension of the total gauge group:

1

dim(G) 7
_ _ . 7.35
Z(:Z dm(ga)) ( 73
We see that the denominator is bounded between dim(Gge..), the dimension of the gauge

subgroup decoupling the fastest which by assumption has p, = 1, and the dimension of
the total gauge group. For any free limit and large-enough groups, we find the bounds:

O < as< ((ﬁléf)))( (7.36)

This means that the exponential rate is always of order one in Planck units, or larger.
It is thus very easy to engineer limits with large o. For example a theory with gauge group
SU(N)X in the limit where a single SU(N) becomes free leads to:

a~VK. (7.37)

Note that while we focussed on N = 2 four-dimensional theories where the relations
between the trace-anomaly coefficients and the gauge group data are simple, estimating
LMp; in terms of group theoretical data of the gauge theory can be adapted mutatis
mutandis to studies in other dimensions, trading a, c for the appropriate quantities. We
therefore expect similar bounds in more general cases whenever a sector of the CFT de-
couples.

7.2.3 Beyond Free Points

If the Swampland Distance Conjecture is true, we expect infinite-distance points to be
associated with an infinite towers of massless states in the bulk. As we have seen, those
associated to a weak-gauge-coupling limit on the boundary CFT will have an infinite num-
ber of higher-spin conserved currents, as required by the Maldacena—Zhiboedov theorem.
One may then ask what type of behaviour one can expect beyond those where a sector
becomes free, if any.

For instance, one can consider a limit in which a tower of scalars become massless
in the bulk and whether it is at infinite distance. Via the dictionary (7.1) such a tower
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can only appear if there are points with additional marginal operators in the boundary,
which by N' = 2 superconformal representation theory only exists when there is a gauge
symmetry enhancements of the CFT. We can always move slightly away from the conformal
manifold onto the Coulomb branch by giving a vacuum expectation value to scalar fields
inside the vector multiplet. As the dimension of the Coulomb branch is an invariant of the
theory, the total rank of the gauge group is fixed and an infinite tower of scalars is not
possible. Beyond N = 2, we are not aware of any CFT exhibiting loci in the conformal
manifold where an infinite number of new marginal deformations appear. These towers
would be ideal candidates for Kaluza—Klein towers in the bulk and their apparent absence
again provides support to the expectation that the ADC and SDC directions in moduli
space are separate limits.

Another possibility is an enhancement of the flavour group of the CFT. This requires
a would-be flavour current to be part of a long multiplet that becomes short. As shown
in [250,251], an analysis of the recombination rules of long multiplets at threshold reveal
the only such possibility to be a superconformal multiplet of type CAO 11y This multiplet
contains a higher-spin conserved current, implying that there is again ‘é sector of the SCFT
that will decouple. It in turn means that the associated gauge enhaiicements in the bulk
are at infinite distance.

There are also strongly-coupled points in the conformal manifold that are at infinite
distance. These points are often free points in disguise, as there exists a duality transform-
ation to a frame where there is a weakly-coupled sector. Such examples are plentiful in
class S constructions, and we will consider specific cases in the next section.

While we are not able to show that there are no infinite-distance point that do not
correspond to a decoupling limit of a N = 2 SCFT, we are not aware of such a case. Using
localisation techniques, it is in principle feasible to compute the Zamolodchikov metric
in a non-perturbative regime by taking into account all loop and instanton corrections in

(7.26).

Finally, there cannot be compact smooth conformal manifolds with N' = 2 super-
symmetry |246|, thereby excluding cases that do not admit any free limit at all. There is
furthermore a conjecture stating that any n-dimensional A/ = 2 conformal manifold can be
obtained by gauging n simple factors of the flavour symmetry associated to SCFTs with
no marginal deformations [251|. In that sense, all the infinite-distance points studied in
this work correspond to reversing (partially or completely) the process by returning to a
flavour symmetry.

We close this section by noting that the results we have obtained carry to cases
with lower dimensions and supersymmetry. Whenever a sector of the CF'T becomes free
there will always be a tower of massless higher-spin fields in the bulk. However, this does
not mean that sending any marginal coupling to zero will involve a tower of the form
(7.16). Indeed let us imagine an N’ = 1 SCFT depending on two marginal parameters.
As marginal operators need not be gauge deformations in that case, sending one of the
parameters to zero does not imply that the anomalous dimensions of would-be conserved
currents also vanish. It might still depend non-trivially on the other parameter, depending
on the structure of the CFT, and the decoupled point could be at finite distance. While
there is a possibility that it may be at infinite distance and an SDC tower still exists, it
requires a further analysis of A/ = 1 superconformal representations, which we leave for
future works.
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Figure 7.1: Left: quiver representation for the Ay _1 necklace theory, with each node correspond-
ing to a N' = 2 vector multiplet and each line a hypermultiplet in the bifundamental of the adjacent
groups. Right: the torus with K minimal punctures, 7%, of the associated class S construction.

7.3 Orbifolds and N = 2 Necklace Quivers

In Section 7.2 we have reviewed the machinery of four-dimensional N' = 2 SCFTs to learn
about the possible behaviour of SDC towers in AdSs vacua with sixteen supercharges. To
understand the mechanisms responsible for the associated infinite-distance points in the
bulk, as well as exploring points that are a priori not free, we now turn to an explicit
construction in string theory, namely the family of AdSs; vacua obtained by type IIB
compactification on an orbifold of the form S%/T". In order to conserve sixteen supercharges
we are forced to consider the orbifold action to be an ADE-type discrete subgroup, I' C
SU(2). For simplicity we focus on the A-type series, that is, on backgrounds of the form
AdSs x S°/Zx.5 Other cases can be generalised straightforwardly.

The dual four-dimensional A" = 2 SCFT are the well-known necklace quiver theories
with gauge group G = SU(N)X [252,253], which are represented by the affine Dynkin
diagram AK—I; as depicted in figure 7.1. In addition to vector multiplets associated to each
gauge factor, there are also hypermultiplets transforming in bifundamental representations
of each pair of adjacent gauge factors. At large N, their Zamolodchikov metric was studied
in [249].

Necklace theories can be obtained by projecting out modes of NV = 4 super-Yang—
Mills theory with gauge group SU(KN) and it is natural that the complexified gauge
coupling of each gauge sector, 7;, is related to that of the parent theory, 7 [252]:

K
Ti:%, T:Zn. (7.38)
i=1

Recalling that 79 = 7 is the holographic dual of the axio-dilaton, we see that it is
controlling the overall complex gauge coupling in this setup. As each gauge coupling, 7;, is
again associated to a marginal deformation, we expect K — 1 additional complex moduli
in the bulk. To separate these from the axio-dilaton, we choose the following basis of
marginal couplings:

7i € {70, Ta} a=1,..., K —1. (7.39)

Since the axio-dilaton is the only moduli of the unorbifolded theory, the other moduli
should come from the twisted sector. Indeed, Zx C SU(2) does not act freely on the

fSeen as a constant-radius hypersurface on C?, the precise action of Z;, on the S° is given by (21, 22, 23) —

(627”/1(21’ 6727'rz/K'Z27 23>
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five-sphere, but leaves a circle S' C S° of singular fixed points after orbifolding. This leads
to a twist sector related to the K — 1 blow-up 2-cycles resolving these singularities. One
finds five scalars for each 2-cycle: two axions and three of geometric origin. It turns out
that the latter are stabilised by the potential, and consequently are not part of the moduli
space. Thus, as proposed in [252], the K — 1 complex moduli we are looking for are the
axions coming from the periods of the RR and NSNS 2-forms on the 2-cycles, b, and ¢,
respectively. We will assume them to be normalised to have period one. All in all, one
finds the following dictionary between the moduli and the marginal couplings:

Ta = Cq + T ba , (740)

or in terms of Yang Mills gauge couplings and theta-angles,

0, dm b,
2 = o+ b,Co s — = 41
5 = C + b,Co 2o (7.41)

a

Additional details on the duality between axions in the twisted sector and marginal coup-
lings can be found in [254-256].

