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driguez, Jorge Rocha, Andrea Maselli, Laura Bernard, Alexandre Le Tiec, Marc Casals, 
and Luca Santoni. 
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Abstract 

This thesis is devoted to the study of dynamical and thermodynamical properties of black 
holes. It has two parts. 

Part I considers black holes in the context of the low energy effective actions of 
string theory. The first few higher-derivative corrections induced by finite-size effects in√ 
the string length ` s ∼ α0 , where α0 is the Regge slope parameter, are well understood 
for the heterotic superstring (HST). α0-corrected black hole solutions are available and 
computing their entropy is crucial given its relation to string microstates. However, the 
Iyer–Wald entropy formula gives a result that is not gauge invariant. This is due to the fact 
that the original computation assumes that all fields are tensors with no internal gauge 
freedom. In this thesis, Wald’s derivation is revisited using a formalism that accommodates 
gauge symmetry conveniently. The main result is a gauge- and Lorentz- invariant entropy 
formula that includes the first order corrections in α0 . It is also shown, in some particular 
theories, how magnetic-type terms can be included in the generic proofs of the laws of 
black hole thermodynamics, even though magnetic charges are not directly associated to 
gauge symmetry. 

Part II focuses on dynamical aspects of black holes in different contexts. Rotating 
black holes in higher-derivative theories are poorly understood due to the complexity of 
the equations of motion. The problem can be simplified by considering the near horizon 
geometry of an extremal, charged and rotating black hole. A non-perturbative solution of 
such a class is presented in a cubic theory called Einsteinian Cubic Gravity. It is the first 
example in which the entropy of a rotating black hole of higher-order gravity has been 
exactly computed. 

In the context of the AdS/CFT correspondence, NUT-charged AdS black holes de-
scribe equilibrium states of neutral fluids subject to non-trivial flows at the boundary. 
Physical transport properties, however, remain largely unexplored. The master equations 
governing gravitational fluctuations on a class of NUT-charged AdS black holes are derived 
in this thesis. These exhibit an intriguing relation to Landau quantisation. The gravita-
tional quasinormal mode spectrum of a NUT-charged black hole is computed for the first 
time, and the spacetime appears to be robustly stable despite the existence of closed causal 
curves (“time machines”). There is an interesting class of quasi-hydrodynamic modes for 
which analytic dispersion relations are constructed as a definite holographic prediction for 
the dual fluid. 

The last chapter of this thesis deals with the tidal deformability of black holes. Tidal 
interactions, encoded linearly in the so-called tidal Love numbers, become significant in the 
last stages of the inspiral phase of a merger. In the case of vacuum, four-dimensional black 
holes, the tidal Love numbers are zero. The robustness of such a property is investigated 
by studying the static deformability of charged black holes. It is shown that tidal response 
coefficients keep on vanishing, in a very non-trivial way, from neutrality all the way down 
to extremality. This is true not only for gravity (spin-2), but also for spin-0 and spin-1 
deformations. In higher dimensions, however, the tidal response is non-trivial and charging 
up the hole can excite new polarisation modes. One exception is the static response of 
spin-0 perturbations, which happens to vanish at extremality in any dimension. These 
results call for further investigation of the tidal deformability properties of black holes. 



Resumen 

Esta tesis está dedicada al estudio de propiedades dinámicas y termodinámicas de los 
agujeros negros. Consta de dos partes. 

La parte I considera agujeros negros en el contexto de las acciones efectivas de teoŕıa 
de cuerdas. Las primeras correcciones en derivadas superiores, inducidas por efectos de√ 
tamaño finito en la longitud de la cuerda ` s ∼ α0 , donde α0 es el parámetro de Regge, 
se conocen bien en el caso de la supercuerda heterótica (HST). Además, se dispone de 
soluciones de agujero negro con correcciones en α0 y el cálculo de su entroṕıa es crucial 
dada su relación con los microestados de cuerdas. Sin embargo, la fórmula de entroṕıa de 
Iyer-Wald da un resultado que no es invariante gauge. Esto se debe a que el cálculo original 
supone que todos los campos son tensores sin libertad gauge interna. En esta tesis, se revisa 
la derivación de Wald utilizando un formalismo que incluye convenientemente la simetŕıa 
gauge. El resultado principal es una fórmula de entroṕıa invariante gauge y Lorentz 
que incluye correcciones a primer orden en α0 . También se muestra, en algunas teoŕıas 
particulares, cómo pueden incluirse términos de tipo magnético en las demostraciones 
genéricas de las leyes de la termodinámica de los agujeros negros. 

La Parte II se centra en aspectos dinámicos de los agujeros negros en distintos 
contextos. Los agujeros negros en rotación de teoŕıas en derivadas superiores son poco 
conocidos debido a la complejidad de las ecuaciones del movimiento. El problema puede 
simplificarse considerando la geometŕıa cercana al horizonte de un agujero negro extremo, 
cargado y en rotación. En esta tesis se da una solución no perturbativa de dicha clase 
en una teoŕıa cúbica llamada Einsteinian Cubic Gravity. Se trata del primer ejemplo, en 
gravedades de orden superior, en que la entroṕıa de un agujero negro en rotación puede 
calcularse de forma exacta. 

En el contexto de la correspondencia AdS/CFT, los agujeros negros en AdS con 
carga NUT describen estados de fluidos neutros en equilibrio sujetos a flujos no triviales 
en la frontera. Sin embargo, las propiedades f́ısicas de transporte permanecen en gran 
medida inexploradas. En esta tesis se derivan las ecuaciones maestras que gobiernan las 
fluctuaciones gravitacionales en una clase de agujero negro en AdS con carga NUT. Esto 
conduce al primer cálculo del espectro gravitacional cuasinormal de un agujero negro con 
carga NUT. El espaciotiempo se muestra robustamente estable a pesar de la existencia de 
curvas causales cerradas (“máquinas del tiempo”). Hay una clase interesante de modos 
cuasihidrodinámicos para los que se construyen relaciones de dispersión anaĺıticas a modo 
de predicción holográfica para el fluido dual. 

El ´ ´ultimo capıtulo de esta tesis trata sobre la deformabilidad de marea de los agu-
jeros negros. Las interacciones de marea, codificadas linealmente en los llamados números 
de Love, adquieren importancia en las ´ on. Enultimas etapas de la fase espiral de una colisi´ 
el caso de los agujeros negros en cuatro dimensiones en el vaćıo, los números de Love 
se anulan. La solidez de esta propiedad es investigada estudiando la deformabilidad 
estática de agujeros negros cargados. Se demuestra que los coeficientes de respuesta siguen 
anulándose, de forma muy no trivial, en todo el rango comprendido entre la neutralidad y 
la extremalidad. Esto es cierto no sólo para la gravedad (esṕın-2), sino también para las 
deformaciones de esṕın-0 y esṕın-1. Sin embargo, en mayores dimensiones, la respuesta de 
marea no es nula y la carga del agujero puede excitar nuevos modos de polarización. Una 
excepción es la respuesta estática de las perturbaciones de esṕın-0, que resulta anularse 
en la extremalidad en cualquier dimensión. 
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1 
Introduction 

The most remarkable theoretical predictions of physics come after enlarging our theories 
to accommodate newly proposed principles of nature. In Einstein’s General Relativity 
(GR), the Equivalence Principle and Special Relativity are beautifully implemented in the 
(vacuum) field equation, 

Rµν = 0 (1.1) 

the apparent simplicity of which contrasts with its actual complexity as a system of second 
order, coupled, non-linear partial differential equations. A revolutionary, non-perturbative 
prediction of (1.1) is the existence of black holes which, furthermore, arise as the simplest 
solutions of the theory. Intuitively, these are regions in spacetime subject to a gravita-
tional pull which is strong enough to let no signal emerge and reach an external observer. 
Consequently, these are causal holes in the structure of spacetime: if something falls inside 
a black hole, it cannot communicate with the exterior ever again (and has a rather hope-
less fate, as we shall argue in this introduction). What is more remarkable, there is strong 
evidence that such an astonishing prediction of (1.1) takes place in nature. Nowadays it is 
believed that there is a supermassive black hole (∼ 106 − 1010M ) at the centre of almost 
every large galaxy. During the writing of this thesis, the Event Horizon Telescope Collab-
oration published for the first time pictures of the supermassive black holes that lie at the 
centres of M87 (∼ 6.5×109M ) [1] and the Milky Way (Sagittarius A*) (∼ 4×106M ) [2]. 
Furthermore, the detection of gravitational waves (GW) (yet another prediction of (1.1)) 
by the LIGO and Virgo collaborations [3] opened up a new channel of observation of the 
universe: gravitational wave astronomy. Since 2016, this has allowed the observation of 
mergers of black holes with (initial) masses in the range ∼ 5 − 85M [4]. More spec-
ulatively, primordial black holes formed at the early stages of the big bang have been 
proposed as a candidate for dark matter [5–7] even though robust experimental evidence 
is still lacking. 

From a theoretical perspective, black holes are central in the development of our 
understanding of the fundamental laws of nature. Being extremely efficient GW sources, 
black hole mergers will allow us to probe the strong field regime of gravity to exquisite 
precision with future-planned Earth- and space-based detectors [8, 9], thus testing GR 
with great accuracy [10–14] and also challenging our beyond-GR theories [15]. At a more 
fundamental level, black holes constitute physical scenarios in which strong gravitational 
fields and quantum interactions coexist. Therefore, their features raise questions about 
the nature of their microscopic structure, that guide theorists towards the construction of 
a theory of quantum gravity. 

In this introduction, we first provide a reasonably self-contained review of the main 
properties of black holes in GR. Then, in section 1.2 we discuss dynamical aspects of black 
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Chapter 1. Introduction 

holes that are relevant for Chapters 5 to 7. Finally, in Section 1.3 we review the proofs of 
some thermodynamical properties of black holes and introduce some of the motivations of 
Chapters 2 to 4. 

Note on conventions: The introduction and Part II of this thesis follow the 
conventions of [16]. Part I follows the conventions of [152]. 

1.1 Black Hole Basics 

1.1.1 Definition and Generic Properties 

A spacetime is a pair (M, g) where M is a real manifold and g a Lorentzian metric on 
M . 1 We are interested in spacetimes that are solutions of Einstein’s equation and repre-
sent ideally isolated systems, a star or a compactly supported source, say. Such class of 
solutions can be obtained by supplementing Einstein’s equations with suitable boundary 
conditions. These should guarantee that, far from the sources, the spacetime becomes flat 
(i.e. approaches Minkowski’s space). This is a fairly intuitive requirement and, therefore, 
it is possible to provide a precise (although rather technical) notion of asymptotically flat 
spacetime, its main pieces being the future and past null infinities I + and I − . Less 
familiar to our intuition are black holes, and hence we are forced to define them from 
what they are not. A black hole in an asymptotically flat spacetime is the complement in 
M of the causal past of future null infinity J−(I +), that is, 

� � 
B = M − M ∩ J−(I +) (1.2) 

In other words, a black hole is a region of spacetime that is causally disconnected from 
future null infinity. Intuitively, this can be understood as a region subject to a gravitational 
pull that is strong enough to let no signal escape out of it. Hence, the boundary of B in 
M defines a no-return surface known as the event horizon of B, 

H = M ∩ ∂J−(I +) (1.3) 

H is a null hypersurface with no future end-points, but it may have past end-points [21] 
(further properties of H are discussed below and in section 1.1.2). The latter fact indi-
cates that horizons can start forming somewhere, e.g. as a result of gravitational collapse. 
Indeed, there are several explicit solutions containing black hole regions (some describ-
ing the formation of black holes [22] which intend to model the gravitational collapse of 
stars [23–25]), but exhibiting examples is not enough to show whether the existence of 
black holes in nature is a generic prediction of GR.2 Hence, before discussing exact so-
lutions, here we revisit few crucial, generic properties (and conjectures) that suggest an 
answer in the affirmative to the previous question. 

The energy and linear and angular momenta of a spacetime are given by the Arnowitt-

1Most of this section is based on [16–20]. 
2In fact, before the major progress achieved in the 60’s, it was a matter of intense debate whether 

spacetime singularities were general or merely due to symmetry assumptions [26]. 
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Deser-Misner (ADM) charges [27, 28], defined as integrals at infinity3 Z 
1 

EADM = lim dAnj (∂ihji − ∂j hii) (1.4)
16π →∞r 2Sr 

Z 
1 

Pi = lim dAnj (Kij − Kδij ) (1.5)
8π r→∞ S2 

r 

Z 
1 

Ji = �ilm lim dAnj x l(Kmj − Kδmj ) (1.6)
8π r→∞ S2 

r 

EADM is the total energy of the spacetime and, as reviewed in section 1.3.1, it is related 
to the existence of asymptotic (not necessarily exact) symmetries. The above formula can 
be derived from various perspectives, e.g. as the on-shell value of the Hamiltonian of GR 
or as a conserved charge associated to an asymptotic symmetry (we will review the latter 
derivation in section 1.3.1). Remarkably, the positive energy theorem [29, 30] establishes 
that, under minimal physical assumptions, q 

= E2 − PiPi ≥ 0 (1.7)MADM ADM 

where we introduced the ADM mass MADM . 4 In particular, this means that there is 
a physically meaningful notion of the total mass and energy of a black hole spacetime. 
This is in sharp contrast with the well-known ill-definiteness of the local energy density 
in GR [30]. Besides the ADM quantities, black holes can be additionally charged under 
gauge fields, but we shall discuss this in some detail in section 1.3.1. 

Regarding the black hole region and the event horizon, several generic properties 
have been found since the 60’s. An instrumental result is Penrose’s singularity theorem 
[31], which is based on the notion of trapped surface. Consider a codimension-2 spacelike 
surface S. At each point there are (up to normalisation) precisely two linearly independent, 
future directed, null vectors k± (it is conventional to set the relative normalisation to 
g(k+, k−) = −1). Extend k± geodesically off S. The expansions of both families, defined 
by 

µk±θ± = r (1.8)µ 
5can be used to classify S. In particular, we say that S is future-trapped if θ± < 0, 

marginally future-trapped if θ± ≤ 0 and θ  = 0 and stationary or minimal if θ± = 0. 
The expansion measures the rate of change of the cross-sectional area of the null geodesic 
congruence [33]. Thus, the area of a future trapped surface decreases locally along the 
future directed, lightlike geodesic flows of both k± . If, furthermore, the trapped surface 
belongs to a globally hyperbolic spacetime, with non-compact Cauchy slice and matter 
satisfying the null energy condition, Penrose proved that at least one of the geodesic 
families is future-inextendible and incomplete [31].6 However, Penrose’s theorem does not 
establish whether this is because the spacetime is itself extendible, or because it is truly 
singular. 

3We set G = 1 throughout the introduction. 
4Equality holds only in Minkowski’s space. 
5See [32] for a more modern description of trapped surfaces, based on the mean curvature vector of S. 
6A result worth a half of the 2020 Nobel Prize in Physics. 
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As a classical theory, GR is expected to be deterministic. Then, asymptotically 
flat initial data that is geodesically complete should fix uniquely the entire spacetime if 
Einstein’s equations are satisfied. Furthermore, one expects such a spacetime to be asymp-
totically flat. This motivated Penrose’s Strong and Weak Cosmic Censorship conjectures 
(SCC and WCC, respectively) [34]. The former asserts that the maximal development 
of generic, asymptotically flat and geodesically complete initial data is inextendible7 thus 
preventing the formation of regions lying beyond the causal domain of the initial data. The 
latter claims that, furthermore, this maximal development is asymptotically flat. Intu-
itively, the role of the SCC conjecture is to guarantee determinism of GR, while the WCC 
conjecture implies that singularities are cloaked by event horizons (see below). Notice 
that these two conjectures are logically independent. Even though general proofs have not 
been found so far, there are good reasons to believe that both SCC and WCC conjectures 
are correct.8 

The formation of trapped surfaces from asymptotically flat, geodesically complete 
initial data is a generic (i.e. not fine-tuned) feature of GR [40, 41]. If a trapped surface 
forms, then Penrose’s theorem asserts that the maximal development is not geodesically 
complete. Assuming that the SCC conjecture holds, such incompleteness must be due 
to a true singularity because the spacetime can not be extended any further (we say the 
spacetime is singular, in the sense that it is inextendible and geodesically incomplete). 
The singularity (roughly, the “locus” where geodesics terminate) can not be causally con-
nected to any point of the spacetime since that would contradict global hyperbolicity of 
the maximal development. However, it could extend infinitely (e.g. along a null surface) 
and intersect I + , thus preventing null infinity from being geodesically complete. This 
cannot happen if the WCC conjecture is correct because I + is geodesically complete in 
an asymptotically flat spacetime by definition. Therefore, the singularity must lie entirely 
in the complement of J−(I +), which is precisely the definition of a black hole region. 
One concludes that, if both SCC and WCC conjectures are correct, then black holes and 
singularities are a generic prediction of GR and, furthermore, singularities must lie entirely 
inside black holes. 

1.1.2 Classification of Solutions and Black Hole Uniqueness 

Consider a process of gravitational collapse that results in the formation of a black hole. 
A fraction of the matter will be swallowed by the hole, while the remaining energy will be 
radiated away e.g. in the form of gravitational waves [42, 43]. At late times, one expects 
the spacetime outside the event horizon to approach a stationary state. Thus, exactly 
stationary solutions should be good approximations to the spacetime at late times after 
collapse. 

7The word generic in this definition excludes the violation of the conjecture by fine-tuned initial data, 
such as an asymptotically flat Cauchy slice of the Reissner–Nordstrom solution [35, 36]. 

8In particular, the SCC conjecture has been proven for Minkowski’s space [37]. The WCC conjecture, 
on the other hand, can be tested through the Penrose inequality [38]. This can be verified locally (e.g. in 
numerical simulations), and its failure is believed to be a sign that the WCC conjecture is incorrect. 
However, no numerical example violating it has been found and, on the contrary, it has been proven for 
time-symmetric initial data [39]. 
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Stationary Black Holes 

We say that an asymptotically flat spacetime is stationary if it exhibits a Killing vector 
field kt that is timelike in a neighbourhood of I ±9 . We say it is static if kt is hypersur-
face orthogonal (i.e. the distribution of tangent planes orthogonal to kt is integrable or, 
equivalently, kt ∧ dkt = 0). It is easy to show (e.g. by constructing a suitable local chart 
adapted to kt) that stationarity implies symmetry under time translations and staticity 
implies, in addition, symmetry under time reversal. 

There are many stationary solutions describing the gravitational field created by an 
irregular object at rest. Remarkably, though, a stationary spacetime containing a black 
hole is, in a sense, a rigid state. More precisely, if an asymptotically flat space is stationary, 
analytic10 and contains an event horizon H, then it is stationary and axisymmetric (with 
axial Killing vector field kφ, satisfying [kt, kφ] = 0) and, furthermore, the event horizon is 
a Killing horizon (these are sometimes called rigidity theorems [44]). In other words, a 
stationary black hole is necessarily symmetric with respect to an “axis of rotation” (the 
fixed points of kφ). We recall that a null hypersurface N is a Killing horizon of a Killing 
vector field k if k is normal to N 11 . In the case of a stationary black hole, k is a linear 
combination of kt and kφ, 

k = kt +ΩH kφ (1.9) 

Normalising kt so that g(kt, kt) → −1 at infinity, the constant ΩH is the angular velocity 
of the horizon relative to an asymptotic observer at rest. Notice that k needs to be null 
only at H, and it follows that12 

kµ H rµkν = κkν (1.10) 

where κ, referred to as the surface gravity, is a function on H that, remarkably, turns 
out to be constant under minimal assumptions (in particular, no reference to equations 
of motion is required, see section 1.3.2). Finally, we say that a black hole is extremal if 
κ = 0, which means that kµ is tangent to the affinelly-parametrised generators of H. 

Spherical Solutions 

Einstein’s equation is very involved and solving it explicitly requires making some addi-
tional assumptions. One possibility consists in obtaining and classifying solutions accord-
ing to the properties of their isometry groups. This is one of the main approaches to 
the study of solutions in GR. It is very powerful when the amount of symmetry is large 
enough, but it is not so useful in less symmetric situations. In such cases, less obvious 
approaches (based on algebraic properties rather than geometric ones) are necessary in 
order to obtain and classify solutions, as reviewed below. To illustrate the power of the 

9Requiring that kt is everywhere timelike outside the black hole is too strong. In fact, it can be 
proven that kt (if it is not hypersurface orthogonal) becomes spacelike in part of the exterior region 
J−(I +) ∩ J+(I −) (the ergoregion) [17]. 

10This is an unsatisfactory assumption that conflicts with causality, but we shall accept it in this dis-
cussion for simplicity. 

11Hypersurfaces have naturally normal 1-forms. “Normal vectors” are a luxury provided by the metric 
through rising the index to the normal 1-forms. However, if the hypersurface is null, the normal vectors 
lie along the surface. It is easy to show that they are tangent to the null geodesics that generate the 
hypersurface (what we refer to as the generators). 

12 = H 
means “evaluated at H” or “pulled-back on H”. The context should clarify which of the meanings 

is assumed. 
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approach based on the isometry groups, assume that a spacetime satisfying the vacuum 
Einstein’s equation is spherically symmetric, that is, the isometry group has a subgroup 
isomorphic to SO(3) whit orbits through each point homeomorphic to 2-spheres. Then, 
the Jebsen–Birkhoff theorem [45, 46] establishes that such a spacetime is isometric to (at 
least part of the maximally extended) Schwarzschild solution [47] � � � �−12M 2M 

ds2 = − 1 − dt2 + 1 − dr2 + r 2dΩ2 (1.11) 
r r 

This solution is asymptotically flat with infinity lying at r → ∞ and ADM mass M . 
Furthermore, ∂t is a Killing vector field normal to surfaces of constant t and timelike if 
r > 2M . This implies that the exterior of any gravitating body that is spherically sym-
metric must be static (notice this was not an assumption of the Jebsen–Birkhoff theorem), 
regardless of the nature of the “interior”. In particular, assuming that the solution extends 
also to r ≤ 2M the spacetime (1.11) describes the unique spherically symmetric black hole 
of vacuum GR, known as the Schwarzschild black hole (this is studied in detail in the next 
section). Models for stars or processes of spherically-symmetric collapse are constructed 
by gluing (1.11) to an “interior” solution at some r0 > 2M or r0 = r0(τ), respectively [22]. 
The Schwarzschild solution can be obtained easily from Einstein’s equation due to the 
large amount of symmetry it possesses. A similar approach is unfortunately not useful if 
only stationarity and axial symmetry are assumed. However, this is a relevant situation 
since the generic final state of a collapse is expected (by the arguments at the beginning 
of the section and the rigidity theorems) to be a stationary and axisymmetric black hole. 

Algebraic Classification 

An exact solution describing a stationary, rotating black hole was obtained by Kerr in [48], 
forty-seven years after Schwarzschild’s solution. The title of the original paper, “Gravi-
tational field of a spinning mass as an example of algebraically special metrics” indicates 
that such an achievement was possible due to a description of spacetimes based on their 
algebraic properties. This approach has led to some of the most remarkable progress in 
GR, and we shall review it here briefly (since this is relevant for Chapter 6). The algebraic 
classification is most conveniently presented in its spinorial version [49]. Eventually, this 
can be translated into tensorial language, more suitable to applications, via de Newman– 
Penrose formalism [50].13 The fact underlying the spinorial description of GR is that 
SL(2, C) is the universal cover of the Lorentz group. This allows the construction of the 
spinor bundle from the bundle of Lorentz frames and establishes a canonical isomorphism 

ψ̄AA
0 

between real spacetime spinors ψAA0 
= (where A, A0 = 0, 1 label the linear and an-

tilinear legs of the spinor) and tangent vectors.14 Thus, any spacetime tensor T µ...ν... can 
...be described by its spinor analogue T AA0 

. For instance, the spinor analogue of theBB0 ... 
spacetime metric gAA0BB0 is related to the spinor 2-form �AB = −�BA (which can be used 
to rise and lower spinor indices) by gAA0BB0 = �AB �̄  A0B0 and one can write 

�A0B0 σAA
0 
σBB

0 
gµν = −�AB ̄  (1.12)µ ν 

σAA
0 

where σAA0 
= ¯ is a basis of spinor-valued 1-forms σAA0 

(this can be compared withµ µ µ 
a bthe description of a metric in tetrads gµν = ηabeµeν ). Remarkably, the spinor analogue 

13We follow the conventions of [51], consistent with our choice of signature (−+++) for the introduction. 
Notice main references on the topic [52] and some text books [16, 18] use the opposite choice. 

14See e.g. [16] for an introductory discussion. 
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of the Weyl tensor is described simply by a totally symmetric spinor ΨABCD = Ψ(ABCD) 
known as the Weyl spinor [49], 

CAA0BB0CC0DD0 = ΨABCD�A0B0 �C0D0 + Ψ̄ 
A0B0C0D0 �AB �CD (1.13) 

As a direct application of the fundamental theorem of algebra it follows that ΨABCD, due 
to its total symmetry, admits a canonical decomposition15 

(1) (2) (3) (4)
ΨABCD = κ κB κ κ (1.14)(A C D) 

(i)
where the spinors κA are uniquely defined up to normalisation and are referred to as 
principal spinors. There are four of them although some may be aligned, i.e. occur with 
multiplicity larger than one in (1.14). In that case we say the spinor is a repeated principal 
spinor. Noticing that ψAψA = 0 for any spinor, it follows that a necessary and sufficient 
condition for κA to be a principal spinor with multiplicity m is16 

ΨA1...A5−m...κ
A1 ...κA5−m = 0 and ΨA1...A4−m...κ

A1 ...κA4−m 6= 0 (1.15) 

It is precisely the structure of repeated principal spinors what defines Petrov’s classification 
of the Weyl tensor at a given point: 

(1) (2) (3) (4)
Type I : ΨABCD = κ κ κ κ(A B C D) 

(1) (1) (2) (3)
Type II : ΨABCD = κ κ κ κ(A B C D) 

(1) (1) (2) (2)
Type D : ΨABCD = κ κ κ κ (1.16)

(A B C D) 
(1) (1) (1) (2)

Type III : ΨABCD = κ κ κ κ(A B C D) 
(1) (1) (1) (1)

Type N : ΨABCD = κ κB κ κ(A C D) 

where principal spinors with different upper labels are not aligned. A spacetime is alge-
braically general if its Weyl tensor is everywhere type I, algebraically special of type II if 
its Weyl tensor is everywhere type II, etc. 

This rather formal classification becomes very useful in practice when translated into 
tensor language via the Newman–Penrose formalism [50]. Given a basis (dyad) of spinors 
{oA, ιA} satisfying oAιA = 1 we can associate a complex null tetrad or Newman–Penrose 
frame (m̄ , m, l, k) as 

A0 
ιA

0 µ ιA
0 µ A0 

kµ = −σµ A ō , lµ = −σµ , m = −σµ A¯ , m̄ = −σµ o (1.17)AA0 o AA0 ι
A¯ AA0 o AA0 ι

A ̄  

k and l are real (their right hand sides above are invariant under complex conjugation) 
while m is not, m̄ being its complex conjugate. Furthermore, from (1.12) one has 

µ ¯kµlµ = −m mµ = −1 
µ (1.18)

kµkµ = lµlµ = m mµ = kµmµ = lµmµ = 0 

One can use a Newmann–Penrose frame to expand any tensor and the connection in 
components [18,50,52]. In particular, the ten independent (real) components of the Weyl 

15See e.g. Proposition 3.5.18 of [52]. 
16See e.g. Proposition 3.5.26 of [52]. 
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tensor Cµνρσ are encoded in the five complex scalars, 

A B C D σν kρΨ0 = ΨABCDo o o o = Cµνρσkµm m 
A B σΨ1 = ΨABCDo o o C ιD = Cµνρσkµlν kρ m 
AΨ2 = ΨABCDo o B ιC ιD = Cµνρσkµm ν m̄ ρlσ (1.19) 
AιB ιC ιD ρlσΨ3 = ΨABCDo = Cµνρσkµlν m̄ 

Ψ4 = ΨABCDι
AιB ιC ιD = Cµνρσm̄ µlν m̄ ρlσ 

The power of the formalism relies on a convenient choice of null frame. If κA is a 
κA

0 
principal spinor, then we say that the vector κA ̄  is a principal null direction (PND), and 
a repeated PND if κA is a repeated principal spinor.17 Choosing a dyad {oA, ιA} aligned 
with two principal spinors (equivalently, choosing k and l aligned with PND’s), it follows 
from (1.19) and (1.15) that Ψ0 = Ψ4 = 0. If, furthermore, the principal spinors have 
higher multiplicities, then more Weyl scalars (1.19) vanish (of course, for type N spaces 
only one spinor of the dyad, say oA , can be aligned with a principal spinor). In general, 
choosing the Newman–Penrose frame this way one has, from (1.15) (by convention we 
align oA with the principal spinor with higher multiplicity), 

Type I : Ψ0 = Ψ4 = 0 
Type II : Ψ0 = Ψ1 = Ψ4 = 0 
Type D : Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0 (1.20) 
Type III : Ψ0 = Ψ1 = Ψ2 = Ψ4 = 0 
Type N : Ψ0 = Ψ1 = Ψ2 = Ψ3 = 0 

That is, the condition of algebraic speciality translates into the vanishing of several compo-
nents of the Weyl tensor. This is one of the main properties underlying the successfulness 
of the spinorial approach to applications in GR (see discussion in [53]). 

The classification and properties discussed so far hold for all spacetimes since no 
assumption about the equations of motion has been made. A priori, there is no rea-
son to expect that algebraically special solutions should play an important role in GR. 
For instance, rotating black hole solutions of some alternative gravity theories are not 
algebraically special in the Petrov sense [54]. Remarkably, the Goldberg–Sachs theorems 
uncover an intimate relation between Einstein’s equation and the algebraic classification. 
One may think of the general structure of a Goldberg–Sachs theorem as follows: given a 
condition in the curvature (e.g. the vacuum Einstein’s equation) it establishes an equiv-
alence between geometric and algebraic properties of null vector fields. For instance, if 
a spacetime is Ricci-flat, then a null vector field is a repeated PND if, and only if, it is 
tangent to a null, shear-free geodesic congruence [18, 51].18 This instrumental result led 
to one of the most spectacular results in GR, due to Kinnersley [55]. Assuming that a 
vacuum space is Petrov type D, the Goldberg–Sachs theorem guarantees the existence 
of coordinates adapted to congruences of null, shear-free geodesics aligned with PND’s. 

17The necessary and sufficient conditions for a principal spinor to be repeated with multiplicity m (1.15) 
can be translated into a condition for the corresponding vector contracted with the Weyl tensor [16, 50]. 
Besides being rather unilluminating conditions, these are remarkably more involved than (1.15). 

18This last statement is expressed in a remarkably simple form in the Newman–Penrose formalism: 
κ = 0 = σ ⇔ Ψ0 = 0 = Ψ1, where κ and σ are some connection components (dubbed spin coefficients 
in [18, 50]). 
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This simplifies the equations enough to be integrated completely yielding the most gen-
eral Petrov type D solution. The Kerr black hole, presented below, is a particular case of 
Kinnersley’s solution. However, the importance of the Newman–Penrose approach goes 
beyond the construction of explicit solutions. As reviewed in Section 1.2, it is also crucial 
in the study of gravitational waves on top of black hole spacetimes (the analysis in Chapter 
6 is based on this approach). 

Kerr’s Black Hole and Uniqueness 

Kerr considered metrics of the Kerr–Schild form, 

gµν = ηµν − 2Skµkν (1.21) 

where ηµν is Minkowski’s metric, S is a function and kµ a null vector with respect to both 
metrics, gµν k

µkν = ηµν k
µkν = 0. If the vacuum Einstein’s equation holds Rµν = 0 it can 

be shown that kµ is a repeated PND. Imposing, furthermore, that the space is type D, the 
equations can be integrated yielding Kerr’s solution [48]. In Boyer-Lindquist coordinates 
it is � � � �

2 2 − ΔΔ − a2 sin2 θ r + a 
ds2 = − dt2 − 2a sin2 θ dtdφ 

Σ Σ� � (1.22)
2(r + a2)2 − Δa2 sin2 θ Σ 

sin2 θdφ2 + dr2 +Σdθ2 
Σ Δ 

with 
2 2 2Σ = r + a cos 2 θ, Δ = r 2 − 2Mr + a (1.23) 

Kerr’s solution describes a stationary, rotating black hole with ADM mass M and ADM√ 
2angular momentum aM . It exhibits a regular event horizon at r+ = M + M2 − a 

as long as Kerr’s bound |a| ≤ M is respected (i.e. the black hole does not rotate too 
fast). Remarkably, Carter [56] and Robinson [57] proved that Kerr’s space is the unique 
asymptotically flat, stationary and axisymmetric black hole solution of GR.19 Therefore, 
according to GR (and assuming that both SCC and WCC conjectures are true) the final 
state of gravitational collapse is generically a Kerr black hole. This is a striking result since 
the initial state may be arbitrarily complicated, while the final state is determined uniquely 
(outside the hole) by just two numbers M and J . The theorem by Carter and Robinson 
has been extended to theories with matter, in which the set of parameters that determine 
completely the solution is enlarged to (M, J, Q) where Q denotes collectively the electric 
and magnetic charges [17]. This fact supports the so-called “no-hair” conjecture [58], 
according to which black holes are uniquely determined by M , J and their conserved 
gauge charges. 

Higher Dimensions 

Black holes of GR in an arbitrary number of spacetime dimensions are important in high-
energy physics. In particular, they play a crucial role in string theory and holography. 
However, due to the larger number of degrees of freedom, several of the results presented 
above do not hold in D > 4. Heuristically, this can be understood as follows [59, 60]: in 

19However, the exterior of a stationary and axisymmetric object is not described by Kerr’s metric in 
general. This is unlike the spherically symmetric case (see above). 
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D > 4 black holes can exhibit non-compact horizons (extended black objects) and their 
dynamics allow arbitrarily large spins [61], unlike in D = 4 where Kerr’s bound dictates 
|a| ≤ M . Combining these two properties one can form black holes with non-spherical 
topologies like black rings [62] (balanced by centrifugal force due to fast spinning) and black 
hole uniqueness is broken, even infinitely if black rings are charged [63]. Furthermore, the 
“rigidity” theorems are not as strong as in D = 4 [59] and no useful extension of the 
Newman–Penrose formalism has been found so far [60], so the classification and obtention 
of solutions is significantly less successful than in D = 4. However, it is precisely this richer 
dynamics of higher-dimensional GR that has lead to the discovery of several interesting 
phenomena, some of which are discussed in section 1.2. 