Notice that tuning the vevs of these twist-sector moduli corresponds to a deformation
of the theory away from the one obtained by orbifolding AdSs x S°. Indeed, (7.38) is only
recovered when the vev of these axions correspond to the orbifold point [257],

cq =0, by, = —. (7.42)

There are various ways to reach an infinite-distance point by tuning the different moduli,
which as we will see will lead us away from the orbifold point to regions where the su-
pergravity description breaks down. The situation is similar to that of four-dimensional
N = 2 theories in flat space, as we can tune one or more moduli at the same time, leading
to different behaviours. We now analyse various limits and try to identify the associated
infinite towers of states, both in the bulk and the CFT.

7.3.1 Owverall Free Limit

From the definition of the moduli 7; it is straightforward to see that the simplest limits are
the ones for which all the gauge sectors are becoming free at the same rate. In the bulk,
this is controlled by the limit

Im(7) — o0, (7.43)

while by, ¢, and Cy are fixed. From the expression of the Zamolodchikov metric (7.29),
we see that this point is indeed at infinite distance, and we are in a situation similar to
that of section 7.1, where the fundamental Type IIB string becomes tensionless and weakly
coupled. In this particular case, we can also make use of type IIB SL(2,Z) duality to argue
that the same behaviour occurs when reaching the overall strong coupling limit, Im7 — 0
with all the other moduli constant.

There is again an infinite tower of higher-spin fields, dual to generalised currents,
Jyuy... e, becoming exponentially massless with the distance in Planck units:

M | gmao() (7.44)



7.8. Orbifolds and N = 2 Necklace Quivers

These massless higher-spin currents have an obvious interpretation in the bulk: they ori-
ginate from higher-spin excitations of tensionless fundamental strings. Moreover, being an
overall free limit in the CFT with all gauge sectors decoupling at the same rate, we know
from the discussion in section 7.2.1 that « is of order one.

Relaxing the condition b, = const, it is possible to also explore limits in which
different SU(N) sectors decouple at different rates. For this more general case we know
from (7.36) that a will be bounded between an order one number and /K, and can as a
result be parametrically large.

As in N = 4 SYM, but contrary to Minkowski backgrounds, only a small number
of scalar fields become massless, while using (7.31) and the AdS/CFT dictionary, all other
scalars have masses that are regularly spaced near the infinite-distance point:

M, 9
~n-. 7.45
Mp; ( )

This case is however quite special, as everything is controlled by the value of the
axio-dilaton and all fundamental fields of the CF'T are free in that limit. We can reach a
much richer network of infinite-distance point in moduli space by demanding that only a
strict subset of the moduli change over the path, which in the CFT corresponds to taking
only some of the gauge couplings to be free.

7.3.2 Strong-coupling Points and Dualities

Demanding the axio-dilaton to remain constant, tuning some—or all-—of the K — 1 re-
maining moduli to zero, we can reach a variety of new points in the conformal manifold:

T = const, ba,Cq — 0. (7.46)

One could naively expect this path to lead to a finite-distance point, as we are moving
in axionic directions. However, moving away from the orbifold point we cannot trust the
usual supergravity description, but we can use the dual CFT to nonetheless learn about
what happens in its neighbourhood.

Using the dictionary (7.41), sending the moduli to zero corresponds to keeping the
overall complex coupling fixed while taking the remaining K — 1 gauge sectors to strong
coupling:

To = const, Ja — 00, 0, — 0. (7.47)

Note that this limit also demands the #-angles to fall to zero. This setup was studied
in details in [258] using Gaiotto’s class S construction. In that framework, the necklace
quivers are realised as a compactification of the six-dimensional N = (2,0) SCFT of type
An_1 on a torus with K minimal regular punctures, TIQ(, depicted in figure 7.1.

From this point of view, a trajectory in the conformal manifold in which the axio-
dilaton is kept fixed corresponds to changing the relative position of the punctures, and the
limit above brings them all together, possibly at different rates. A key point of the class S
framework is that as one brings two punctures together, the torus develops a throat and
there exist an S-duality frame in which a sector of the theory becomes a weakly-coupled
gauge theory. Furthermore, this process is local, and does not depend on what happens in
the rest of the surface [259].
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Chapter 7. Tackling the SDC in AdS with CFTs

In the case at hand, one obtains a sector consisting of a strongly-interacting SCFT,
where the N' = (2,0) theory is compactified on a torus with a single puncture, connected
to a weakly-coupled gauge theory with gauge group [258]:

Gaee. C G = SU(2) x SU(3) x -+ x SU(K). (7.48)

We are therefore once again in the situation described around equation (7.31): the con-
formal dimensions of operators built out of fields in the weakly-coupled vector multiplets
have an anomalous dimension that is exponentially suppressed with the distance around the
point (7.46) in this particular duality frame, which is at infinite distance. The Maldacena
Zhiboedov theorem again requires the presence of an infinite tower of higher-spin conserved
currents.

In the bulk, we also have an infinite tower of higher-spin operators that become
massless exponentially fast in Planck units, My/Mp; ~ e~*P¢. The decay rate can then
be estimated using the bounds (7.36) in terms of the group theory data of the dual.

Let us comment on the stringy origin of these states. As b, and ¢, become small, so
does the tension of D3-branes wrapped on the blow-up cycles:

Ths ~ /2< |Gy + 7By| 222 ¢, (7.49)

One might be tempted to conclude that the massless higher-spin fields in the bulk come
from such tensionless strings, particularly in the context of the Emergent String Conjecture
[50]. However, little is known about the spectrum of these strings in AdS—in particular,
in flat space they are non-critical and do not give rise to an infinite number of massless
states—and we are therefore unable to make such a claim. The origin of the tower of states
remains elusive in these limits.

Intriguingly, it was proposed in [258] that there might be a dual description where
there is no tower of higher-spin modes in the bulk. There, part of the SCFT is associated
with a four-dimensional strongly-interacting gauge theory living on the boundary of AdSs,
which is then coupled to the rest of the bulk, i.e. to the rest of the type IIB spectrum.
At the point where the boundary SCFT becomes free, this gauge theory becomes weakly-
coupled. Therefore the higher-spin conserved currents in the boundary are not mapped to
massless higher-spin modes in the bulk, but to the higher-spin conserved currents of this
four-dimensional gauge theory. This possibility however involves choosing non-standard
boundary conditions, and the usual AdS/CFT dictionary does not apply. We leave an
exploration of such a description and its relation to the SDC for future works.

Classically, the limits we have been considering would be at finite distance and we
expect the infinite distance to be driven by quantum corrections.” We note that, similarly
to what happens in the case of AdS5 x S°, as we move away from the orbifold point by
tuning the axions, we leave the phase of the moduli space where the supergravity regime
is valid, and enter a phase where the CFT description is more appropriate.

The behaviours described above generalise to a wide zoo of class S examples. Given
a N = (2,0) six-dimensional SCFT of ADE type, one can reach a four-dimensional N’ = 2
SCFT by compactifying on a punctured compact Riemann surface [260], see [261] for a

"This can be seen by considering the moduli space as a truncation of the theory obtained by placing
the orbifold in flat space. For the latter, the moduli space is classically exact and our limits are known to
be at finite distance [258].
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review. The surfaces can then be constructed as 3-punctured spheres glued by tubes,
called “tinkertoys” [259,262]. For SCFTs of type Ay, the allowed collisions of punctures
leading to a weakly-coupled gauge sector have been studied in [263]. In some cases, one
can construct a weakly-curved holographic gravity dual from M-theory on a background
of the form AdSs x Xg. As for AdSs x S° and its orbifolds, the infinite-distance points will
be on the boundary of the moduli space where there supergravity regime has broken down
because the tower of state has reached a scale smaller than the AdS radius.