1.1.3 Schwarzschild’s Black Hole 

Schwarzschild’s black hole is a good example to illustrate some of the concepts introduced 
above. The line element is given by (1.11), and a convenient Newman–Penrose frame is20 

dr 1 1 � � 
k = dt + l = (f(r)dt − dr) m = √ r 2dθ + ir2 sin θdφ (1.24)

f(r) 2 r 2 

where f(r) = 1 − 2M/r. k and l are tangent to null, shear-free geodesic congruences and, 
furthermore, k is affinely parametrised, rkk = 0. By the Goldberg–Sachs theorem, k and 
l are aligned with repeated PNDs. Thus, Schwarzschild’s space is Petrov type D and, from 
(1.20), in the frame (1.24) the only non-vanishing Weyl scalar is 

M 
Ψ2 = − (1.25)

3r 
Some components of the metric (1.11) and frame (1.24) are pathologic at r = 2M . This 
may be due to a true singularity or to a breakdown of the coordinates at r = 2M . One 
way of investigating this is by working in coordinates adapted to the null congruence 
generated by k. Since dk = 0 at least locally we can use a coordinate v defined by dv = k. 
Thus, v labels null hypersurfaces generated by k. In terms of (v, r, θ, φ) (known as ingoing 
Eddington–Finkelstein coordinates) the metric (1.11) reads 

ds2 = −f(r)dv2 + 2drdv + r 2dΩ2 (1.26) 

and, furthermore, k is expressed as k = ∂r so the area-radius r is an affine parameter of 
the null congruence generated by k. As a consequence, in these coordinates the metric 
(1.26) is well behaved at r ∈ (0, ∞), so in particular, it is regular at r = 2M . The timelike 
Killing vector kt = ∂t of (1.11) is now expressed as kt = ∂v. Since kt · kt = −f(r), one 
has that kt is null on the hypersurface r = 2M , which we shall refer to as H. In addition, 
kt = H 

dr so it is also normal to r = 2M and, consequently, H is a Killing horizon of kt. 
Using the Killing equation one has rkt = (1/2)dkt, so 

1 1 H f 0(r = 2M)
kt · rkt = kt · dkt = kt · d (−f(r)dv + dr) = kt (1.27)

2 2 2 

where in the last step = H 
means evaluated at H. From (1.27) it follows that the surface 

f 0(r=2M )gravity is κ = 2 = 1/4M , and also that v is not an affine parameter of the 
20To alleviate notation we denote by the same symbol a vector (or 1-form) and its metric dual, except 

for the position of the index (if written). 
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congruence of generators of H. In fact, the geodesics in H generated by kt = ∂v with 
v ∈ (−∞, ∞) are incomplete. This can be seen by using a new coordinate V which at H 
is an affine parameter of the generators. Writing dV = h(v)dv then ∂V = (1/h(v))∂v = 
(1/h(v))kt and from (1.27) it follows that � � 

∂V · r∂V = H 1 −h0(v) + κh(v) ∂v (1.28)
h(v)3 

The r.h.s. must vanish if V is an affine parameter of the generators of H, so we conclude 
κvthat V ∼ e . Now it is manifest that the geodesics generated by kt with v ∈ (−∞, ∞) 

are incomplete, since these correspond to V ∈ R+ instead of V ∈ R. Playing the same 
dr game with u, the retarded counterpart of v defined by du = dt − , one is lead to thef (r) 

so-called Kruskal-Szekeres coordinates 
−κu κvU = −e V = e (1.29) 

and in terms of (U, V, θ, φ) the metric reads 

32M3e−2κr 
ds2 = − dUdV + r 2dΩ2 (1.30) 

r 
where r is given implicitly in terms of U, V by 

UV = −2κre2κrf(r) (1.31) 

Just like (u, v), the coordinates (U, V ) label null hypersurfaces and dU and dV are tangent 
to affine generators21 . The difference lies in the fact that (U, V ) are also affine parameters 
of the generators of H. Consequently, (1.30) can be used to analytically continue the metric 
(1.11) to the range (U, V ) ∈ (−∞, ∞) where r > 0 (see (1.31)). In these coordinates the 
static Killing vector is 

kt = κ (V ∂V − U∂U ) (1.32) 

and its Killing horizon H at r = 2M corresponds to the surfaces U = 0 and V = 0. That 
is, H is the intersection of two null hypersurfaces. This is known as a bifurcate Killing 
horizon, and the bifurcation surface, denoted by BH, is a fixed point of the Killing vector 
field. This is so because the Killing vector field must vanish in order to be normal to both 
surfaces simultaneously. In the spacetime (1.30) the bifurcation surface is the 2-sphere at 

BH 
U = V = 0, where kt = 0 (see (1.32)). Furthermore, for any bifurcate Killing horizon one 
has22 

BH rµkν = κnµν (1.33) 

where nµν is the binormal to the BH with the conventional normalisation nµν n
µν = −2 

(i.e. nµν is the natural volume element in X(BH)⊥). In general, the structure of spacetime 
in the neighbourhood of a bifurcation surface is as sketched in Figure 1.1 and, furthermore, 
it can be shown that there is always a (time-orientation-reversing) local isometry in the 
neighbourhood of the BH which maps region I to region III and region II to region IV [64].23 

One such isometry in the case of (1.30) is simply (U, V ) → (−U, −V ). 
21Indeed (dU)µrµ(dU)ν = (dU)µrµrν U = (dU)µrν rµU = (1/2)rν [(dU)µ(dU)µ] = 0, and similarly 

for dV . 
22This can be checked easily in explicit examples by using that rk = (1/2)dk for Killing vector fields. 

We prove it in general in Appendix B. 
23This is a technical piece that results very useful in deriving the first law of black hole mechanics in 

general theories. 
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Figure 1.1: General structure of a neighbourhood of the bifurcation surface BH of a Killing horizon H. 
Thick lines represent H, with BH at the intersection. The thin arrows represent the flow of the Killing 
vector associated to H. The local time-orientation-reversing isometry maps region I to region III and 
region II to region IV [64]. 

The global causal structure of spacetime can be represented accurately in a Penrose– 
Carter diagram. Penrose–Carter diagrams are associated to conformal compactifications, 
reductions of spacetime to finite size that preserve the causal structure. Only two coor-
dinates are represented, one for time T and one for space X, with T in the vertical axis 
and time flowing upwards. Furthermore, these coordinates are chosen so that light rays 
are straight lines of slope ±π/4. For the (maximally extended) Schwarzschild solution one 
has the diagram shown in Figure 1.2. It consists of two asymptotically flat regions I and 
III, a black hole region II and a white hole region IV. The four regions are separated by 
the Killing horizon H, which coincides with the event horizons of both future null infini-
ties I + . The isometry (U, V ) → (−U, −V ) maps I to III and II to IV, so they can be 
regarded as the time reversal of each other. II and IV contain a spacelike singularity at 
r = 0 (which is discussed below). The spacetime in those regions is not static because kt 
becomes spacelike, and the Jebsen–Birkhoff theorem establishes that the metric must be 
isometric to � �−1 � � 

2M 2M2ds2 = − − 1 dt̃ + − 1 dx2 + t̃2dΩ2 (1.34)
˜ ˜t t 

with |t̃| < 2M . Hence, spacetime is an homogeneous cylinder R × S2 (surfaces of constant 
t̃) that shrinks and stretches in the S2 and R factors, respectively, as time flows into the 
future in region II and into the past in region IV. Both III and IV are a consequence of 
assuming that the Schwarzschild black hole is “eternal” when analytically continuating 
the solution to the past of t = −∞. In models of gravitational collapse, III and IV are 
replaced by the collapsing matter in the interior. 

We conclude by discussing the trapped surfaces of (1.30). The vector fields 

2κrre 
k+ = −(dU)µ∂µ = ∂V (1.35)

32M3 
2κrre 

k− = −α(dV )µ∂µ = α ∂U (α > 0) (1.36)
32M3 

are future-directed and tangent to a congruence of affinely parametrised null geodesics. 
Furthermore, they are normal to the 2-spheres at constant (U, V ) (the positive constant 
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I
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2MI +

I −

V
=
0 , r

=
2M

r = 0

r = 0

Figure 1.2: Penrose–Carter diagram of the maximally extended Schwarzschild spacetime (1.30). Each 
point represents a 2-sphere and lines at ±π/4 are null hypersurfaces of constant U and V (so time flows 
to the future as one moves upwards). I + and I − are future and past null infinity, the points i+ and i− 

are future and past timelike infinity and the points i0 are spatial infinity. 

α can be used to fix the relative normalisation at a specific 2-sphere to g(k+, k−) = −1). 
The corresponding expansions are 

1 �√ � κ 
θ+ = rµ(k

+)µ = √ ∂µ g(k+)µ = − U (1.37) 
g r 
1 �√ � κ 

θ− = rµ(k
−)µ = √ ∂µ g(k−)µ = −α V (1.38) 

g r 

In regions I, III and IV the 2-spheres are not trapped since at least one of the families 
has positive expansion. On the portion of H that bounds II, the 2-spheres are marginally 
future-trapped since the family that lies along the horizon has vanishing expansion (as it 
should be for Killing horizons), while it is negative for the family entering II. The only 
exception is the bifurcation 2-sphere at U = V = 0, since both expansions vanish and the 
surface is stationary. All 2-spheres in region II are future-trapped since both expansions 
are strictly negative. From Penrose’s theorem, at least one of the families emerging from 
any of these 2-surfaces should be incomplete and inextendible. In our example this is 
the case for both families, which terminate at r = 0. What remains to be clarified is 
whether the incompleteness is due to extendibility of the maximal Cauchy development 
(i.e. whether the space (1.30) can be extended beyond r = 0), or it is due to a true 
singularity. Computing the Kretschmann scalar one finds 

M2 
RµνρσRµνρσ = CµνρσCµνρσ = 48Ψ2 = 48 (1.39)2 6r 

where in the second step we used the vacuum Einstein equation Rµν = 0. Since (1.39) is 
an invariant quantity, we conclude that the curvature tensor is singular at r = 0 and thus 
the spacetime can not be extended smoothly beyond that hypersurface. 

13 



Chapter 1. Introduction 

1.2 Dynamical Properties 

The study of exact solutions describing stationary black holes is motivated in part by the 
fact that black holes are generic predictions of GR. However, once an exact solution is 
found, it is not guaranteed that it describes a stable (and, thus, generic) configuration. 
Thus, obtaining exact solutions does not suffice and one has to explore the dynamics of 
neighbouring states. In addition, gravitational wave (GW) astronomy detects routinely 
merger processes of compact objects, a large portion of which are believed to be black 
holes [3]. These are highly dynamical processes that can be used to test the strong field 
regime of gravity [10]. From a different point of view, as explained in Chapter 6, the 
dynamics of black holes in Anti de Sitter is dual to certain properties of QFTs, which is 
a striking fact following from the AdS/CFT correspondence [65]. 

The reasons above motivate the study of the dynamics of black holes. To that end, 
many symmetry assumptions such as algebraic speciality, a non-trivial isometry group, 
etc. , need to be dropped in solving Einstein’s equations. In that situation one is typically 
forced to approach the problem numerically. An alternative analytic, yet perturbative, 
approach is to consider linear fluctuations of an exact black hole solution. While the 
information that can be obtained this way is partial, it is still physically meaningful and 
provides very valuable insights on the dynamics of black holes. 

Black Hole Mergers 

Qualitatively, the waveforms of the typical black hole mergers observed by LIGO and 
Virgo present three stages [15]. First, there is an inspiral phase in which the black holes 
orbit each other emitting gravitational waves. As energy is radiated away, the orbits de-
crease in radius and increase in frequency. The merger phase encompasses the plunge and 
coalescence of the black holes. Once the black holes have merged into a single one, there 
is a last stage referred to as the ringdown in which the final black hole emits GWs in its 
“natural modes”, with some characteristic frequencies and damping times (see Figure 1.3). 
Describing the merger phase requires accounting for all the non-linearities in Einstein’s 
equations and, typically, this stage is studied through numerical methods. On the other 
hand, some aspects of the ringdown and inspiral phases can be approached through black 
hole perturbation theory. 

Vishveshwara [67] and Press [68] noticed that black holes exhibit some “free oscilla-
tion modes” that rule the behaviour of perturbations at late times. These are essentially 
the waves observed during the ringdown, and their frequencies and damping times depend 
solely on the structure of the final black hole.24 Such frequencies and damping times can 
be obtained from black hole perturbation theory by studying a specific class of fluctua-
tions known as quasinormal modes (QNMs). These are defined as perturbations of definite 
frequency that are regular on the event horizon (which is equivalent to requiring that the 
waves can only cross the horizon inwards) and purely outgoing waves at infinity (thus 
encoding the idea that QNMs are free oscillations) [69]. This is a characteristic value 
problem which has solutions only for a discrete set of complex frequencies, the so-called 
quasinormal frequencies, whose real and imaginary parts are the (real) frequencies and 
damping times of the free oscillations of the black hole, respectively. From the uniqueness 

24In Chandrasekar’s words [18], at late times the black hole radiates “in the manner of a bell sounding 
its last dying pure notes”. 
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Figure 1.3: Illustration of a typical binary black hole merger, exhibiting the three main phases discussed 
in the text. Image source: [66]. 

theorems presented above, it follows that the QNM spectrum observed in the ringdown 
phase of a binary black hole merger must be fully determined by the mass M and angular 
momentum J of a Kerr black hole. QNMs of Kerr where computed by Detweiler [70], 
and, very recently, an exhaustive study has been published about the QNMs of gravito-
electromagnetic fluctuations of Kerr–Newman’s black hole [71–73]. Then, measuring two 
(three) quasinormal modes fixes M and J (and Q) assuming the black hole is neutral 
(charged), but measuring a third (fourth) one is already a test of GR. QNM’s can, thus, 
be used to test the no-hair conjecture which is one of the main goals of black hole spec-
troscopy [74–76]. QNMs are also important in holography, but their definition and physical 
meaning is significantly different so we shall discuss them in Chapter 6. 

Consider now the late stages in the inspiral phase of a binary merger. As the orbits 
decrease in radius the bodies get closer and tidal interactions become significant. In 
turn, this manifests itself in the shape and phase of the gravitational waveform emitted 
by the coalescing binary, which receives corrections at 5th post-Newtonian order [77–80]. 
Focusing on one of the objects, tidal interactions consist in internal moments induced by 
external ones caused by the companion [19], and such response is parametrised by the so-
called Tidal Love Numbers (TLN). These can be thought of as gravitational susceptibilities 
that (just like their electric counterparts) depend only on the structure of the deformed 
object. In the case of neutron stars, it was shown in [77, 78] that the imprint of the 
TLNs in the waveform can be used to extract information about the equation of state of 
the star, even above currently understood nuclear densities. In GR, TLNs have a precise 
definition in the context of perturbation theory as static gravitational fluctuations25 and, 
quite remarkably, these are exactly zero for static black holes [80] and exhibit only a 
dissipative component for the rotating ones [81, 82]. Thus, TLNs are observables that 
inform about the presence of an horizon in spacetime. In addition, the fact that they 
vanish for black holes is a very specific signature of 4D GR, since the TLNs of black 
holes are non-vanishing in higher-order theories [83], asymptotically AdS spaces [84] and 
higher dimensional GR [85–87]. Consequently, in the last few years, much effort has been 

25This is motivated by the expectation that at the late stages of the inspiral, when tidal interactions are 
significant, the characteristic time scale is still much larger than the spatial one. Thus, time dependencies 
can be treated adiabatically. 
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made towards understanding what protects the vanishing of TLNs in GR and its relation 
to the “no-hair” conjecture [88], under what (environmental) mechanisms can black hole 
TLNs be excited effectively [89], and studying the multipolar structure of some horizonless 
substitutes of black holes (e.g. fuzzballs) [90]. In particular, it was shown in [87] that the 
vanishing of the tidal response is not specific of gravity in 4D GR, since the same is true 
for spin-0 and spin-1 fluctuations and, as shown in [91] (and discussed in Chapter 7), this 
fact remains true in a very nontrivial manner even when the black hole is charged. 

Onset of Instabilities 

Proving that a black hole is stable at the linear level is in general a difficult task (even 
without considering mode composition), and it is, furthermore, inconclusive, since insta-
bilities could set in at higher orders. However, working linearly one can prove that a black 
hole is unstable e.g. by exhibiting regular modes that grow with time. Identifying the 
conditions under which instabilities arise provides very valuable insights on the physics 
of black holes. One of the most celebrated examples is the so-called Gregory–Laflamme 
instability [92]. It is a gravitational instability of black branes (black holes extended with 
flat extra directions) under the propagation of long wavelength modes along the extended 
directions.26 Thus, it is reasonable to expect the onset of Gregory–Laflamme-like insta-
bilities whenever a horizon is characterised by two significantly different length scales. 
This intuition has proven extremely useful in e.g. the interpretation of more complicated 
black hole solutions [94], the construction of black hole brane-worlds [95] and the study of 
thermodynamic properties of black hole saddles in Euclidean quantum gravity [96]. An-
other important instance is the superradiant instability of rotating black holes, intimately 
related to the Penrose process, and we refer the reader to [97] for a review. 

To conclude this section we shall sketch the two main approaches to the study of 
black hole fluctuations. These are extensively used in Chapters 6 and 7. 

1.2.1 Black Hole Perturbation Theory in Higher Dimensions 

In black hole perturbation theory one considers a linear deviation hµν off an exact black 
hole solution ḡµν , so the spacetime metric is approximated as 

gµν = ḡµν + hµν (1.40) 
(1) (1)

where hµν satisfies the linearised Einstein equation Gµν [h] = 0 (where Gµν [·] denotes 
Einstein’s tensor linearised around ḡ acting as an operator on hµν ). The main obstacles in 
the analysis are the large amount of equations and gauge redundancies hµν ∼ hµν +£X ḡµν . 
When the background spacetime has enough symmetry, it is possible to organise the 
fluctuations in decoupled sets associated to the different kinds of harmonics. This was 
first considered in 4D by Regge and Wheeler [98], Zerilli [99,100] and Moncrief [101], and 
was later generalised rigorously to higher dimensions by Kodama and Ishibashi [102]. We 
shall follow the latter authors here since this includes the four-dimensional case. 

Assume that a black hole spacetime (M, gAB) has the structure 

M = N m × Kn , ds2 = gAB dx
AdxB = gab(y)dyadyb + r 2(y)γij (z)dzidzj (1.41)|{z} |{z} 

ya iz 

26In many senses it can be regarded as a black hole version of the Rayleigh-Plateau instability of fluid 
dynamics [93]. 
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where (Kn, γij ) is an n-dimensional, Euclidean Einstein manifold, (N m, gab) is an m-
dimensional Lorentzian manifold and r2(y) a function on N m called the warp factor.27 The 
pieces of the metric perturbation with legs on Kn , i.e. (hai, hij ), can be further decomposed 
separating the contribution of the transverse (and traceless in the case of hij ) parts.28 The 
transverse and traceless pieces with two legs on Kn constitute the so-called tensor sector 
which we denote collectively by Tij . The transverse pieces with one leg on Kn conform the 
vector sector Vi and the remaining pieces, which have no legs on Kn are the scalar sector 
S. Then, it is possible to expand each sector as 

T = T (y)Tij , V = V (y)Vi, S = S(y)S (1.42) 

where Tij , Vi and S are tensor, vector and scalar harmonics29 of Kn [102] and T (y), V (y) 
(1)

and S(y) are tensors on N m . Plugging (1.42) into Gµν [h] = 0, the sectors decouple forming 
three distinct sets of linear, coupled PDEs on N m . Thus, one can work sector by sector, 
construct gauge-invariant variables and, hopefully, derive decoupled equations within each 
sector. In particular, this has been done explicitly for higher-dimensional charged black 
holes of the form (1.41). 

The main drawback of this approach is that it cannot be applied to rotating black 
holes in general.30 Exceptionally, in four spacetime dimensions the algebraic description 
introduced in section 1.1.2 provides an alternative and elegant approach that accounts for 
a much wider class of spacetimes. 

1.2.2 Black Hole Perturbation Theory in 4D 

Teukolsky [105] considered a Ricci-flat background space of Petrov type D31 . The Goldberg-
Sachs theorem guarantees that one can choose a Newman–Penrose frame (k, l, m, m̄ ) where 
k, l are PNDs and tangent to shearfree null geodesics. This translates into the vanishing of 
a remarkably large number Newman–Penrose variables of the background (see e.g. (1.20)). 
This has two main consequences when considering linear perturbations [53]: first, the lin-

(1) (1)
earised Weyl scalars Ψ0 and Ψ4 are gauge-invariant quantities, both with respect to 
diffeomorphisms and frame rotations. Second, several structure equations are homoge-
neous in quantities that vanish on the background, so they become already linearised and 
are remarkably simple. This allows one to derive two identities of the form32 

(1) µν G(1) (1) µν G(1)O0(Ψ [h]) = S O4(Ψ [h]) = S (1.43)
0 0 µν [h] 4 4 µν [h] 

that hold for all (off-shell) metric fluctuations hµν , where Teukolsky’s operators O0, O4 are 
(1) (1)

linear, second order differential operators acting on functions [105], Ψ0 [h], Ψ4 [h] are the 
µν µνlinearised Weyl scalars induced by hµν , and S , S are yet another set of linear, second0 4 

27For example, Schwarzschild’s space (1.11) has this form with Kn being the round 2-sphere and N m 

being the (t, r)-plane. 
28This is just the Hodge decomposition of hai and an analogue thing for hij . 
29We notice that in four spacetime dimensions there are no tensor harmonics, and the vector harmonics 

on the 2-sphere are just the Hodge duals of the covariant derivatives of S. 
30Two exceptions are the tensor perturbations of single spinning [103] and cohomogeneity-1 [104] Myers– 

Perry black holes, and the latter case is not in the framework of Kodama and Ishibashi. 
31All concepts regarding the algebraic description of spacetimes used here have been previously intro-

duced in section 1.1.2. 
32Here we depart slightly from the original derivation by Teukolsky and follow a line closer in spirit 

to [106] in order prepare the discussion on metric reconstruction. 
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order differential operators mapping 2-tensors into functions [106]. Assuming that the 
linearised Einstein equations are satisfied, the r.h.s. of (1.43) vanish thus leading to the 

(1)
celebrated Teukolsky equations: two decoupled, linear, second order PDE’s for Ψ0 [h] and 

(1)
Ψ4 [h] that hold on any Ricci-flat, Petrov type D space. These can be easily generalised 
to solutions with a cosmological constant. Furthermore, when specialised to Kerr’s space-

(1) (1)
time, both Ψ0 and Ψ4 admit separable solutions and, therefore, Teukolsky’s equations 
translate into ODEs. Such separability has also been observed in other spacetimes, an 
example of which is considered in Chapter 6, and it is ultimately due to the existence of a 
principal Killing–Yano tensor of the background spacetime [107]. Besides its efficiency in 

(1) (1)
deriving convenient equations, this approach is also physical because Ψ0 and Ψ4 con-
trol the gravitational wave energy fluxes at the horizon and infinity, respectively [105]. In 

(1)
particular, the waveform models and templates are constructed for Ψ4 (see e.g. [108] for 
an explicit computation of the waveform sourced by a particle orbiting a black hole). 

Finally, some problems require one to know the actual metric perturbation hµν , 
and not just the solution for the master variables. For instance, in holography one 
needs to impose boundary conditions on the physical fields and, then, translate those 
into boundary conditions for the master variable that we know how to solve [109]. Such 
metric-reconstruction problem seems intractable due to the large number of Einstein and 
Newman–Penrose equations. However, in a considerable tour de force Chandrasekar did 
it in the case of Kerr’s metric [110,111] (also reviewed in [18]). Using a different approach 
and under some non-trivial assumptions, Cohen and Kegeles [112] and Chrzanowski [113] 
provided a prescription for reconstructing electromagnetic and gravitational perturbations 
of any space of type D. However, it was finally Wald in [106] who was able to reformulate 
the problem in a more convenient language giving a remarkably simple proof of Cohen, 

(1)
Kegeles and Chrzanowski’s formulas. The argument consists simply in noticing that Gµν [·] 

(1)† (1)
is self adjoint Gµν [·] = Gµν [·] (in the sense specified in [106]). Then, taking the adjoint 
of (1.43) one has 

= G(1)µν S†Ψ†O† 
µν (1.44) 

Now, if one has a solution ϕ of O†(ϕ) = 0 (called Hertz potential), it follows from (1.44) 
that one can generate a solution for the metric perturbation by just acting with S† on ϕµν 

hµν = S† (1.45)µν (ϕ) 

Furthermore, Hertz potentials ϕ and solutions of Teukolsky’s equation O(Ψ) = 0 are 
related through a simple rescaling by a function. Hence, metric perturbations can be 
equally generated from those. This result will be useful in Chapter 6. 

1.3 Black Hole Thermodynamics 

So far we have discussed black holes as special solutions of GR which constitute a robust 
theoretical prediction and whose existence in nature is supported by strong experimental 
evidence. However, GR cannot be a complete theory. From the quantum-mechanical 
point of view, GR is not renormalisable [114–116], so one expects it to be just an effective 
description of a UV-complete theory. Therefore, everything we have discussed so far about 
black holes is only the classical picture. Indeed, some properties of black holes indicate 
that these are actually thermodynamical systems consisting of an extremely large number 
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of microscopic degrees of freedom. However, a precise description of the latter requires 
the knowledge of a quantum theory of gravity. 

In the remaining of this introduction we will review the laws of black hole ther-
modynamics, discuss the joy and sorrow these have inflicted to fundamental physics, and 
provide some motivation for Part I of this thesis. 

Black Hole Mechanics and Hawking Radiation 

Hartle and Hawking [117] and Bardeen, Carter and Hawking [118] showed that perturba-
tions of Kerr’s black hole are subject to a set of laws, known as the four laws of black hole 
mechanics. The second law, due to Hawking [119], establishes that if Einstein’s equation 
holds and matter satisfies the null energy condition, then the area A of spatial sections of 
the horizon does not decreases along the future-directed generators 

δA ≥ 0 (1.46) 

Underlying this result is the fact that, under the above assumptions, the generators of H 
have non-negative expansion θ ≥ 0. The zeroth law establishes that the surface gravity κ 
is constant on the future event horizon of a stationary black hole spacetime obeying the 
dominant energy condition (below we will see that actually the zeroth law is a geometric 
consequence of the definition of Killing horizons, and does not depend on the equations of 
motion). The first law relates the variations of the mass δM , of the angular momentum 
δJ and of the horizon area, δA, of a Kerr black hole via the equation 

κ 
δA = δM − ΩH δJ (1.47)

8π 

where ΩH is the horizon’s angular velocity introduced in (1.9). Bardeen, Carter and 
Hawking [118] proved this formula for symmetric perturbations of Kerr, while Hartle and 
Hawking [117] derived it by reproducing a physical process of accretion. Later on, it 
was shown that (1.47) holds in situations that are substantially more general than those 
considered originally, and it was enlarged to include contributions from matter [120]. 
Finally, in [118] a third law was also proposed (and later proven in [121]) stating that 
reducing the surface gravity to zero is a process that necessarily involves an infinite amount 
of time. 

Remarkably, the four laws of black hole mechanics coincide with the four laws of 
ordinary thermodynamics for a system of internal energy M , angular momentum J , angu-
lar velocity ΩH , temperature γκ/8π and entropy A/γ, where γ is an unknown constant. 
Assuming that this analogy is not merely coincidental implies accepting that black holes 
have physical temperature and entropy. The latter is actually a reasonable assumption. 
Indeed, if black holes do not have entropy then just by throwing an entropic object into 
it the entropy of the universe would decrease, thus violating the second law of thermody-
namics. Based on this idea, Bekenstein [122] proposed that black holes have an entropy 
precisely proportional to their area. A non-vanishing temperature, however, is seemingly 
contradictory. If black holes had a temperature then they would radiate just like any other 
warm body, but this is in conflict with the classical picture (nothing escapes the black hole 
region). Insisting in the idea that black holes have a physical temperature implies that they 
must radiate quantum-mechanically. In a revolutionary work, Hawking [123, 124] showed 
that treating matter quantum-mechanically (in the so-called semi-classical approximation) 
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then, at late times after collapse, black holes radiate like a black body at the Hawking 
temperature 

κ 
TH = (1.48)

2π 
which determines γ = 4 in the analogy above, and leads to the conclusion that black holes 
have an entropy given by 

A 
SBH = (1.49)

4 
which is known as the Bekenstein–Hawking entropy. This important result shows that 
black holes are truly thermodynamical systems and that the four laws governing their 
mechanics are just the ordinary laws of thermodynamics applied to black holes. Further-
more, the sum of the entropies of the black hole and of the matter outside the horizon 
does not decrease during Hawking evaporation [125,126] (the so-called generalised second 
law of thermodynamics) even though the area of the hole may decrease. 

The Microscopic Nature of Black Holes and the Information Paradox 

Hawking’s striking result raised inevitable questions about the nature of black holes. First, 
Sif black holes have an entropy S then statistical mechanics implies that there must be ∼ e 

microstates compatible with the macroscopic thermodynamic variables. However, the 
uniqueness theorems establish that associated to those thermodynamic variables (M, J, Q) 
there is precisely one spacetime geometry describing a black hole. It is, therefore, not 
clear what the microstates that give raise to the entropy of a black hole are. The second 
puzzle follows by considering a process of Hawking radiation that leads to a complete 
evaporation. Since the radiation is exactly thermal, the final state must be a mixed 
one, but this is in conflict with unitary evolution (essentially, time evolution preserving 
probability densities), which forbids transitions from pure to mixed states. It follows that 
some information is just lost in the process of black hole evaporation, a fact that yields 
the so-called black hole information paradox. If quantum gravity is unitary, then it should 
be possible to refine the approximations in Hawking’s calculation and restore unitarity in 
black hole evaporation. 

Understanding the nature of black hole microstates and the information paradox 
requires working in the context of a potential theory of quantum gravity. String theory is, 
to date, the most promising candidate. It is in such a framework that Susskind [127] pro-
posed that black holes are effective descriptions of quantum systems consisting of strings 
and branes, a fact that lead Strominger and Vafa [128] to reproduce, for the first time, the 
Bekenstein–Hawking entropy of a black hole by counting the associated string microstates. 
This is one of the most important achievements of string theory and, together with im-
proved techniques for computing the entropy of Hawking radiation [129–135], suggest that 
black hole evaporation is a unitary process. 

These results motivate studying the corrections to the black hole entropy induced 
by subleading effects of string theory. The effective actions governing the behaviour of 
superstring theories at low energies enlarge the standard theory of GR by coupling it to 
light gauge fields and allowing for extra-dimensions. Furthermore, if finite size effects on 
the string length are accounted for, the effective action includes terms of higher-order in 
the spacetime curvature. In those cases, the entropy of a black hole is no longer given by 
the area of the horizon, and the correct identification of the macroscopic entropy is crucial 
for a meaningful comparison with the result from string microstate counting. In Sections 
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1.3.1 and 1.3.2 we introduce a framework in which the black hole entropy can be identified 
in a gauge-invariant guise. This is extensively used in Part I of this thesis. 

1.3.1 Charges in Covariant Gauge Theories 

Wald [139] understood that, in pure gravity theories, the entropy of a stationary black 
hole is the Noether charge associated to the Killing vector field that generates the horizon 
because it satisfies the first law of black hole thermodynamics. This point of view is very 
useful because it can be applied to general higher-order gravities. However, Wald’s argu-
ment does not extend trivially to theories with fields that have internal gauge symmetry. 
If gauge fields are present, then conserved charges are associated to symmetries that act 
not only on spacetime but also in the internal space. Here we review some general re-
sults about charges in covariant gauge theories that will be useful for studying black hole 
thermodynamics. 

Let L(Φ) denote the Lagrangian d-form of a generally covariant and gauge invariant 
theory in d spacetime dimensions. The fields are collectively denoted by Φ. For example, 
in the Einstein–Maxwell theory Φ contains the metric (or Vielbein) and a vector potential. 
The first order variation of the Lagrangian reads 

δL = EδΦ+ dΘ(δΦ) (1.50) 

where the equations of motion E = δL/δΦ are the Euler–Lagrange derivative of L and 
Θ(δΦ) is the symplectic potential form, which is linear in δΦ and collects the boundary 
terms picked in the integration by parts. We consider fields with some internal gauge 
freedom, so the linear action of a general automorphism can be written as 

δξ,λΦ = −£ξΦ+ δλΦ (1.51) 

where the vector field ξ generates a diffeomorphism, δλΦ denotes the action of the internal 
gauge symmetry generated by a (local) parameter λ, and the relative minus sign is purely 
conventional. Given a solution Φ, the generalised Noether theorem [136, 137, 142] estab-
lishes that there is a bijection between (certain equivalence classes of) parameters (ξ, λ) 
satisfying 

δξ,λΦ = 0 (1.52) 

called reducibility parameters, and (d − 2)-forms that are closed on-shell (modulo exact 
forms). In more physical terms, the latter can be thought of as charges that satisfy a 
Gauss law. 

There are two classes of parameters satisfying (1.52) that will be particularly im-
portant. The first are vertical (i.e. ξ = 0) gauge transformations λ satisfying 

δλΦ = 0 (1.53) 

Gauge charges arise as the conserved quantities associated to this class of symmetries. 
Assuming that a solution admits a Killing vector field k, the second important class 
consists of the gauge parameters (k, λk) that satisfy 

δk,λk Φ = 0 (1.54) 
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Equation (1.54) can be seen as a covariant generalisation of the Killing equation where 
λk acts as a “compensating” or “induced” gauge transformation.33 Associated to the 
symmetry (1.54) is the Noether–Wald charge. In general it does not satisfy a Gauss law 
but, as we will see, some closely related charges do. The latter are crucial in deriving the 
first law of black hole mechanics and also the Smarr relation. 

In order to associate charges to gauge parameters we need Noether’s second theorem 
[136, 137]. It asserts that, off-shell and for generic parameters (ξ, λ), 

Eδξ,λΦ = dSξ,λ (1.55) 

where Sξ,λ is a (d − 1)-form proportional to the equations of motion and their derivatives. 
This is equivalent to the statement that there exist certain (off-shell) identities amongst 
the equations of motion [136], the so called Noether identities. Since Sξ,λ vanishes on-shell, 
it gives a trivial conserved current. However, it is possible to construct non-trivial “lower-
degree conserved currents”, that is, non-vanishing (d − 2)-forms that are closed on-shell 
(which, as mentioned above, may be thought of as charges satisfying a Gauss law). 

Under the action of (1.51) the first variation of L can be written in two different 
ways. Assuming that the Lagrangian is gauge invariant and generally covariant implies 

δL = −£ξL = − (ιξd + dιξ) L = −d (ιξL) (1.56) 

Using Noether’s second theorem, 

δL = Eδξ,λΦ+ dΘ(δΦ) = d [Sξ,λ + Θ(δξ,λΦ)] (1.57) 

Therefore, at least locally, there is a (d − 2)-form Qξ,λ that satisfies the off-shell identity 

dQξ,λ = Θ(δξ,λΦ) + ιξL + Sξ,λ (1.58) 

Furthermore, we shall assume that Qξ,λ is a local function of the fields and gauge param-
eters.34 

Considering vertical gauge transformations λ satisfying (1.53), it follows from (1.58) 
that 

.
dQλ = 0 (1.59) 

. .
where = means “evaluated on-shell”, and we used that ξ = 0, Sλ = 0 and that Θ(δΦ) is 
linear in δΦ so it vanishes if λ satisfies (1.53). In Chapters 2 to 4, conserved gauge charges 
are defined as certain integrals of these Qλ. 

The form Qk,λk associated to (k, λk) is the Noether–Wald charge. On-shell, it fails 
to be closed by 

.
dQk,λk = ιkL (1.60) 

where we used (1.58) again. Thus, it satisfies a Gauss law if the Lagrangian vanishes 
on-shell. This is the case of important examples such as vacuum GR, but it is not true 

33In principle, one can provide a precise non-linear version of these notions once the geometric structure 
of the theory is specified, e.g. a principal fibre bundle [138], but this can be quite technical (specially for 
higher-rank gauge potentials). Here, in order to keep the discussion general and simple we stick to the 
linear action of symmetries. 

34This can be verified from an explicit computation of Qξ,λ for a given theory or in general [139, 140]. 
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in general. One way of constructing a conserved charge is to write the r.h.s. above as a 
suitable total derivative, 

.
ιkL = dWk (1.61) 

which can always be done, at least locally, because 0 = £kL = d (ιkL). The form 

Kk ≡ Qk,λk − Wk (1.62) 

is the generalised Komar charge (see e.g. [141] and also Chapter 4 and references therein). 
It is closed on-shell and, as shown in Chapter 4, it can be used to derive Smarr relations 
for black holes that include contributions of both electric and magnetic types combined in 
a duality invariant fashion. To derive a first law, however, one needs a conserved charge 
that involves fluctuations of the spacetime. Thus, consider a background solution Φ and 
take the first variation of (1.58) by a perturbation δΦ that satisfies the linearised equations 
of motion. Notice that no assumption is made neither on the gauge parameters nor on the 
symmetries of the fluctuation. Then, one arrives at the so-called fundamental theorem of 
covariant phase space [136, 137, 142], which establishes that35 

.
dkξ,λ = ω (δΦ, δξ,λΦ) (1.63) 

where, up to a total derivative, 

kξ,λ = δQξ,λ + ιξΘ(δΦ) (1.64) 

and ω (δ1Φ, δ2Φ) is the presymplectic potential, 

ω (δ1Φ, δ2Φ) ≡ δ1Θ(δ2Φ) − δ2Θ(δ1Φ) (1.65) 

ω (δ1Φ, δ2Φ) is an antisymmetric bilinear of the variations δ1Φ and δ2Φ.36 Then, taking 
(ξ, λ) = (k, λk), one has (1.54) so the r.h.s. of (1.63) vanishes and, consequently, kk,λk is 
closed. The first law of black hole mechanics will follow from this fact, as discussed in the 
next section. 

Finally, notice that, in general, there may exist no (k, λk) satisfying (1.54) (e.g. a 
solution of vacuum GR with no Killing vector fields). However, one can construct asymp-
totically conserved charges in, say, a gravitational theory, by just requiring the existence 
of asymptotic Killing vector fields. For example, if k approaches a Killing vector field at 
infinity and Sd−2 is an asymptotic (d − 2)-sphere, then (upon imposing suitable boundary 
conditions on the perturbation) the quantity Z 

kk (1.66) 
Sd−2 

does not depend on the choice of Sd−2 close to infinity because dkk vanishes asymptotically. 
We say kk is integrable if there is a local function of the fields Hk satisfying Z Z 

kk = (δQk + ιkΘ(δg)) = δHk (1.67) 
Sd−2 Sd−2 

35These computations are made in detail for the derivation of Wald’s entropy in Section B.3 of Appendix 
B. 

36If δ1Φ and δ2Φ do not commute by assuming e.g. that the gauge parameters depend on the fields, one 
needs to include an extra term in the r.h.s. of (1.65), in order to keep the property of bilinearity, which may 
introduce an additional contribution to kξ,λ, see e.g. [138]. Some of these follows automatically working 
in the variational bi-complex, and defining ω as a (2, D − 1)-form ω = δΘ [137]. 
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The criteria of integrability of charges are analogous to those of differential forms [137]. In 
an asymptotically flat solution of GR, if k converges asymptotically to the time translations 
∂t (rotation generator ∂φ) of Minkowski space, then Hk gives the ADM mass (angular 
momentum, if Sd−2 is taken tangent to ∂φ) [136]. If, furthermore, kt (kφ) is an exact 
symmetry approaching ∂t (∂φ) at infinity then Hkt (Hkφ ) also coincides with Komar’s 
mass (angular momentum). Moreover, it can be shown that the charges Hk associated to 
asymptotic symmetries form, with the bracket Z 

{Hk1 , Hk2 } ≡ kk1 [δk2 g] (1.68) 
Sd−2 

an algebra which is a central extension of the asymptotic symmetry algebra of the space-
time [136, 137]. 

In the following section we review how these results can be used to derive the first 
law of black hole mechanics in pure gravity theories. Then, we conclude it by discussing 
the problems one encounters in extending the proof to theories that include gauge fields, 
thus motivating the work presented in Part I. 

1.3.2 Black Hole Mechanics in Pure Gravity Theories 

Consider a pure gravity theory with action37 Z Z 
S[g] = L = L(gµν , Rµνρσ)� (1.69) 

where L(gµν , Rµνρσ) is an arbitrary function constructed with invariants of the Riemann 
tensor (for simplicity we do not consider derivatives of the Riemann tensor here), and � is 
the metric volume form (we leave the spacetime dimension d arbitrary). Two important 
tensors in these theories are � � 

∂L 
P µνρσ ≡ (1.70)

∂Rµνρσ gαβ 

Rµν ≡ P µαβγ Rν 
αβγ (1.71) 

P µνρσ is uniquely defined if it is assumed to inherit the symmetries of the Riemann tensor, 
and Rµν reduces to the Ricci tensor in GR. Several identities that hold generally, such as 

= Rνµ the symmetry of (1.71), Rµν , will not be proven here (see [143] for a discussion on 
identities of higher-order gravities). 

Consider a stationary, axisymmetric, asymptotically flat black hole solution of our 
theory (1.69), and assume that the event horizon coincides with a bifurcate Killing horizon 
of 

(i)
k = kt + Ω (1.72)H kφ(i) 

(i)
where kφ(i) are the rotation generators,38 the constants Ω are the associated angularH 
velocities, and kt is the stationary Killing vector field normalised to k2 = −1 at infinity. t 

37Here we sketch the derivation in [140]. Detailed computations are given in Appendix B. 
38More precisely, kφ(i) are at most N = b(d − 1)/2c commuting Killing vectors labelled by i, whose 

orbits are isomorphic to U(1), and at infinity approach the rotation generators in each of the N spatial 
planes [59]. 
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From the discussion in the previous section, if a fluctuation δgµν satisfies the linearised 
equations of motion, and k is a Killing vector field of the background, i.e. 

δkgµν = −£kgµν = 0 (1.73) 

then 
d [δQk + ιkΘ(δgµν )] = 0 (1.74) 

Now, take a spacelike, codimension-1 surface Σ with boundaries at the bifurcation surface 
BH and an asymptotic (d − 2)-sphere S∞, see Figure 1.4. From (1.74), one has Z Z 

[δQk + ιkΘ(δg)] = [δQk + ιkΘ(δg)] (1.75) 
BH S∞ 

The integral at infinity gives [140] 

Figure 1.4: Integration surface Σ between the bifurcation surface BH and a S∞ that asymptotes to i0 . 

Z 
[δQk + ιkΘ(δg)] = δM − Ω(i)

δJ(i) (1.76)H 
S∞ 

where M and J(i) are the (asymptotically-) conserved charges associated to kt and kφ(i) (see 
the previous section) and correspond to the mass and angular momenta of the spacetime, 
respectively (the ADM ones in the case of GR [136, 140]). To evaluate the integral at 
the horizon one needs the zeroth law. On H, the Killing vector field satisfies (1.10) and, 

BH 
furthermore, it vanishes at the bifurcation surface k = 0 and its covariant derivative there 
is39 

BH rµkν = κnµν (1.77) 

with nµν the binormal to the BH. As shown in Appendix B, using these properties of k 
one can show that κ, the surface gravity, is constant on H without using the equations 
of motion (actually, this can be proven under even more general assumptions [144]). We 
will see that the generalised zeroth laws, which are the statement that the potentials 
associated to gauge fields are constant on the horizon, also follow from the properties of 

39A proof of this can be found in Appendix B. 
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Killing horizons only, and no equations of motion are used in proving them. With this, at 
BH one has [140] Z 

κ 
[δQk + ιkΘ(δg)] = δS (1.78)

2πBH 

where we introduced the Wald entropy40 

Z 
nµν P µναβ �αβS = −2π (1.79) 

BH 

Finally, in terms of Hawking’s temperature (1.48), one finds the following first law of black 
hole mechanics, 

δM = T δS +Ω
(i)
δJ(i) (1.80)H 

The fact that T is a physical temperature allows one to interpret (1.80) as the first law of 
thermodynamics and conclude that the entropy of the system is given by Wald’s formula 
(1.79). In GR, P µνρσ = gµ[ρgσ]ν and the Wald and Bekenstein–Hawking entropies coincide, 
but this is not the case for more general theories. Let us remark that some of the pieces 
used in deriving the first law (1.80), such as the Noether–Wald charge, are defined only 
up to the addition of exact forms. However, none of these ambiguities alter the final 
result (1.80) [140, 145]. Furthermore, in the cases in which the black hole entropy can 
be computed through the Euclidean gravitational path integral this has been found to 
coincide with Wald’s result (1.79) (see e.g. [146]). Such coincidence with a “first principles” 
derivation of the entropy constitutes further evidence that (1.79) is a physical entropy. 

In the previous derivation we restricted ourselves to pure gravity theories. Consider 
now coupling (1.69) to, say, a U(1) gauge field A = Aµdxµ with gauge symmetry 

A → A + dχ (1.81) 

One may proceed to derive a first law by reproducing the steps in the proof above, treating 
A just like we treated g. Then one encounters three main problems: 

• The Lie derivative of A along a vector field ξ, unlike that of gµν , is not invariant 
under gauge transformations (1.81). In particular, a statement of the form 

£kA = 0 (1.82) 

which is crucial in the derivation of the fundamental identity (1.74), is not gauge-
invariant (unlike e.g. £kF = 0 where F = dA). If one insists in following this 
approach then it is necessary to assume that there is a particular gauge of the back-
ground solution where (1.82) holds. This is indeed the case for stationary solutions. 
However, in general, this gauge will not extend from the horizon to infinity [147], 
which is precisely the region we want to integrate on. More importantly, working in 
a non-generic gauge can lead in some cases to gauge-dependent expressions for the 
quantities in the first law, in particular for the entropy, which is inadmissible. This 
is discussed in more detail in Chapters 2 and 3. 

40If the theory contains derivatives of the curvature, then P µνρσ is replaced by the Euler–Lagrange 
derivative of L with respect to the Riemann tensor, instead of just the partial derivative (1.70). 
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• Gauge charges are associated to symmetries generated by gauge parameters. The 
latter do not appear in the proof above if the action on A by ξ is just £ξA. Thus, it 
is not clear what gauge charges should appear in the first law amongst all possible 
notions [148]. Intimately related to this, it is not clear, either, what should play the 
role of the potentials conjugate to the charges, and whether these satisfy a gener-
alised zeroth law (i.e. they are constant on the horizon). In very simple cases, e.g. in 
the Einstein–Maxwell theory, one can identify the potential as k · A in a gauge in 
which £kA = 0 and prove it is constant on the horizon,41 but it is not clear how this 
extends to theories with a richer gauge structure, such as those considered in Chap-
ters 2 and 3. Furthermore, in theories where gravitational gauge transformations 
(Vielbein rotations) also act on matter (through e.g. Nicolai–Townsend transforma-
tions), identifying the potentials unambiguously is crucial in order to tell apart which 
contributions in the first law correspond to the entropy and which to matter (see 
Chapter 3). 

• Not all charges are associated to the action of a gauge symmetry. Therefore, even 
if one considers gauge transformations acting on A (as we shall do) it is not clear 
how e.g. magnetic and scalar charges may appear in the derivation of the first law. 
However, it is known from explicit solutions that black holes can satisfy first laws in 
which not only variations of magnetic charges appear, but also variations of the scalar 
moduli weighted by the corresponding scalar charge [149]. It would be desirable to 
understand how such terms can be included in the generic proof of the first law. 

Some of these problems have been noticed and addressed in the literature. The idea is that 
one should consider the linear action of a general automorphisms of the theory, i.e. the 
simultaneous action of a diffeomorphism and a gauge transformation. Thus, Jacobson and 
Mohd [150] considered the Vielbein formulation of GR and extended Wald’s proof in a 
gauge-covariant manner by using the Lorentz–Lie derivative, which is a combined action of 
the Lie derivative and a local Lorentz transformation (see [151] and also [152,153] for the 
Lorentz–Lie derivative of arbitrary Lorentz tensors in the context of supergravity, which 
builds on earlier work by Lichnerowicz, Kosmann and others [154–160]). Prabhu [138] 
generalised this by coupling the theory to a gauge connection living on a general principal 
fibre bundle, and Horowitz and Copsey [147] and Compère [161] considered the coupling 
of GR to a higher-rank gauge potential. However, more general theories in which both 
structures (i.e. gauge connections and p-form potentials) coexist and are entangled by 
gauge transformations have not been considered from this perspective. In particular, the 
effective action of the heterotic superstring at first order in α0 is of this kind and the results 
of [138, 147, 150, 161] do not extend trivially to that theory. Notice, also, that magnetic 
charges remain absent in the first laws proven in [138, 147,161].42 

In sum, there are three things that need to be addressed. First, (1.54) has to be 
solved for λk in a general gauge. Second, one needs a notion of potential that satisfies a 
zeroth law and appears as a conjugate variable of the gauge charges in the first law. And 
third, magnetic charges need to be included in some way. All three things are provided 
by the momentum maps [152]. To illustrate how it works, consider a minimally coupled 

41Notice, for example, that if k · A is a non-zero constant on the bifurcation surface then it follows that 
the gauge £kA = 0 is singular at BH, because k vanishes there. 

42In [147] Horowitz and Copsey are able to include a magnetic-type contribution for theories with a 
Chern-Simons piece, but clearly magnetic charges are also expected in theories with no such term. 
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(p + 1)-form potential A, with field strength F = dA and gauge symmetry A → A + dλ. 
The electric momentum map Pk associated to a Killing vector field k that leaves invariant 
F , i.e. £kF = 0, is defined, up to a total derivative, by the equation [162] 43 

dPk = −ιkF (1.83) 

Then, a gauge parameter 
λk = ιkA − Pk (1.84) 

solves (1.54), i.e. 
δk,λk A = −£kA + dλk = 0 (1.85) 

without making any assumption on the gauge of A. In particular, (1.83) is a gauge-
invariant equation. Furthermore, Pk plays the role of the potential conjugate to the 
electric charge (as already suggested by the very definition (1.83)). Indeed, assuming that 

BH 
k has a bifurcate Killing horizon with bifurcation surface BH, then from k = 0 follows 
the restricted generalised zeroth law 

BH 
dPk = 0 (1.86) 

This allows a Hodge decomposition of Pk on BH of the form [147, 161] 

BH Pk = de +Φihi (1.87) 

where de is an exact form, hi are a basis of harmonic forms on BH and Φi are constants. 
The latter quantities are precisely the potentials at the horizon, and appear in the first 
law and Smarr relation as variables conjugate to the gauge charges, as shown in Chapters 
2 to 4. Finally, since ?F is closed on-shell and k generates a symmetry, then 

0 = £k ? F = (ιkd + dιk) ? F = d (ιk ? F ) (1.88) 

˜and one can also introduce a magnetic momentum map Pk associated to k as 

dP̃k = −ιk ? F (1.89) 

Magnetic potentials at the horizon are constructed, mutatis mutandis, as in the electric 
case (1.86)-(1.87). As shown in Chapter 4, these enter in the Smarr relation as variables 
conjugate to the magnetic charges, and the resulting combinations of electric and magnetic 
pieces are duality invariant (in Section 4.6 of Chapter 4 we briefly discuss, based on an 
upcoming publication [163], that in a similar manner magnetic charges can also be included 
in the first law in a duality invariant fashion). Even though we have used the example of 
a minimally coupled (p + 1)-form, the approach can be extended in a natural way to more 
general theories. All these concepts are crucial for Part I of the thesis. 

Before moving on, let us remark that in some frameworks one can obtain first laws 
involving variations of the parameters of the theory (e.g. the cosmological constant [164] 
in black hole chemistry [165–167]). This can be included in the formalism described above 
through a suitable dualisation of the dimensionful couplings of the theory into (d−1)-form 
potentials, and has interesting applications to superstring compactifications [168]. 

43This can always be done because 0 = £k F = (ιkd + dιk )F = dιk F . 
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The Second Law 

We close this section by discussing briefly the second law in higher-order gravity. Hawking’s 
area theorem in GR does not extend naturally to Wald’s entropy in a higher-order gravity 
theory, so in principle there is no guarantee that it satisfies a second law. First, notice that 
(1.79), as well as its first variation, are defined as quantities on the bifurcation surface. 
Intuitively, though, the second law should be a statement about the monotonicity of an 
entropy along the horizon. Jacobson, Kang, and Myers (JKM) [145] observed that there 
are some ambiguities in extending the entropy formula (1.79) to an arbitrary cross-section 
of the horizon of a non-stationary black hole. However, such ambiguities vanish on Killing 
horizons, as well as their first variations at the bifurcation surface [145,169]. As discussed 
in a variety of contexts [169–172], the form of the ambiguities can be fixed by requiring 
that the resulting entropy is indeed non-decreasing along the horizon at linear level, which 
resembles a second law. Quite interestingly, this seems to fail at non-linear level, what 
suggests that the higher-derivative couplings are physically sensible only when treated 
perturbatively, as consistent truncations of a UV-complete theory. 

1.3.3 Black Holes in String Theory 

According to statistical physics, the entropy of a system is given by the number of micro-
scopic configurations compatible with a given macroscopic state. The laws of black hole 
mechanics, together with Hawking’s radiation, show that black holes are thermodynamic 
systems with definite macroscopic entropy, but do not reveal the nature of their micro-
scopic structure. String theory is the most promising candidate of a quantum theory of 
gravity and has succeeded, in some cases, in revealing the microscopic origin of the black 
hole entropy. To conclude this introduction, in the following we review very briefly how 
GR emerges from string theory, and discuss the microscopic description that black holes 
admit in such a framework. 

Low Energy Effective Actions 

String theory is a quantum theory of interacting relativistic strings.44 Strings are one-
dimensional objects with mass and length scales given by ms = `−1 = (α0)−1/2 , wheres 
α0 is the so-called Regge slope and it is the unique dimensionful parameter of the theory. 
They live in a “target” spacetime, and are described by the embedding function Xµ(σ), 
where Xµ are the target space coordinates and ξi = (τ, σ) the worldsheet coordinates [177]. 

We are interested in superstring theories, which are string theories endowed with 
worldsheet spinors ψµ and are invariant under local worldsheet supersymmetry [178–181]. 
Strings can be open or closed, and the different boundary conditions determine completely 
their spectrum. Open strings have their ends attached to (p + 1)-dimensional timelike 
surfaces called Dp-branes [182], which play a fundamental role as we will see. Consistency 
at the quantum level imposes very stringent constraints on the theory. First, cancelling 
the conformal anomaly requires setting the spacetime dimension to d = 10. Requiring, 
furthermore, that the theory is free of tachyons and has spacetime supersymmetry reduces 
the possibilities to only five superstring theories: type I, type IIA, type IIB and the 
SO(32) and E8 × E8 heterotic theories. The massless modes in the spectrum govern 

44See e.g. [173–176] for an introduction to (super-)string theory. 
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the low energy behaviour of the theory, in which the length of the string goes to zero, 
α0 → 0, and massive states decouple. These modes always contain (with the exception of 
type I) a common bosonic Neveu–Schwarz (NSNS) sector consisting of a graviton gµν , a 
dilaton φ and the Kalb–Ramond (KR) 2-form Bµν . Effective actions can be constructed 
by looking for theories that match the α0 → 0 limit of string amplitudes. However, an 
alternative approach consists in taking the action for a string coupled to the background 
fields gµν , φ, Bµν , ..., and requiring conformal invariance at the quantum level [183–185]. 
This amounts to requiring the vanishing of some β functionals. At leading order in the 
worldsheet loop expansion, the actions whose equations of motion are equivalent to the 
vanishing of the β functionals of each of the five superstring theories are precisely the 
ten-dimensional supergravities [152] 

2 Z � � 
s −2φ H(0) · H(0)Ssugra = 
g 

dx10
√ 
ge R − 4rφ · rφ +

1 
+ ... (1.90)

(10) 2 · 3!16πGN 

where only the common NSNS sector is shown. Here H(0) = dB and gs is the string 
coupling, related to the vacuum expectation value of the dilaton by gs = heφi. In solutions 
that asymptote a vacuum, this vacuum expectation value coincides with the asymptotic 
value of the dilaton. The ten-dimensional Newton’s constant is 

G(10) 2 = 8π6 g `8 (1.91)s s 

These theories may be truncated and dimensionally reduced. In the most usual procedure, 
the spacetime is assumed to have manifold structure M10 = M4 × C6 where C6 is a 
compact space, such as a 6-torus T 6 . Imposing certain symmetry conditions on the field 
configurations along C6 (e.g. keeping only the zeroth modes of the KK tower) the compact 
space can be integrated effectively in (1.90) thus leading to a four-dimensional theory with 
Newton constant 

28π6g `8 
G(4) s s = (1.92)

V ol(C6) 

where V ol(C6) is the volume of the compact space. Then, calling ` c ∼ (√V ol(C6))
(1/6) the 

G(4) ∼ gs ̀
4typical length scale of C6, the four-dimensional Planck length is ` P ∼ /`3 .s c 

The gravitational part of the action after dimensional reduction is still governed, at leading 
order in α0 , by the Einstein–Hilbert Lagrangian. This is the way in which GR emerges 
at low energies from string theory, even though it is accompanied by a set of light fields, 
coming from the original theory and the various pieces of the dimensional reduction. 

In general, the low energy effective actions of superstrings are given as a double 
perturbative expansion in gs and α0 [186, 187], in which the leading order terms are the 
supergravities (1.90). Focusing on the heterotic case, the supergravity multiplet can be 
consistently coupled to a Yang–Mills vector multiplet. Requiring that, furthermore, the 
theory is free of gauge and gravitational anomalies, as well as invariant under local super-
symmetry, introduces an infinite series of higher-derivative corrections both to the action 
and supersymmetry transformations [188,189]. First, the KR field-strength is modified as � �α0 

= H(0) ωYM (0)
H + + ω (1.93)(−)4 

where the Chern–Simons 3-form of the gauge connection AA is given by 

ωYM = dAA ∧ AA − 
1 
fABC A

A ∧ AB ∧ AC (1.94)
3! 
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and the Lorentz Chern–Simons 3-form is similarly given by 

(0) (0) a (0) b 1 (0) a (0) b (0) cω = R b ∧ Ω a + 3 Ω b ∧ Ω c ∧ Ω a (1.95)(±) (±) (±) (±) (±) (±) 

(0) (0)
with torsional connection Ω and curvature R ab given by (±) ab (±) 

(0) 
H(0)Ω ıbıa (1.96)(±) ab = ωab ± 12 

(0) ab (0) ab − Ω(0) a (0) cbR = dΩ c ∧ Ω (1.97)(±) (±) (±) (±) 

The corrections to the action were found in [189], up to eight order in derivatives, by 
requiring invariance under local supersymmetry. These arise already at first order in α0 

and read (omitting the fermionic sector) 

2 Z � 
s −2φS = 
g 

dx10
√ 
ge R − 4rφ · rφ +

1 
H · H 

(10) 2 · 3!16πGN � (1.98) 
α0 α03 � �2 α03 � �2 
T (0) − T (2) T (4)− − + . . . 

2 4 48 

where the T -tensors are � �1 
T (4) ≡ abF A ∧ F A − R(−)ab ∧ R(−)4 

� �1 
T (2) F A ρab 

µν ≡ µρF Aν 
ρ − R(−)µρabR(−)ν4 

T (0) ≡ T (2)µ 
µ 

The laws of black hole mechanics in this theory will be studied in Chapters 2 and 3 at 
leading and first orders in α0 , respectively. 

Microscopic Origin of Black Hole Entropy 

Black hole solutions have been obtained in several supergravity theories which arise after 
truncations and dimensional reductions of the ten-dimensional supergravities introduced 
above. The microscopic origin of the black hole entropy is best understood for extremal, 
supersymmetric black holes. Following a bottom up approach, consider the STU model 
of N = 1, d = 5 supergravity. The 3-charge black hole is a supersymmetric black hole 
solution of STU charged under each of the three Abelian vectors of the theory, with electric 
charges qD1, qD5 and qP . The area of the horizon is given by 

AH = 2π2
√ 
qD1qD5qP (1.99) 

This black hole can be regarded as a ten-dimensional string background by rewriting it as 
a solution of Type IIB compactified on a five-torus T5 = T4 × S1 . From that perspective, z 
it describes a bound state of a system composed by ND1 D1-branes wrapping the S1 

z 
(equivalently a D1-brane with winding number ND1) and ND5 D5-branes wrapped on 
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T5 = T4 × S1 , with NP units of KK momentum along z. These parameters are related toz 
the charges of the original solution by 

2α04gsα
03ND1 gs qD5 = gsα0ND5 , qD1 = , qP = NP , (1.100)
V R2V 

where 2πR and (2π)4V are the volumes of S1 and T4 , respectively. Using (1.99) and (1.92)z 
(adapted to a dimensional reduction to 5d instead of 4d) the Bekenstein–Hawking entropy 
of the black hole reads p

S = 2π ND1ND5NP (1.101) 

The entropy does not depend on gs nor on any continuous parameter and, furthermore, it is 
given by the winding and KK numbers, which are natural numbers. This already suggests 
that a microscopic interpretation in terms of degeneracy of states could be possible. 

Strominger and Vafa [128] considered the limit in which the size of the circle is much 
larger than that of the four-torus. In that limit the low-energy dynamics of the D1-D5 
system is described by open strings with ends on the D-branes. These are governed by a 
(1+1)-CFT on the S1 and Cardy’s formula [190] can be used to obtain the degeneracy ofz 
states carrying NP units of momentum. Supersymmetry plays a crucial role here, since 
it protects the number of microstates in going from the supergravity regime to that in 
which the system is described by open strings on D-branes. Remarkably, at leading order 
Cardy’s formula gives precisely the Bekenstein–Hawking entropy (1.101). This constitutes 
a major achievement of string theory. 

It is natural to ask whether the agreement between the macroscopic entropy, as-
sociated to the black hole, and the microscopic one holds beyond the leading order. In 
that scenario, as discussed above, the macroscopic black hole entropy receives additional 
contributions due to the higher-derivative corrections to the supergravity actions. The 
aim of Chapters 2 and 3 is to study such corrections in the heterotic theory (1.98). 
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2 
The First Law of Heterotic Stringy Black Hole 

Mechanics at Zeroth Order in α0 

This chapter is based on: 
The first law of heterotic stringy black hole mechanics at zeroth order in α0 

Z. Elgood, D. Mitsios, T. Ort́ın, D. Pereñiguez 
JHEP 07 (2021) 007 (arXiv:2012.13323) 

In Ref. [139], Wald showed that, in a theory of gravity invariant under diffeomor-
phisms, the black hole entropy is essentially the Noether charge associated to that in-
variance. The proof consists in showing that this charge plays the role of entropy in the 
first law of black hole mechanics [118]. In presence of matter, though, some terms in the 
total Noether charge are identified with other terms in the first law and only the “gravi-
tational” part of the Noether charge can be identified with the entropy and, in principle, 
it is necessary to go through the proof of the first law in order to identify the entropy. In 
Ref. [140], Iyer and Wald studied theories of gravity coupled to matter and found a pre-
scription (henceforth called the Iyer-Wald prescription) to compute directly the entropy. 
In the derivation of the Iyer-Wald prescription though, it was assumed that all the fields 
of the theory are tensors, a condition which, in the Standard Model for instance, would 
only be satisfied by the metric, since the rest of the fields have some kind of gauge free-
dom, including the Higgs “scalar”. If we decide to describe the gravitational field through 
the Vielbein (as the presence of fermions in the Standard Model demands), not even the 
gravitational field would be a tensor. 

This problem was first noticed by Jacobson and Mohd [150] in the context of the 
theory of General Relativity described by a Vielbein.1 They solved the problem by “im-
proving” the standard Lie derivative (in the language of [192, 193]) by adding a local 
Lorentz transformation that covariantizes it. This Lorentz-covariant Lie derivative, also 
known as Lie-Lorentz derivative occurs naturally in supergravity and it was described in 
that context for arbitrary Lorentz tensors in Ref. [151]2 building upon earlier work on 
the Lie derivative of Lorentz spinors by Lichnerowicz, Kosmann and others [154–160]. A 
recent application to supergravity, including the fermion fields can be found in Ref. [194]. 

A more general and mathematically rigorous treatment based on the theory of prin-
cipal bundles was given in Ref. [138] by Prabhu, who was motivated by the problems found 
by Gao in Ref. [195]. However, String and Supergravity theories have p-form fields with 
gauge freedom that cannot be described in that framework. Furthermore, the effective 
action and the field strengths often contain Chern-Simons terms which make the action 

1Fields with gauge freedom had already been correctly dealt with in Refs. [161, 191], for instance. 
2See also Ref. [152] and, for a more mathematically rigorous point of view, Ref. [153]. 
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invariant only up to total derivatives and complicate the gauge transformations of the 
p-form fields. When the Chern-Simons terms depend on the spin (Lorentz) connection, 
gauge invariance and diffeomorphism invariance become entangled in a very complex form. 

One of the simplest theories with a Chern-Simons term in the action is “minimal” 
(N = 1) 5-dimensional supergravity [196], which only contains a 1-form coupled to gravity. 
In order to deal with the lack of exact gauge invariance one has to take into account 
the total derivative in the definition of the Noether current [191]. However, the entropy 
obtained by this method in Ref. [197] in the case of the “gravitational” Chern-Simons terms 
(both in the action or in the Kalb-Ramond field strength) of the Heterotic Superstring 
effective action turned out to be gauge-dependent.3 This problem was dealt with in 
Ref. [200], albeit in a rather complicated form. 

In a recent paper [162] we studied the use of gauge-covariant Lie derivatives in the 
context of the Einstein-Maxwell theory using momentum maps to construct the deriva-
tives. Momentum maps arise naturally wherever symmetries of a base manifold have to 
be related to gauge transformations [152, 201] and they are unsurprisingly ubiquitous in 
gauged supergravity. As a matter of fact, the Lie-Lorentz derivative can be constructed in 
terms of a Lorentz momentum map and in [162] we also used a Maxwell momentum map 
to construct a Lie-Maxwell derivative, covariant under the gauge transformations of the 
Maxwell field. 

This procedure guarantees the gauge-invariance of the results and, as a byproduct, 
we found a very interesting relation between momentum maps and generalized zeroth laws 
also observed, in a completely different language by Prabhu in Ref. [138]. 

In this paper we extend this method to a theory with Abelian Chern-Simons terms 
in a field strength: the effective action of the Heterotic Superstring compactified on a torus 
to zeroth order in α0 . This theory can be seen as a generalization of the theory considered 
by Compère in Ref. [161] and as a first step towards dealing with the effective action 
of the Heterotic Superstring to first order in α0 , which contains non-Abelian and Lorentz 
(“gravitational”) Chern-Simons terms of the kind considered by Tachikawa [189,202]. The 
introduction of momentum maps will allow us to obtain invariant results in a rather simple 
form, basically because they allow us to determine explicitly the gauge parameters that 
leave invariant all the fields of a given solution [136]. They also allow us to construct forms 
which are closed on the bifurcation sphere, from which the definitions of the potentials 
that appear in the first law will follow [147,161]. The closedness of those forms, therefore, 
plays the role of the generalized zeroth law, albeit restricted to the bifurcation sphere. 
Hence, we will refer to these properties as the restricted generalized zeroth laws. 

As we are going to see in the proof of the first law, there is a very precise, almost 
clockwork, relation between the closed forms that satisfy the restricted generalized zeroth 
laws and the definitions of the conserved charges [136, 203–205]. Only when both have 
been correctly identified is it possible to find the first law and identify the entropy. 

In theories with Chern-Simons terms, several different definitions of charges have 
been proposed and used in the literature (see, for instance, Ref. [148] and references 
therein). The proof of the first law demands that we use the so-called Page charge, which 
in this context is conserved, localized and on-shell gauge invariant. Only when we use this 
charge definition for the 1-forms, the closed 1-form associated to the KR potentials Φi over 
the bifurcation sphere appears [147,161] and the term ΦiδQi of the first law associated to 

3The same happens when one naively uses the Iyer-Wald prescription, as noticed in [198, 199]. 
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the “dipole charges” [63, 147,161,206–208] can be identified. 
In theories with “gravitational” Chern-Simons terms, such as the effective action 

of the Heterotic Superstring at first order in α0 the same mechanism should play a role 
in the proof of the first law, but the terms that modify the gravitational charges will 
contribute to the entropy instead [209]. It is in this precise sense that this work is a first 
step towards the proof of the first law and the determination of a gauge-invariant entropy 
formula for that theory. The previous discussion should have made clear that such a 
formula is not yet available, as we have also explained in Refs. [198, 199]. Even though 
the calculations of some black-hole entropies using the Iyer-Wald prescription seem to give 
the right value of the entropy in some cases,4 it is clear that the results obtained using an 
entropy formula which is not gauge-invariant cannot be trusted in general. It is also clear 
that the comparison between entropies computed through macroscopic and microscopic 
methods [128] only make sense if both computations are reliable, and furthermore, only 
if the relation between the parameters of the black hole solution and of the microscopic 
theory is well understood. At first order in α0 , there is no full-proof entropy formula, 
as we have explained, and the identification of the parameters of the black-hole solutions 
(charges) with the numbers of branes and other parameters that appear in the microscopic 
entropy, has issues that still have not been fully understood [212]. This is one of the main 
motivations for this work. 

This paper is organized as follows: in Section 2.1 we introduce the effective action 
of the Heterotic Superstring compactified on a torus at leading order in α0 . In Section 2.2 
we study the action of the symmetries of the theory on the fields, the parameters of the 
transformations that leave all of them invariant, and compute the associated conserved 
charges, including the Wald-Noether charge. In Section 2.3 we study the restricted gener-
alized zeroth laws that we will use in the proof of the first law in Section 3.4. In Section 2.5 
we consider as an example the charged, non-extremal, 5-dimensional black ring solution of 
pure N = 1, d = 5 supergravity of Ref. [213] and compute its momentum maps. Section 3.6 
contains a brief discussion of our results. In the appendix we show how the Heterotic Su-
perstring effective action compactified on T4×S1 (trivial compactification on T4) can be 
understood as a model N = 1, d = 5 supergravity coupled to two vector supermultiplets, 
which provides an embedding of this model into the Heterotic Superstring effective action. 
We also show how this model can be consistently trunctated to pure N = 1, d = 5 su-
pergravity. Again, this provides an embedding of pure N = 1, d = 5 supergravity and, in 
particular of the black ring solution of Ref. [213] into the Heterotic Superstring effective 
action, so we can apply the formulae and results obtained in the main body of the paper 
to that solution. 

4In Ref. [210] it was shown that the entropy of the α0-corrected non-extremal Reissner-Nordström black 
hole based in the string embedding of Ref. [211], computed with the entropy formula derived in Ref. [198] 

T −1using the Iyer-Wald prescription satisfies the thermodynamic relation ∂S/∂M = . That entropy 
formula is not invariant under Lorentz transformations, though. In a general frame it will give wrong 
values for the entropy and the reason why it gives the right value in that particular case, in the particular 
frame in which the calculation was carried out, sill needs to be explained [209]. The same entropy formula 
has been used to compute the entropy of some α0-corrected extremal black holes and the results, although 
reasonable, cannot be tested using the same relation. 

37 



Chapter 2. The First Law of Heterotic Stringy Black Hole Mechanics at Zeroth Order in 
α0 

2.1 The Heterotic Superstring effective action on Tn at ze-
roth order in α0 

When the effective action of the Heterotic Superstring at leading order in α0 is compactified 
on a Tn , it describes the dynamics of the (10 − n)-dimensional (string-frame) metric gµν , 
Kalb-Ramond 2-form Bµν , dilaton field φ, Kaluza-Klein (KK) and winding 1-forms Amµ 
and Bmµ, respectively, and the scalars that parametrize the O(n, n)/O(n)×O(n) coset 
space, collected in the symmetric O(n, n) matrix M that we will write with upper O(n, n) 
indices I, J, . . . as M IJ . This means that M satisfies 

M IJ ΩJK M
KLΩLM = δI M , (2.1) 

where � � 
(ΩIJ ) ≡ 0 

In×n 

In×n 
0 , (2.2) 

is the off-diagonal form of the O(n, n) metric. Eq. (2.1) implies that 

MIJ ≡ (M−1)IJ = ΩIK M
KLΩLJ . (2.3) 

Using the notation and conventions of Refs. [152,199] (in particular, for differential 
forms, we use those of Ref. [162]), and calling the physical scalars in MIJ φ

x , the action 
of the d = (10 − n)-dimensional takes the form 

(d) 2 Z h gs −2φS[e a, B, φ, AI , φx] = 
(d) e (−1)d−1 ? (e a ∧ e b) ∧ Rab − 4dφ ∧ ?dφ 

16πGN 

i 
1 (2.4)−1 dMIJ ∧ ?dM IJ + (−1)d 1 MIJ FI ∧ ?FJ + H ∧ ?H8 2 2 

Z 
≡ L . 

a aIn this action e = e µdxµ are the string-frame Vielbeins, ? stands for the Hodge dual 
and, therefore 

ab c1 cd−2? (e a ∧ e b) = 
1 

�c1···cd−2 e ∧ · · · ∧ e . (2.5)
(d − 2)! 

1 abdxµ ∧Furthermore, ωab = ωµabdxµ is the Levi-Civita spin connection5 and Rab = Rµν2 
dxν is its field strength (the curvature) 2-form, defined as 

Rab ≡ dωab − ωa ∧ ωcb c . (2.6) 

= −ωba b5It is antisymmetric ωab and satisfies Dea = dea − ωa
b ∧ e = 0. We are using the second-order 

formalism. 
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(d) (d)
gs and G are, respectively, the d = (10 − n)-dimensional string coupling and NewtonN 
constant. 6 

FI is the O(n, n) vector of the 2-form field strengths of the KK and winding vectors 

� � 
FI ≡ F m 

, F m = dAm , Gm = dBm , (2.8)
Gm 

which can also be defined in terms of the O(n, n) vector of 1-forms denoted by AI 

� � 
AI ≡ Am 

, FI = dAI . (2.9)
Bm 

H is the Kalb-Ramond 3-form field strength, defined by 

H ≡ dB − 1 AI ∧ dAI , AI = ΩIJ AJ . (2.10)2 

The kinetic term of the scalars φx that parametrize the O(n, n)/(O(n)×O(n)) coset 
space can also be written in the form 

− 1 1dMIJ ∧ ?dM IJ = gxydφ
x ∧ ?dφy , (2.11)8 2 

where the metric gxy(φ) is given by 

� � � � 
gxy ≡ 1 ∂xMIK M

KJ ∂yMJK M
KI . (2.12)4 

Under a general variation of the fields, the action varies as 

Z � 
δS = Ea ∧ δea + EB ∧ δB + Eφδφ + EI ∧ δAI + Exδφx + dΘ(ϕ, δϕ) , (2.13) 

(d) 2(16πG
(d)

where, suppressing the factors of g )1 for simplicity, the Einstein equations EaN 
are given by 

6They are related to the 10-dimensional constants through the volume of the Tn , Vn, by 
2 )n (d) 2 gs = Vn/(2π`s gs , (2.7a) 

(10) (d)
G = G (2.7b)N N Vn . 
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Ea = e −2φıa ? (e c ∧ e d) ∧ Rcd − 2D(ıbde
−2φ) ∧ ?(e b ∧ e c)gca 

+ (−1)d−14e −2φ (ıadφ ? dφ + dφ ∧ ıa ? dφ) 

(−1)d 
−2φ+ e gxy (ıadφ

x ? dφy + dφx ∧ ıa ? dφy)
2 (2.14) 

1 � � 
+ e −2φMIJ ıaFI ∧ ?FJ −F I ∧ ıa ? FJ 

2 

(−1)d 
+ e −2φ (ıaH ∧ ?H + H ∧ ıa ? H) ,

2 
the equations of motion of the matter fields are given by 

� � 
EB = −d e −2φ ? H , (2.15a) 

� � 
Eφ = 8d e −2φ ? dφ − 2L , (2.15b) 

EI = Ẽ 
I + 2

1 EB ∧ AI , (2.15c) 

n � � o 
Ẽ 
I ≡ − d e −2φMIJ ? FJ + (−1)d−1 e −2φ ? H ∧ FI , (2.15d) 

h � � i (−1)d 
Ex = −gxy d e −2φ ? dφy + e −2φΓzw 

ydφz ∧ ?dφw + e −2φ∂xMIJ FI ∧ ?FJ ,
2 

(2.15e) 

and 

Θ(ϕ, δϕ) = −e −2φ ? (e a ∧ e b) ∧ δωab + 2ıade
−2φ ? (e a ∧ e b) ∧ δeb 

− 8e −2φ ? dφδφ − 4
1 e −2φ ? dM IJ δMIJ (2.16) 

� �
1+ e −2φMIJ ? FJ ∧ δAI + e −2φ ? H ∧ δB + 2 AI ∧ δAI . 