7.4 Summary

By studying the behaviour of states near a family of infinite-distance points in the mod-
uli space of AdS vacua, we have taken a first step towards a possible extension of the
Swampland Distance Conjecture to curved backgrounds. To that end, we have used the
power of the dual four-dimensional N' = 2 superconformal symmetry, which allows one to
reduce large classes of infinite-distance points to a case where a subsector of the SCFT
becomes free. While we are unable to claim that all infinite-distance points correspond to
free limits, we are not aware of possible counterexamples. In the bulk, there is then always
an infinite number of higher-spin modes becoming exponentially massless playing the role
of the SDC tower for AdS moduli spaces.

In flat space, the tower of light states indicates that the effective field theory de-
scription is no longer valid, and the SDC is parametrising how this breakdown occurs. By
contrast, we find that in the bulk this always happens before reaching the infinite-distance
point. For instance, this limit for AdSs x S® vacua is located in the highly-curved regime.
On general grounds, the SDC predicts that a tower of states will eventually fall below the
AdS scale and an effective description would need a lower cut-off. Should this not be an
appropriate description, it would mean that the landscape of AdS vacua in quantum grav-
ity cannot admit an effective field theory description when getting close to infinite-distance
points in moduli space, thereby strongly constraining the possible theories which can be
coupled to quantum gravity. Note that how close to the infinite-distance point one can go
with an effective theory depends on the AdS radius. In particular, it would be interesting
to relate the lack of effective description to the species scale, as is done in flat space [25].
In this context, the species scale controls the effective gravity coupling, and thus the size
of a typical quantum fluctuation around the background metric. If this logic applies to
AdS, when the species scale becomes smaller than the AdS scale, they are large compared
to the background, making a geometric description inconsistent.

For theories described by Einstein gravity at a point of the moduli space we have
also been able to find bounds for the exponential decay constant. It must always be at
least of order one in Planck units and is bounded from above by the ratio between the
dimensions of the total gauge group and the decoupled sector. It is therefore possible to
obtain a parametrically-large decay constant by engineering a small sector decoupling from
a large gauge group.

We have applied this analysis to orbifolds of S°, with the associated CFT being
described by necklace quivers. When all gauge nodes are decoupled, one finds a tensionless
fundamental string in the bulk. Using the class-S description of that SCF'T we were further
able to relate the behaviour of the SDC for individual strong-coupling points to that of
free limits via S-duality and found no other infinite-distance points. However, the stringy
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interpretation of the tower of states is less obvious in these cases: at these points, D3-branes
wrapped on blow-up two-cycles become tensionless, but their flat-space avatars are non-
critical strings and at finite distance in moduli space. Further, the effective description
has broken down well before reaching that point. A relation with the Emergent String
Conjecture [50] is therefore not conclusive, and calls for further analysis.

Many of the arguments we discussed here generalize to more arbitrary cases, with
and without supersymmetry, that admit a CFT dual. The Maldacena-Zhiboedov theorem
does not require supersymmetry and there will always be an infinite tower of higher-spin
states in a limit leading to subsector of the CFT becoming free. If the marginal de-
formation is identified with a gauge coupling along the conformal manifold, it will be at
infinite distance by looking at the Zamolodchikov metric and there will be exponentially
light states accompanying it. However, the structure of conformal manifolds greatly de-
pends on the spacetime dimension and number of supercharges. For instance, there are
no supersymmetry-preserving marginal deformations in six dimensions, which in the bulk
translates to all moduli being stabilised [264]. In lower dimensions however, there can
be marginal deformations that go beyond changing gauge coupling constants. One would
therefore expect to have a far richer network of infinite-distance points in these cases. It
might be very interesting to look for similar structures as the ones used in the context of
Hodge theory, see e.g. [45,46,141,148].

Furthermore, there also exists conformal manifolds which are compact, see e.g. [265].
While their holographic duals are not well understood, it would be interesting to see if the

requirements needed to have a compact manifold can be related to swampland constraints
in the bulk.

Unlike the Weak Gravity Conjecture, where black hole physics plays an important
role, the current understanding of the SDC comes principally from string theory. Using the
AdS/CFT correspondence therefore opens new avenues to explore this part of the Swamp-
land programme. For instance, unitarity constraints and other features of superconformal
symmetry might shed new light on the origin of the various conjectures and how they are
related.
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Conclusions and Outlook

The goal of this thesis has been to push the limits of the Swampland Distance Conjecture
by studying it from two new perspectives. Parts IT and III have been dedicated to two
types of spacetime varying configurations exploring infinite field distance. The motivation
is to extend the SDC to this context, where it becomes phenomenologically relevant. In
part IV the conjecture was put into test in AdS/CFT. Importantly, this opens up a new
window for getting evidence and understanding it. In what follows, we summarize the
main results of each part, putting emphasis in the future directions that are left open.

We started in chapter 3 with a first example of running solution. This one is par-
ticularly interesting since it goes against the naive extension of the SDC to this context.
Indeed, there is no tower of states becoming exponentially light as infinite field distance
is explored. This however did not translate to a violation of the conjecture in its usual
formulation. The SDC is satisfied for geodesics in the field space of the effective field
theory, but the running solution explores a highly non-geodesic trajectory that delays the
falloff of the tower. For this, it is was crucial that the dilaton could not be integrated out
from the effective field theory describing the dynamics of the running solution. Motiv-
ated by this interesting mechanism, we proposed in chapter 4 that consistency of the SDC
along the RG flow of the theory imposes constraints on the potentials that are attainable
in quantum gravity. It should not happen that a potential has a valley exploring a non-
geodesic trajectory as the one in chapter 3. Otherwise one could obtain an EFT containing
only a scalar and no tower of exponentially light states at infinite field distance. In order
to characterize these forbidden trajectories we introduced a geometric formulation of the
SDC. Interestingly, we also showed that this is equivalent to a convex hull condition & la
Convex Hull WGC and in the spirit of the Scalar WGC. These results appearing in part
IT leave several interesting avenues for future research:

e The solution in chapter 3 has negative vacuum energy and space-like dependent
profiles for the fields. For phenomenological reasons, it would be interesting to find
similar ones but with positive vacuum energy and with time-like dependence.

e It would also be exciting to strengthen the connection between the Convex Hull SDC
introduced in chapter 4, the Convex Hull WGC |82 and the Scalar WGC |[71]. This
could be a way of clarifying the nature of the extremal region in the Convex Hull
SDC, and could eventually provide a bottom-up rationale for the SDC.

e Finally, further exploring the constraints put by the SDC on potentials can lead
to connections to other Swampland conjectures, such as the de Sitter conjectures
[157,213,216] or the TCC [37].

131



Chapter 8. Conclusions and Outlook

In part III we moved to another type of running solutions dubbed dynamical cobor-
disms. They were first introduced in [158] as dynamical realizations of the cobordisms of
the Cobordism Conjecture [63]. In chapter 5 we argued for a relation between the type of
cobordism and the field space distance explored in setups with dynamical tadpoles. It is
natural that interpolating domain walls, in which spacetime continues across the wall, are
related to scalars staying at finite distance. On the other hand, walls of nothing capping off
spacetime beyond them correspond to scalars exploring infinite field distance. The latter
kind of solutions were further studied in chapter 6. The universal scaling relations

Awe_%6D¢, |R| ~ e?Pe (8.1)

were found in several examples in string theory. Moreover, a bottom-up effective field
theory approach revealed a relation between these scalings and having exponential poten-
tials at infinite field distance limits. Potentials with this property are ubiquitous in string
theory as well. There are several interesting open question for the future:

e We have mainly focused on space-dependent running solutions. It is clearly inter-
esting to consider time-dependent solutions, extending existing results in the liter-
ature [159-165,188|, and exploit them in applications, in particular with an eye on
possible implications for inflationary models or quintessence.

e The appearance of an universal behaviour as infinite field distance is explored in dy-
namical cobordisms to nothing calls for a relation to the universal behaviour of the
SDC. For instance, the lowered cutoff of the SDC could be related to the resolution
of the singularity in the effective field theory description of the dynamical cobordism.
On the other hand, the relation between these scalings and the presence of exponen-
tial potentials reveals a tantalizing link to the de Sitter conjectures [157,213,216] or
the TCC [37]. It would be interesting to further explore these connections.

e When combining the exponential behaviour of the SDC with the universal scalings
for the scalar curvature, we obtained an ADC-like scaling relation in (6.145). Its ap-
pearance possibly signals an underlying improved understanding of infinite distance
limits in dynamical (rather than adiabatic) configurations. As shown in chapter 3,
the r — oo limit in the Klebanov-Strassler solution [112]| avoids the appearance of
a tower of states becoming massless exponentially with the distance. However, as
dictated by the lack of separation of scales in this model, an ADC-like scaling is yet
respected as the scalar curvature goes to zero in this limit. This could point to a
more universal way of writing the SDC in dynamical configurations.

Changing topics, in part IV we started the study of the SDC in the context of
AdS/CFT. From the CFT perspective, all the infinite distance limits that we considered
were such that a subsector of the theory decoupled. In these cases, the tower of states is
given by the higher-spin conserved currents that are always present in these limits. We
showed that this is very generic in the context of 4d N/ = 2 theories. For those with
Einstein gravity duals, we were able to show that the exponential decay rate is always
larger than an order one constant. Unlike in the flat space case, it is however easy to build
examples in which it is parametrically large. We studied in more detail some particular
examples whose gravity duals are known in string theory. They realized the possibility
of having parametrically large exponential decay rate a for the SDC. Furthermore, there
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were limits in which the infinite field space distance is generated by quantum corrections,
in the sense that they are at finite distance in the classical supergravity description. The
stringy object giving rise to the tower of states in these same limits remained unclear, but
we proposed some interesting candidates. The results of this part leave very promising
future directions:

e It would be very interesting to exploit the CF'T machinery to test (or even prove) the
SDC in AdS/CFT. For example, there are conformal perturbation theory techniques
describing how the CFT data changes along the conformal manifold. They are very
general, as no specific number of dimensions or amount of supersymmetry is assumed,
and seem to be a perfect fit for testing the SDC from the CFT.

e In a similar fashion, one can try to import techniques that has been useful to study
the SDC in flat space to the conformal manifold. A lot of research has been focused
in exploiting the consequences of monodromies around the infinite distance loci (see
e.g. [45,46]). It would be interesting to find and describe these kind of monodromies
around weak coupling loci in conformal manifolds. This could lead to an useful
description of weakly-coupled CFTs.

e Finally, it would be exciting to clarify the string theory origin of the tower of states
in the orbifold theories discussed in section 7.3. The only candidate that was found
is a non-critical string when propagating in 6d flat space. It would be extremely
interesting to check whether it can give rise to an infinite number of states when
being put in AdSs x S*.

Let us close this thesis remarking how fruitful it is to push the limits of the Swamp-
land conjectures. By testing and studying the SDC outside of its strict regime of validity,
we have been able to find unexpected implications, obtain promising connections to other
conjectures, and even open a whole new window to test and understand the conjecture.
Looking for quantum gravity imprints at low energies is at the very core of the Swampland
program. This can not only grant us with a deeper understanding about quantum gravity,
but also with some plausible experimental test for these ideas. For this reason, extending
the limits of validity of the Swampland conjectures is crucial both from the theoretical
and the phenomenological side. We hope that the results presented in this thesis serve as
motivation to keep pushing these limits in future research.
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Conclusiones y Perspectivas

El objetivo de esta tesis ha sido empujar los limites de la Conjetura de la Distancia estudian-
dola desde dos nuevas perspectivas. En las partes Il y III hemos estudiado dos tipos de
configuraciones dindmicas que exploran distancia de campos infinita en espacio-tiempo. La
motivacion es extender la SDC a este contexto, donde se vuelve relevante para modelos
fenomenologicos. En la parte IV hemos testeado la conjetura en AdS/CFT. Esto abre una
nueva serie de escenarios en los que buscar evidencia y entender la conjetura. A continua-
cién resumimos los resultados principales de cada parte, poniendo énfasis en las preguntas
que han quedado abiertas para el futuro.

Empezamos en el capitulo 3 con un primer ejemplo de solucién dinamica. Esta es
especialmente interesante, ya que va en contra de la extensién mas directa de la conjetura
a este contexto. No hay una torre de estados volviéndose ligera exponencialmente al
explorar distancia de campos infinita. Sin embargo, esto no se tradujo en una violacién de
la conjetura en su formulacién original. La SDC se cumple para las geodésicas en el espacio
de campos de la teoria efectiva, pero la soluciéon dindmica explora una trayectoria altamente
no geodésica que retrasa la caida de la torre. Para que esto funcionara, fue crucial que
el dilatén no se pudiera integrar fuera de la teoria efectiva de campos que usamos para
describir la dindmica de la solucién. Con este mecanismo como motivacion, en el capitulo
4 se propuso que el que la SDC sea consistente a lo largo del flujo de renormalizacion de
la teoria impone ciertos requisitos sobre los potenciales que pueden aparecer en teorias
de gravedad cuantica. No debe ocurrir que el potencial tenga un valle que explore una
trayectoria no geodésica como la que aparecié en el capitulo 3. De lo contrario, uno podria
hallar una teorfa efectiva de campos que solo contenga un escalar y sin ninguna torre
de estados exponencialmente ligera a distancia de campos infinita. Para describir estas
trayectorias prohibidas introdujimos una formulacién geométrica de la SDC. Un aspecto
interesante de esta es que es equivalente a la condicién sobre la envolvente convexa de
la Convex Hull WGC pero usando cantidades que aparecen en la Scalar WGC. Estos
resultados de la parte II dejan varias direcciones abiertas para investigaciones futuras:

e La solucion del capitulo 3 tiene energia de vacio negativa y los campos tienen de-
pendencia de tipo espacial. Por razones fenomenoldgicas, seria interesante encontrar
soluciones similares con energia de vacio positiva y dependencia de tipo temporal.

e También es sugerente tratar de fortalecer la conexion entre la Convex Hull SDC
introducida en el capitulo 4, la Convex Hull WGC [82] y la Scalar WGC [71]. Esto
podria llevar a entender mejor la naturaleza de la region extremal de la Convex Hull
SDC, y eventualmente podria llevarnos a una razén fundamental por la que la SDC
deberia cumplirse.

e Por ultimo, explorar méas a fondo los requisitos puestos por la SDC sobre los po-
tenciales puede llevar a conexiones con otras conjeturas tales como la del de Sit-
ter [157,213,216] o la TCC [37].

En la parte 111 pasamos a otro tipo de solucién dindmica conocida como cobordismos
dinamicos. Estos fueron introducidos por primera vez en [158| como descripciones dindm-
icas de los cobordismos de la Conjetura del Cobordismo [63]. En el capitulo 5 presentamos
una relacion entre el tipo de cobordismo y la distancia de campos explorada en teorias con
renacuajos dinadmicos. Los muros de dominio, en los que el espacio-tiempo continua tras el
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muro, estan relacionados con escalares que permanecen a distancia finita. Por otro lado,
los muros de la nada que acaban con el espacio-tiempo corresponden a escalares explorando
distancia de campos infinita. Soluciones de este tltimo tipo fueron estudiadas més a fondo
en el capitulo 6. Comprobamos las relaciones de escala universales

A~ e_%‘SDﬂ |R| ~ e?Pe (8.2)

en muchos modelos en teoria de cuerdas. Mas atn, un andlisis en teorias efectivas de
campos genéricas nos revelé que estas relaciones estdn conectadas con tener potenciales
exponenciales en los limites a distancia de campos infinita. Este tipo de potenciales son
omnipresentes en teoria de cuerdas también. Hay varias preguntas sin resolver para el
futuro:

e Hasta ahora nos hemos centrado en soluciones con dependencia de tipo espacial. Seria
interesante considerar soluciones con dependencia de tipo temporal, extendiendo los
resultados ya existentes en la literatura [159-165,188|. El objetivo es buscar posibles
aplicaciones, en particular prestando atencién a posibles implicaciones para modelos
inflacionarios o de quintaesencia.