The equations of motion of the 1-forms EI can be written in the alternative form n o 
EI = −d e −2φMIJ ? FJ + ?H ∧ AI − 1 EB ∧ AI . (2.17)2 

This form appears naturally in the definition of the electric charges Eq. (2.32). 
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Here, and in what follows, ϕ stands for all the fields of the theory. Eϕ denotes 
collectively all their equations of motion. 

2.2 Variations of the fields 

In this section we are going to study the transformations of the fields under the different 
symmetries of the action and determine which parameters of the transformations leave 
a complete field configuration invariant. The conserved charges of those configurations 
will be associated to those parameters. As a general rule, only if one combines several 
transformations can one find parameters that simultaneously leave all the fields invariant. 

The simplest case in which this happens will involve the gauge transformations of the 
1-form fields: the parameters that leave them invariant do not leave the KR field invariant 
at the same time, unless we perform a KR gauge transformation with a parameter related 
to that of the other gauge symmetry. As a result, there is an additional term in the 
formula that gives the electric charges, but it is the presence of this additional term that 
guarantees the conservation of the charge and the independence of the integration surface 
(as long as we do not include sources, that is, on-shell). 

The transformation of several fields under diffeomorphisms must also be supple-
mented by “compensating” gauge transformations, including local Lorentz transforma-
tions if we want all the fields to be left invariant by those generating isometries (Killing 
vectors). There are several ways of understanding this need but we believe that the most 
fundamental is to realize that fields with gauge freedoms (i.e. all fields except for the metric 
and the dilaton field) are not tensors and do not transform as such under diffeomorphisms. 
The “compensating gauge transformations” can be seen as gauge transformations induced 
by the diffeomorphisms. Only when they are properly taken into account can one find 
Killing vector fields that leave all the fields invariant. Furthermore, only then the van-
ishing of the variations of the fields is invariant under gauge transformations. A more 
detailed discussion and additional references to this topic can be found in Ref. [162]. The 
conserved charge associated to diffeomorphisms, the Wald-Noether charge, will therefore 
include terms related to gauge symmetries and their associated conserved charges, which 
will ultimately contribute to the first law. 

As we will see, only when all these details are properly taken into account can the 
first law be proven and the entropy identified. 

We start by describing the gauge symmetries of the theory (other than diffeomor-
phisms) and the associated conserved charges. 

2.2.1 Gauge transformations 

The gauge transformations of the fields are 
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a = σa bδσe be , (2.18a) 

δχAI = dχI , (2.18b) 

δB = (δΛ + δχ)B = dΛ + 1 χI dAI , (2.18c)2 

where σ(ab)(x) = 0 are the parameters of local Lorentz transformations, χI (x) is a O(n, n) 
vector if scalar gauge parameters and Λ = Λµ(x)dxµ is a 1-form gauge parameter. They 
leave invariant the field strengths F I and H, but they induce the following transformations 
on the spin connection and curvature 

δσω
ab = Dσab = dσab − 2ω[a| σc|b] c , (2.19a) 

δσR
ab = 2σ[a|cR

c|b] . (2.19b) 

For the sake of completeness and later use, we quote the Ricci identity in our con-
ventions: 

σc|b] = δσRabDDσab = −2R[a|
c . (2.20) 

The action is manifestly invariant under these gauge transformations. This leads to 
the following Noether identities 

b]E[a ∧ e = 0 , (2.21a) 

dẼ 
I + (−1)dEB ∧ FI = 0 , (2.21b) 

dEB = 0 , (2.21c) 

2.2.2 Gauge charges 

Let us study the conserved charges associated to the gauge transformations δχ, δΛ and, for 
the sake of completeness, δσ, starting with δΛ, which is simpler to deal with. 

The variation of the action under δΛ transformations follows from Eqs. (2.13) and 
(2.16) Z n � �o 

δΛS = EB ∧ δΛB + d e −2φ ? H ∧ δΛB 

(2.22)Z n � �o 
= EB ∧ dΛ + d e −2φ ? H ∧ dΛ . 
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Integrating by parts the first term and using the Noether identity Eq. (2.21c) Z Z� � 
δΛS = d Λ ∧ EB + e −2φ ? H ∧ dΛ ≡ dJ[Λ] . (2.23) 

The invariance of the action under these gauge transformations indicates that the current 
J[Λ] must be locally exact, so that, locally, there is a Q[Λ] such that J[Λ] = dQ[Λ]. It is 
easy to see that � � 

Q[Λ] = Λ ∧ e −2φ ? H . (2.24) 

The conserved charge is given by the integral of the conserved (d−2)-form Q[Λ] over 
(d − 2)-dimensional compact surfaces Sd−2 for Λs that leave invariant the KR field Bs. 
These are closed 1-forms. Following [147, 161], using the Hodge decomposition theorem, 
these closed 1-forms Λ can be written as the sum of an exact and a harmonic form Λe = dλ 
and Λh, respectively. The exact form Λe will not contribute to the integral on-shell because 

Z � � Z h � Z�i 
Q(Λe) = dλ ∧ e −2φ ? H = d λ ∧ e −2φ ? H − λ ∧ EB . (2.25) 

Sd−2 Sd−2 Sd−2 

Therefore, Z � � 
Q(Λ) = Λh ∧ e −2φ ? H . (2.26) 

Sd−2 

Then, using the duality between homology and cohomology, if CΛh is the (d − 3)-cycle 
dual to Λh, we arrive at the charges 

g
(d) 2 Z 
s

Q(Λ) = − 
(d) e −2φ ? H , (2.27) 

16πGN CΛh 

(d) 2 (d)
where we have added a conventional sign and recovered the factor of gs (16πG )−1 thatN 
we have omitted. From the string theory point of view, these charges are just winding 
numbers of strings whose transverse space is the cycle CΛh . Two homologically equivalent 
cycles give the same value of the charge on-shell, that is, if there are no sources of the KR 
field in the (d − 2)-dimensional volume whose boundary is the union of the two properly 
oriented (d − 3)-cycles. 

Let us now consider the conserved charges associated to the invariance under δχ. 
This transformation acts on the 1-forms AI and on the KR 2-form B. Transformations 
with constant χI (closed 0-forms) leave invariant the 1-forms, but they do not leave in-� �

1variant B. They only change it by an exact 2-form d χI AI . Thus, we must add a2 
compensating Λ gauge transformation with parameter Λχ = −1 χI AI and consider the2 
transformation of B 

� � 
1δχB = −1 d χI AI + χI dAI = −1 dχI ∧ AI . (2.28)2 2 2 

Then, from Eqs. (2.13) and (2.16) and the modified transformation rule Eq. (3.35), we get 
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Z � 
δχS = EB ∧ δχB + EI ∧ δχAI 

h �io 
1+d e −2φMIJ ? FJ ∧ δχAI + e −2φ ? H ∧ δχB + AI ∧ δχAI ,2 

Z n� � h� � io 
1 = EI + 2 EB ∧ AI ∧ dχI + d e −2φMIJ ? FJ + e −2φ ? H ∧ AI ∧ dχI . 

(2.29) 
Integrating by parts the first term and using the Noether identities Eqs. (2.21b) and (2.21c) 
we get 

Z n � � o� �
1δχS = d (−1)d−1χI EI + EB ∧ AI + e −2φMIJ ? FJ + e −2φ ? H ∧ AI ∧ dχI .2 

(2.30) 
The usual argument leads to the conserved (d − 2)-form � � 

Q[χ] = (−1)dχI e −2φMIJ ? FJ + e −2φ ? H ∧ AI , (2.31) 

and the definition of electric charges 

(d) 2 Z � �(−1)d−1gsQI = e −2φMIJ ? FJ + e −2φ ? H ∧ AI , (2.32)
(d)

16πGN S(d−2) 

where we have added a conventional sign. Again, this charge is on-shell invariant under 
homologically-equivalent deformations of S(d−2). This follows from the equation of motion 
written in the alternative form Eq. (2.17). It is also on-shell invariant under the δχ 
transformations, in spite of the explicit occurrence of the vector fields AI : the second 
term in the integrand has the same structure as the integrand of the KR charge and, for 
the same reason, it is invariant on-shell when we add to AI exact 1-forms. 

This charge is, in the terminology used by Marolf in Ref. [148], a Page charge but, as 
we have explained, apart from localized and conserved, it is also gauge invariant on-shell. 
The formalism leads us to use precisely this charge, which will be the one occurring in the 
first law of black hole mechanics. 

Finally, let us consider the charge associated to the invariance under local Lorentz 
transformations δσ, which act on the Vielbein and on all the fields derived from it: spin 
connection and curvature. Let us postpone for the time being the conditions that the 
parameters that leave all of them invariant have to satisfy and lets study the transformation 
of the action. From Eqs. (2.13) and (2.16) we find 

Z n h io 
aδσS = Ea ∧ δσe + d −e −2φ ? (e a ∧ e b) ∧ δσωab + 2ıade

−2φ ? (e a ∧ e b) ∧ δσeb , 

(2.33) 
and using Eqs. (2.18a) and (2.19a) and the Noether identity Eq. (2.21a), we find that the 
integrand immediately reduces to a total derivative, 

44 



Chapter 2. The First Law of Heterotic Stringy Black Hole Mechanics at Zeroth Order in 
α0 

Z 
δσS = dJ[σ] , 

(2.34) 

cJ[σ] = (−1)d−1 e −2φDσab ∧ ?(e a ∧ e b) + 2σbcıade
−2φ ? (e a ∧ e b) ∧ e . 

The standard argument tells us that J[σ] = dQ[σ]. Integrating by parts the first term 

n o � � 
cJ[σ] = d (−1)d−1 e −2φσab ? (e a ∧ e b) + 3 σ[bcıa]de−2φ ? (e a ∧ e b) ∧ e . (2.35) 

cThe last term vanishes identically because7 ?(ea ∧ eb) ∧ e = 2ηc[a ? eb] and we arrive at 

Q[σ] = (−1)d−1 e −2φ ? (e a ∧ e b) ∧ σab . (2.37) 

Now we have to consider Lorentz parameters that leave all the fields invariant. The 
spin connection and curvature are left invariant by covariantly constant parameters 

Dσab = 0 , (2.38) 
bbut the invariance of the Vielbein σabe = 0 can only be satisfied for σab = 0, and would 

automatically imply the vanishing of Q[σ]. 
The (d−2)-form, though, reappears in the proof of the first law for a Lorentz param-

eter that is covariantly constant over the bifurcation surface. We also notice that terms of 
higher order in the Lorentz curvature, such as those which arise with α0 corrections, lead 
to a non-vanishing Lorentz charge Ref. [209] . 

2.2.3 Diffeomorphisms and covariant Lie derivatives 

As we have discussed in the introduction, out of the fundamental fields of our theory, 
only the dilaton φ and the O(n, n)/(O(n)×O(n)) scalars φx transform as a tensor under 

µdiffeomorphisms δξx = ξµ, that is8 

δξφ = −£ξφ = −ıξdφ , (2.40a) 

δξφ
x = −£ξφ

x = −ıξdφx . (2.40b) 
7Here we use the property 

(p) (p)? ω ∧ ξ̂ = ?ıξ ω , (2.36) 

which is valid for any p-form ω(p) and any vector field ξ = ξµ∂µ and its dual 1-form ξ̂ = ξµdxµ. 
8The metric gµν = ηabe aµe bµ and the 2- and 3-form field strengths F , H also transform as tensors: 

δξgµν = −£ξ gµν = −2r(µξν) , (2.39a) 

δξ F = −£ξ F = −(ıξd + dıξ )F , (2.39b) 

δξ H = −£ξ H = −(ıξd + dıξ )H . (2.39c) 
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aThe Vielbein e , the vectors (1-forms), A, and the KR 2-form, B, have gauge free-
doms and transform as tensors up to compensating gauge transformations. These com-
pensating gauge transformations can be determined by 

1. Requiring gauge-covariance of the complete transformation law (which can then be 
interpreted as a gauge-covariant Lie derivative) and 

2. Imposing that, for diffeomorphisms which are symmetries of the field configuration 
that we are considering (in particular, for isometries), the complete transformation 
(covariant Lie derivative) vanishes. The first condition ensures that this vanishing 
is gauge-invariant. 

In what follows we will denote by k the vector fields ξ that generate diffeomorphisms 
that leave invariant the complete field configuration. k is, in particular, a Killing vector 
of the metric. 

In a recent paper [162] we reviewed the construction of a Lie derivative of the 
Vielbein, spin connection and curvature covariant under local Lorentz transformations 
(Lie-Lorentz derivative) of Refs. [151, 152] that build upon earlier work by Lichnerowicz, 
Kosmann and others [154–157]. In Ref. [162] we also dealt with Abelian vector fields in 
similar terms. It is convenient to quickly review these results starting with the Abelian 
vector case, adapted to the present situation. 

The transformation of the Abelian vector fields AI under diffeomorphisms can be 
defined as 

δξAI = −LξAI , (2.41) 

where LξAI is the Lie-Maxwell derivative, defined by 

ILξAI ≡ ıξFI + dPξ . (2.42) 
IHere Pξ is a gauge-invariant O(n, n) vector of functions that depends on AI and on the 

generator of diffeomorphisms ξ and it is assumed to have the property that, when ξ = k, 
it satisfies the equation 

IdPk = −ıkFI . (2.43) 
IThe invariance of the 2-form FI guarantees the local existence of Pk , which is known 

as the momentum map associated to k. On the other hand, Eq. (2.43) ensures that the two 
properties of the variations of the fields under diffeomorphisms that we have demanded 
are satisfied. Finally, observe that the Lie-Maxwell derivative is just a combination of the 
standard Lie derivative plus a compensating gauge transformation with parameter 

I Iχξ = ıξAI − Pξ . (2.44) 

For fields with Lorentz indices (Vielbein, spin connection and curvature), the varia-
tion under diffeomorphisms is also given by (minus) a Lorentz-covariant generalization of 
the Lie derivative δξ = −Lξ usually called Lie-Lorentz derivative Refs. [151,152,154–157]. 
This derivative can also be constructed by adding to the standard Lie derivative a com-
pensating Lorentz transformation with the parameter 
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ab = ıξωab −r[aξb]σξ . (2.45) 

For the Vielbein, the Lie-Lorentz derivative can be expressed in several equivalent 
and manifestly Lorentz-covariant forms 

a 1 a ν (rµLξe µ = e ξν + rν ξµ) (2.46a)2 

a a bLξe = Dξa + Pξ be , (2.46b) 

where 

ab ≡ r[aξb]Pξ , (2.47) 

satisfies, when ξ = k, the equation 

ıkR
ab ab = −DPk , (2.48) 

abthat shows that we can view Pk as a momentum map as well.9 

In the form Eq. (2.46a) we immediately see that the Lie-Lorentz derivative of the 
Vielbein vanishes when ξ = k, a Killing vector. The same is true for the connection and 
curvature. 

Observe that Pξab transforms covariantly under local Lorentz transformations. 
The above transformation of the Vielbein induce the following transformations of 

the spin connection and curvature that we quote for later use: 

� � 
δξω

ab = −Lξωab ıξR
ab ab = − + DPξ , (2.49a) 

� � 
δξR

ab = −LξRab DıξRab − 2Pξ [a Rb]c = − c . (2.49b) 

Observe that the Lie-Lorentz derivative of the spin connection has the same structure 
as that of the Abelian connection AI in Eq. (2.42), i.e. the inner product of ξ with the 
curvature plus the derivative of the momentum map. 

In asymptotically-flat stationary black-hole spacetimes with bifurcate horizon, if k 
is the Killing vector whose Killing horizon coincides with the event horizon and BH is the 
bifurcation sphere, 

[akb] 
BH 

Pk
ab = r = κnab , (2.50) 

where κ is the surface gravity and nab is the binormal to the event horizon, with the 
abnormalization n nab = −2. The zeroth law of black-hole mechanics stating that κ is 

constant over the horizon [118, 144] is associated to the Lorentz momentum map, just 
as the generalized zeroth law that states that the electric potential is also constant over 

9Compare this equation to Eq. (2.43). 
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the horizon in the Einstein-Maxwell theory is associated to the Maxwell momentum map 
[162].10 We are going to see that further “generalized zeroth laws” are also associated to 
momentum maps when we restrict ourselves to the bifurcation surface. We will call them 
restricted generalized zeroth laws. 

Let us now consider the KR field. It is convenient to start by considering the 
transformation of the 3-form field strength H defined in Eq. (2.10) under diffeomorphisms. 
Since it is gauge invariant, upon use of its Bianchi identity 

δξH = −£ξH = −ıξdH − dıξH = ıξFI ∧ F I − dıξH . (2.51) 

When ξ = k, this expression must vanish and we can use Eq. (2.43), which leads to 
the identity 

� � 
δξH = −d ıkH + Pk I FI = 0 , (2.52) 

which, in turn, implies the local existence of a gauge-invariant 1-form that we will also 
call a momentum map, satisfying 

− ıkH − Pk I FI = dPk . (2.53) 

The KR momentum map plays a fundamental role in the definition of the variation 
of the KR 2-form B under diffeomorphisms which should be of the general form 

� � 
δξB = −£ξB + δΛξ + δχξ B , (2.54) 

where χξ and Λξ are scalar and 1-form parameters of compensating gauge transformations. 
AI IThey will generically depend on and B as well as on ξ. χξ has to be the same 

parameter used in the definition of the Lie-Maxwell derivative Eq. (2.44) and we just have 
to determine Λξ. Now, the Maxwell and Lorentz cases suggest that we try 

Λξ = ıξB − Pξ , (2.55) 

which leads to 

1 
2χξ I dA

IδξB = −£ξB + d(ıξB − Pξ) + 
(2.56) 

= − 
� � 
ıξH + Pξ I FI + dPξ 1 

2AI ∧ ıξFI + 1 
2Pξ I F

I .+ 

When ξ = k, though, 

� 
Pk I AI . (2.57)1 

2δkB = d 

This is not zero but it can be absorbed into a redefinition of Λξ: 

Λξ = ıξB − Pξ − 1 
2Pk I A

I , (2.58) 

10 This parallelism between zeroth laws was observed in [138], also in the wider context of Einstein-
Yang-Mills theories. 
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which gives the variation 

� � 
δξB = − ıξH + Pξ I FI + dPξ − 1 AI ∧ δξAI . (2.59)2 

This form of the variation makes it evident that δkB = 0, because δkAI = 0 and because 
of the definition of the KR momentum map 1-form Eq. (2.53). 

It remains to check that the vanishing of this variation is a gauge-invariant statement. 
Indeed, if we perform a gauge transformation in δξB, taking into account that all the 
momentum maps and δξAI are gauge-invariant, we find 

δgaugeδξB = −1 δgaugeAI ∧ δξAI , (2.60)2 

which vanishes identically for ξ = k. 

2.2.4 The Wald-Noether charge 

The Wald-Noether charge is the conserved (d − 2)-form associated to the invariance of the 
action under diffeomorphisms [139]. The transformations that we are going to consider 
(combinations of standard Lie derivative and gauge transformations, as we have explained) 
are 

δξφ = −ıξdφ , (2.61a) 

δξφ
x = −ıξdφx . (2.61b) 

� �
IδξAI = − ıξFI + dPξ , (2.61c) 

� � 
a a bδξe = − Dξa + Pξ be , (2.61d) 

� � 
δξω

ab ıξR
ab ab = − + DPξ , (2.61e) 

� �
1δξB + AI ∧ δξAI = − ıξH + Pξ I FI + dPξ . (2.61f) 2 

From Eq. (2.13), and using the definition of Ẽ 
I in Eqs. (2.15c) and (2.15d) to cancel 

the terms of the form EB ∧ AI ∧ δξAI , we get 

Z n � � � � 
a a bδξS = − Ea ∧ Dıξe + Pξ be + EB ∧ ıξH + Pξ I FI + dPξ 

� �
I (2.62)

+Ẽ 
I ∧ ıξFI + dPξ + Eφıξdφ + Exıξdφx 

−dΘ(ϕ, δξϕ)} , 
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while, from Eq. (2.16), we get 

Θ(ϕ, δξϕ) = e −2φ ? (e a ∧ e b) ∧ (ıξRab + DPξ ab) 

− 2ıade−2φ ? (e a ∧ e b) ∧ (Dξb + Pξ bce c) 

−2φ+ 8e −2φ ? dφıξdφ − e gxy ? dφyıξdφx (2.63) 

� �
I− e −2φMIJ ? FJ ∧ ıξFI + dPξ 

� � 
− e −2φ ? H ∧ ıξH + Pξ I FI + dPξ . 

Next, we consider the terms in δξS that contain momentum maps, integrating by 
parts those which involve their derivatives: � � 

a b IEa ∧ Pξ be + Ẽ 
I ∧ dPξ + EB ∧ Pξ I FI + dPξ 

h i 
= E[a ∧ e b]Pξ ab + PξdEB + (−1)dPξ I dẼ I + (−1)dEB ∧ F I 

(2.64) 

� � 
+ d Pξ ∧ EB + (−1)d−1PξI Ẽ 

I . 

The terms in the first line vanish as a consequence of the Noether identities Eqs. (2.21a)-
(2.21c) and we are left with the total derivative which will be added to Θ(ϕ, δξϕ). Thus, 
the variation of the action takes the form 

Z n 
aδξS = − Ea ∧ Dıξe + EB ∧ ıξH + Ẽ 

I ∧ ıξFI + Eφıξdφ + Exıξdφx 

(2.65)h io 
−d Θ(ϕ, δξϕ) − Pξ ∧ EB + (−1)dPξI Ẽ 

I . 

Integrating the first term of Eq. (2.65) by parts we get another total derivative to add to 
aΘ(ϕ, δξϕ) and (ıξe = ξa) 

(−1)dDEaξ
a + EB ∧ ıξH + Ẽ 

I ∧ ıξFI + Eφıξdφ + Exıξdφx = 0 , (2.66) 

by virtue of the Noether identity associated to the invariance under diffeomorphisms and, 
therefore, Z 

δξS = dΘ0(ϕ, δξϕ) , (2.67) 

where 

Θ0(ϕ, δξϕ) = Θ(ϕ, δξϕ) + (−1)dEaξ
a − Pξ ∧ EB + (−1)dPξI Ẽ 

I . (2.68) 
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Usually, the last three terms, which are proportional to equations of motion and 
vanish on-shell, are ignored for this very reason. However, we have found that keeping 
them is actually quite useful for finding the Wald-Noether charge, because they are exactly 
what is needed to write J as a total derivative. Without them, we would have had to 
guess which combinations of the equations of motion should be added to achieve that 
goal. Furthermore, the result that we will obtain will be valid off-shell. 

Since the action is exactly invariant under the gauge transformations Eq. (2.18), but 
it is only invariant up to a total derivative under standard infinitesimal diffeomorphisms, 
under the combined transformations Eqs. (2.61) Z 

δξS = − dıξL , (2.69) 

which, combined with Eq. (3.77), leads to the identity 

dJ = 0 , (2.70) 

which holds off-shell for arbitrary ξ with 

J ≡ Θ0(ϕ, δξϕ) + ıξL . (2.71) 

Eq. (2.70) implies the local existence of a (d − 2)-form Q[ξ] such that 

J = dQ[ξ] . (2.72) 

Using the previous results we find that, up to total derivatives and up to the overall 
(d) 2 (d)

factor (gs 16πG )−1 that we are suppressing to get simpler expressions N h i 
Q[ξ] = (−1)d ? (e a ∧ e b) e −2φPξ ab − 2ıade−2φξb 

(2.73)� � � � 
I+ (−1)d−1Pξ e −2φMIJ ? FJ − Pξ ∧ e −2φ ? H . 

2.3 Zeroth laws 

The zeroth law and its generalizations, ensuring that the surface gravity and the electro-
static potential are constant over the event (Killing) horizon H are important ingredients 
in the standard derivation of the first law of black-hole mechanics in the context of the 
Einstein-Maxwell theory [118]. In presence of higher-rank p-form fields, it is not clear how 
these laws should be further generalized. However, it is possible to proof the first law 
using Wald’s formalism working on the bifurcation sphere BH, where the Killing vector 
k associated to the horizon vanishes. This restricts the validity of the proof to bifur-
cate horizons but, on the other hand, it makes it possible to carry out the proof using a 
more restricted form of the (generalized) zeroth laws which states the closedness of the 
electrostatic potential and its higher-rank generalizations on BH. Since the electrostatic 
potential is a scalar, its closedness implies that it is constant on BH, which is a restricted 
version of the generalized zeroth law. For higher-rank potentials closedness is, actually, 
all we need, as we will see in the next section. 
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We start by assuming that all the field strengths of the theory are regular on the 
horizon.11 This implies that 

ıkFI BH 
= 0 , (2.74a) 

BH 
ıkH = 0 . (2.74b) 

The first equation directly implies the closedness of the components of the momentum 
map PI on BH on account of its definition Eq. (2.43), and, hence, its constancy on BH, ak 
statement that we can call restricted generalized zeroth law after the natural identification 
of PkI with the electrostatic black-hole potential ΦI . Observe that, our gauge-invariant 
definition of the electrostatic black-hole potential guarantees that it is fully defined up 
to an additive constant that can be determined by setting the value of the potential at 
infinity to zero. 

Using Eq. (2.74b) and the constancy of PI on on BH in the definition of the KRk 
momentum map Eq. (2.53) we find that 

BH H � � 
0 = −ıkH = dPk + Pk I FI = d Pk + Pk I AI . (2.75) 

We can call the combination Pk + Pk I AI that is closed on BH the KR black-hole 
potential Φ and its closedness can be understood as another restricted generalized zeroth 
law of black-hole mechanics in this theory. Observe that Φ is not gauge-invariant, but Pk 
is only defined up to shifts by exact 1-forms anyway and, when we use Φ as the 1-form 
Λ in the calculation of the KR charge Eq. (2.26), the addition of exact 1-forms does not 
change the value of the associated KR charge Eq. (3.28). The fact that this Φ occurs in 
the expressions leading to the first law precisely plays this role is quite a non-trivial check 
of the consistency of our results. 

2.4 The first law 

We start by defining the pre-symplectic (d − 1)-form [214] 

ω(ϕ, δ1ϕ, δ2ϕ) ≡ δ1Θ(ϕ, δ2ϕ) − δ2Θ(ϕ, δ1ϕ) , (2.76) 

and the symplectic form relative to the Cauchy surface Σ Z 
Ω(ϕ, δ1ϕ, δ2ϕ) ≡ ω(ϕ, δ1ϕ, δ2ϕ) . (2.77) 

Σ 

Now, following Ref. [140], when ϕ solves the equations of motion Eϕ = 0 if δ1ϕ = δϕ 
is an arbitrary variation of the fields and δ2ϕ = δξϕ is their variation under diffeomor-
phisms, we have that 

ω(ϕ, δϕ, δξϕ) = δJ + dıξΘ0 = δdQ[ξ] + dıξΘ0 , (2.78) 
11Observe that in this theory in which all the field strengths are gauge-invariant, this is a gauge-invariant 

statement that should be valid in a regular coordinate patch. 
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where, in our case, J = dQ, where Q is given by Eq. (2.73) and Θ0 is given in Eq. (3.78). 
Since, on-shell, Θ = Θ0 , we have that, if δϕ satisfies the linearized equations of motion, 
δdQ = dδQ. Furthermore, if the parameter ξ = k generates a transformation that leaves 
invariant the field configuration, δkϕ = 0,12 linearity implies that ω(ϕ, δϕ, δkϕ) = 0, and 

� � 
d δQ[k] + ıkΘ0 = 0 . (2.79) 

Integrating this expression over a hypersurface Σ with boundary δΣ and using Stokes’ 
theorem we arrive at Z � � 

δQ[k] + ıkΘ0 = 0 . (2.80) 
δΣ 

We are interested in asymptotically flat, stationary, black-hole spacetimes and we 
choose k as the Killing vector whose Killing horizon coincides with the event horizon 
H, which we assume to be a bifurcate horizon. This Killing vector k is assumed to be 
linear combination with constant coefficients Ωn of the timelike Killing vector associated 
to stationarity, tµ∂µ and the [1 (d − 1)] inequivalent rotations φnµ∂µ2 

kµ = tµ +Ωnφµ . (2.81)n 

Furthermore, we choose the hypersurface Σ to be the space between infinity and the 
bifurcation sphere (BH) on which k = 0. Then, its boundary δΣ has two disconnected 
pieces: a (d − 2)-sphere at infinity, Sd−2 , and the bifurcation sphere BH. Then, taking∞ 
into account that k = 0 on BH, we obtain the relation Z Z � � 

δ Q[k] = δQ[k] + ıkΘ0 . (2.82) 
Sd−2BH ∞ 

As explained in Ref. [140, 161], the right-hand side can be identified with δM − 
ΩmδJn, where M is the total mass of the black-hole spacetime and Jn are the independent 
components of the angular momentum. 

(d) 2 (d)
Using the explicit form of Q[k], Eq. (2.73), and restoring the overall factor gs (16πGN )

−1 , 
we find 

Z (d) 2 Z � �(−1)d−1g
δ Q[k] = s 

δ I e 
(d) Pk 

−2φMIJ ? FJ 

BH 16πG BH 
N 

(d) 2 Z � � gs− 
(d) δ Pk ∧ e −2φ ? H (2.83) 

16πG BH 
N 

(d) 2 Z h i(−1)dgs 
+ 

(d) δ ?(e a ∧ e b) e −2φPk ab − 2ıade−2φkb . 
16πG BH 

N 

12We have constructed variations of the fields δξ for which this is possible. 

53 



Chapter 2. The First Law of Heterotic Stringy Black Hole Mechanics at Zeroth Order in 
α0 

The last term vanishes over the bifurcation sphere and will be removed from now 
on. 

As it is, this expression has two problems that make it difficult for us to obtain the 
kind of terms that occur in the first law. In the first line, we have an expression that we 
should be able to interpret in terms of the electric charges QI . However, when we compare 
this with Eq. (2.32) we see that the second term in the integrand is missing. Without that 
term, the charge is not conserved. On the other hand, in the second line, we have an 
expression that we should be able to interpret in terms of the KR charge using Eq. (2.26). 
However, the 1-form Pk is not closed on BH. 

The solution to these two problems is unique: the addition and subtraction of the� � 
term Pk I AI ∧ e−2φ ? H in the integrand, so that the integral to evaluate on BH takes 
the form 

Z (d) 2 Z h i(−1)d−1gs Iδ Q[k] = δ Pk e + e −2φ ? H ∧ AI(d) 
−2φMIJ ? FJ 

BH 16πG BH 
N 

(d) 2 Z � � 
− 

gs 
δ 

� 
Pk + Pk I AI � ∧ e −2φ ? H (2.84)

(d)
16πG BH 

N 

(d) 2 Z 
(−1)dgs 

+ 
(d) δ e −2φ ? (e a ∧ e b)Pk ab . 

16πG BH 
N 

INow, using the generalized zeroth law that ensures that Pk ≡ ΦI is constant over 
H, in particular on BH, and the definition of electric charge Eq. (2.32), the first term in 
the right-hand side takes the form 

ΦI δQI . (2.85) 

Next, from the closedness of the combination Φ = Pk + Pk I AI on BH, (the restricted 
generalized zeroth law) using the Hodge decomposition 

Pk + Pk I AI BH 
= de +ΦiΛh i , (2.86) 

where the Λh i are harmonic 1-forms on BH and the Φ1 are constants that have the 
interpretation of potentials associated to the charge of the KR field (the dipole charge of 
Ref. [63] in particular), and using the definition Eq. (3.28), we find that the second term 
in the right-hand side takes the form 

ΦiδQi , Qi ≡ Q[Λh i] . (2.87) � � 
Observe that the addition and subtraction of the term Pk I AI ∧ e−2φ ? H has been 

crucial to recover the correct definition of the charges which, in particular, demands the 
occurrence of the closed 1-form Pk + Pk I AI . 

Now, let us consider the third integral. Before we compute it explicitly, we notice 
that the integrand is identical, up to a sign, to the Lorentz charge Eq. (2.37) computed 
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afor the Lorentz parameter Pk b which is covariantly constant over the bifurcation surface. 
This coincidence is very intriguing and will be further explored in Ref. [209]. 

Using Eq. (2.50) 

Z Z 
(−1)dκ

δ e −2(φ−φ∞) ? (e a ∧ e b)nab = − 
κ

δ e −2(φ−φ∞)n ab nab(d) (d)
16πG BH 16πG BH 

N N 
(2.88) 

AH 
= Tδ ,

(d)
4GN 

abwhere we have used the normalization of the binormal nabn = −2, T = κ/2π is the 
Hawking temperature and Z 

AH ≡ dd−2Se−2(φ−φ∞) , (2.89) 
B 

is the area of the horizon measured with the modified Einstein frame metric [215] which 
−4(φ−φ∞)/(d−2)is obtained from the string one by multiplying by the conformal factor e , 

and computed using the spatial section BH. 
We finally get the following expression for the first law of black hole mechanics in 

the Heterotic Superstring effective action to leading order in α0: 

δM = Tδ 
AH 

+ΩmδJm +ΦiδQi +ΦI δQI , (2.90)
(d)

4GN 

(d)
which leads to the interpretation of the area of the horizon divided by 4GN as the black-
hole entropy. 

2.5 Momentum Maps for Black Rings in d = 5 

In this section we are goin to illustrate how the definitions made and the properties 
proven in the previous sections work in an explicit example. In particular, we are going to 
determine the values of the momentum maps, checking the restricted generalized zeroth 
laws. 

The solution we are going to consider is a non-extremal, charged, black ring solution 
of pure N = 1, d = 5 supergravity which can be easily embedded in the toroidally-
compactified Heterotic Superstring effective field theory using the results in Appendix C. 
This embedding is necessary because all the definitions and formulae that we have devel-
oped are adapted to that theory. In Appendix C we show how the action Eq. (2.4), for 
d = 5 can be consistently truncated to that of pure N = 1, d = 5 supergravity Eq. C.26 
in two steps: 

1. A direct truncation of some fields of the Heterotic theory, to obtain a model of 
N = 1, d = 5 supergravity coupled to two vector multiplets. The Kalb-Ramond 
2-form has to be dualized into a 1-form in order to obtain the supergravity theory 
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in the standard form, with 3 1-forms which can be treated on the same footing and 
which may be linearly combined. 

2. A consistent truncation of the two vector supermultiplets. In this truncation, rather 
than setting two of the vector fields to zero, they are identified with the surviving 
vector, up to numerical factors. This allows the scalars in the vecort supermultiplets 
to take their vacuum values. 

Given a solution of pure N = 1, d = 5 supergravity, one can easily retrace those steps, 
restoring, first, the two “matter” vector fields so the solution becomes now a solution 
of N = 1, d = 5 supergravity coupled to two vector multiplets. Then, dualizing the 
vector in the supergravity multiplet to recover the Kalb-Ramond 2-form, the solution can 
immediately be interpreted as a solution of the Heterotic Superstring effective field theory 
in which many other fields simply take their vacuum values. 

The non-extremal, charged, black ring solution that we are going to consider is the 
one given in Section 4 of Ref. [213]. This solution belongs to a more general family of 
non-supersymmetric black rings with three charges αi, three dipoles µi, with i = 1, 2, 3, 
and two angular momenta Jϕ and Jψ in the theory with two vector supermultiplets. The 
solution above corresponds to setting all three charges and three dipoles equal, αi = α 
and µi = µ for all i. This identification of the charges and dipoles coprresponds to the 
identification between the vector fields that leads from the supergravity theory with matter 
to the theory of pure supergravity. Let us review the solution and its main features. 