e Haber encontrado un comportamiento universal al explorar distancia de campos in-
finita en cobordismos dindmicos a la nada sugiere una relaciéon con el comportamiento
universal que predice la SDC. Por ejemplo, la validez reducida asociada a la SDC
podria estar relacionada con la resolucién de la singularidad que aparece en la descrip-
cion del cobordismo dindmico en teoria efectiva de campos. Por otro lado, la relacién
entre las relaciones de escala y la presencia de potenciales exponenciales revela una
posible conexion con las conjeturas del de Sitter [157,213,216] o la TCC [37]. Seria
interesante explorar estas conexiones méas en profundidad.

e Al combinar el comportamiento exponencial en la SDC con la relacion de escala
para el escalar de curvatura, obtuvimos una relacion de escala como la de la ADC en
(6.145). Esto posiblemente apunta hacia una mejor manera de comprender los limites
a distancia infinita en configuraciones dindmicas (en vez de adiabaticas). Tal y como
mostramos en el capitulo 3, el limite » — oo en la solucion Klebanov-Strassler [112]
evita la aparicién de la torre de estados volviéndose ligera de forma exponencial con
la distancia. Sin embargo, tal y como dicta la falta de separacion de escalas en este
modelo, la relacion de escalas del tipo ADC sigue satisfaciéndose en este limite en el
que el escalar de curvatura va a cero. Esto podria sefialar a una forma mas universal
de escribir la SDC en configuraciones dinamicas.

Cambiando de tema, en la parte IV comenzamos a estudiar la SDC en AdS/CFT.
Desde la perspectiva de la CFT, todos los limites a distancia infinita que consideramos eran
tal que un sector de la teoria se desacoplaba. En estos casos, la torre de estados viene dada
por las corrientes conservadas de espin alto que siempre estédn presentes en estos limites.
Mostramos que esto es muy genérico en teorias en 4d y con NV = 2. Para aquellas con
duales gravitacionales de tipo Einstein, fuimos capaces de poner una cota inferior de orden
uno sobre la velocidad de caida exponencial. A diferencia de en el caso de espacio plano, es
bastante facil construir ejemplos en los que esta cantidad puede ser arbitrariamente grande.
Estudiamos més a fondo algunos ejemplos cuyo dual gravitacional es conocido en teoria de
cuerdas. En ellos se podia encontrar velocidades de caida exponencial a paramétricamente
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grandes para la SDC. Ademas, habia limites en los que la distancia infinita era generada
por correcciones cuanticas. Esto quiere decir que estos mismos limites estan a distancia
finita en la descripcion clasica en supergravedad. No quedd claro cual es el objeto cuerdoso
del que nace la torre de estados en estos mismos limites, pero propusimos un candidato muy
interesante. Los resultados de esta parte dejan lineas de investigaciéon muy prometedoras
para el futuro:

e Serfa interesante explotar las herramientas desarrolladas para estudiar CFTs para
poner a prueba la SDC en AdS/CFT. Por ejemplo, la teoria de perturbaciones con-
formes describe como la CFT cambia al moverse por la variedad conforme. Estas
técnicas son muy generales, ya que no especifican el nimero de dimensiones ni asu-
men ninguna cantidad de supersimetria, y parecen perfectas para testear la SDC
desde la CFT.

e Delamisma manera, se puede intentar importar técnicas que han sido muy ttiles para
estudiar la SDC en espacio plano a la variedad conforme. Se ha desarrollado mucha
investigacion alrededor de las consecuencias que tienen las monodromfas alrededor de
los puntos a distancia infinita (véase por ejemplo [45,46]). Seria fascinante encontrar y
describir este tipo de monodromias alrededor de puntos de acople débil en variedades
conformes. Esto podria resultar en una descripciéon muy util para CFTs débilmente
acopladas.

e Por iltimo, seria fascinante aclarar el origen en teoria de cuerdas de la torre de estados
en las teorfas tipo 6rbifold que comentamos en la secciéon 7.3. Kl tnico candidato
que encontramos es una cuerda no critica cuando se propaga en espacio plano. Seria
extremadamente interesante comprobar si esta puede dar lugar a un ntimero infinito
de estados cuando es puesta en AdSs x S'.

Cerramos esta tesis haciendo hincapié en lo fructifero que es empujar los limites de
las conjeturas de la Ciénaga. Poniendo a prueba y estudiando la SDC fuera de su régimen
de validez estricto, hemos sido capaces de encontrar implicaciones inesperadas, de obtener
prometedoras conexiones con otras conjeturas e incluso de establecer un nuevo contexto
en el que aprender sobre ella. Buscar consecuencias que tiene gravedad cudntica en la
fisica de bajas energias es algo central en el programa Ciénaga. Esto no solo nos puede
ayudar a entender mejor como funciona la gravedad a nivel cuantico, sino que también
nos puede revelar algin experimento que sea plausible de llevar a cabo y que ponga a
prueba estas ideas. Por este motivo, extender los limites de validez de las conjeturas de la
Ciénaga es crucial tanto desde el punto de vista tedrico como fenomenologico. Esperamos
que los resultados presentados en esta tesis sirvan de motivacién para seguir empujando
estos limites en futuras investigaciones.
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Periodic crossing and the dual Hanany-Witten
picture

In this section we discuss a T-dual realization of the KS duality cascade, in terms of
the NS5- and D4-brane configurations [255] realizing 4d gauge theories a la Hanany-
Witten [266]. The picture is similar to that mentioned in [97], albeit with additional
relevant refinements. The configuration is flat 10d space with one dimension, labelled 6,
compactified on an S'. There is one NS5-brane along the directions 012345 (and at the
origin in 89), and one NSh-brane (denoted NS5’) along the directions 012389 (and at the
origin in 45), with D4-branes along 0123 and suspended among them in 6 (and at the
origin in 4589), in a compact version of [267]. The positions of all branes in the directions
7 are taken equal. The numbers of D4-branes at each side of the interval are N and N + M
respectively. The scalar ¢ corresponds to the distance (in units of 27 the radius of S')
between the NS and the NS’-branes, so it has periodicity ¢ ~ ¢ + 1. In a naive descrip-
tion, as the scalar winds around its period, the crossings of the NS and NS’-branes produce
Seiberg dualities that complete a full cycle in the duality cascade. This naive picture would
seem to suggest that each crossing leads to additional light degrees of freedom, which could
spoil the axion monodromy, or at least its description in terms of an effective action not
including these new modes. However, the actual picture is somewhat more intricate and
is free of these problems. The answer lies in the phenomenon of brane bending in [255],
which implies that the M additional D4-branes on one of the intervals forces the NS- and
NS’-branes to bend. This bending has a logarithmic dependence, and is a long distance
result of the description of the whole system as a single M5-brane in a holomorphic curve in
the M-theory lift of the configuration [255,268]. In A/ = 2 4d theories, this corresponds in
a precise manner to the field theory running of gauge couplings on the Coulomb branch. In
the present N' = 1 setup, the RG direction (to become the radius in the gravitational dual
side) can be thought of as the radial distance away from the point z* = 2° =28 =29 =0
at which all branes are located. Then, there is a logarithmic bending of the positions of
the NS- and NS’-branes in the directions 6, which matches the above naive description.
However, the other positions of the NS- and NS’-branes in the other directions do not
coincide, hence no actual crossing of branes occurs. The discussion of Seiberg dualities

carries over but in this more precise sense. The phenomenon is similar to the discussion
in [269].
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Holographic Examples of Dynamical Cobordisms

In [158] it was shown that Dynamical Cobordism underlies the structure of the gravity
dual of the SU(N) x SU(N + M) conifold theory, namely fractional brane deformation
of AdSs x Th'. This in fact explains the appearance of a singularity at finite radial
distance [111] and its smoothing out into a configuration capping of the warped throat [112],
as a cobordism wall of nothing. In this appendix we provide some examples of other
warped throat configurations which illustrate the appearance of other cobordism walls
of nothing, and cobordism domain walls interpolating between theories corresponding to
compactification on horizons of different topology. The discussion is strongly inspired by
the constructions in [124] (see also [129]).

2.1 Domain wall to a new vacuum

As a first example we consider a configuration in which a running of the conifold theory
hits a wall (given by the tip of a KS throat) interpolating to an AdSs x S® vacuum. The
latter is the maximally symmetric solution of a theory at the bottom of its potential, i.e.
with no dynamical tadpole. We carry out the discussion in terms of the dual field theory,
which translates easily into the just explained gravity picture. The dilaton is constant in
the whole configuration, so we skip factors of gs.

Consider the conifold theory with SU(N) x SU(N + M) at some scale, i.e. at some
position r there are N units of 5-form flux and M units of 3-form flux. The Klebanov-
Tseytlin solution [111] gives a running for the effective flux

N(r) = N+ M?*log(r), (B.1)
and we get a singu at a value rg defined by
N+ Mlogrg=0 = rg=¢ VM (B.2)

Naively, the singularity would seem to be smoothed out into a purely geometric background
with a finite size S3. Indeed, this is the full story if N is multiple of M, namely N = K M:
in the field theory, the SU(KM) x SU(KM + M) theory suffers a cascade of K Seiberg
dualities in which K decreases by one unit in each step. Morally, the cascade ends when the
effective K = 0 and then we just have a pure SU(M) SYM, which confines and develops
a mass gap. This is the end of the RG flow, with no more running, hence the spacetime in
capped off in the IR region of the dual throat.

However, as also noticed in [112], the story is slightly different if N = KM + P.
After the K steps in the duality cascade, one is left over with an SU(P) gauge theory with
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Appendiz B. Holographic Examples of Dynamical Cobordisms

three complex scalar degrees of freedom parametrizing a deformed mesonic moduli space
corresponding to (the symmetrization of P copies of) the deformed conifold. This gauge
theory flows to N/ =4 SU(P) SYM in the infrared, which is a conformal theory. In the
parameter range 1 < P < M < N, the whole configuration admits a weakly coupled
supergravity dual given by a KS throat at which infrared region we have a finite size S3,
at which P D3-branes (which we take coincident) would be located; however, since P is
large, they backreact and carve out a further AdSs x S® with P units of RR 5-form flux,
which continues the radial direction beyond the KS throat endpoint region. Hence, this
region acts as an interpolating domain wall between two different (but cobordant) theories,
namely the conifold throat (with a dynamical tadpole from the fractional brane charge),
and the AdS; x S® vacuum (with no tadpole, and preserving maximal symmetry). The
picture is summarized in Figure B.1

a) é 2 é
_// S3
AdS
Vacuum
Running Running

Solution
Solution

Figure B.1: Domain wall interpolating between the conifold theory with fractional branes, and
an AdS vacuum. Figure a) shows a heuristic intermediate step of a KS solution with a number
P of left-over probe D3-branes. If P is large, the appropriate description requires including the
backreaction of the D3-branes, which lead to a further AdS throat, to the left of the picture in
Figure b). Hence the running of the dynamical tadpole in the right hand side ends in a domain
wall separating it from an AdS vacuum.

2.2 Domain wall to a new running solution

Running can lead to an interpolating domain wall, across which we find not a vacuum, but
a different running solution (subsequently hitting a wall of nothing, other interpolating
domain walls, or just some AdS vacuum). We now illustrate this idea with an example of
a running solution A hitting a domain wall interpolating to a second running solution B,
which subsequently hits a wall of nothing. The example is based on the multi-flux throat
construction in [124] (whose dimer picture is given in [270]). It is easy to devise other
generalizations displaying the different behaviours mentioned above.

Consider the system of D3-branes at the singularity given by the complex cone over
dPs. The gauge theory is described by the quiver and dimer diagrams' in Figure B.2.

!'For references, see [129,271-273].
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2.2. Domain wall to a new running solution

Figure B.2: The quiver and dimer diagrams describing the gauge theory on D3-branes at the tip
of the complex cone over dPs.

We can add fractional branes, i.e. rank assignments compatible with cancellation of
non-abelian anomalies. There are several choices, corresponding to different fluxes on the
3-cycles in the dual gravitational theory. Some of them correspond to 3-cycles which can
be grown out of the singular origin to provide a complex deformation of the CY. These
are described as the splitting of the web diagram into sub-webs in equilibrium, see [270].
In particular we focus on the complex deformation of complex cone over dPs to a conifold,
see the web diagram in Figure B.3.

N+M
a) b) ;
N+P 6 2 N
N 5 3 N+P
4
N+M

Figure B.3: a) Web diagram of the complex cone over dP; splitting into three sub-webs. b) Rank
assignment (fractional branes) that trigger those complex deformations.

There are two kinds of fractional branes, associated to M and P. In the gravity
dual, these correspond to RR 3-form fluxes on 3-cycles (obtained by an S! fibration over
a 2-cycle on dPs), and there are NSNS 3-form fluxes in the dual 3-cycles. These are non-
compact, namely they span a 2-cycle (dual to the earlier 2-cycle in dPs) and the radial
direction. For more details about the quantitative formulas of this kind of solution, see
Section 5 of [123].
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Appendiz B. Holographic Examples of Dynamical Cobordisms

If we focus in the regime? P < M, then the larger flux M implies a larger corres-
ponding component of the Hs flux, which means a faster running of the corresponding 5d
NSNS axion. The axion associated to the flux P also runs, but more slowly. In the field
theory, the duality cascade is controlled by M, so that N is reduced in multiples of M (at
leading order in P/M). When N is exhausted we are left with a rank assignment as given
in Figure B.4a. The result of the strong dynamics triggered by M can be worked out in
field theory as in [124] or using dimers as in [270]. All the info about this last description
is in Figure B.4b.

z
T
O\’U
kS
05
3

b)

Figure B.4: a) Quiver of the dPs theory in the last step of the first cascade, which turns into the
conifold upon strong dynamics of the nodes 1 and 4. b) Same story in the dimer picture.

The result is a conifold theory with M regular branes and P fractional branes. This
is the standard KS story (with just different labels for the branes): M decreases in sets
of P until it is exhausted, then the running stops due to strong dynamics. In the gravity
dual, we have a KS throat sticking out and spacetime ends on the usual S? (alternatively,
if M is not a multiple of P, there is a number P of leftover D3-branes, which, if large,
can trigger a further AdS throat as in Section 2.1. A sketch of the gravity dual picture is
shown in Figure B.5.

Note that this kind of domain wall interpolates into two topologically different com-
pactifications. As we cross it, the compactification space changes, and the spectrum of
light fields changes (at the massless level, one of the axions ceases to exist). In this sense,
it is a cobordism domain wall connecting two different quantum gravity theories [63].

2Note that in [124] the regime is the opposite, but both kinds of fractional branes are similar, so the
result is the same up to relabeling.
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2.8. Cobordism domain walls to disconnected solutions

Conifold
Nothing Running dP3
Solution Running

Solution

Figure B.5: Domain wall interpolating between the theory on dPs; with (M + P) fractional
branes, and a conifold theory with M regular branes and P fractional ones. The running of one of
the dynamical tadpoles in the dP3 theory stops at the wall but the other continues running until
it reaches the S3 at the bottom of the KS throat.