The physical fields of the solution (the metric and the Abelian connection A) can 
be written in terms of the five parameters (R, α, µ, λ, ν) (all of them dimensionless except 
for the length scale R) and the three functions, F (ξ), H(ξ) and G(ξ), given by 

H(ξ) = 1 − µξ , F (ξ) = 1 + λξ , G(ξ) = (1 − ξ2)(1 + νξ) . (2.91) 

The line element is 

U(x, y)
ds2 = (dt + ωψ(y)dψ + ωϕ(x)dϕ)2 − hα(x, y)F (x)H(x)H(y)2× 

h2 
α(x, y) 

� � 
R2 G(y) dy2 dx2 G(x)× − dψ2 − + + dϕ2 , (2.92)

(x − y)2 F (y)H(y)3 G(y) G(x) F (x)H(x)3 

where we use the shorthand notation s = sinh α and c = cosh α, the following combinations 
of the fundamental parameters 

r r 
1 + λ 1 − µ

Cλ = �λ λ(λ − ν) , Cµ = �µ µ(µ + ν) , �λ,µ = ±1 , (2.93)
1 − λ 1 + µ 
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and the following combinations of the fundamental functions in Eq. (2.91) 

H(x) F (y)
U(x, y) = , (2.94a)

H(y) F (x) 

(λ + µ)(x − y)
hα(x, y) = 1 + s 2 , (2.94b)

F (x)H(y) 

� � 
1 33 − 2ωψ(y) = R(1 + y) Cλc Cµcs , (2.94c)

F (y) H(y) 

� � 
1 3 2ωϕ(x) = −R(1 + x)s Cλs 2 − Cµc . (2.94d)

F (x) H(x) 

Finally, the gauge field reads 

√ U(x, y) − 1 −A/ 3 = csdt 
hα(x, y) 

� � 
R(1 + y) U(x, y) 2 U(x, y) 2 2+ Cλc s − Cµs 3 − Cµc s dψ 
hα(x, y) F (y) H(y) H(y) 

� � 
R(1 + x) U(x, y) 1 2 1 3+ 2 Cµcs 2 − Cλcs + Cλc dϕ . (2.95a)
hα(x, y) H(x) F (x) H(x) 

The parameters of the solution must satisfy the constraints 

0 < ν ≤ λ < 1 , 0 ≤ µ < 1 , (2.96) 

to avoid naked singularities. Additional constraints arise from the codition of absence of 
Dirac-Misner strings and conical sigularities, as we are going to see. 

The coordinates x, y take values in 

−∞ < y ≤ −1 , −1 ≤ x ≤ 1 . (2.97) 

The surfaces of constant y have the topology S2×S1 . x is a polar coordinate on the S2 

(essentially, x ∼ cos θ), which is also parametrized by ϕ, which plays the role of azymuthal 
angle. ψ parametrizes the S1 , see Fig. 2.1. Spatial infinity is approached when both x 
and y go to −1, although the coordinates are ill-defined in that limit.13 The orbits of the 
vector ∂ϕ close off at x = −1, but do not do the same at x = 1 unless ωϕ(x = +1) = 0, 
which can forces us to require 

Cλ 2 3Cµ 2 s = c , (2.98)
1 + λ 1 − µ 

13Good coordinates at infinity can be found in Ref. [213]. 
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which removes any possible Dirac-Misner strings. (The same constraint makes Aϕ(x = +1) 
independent of y.) Then, the fixed point sets of ∂ψ and ∂ϕ are, respectively, y = −1 (axis 
of the ring) and x = 1, −1 (inner and outer axes of the S2). 

Figure 2.1: Sketch of a section of constant t and ϕ of the black ring (figure based on 
Ref. [63]). The disc at x = 1 and infinite annulus at x = −1 are the axes (fixed points) of 
∂ϕ, while the axis of the ring is at y = −1 (fixed points of ∂ψ). Surfaces of constant y have 
topology S1 × S2 . y = −1/ν corresponds to the horizon (shaded surface) while surfaces 
of constant y ∈ (−1/ν, −1) are fatter rings containing the horizon in their interior. 

Finally, the periods of ψ and ϕ must be chosen appropriately so as to avoid conical 
singularities. The axes y = −1 and x = −1 (which extend to infinity) are regular for the 
periods 

√ 
1 − λ 

Δψ = Δϕ = 2π (1 + µ)3/2 . (2.99)
1 − ν 

For generic values of the parameters, though, the period of ϕ required by smoothness 
at the inner axis, x = 1, differs from the above Δϕ. Making both periods coincide 
(“balancing” the ring) is possible only when the following constraint holds 

� �2 � �31 − ν 1 − λ 1 + µ 
= . (2.100)

1 + ν 1 + λ 1 − µ 

Henceforth we shall assume that Eqs. (2.98) and (2.100) hold, so that, effectively, 
we will be dealing with a three-parameter family of solutions. As shown in Ref. [213], 
the mass, the two independent angular momenta and the area of the event horizon of the 
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solution read 

3πR2 (λ + µ)(1 + µ)2 
M = cosh 2α , (2.101a)

(5) 1 − ν4GN 

� � 
πR3 (1 − λ)3/2(1 + µ)9/2 Cλ 3Cµ 2Jψ = c 3 − s c , (2.101b)

(5) (1 − ν)2 1 − λ 1 + µ2GN 

√ 
3πR3 1 − λ (1 + µ)7/2(λ + µ) 2Jϕ = − 

(5) Cµc s , (2.101c)
(1 − ν)2(1 − µ)GN 

= 8π2R3 (1 − λ)(λ − ν)1/2(1 + µ)3(ν + µ)3/2 Cλ 3Cµ3 2AH c + s c . (2.101d)
(1 − ν)2(1 + ν) λ − ν ν + µ 

There is an ergosurface at y = −1/λ, where the norm of ∂t vanishes, and the event 
horizon lies at y = −1/ν. It is a Killing horizon of 

k = ∂t +Ω∂ψ, (2.102) 

where Ω, the angular velocity of the horizon in the direction ψ, can be conveniently written 
as Ω = −1/ωψ(−1/ν).14 A rather unusual property of this solution is that the horizon 
has no angular velocity in the direction ϕ even though Jϕ 6= 0. Finally, the horizon 
temperature is 

√ 
λ − ν(µ + ν)3/2 Cλ 3Cµ

T −1 3 2 
H = 4πR c + s c . (2.103)

ν(1 + ν) λ − ν ν + µ 

This solution of pure N = 1, d = 5 supergravity corresponds to a following solution 
of the Heterotic Superstring effective field theory compactified on T4×S1 with the same 

14Notice we work with coordinates ϕ, ψ whose periods are not the standard ones, but those given in 
Eq. (2.99). 
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metric and the non-trivial matter fields given by15 

φ = φ∞ , (2.104a) 

� � 
k2 0 

MIJ = ∞ , (2.104b)
k−20 ∞ 

� � 
k−1 

AI ∞= A , (2.104c)
k∞ 

H = dB − 1 AI ∧ F I = ?F (2.104d)2 

√ 
where, for convenience, we have introduced A = −A/ 3 and its field strength F = dA. 
Let us obtain the vector and KR momentum maps asociated to the Killing vector k in 

IEq. (2.102) for this solution, denoted, respectively, as Pk and Pk. In the following we 
consider a constant t surface Σ defined by which extends from the bifurcate surface (here, 
a ring) BH at y = −1/ν to infinity (analogously to one leaf of the Einstein–Rosen bridge). 
The vector momentum maps PI can be written ask � � 

k−1 
PI ∞= Pk , (2.105)k k∞ 

where Pk satisfies the equation 

dPk = −ıkF . (2.106) 

Since in our gauge £kA = 0 it is clear that a solution (as a matter of fact, any 
solution) of the above equation is provided by 

Pk = ıkA + C , (2.107) 

for some constant C. Notice, though, that this is not the definition of the momentum map, 
but rather a particular form of Pk which is available in the gauge in which the black-ring 
solution is given. The momentum map is, by definition, gauge invariant. The constant C 
is determined by demanding Pk (which will be interpreted as the black ring’s electrostatic 
potential Φ) to vanish at infinity, and it is not difficult to see that C = 0. 

This solution admits an analytic prolongation to the bifurcate ring BH at y = −1/ν 
(and actually beyond that) and, in agreement with the generalised zeroth law, it is a 
constant over the whole event horizon H that we will denote by ΦH 

15The fields that arise in the compactification over T4 and which are set to their vacuum values (they 
are trivial) have not been considered. In particular, the index I takes only two values because the fields 
corresponding to the other values are trivial. 
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Pk = H Pk(x, −1/ν) 

cosh 2α [Cλ(µ + ν) + 3Cµ(λ − ν)] + Cλ(µ + ν) + Cµ(λ − ν) 
= − tanh α (2.108)

cosh 2α [Cλ(µ + ν) + 3Cµ(λ − ν)] + Cλ(µ + ν) − 3Cµ(λ − ν) 

≡ ΦH . 

Observe that, in the gauge in which the solution is given, the potential A is ill-
defined over BH: ıkA is a non-vanishing constant there and k vanishes, which implies that 
A must diverge there. It is worth stressing that the momentum map is unaffected by such 
gauge pathologies since the solution Eq. (2.107) extends from infinity all the way down to 
BH (and beyond). This is a consequence of the fact that, although the momentum maps 
may only exist locally, they are defined by a gauge invariant equation. 

The KR momentum map 1-form, Pk, is defined by Eq. (2.53), and, for this particular 
solution 

� � 
dPk = − ıkH + PkI FI = − (ık ? F + 2PkF) . (2.109) 

If we knew the KR potential B in a gauge in which £kB = 0, using Pk = ıkA, we 
would obtain the KR momentum map 1-form 

Pk = ıkB − PkA + α , (2.110) 

where α is an arbitrary closed 1-form, dα = 0, that could be determined by imposing 
regularity: smoothness of Pk both at the axis of the ring, Pψ(x, y = −1) = 0, and at the 
outer axis of the spheres, Pϕ(x = −1, y) = 0, so that it is well defined when approaching 
infinity). Finding B is, however, as hard as finding Pk directly from Eq. (2.109), which is 
what we are going to do, taking into account that we are only interested in the pullback 
of Pk to the constant-t surface Σ, which must be of the form 

Σ
Pk k ϕ(x, y)dϕ + P Σ (2.111)= P Σ 

k ψ(x, y)dψ , 

because of the general form of the solution. 
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The two functions P Σ (x, y) and P Σ (x, y) are given by k ϕ k ψ 

Z y 
P Σ 
k ϕ(x, y) = − (ık ? F + 2PkF)yϕ dy + fϕ(x) 

Z y 
= −2PkAϕ + Iϕ(x, y)dy + fϕ(x) , (2.112a) 

Z y 
P Σ 
k ψ(x, y) = − (ık ? F + 2PkF)yψ dy + fψ(x) 

Z y 
= −2PkAψ + Iψ(x, y)dy + fψ(x) , (2.112b) 

where 

Iϕ(x, y) = 2Aϕ (∂yAt +Ω∂yAψ) 

� � 
R2ΩF (x)G(x)H(y)h(x, y)2 F (y)G(x)H(y)ωψ(y)(Ωωψ(y) + 1) 

+ ∂xAt + 
F (y)H(x)(x − y)2 F (x)G(y)H(x)h(x, y) 

� � 
ΩH(x)2ωϕ(x)

2 
− ∂xAt 

H(y)2h(x, y) 

F (y)G(x)H(y)(Ωωψ(y) + 1) ΩH(x)2ωϕ(x)− ∂xAψ + ∂xAϕ , (2.113a)
F (x)G(y)H(x)h(x, y) H(y)2h(x, y) 

H(x)2 (ωϕ(x)∂xAt − ∂xAϕ)
Iψ(x, y) = + 2Aψ (∂yAt +Ω∂yAψ) , (2.113b)

H(y)2h(x, y) 

for some functions fϕ(x) and fψ(x) to be determined. 
In this form, the functions are well defined at y = −1/ν (and beyond), and we can 

analytically prolongate Pk there. 
The functions fϕ(x) and fψ(x) can be readily fixed from the fact that the combina-

tion Pk + 2PkA is closed on BH (the restricted generalized zeroth law). Indeed, pulling 
back on BH the KR momentum map Eq. (2.109), one has 

BH 
d (Pk + 2ΦHA) = 0 . (2.114) 

Thus, a solution of the form (2.111) that is well defined at y = −1/ν must satisfy the 
boundary condition 

BH 
Pk = −2ΦHA + Cϕdϕ + Cψdψ (2.115) 
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for some constants Cϕ and Cψ. This implies that our solution reads 

Z y 
Pk ϕ 

Σ (x, y) = −2PkAϕ + Iϕ(x, y)dy + Cϕ , (2.116a) 
−1/ν 

Z y 
Pψ 

Σ(x, y) = −2PkAψ + Iψ(x, y)dy + Cψ . (2.116b) 
−1/ν 

Remarkably, 

Z y 
Iϕ(−1, y)dy = 0 , ∀y 6= −1 , (2.117a) 

−1/ν 

Z −1 cosh 2α [Cλ(µ + ν) + Cµ(ν − λ)] + Cλ(µ + ν) + Cµ(λ − ν)
Iψ(x, y)dy = × 

−1/ν cosh 2α [Cλ(µ + ν) + 3Cµ(λ − ν)] + Cλ(µ + ν) − 3Cµ(λ − ν) 

ν − 1 × CµR sech α , ∀x , (2.117b) 
µ + ν 

so regularity at y = −1 and x = −1 is achieved by setting 

Cϕ = 0 , (2.118) 

cosh 2α [Cλ(µ + ν) + Cµ(ν − λ)] + Cλ(µ + ν) + Cµ(λ − ν) 1 − ν 
Cψ = CµR sech α 

cosh 2α [Cλ(µ + ν) + 3Cµ(λ − ν)] + Cλ(µ + ν) − 3Cµ(λ − ν) µ + ν 

1 − ν ≡ C(λ, µ, ν, α) CµR sech α, (2.119) 
µ + ν 

which completes the solution. 
We conclude by noticing that the associated KR potential 1-form at BH is purely 

harmonic and given by, 

BH 
ΦKR = Pk + 2PkA = Φ dψ ,˜ (2.120)KR ψ̃ 

where ψ̃ = (2π/Δψ)ψ is the angular coordinate with canonical period ψ̃ ∼ ψ̃ + 2π and 

√ 
Δψ 1 − λ(1 + µ)3/2 

Φ = Cψ = C(λ, µ, ν, α) CµR sech α . (2.121)KR ψ̃ 
2π µ + ν 

For α = 0, ΦKR coincides with the potential given in Ref. [63] up to (parameter-independent) 
numerical prefactors. 
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2.6 Discussion 

In this paper we have derived the first law of black hole mechanics in the context of the 
effective action of the Heterotic Superstring compactified on a torus at leading order in α0 . 
The first law includes the variations of the conserved charges of the 1-forms, QI , and of 
the charges associated to the KR field, Qi, multiplied by the potentials ΦI and Φi which 
are constants that we have computed on the bifurcation surface. 

The main ingredients in this proof are the identification of the parameters of the 
gauge transformations that generate symmetries of the complete field configurations, the 
careful definitions of the associated charges and the corresponding potentials through what 
we have called restricted generalized zeroth laws. Due to the interactions between 1-forms 
and the KR 2-form induced by the Chern-Simons terms, all the terms involving charges 
and potentials in the first law are interrelated and all their definitions are either right or 
wrong simultaneously. This can be seen as a test of our definitions and of the final result. 

In the theory considered in this paper we have arrived at the well-known result that 
the entropy is one quarter of the area. In theories of higher order in the curvature it is 
known that there are additional contributions from the terms that contain the curvature, 
as the Iyer-Wald prescription makes manifest. However, as explained in the introduction, 
in the case of the Heterotic Superstring effective action at first order in α0 , we also expect 
that the need to have well-defined charges and, simultaneously, closed forms over the 
bifurcation sphere will result in the need to include additional terms in the “gravitational 
charge” that, in the end, will give us the entropy. Work in this direction is well under 
way [209]. 

Finally, we would like to comment upon two apparent shortcomings of Wald’s for-
malism: it is not clear how to include the variation of the scalar charges and the mod-
uli [149,216] in the first law. In 5 dimensions, for instance, the KR field is dual to a 1-form 
and black-hole solutions electrically charged with respect to this dual 1-form exist. If we 
describe the theory in terms of the KR 2-form, it is not clear how to make the variation 
of this electric charge appear in the first law following this procedure. In this particular 
case, the electric charge of the 1-forms would be associated to S5-branes wrapped on T5 

and it would be very interesting to see the precise definition of this kind of charge to try 
to solve the ambiguities detected in Ref. [212]. 
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The First Law and Wald Entropy Formula of 

Heterotic Stringy Black Holes at First Order in α0 

This chapter is based on: 
The first law and Wald entropy formula of heterotic stringy black holes at first order in α0 

Z. Elgood, T. Ort́ın, D. Pereñiguez 
JHEP 05 (2021) 110 (arXiv:2012.14892) 

The interpretation of the black-hole entropy in terms of the degeneracy of string 
microstates is, beyond any doubt, one of the main achievements of String Theory [128]. 
This interpretation relies, on the one hand, on the correct identification of the black-hole 
charges in terms of branes whose presence affects the quantization of the string. On the 
other, it depends on a correct calculation of the macroscopic entropy. In simple cases, 
at leading order in α0 , the identification of the field fluxes with the brane sources that 
would produce them is straightforward and, also, the macroscopic entropy is given by the 
Bekenstein-Hawking formula S = AH/(4GN ), where AH is the area of the horizon. In more 
complicated cases, the couplings can make the identification of the brane sources through 
the charges more complicated [212] and, beyond leading order in α0 , the presence of terms 
of higher order in the curvature and, in the Heterotic Superstring case, of complicated 
Yang-Mills (YM) and Lorentz Chern-Simons terms [189] can also make the calculation of 
the macroscopic entropy very difficult. This is the problem we will deal with in this paper. 

The standard method to calculate the black-hole entropy in theories of higher order 
in the curvature is to use Wald’s formalism [139, 214], usually applying directly the Iyer-
Wald prescription [140]. As we have recently discussed in Refs. [162, 198, 199] (see also 
references therein), the Iyer-Wald prescription was derived assuming that all the fields 
of the theory behave as tensors under diffeomorphisms which, as matter of fact, is only 
true for the metric and uncharged scalars. All the fields of the Standard Model, except 
for the metric, have some kind of gauge freedom and do not transform as tensors under 
diffeomorphisms. Even the gravitational field, if it is described by a Vielbein instead of by 
a metric, has a gauge freedom, as it transforms under local Lorentz transformations. In 
theories with fermions, Viebeins are necessary to work with the spinorial fields in curved 
space time. 

This problem was first noticed and solved by Jacobson and Mohd in Ref. [150] for 
the Einstein-Hilbert action written in terms of the Vielbein. The solution consists in 
going back to the basic formalism of [139, 214] and deal carefully with the gauge (local 
Lorentz) symmetry. In practice, this means taking into account the gauge transforma-
tions induced by the diffeomorphisms on the Vielbein. This can be done, for instance, by 
defining a Lorentz-covariant Lie derivative (Lie-Lorentz derivative) which can be decom-
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posed into a standard Lie derivative and a local Lorentz transformation and which, apart 
from being covariant under Local lorentz transformations, vanishes identically when the 
diffeomorphism is an isometry of the metric (see Refs. [151, 152]1 which build on earlier 
work by Lichnerowicz, Kosmann and others [154–160]). The Lie-Lorentz derivative has 
been recently used to extend the proof of the first law of black mechanics to supergravity, 
including the spinorial fields, in Ref. [194]. 

A more mathematically rigorous (and complicated) treatment based on the theory of 
principal bundles, that also applied to Yang-Mills fields, was given by Prabhu in Ref. [138].2 

Apart from the mathematical complexity, this approach cannot be used to handle higher-
rank form fields such as the Kalb-Ramond (KR) field. For this reason, in Ref. [162] we 
proposed a simpler alternative, based on the construction of covariant Lie derivatives of all 
the fields with gauge freedom (a Maxwell field in the case of Ref. [162]). This construction 
is based on the introduction of momentum maps [152, 201] which play a crucial role in 
this paper and which we will define later. The Lie-Lorentz derivative can also be seen as 
based on the definition of a Lorentz momentum map.3 

In Ref. [218] we have shown how to use momentum maps to construct covariant Lie 
derivatives in the Heterotic Superstring Effective action compactified in a torus at zeroth 
order in α0 . The KR field of that theory contains Abelian Chern-Simons terms4 which 
induce Nicolai-Townsend transformations of the 2-form [219]. These terms modify the 
definitions of the conserved charges which ultimately appear in the first law of black hole 
mechanics along the lines of the classical Refs. [136, 203–205]. 

In this paper we are going to use the same technique quite extensively to deal with 
the variety of fields and couplings that occur in the Heterotic Superstring effective action 
at first order in α0 and prove the first law of black hole mechanics, identifying the entropy. 
As we are going to see, the entropy formula obtained is manifestly gauge-invariant and 
contains only terms which are known and can be computed explicitly. This is the first 
entropy formula proposed for this theory that satisfies all this properties. It allows us 
to compute reliably the entropy of black hole solutions to first order in α0 and compare 
the result with the entropy computed through microstate counting. As we will show in 
the last section, it gives the same results as the non-gauge-invariant formulae used in 
Refs. [198, 199, 210] in certain basis.5 This confirms the values of the entropies obtained 
in those references, and shows why, in spite of the manifest deficiencies of the entropy 
formulae used, we obtained the right result. 

A very interesting aspect of the momentum maps is that they are related to the 
zeroth law of black hole mechanics and its generalizations.6 In the simplest case, the 
momentum map associated to a Maxwell field can be interpreted as the electrostatic 
potential.7 The generalized zeroth law states that it is constant over the black hole horizon 

1See also Ref. [153] for a more mathematically rigorous point of view. 
2See also Ref. [217] for a different point of view on this problem. 
3In Refs. [192, 193], momentum maps emerge as “improved gauge transformations”. 
4Only the Kaluza-Klein and winding vector fields appear there at zeroth order in α0 . 
5These results differ slightly from the results obtained in Refs. [220,221] using the Iyer-Wald prescription 

in the higher-dimensional action before dimensional reduction. As pointed out in Ref. [212], the dependence 
on the Riemann tensor changes after dimensional reduction and the formulae in Refs. [198, 199, 210] have 
been found using the dimensionally-reduced action. The formula that we give here does not suffer of any 
of these problems. See the discussion in Section 3.6. 

6This was first noticed by Prabhu, albeit in a completely different language [138]. 
7The Maxwell momentum map is defined in a gauge invariant form, and so is the electostatic potential. 
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[118]. The horizon’s surface gravity, which is the subject of the zeroth law, is also related 
to the Lorentz momentum map. For higher-rank fields, Copsey and Horowitz [147] and, 
afterwards, Compère [161] proved a restricted form of the generalized zeroth law (restricted 
because it refers only to the bifurcation sphere) which follows from the closedness of certain 
differential form on it. In Ref. [218] we proved that these closed forms are related to the 
momentum maps and we will call these statements restricted generalized zeroth laws. Here 
we will extend the results of Ref. [218] to YM and KR fields and to the more complicated 

8couplings of the Heterotic Superstring effective action at first order in α0 . 
The restricted generalized zeroth laws play a crucial role in the proof of the first law 

and in the identification of the entropy and they are intimately related to the definitions 
of conserved charges. In Wald’s formalism, the entropy is identified only after the terms 
∼ ΦδQ have been identified in the first law. As in Ref. [218], this identification requires the 
addition and subtraction of several terms as demanded by the definitions of the charges Q 
and the potentials Φ on account of the restricted generalized zeroth laws. However, in this 
case, some of the terms added and subtracted will be shown to contribute to the entropy. 

This paper is organized as follows: in Section 3.1 we introduce the effective action 
of the Heterotic Superstring to first order in α0 and find how it changes under an arbitrary 
variation of the fields, which allows us to determine the equations of motion. In Section 3.2 
we study how the fields change under gauge and general coordinate transformations. We 
construct variations of the fields that vanish when the parameters of the transformations 
generate a symmetry of the field configuration and we find the integrals that give the 
associated conserved charges. The conserved charge associated to the invariance under 
diffeomorphisms is the Wald-Noether charge. As we have discussed, the correct identifi-
cation of the conserved charges is essential to obtain for the correct identification of the 
entropy in the first law. In Section 3.3 we discuss the restricted generalized zeroth laws of 
this theory, which also play an essential role in the proof of the first law. In Section 3.4 
we prove the first law using the results obtained in the previous sections, which leads us 
to identify the Wald entropy formula in Section 3.5. Section 3.6 contains a discussion of 
our results, comparing them with the existing literature. 

3.1 The HST effective action at first order in α0 

The Heterotic Superstring effective action can be described at first order in α0 as follows 
[189]:9 we start by defining the zeroth-order KR field strength H(0) and its components 
H(0)

µνρ as 

H(0) ≡ dB 1 = Hµνρdx
µ ∧ dxµ ∧ dxρ , (3.1)3! 

1where B = Bµν dx
µ ∧ dxµ is the KR 2-form potential. Then, if ωab = ωµabdxµ is the2 

Levi-Civita spin connection,10 we define the zeroth-order torsionful spin connections11 

This is in contrast wit the standard definitions of the electrostatic potential used in the literature. 
8Some of these couplings have been discussed before in the literature, specially in Ref. [197] (see also 

references therein). See the discussion in Section 3.6. 
9We use the conventions of Ref. [152], reviewed for the zeroth-order case in Ref. [218]. In particular, 

the relation with the fields in Ref. [189] can be found in Ref. [222]. 
10 a aIf e = e µdx

µ are the Vielbein, the spin connection is defined to satisfy the Cartan structure equation 
De a ≡ dea − ωa

b ∧ e b = 0. 
11 µ µ bWe denote by ıaA the inner product of ea ≡ ea ∂µ (ea e µ = δab) with the differential form A. If A 

67 



Chapter 3. The First Law and Wald Entropy Formula of Heterotic Stringy Black Holes 
at First Order in α0 

(0) 
H(0)Ω = ωab ± 1 ıbıa , (3.2)(±) ab 2 

and their corresponding zeroth-order curvature 2-forms and Chern-Simons 3-forms 

(0) ab ≡ dΩ(0) ab − Ω(0) a (0) cbR c ∧ Ω , (3.3a)(±) (±) (±) (±) 

(0) (0) a (0) b 1 (0) a (0) b (0) cω = R b ∧ Ω a + Ω b ∧ Ω c ∧ Ω a . (3.3b)(±) (±) (±) 3 (±) (±) (±) 

Next, we define the gauge field strength 2-form and the Chern-Simons 3-forms for 
the YM field AA = AAµdxµ by 

1F A = dAA + 2 fBC 
AAB ∧ AC , (3.4) 

ωYM = FA ∧ AA − 1 fABC A
A ∧ AB ∧ AC , (3.5)6 

where we have lowered the adjoint group indices A, B, C, . . . in the structure constants 
fAB

C and gauge fields using the Killing metric. 
Then, we can define the first-order KR field strength 3-form as 

� �α0 
H(1) ≡ H(0) ωYM (0)

+ + ω . (3.6)(−)4 
Its Bianchi identity takes the well-known form 

� �α0 
dH(1) (0) a (0) b = FA ∧ F A + R b ∧ R a . (3.7)(−) (−)4 

Having made these definitions and adding the dilaton field φ, we can write the 
Heterotic Superstring effective action to first-order in α0 as 

(d) 2 Z h 
S(1)[e

gs −2φa, B, AA, φ] = 
(d) e (−1)d−1 ? (e a ∧ e b) ∧ Rab − 4dφ ∧ ?dφ 

16πGN 

(0) a (0) b (3.8)+1 H(1) ∧ ?H(1) + (−1)d α
0 � 
FA ∧ ?F A + R b ∧ ?R a 

�� 
2 (−) (−)4 

Z 
L(1)≡ . 

Although this action is defined in 10 dimensions, we have left the dimension arbitrary 
(d) because that allows us to use the results in other dimensions after trivial dimensional 

(d)reduction on a torus. In this action, GN is the d-dimensional Newton constant and 

is a p-form with components Aµ1 ···µp , ıaA is the (p − 1) form with components eaν Aνµ1···µp−1 . 
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(d)
gs is the d-dimensional string coupling constant, identified with the vacuum expectation 
value of the exponential of the d-dimensional dilaton field gs 

(d) 
=< eφ >. In solutions such 

as black holes that asymptote to a vacuum solution at infinity eφ → eφ∞ =< eφ >= gs 
(d) 

. 
This is a very complex action. Due to this complexity and to the lemma proven in 

Ref. [189] which we will explain later, it is convenient to perform a general variation of the 
action in two steps: first, we only vary the action with respect to the explicit occurrences 
of the fields, where we define “explicit occurrences” as those which do not take place in the 

(0)
torsionful spin connection Ω . Then, we vary the action with respect to the occurrences (−) 

(0)
of the fields via Ω using the chain rule. All the occurrences of the dilaton and YM fields (−) 
are explicit, but those of the Vielbein and KR field are not, because they (and only they) 

(0)
are present in Ω .(−) 

(d) 2 (d)
Thus, setting gs (16πGN )

−1 = 1 for the time being in order to simplify the 
formulae, we find that under a general variation of the “explicit” occurrences of the fields, 
the action transforms as follows: Z n 

S(1) E(1) (1) (1) (1)
= ∧ δea + E ∧ δB + E δφ + E δAAδexp exp a exp B φ A 

(3.9) o 
+dΘ(1) 

exp(ϕ, δϕ) , 

where ϕ stands for all the fields of the theory, 

E(1) −2φıa
c ∧ e b ∧ e= e ? (e d) ∧ Rcd − 2D(ıbde

−2φ) ∧ ?(e c)gcaexp a 

+ (−1)d−14e −2φ (ıadφ ? dφ + dφ ∧ ıa ? dφ) 

� �(−1)d 
−2φ H(1) ∧ ?H(1) + H(1) ∧ ıa ? H

(1)+ e ıa
2 

α0 �−2φ+ e ıaFA ∧ ?F A − FA ∧ ıa ? F A 
4 

� 
(0) b (0) c (0) b (0) c+ıaR c ∧ ?R b − R c ∧ ıa ? R b (3.10a)(−) (−) (−) (−) 

� � 
E

(1) 
= −d e −2φ ? H(1) , (3.10b)exp B 

� � 
(1) − 2L(1)E = 8d e −2φ ? dφ , (3.10c)φ 

n � � oα0 α0 
(1) (1)

E = − D e −2φ ? FA + (−1)d e −2φ ? H(0) ∧ FA − E ∧ AA , (3.10d)A exp B2 4 

69 



Chapter 3. The First Law and Wald Entropy Formula of Heterotic Stringy Black Holes 
at First Order in α0 

and 

Θ(1) (ϕ, δϕ) = −e −2φ ? (e a ∧ e b) ∧ δωab + 2ıade
−2φ ? (e a ∧ e b) ∧ δeb − 8e −2φ ? dφδφ exp 

� �α0 
−2φ+ e −2φ ? H(1) ∧ δB + e ?FA − 1 ? H(1) ∧ AA ∧ δAA .22 

(3.11) 
An alternative form of the YM equations that arises in the calculations is 

� �α0 
(1) −2φ ? H(0) ∧ AA 

−2φ ? H(0) ∧ dAA .E = − D e −2φ ? FA − e + (−1)d−1 α
0 
e (3.12)A 2 4 

(1)
Observe that neither the YM equations of motion transform covariantly nor Θexp is 

invariant under YM gauge transformations. For the YM equations this is not a big problem 
since the troublesome term is proportional to the KR equation of motion, but there is no 
obvious fix for the pre-symplectic potential. Nevertheless, we will see that, in the end, we 
will get gauge-invariant charges and, in particular a gauge-invariant Wald-Noether charge. 

An important property of the HST effective action is that the YM fields and the 
torsionful spin connection occur in it exactly on the same footing [202]. The variation 
of the action with respect to the torsionful spin connection takes exactly the same form 
as the YM equation, the only difference being the group indices and their contractions. 
Thus, 

Z n 
δS(1) E(1) (1) (1) (1) 

+ E(1) b (0) a = ∧ δea + E ∧ δB + E δφ + E ∧ δAA ∧ δΩexp a exp B φ A a (−) b 

o 
+dΘ(1)(ϕ, δϕ) , 

(3.13) 
where the variation with respect to the torsionful spin connection is given by 

n � � oα0 α0 
E(1) b (0) b −2φ ? H(0) ∧ R(0) b (1) (0) b 

a = − D(−) e −2φ ? R a + (−1)d e a − E ∧ Ω a ,(−) (−) exp B (−)2 4 
(3.14) 

or 

� �α0 
E(1) b (0) b (0) b (0) b−2φ ? H(0) ∧ Ω ? H(0) ∧ dΩa = − D(−) e −2φ ? R a − e (−) a + (−1)d−1 α

0 

(−) a ,(−)2 4 
(3.15) 

and the pre-symplectic (d − 1)-form is given by 

� �α0 
−2φ (0) b (0) b (0) aΘ(1)(ϕ, δϕ) = Θ(1) (ϕ, δϕ) + e ?R a − 1 ? H(1) ∧ Ω a ∧ δΩ b , (3.16)

exp (−) 2 (−) (−)2 
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(1)
with Θexp(ϕ, δϕ) given in Eq. (3.11). 

The parallelism between the YM and torsionful spin connection terms also leads to 
the same problems of non-covariance of E(1) b

a and non-invariance of the additional term 
in Θ(1). 

An important difference between the equations of motion of these two connections 
is that, according to the lemma proven in Ref. [189], E(1) a

b is proportional to α0 and to 
(0) (0) (0)

a combination of the zeroth-order equations Ea , EB and Eφ . This means that field 
(1) (1) (1) (1)

configurations that solve the equations Eexp a = 0, E = 0, E = 0 and E = 0 are exp B φ A 
solutions of the complete first-order equations, to that order in α0 . This crucial property 
effectively reduces the degree of the differential equations to 2, avoiding the problems that 
arise with dynamical equations that involve derivatives of the fields of higher order. 

3.2 Variations of the fields 

It is convenient to start by describing the gauge transformations of the fields and the 
associated Noether identities to be able to compute the associated conserved charges. 
Afterwards, we will discuss the transformations of the fields under diffeomorphisms and 
the associated Wald-Noether charge. 

3.2.1 Gauge transformations 

The fields occurring in the effective action Eq. (3.8) transform under 3 kinds of gauge 
transformations: 

1. KR gauge transformations with 1-form parameter Λ, δΛ, which only act on B. 

2. YM gauge transformations with parameter χA , δχ, which act on the YM fields and 
on B as Nicolai-Townsend transformations. 

3. Local Lorentz transformations with parameter σab , δσ, which act on the Vielbein 
and induce transformations of spin connections and curvature and which also act on 
B as Nicolai-Townsend transformations. 

The transformation rules are 

a = σa bδσe be , (3.17a) 

δχA
A = DχA ≡ dχA + fBC 

AAB χC , (3.17b) 

α0 α0 
(0) bδB = (δΛ + δχ + δσ)B = dΛ − χAdA

A − σabdΩ(−) a . (3.17c)
4 4 
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The induced local Lorentz transformations of the connections are 

δσω
ab = Dσab σc|b]= dσab − 2ω[a|

c , (3.18a) 

(0) ab (0) 
σab 

(0) [a|δσΩ = D = dσab − 2Ω cσ
c|b] , (3.18b)(−) (−) (−) 

and the transformations of the curvatures are 

AF CδχF A = −χBfBC (3.19a) 

δσR
ab Rc|b]= 2σ[a|c . (3.19b) 

(0) ab (0) c|b]δσR = 2σ[a|cR . (3.19c)(−) (−) 

Finally, for the sake of completeness and their later use, we quote the gauge trans-
formations of the Chern-Simons 3-forms 

α0 � � 
δχω

YM = d χAdA
A , (3.20a)

4 

� �α0 
(0) (0) bσaδσω = + d bdΩ a , (3.20b)(−) (−)4 

and the Ricci identities 

DDχA = −fBC 
AχBF C = δχF A , (3.21a) 

(0) (0) 
σab 

(0) [a| σc|b] 
(0) abD D = −2R c = δσR . (3.21b)(−) (−) (−) (−) 

The exact invariance of the action S(1) in Eq. (3.8) under the above gauge transfor-
mations leads, in a rather trivial way, to the following Noether identities [222] 

(1)
dE = 0 , (3.22a)exp B 

(1) (1)DE + (−1)d−1 α
0 
E ∧ dAA = 0 , (3.22b)A exp B4 

(0) 
E(1) (1) (0) aD b

a + (−1)d−1 α
0 
E ∧ dΩ = 0 , (3.22c)(−) exp B (−) b4 

α0 
E(1) [a b] (1) (0) 

E(1) ab∧ e + E ∧ dΩ(0) ab + (−1)d−1D = 0 . (3.22d)exp exp B (−)4 
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Eq. (3.22c) is just a particular case of Eq. (3.22b) with adjoint Lorentz indices. 
Furthermore, the last two identities imply the symmetry of the Einstein equation, which 
in the language f differential forms and Vielbeins, is expressed in the form 

E(1) [a b] 
exp ∧ e = 0 . (3.23) 

3.2.2 Gauge charges 

For ths sake of simplicity, we are going to start by the charge associated to the δΛ trans-
formations, that we are going to call Kalb-Ramond charge. 