2.3 Cobordism domain walls to disconnected solutions

The construction of singularities admitting complicated patterns of complex deformations
(or resolutions) can be carried out systematically for toric singularities, using the tech-
niques in [129]. This can be used to build sequences of domain walls realizing a plethora
of possibilities. For our last class of examples, we consider cobordism domain walls to
disconnected theories.

This has already been realized in the geometry used in [105] to build a bifid throat,
i.e. two throats at the bottom of a throat, see Figure B.6. These had been proposed
in [98] as possible hosts of axion monodromy inflation models (see [97,101,102,119,207]
for additional references).

Actually, a far simpler way of getting a running solution with a domain wall to a
disconnected set of e.g. vacua is to consider the KS setup in Section 2.1, with the P
leftover D3-branes split into two stacks P and P, of D3-branes at separated locations
on the 8% (with P;, P, > 1). This corresponds to turning on a vev v for a Higgsing
SU(P) — SU(Py) x SU(P,) (with P + P, = P) with a scale for v much smaller than
the scale of confinement A of the original SU(KM + P) x SU(KM + M + P) theory.
In the gravity dual, we have a running solution in the holographic direction, towards low
energies; upon reaching A, we have the S? domain wall, out of which we have one AdSs x S°-
like vacuum (with flux P), until we hit the scale v, and the single throat splits into two
AdS5 x S® throats (with fluxes P, P,). If v ~ A, the splitting of throats happens in the
same regime as the domain wall ending the run of the initial solution. This is depicted in
Figure B.7.
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—
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Running
Nothing Disconnected .
Solution Running
Solution

Figure B.6: Picture of a bifid throat. It represents a domain wall implementing a cobordism
between one theory and a disconnected set of two quantum gravity theories.
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Figure B.7: Picture of a bifid throat with two AdS tongues. It represents a domain wall imple-
menting a cobordism between one theory and a disconnected set of two AdS theories.
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Local Dynamical Cobordisms with curved
(d — 1)-dimensional slices

3.1 General analysis for curved slices

We can generalize the discussion in Section 6.1 to the case in which the ETW brane has
constant internal curvature R;. Namely we take the foliation ansatz (6.3) with ds?_,
describing a constant curvature (d — 1)-dimensional metric. The equations of motion read

(d=1)v2(V-V)o —03V; =0, (C.1)
1 1
d—=1)(d— 2)o’'? +V; — 5620Rd =0, (C.2)

(d—2)o" —2(V —-V;) — ¢*Ry=0, (C.3)

d—1

where we have again introduced the tunneling potential defined in (6.7).

For R; # 0, it is still possible to eliminate ¢ by combining the first two equations
(and their derivatives):

2
26V~ (d = 1)0V) 0uVi = 2(d — 1)(Vi ~ V) [{w + g =V - (-2
(C.4)
Importantly, in this derivation we need to assume Ry # 0, so that we do not expect to
necessarily recover the results in section 6.1.

Restricting to the case V' = aV4, with a a constant, we find that the solution to this
equation is

92

a(d—1)+2—d

(a(d—1) +2 — d)¢ )

Vi = —c | cosh
) V(1 —a)(d—2)(d-1)

: (C.5)

where we have ignored an integration constant that is irrelevant for the ¢ — oo limit.

Notice that, for a > 1, the coefficient in front of ¢ becomes imaginary and then
what we have is a cosine, rather than a hyperbolic cosine. As we are not interested in
this behaviour we from now on require a < 1. From computing ¢'? from this solution and
requiring that it must be positive, we then learn that we must have ¢ > 0.

In addition, as we are interested in ETW branes, we want to require that ¢? blows
up as ¢ — oo. This is equivalent to having |V;| — oo in this same limit, which in turn
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Appendiz C. Local Dynamical Cobordisms with curved (d — 1)-dimensional slices

implies that the power in (C.5) must be positive. This gives us that the only ETW brane

solutions are for a < %. For this range of a, we can approximate the hyperbolic cosine

by an exponential (as we are interested in the limit ¢ — co) and we have

2
2_a(d—1)+27d

(L @d-n 2 e
Vt(gﬁ)_ (p \/(1—a)(d—2)(d—1)> < . (C.6)

The coefficient § is

-1
0 =2 2(1—@). (C.7)
So for a < % the case of a ETW brane with internal curvature coincides with the case
studied in the paper. Interestingly, this case turns out to be more restrictive than the
R4 = 0 one, for which any a < 1 described an ETW brane.
d—2

This solution was also assuming that a # 9=7. Plugging that particular value in

(C.4), we find that the equation of motion simplifies to
(05V2)* = Vi - O3V, (C.8)

This equation has the solution

Vi = —ce®?, (C.9)

with ¢ and ¢ arbitrary constants. In order to describe an ETW brane we require § > 0.
Interestingly, for this special value of @ with Ry # 0, we find that we recover the exponential
behaviour, but with the freedom of choosing the critical exponent 6.

In both cases we find the same exponential behaviour for V;. Therefore, just as in
section 6.1.2, we find that the potential takes the form

V(p) ~ —ace’®. (C.10)
However, here we uncover that, for a given potential of this form, the setup with Ry # 0
allows for two possible values of a, namely the a < % given in (C.7)), or the value

a = %, with § and a independent. For this reason, from now on we keep a and § as

different variables when solving the rest of the equations, and at the end we comment on
the two possibilities.

Using (6.7) we can obtain the profile for ¢

2 0

o(y) ~ —glog <2 2(1 - a)cy> . (C.11)

Notice that this is the equivalent to (6.17), but with a and § kept independent. The leading
behaviour is then given by

o(r) = —glogy, (C.12)

and thus the field only depends on the critical exponent.
We can now use (C.1) to get the profile for the warp factor o:

1
a:—mlogy, (C.13)
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3.2.  Witten’s Bubble of Nothing

where we have set an integration constant to zero without loss of generality. We recover
the equivalent to (6.19), albeit with a and 0 kept independent. We see that the warp factor
doesn’t depend on §, but specifically on the prefactor a of the potential.

Finally, we have to check that the solution is compatible with (C.3). From it we
obtain the condition

4 d—2 Rd 92
_ (@-nl-a) = (), 14
2 d=—1)(-a d-1Y 0 (C.14)

Let us now apply it for the two possible values for a:
e For a < %, the power of y in the last term is positive, so that it is subleading in the
y — 0 limit. Moreover, recall that in this case ¢ relates to a via (C.7), which is the precise

the value for which the first two terms cancel each other. In conclusion, for a < % having

Ry # 0 becomes irrelevant as we approach the ETW and we basically recover the same
results as in the Ry = 0 case.

%, the exponent of y vanishes , and hence the Ry term is relevant. In this
case, consistency of the equations requires

6:2<d—2—d}3d1> . (C.15)

e For a =

[N

Therefore, for this case 0 is also fixed, but in terms of R4. Notice that this quantity must
satisfy Rg < (d —2)(d — 1). Provided this condition, we find that 0 can take any positive
value.

This case corresponds to a metric ds® = dy? + y2d5¢21—17 hence it describes a conical
singularity. The singularity is absent in the case Ry = (d—1)(d —2), namely the curvature
of dsg_l is that of S9~!, and the geometry is locally smooth, and we have § = 0 and no
exponential growth of the potential. Also, in order to have an ETW brane, the (d — 1)-
dimensional curvature must be lower than that of S,

In conclusion, given a potential with an exponential behaviour as ¢ — oo, in the
Ry # 0 case there exist two different kind of solutions. In the first one the value of Ry
is irrelevant and we recover the same behaviour as in the Ry = 0 case (but with a more

constrained critical exponent, § > \/dQTQ) In the second, the curvature R, is relevant and

it must be fixed by the critical exponent by (C.15).

3.2 Witten’s Bubble of Nothing

To illustrate the above general formulation for curved (d—1)-dimensional slices, we consider
the example of the celebrated Witten’s bubble of nothing [67] (see [66,274 276| for other
recent realization of bubbles of nothing). We show it admits a description in an effective 4d
theory of gravity coupled to an scalar with zero potential, as a 4d Dynamical Cobordism,
and characterize its local description and critical exponent §.