Kalb-Ramond charge 

Let us consider the transformation of the action Eq. (3.8) under the gauge transformations 
δΛ. Taking into account that this symmetry only acts on B, 12 Eqs. (3.13) and (3.16) we 
get Z n h io 

δΛS
(1) (1)

= E ∧ dΛ + d e −2φ ? H(1) ∧ dΛ . (3.24)exp B 

Integrating by parts the first term and using the Noether identity Eq. (3.22a) 

Z Zn o 
δΛS

(1) (1) −2φ ? H(1) ∧ dΛ= d (−1)dE ∧ Λ + e ≡ dJ[Λ] . (3.25)exp B 

Since δΛS(1) = 0, the integrand must vanish, which means that J[Λ] must be locally 
exact. Indeed, � � 

J[Λ] = dQ[Λ] , with Q[Λ] = Λ ∧ e −2φ ? H(1) . (3.26) 

Integrating the (d − 2)-form Q[Λ] over (d − 2)-dimensional compact surfaces Sd−2 for 
Λs that leave invariant the KR field B we get conserved charges associated to those Λs. 
These Λs are simply closed 1-forms.13 The Hodge decomposition theorem allows us to 
write each of them as the sum of an exact and a harmonic form that we denote by Λe and 
Λh, respectively. On-shell, the exact form Λe = dλ will not contribute to the integral and 
the charge will be given by Z � � 

Q(Λh) = Λh ∧ e −2φ ? H . (3.27) 
Sd−2 

Now we can use duality between homology and cohomology: if CΛh is the (d − 3)-cycle 
dual to Λh we arrive at the charges 

(d) 2 Z 
gsQ(Λh) = − e −2φ ? H , (3.28)

(d)
16πGN CΛh 

12We consider the variation of the torsionful spin connection to be zero under this transformation. 
13Here we follow Refs. [147, 161]. This discussion is identical to the discussion we made for the zeroth-

order case in Ref. [218]. 
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(d) 2 (d)
where we have recovered the factor of gs (16πG )−1 and added a conventional sign.N 

Yang-Mills charge 

Now, let us consider the charges associated to the YM gauge transformations δχ. Again, 
from Eqs. (3.13) and (3.16), taking into account that this symmetry acts on the YM fields 
AA but also on the KR 2-form B, we have 

Z n 
δχS

(1) (1) (1)
= E ∧ δχB + E ∧ δχAA 

exp B A 

(3.29)� ��� �α0 
−2φ+d e −2φ ? H(1) ∧ δχB + e ?FA − 1 ? H(1) ∧ AA ∧ δχAA .22 

The parameters χA that we will use are those that preserve the field configuration, 
leaving AA and B invariant. The YM fields are left invariant by covariantly constant χAs, 
i.e. χAs that we will denote by κA satisfying 

DκA = 0 . (3.30) 

We can call these parameters vertical Killing vector fields from he principal bundle point of 
view, with the standard Killing vectors of the base manifold playing the rôle of horizontal 
Killing vector fields. 

The integrability condition of the vertical Killing vector equation is, according to 
Eq. (3.21a), 

δκF A = −fBC 
AκBF C = 0 , (3.31) 

so they also leave invariant the field strengths, as expected. 
The vertical Killing vector fields κAs will not leave B invariant, though, but we can 

rewrite the transformation in the form � � 
α0 α0 α0 

δχB = − κAdA
A = − κAF A + d κAA

A . (3.32)
4 2 4 

Now we observe that, due to the YM Bianchi identity DF A = 0, κAF A is a closed 2-form 
and, locally, there is a 1-form Ψκ such that 

dΨκ = −κAF A , (3.33) 

and which we will call vertical YM momentum map. 14 

Then, we define the parameter of a compensating Λ transformation 

α0 α0 
Λχ = − Ψχ − χAA

A , (3.34)
2 4 

14Compare this equation with the equation satisfied by the standard (horizontal) YM momentum map 
Eq. (3.59). 
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where Ψχ is a 1-form such that, when χA = κA (i.e. when it is a vertical Killing vector 
field), it satisfies Eq. (3.33). Combining the original δχ transformation with the com-
pensating δΛχ transformation we find a new δχB that vanishes for covariantly constant 
χAs: 

α0 � � α0 
δχB ≡ − dΨχ + χAF A − DχA ∧ AA . (3.35)

2 4 

The vanishing of δχB for covariantly constant χAs is gauge invariant because 

δχ0 δχ ∼ Dχ . (3.36) 

Substituting the transformation Eq. (3.35) and the standard gauge transformation 
of the YM fields into Eq. (3.29) we get 

Z � � � � � 
α0 α0 α0 

δχS
(1) (1) (1)

= E ∧ DχA + E ∧ −d Ψχ + χAA
A − χAdA

A 
A exp B 2 4 4 

� � � � � 
α0 α0 α0 

+ d e −2φ ? H(1) ∧ −d Ψχ + χAA
A − χAdA

A (3.37)
2 4 4 

��� �α0 
−2φ+ e ?FA − 1 ? H(1) ∧ AA ∧ DχA .22 

Integrating by parts the first terms and combining the different terms in an appro-
priate way we can rewrite the variation in the form Z � � � 

δχS
(1) (1) (0)

= (−1)dχA DE + (−1)d−1 α
0 
E ∧ dAAA exp B4 

� � 
α0 α0 

− Ψχ + χAA
A ∧ dE(0) 

exp B2 4 

� � � 
(1) −2φ ? H(0) ∧ dAA+ d (−1)d−1χA E + (−1)d α

0 
eA 4 

(3.38)� � 
α0 α0 

− Ψχ + χAA
A ∧ E(0) 

exp B2 4 

� � �� 
α0 α0 

+ e −2φ ? H(1) ∧ −d Ψχ + χAA
A 

2 4 

��� �α0 
−2φ+ e ?FA − 1 ? H(1) ∧ AA ∧ DχA .22 
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The terms in the first and second lines vanish identically because of the Noether identities 
Eqs. (3.22b) and (3.22a), respectively, and we arrive to 

δχS
(1) = 

Z � � 
(1)

d (−1)d−1χA EA 

� 
−2φ ? H(0) ∧ dAA+ (−1)d α

0 
e 

4 

− 
� 
α0 

Ψχ + 
2 

� 
α0 

(0)
χAA

A ∧ Eexp B4 

� 
α0 

− d Ψχ + 
2 

� � �α0 
χAA

A −2φ ? H(0)∧ e 
4 

(3.39) 

�α0 
−2φ+ e ?FA − 1 

22 

�� 
? H(1) ∧ AA ∧ DχA 

Z 
≡ dJ[χ] . 

The same arguments we made in the previous case lead to the existence of a (d − 2)-
form Q[χ] such that J[χ] = dQ[χ]. The (d − 2)-form is given by 

n � �o� �−2φ ?Q[χ] = −(−1)d α
0 
e −χAFA + (−1)dΨχ ∧ e −2φ ? H(0) . (3.40)

2 

For Abelian vector fields the κAs are constant and Ψκ = κAAA (up to a total 
derivative) and we recover immediately the Q[χ] found in Ref. [218]. On the other hand, 
when we change Ψκ by a total derivative, Q[κ] is invariant on-shell up to a total derivative 
which will not contribute to the charge which is now given by the integral 

Z(d) 2 n � �o gs −2φ ? H(0)Q[κ] = − (−1)d α
0 
e −2φ ? dΨκ + (−1)dΨκ ∧ e , (3.41)

(d) 
Sd−2 216πGN 

where we have made use of the definition of the vertical momentum map Ψκ in Eq. (3.33). 

Lorentz charge 

Let us now consider local Lorentz transformations. As we have stressed repeatedly we can 
treat the local Lorentz transformations and the torsionful spin connection in parallel to 
the YM gauge transformations and the gauge fields. The only difference is the presence of 
one additional term in the Lorentz case: the Einstein-Hilbert case. If we follow the same 
steps as in the YM case we arrive to 

n � � � �o 
Q[σ] = (−1)d−1 e −2φ?(e a∧e b)σab−(−1)d α

0 
e −2φ ? −σabR(0) b

a + (−1)dΠσ ∧ e −2φ ? H(0) ,
2 

(3.42) 
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where Πσ is a 1-form that becomes a vertical Lorentz momentum map whan the Lorentz 
parameter σab = κab, a Lorentz parameter that generates a symmetry of the field con-
figuration, i.e. a vertical Killing vector. This happens when the Vielbein and the spin 
connection are left invariant 

κa b 
be = 0 , (3.43a) 

Dκab = 0 . (3.43b) 

These two conditions imply the invariance of the torsion 1 ıbıaH
(0) Hence, they also implies 2 

(0) athe invariance of the torsionful spin connection Ω b,(−) 

(0)D κab = 0 . (3.44)(−) 

These conditions can be used to modify the transformation of the KR field so that 
it is also left invariant, as we did in the YM case. We just quote the final form: 

� �α0 α0 
(0) b (0) (0) bδσB = − dΠσ + κabR a) − D σab ∧ Ω a , (3.45)(−) (−) (−)2 4 

where the vertical Lorentz momentum map Πσ is such that, when σab = κab 

(0) bdΠκ = κabR(−) a . (3.46) 

The conserved charge is the integral of the (d−2)-form Eq. (3.42) for vertical Killing 
vector fields κab satisfying Eqs. (3.43) and (3.43b). The first condition annihilates the first 
term, corresponding to the Einstein-Hilbert term in the action but the rest of the terms 
survive in this case and we get the non-vanishing Lorentz charge 

(d) 2 Z � h � �i� gs −2φ ? H(0)Q[κ] = (−1)d α
0 
e −2φ ? dΠκ + (−1)dΠκ ∧ e . (3.47)

(d) 
Sd−2 216πGN 

In the proof of the first law we will find the integral of (d − 2)-form Eq. (3.42) for a 
Lorentz parameter that satisfies Eq. (3.43b) only. This integral give, precisely, the entropy. 

3.2.3 The transformations under diffeomorphisms 

Now we turn our attention to the diffeomorphisms. Our treatment is similar to the treat-
ment of the δχ gauge transformations, although the use of compensating gauge transforma-
tions admits a more general justification in terms of the gauge covariance of the modified 
transformations (covariant Lie derivatives). Since we have discussed at length these mod-
ifications in Refs. [162, 218] we will only discuss the aspects not covered there: torsionful 
spin connections, non-Abelian gauge fields and the more complicated transformations of 
the KR 2-form. 

In this section k will always be a (horizontal) Killing vector which generates a 
symmetry of the complete field configuration. 
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Lie-Lorentz derivatives 

The transformations of the Vielbeins, the Levi-Civita spin connection and its curvature 
2-form have been discussed in Refs. [162, 218], but it is convenient to adapt some of the 
formulae to the torsionful spin connection. They are generically given in terms of the 
Lie-Lorentz (or Lorentz-covariant Lie derivative Refs. [151, 152, 154–157]) by δξ = −Lξ. 
Therefore, we will continue this discussion in terms of the latter. 

The parameter of the compensating local Lorentz transformation that appears in 
(0) ab

the Lie-Lorentz derivative of Ω is still given by (−) 

ab = ıξωab −r[aξb]σξ , (3.48) 

(0) ab
but it is useful to rewrite it using Ω in the covariant derivatives. Due to the complete(−) 
antisymmetry of the torsion, it takes the simple form 

ab (0) ab (0) [aξb]σξ = ıξΩ −D . (3.49)(−) (+) 

Observe that the presence of fully antisymmetric torsion does not modify the Killing 
equation15 

2D(0) 
ξb) = 0 . (3.50)(±) (a 

Notice that Eqs. (3.49) and (3.50) are completely independent of H(0) even if we 
(0)

have formally rewritten them in terms of the torsionful spin connection Ω .(−) 

The Lie-Lorentz derivative of the torsion ıbıaH(0) follows the general formula while 
that of the Levi-Civita connection ωab is given by 

Lξωab ab = £ξω
ab −Dσξ , (3.51) 

and, therefore, it is easy to see that 

(0) ab (0) ab (0) abLξΩ = £ξΩ −D σξ , (3.52)(−) (−) (−) 

and it is equally easy to see that it can be rewritten in the form 

(0) ab (0) ab abLξΩ = ıξR , (3.53)(−) (−) + D(−)P(−)ξ 

with 

(0) [aξb]P(−)ξ
ab ≡ D , (3.54)(+) 

The identity 

� � � � 
(0) ab (0) ab (0) [a ξb] 

(0) aρ bσξν R(−) νµ + D(−) µ P(−)ξ = D(−) r b]ξµ + rµ − 2
3 r[µ| ξ

ν Hν|ρσ] e e , (3.55) 

15The presence of generic torsion does modify the Killing equation. 
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(0) ab (0) ab 
proves that δξΩ = −LξΩ vanishes when ξµ = kµ, because, in that case,(−) (−) 

(0) ab (0) ab− ıkR = D P(−)k . (3.56)(−) (−) 

abBecause P(−)k satisfies this equation, we will call it the horizontal Lorentz momentum 
map associated to the torsionful spin connection. 

k, then, generates a diffeomorphism that leaves invariant the metric and the KR 
3-form field strength. 

(0) ab (0) ababAgain, P(−)ξ is a Lorentz tensor and δξΩ = −LξΩ is a Lorentz tensor(−) (−) 
(0) ab

although Ω is a connection. When it vanishes, it vanishes in all Lorentz frames.(−) 

Lie-Yang-Mills derivatives 

Since the spin connection is just the connection of the Lorentz group, this case is very 
similar to the previous one, the main difference being that the YM fields are fundamental 
fields while the spin connection is a composite field. Apart from this, in many (but not 
all, because of the absence of a YM analogue of the Vielbein) instances we may just apply 
the same formulae with the sole change of the adjoint group indices, as we are going to 
see. 

In order to find the gauge-covariant Lie derivative of YM fields it is convenient to 
consider the Lie-Lorentz derivative of the curvature tensor first. In this case, since we do 
not know the form of the parameter of the compensating gauge transformation, we can 
simply consider the standard Lie derivative of the gauge field strength 2-form defined in 
Eq. (3.4): 

£ξF A = (ıξd + dıξ)F A = DıξF A − fBC 
AıξA

BF C , (3.57) 

where we have used the Bianchi identity DF A = 0. 
When ξ = k this expression should vanish up to an infinitesimal gauge transforma-

tion with some parameter that we denote by χ̃kA . Then, 

� �
A B B F CDıξF A = fBC ıξA

B + χ̃k F C ≡ fBC 
APk , (3.58) 

which, upon use of the Ricci identity Eq. (3.21a), can be solved by a PkA that we call the 
(horizontal) Yang-Mills momentum map satisfying the equation 

A− ıkF A = DPk . (3.59) 

Eq. (3.56) is nothing by a particular case of this equation for which the momentum 
map is explicitly known. This happens because we know how to express the gauge field in 
terms of a more fundamental field (the Vielbein). In general, the general form of PkA is 
not known but is determined up to a covariantly-constant gauge parameter. We will use a 
Pξ

A which is undetermined except for the fact that it reduces to PkA satisfying Eq. (3.59) 
for Killing vectors. 

Now, we can use as definition of the Lie-Yang-Mills derivative of F A the following 
expression which is guaranteed to vanish when ξ = k on account of Eq. (3.58): 
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LξF A = DıξF A − fBC 
APξ

BF C = £ξF A − δχξ F A , (3.60) 

where the gauge compensating parameter χξA is given by the (now usual) expression 

A Aχξ = ıξAA − Pξ . (3.61) 

The Lie-Yang-Mills derivative of the gauge field is, then 

A ALξAA ≡ £ξA
A −Dχξ = ıξF A + DPξ , (3.62) 

Aand, by construction, it vanishes automatically when ξ is a Killing vector field kµ and Pk 
is the momentum map satisfying Eq. (3.59). 

The Kalb-Ramond field 

The parameters of the compensating YM and local Lorentz transformations of the KR 
field are the same transformations χξA and σξab that we perform on other fields with YM 
and Lorentz indices, given by Eqs. (3.61) and (3.48). Thus, if we want to construct a 
transformation of this field under diffeomorphisms that annihilates it when ξ = k by com-
bining its standard Lie derivative with gauge transformations, the only gauge parameter 
we can still play with is the 1-form Λ because the rest are already completely determined. 
We have 

δξB = − £ξB + (δΛξ + δχξ + δσξ )B 

(3.63) 
α0 α0 

a (0) b 
= − £ξB + dΛξ − χξ AdA

A − σξ bdΩ(−) a . 
4 4 

Again, it is convenient to start by considering the transformation of the 3-form field 
strength H(1) defined in Eq. (3.6) under diffeomorphisms, because it is gauge invariant: 

δξH
(1) = − £ξH

(1) 

= − ıξdH(1) − dıξH(1) 
(3.64) 

� �α0 
= − dıξH(1) − (0) a (0) bıξFA ∧ F A + ıξR b ∧ R a ,(−) (−)2 

where we have used the Bianchi identity Eq. (3.7). 
When ξ = k we can use Eqs. (3.56) and (3.59), integrate by parts, and use now the 

Bianchi identities for the curvatures, getting: 

� � 
δkH

(1) = − dıkH(1) a (0) b+ 
α0 

DPk A ∧ F A + D(−)P(−) k b ∧ R a(−)2 
(3.65)� 

ıkH
(1) − a (0) b = − d

α0 � 
Pk AF A + P(−) k bR a 

�� 
.(−)2 
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By assumption, the above expression must vanish identically. Therefore, locally, there 
must exist a gauge-invariant 1-form, the horizontal Kalb-Ramond momentum map Pk, 
satisfying 

� � 
− ıkH(1) a (0) b+ 

α0 
Pk AF A + P(−) k bR a = dPk . (3.66)(−)2 

Then, if we apply the rule of thumb that the parameter of the compensating gauge trans-
formation is the inner product of the vector that generates the diffeomorphisms with the 
“connection” (here B) minus the momentum map (here some 1-form Pξ that in this case 
satisfies Eq. (3.66) when ξ = k) 

Λξ = ıξB − Pξ , (3.67) 

we arrive at the following candidate to δξB: 

� � 
a (0) b

δξB = − £ξB + dΛξ − 
α0 

χξ AdA
A + σξ bdΩ(−) a4 

� � 
= − ıξH(1) − (0) a (0) bα0 

AA ∧ ıξF A +Ω(−) b ∧ ıξR (3.68)
(−) a4 

� � 
a (0) b− dPξ + 

α0 
Pξ AdA

A + P(−) ξ bdΩ .(−) a4 

Let us see if, with this definition, δkB = 0. Using Eqs. (3.66), (3.59) and (3.56) we 
get, instead of zero, a total derivative 

� � 
a (0) b

δkB = − 
α0 
d Pk AA

A + P(−) k bΩ , (3.69)
(−) a4 

which we can simple absorb in redefinition of Λξ in Eq. (3.67): 

� � 
a (0) b

Λξ ≡ ıξB − Pξ + 
α0 
d Pξ AA

A + P(−) ξ bΩ(−) a . (3.70)
4 

With this new parameter, 

α0 α0 
a (0) b

δξB = − £ξB + dΛξ − χξ AdA
A − σξ bdΩ(−) a4 4 

� �� � 
ıξH

(1) − a (0) b 
= − 

α0 
Pξ AF A + P(−) ξ bR(−) a + dPk

2 
(3.71) � � 

(0) a (0) b 
+ 
α0 

AA ∧ δξAA +Ω(−) b ∧ δξΩ(−) a4 

≡ −LξB , 
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that vanishes identically when ξ = k by virtue of the definition of the KR momentum map 
(0) b

Eq. (3.66) and of δξAA = δξΩ = 0.(−) a 

The behavior of this variation under gauge transformations is far from obvious. A 
direct calculation gives 

� �α0 
(0) b

δgaugeδξB = dχA ∧ δξAA + dσab ∧ δξΩ , (3.72)(−) a4 

with δξAA = −LξAA with the Lie-Yang-Mills covariant derivative given by Eq. (3.62) and 
(0) ab (0) ab

with δξΩ = −LξΩ , with the Lie-Lorentz derivative given by Eq. (3.53). Therefore,(−) (−) 
although the δξB defined above is not gauge-invariant, δkB vanishes in a gauge-invariant 
way. 

3.2.4 The Wald-Noether charge 

Now we consider the variation of the action S(1) given in Eq. (3.8) under the transforma-
tions δξ = −Lξ for all the fields, where Lξ is the gauge-covariant derivative which, for the 
Vielbein is given by [162] 

a a bLξe = Dξa + Pξ be , (3.73) 

for the torsionful spin connection in Eq. (3.53), for the YM fields in Eq. (3.62) and for the 
KR field in Eq. (3.71). 

From Eq. (3.13) 

Z n � � 
δξS

(1) E(1) a a b (1)
= − ∧ Dıξe + Pξ be + E ıξdφexp a φ 

� �� �(1) A + E(1) b (0) a a+ E ∧ ıξF A + DPξ a ∧ ıξR(−) b + D(−)P(−)ξ bA 

� � �α0 
(1) 

ıξH
(1) (0) a (0) b 

+ E ∧ + AA ∧ ıξF A +Ω exp B 4 (−) b ∧ ıξR(−) a 

� ���� � �α0 α0 
a (0) b a (0) b− Pξ AdA

A + P(−) ξ bdΩ(−) a +d Pξ − Pξ AA
A + P(−) ξ bΩ(−) a4 4 

o 
−dΘ(1)(ϕ, δξϕ) , 

(3.74) 
where Θ(1)(ϕ, δξϕ) is given by 
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Θ(1)(ϕ, δξϕ) =e −2φ ? (e a ∧ e b) ∧ (ıξRab + DPξ ab) − 2ıade−2φ ? (e a ∧ e b) ∧ (Dıξeb + Pξ bce c) 

+ 8e −2φ ? dφıξdφ 

� � � 
−2φ ? H(1) ∧ ıξH

(1) (0) a (0) b− e + 
α0 

AA ∧ ıξF A +Ω(−) b ∧ ıξR(−) a4 

� ���� � �α0 α0 
a (0) b a (0) b− Pξ AdA

A + P(−) ξ bdΩ(−) a +d Pξ − Pξ AA
A + P(−) ξ bΩ(−) a4 4 

� �α0 � �−2φ A− e ?FA − 1 ? H(0) ∧ AA ∧ ıξF A + DPξ .22 

� � � �α0 
−2φ (0) b (0) b (0) a a− e ?R − 1 ? H(0) ∧ Ω ∧ . 

2 (−) a 2 (−) a ıξR(−) b + D(−)P(−)ξ b 

(3.75) 
Integrating by parts and using the Noether identities Eqs. (3.22a), (3.22b), (3.22c), 

(3.23) and the Noether identity associated to the invariance under diffeomorphisms 

(−1)dDE(1) a (1) ∧ ıξH(1) (1)
ıξe + E + E ıξdφexp a exp B φ 

� � � � 
α0 α0 

(1) (0) 
E(1) b (0) (0) b (0) a 

+ E + E ∧ AA ∧ ıξF A + a + E ∧ Ω ∧ ıξR (3.76)
A exp B exp B (−) a (−) b4 4 

= 0 , 

we can see that the volume term in the variation of the action Eq. (3.74) reduces to another 
total derivative 

Z 
δξS

(1) = dΘ(1) 0(ϕ, δξϕ) , (3.77) 

with 
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Θ(1) 0(ϕ, δξϕ) = Θ(1)(ϕ, δξϕ) 

+ (−1)dE(1) (1)
ıξe a + (−1)d−1E ∧ Pξexp a exp B 

� 
(1)

+ (−1)d EA + 
α0 

(0)
Eexp B4 

� 
A∧ AA Pξ 

(3.78) 

� 
E(1) b+ (−1)d 

a + 
α0 

(0)
Eexp B4 

� 
(0) b a∧ Ω b .(−) a P(−)ξ 

The usual reasoning leads us to the off-shell identity 

dJ(1)[ξ] = 0 , (3.79) 

where 

J(1)[ξ] ≡ dΘ(1) 0(ϕ, δξϕ) + ıξL(1) , (3.80) 

and to the local existence of a (d − 2)-form Q(1)[ξ] such that J(1)[ξ] = dQ(1)[ξ]. 
A straightforward calculation leads to the fully gauge-invariant Wald-Noether charge h i 

Q(1)[ξ] =(−1)d ? (e a ∧ e b) e −2φPξ ab − 2ıade−2φξb 

h � �i 
a (0) b

+ (−1)d−1 α
0 
Pξ Ae −2φ ? F A + P(−)ξ b e −2φ ? R (3.81)

(−) a2 

� � 
− Pξ ∧ e −2φ ? H(1) , 

which is one of the main results of this paper. 

3.3 Restricted generalized zeroth laws 

One of the main ingredients in Wald’s approach to the first law of black hole mechanics is 
the zeroth law stating that κ is constant over the horizon [118]. Originally, this law was 
proved using the Einstein equations and the dominant energy condition (see, for instance, 
Ref. [223]) but a completely geometrical proof was presented in Ref. [144]. 

In presence of an electromagnetic field one also needs to use the generalized zeroth law 
that guarantees that the electrostatic potential is also constant over the whole horizon. 
There is no purely geometrical proof of this law, though, and the standard proof also 
makes use of the Einstein equations and of the dominant energy condition. In Ref. [218] 
we have explained how this proof can be extended to a theory containing an arbitrary 
number of Abelian vector fields and the KR field coupled to them via Chern-Simons terms. 
Essentially one gets a sum of non-negative terms containing the contribution of each field, 
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and each of them has to vanish. Extending this proof to the non-Abelian case, as long 
as we restrict ourselves to a gauge group with definite positive Killing metric because one 

(0) 2 
gets sums of non-negative terms. However, the R term of our theory is of YM type, (−) 
but with non-definite Killing metric because of the non-compactness of the Lorentz group 
and the proof cannot be extended to this case in a streightforward manner. 

It is, however, possible to proof the first law in bifurcate horizons if one can proof 
generalized zeroth laws for the matter fields restricted to the bifurcation sphere BH where 
the Killing vector associated to the event horizon, k, vanishes identically. These restricted 
generalized zeroth laws state the closedness of certain differential forms on BH. The 
definitions of the potentials as certain constants follow from them as we are going to 
explain. 

Assuming all the fields are regular over the horizon, it is clear that the inner products 
of their field strengths with k must vanish on BH: 

BH 
ıkdφ = 0 , (3.82a) 

BH 
ıkH = 0 , (3.82b) 

ıkF A BH 
= 0 , (3.82c) 

(0) a BH 
ıkR = 0 . (3.82d)(−) b 

(3.82e) 

Eq. (3.82a) is actually true over the whole spacetime, by assumption. From Eq. (3.82c) 
and the definition of the YM momentum map PkA we find that 

A BH DPk = 0 , (3.83) 

which tells us that the horizontal YM momentum map PkA is, at the same time, a vertical 
Killing vector field on BH. This is what we need in order to have an associated conserved 
charge there (see the discussion in Section 3.2.2). 

aAnalogously, from Eq. (3.82d) and the definition of the momentum map P(−)k b 
Eq. (3.56) we get 

(0) a BH D(−)P(−)k b = 0 , (3.84) 

which tells us that the horizontal Lorentz momentum map PkA is, also, a vertical Killing 
vector field on BH. 

Observe that the last two equations have as consequence the existence of the gauge-
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invariant 1-forms ΨPk and ΠPk defined by 

BH a (0) b
dΠPk = P(−)k bR (3.85a)(−) a , 

BH 
dΨPk = Pk AF A . (3.85b) 

The closedness of the right-hand sides of these equations on BH, which guarantee the local 
existence of ΨPk and ΠPk there are the restricted generalized zeroth laws for the YM and 
torsionful spin connecton fields. 

Finally, from Eq. (3.82b) and the definition of the KR momentum map Eq. (3.66) 
plus the above two equations that define ΨPk and ΠPk we get � � 

α0 BH 
d Pk − (ΨPk +ΠPk ) = 0 , (3.86)

2 

which is the restricted generalized zeroth law of the KR field. 

3.4 The first law 

Following Wald [139], we start by defining the pre-symplectic (d − 1)-form [214] 

ω(1)(ϕ, δ1ϕ, δ2ϕ) ≡ δ1Θ(1)(ϕ, δ2ϕ) − δ2Θ(1)(ϕ, δ1ϕ) , (3.87) 

and the symplectic form relative to the Cauchy surface Σ Z 
Ω(1)(ϕ, δ1ϕ, δ2ϕ) ≡ ω(1)(ϕ, δ1ϕ, δ2ϕ) . (3.88) 

Σ 

When ϕ is a solution of the equations of motion Eϕ = 0, δ1ϕ = δϕ is an arbitrary 
variation of the fields and δ2ϕ = δξϕ is their variation under diffeomorphisms [140] 

+ dıξΘ(1) 0 = δdQ(1)[ξ] + dıξΘ(1) 0ω(1)(ϕ, δϕ, δξϕ) = δJ(1) , (3.89) 

where, in our case, the Noether-Wald (d − 2)-form charge Q(1) is given by Eq. (3.81) and 
Θ(1) 0Θ0 is given in Eq. (3.78). Since, on-shell, Θ(1) = , we have that, if δϕ satisfies the 

dδQ(1)linearized equations of motion, δdQ(1) = . Furthermore, if the parameter ξ = k 
generates a transformation that leaves invariant the field configuration, δkϕ = 0,16 linearity 
implies that ω(1)(ϕ, δϕ, δkϕ) = 0, and � � 

δQ(1)[k] + ıkΘ(1) 0d = 0 . (3.90) 

Integrating this expression over a hypersurface Σ with boundary δΣ and using Stokes’ 
theorem we arrive at 

16Notice that our goal in Section 3.2.3 was, precisely, to construct variations of the fields δξ with that 
property. 
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Z � � 
δQ(1)[k] + ıkΘ(1) 0 = 0 . (3.91) 

δΣ 

We consider field configurations that describe asymptotically flat, stationary, black-
hole spacetimes with bifurcate horizons H and the Killing vector k is the one whose Killing 
horizon is the black hole’s event horizon. k, then, will be given by a linear combination 
with constant coefficients Ωn of the timelike Killing vector associated to stationarity, tµ∂µ 
and the [1 (d − 1)] generators of inequivalent rotations in d spacetime dimensions φµn∂µ2 

kµ = tµ +Ωnφµ . (3.92)n 

The constant coefficients Ωn are the angular velocities of the horizon. 
The hypersurface Σ to be the space bounded by infinity and the bifurcation sphere 

BH on which k = 0, so δΣ has two disconnected pieces: a (d − 2)-sphere at infinity, Sd−2 ,∞ 
and the bifurcation sphere BH. Then, taking into account that k = 0 on BH, we obtain 
the relation Z Z � � 

Q(1)[k] = δQ(1)[k] + ıkΘ(1) 0δ . (3.93) 
Sd−2BH ∞ 

As explained in Ref. [140, 161], the right-hand side can be identified with δM − 
ΩmδJn, where M is the total mass of the black-hole spacetime and Jn are the independent 
components of the angular momentum.17 

BH 
Using the explicit form of Q(1)[k], Eq. (3.81), noticing that −2ıade

−2φkb = 0 and 
(d) 2 (d)

restoring the overall factor gs (16πGN )
−1 , we find 

Z (d) 2 Z 
Q(1)[k] = −2φ ? (e a ∧ eδ

gs 
(−1)d e b)Pk ab (d)BH 16πG BH 

N 

(d) 2 Z � � gs a (0) b 
+ (−1)d−1 α

0 
P(−)k b e −2φ ? R 

(d) (−) a216πG BH 
N 

(3.94) 
(d) 2 Z 
gs 

+ (−1)d−1 α
0 
Pk Ae −2φ ? F A 

(d) 216πG BH 
N 

(d) 2 Z � � 
− 

gs 
Pk ∧ e −2φ ? H(1) . 

(d)
16πG BH 

N 

The right-hand side ot this identity is expected to be of the form T δS+ΦδQ for some 
charges Q and potentials Φ. However, when we compare the third and fourth integrals in 
the right-hand side with the definitions of the YM and KR charges Eqs. (3.41) and (3.28) 

17When the spacetime has compact dimensions, the d-dimensional mass M is a combination of the 
lower-dimensional mass and Kaluza-Klein charges. The details depend on the compactification and will 
be studied elsewhere. 
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we see that some terms are missing in the integrand of the first and that, in the second, 
there is no closed or harmonic form in the integrand, since the horizontal KR momentum 
map is not necessarily closed on BH. We found a similar problem in Ref. [218] and the 
solution is essentially the same: add and subtract the same term in different integrals in 
order to complete the integrand of the definition of YM charge and in order to construct 
a 1-form which is closed in BH. 

The 1-form shich is closed on BH and which contains Pk follows from the restricted 
generalized zeroth law of the KR field, Eq. (3.86). We must add a term −α0 

ΨPk to the2 
fourth integral and substract the same term to the third, which now contains all the terms 
associated to the YM charge becuase of the restricted generalized zeroth law Eq. (3.83). 
However, Eq. (3.86) also tells us to add another term −α0 

ΠPk to the fourth integral and2 
we can only compensate by subtracting it to the second. This completes the closed 1-form 
in the fourth integral and completes the integrand of the Lorentz charge according to 
Eq. (3.47) and thanks to the restricted generalized zeroth law Eq. (3.84). 

The result of these additions and subtractions is 

Z (d) 2 Z 
Q(1)[k] = 

gs
δ 

(d) (−1)d e −2φ ? (e a ∧ e b)Pk ab 
BH 16πG BH 

N 

g
(d) 2 Z h � �i 
s 

+ (−1)d−1 α
0 
e −2φ ? dΠPk + (−1)dΠPk ∧ e −2φ ? H(0) 

(d) 216πG BH 
N 

Z(d) 2 h � �i gs −2φ ? H(0)+ (−1)d−1 α
0 
e −2φ ? dΨPk + (−1)dΨPk ∧ e 

(d) 216πG BH 
N 

(d) 2 Z � � � � gs− 
(d) Pk − 

α0 
(ΨPk +ΠPk ) ∧ e −2φ ? H(1) . 

216πG BH 
N 

(3.95) 
where ΨPk and ΠPk satisfy Eqs. (3.85b) and (3.85a), respectively, whose integrability is 
guaranteed by the fact that the YM and Lorentz momentum maps are covariantly constant 
on BH (the restricted generalized zeroth laws). 

Now, let us assume that the particular field configuration under consideration admits 
Aa set of covariantly constant YM parameters on BH that we label with an index I, κI 

BH A BH DκA = 0 , ⇒ Pk = ΦI κA , (3.96)I I 

where the constants ΦI will be interpreted as the potentials associated to the YM charges 
QI computed with the parameter κIA Eq. (3.41) 

Z(d) 2 h � �i gs −2φ ? H(0)QI ≡ Q[κI ] = (−1)d−1 α
0 
e −2φ ? dΨI + (−1)dΨI ∧ e , (3.97)

(d) 216πG BH 
N 

where 
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dΨI = −κI AF A . (3.98) 

As a result, the third line in Eq. (3.95) becomes ΦI δQI . 
Now, following Refs. [147, 161], as a consequence of the KR restricted generalized 

zeroth law Eq. (3.86), we can write (Hodge decomposition) 

α0 BH 
Pk − (ΨPk +ΠPk ) = de +ΦiΛh i , (3.99)

2 

where e is some function, the Λh i are the harmonic 1-forms of the bifurcation sphere and 
the Φi are constants that can be interpreted as the potentials associated to the KR charges 
Qi = Q(Λh i) Eq. (3.28) 

(d) 2 Z 
gsQi = − e −2φ ? H , (3.100)

(d)
16πGN CΛh i 

where CΛh i is the (d − 3)-cycle dual to the harmonic 1-form Λh i in BH. 
As a result, the fourth line in Eq. (3.95) becomes ΦiδQi and we are left with the 

abfirst two, which are linear in the Lorentz momentum map Pk , which, on BH, is given 
abby κnab , where n is the binormal to the horizon. The terms in those two lines must, 

therefore, be interpreted as those giving rise to the term T δS in the first law 

δM = T δS +ΦI δQI +ΦiδQi +ΩnδJn . (3.101) 

3.5 Wald entropy 

It follows from the results of the previous section that the entropy is given by 

Z �� � �(d) 2 
α0 

S = (−1)d gs 
e −2φ ?(e a ∧ e b) + e −2φ ? R

(0) ab nab + (−1)d α
0 
Πn ∧ ?H(0) ,

(d) (−)2 28G BH 
N 

(3.102) 
where we have the defined the 1-form Πn (vertical Lorentz momentum map associated to 
the binormal) on the bifurcation sphere 

BH (0) abdΠn = R nab . (3.103)(−) 

This is the main result of this paper, which we will discuss in the next section. It 
is worth stressing that the term that involves Πn, and which has been shown to given 
an important contribution to the entropy of well-known black-hole solutions Refs. [198, 
199,210,220,221] occurs in the entropy formula just to cancel an equivalent term that we 
had to add to get the correct definition of the KR charge and the associated potential. 
Without a detailed knowledge of the conserved charges, the restricted generalized zeroth 
laws and the potentials associated, the presence of that term in the entropy formula could 
not have been guessed. 
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3.6 Discussion 

In this paper we have derived an entropy formula for the black-hole solutions of the 
Heterotic Superstring effective action to first order in α0 using Wald’s formalism [139,214] 
taking carefully into account all the symmetries of the theory. A a result, our entropy 
formula Eq. (3.102) is manifestly gauge invariant. In particular, it is manifestly invariant 
under local Lorentz transformations. 

It is interesting to compare this result with the one that would follow form the 
direct (and naive) application of the Iyer-Wald prescription [140]. The first two terms in 
Eq. (3.102) can be obtained from Eq. (3.8) by varying the Einstein-Hilbert term and the 
R2 term with respect to the Riemann curvature tensor, but the third term cannot be (−) 
obtained in that way from the H2 term. As stressed in Refs. [198, 199, 210], the variation 
of this term with respect to the Riemann tensor gives a term of the form 

� �α0 
−2φ (0) ab ∧ ?H(0)e Ω nab , (3.104)(−)4 

which is not Lorentz-covariant. The coefficient of this term differs from the last term in 
(0)

Eq. (3.102) if we associate Πn to Ω abnab, which is the right thing to do as we are going(−) 
to show. But this coefficient changes after dimensional reduction, as observed in Ref. [212]. 
The explicit calculation in Ref. [210] shows that the right coefficient is the one that arises 
after dimensional reduction,18 but, certainly, there are ambiguities in the way in which 
the Chern-Simons terms are defined in lower dimensions. 

BH 
It is interesting to observe that because Dnab = 0, � � 

BH (0) ab (0) a (0) cbdΠn = d Ω nab +Ω c ∧ Ω nab . (3.106)(−) (−) (−) 

For the non-extremal Reissner-Nordström black hole of Ref. [211], whose α0 cor-
rections were computed in Ref. [210], the second term vanishes identically in the tangent 
space basis used (see Appendix C). This shows that, in that basis, our entropy formula and 
the entropy formula obtained via the Iyer-Wald prescription (after dimensional reduction) 
give the same result. Of course, our formula is valid in any basis. 

Our entropy formula seems to differ from the entropy formula obtained in Ref. [224], 
but a detailed comparison is not possible since that formula contains undetermined pa-
rameters that guarantee its invariance under Lorentz transformations. In Ref. [224] it was 
argued that those undetermined parameters do not contribute to the entropy in certain 
cases but, without an explicit expression, it is difficult to understand why or when this 
may happen. Furthermore, as we have shown, the identification of the entropy formula 
can only be made after the first law of black hole mechanics has been proven and this re-
quires a careful identification of the conserved charges of the theory: some terms (the one 
involving Πn) occur in the entropy formula only because they are needed to compensate 
other terms that have to appear in the correct definition of the KR charge. This analysis 
was simply not carried out in Ref. [224]. 

18The entropy calculated in this way satisfies the first law or, equivalently, the thermodynamic relation 

∂S 1 
= . (3.105)

∂M T 
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Our entropy formula (the contribution due to the presence of Lorentz- or gravita-
tional Chern-Simons terms in H(1)) also differs from the one found in Ref. [197]. Ob-
serve that Eq. (40) in Ref. [197], similar to the terms contains in the formulae derived in 
Refs. [198, 199] and to Eq. (3.104) is not covariant. Thus, it may give the right result in 
certain basis, if at all.19 The problems in the derivation of Ref. [197] are having overlooked 
the KR conserved charge and the determination of the gauge parameters that generate 
symmetries of the complete field configuration. 

Finally, it is interesting to notice that the entropy formula looks like the charge 
associated to the Lorentz transformations generated by the binormal to the horizon. These 

(0)
transformations preserve the connections ω and Ω on the bifurcation sphere, but they(−) 
do not preserve the Vielbein, as we assumed in Section 3.2.2 (Eq. (3.43)), which produces 
an additional term associated to the Einstein-Hilbert term. 

The main use of the entropy formula that we have found is to put in solid ground 
the calculations of the macroscopic entropies of α0-corrected black holes, an ineluctable 
condition for a fair comparison with the microscopic ones. More α0-corrected solutions 
have recently become available to this end [225, 226]. As mentioned in the introduction, 
another necessary ingredient for this comparison is the correct identification of the relation 
between the charges of the black hole and the branes in the string background. These 
results and those of our previous work [218] single out a very precise definition of the 
conserved charges, which turn out to be of Page type, conserved and gauge-invariant 
under the assumptions made. This fact should shed light on this problem and we intend 
to pursue this line of research in future work. 

19the non-covariance of Tachikawa’s entropy formula was observed in Ref. [200], where an alternative 
method was devised to deal with this problem. Nevertheless, the formula obtained in Ref. [200] reduces to 
Tachikawa’s in BH, apparently losing the covariance, while ours does not. 
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4 
Komar Integral and Smarr Formula for 

Axion-Dilaton Black Holes Versus S Duality 

This chapter is based on: 
Komar integral and Smarr formula for axion-dilaton black holes versus S duality 

D. Mitsios, T. Ort́ın, D. Pereñiguez 
JHEP 08 (2021) 019 (arXiv:2106.07495) 

In Refs. [139, 140, 214] Wald and his collaborators Lee and Iyer constructed a pow-
erful formalism that could be used to prove the first law of black-hole mechanics [118] 
and, through this proof, to find the entropy formula for black-hole solutions of any 
diffeomorphism-invariant theory. This formalism has been very successful in absence of 
matter fields but it was not clear how to use it on their presence. It is known that, in 
many cases, these fields give rise to new terms in the first law, associated to the possible 
variations of the conserved charges associated to them. It was unclear how these terms 
could arise in this formalism since it is based in diffeomorphism invariance alone and, 
apparently, the gauge symmetries that ensure the conservation of the charges that occur 
in the additional terms of the first law play no rôle whatsoever. 

As we have discussed in Refs. [162, 209, 218], diffeomorphisms and gauge transfor-
mations are, actually, closely related, because gauge fields are not just tensors. This was 
one of the main assumptions in the derivation of the well-known Iyer-Wald prescription 
for the entropy Refs. [140]. The transformation of a gauge field under an isometry which 
leaves invariant all the fields of a black-hole solution always induces a gauge transforma-
tion, which, when correctly taken into account [138] (via covariant Lie derivatives, for 
instance), gives rise to the missing terms in the first law. If one uses a tetrad formu-
lation, although the Vielbein is not a matter field, one must properly take into account 
that it transforms under local Lorentz transformations as well [150] using the Lie-Lorentz 
covariant derivative (see Refs. [151–153] and references therein). 

Still, terms associated to the variations of charges which are not associated to gauge 
symmetries, such as magnetic charges, will not appear in these derivations of the first law 
based on Wald’s formalism, while they are known to appear in other derivations of the 
first law [227]. Terms associated to the variations of the asymptotic values of the scalars 
(moduli) such as those found in Ref. [149] (see, also, Ref. [216]), will not appear, either. 
This fact does not invalidate the first law, but it is a limitation to its applicability since 
one cannot study the effects of the variations of the missing charges. 

Smarr formulae [228] provide another approach to this problem. They are closely 
related to the first law: the scaling arguments of Refs. [164, 229] show how the thermo-
dynamical variables (typically, charges) and their conjugate thermodynamical potentials 
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must occur in the Smarr formula. This argument explains why there are no terms associ-
ated to the moduli in the first law if one accepts that the black-hole mass does not depend 
on them when it is expressed in terms of the entropy and the conserved charges.1 

If the black holes under consideration have magnetic charges, then their Smarr 
formula must contain a term proportional to them and their associated potentials. 

As explained in Refs. [164,229], Smarr formulae can be derived from Komar integrals 
[232]. In Ref. [233] it was shown how to construct Komar integrals in general theories 
using Wald’s formalism. The integrand contains a surface term which is the Noether-
Wald charge and a volume term proportional to the on-shell Lagrangian density. As 
shown in Ref. [141], the volume term can always be expressed as a surface term. Since the 
variation of the integral the Noether-Wald charge gives the first law without variations of 
magnetic charges and since, as we have argued, the Smarr formula must contain terms with 
magnetic charges and potentials, it is not clear how and if those terms are going to appear. 
Moreover, electric and magnetic terms must occur in an electric-magnetic symmetric form 
in the Smarr formula if the equations of motion of the theory have that property. 

In this paper we want to study if and how this electric-magnetic duality invari-
ance of the Smarr formula arises from a formalism (Wald’s) which is not electric-magnetic 
symmetric because only the gauge transformations which imply the conservation of the 
electric charges are taken into account. To this order, in Section 4.1, we are going to study 
the static black-hole solutions of a 4-dimensional theory whose equations of motion are 
invariant under the archetype of electric-magnetic (or S-) duality group: “axion-dilaton 
gravity,” which is the bosonic sector of pure, ungauged, N = 4, d = 4 supergravity [234]. 
The family of solutions that we are going to study, found in Ref. [235] is invariant, as a 
family, under the SL(2, Z) duality group and the results obtained should be automat-
ically invariant under that group. These solutions will be introduced in Section 4.2. 
In Section 4.3 we will construct the Komar integral as a surface integral in a mani-
festly gauge and diffeomorphism-covariant form using the momentum maps introduced 
in Refs. [162, 209, 218]. In Section 4.4 we will use the Komar integral to explicitly test 
the Smarr formula for the static axion-dilaton black holes under consideration. A general 
form of the Smarr formula will, then, be given in Section 4.5, where we will discuss its 
electric-magnetic SL(2, R) invariance. Finally, Section 3.6 contains our conclusions and 
some directions for future work. 

4.1 Axion-dilaton gravity 

The 4-dimensional model known as “axion-dilaton gravity” is nothing but the bosonic 
sector of pure, ungauged, N = 4, d = 4 supergravity [234] and describes two scalars: the 
axion a and the dilaton φ combined into the complex axidilaton field λ ≡ a + ie−2φ (often 
denoted by τ) that parametrizes the coset space SL(2, R)/SO(2), and six 1-form fields 
Am = Amµdxµ with 2-form field strengths 

F m = dAm , (4.1) 

a acoupled to gravity, which we will describe through the Vierbein e = e µdxµ. The number 

1This fact follows from the independence of the entropy on the moduli, which, to the best of our 
knowledge, has been proven for static, extremal, asymptotically-flat black holes only [230, 231]. 
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of 1-forms does not play a relevant rôle if it is larger than one, and can be left undetermined 
although it has to be set to six if one wants to embed the solutions of the theory into the 
Heterotic Superstring (HST) effective action compactified on a T6 . The model with just 
two 1-forms can also be viewed as a model of N = 2, d = 4 supergravity coupled to a single 
vector multiplet, and one can use the powerful solution-generating techniques developed in 
that class of models to construct extremal [236,237] and non-extremal [237,238] black-hole 
solutions. 

The action of the theory in the conventions of Ref. [239]2 in differential-form language 
is (summation over repeated m indices is understood) 

S = 
1 

(4)
16πGN 

Z h 
− ? (e a ∧ e b) ∧ Rab + 2dφ ∧ ?dφ + 1 e 4φda ∧ ?da2 

i 
+2e −2φF m ∧ ?F m + 2aF m ∧ F m (4.2) 

Z 
≡ L . 

(4)
We will set GN = 1 and we will ignore the normalization factor (16π)−1 for the 

time being. 
The equations of motion are defined by Z � 

δS = Ea ∧ δea + Eφδφ + E(a)δa + Em ∧ Am + dΘ(ϕ, δϕ) , (4.3) 

and given by 

Ea = ıa ? (e b ∧ e c) ∧ Rbc + 2 (ıadφ ? dφ + dφ ∧ ıa ? dφ) 

1+ e 4φ (ıada ? da + da ∧ ıa2 ? da) + 2e −2φ (ıaF m ∧ ?F m − F m ∧ ıa ? F m) , (4.4a) 

Eφ = −4d ? dφ + 2e 4φda ∧ ?da − 4e −2φF m ∧ ?F m , (4.4b) 

� � 
E(a) = −d e 4φ ? da + 2F m ∧ F m , (4.4c) 

Em = −4dFm , (4.4d) 

where we have defined the dual 2-form field strength 

Fm 
δS ≡ 1 

4 δF m = e −2φ ? F m + aF m . (4.5) 

2The only difference with the conventions of Refs. [235, 240–243] is that no imaginary units are intro-
duced with the Hodge dualization. These conventions are the same used in Refs. [162, 209, 218]. 
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Furthermore, 

Θ(ϕ, δϕ) = − ? (e a ∧ e b) ∧ δωab + 4 ? dφδφ + e 4φ ? daδa + 4Fm ∧ δAm . (4.6) 

Since the Maxwell equations tell us that the Fms are closed on-shell, we can introduce 
a dual 1-form field Am defined by 

Fm = dAm . (4.7) 

4.2 Static dilaton-axion black hole solutions 

The most general family of non-extremal, static, black holes with non-trivial dilaton, axion 
and electromagnetic fields was obtained in Ref. [235].3 In the notation of Ref. [239], these 
solutions take the form4 

ds2 = e 2U dt2 − e −2U dr2 − R2dΩ2 
(2) , 

λ∞r + λ∗ 
∞  

λ = , 
r +  

(4.8) 
Amt = e φ∞ R−2[Γm(r +  ) + c.c.] , 

Amt = e φ∞ R−2[Γm(λ∞r + λ ∗ 
∞ ) + c.c.] , 

where the functions that occur in the metric are 

2U e = R−2(r − r+)(r − r−) , r± = M ± r0 , 
(4.9) 

2R2 = M2 = r 2 − | |2 , r + | |2 − 4ΓmΓm ∗ .0 

In these functions, M is the ADM mass, the constants Γm are related to the complex 
electromagnetic charges, λ∞ = a∞ + ie−2φ∞ is the asymptotic value of the axidilaton and 

3These solutions were obtained by an SL(2, R) rotation of those found in Ref. [241]. The case with 
a single 1-form had been dealt with in Ref. [244], but it is qualitatively different since these solutions 
can have electric and magnetic charges and vanishing axion. In their turn, the solutions of Ref. [241] 
are a generalization of those in Ref. [240], which were originally discovered by Gibbons and Maeda in 
Refs. [245,246]. The single-vector case was rediscovered by Garfinkle, Horowitz and Strominger in Ref. [247] 
and it is the solution on which the SL(2, R) rotation was performed in Ref. [244]. Stationary generalizations 
(inclusion of NUT charge) were constructed in [242] and, for the extremal case, using supersymmetry and 
spinorial techniques, in Ref. [248] (see also Ref. [243].) Finally, the most general, non-extremal, stationary 
black-hole solution of the model was constructed in Ref. [239]. 

4This presentation of the solutions uses only the time components of the original and dual vector fields. 
As we are going to see, this information in enough to fully reconstruct all the components of these vectors. 
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 = Σ+ iΔ is the axidilaton charge. All these parameters are defined by the asymptotic 
expansions 

2M 
gtt ∼ 1 − , (4.10a) 

r 

2  
λ ∼ λ∞ − ie−2φ∞ , (4.10b) 

r 

1 
2 [F m 

tr + i ? F m 
tr] ∼ 

+φ∞ Γme
2r

= 
+φ∞ (Qme + iP m)/2 

2r
. (4.10c) 

The axidilaton charge is not an independent parameter. In accordance with the no-hair 
theorem, it is a function of the ADM mass and the electric and magnetic charges 

2 
Γm ∗ Γm ∗  = − . (4.11)

M 
2The singularity is hidden under a horizon located at r = r+ if r0 > 0, and it is 

hidden or coincides with it (but still is invisible for external observers) if r0 = 0. 
The solution has been expressed, by convenience, using only the electric components 

of the 1-forms and the dual 1-forms. The magnetic components can be obtained as follows. 
From the definition of the dual 2-form field strengths Eq. (4.5), we get 

−2φe 
F mFm rt = θϕ + aF mrt , (4.12)

R2 sin θ 
so 

F mθϕ = e 2φR2 sin θ (Fm rt − aF mrt) = 2e φ∞ =m(Γm) sin θ . (4.13) 

The gauge field Am , then, has to be defined in two patches. On the z ≥ −� patch it is 
given by the 1-form 

Am + φ∞= e φ∞ R−2[Γm(r +  ) + c.c.]dt + 2e =m(Γm)(1 − cos θ)dϕ , (4.14) 

which is regular in that region5 and in the z ≤ +� patch, it is given by the 1-form 

Am − φ∞= e φ∞ R−2[Γm(r +  ) + c.c.]dt − 2e =m(Γm)(1 + cos θ)dϕ , (4.15) 

which is also regular in that patch. Am + and Am − differ by the gauge transformation h i 
Am + − Am − φ∞= d 4e =m(Γm)ϕ . (4.16) 

We can also compute the complete dual vector fields. From the definition Eq. (4.5) 
we find that 

5The Dirac string singularity of this 1-form lies in the negative z axis. 
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n o 
φ∞Fm θϕ = e −2φR2 sin θF mtr + aF mθϕ = 2e e −2φ∞ <e(Γm) + a∞=m(Γm) sin θ , (4.17) 

and 

+Am = e φ∞ R−2[Γm(λ∞r + λ ∗ 
∞ ) + c.c.]dt 

n o 
φ∞+ 2e e −2φ∞ <e(Γm) + a∞=m(Γm) (1 − cos θ)dϕ , (4.18a) 

Am = e φ∞ R−2[Γm(λ∞r + λ ∗−
∞ ) + c.c.]dt 

n o 
φ∞− 2e e −2φ∞ <e(Γm) + a∞=m(Γm) (1 + cos θ)dϕ , (4.18b) 

in the same two patches, and n h i o 
− φ∞Am 

+ − Am = d 4e e −2φ∞ <e(Γm) + a∞=m(Γm) ϕ . (4.19) 

The Hawking temperature and Bekenstein-Hawking entropy of these black holes are 
given by 

1 r0
T = ∂rgtt(r+) = , (4.20a)

4π 2πR2(r+) 

S = πR2(r+) . (4.20b) 

Observe that, as usual in 4-dimensional, static black holes 

2ST = r0 . (4.21) 

Then, it is not difficult to find a Smarr-type relation adding the ADM mass to the above 
relation: 

M2 − r2r−r+
M = 2ST + M − r0 = 2ST + r− = 2ST + = 2ST + 0 

r+ r+ 

(4.22) 
4ΓmΓm ∗ − | |2 Qm Σ ΔP m 

= 2ST + = 2ST + Qm + P m − Σ − Δ . 
r+ r+ r+ r+ r+ 

This relation is correct (by construction) and, looking at it, it is tempting to conclude 
that the 1/r+ terms (including those associated to the scalar charges) can immediately 
be identified with potentials on the horizon. However, as we are going to see, r− can be 
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rewritten in other ways in which only potentials associated to the electric and magnetic 
charges occur. Note that the usual scaling argument does not allow for terms including 
scalar charges or potentials because, by the no-hair theorem, these cannot be indepen-
dent. Indeed, the Komar charge leaves only room for electric and magnetic potentials and 
charges, and, as we are going to see, the integral gives the above relation, although in a 
highly non-trivial way. 

4.3 Komar integral 

As explained, for instance, in Refs. [164, 229] Smarr formulae [228] can be systematically 
obtained from Komar integrals [232]. These can be constructed using Wald’s formalism 
following Ref. [233], rewriting the volume integral terms as surface terms as explained in 
Ref. [141]. In that reference, though, the integrand of the surface integral was determined 
after explicit evaluation of the Lagrangian density on a particular family of solutions and, 
here, we are going to show how that integrand can be found in general.6 

Let us review the construction of the Komar charge and integral in Ref. [141,233]. It 
is not difficult to see that, on-shell7 and for a Killing vector k that generates a symmetry 
of the whole field configuration 

J[k] =̇ıkL . (4.23) 

On the other hand, for any vector field ξ, we have the off-shell (local) identity 

J[ξ] = dQ[ξ] . (4.24) 

Combining these two relations, we find that, on-shell and for a Killing vector k that 
generates a symmetry of the whole field configuration 

dQ[k] − ıkL ˙ (4.25)=0 . 

However, if k generates a symmetry of the whole field configuration, 

0 =̇£kL = dıkL , (4.26) 

which implies the local existence of a (d − 2)-form ωk such that 

dωk=̇ ıkL . (4.27) 

It follows that, under the aforementioned conditions, 

=0 . (4.28)d {Q[k] − ωk} ˙

and we can define the Komar integral over the codimension-2 surface Σd−2 Ref. [141] 

6It is assumed, though, that we are restricting ourselves to solutions admitting a timelike Killing vector 
with a Killing horizon. 

7We are going to use the symbol =̇ for identities that only hold on-shell. 
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Z 
K(Σd−2) = (−1)d−1 {Q[k] − ωk} . (4.29) 

Σd−2 

Smarr formulae for black-hole spacetimes are obtained by integrating the identity 
Eq. (4.28) on hypersurfaces Σ with boundaries at the horizon and spatial infinity ∂Σh 
(usually, the bifurcation surface) and ∂Σ∞, respectively upon use of Stokes theorem: 

K(∂Σ∞) = K(∂Σh) . (4.30) 

Using the techniques developed in Refs. [162,209,218] and some of the results found 
in them, we can readily find the Noether-Wald charge for axion-dilaton gravity: 

Q[ξ] = ?(e a ∧ e b)e −2φPξ ab − 4P mξFm . (4.31) 

Here, 

Pξ ab = r[aξb] . (4.32) 

Also, the functions P mξ can be understood as the parameters of compensating gauge 
transformations of the 1-forms with the property that, when ξ = k, they satisfy the 
relations 

dP mk = −ıkF m , (4.33) 

that define the momentum maps associated to the Killing vector k and the gauge fields Am . 
Although this is a gauge-invariant definition, these objects are defined up to an additive 
constant. Since they can be interpreted as electrostatic potentials, the constant can be 
determined by a sensible boundary condition, such as the vanishing of the potentials at 
spatial infinity. 

In order to compute ωk, we have to determine the on-shell value of the Lagrangian 
density L first, for a generic solution. In this case, it is enough to use the trace of the 
Einstein equations Eqs. (4.4a). In differential-form language, to take the trace we must 
compute ea ∧ Ea, taking into account that, for a p-form ω(p), 

ω(p)e a ∧ ıa = pω(p) . (4.34) 

We get 

n o 
1 e a ∧ Ea = −2 −e −2φ ? (e c ∧ e d) ∧ Rcd + 2dφ ∧ ?dφ + e 4φda ∧ ?da2 

(4.35) n o 
= −2 L − 2e −2φF m ∧ ?F m − 2aF m ∧ F m , 

so 

L=2˙ e −2φF m ∧ ?F m + 2aF m ∧ F m = 2F m ∧ Fm , (4.36) 
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and 

=2ıkF m ∧ Fm + 2F m ∧ ıkFm . (4.37)ıkL ˙

In order to find ωk for general configurations, we are going to use the definition 
of the (electric) momentum maps Eq. (4.33) but we need to define their magnetic duals. 
Since, by assumption, the dual field strengths are left invariant by the isometry generated 
by k, 

0 = £kFm = dıkFm + ıkdFm =̇ dıkFm , (4.38) 

where we have used the Maxwell equations. Then, locally, there are functions Pmk (mag-
netic momentum maps) such that 

dPmk=̇ − ıkFm . (4.39) 

Thus, upon use of the Maxwell equations and Bianchi identities, 

ıkL=̇ − 2dP mk ∧ Fm − 2F m ∧ dPmk =̇ d {−2P mkFm − 2F mPmk} = dωk , (4.40) 

and the Komar charge is given by 

Q[k] − ωk = ?(e a ∧ e b)e −2φPk ab − 2 (P mkFm − PmkF m) . (4.41) 

Observe that the electromagnetic terms occur in a symplectic-invariant combination 
now. This hints at the electric-magnetic (SL(2, R)) invariance of the Komar charge, a fact 
that we will study in Section 4.5. Before studying this invariance, we are going to check 
the validity of this formula in the family of static black holes introduced in Section 4.2 by 
direct computation of the Komar integral. 

4.4 Checking the Smarr formula for static axion-dilaton black 
holes 

Now we want to compute the Komar integrals over the bifurcation sphere on the horizon 
and over a sphere at spatial infinity for the static axion-dilaton black holes introduced 
in Section 4.2. Thus, we are interested in the θϕ components of the integrand only. We 
compute them term by term and we recover the normalization factor (16π)−1 . First, 

1 
? (e a ∧ e b)Pk ab = p εµνρσrµkν dxρ ∧ dxσ 

2 |g| 
, (4.42) 

and, for these solutions 

µkν r 2U = δt[µδν]r∂re , (4.43a) 

?(e a ∧ e b)Pk ab = −r 2∂re 2U sin θdθ ∧ dϕ . (4.43b) 
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The electric and magnetic momentum maps can be taken to be 

P mk = Amt , Pmk = Amt , (4.44) 

and, the second term in the Komar charge Eq. (4.41) is (only θϕ components) 

n h i o 
−2 (P mkFm θϕ − PmkF mθϕ) = −2 Amt e −2φ (?F m)θϕ + aF mθϕ − AmtF mθϕ 

n o 
−2φAm = 2R2 e t∂rA

m
t + 4e φ∞ (Amt − aAmt) =m(Γm) sin θ . 

(4.45) 
Integrating over a 2-sphere of constant radius r, we get 

1 −2φAmK(S2 
r) = r 2∂re 2U − 1 R2 e t∂rA

m
t − e φ∞ (Amt − aAmt) =m(Γm) . (4.46)4 2 

At infinity, only the first term contributes, giving 

K(S2 
∞) = M/2 . (4.47) 

Over the bifurcation sphere8 , the first term gives ST = r0/2, but we have to evaluate 
carefully the second and third terms. We introduce some notation: 

A ≡ λ∞r + λ ∗∞  , B ≡ r +  , ⇒ λ = A/B . (4.48) 

The second term in Eq. (4.46) is 

1 � � 
−1 R2 −2φAm Am e t∂r t = [ΓmB + c.c] −2|r + |2<e(Γm) + 4=m(Γm)=m( )r2 2R2|r + |2 

= 
1

[Γm(Γm + Γm ∗ )B + c.c]
2R2 

r 
+ [iΓm(Γm − Γm ∗ )B + c.c] =m( ) . 
R2|r + |2 

(4.49) 
Using the relation Eq. (4.11) it is not hard to see that at r = r+ 

iΓm(Γm − Γm ∗ )B(r+) + c.c = −1 R2(r+)=m( ) . (4.50)2 

Then, 

8Actually, it is enough to set r = r+ 
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2|Γ|2r+ − M | |2 (Mr+ − 2|Γ|2) r+[=m( )]2 
−1 R2 e −2φAmt∂rA

m
t = − <e( ) −2 r+ 2R2(r+) 2R2(r+) 2|r+ + |2 

r− <e( ) r+[=m( )]2 
= + − . 

4 4 2|r+ + |2 

(4.51) 
The third term in Eq. (4.46) is 

2φ∞e −e φ∞ (Amt − aAmt) =m(Γm) = − 
R2 [Γm(A − aB) + c.c.] =m(Γm) 

−2(φ−φ∞)e 
= − [iΓmB + c.c.] =m(Γm)

R2 

1 �� � � 
= M<e( ) + 2|Γ|2 r + M | |2 + 2|Γ|2<e( ) . 

2|r + |2 

(4.52) 
Combining these two partial results at r = r+ and operating, we get 

� � 
r− <e( ) M<e( ) + 2|Γ|2 − [=m( )]2 r+ + M | |2 + 2|Γ|2<e( )

− + 
4 4 2|r+ + |2 

� � � � 
r− <e( ) 2Mr+ + 4|Γ|2 − |r+ + |2 + 2 2|Γ|2 − [=m( )]2 r+ + 2M | |2 

= + 
4 4|r+ + |2 

� � � � 
2<e( ) 2Mr+ − r + 4|Γ|2 − | |2 + 2 2|Γ|2 − | )|2 r+ + 2M | |2 r− + = + 

4 4|r+ + |2 

2 r− 2<e( )r+r− + r r− − | )|2r−+ = + 
4 4|r+ + |2 

r− 
= ,

2 
(4.53) 

which gives the Smarr formula proposed in Section 4.2, Eqs. (4.22). 

4.5 Charges, potentials and S duality 

The static axion-dilaton black holes introduced in Section 4.2 are the most general black 
holes in that class according to the no-hair theorems because they have the maximum 
number of independent parameters (moduli λ∞ and conserved charges M, Γm) allowed by 
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it. Hence, we have proven the validity of the Smarr formula in this theory for static black 
holes. However, we have to rewrite it in terms of the potentials and charges. 

The charges which are quantized in this theory are not the components of Γm , but 

Z 
1 (4)

p m ≡ F m = e φ∞ =m(Γm)/G , (4.54a)
(4) N 

8πGN 

Z 
(4)φ∞qm ≡ 

1 
Fm = e 

h 
e −2φ∞ <e(Γm) + a∞=m(Γm) 

i 
/G . (4.54b)

(4) N 
8πGN 

According to the discussions in Refs. [162, 209, 218], the potentials can be identified, up 
to a normalization factor, with the momentum maps P mk and Pmk evaluated over the 
black-hole horizon: 

Φm ≡ 2 P mk| , (4.55a)rh 

Φm ≡ 2 Pmk| , (4.55b)rh 

and they are guaranteed to be constant at least over the bifurcation sphere BH, according 
to the restricted, generalized zeroth laws. 9 We normalize them to vanish at infinity for the 
asymptotically-flat solutions we are interested in. 

Therefore, 

Z 
1 

(4) 2 (P mkFm − PmkF m) = 0 , (4.56a) 
16πGN ∞S

2 

Z 
1 12 (P mkFm − PmkF m) = (Φm qm − Φmp m) . (4.56b)

(4) 2 
16πG BH 

N 

On the other hand, on general grounds and in the static case, 

Z 
− 

1 
(4) ?(e a ∧ e b)e −2φPk ab = M/2 , (4.57a) 

16πG ∞S
2 

N 

Z 
− 

1 
(4) ?(e a ∧ e b)e −2φPk ab = ST , (4.57b) 

16πG BH 
N 

and the Smarr formula takes the general form10 

9This result may be extended to the complete event horizon using the arguments in Ref. [145]. 
10A previous derivation of a Smarr formula in this theory was made in Ref. [249] and our results should 

be compared with those in that reference. 
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mM = 2ST +Φm qm − Φmp . (4.58) 

While our definitions of charges and potentials seem to be identical to those in 
Refs. [149,227], we get a different sign for the last term. The scaling arguments explained 
in Refs. [164,229] indicate that the sign should be a plus if we define Φm = ∂M/∂qm. We 
can always add a sign to our definition of Φm to make it coincide with that definition, but 
we are going to argue that a relative minus sign between the last two terms is the natural 
sign if we take into account that the Smarr formula should be invariant under the dualities 
of the theory. These always act on the vector fields of a 4-dimensional theory through a 
symplectic embedding [250]. 

In this particular case, it is convenient to define the symplectic vector of field 
strengths as follows: 

� �� � FmFM ≡ 
F m , (4.59) 

since the action of a SL(2, R) ∼Sp(2, R) duality transformation 

� �� � α β 
S ≡ SMN = , (4.60)

γ δ 

on them and on the axidilaton takes a simpler form: 

αλ + β F 0 M = SMN FN , λ0 = , αδ − βγ = 1 . (4.61)
γλ + δ 

It follows from the definitions that 

� � � � � �� � � � � �Pmk Φm qmPM
k ≡ , ΦM ≡ , QM ≡ , (4.62)mP m Φm 

k p 

transform as the SL(2, R) vector FM . 
An important property of the duality group SL(2, R) is that it is isomorphic to 

Sp(2, R) since the condition 

� � 
SMP ΩMN S

N
Q = ΩPQ , (ΩMN ) = − 

0
1 

1
0 , (4.63) 

also implies αδ −βγ = 1 for the matrix S. Thus, the combination of potentials and charges 
occurring in the Smarr formula Eq. (4.58) 

mΦm qm − Φmp = QM ΦN ΩMN (4.64) 

is manifestly SL(2, R) ∼Sp(2, R)-invariant. The explicit calculation of this term in Sec-
tion 4.4 is a proof of this invariance. 
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4.6 Discussion 

In this paper we have shown how the momentum maps introduced in Ref. [162, 209, 218] 
in the context of black-hole thermodynamics can be used to express the Komar integral 
obtained in the context of Wald’s formalism [233] as a surface integral in a manifestly 
covariant way, generalizing the results of [141, 164, 229]. We have also shown how, in its 
turn, this integral can be used to derive a Smarr formula which is manifestly symplectic 
invariant. We have checked this formula explicitly in the most general family of static 
axidilaton black holes, constructed in Ref. [235]. It is trivial to extend these results to 
theories with more scalars and more complicated kinetic matrices (period matrices in the 
language of N = 2 theories). 

Symplectic invariance is a property to be expected of a general Smarr formula be-
cause this relation is just a relation between physical parameters occurring in the metric, 
which is symplectic invariant. It is, nevertheless, surprising, how this property of the 
Smarr formula and of the Komar integral from which it is derived, arises from a com-
bination of the Noether-Wald charge and the on-shell Lagrangian density which are not 
separately symplectic invariant. 

However, the lack of symplectic invariance of the Noether-Wald charge seems to lead 
to a first law without magnetic charges. One could argue that this is to be expected since 
Wald’s formalism is based on gauge symmetries and there is no gauge symmetry associated 
to the conservation of magnetic charges (at least in the standard, off-shell, formulation of 
electromagnetism and its generalizations). But this is somewhat unsatisfactory because it 
is known, from explicit solutions, that magnetic terms are present in general in the first 
law [149].11 In an upcoming publication [163], we show how the variation of magnetic 
charges can be accounted for in Wald’s formalism, and we derive a first law that includes 
magnetic terms. The crucial observation is that the variational identity that leads to the 
first law contains terms of the form12 

d [... + ιk ? F ∧ δA + ...] = 0 (4.65) 

where only the relevant piece is shown. Since perturbations δA that probe variations of 
magnetic charges are not globally defined (they are only defined up to gauge transforma-
tions, so that δF = dδA is regular everywhere), the terms of the form ∼ k × δA should 
not be discarded at the bifurcation surface, since the singularities of δA may compensate 
the vanishing of k. Instead, one can write � � 

ιk ? F ∧ δA = (−1)p̃P̃k ∧ δF − d P̃k ∧ δA (4.66) 

where we used the magnetic momentum map dP̃k = −ιk ? F . Substituting (4.66) into 
(4.65), the second term of (4.66) does not contribute and one has h i 

d ... + (−1)p̃P̃k ∧ δF + ... = 0 (4.67) 

Integrating the variational identity in the form (4.67) leads to a first law with magnetic 
terms. Similarly to the case of the Komar charge, the combination of electric and magnetic 

11It is also problematic, since this is the only formalism that can be applied to theories of higher order 
in the curvature. 

12For simplicity here we consider a minimally coupled vector. 
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pieces is duality invariant. The details and a more extended discussion with explicit 
examples including black holes and black rings will be given in [163]. Progress regarding 
the terms that involve variations of the scalar moduli [149] is also underway. 
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5 
Extremal Rotating Black Holes in Einsteinian 

Cubic Gravity 

This chapter is based on: 
Extremal Rotating Black Holes in Einsteinian Cubic Gravity 

P. A. Cano, D. Pereñiguez 
Phys.Rev.D 101 (2020) 4, 044016 (arXiv:1910.10721) 

General Relativity describes accurately the dynamics of the gravitational field in 
the regime of relatively low curvature, but modifications of this theory are expected to 
appear at high energies. The fact that GR is incompatible with quantum mechanics 
[114, 251, 252] indicates that it should be regarded as an effective theory, presumably 
arising from an underlying theory of quantum gravity. Independently of what the UV-
completion of GR turns out to be, it is broadly accepted that an effective low-energy 
description of that theory will contain the Einstein-Hilbert action plus an infinite tower of 
higher-derivative corrections — this is, in particular, a definite prediction of String Theory 
[186, 187, 189, 253–256]. Such corrections modify the behaviour of the gravitational field 
when the distances involved are of the order of the length scale of new physics. Thus, they 
become extremely relevant in the very early universe or near black hole singularities, but 
also at the level of the horizon of small enough black holes. It is therefore an interesting task 
to determine the properties of the modified black hole solutions, with particular emphasis 
on the corrections to the thermodynamic quantities, such as entropy and temperature 
[139, 140, 145, 257, 258]. 