Related discussion of a 4d effective description of the configuration have appeared
in [277] (recently revisited in the context of bubbles in de Sitter space in [167,168]).
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Appendiz C. Local Dynamical Cobordisms with curved (d — 1)-dimensional slices

Since we have restricted our discussion to dependence on spatial coordinates, we ac-
tually consider the euclidean 5d Schwarzschild black hole solution, before the Wick rotation
to the expanding bubble solution. The 5d mefric reads

—1
R? R?
d32 = 1-— 7"2> d7“2 + T2dQ§ + 1-— r2> éQSQ . (C16)

Here ¢ parametrizes an S' fibered over the radial coordinate r, times and S?; the radial
coordinate is constrained to the range r > R, and the S! shrinks to zero size at the
euclidean horizon » = R (in a smooth way for the periodicity ¢ ~ ¢ + 27 R).

We would like to perform a reduction to 4d along the S'. This is a sphere reduction
analogous to those in Section 6.3.1. Hence, we match this metric with (6.46), for n = 1,
d = 4, and, using (6.47), « = —4/1/6 and 8 = —/2/3. We obtain that the radion w in

(6.46) is:
2
w:—\/glog 1—];) ( (C.17)

The 4d metric is given in (6.49) and reads

_% R2 2
ds?= 1-— ) dr + 1-— ) T2d9:23' (C.18)

We would now like to zoom into the location of the ETW brane, the euclidean horizon
2
r = R. So we introduce the coordinate 7 =1 — %. Near r — R the metric scales as

ds? ~ 73 di% + 72d02 . (C.19)

y:/<7:1/427”/ . (C.20)

Replacing 7 ~ y% in (C.19) we get the 4d metric as a foliation of S? slices:

Now, we make the change (6.50):

ds2 ~ dy?® + y3dQ32. (C.21)

This corresponds to a metric of the kind (6.3) for curved 3d slices, namely of the kind
studied in appendix 3.1. Using (C.13) we can see that a = 0, and from (C.7) § = V/6.
Interestingly, this corresponds to the case in which the curvature of the slices is irrelevant,
and the solution is similar to the Ry = 0 case.

We could have also obtained the same result from the profile for the radion,

w:—\/glogf:—\/glogy. (C.22)

By using (C.12), w ~ —% logy, we read that 6 = v/6, hence a = 0.

Hence Witten’s bubble of nothing is described by a 4d Dynamical Cobordism running
solution with the scalar reaching off to infinite distance in fields space at a rate controlled
by the critical exponent § = 1/6. This provides a simple local description in terms of an
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3.2.  Witten’s Bubble of Nothing

ETW brane. From this perspective, the bd solution provides the UV completion of the
ETW brane, which in this case is purely a geometrical closing-off of the geometry.

We would like to emphasize that this example provides an explicit realization of the
picture discussed in Section 6.3, in particular Figure 6.1 (albeit, with no brane dressing
at the tip). Namely, the complete solution involves a genuine compactification on a finite
size S!, yet it is described by a local EWT brane model identical to that obtained as an
S! reduction on a flat R? (which, given the vanishing potential, straightforwardly leads to
a =0, hence § = v/6). This supports the picture in Section 6.3 that the sphere reductions
in the flat space transverse to the D-branes suffices to provide the local description even in
the (physically more interesting case) in which the transverse space is globally given by a
more involved geometry, implementing the actual compactification to the lower-dimensional
theory.
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Subleading corrections to the local description

In section 6.1.2 we took constant a as a proxy for the leading behaviour of a(¢) as ¢ —
0o. Here we consider the role of possible subleading corrections. We notice that these
corrections do not necessarily go to zero as ¢ — oo in (6.13). For example, let us take

b

V4 —a(gb):\/l—aﬁ—g. (D.1)
It is clear that a(¢) asymptotes to a as ¢ — oo, but after doing the integral in (6.13) the
correction to the leading behaviour given by the second term behaves as log ¢. Indeed,
ignoring constant prefactors we get

d—1
Vi~ gV a2 009 (D.2)

with  defined in (6.15). Comparing with (6.14) we see that we can describe this example

. . . 2,/9=1 . .
with our leading order analysis if we allow for ¢ ~ ¢"V 4=2". Notice that the example in
section 6.2.2 precisely realise this behaviour (see equation (6.44)).

As a general lesson, we can include these kind of corrections that do not vanish in
the ¢ — oo limit by promoting ¢ from just a constant to a ¢-dependent quantity that may
hide subleading corrections. In this way, it may happen that ¢ — oo as ¢ — oo as long
as it blows-up slower than an exponential (otherwise it would not represent a subleading
behaviour).

This remark is specially interesting in the a(¢) — 0 case. From (6.16) we would
conclude that V' — 0 if ¢ is a finite constant. However, if allowing ¢ — oo because of
possible subleading terms, it can happen that a times ¢ remains finite in the ¢ — oo limit.
In this way, we describe a solution in which ¢ > V (i.e., a(¢) — 0) without requiring
that V vanishes asymptotically.
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Superconformal Representations of SU(2,2|2)

We summarise in this appendix the basic notions of superconformal representations useful
in this work. The N = 2 superconformal group is SU(2,2|2), its bosonic subgroup being
constituted of both the conformal and R-symmetry groups, SO(2,4) x SU(2)r x U(1)rg.
The algebra contains the usual conformal generators, namely those of translations, rota-
tions, and so-called special conformal transformations, M, P,, K,, as well as the dilata-
tion operator, D. With the R-symmetry generators, it is supplemented by the super- and
superconformal charges:

Qua,Qan, S8 aa=1,2, A=1,... 4. (E.1)
One can then label any operator of the theory by the following quantum numbers:
(A4, 7 Ryl (E.2)

In addition to the usual conformal dimension, A, which is the charge of the operator under
dilatations, and the Lorentz Dynkin indices, (j,7), of so(1,3) = su(2) @ su(2), we also
define the R-charges, (R,r), of SU(2)g x U(1)g.

The spectrum of the theory organises itself into superconformal multiplets of SU (2, 2|2)
whose highest weights are called superconformal primaries. A superconformal primary, O,
is then by definition annihilated by special conformal transformation generators—as for all
usual conformal primaries—and superconformal charges:

[K,,0] =0, [saA,o}:o:[SdA,o}g aa=1,2, A=1,....4 (E3)

where the commutator or anti-commutator is used depending on whether O is fermionic or
bosonic. Given a superconformal primary, the rest of the multiplet (called descendants), is
then generated by successive applications of the translation operator, P,, and the regular
supercharges, Qa4 ,@aa. Note that due to their fermionic nature, the number of states
generated by the supercharges is finite.

Moreover using the conformal algebra it possible to show that applying the shift of
conformal dimension of descendants from its primary is (half-)quantised:

1
A[Q,O} = Ao —+ 5 , A[P,O] = AO +1. (E4)

Schematically for a bosonic superconformal primary, the descendants and their dimensions
are found to be:

Ov [QOcA7O}7 [QécA7O]7 I:P,UJO}7 {PIM[P/MOH7 (E5)
A, A+%, A+%, A+1, A+2,
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Appendiz E. Superconformal Representations of SU(2,2|2)

Conversely, for superconformal charges and special conformal transformations, the sign of
the shift is reversed.

A complete analysis of the representations then separates superconformal multiplets
into two classes: long and short multiplets. The latter corresponds to cases where the
superconformal primary is annihilated by a combination of the supercharges, in which case
its dimension is set by the rest of the quantum numbers. In this work, we are mainly
interested in a class of multiplet whose superconformal primary is annihilated by half of
the supercharges, such as the chiral multiplets, &.. Long multiplets are unconstrained and
their conformal dimensions are only bounded from below by unitarity.

Additional details and a complete classification of unitary superconformal multiplets
can be found in e.g. [243,278].
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