From the point of view of Effective Field Theory (EFT), one should treat the higher-
derivative corrections as perturbations over the GR geometry. Obtaining the corrected 
solutions in this perturbative approach is usually an accessible task; however, perturbative 
solutions give us very little information. In fact, the perturbative corrections are only valid 
as long as they remain very small, and many potentially interesting phenomena, that would 
appear at a non-perturbative level, are lost. For this reason, it is interesting to find exact 
black hole solutions of higher-order gravity. 

The problem of obtaining exact black hole solutions is, of course, more complicated. 
Let us consider first the case of spherically symmetric black holes. Until very recently, the 
only theories in which exact solutions modifying in a non-trivial way the Schwarzschild 
geometry had been constructed were Lovelock [258–266] and Quasi-topological gravi-
ties [267–270], both types of theories existing only in D > 4 dimensions.1 The gap in D = 4 

1There are theories in which Einstein metrics are exact solutions (e.g. if the Lagrangian only contains 
Ricci curvature [271, 272]), and other that possess “non-Schwarzschild” solutions [273, 274]. We are not 
including these in our discussion. 
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has been recently filled thanks to the construction of a new type of theories with very inter-
esting properties. Known as Generalized Quasi-topological gravities (GQTGs) [275], these 
theories allow for simple spherically symmetric black hole solutions whose thermodynamic 
properties can be studied analytically [275–277]. Besides, GQTGs exist in all dimensions 
(including, in particular, D = 4) and at all orders in curvature [278], and very likely they 
provide a basis to construct the most general EFT for gravity [279]. Spherically symmetric 
solutions in these theories have been studied at all orders in curvature in D = 4 [280] and 
at cubic [275,281] and quartic order [277,282] in various dimensions, and this has allowed 
us to gain substantial information about spherically symmetric black holes in higher-order 
gravity. In particular, one of the most remarkable features of these theories is that black 
holes become stable below certain mass [280], hence avoiding the complete evaporation in 
a finite time and the final explosion of black holes. This is analogous to the behaviour 
of higher-dimensional Lovelock black holes found long ago in Ref. [257]. In this paper we 
will consider an extension of Einstein gravity containing the simplest non-trivial Gener-
alized Quasi-topological density in D = 4, which is known as Einsteinian cubic gravity 
(ECG) [283]. This theory was the first member of the GQT class to be discovered and we 
review some of its properties as well as recent results in Sec. 5.1. 

Despite the success in the construction of spherically symmetric black holes, a re-
maining issue in the world of higher-order gravities is to find rotating black hole geome-
tries.2 In fact, exact rotating solutions have not even been found in Lovelock gravity, 
which is the simplest non-trivial extension of GR that one could consider.3 Thus, the 
question about what a rotating black hole in higher-derivative gravity is like has not been 
answered yet. However, this is a primordial question, since, after all, realistic black holes 
will in general possess angular momentum. 

The equations of motion for an axisymmetric and stationary metric are far more 
complicated than those in the spherically symmetric case. Even though we expect some 
simplification of the equations taking place for GQTGs — because they do so in the static 
case —, obtaining a complete rotating black hole solution would necessarily require a 
laborious numeric computation. However, there are several limits in which the problem 
is simplified. On the one hand, one might consider slowly-rotating solutions and stay 
perturbative in the spin. This has been explored in the case of quadratic [287] and cubic 
[288] Lovelock gravity. The case for D = 4 ECG will be reported in a coming publication 
[289]. On the other hand, it is possible to study the opposite limit, namely, the case of 
extremal black holes. In this situation, the horizon is placed at an infinite distance and 
the near-horizon limit is well-defined, giving rise to a new solution of the gravitational 
equations. This near-horizon geometry has more symmetries than the global solution, and 
this enormously simplifies the problem of solving the field equations. We will show in this 
paper that the equations of motion of ECG reduce in this case to a single second-order 
ODE. This equation has to be solved numerically, but most remarkably, we will see that 
it is possible to obtain the exact expressions for the area and entropy of these black holes 
without using any approximation. We are not aware that a similar analysis has been 
performed for other pure-metric higher-order gravities, but let us mention that Ref. [290] 
computed the (perturbative) corrections to the near-horizon geometry of extremal Kerr 

2Let us note that exact rotating black hole solutions have been constructed numerically for some scalar-
tensor theories containing higher-curvature terms [284, 285], but not for pure gravity theories. 

3A honorable exception is the solution found in Ref. [286], corresponding to a rotating black hole in 
D = 5 Gauss-Bonnet gravity at a special point of the parameter space in which there is a unique maximally 
symmetric solution. 
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black holes in the case of Einstein-dilaton-Gauss-Bonnet [291–293] and dynamical Chern-
Simons [294] gravities. 

For generality purposes, we will add as well a Maxwell field into the game, which 
will allow us to study rotating and charged extremal black holes. This will prove to be 
useful, as AdS2 ×S2 geometries — corresponding to non-rotating charged black holes — are 
always solutions of higher-order gravities. The rotating black holes can then be studied as 
a deformation of these geometries, which facilitates the analysis of the solutions. However, 
we will also show that there are new branches of solutions that do not reduce to AdS2 × S2 

geometries in any limit. These solutions do not exist in the Einstein gravity limit and, as 
we will see, they have somewhat exotic properties. 

The paper is organized as follows. We start in Sec. 5.1 by introducing our theory, 
corresponding to ECG coupled to a Maxwell field. In Sec. 5.2 we write the metric and 
vector ansätze for a rotating near-horizon geometry possessing an SL(2, R)×U(1) isometry 
group, and we evaluate and partially solve the equations of motion. We reduce the field 
equations to a single second-order ODE for one variable. Then we discuss the boundary 
conditions that need to be imposed in order to obtain fully regular solutions. In Sec. 5.3 
we study in detail the solutions of the previous equation that are smooth deformations 
of AdS2 × S2 geometries. We construct solutions — both numerically and in the slowly-
rotating approximation — which are labeled by the total charge Q and by a parameter x0 
which we argue is related to the spin a = J/M . More interestingly, we find that both the 
area and the Wald’s entropy can be obtained exactly, and we study them as functions of 
Q and x0. In addition, the physically meaningful relation S(A, Q) is derived and we also 
study its profile. In Sec. 5.4 we analyze the full space of near-horizon geometries, showing 
that there exists an important degeneracy of solutions. We discuss the properties of the 
additional branches and comment on the structure of the diagram S(A, Q). Finally, we 
draw our conclusions in Sec. 5.5. We also include a number of appendices that support 
and extend some of the results in the main text. 

5.1 Einsteinian cubic gravity 

We consider the following theory Z � � 
1 p µL4 

S = d4 x |g| −2Λ + R − P − Fµν F µν , (5.1)
16πG 8 

which consists of the (cosmological) Einstein-Maxwell action — where Fµν = 2∂[µAν] — 
plus a cubic curvature correction P, the Einsteinian cubic gravity density [283] 

ρ σ β µ ν ρσ αβ µν νP = 12Rµ ν Rρ
α
σ Rα β + Rµν Rρσ Rαβ − 12RµνρσRµρRνσ + 8Rµ Rν

ρRρ
µ. (5.2) 

Also, µ is a dimensionless coupling while L is a length scale that determines the distance 
at which the gravitational interaction is modified. 

As stated earlier, P is the lowest-order non-trivial member of the GQT family of 
theories in D = 4.4 On a historical note, this theory was first identified by the special 

4At cubic order in curvature there is another GQT term that was denoted by C in Ref. [295]. However, 
this term makes no contribution to spherically symmetric solutions, and we have checked that it is irrelevant 
for our present setup, too. 
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form of its linearized equations on maximally symmetric backgrounds, which turn out to 
be of second order in any dimension [283]. Afterwards, the simple form of spherically 
symmetric black hole solutions in this theory was noticed [295,296], and this triggered the 
construction of the GQT class of theories [275–277]. By now, many other aspects of ECG 
have been explored, including the characterization of observational deviations with respect 
to GR [297, 298], holographic applications [299–301], inflationary cosmologies [302–304]5 

and other types of solutions [305–307]. 
Up to the six-derivative level, P represents the leading parity-preserving higher-

derivative correction to the Einstein-Hilbert action [279]. However, when a Maxwell field 
is included, there are other terms that we could add at this order. Schematically, these 
would be of the form F 4 , RF 2 , F 6 , RF 4 , R2F 2 . Nevertheless, it is not our intention 
to study the most general correction to extremal Kerr-Newman geometries. Instead, we 
focus on the theory above because it will allow as to perform many explicit computations 
that are practically unaccessible for other higher-derivative theories. 

The equations of motion of (5.1) read 

Eµν =Tµν , (5.3) 
F µνrµ = 0 , (5.4) 

where the gravitational tensor Eµν and the energy-momentum tensor Tµν are given by � � 
µL4 Pσρλ − αEµν = Gµν + Λgµν − PµσρλRν gµν + 2r r β Pµανβ , (5.5)
8 2 

1αTµν = 2FµαFν − gµν Fαβ F αβ , (5.6)
2 

and where 
αβ [α| σ|β]ρ σρ αβ [α β]

P =36R R + 3R R − 12R Rµν [µ|σ ρ |ν] µν σρ [µ ν] 
(5.7)

[α β] |β]− 24RσρR δ + 24R [α|Rσ δ .σ[µ|ρ |ν] σ [µ ν] 

5.2 Near-horizon geometries 

Near-horizon geometries of extremal rotating black holes possess an isometry group SL(2, R)× 
U(1), and a general ansatz for this type of metrics can be written as [308] � � 

2 dr2 dx2 
ds2 = (x + n 2) −r 2dt2 + + + N(x)2f(x)(dψ − 2nrdt)2 , (5.8) 

r2 f(x) 

which depends on two functions f(x) and N(x) and on one constant n. In addition, we 
consider a vector field of the following form 

A = h(x)(dψ − 2nrdt) , (5.9) 

which depends on another function h(x). Then, we have to insert this ansatz in the 
equations of motion (5.3) and solve them. Due to the symmetries of the ansatz, one 

5In the cosmological context, the solutions appearing in Refs. [302–304] were constructed in a modified 
cubic theory that takes the form P − 8C, where P is the ECG term — see (5.2) — and C is the cubic piece 
that we referred to in footnote 4. 
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can check that the only independent components of the Einstein’s equations are those 
corresponding to µν = xx and µν = ψψ — the rest are related to them by the Bianchi 
identities. Thus, we only need to solve those equations together with the Maxwell equation. 

An important observation is that these equations allow for solutions that have 
N(x) = 1. The reason is that, when evaluated on N(x) = 1, the components of the 
gravitational tensor — which we show in Appendix D.1 — become proportional, namely 

Eψψ = f(x)2Exx , (5.10) 
N(x)=1 N(x)=1 

and the same property holds for the Maxwell energy-momentum tensor Tµν . In general, 
higher-derivative gravities do not satisfy the condition (5.10), meaning that these theories 
do not allow for solutions with constant N(x). In turn, it is quite remarkable that this 
property holds for ECG. As we are going to see, this represents a drastic simplification of 
the equations of motion. Let us also note at this point that, besides the solutions with 
N(x) = 1, there can be other solutions. In fact, Einstein gravity allows for solutions 
with non-constant N(x), but these turn out to be singular, and only the solutions with 
N(x) = 1 represent the near-horizon geometry of extremal Kerr-Newman black holes. In 
the same way, ECG will presumably allow as well for this type of singular solutions when 
N(x) is non-constant. Thus, from now on we set N(x) = 1. 

Now, we can evaluate Maxwell’s equation, which turns out to be independent of 
f(x): � �� �0 4n2h(x)2d ? F = h0(x)(x + n 2) + dt ∧ dt ∧ dx = 0 , (5.11) 

x2 + n2 

where the prime denotes derivation with respect to x. The general solution of this equation 
reads 

a(x2 − n2) 2bnx 
h(x) = + , (5.12) 

x2 + n2 x2 + n2 

where a and b are two integration constants that are related to the electric and magnetic 
charges. Thus, at this point we have reduced the problem to solving one equation for 
f(x), namely Exx = Txx. However, before going into the resolution of this equation, let 
us massage a bit the solution in its current form. Let us note that the coordinate x is 
compact and it will range within two values x0 > 0 and −x0. These values are determined 
by the vanishing of the function f(x) — which is assumed to be even — at those points: 
f(x0) = f(−x0) = 0. Also, let us introduce the quantity 

f 0(x0) f 0(−x0)
ω ≡ − = > 0 . (5.13)

2 2 

Then, observe that in order to avoid a conical singularity at x = ±x0 — these points will 
correspond to the poles of the horizon — the coordinate ψ must have period 2π/ω. Using 
these results, we can already compute the electric and magnetic charges even if we do not 
know explicitly the function f(x). In Planck units, these charges read Z 

1 2anx0 
q = ?F = 2 , (5.14)

4π ω(x0 + n2) 

Z 
1 2bnx0 

p = F = 2 , (5.15)
4π ω(x0 + n2) 
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where the integration is performed on any surface of constant t and r. We note that these 
are the actual values of the charges that we would obtain in a global solution containing 
an asymptotic region. Let us finally exchange x and ψ in terms of two new coordinates 

x = x0y , y ∈ [−1, 1] , (5.16) 
φ 

ψ = 
ω 
, φ ∈ [0, 2π) , (5.17) 

and let us introduce the function 
f(yx0) 

g(y) = . (5.18)2
0x 

In this way, we rewrite our solution in the following form � � 
dr2 dy2 x20ds2 = (y 2 2

0 
2) −r 2dt2 g(y)(dφ − 2ωnrdt)2 , (5.19)+ n + + +x

2 ω2g(y)r 

� � 
y x − n2 

and by construction, g(y) satisfies 

2
0 

2 

g(1) = 0 , g 0(1) = − 
2ω

. (5.21) 
x0 

Let us finally evaluate the remaining equation, which in the new coordinates is Eyy = Tyy. 
On the one hand, we have 

2
0 

2+ nx 
(dφ − 2ωnrdt) ,A = (5.20)+ pyq2

0 
2x 2 2nx0+ ny 

�2
ω2 2

0

g(y) n2 + x 

2 Q2 �2 
+ nx 

Tyy = , (5.22)
2
0 

2
0 

2x y 

where Q2 2 2 On the other hand, Eyy takes the form of a total derivative, namely+ p= q . 
2 dy 0 00 , g Eyy E(g, g ; y) , (5.23)= 2

0 
2x 2)2g(y) dy(y + n 

where 

� � � �
2 2 2

0 
4 1n n x n E(g, g 0 , g 00; y) = − 2

0 + yx 40 
2 2

0 
3 4

0+ Λ − + 2n 

3 

+ yx 

3g 

+ g +yx y x 
3 

2
0 

2
0 

y y y" � � 
x 3x 

� �� �20 
6
0 

2n�x 
y n 

n2 − 9y� 
2 + y2x 32

0 

2 2 4
03gn x 

+ L4 − −+µ g2
0 

� 
2y + 2y3x4y 2n ! 

2
0 

2 

2
0 

2
0 

� � 
+ y x� 

�x 

(5.24)� �30 
26

0 
23g x −17n 

2x � � 
4
03gx 

2 + y2x 
+ 

1 
4 

04
0 ! # − −+x g g

2
0 

2 + y 22 2n n 
24

0 
2
03x 3gx −4n + y 

2y 2y n2 + y2x 

2 

2
0 

3 0 004
0−+ g + x g g . 

4 

Hence, integrating both sides of the equation we obtain �2
ω2 x20 

2 Q2 
E(g, g 0 , g 00; y) = − 

+ n 
x20y 

+ N , (5.25) 
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where N is an integration constant. Thus, we have reduced the equations of motion to a 
single ODE of second order for g(y). 

Our task now is to solve the previous equation in order to obtain near-horizon 
geometries. So far, we have included a non-vanishing cosmological constant for generality, 
but for the sake of simplicity we set Λ = 0 from now on. The case of Λ 6= 0 is briefly 
discussed in Appendix D.4. 

5.2.1 Einstein gravity 

Let us first of all check that we recover the near-horizon geometry of extremal Kerr-
Newman black holes when we set µ = 0. In that case, Eq. (5.25) is simply algebraic and 
we obtain the solution straightforwardly, � � 

2 2 2 2n2 − Q2 n + x 2ω2/x20 + Ny − x0y0 g(y) = � � . (5.26)
2 2 2x n2 + x0y0 

We can see that the parameter N breaks the symmetry y ↔ −y of the solution that 
we assumed in identifying the charges q, p. More importantly, when N is present (and 
x0 6= 0), there is necessarily a conical singularity at one of the poles of the horizon (where 
g vanishes), because the slope of g will be different in each one. In fact, N is the NUT 
charge, and it is known that NUT-charged, rotating black holes present this type of conical 
singularities at the horizon [309]. In order to avoid these problems, we set N = 0. In that 
case, g(y) is even, and we have to impose the conditions (5.21), which are going to fix 
several relations between the parameters of the solution. We find q 

2n = Q2 + x0 , ω = 
x0 

, (5.27)2Q2 + 2x0 

and after simplifying we obtain 

21 − y 
g(y) = 2 . (5.28)

Q2 + x (1 + y2)0 

We see that this is the near-horizon geometry of extremal Kerr-Newman black holes 
(NHEKN) [310], where x0 is nothing but the angular momentum per mass x0 = a. Like-
wise, n = M is the total mass and ω is the angular velocity of the horizon. In addition, 
we can compute the area, which reads 

4πx0 2A = = 4π(Q2 + 2x0) . (5.29)
ω 

For x0 = 0 we recover AdS2 ×S2 , which is the near-horizon geometry of extremal Reissner-
Nordstrom black holes. 

5.2.2 Einsteinian cubic gravity 

Let us now consider a non-vanishing µ. In analogy to the Einstein gravity case, we 
set the NUT charge to zero, N = 0, in order to avoid conical singularities. Now, once 
the corrections are included, the equation (5.25) becomes of second order and we need to 
impose appropriate boundary conditions in order to solve it. We warn that the constraints 
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(5.21) are not really boundary conditions: they are restrictions to the parameters of the 
solution. Instead, the boundary conditions we will impose are the following: (1) the 
solution is even, and this is equivalent to asking g0(0) = 0. (2) The solution is regular at 
y = ±1, i.e. it is analytic at those points. Therefore, according to (5.21), the solution 
should have a Taylor expansion near y = 1 of the form 

∞X 
g(y) = − 

2ω 
(y − 1) + gk(y − 1)k , (5.30) 

x0 
k=2 

for some coefficients gk. When this expansion is inserted in (5.25) we can Taylor-expand 
the equation as well, obtaining the following series � �2 ∞

ω2 2 2 Q2 Xx0 + n0 00 yE(g, g , g ; y) + = Ck(y − 1)k . (5.31)2x0 k=0 

Thus, all the coefficients Ck must vanish and this gives us a series of equations for the 
parameters of the solution. Remarkably, the first two equations C0 and C1 are independent 
of the gk, and instead they provide two relations between x0, n, ω and Q: � � 

2 2 2Q2ω2 n + x2 2 0 x0 − n + − µL4ω2 (2x0ω + 3) = 0 ,2x0 
(5.32) � � � � � �

2 2 2 2 n + x n 2ω + x0ω − x0 + µL4ω2 −5n 2ω + x0ω + 3x0 = 0 .0 

We have seen that in Einstein gravity x0 is identified with the angular momentum per 
mass, a, while in turn n is the mass and ω is the angular velocity. We cannot expect 
that the same identifications work for higher-curvature gravity, and, since we lack the 
asymptotic region, we cannot correctly identify these quantities. Nevertheless, since x0 
controls the degree of non-sphericity of the solution, we do expect that there will be a 
monotonous relation between this parameter and the angular momentum — we recall 

2 2that this parameter enters in the metric as ds2 = (x + n2)ds2 + . . .. Hence, it seems0y AdS2 
reasonable to use x0 and the charge Q to label our solutions. Then, the equations (5.32) 
provide us with the values of n(x0, Q) and ω(x0, Q). It is worth emphasizing that such 
equations are exact; we have implemented no approximation in our approach. Besides, 
this allows us to compute the area of these black holes even if we do not know g explicitly, 
since it is given by 

4πx0A = . (5.33)
ω 

Then, once the parameters n and ω (or alternatively A) are determined, we can solve 
the rest of the equations C2 = 0, C3 = 0, etc. It tuns out that these equations fix all 
the coefficients gk>3 in (5.30) in terms of g2, which is the only free parameter. Thus, we 
find that there is only a one-parameter family of solutions that are regular at the pole 
y = 1, which means that regularity is in fact fixing one integration constant. Now, the 
remaining parameter g2 is determined by the condition that g be an even function, which 
is equivalent to asking g0(0) = 0. Thus, we have a well-defined boundary problem, which 
at most will possess a discrete number of solutions. 
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5.3 The AdS2 × S2 branch 

Let us summarize our findings so far. Our near-horizon geometries are labelled by two 
parameters which we can choose to be Q and x0. Imposing regularity of the solution at 
y = ±1 yields the equations (5.32), whose solutions give the possible values of n and ω. 
Finally, the differential equation (5.25) must be solved imposing the regularity condition 
(5.30) and g0(0) = 0. As we will see later, the equations (5.32) have more than one solution 
for fixed Q and x0, which leads to an important degeneracy of near-horizon geometries 
that have the same Q and x0. However, it turns out that there is only one branch of 
solutions that are smoothly connected to an AdS2 × S2 geometry in the limit of x0 → 0. 
In this section we will focus our attention on those solutions. 

Let us first solve the equations (5.32) when x0 << Q by assuming a series expansion P P
k 2 kof the form ω = ωkx0 , n = k ckx0 . We find the following solution n � � 

µL4 
2 2 4 n =Q2 + x 1 + + O(x0) ,0 Q4 � � (5.34)

3x0 x µL4 
ω = + 0 −2 + + O(x0

5) ,
Q2 Q4 Q4 

where the higher-order terms can be easily computed as well and we show few of them in 
Appendix D.2. Now, let us also assume a series expansion of the metric function g(y), so 
that 

∞X 
g(y) = x 2k gk(y) . (5.35)0 

k=0 

Plugging this expansion together with (5.34) in the equation (5.25) we find the equation 
satisfied by every component gk(y). The leading term g0— which is the only one that 
survives in the limit x0 → 0 — satisfies the following equation � � 

3L4µ 4 � �22 0 00− 1 + y + g0Q2 + − g + 2g0g = 0 . (5.36)0 04 Q4 

We can see that a solution of this equation fulfilling the appropriate boundary conditions 
is given by 

21 − y 
g0(y) = . (5.37)

Q2 

Thus, in the limit x0 → 0 the metric (5.19) becomes � � � � 
dr2 dy2 

ds2 = Q2 −r 2dt2 + + Q2 + (1 − y 2)dφ2 , (5.38)
2 2r 1 − y 

which corresponds to an AdS2 × S2 geometry. In fact, this is the near-horizon geometry of 
extremal Reissner-Nordstrom black holes, and, as we can see, it possesses no corrections. 
Thus, this is an exact solution of ECG for any value of µ. Let us then consider the effect of 
rotation by assuming a finite x0. Analyzing the equations for the following terms, gk(y), 
we see that they all allow for a solution which is a polynomial in y, and that this solution 
is the only one that satisfies the boundary conditions. For instance, up to quadratic order 
in x0 we have " � � �� # 

2L8 21 Q8 − 3µL4Q4 + 9µ + y Q8 − 16µL4Q4 
2 g(y) = (1 − y 2) − x + . . . (5.39)0Q2 Q8 (Q4 − 9L4µ) 
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x0g(y)Figure 5.1: Profile of the solution for various values of Q and x0. We show the quantity h(y) ≡ 2) ,ω(1−y 

which measures the non-sphericity of the solution (for S2 this quantity is constant). Top left: we show 
the solution for Q4 = 3µL4 and x0 = 0, 0.3Q, 0.35Q, 0.36Q, 0.364Q. Top right: Q4 = 15µL4 and x0 = 
0, 0.1Q, 0.2Q, 0.3Q, 0.34Q. We observe that the profile is very different in both cases, because we have 
passed the critical value of Q4 = 9µL4 . Bottom: Q4 = 150µL4 and x0 = 0, 0.15Q, 0.3Q, 0.4Q, 0.55Q. The 
size of the black hole is larger and the solution becomes more similar to the NHEKN one, shown in blue 
dashed lines for comparison. 

and more terms are shown in the Appendix D.3. A few comments are in order. First, let us 
remark that this is a perturbative expansion in x0, but it is exact in µ. Second, we observe 

2that if we put µ = 0 in the expression above we get g(y) = (1 − y2)(Q−2 − x0Q−4(1+ y2)+ 
. . .), which coincides with the perturbative expansion of the NHEKN solution (5.28), and 
the same holds for the higher-order terms that we show in the appendix. Therefore, these 
solutions in principle approach the NHEKN one when µ → 0, or more precisely, when 
Q >> µ1/4L, i.e., when the size of the black hole is much larger than the length scale of 

2the corrections. However, there is a subtlety: we observe that the O(x0) term (and also all 
the higher-order ones) diverges for Q4 = 9µL4 . In general, we observe that all the terms 
of order greater or equal than 2n diverge for Q4 = 3((n + 1)2 − 1)µL4 . This implies that, 
when Q crosses one of these values, the solution changes discontinuously, and near those 
critical values we seem to find no solution. Therefore, as we increase Q and x0, the solution 
will approach the NHEKN one, but it will make it in a non-continuous way. This is best 
understood by constructing the non-perturbative numerical solutions. We show several 

x0g(y)of them in Fig. 5.1, where we represent the function h(y) ≡ , which allows for a
ω(1−y2) 

more direct comparison between the different curves. We have checked that, when x0 is 
small enough, the slowly-rotating expansion (5.39) gives a very good approximation to the 
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Figure 5.2: Isometric embedding of the horizon in E3 for the black holes with Q4 = 3µL4 and x0 = 0, 
x0 = 0.3Q and x0 = 0.364Q. 

numerical curves. Looking at Fig. 5.1 we observe that, indeed, the profile of the solution 
is quite different for distinct values of Q, but eventually it becomes similar to the NHEKN 
one for large black holes. In addition, in Fig. 5.2 we show the embedding of the black 
horizon in Euclidean space for some of these solutions. 

One important drawback, though, is that we do not seem to find solutions when 
23x 

x0/Q is large. As we can see, Eq. (5.25) becomes singular at the points in which 2 
0 + 

4 2 2 23gx0(−4n +y x0) − 3 4 0 
2 2 x0yg = 0, which implies that the coefficient of g00 vanishes. This only

2(n2+y x ) 4 

happens when the ratio x0/Q is large enough. For example, if we evaluate the previous 
expression for NHEKN geometries and we ask that it does not vanish at any point, we 

0 

√ 
must impose x0/Q < 1/ 3. Now, if that quantity vanishes, the solution will typically 
become singular at that point, unless we fix a regularity boundary condition there. But 
in that case, we cannot impose the boundary conditions of regularity at y = ±1 and that 
g0(0) = 0. Hence, we find that, even in the regime where the corrections are small, the 
equation (5.25) has no regular solutions correcting the NHEKN geometry for x0/Q large. 

In addition, our numerical exploration indicates the existence of an important mul-
tiplicity of solutions even when the boundary conditions are fixed. This is, once we have 
solved (5.32) and found n(x0, Q), ω(x0, Q), the equation (5.25) seems to have different 
solutions that differ on the profile of g(y). This already happens in the x0 → 0 equation 
(5.36), which possesses other solutions than (5.37) satisfying g(±1) = 0, g0(±1) =  2/Q2 . 
These do not need to be similar to the NHEKN geometry even when µ is small, and in 
general they will possess a different domain of existence from the solutions considered in 
the preceding paragraph. In any case, all of these solutions are characterized by the same 
set of parameters x0, Q, n, ω, so they share a number of common properties. 

In order to simplify the discussion, in the next subsection we will remain agnostic 
about the existence or non-existence of solutions of Eq. (5.25). Providing some solution 
exist, we are going to see that the area and entropy can be obtained exactly without 
knowing the profile of g(y). 

5.3.1 Area and entropy 

As we have seen, it is possible to solve the equation (5.25) either perturbatively in x0 or 
numerically. Nevertheless, there are some properties of these near-horizon geometries that 
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we can compute exactly. One of them is the area, which is given by (5.33). Then, using 
Eqs. (5.32) one is able to obtain the area as a function of x0 and Q. The relation A(x0, Q) 
for several values of Q is shown in Fig. 5.3. Near x0 = 0, one can use the expansions (5.34) 
in order to obtain the approximation � � 

4A µL4 12µL4x � �
2 0 = Q2 + x 2 − + µL4 − Q4 + . . . , (5.40)0 Q104π Q4 

which is valid as long as x0 << Q. Thus, for x0 → 0, the area reduces to the corresponding 
value of extremal Reissner-Nordstrom black holes, but looking at Fig. 5.3 we see that an 
interesting behaviour takes place when we increase x0. If the charge is large enough, the 
corresponding curve differs slightly from the value in Einstein gravity for intermediate 
values of x0, but for large x0 one recovers again the extremal Kerr-Newman result A ∼ 

24π(Q2 + 2x0). On the other hand, if the charge is too small — the threshold value is 

1/4LQthr ≈ 1.13µ (5.41) 

— the curve does not approach the Einstein gravity result, and instead we see that A 
tends to a constant for x0 → ∞. This represents an exotic solution that does not exist in 
Einstein gravity, and it satisfies � � 

2x2 0 2α + Q2 
A = 4πα, n = , when x0 → ∞ , (5.42)

5Q2 

where α is a constant determined from the equation 

2α3 + 12α2Q2 + 18αQ4 − 25µL4Q2 = 0 . (5.43) 
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Figure 5.3: Area of black holes that are smooth deformations of AdS2 × S2 geometries as a function of 
x0 for various values of Q. From blue to red we have Q = 0.43, 0.77, 1, 1.15, 31/4 , 1.45, 1.6. We work in 
units such that µL4 = 1. For large enough Q, the curves tend to the Einstein gravity values in both limits 
x0 → 0, ∞, but when Q is too small the area tends to a constant value for x0 → ∞. 

On the other hand, near-horizon geometries allow us to compute the entropy of black 
holes, even if we do not know the behavior in the asymptotic region, thanks to Wald’s 

122 



 

Chapter 5. Extremal Rotating Black Holes in Einsteinian Cubic Gravity 

entropy formula [139, 140,145], which reads6 Z √ 
S = −2π d2 x h 

∂L 
�µν �ρσ . (5.45) 

H ∂Rµνρσ 

In this expression, the integral is taken over the horizon H, h is the determinant of the 
induced metric on H and �µν is the binormal of the horizon, normalized as �µν �

µν = −2. 
Applying Wald’s formula (5.45) to our theory (5.1), we get Z � � 

1 √ µL4 
S = d2 x h 1 + Pµναβ �

µν �ρσ , (5.46)
4G 16H 

where Pµναβ is the tensor defined in (5.7). The horizon of the metric (5.19) is placed at 
r = 0, but the integration can be equivalently performed on any slice of constant t and 

2 2r. The non-vanishing components of the binormal read �tr = −�rt = (y x0 + n2), so that 
P µναβ �µν �ρσ 

2 2 2)2P trtr = 4(y x0 + n . Remarkably, we find that this quantity takes the form 
of a total derivative, ! 

22 2 2 2 0 
P µναβ �µν �ρσ 

2 d 4g n yx0 4gn g y (g0) 
= 12x − � � + � � + . (5.47)0 2 3 2 2 2dy n2 + y2x n2 + y2x n2 + y2x0 0 0 

Therefore, the integral can be performed without knowing the details of g(y) — we only 
require the conditions (5.21) — and the entropy reads � � 

πx0 3µL4ω2 
S = 1 + . (5.48)

Gω n2 + x20 

Now, using again Eqs. (5.32) we can study the entropy as a function of x0 and Q. 
For instance, in the limit x0 << Q, we obtain the following approximate value, � � � � 

π µL4 12µL4x4 � �
2 0S = Q2 + 2x 1 + + µL4 − 2Q4 , (5.49)0G Q4 Q10 

while for large x0 we have to distinguish between the two different possibilities, ( � �
π 2Q2 + 2x if Q > QthrG � 0 �S(x0 → ∞) = (5.50)πα 15µL4 

1 + if Q < Qthr ,G α2(2α+6Q2) 

where α is the parameter that we introduced in (5.42). The complete profile of S(x0) for 
various values of the charge is shown in Fig. 5.4. 

One disadvantage of this analysis is that, as we mentioned earlier, the parameter 
x0 cannot be identified with the angular momentum, and therefore, the relation S(x0, Q) 
does not have a direct physical interpretation. Nevertheless, we can also study the entropy 

6For Lagrangians containing covariant derivatives of the Riemann tensor, the partial derivative of the 
Lagrangian should be replaced by the Euler-Lagrange derivative of the gravitational Lagrangian as if the 
Riemann tensor were an independent variable, this is � � 

δL ∂L ∂L 
= −rα + . . . (5.44)

δRµνρσ ∂Rµνρσ ∂rαRµνρσ 
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Figure 5.4: Entropy of black holes that are smooth deformations of AdS2 × S2 geometries as a function 
of x0 for various values of Q. From blue to red we have Q = 0.43, 0.77, 1, 1.15, 31/4 , 1.45, 1.6. We work in 
units such that µL4 = 1. For large enough Q, the curves tend to the Einstein gravity values in both limits 
x0 → 0, ∞, but when Q is too small the area tends to a constant value for x0 → ∞. 

as a function of the area and of the charge, i.e, S(A, Q), and in this case the relation is 
meaningful since it involves three physically relevant quantities. In fact, it is interesting 
to check that the entropy is not only a function of the area, since it depends also on the 
relative amount of charge and angular momentum of the black hole. Manipulating the 
equations in (5.32), we can write the entropy (5.48) in the following form, � � 

A 48π2µL4λ(A, Q)
S = 1 + , (5.51)

4G A2 

where λ(A, Q) is a function obtained as a solution of the equation 

" #� �3 � � �� � � � �3 � � 
A A A A A 

0 = Q2 − + λ 2 + 2 µL4 − 3µL4Q2 
4π 4π 4π 4π 4π "� # " # (5.52)�2 � �2 

+ 12λ3µL4 A − µL4 + 3λ2µL4 5µL4 − 6 
A 

4π 4π 

On general grounds, for a fixed value of the area, the charge can vary from Q = 0, 
which would correspond to a neutral rotating black hole, to Q2 = A/(4π), in whose casemax 

7there is no rotation and the solution is AdS2 × S2 . It is then an interesting exercise to 
determine for which of these black holes of fixed area the entropy is maximal. In Fig. 5.5 
we show the ratio S as a function of the charge for several fixed values of the area. A/(4G) 
First, we observe that, indeed, the entropy does not only depend on the area, but also 
on the charge. For Q = Qmax we get S = A/(4G), since in that case the solution has no 
corrections. Nevertheless, when we decrease the charge leaving the area fixed — which 
implies that we turn on the angular momentum — the ratio between entropy and area 

7When the area is sufficiently small we obtain solutions that have Q > Qmax — see Fig. 5.8 — but here 
we focus only in the case in which Q ranges from 0 to Qmax for simplicity. 

124 



Chapter 5. Extremal Rotating Black Holes in Einsteinian Cubic Gravity 

0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.2

1.4

1.6

1.8

2.0

Figure 5.5: Entropy of black holes that are smooth deformations of AdS2 ×S2 geometries as a function of 
the charge for fixed values of the area. We plot the ratio S/(A/(4G)) in order to facilitate the comparison 
between the different curves, while the charge is normalized by Qmax = A/(4π). From blue to red we have 
A/(4π √ 

µL2) = 1.8, 1.91, 2, 2.1, 2.2, 2.3, 2.4. We observe the presence of a critical point where the curve 
starts being multivalued. 

increases. In all cases shown we see that, for a given area, a purely rotating black hole is 
the one that stores more information. We also observe an interesting phenomenon taking 
place when the area is small enough: if A < 1.91 × 4π √ 

µL2 the corresponding curve 
becomes multivalued, indicating the existence of several black holes with same area and 
charge, but different entropy. This suggests the presence of a phase transition from the 
black hole of smaller entropy to the one of larger entropy. In that case, we see that the 
phase space would contain a critical point at Acr ≈ 1.91 × 4π √ 

µL2 , Qcr ≈ 1.11µ1/4L,
√ 
µL2 

Scr ≈ 8.63 G . This picture is not completely accurate, though, because one should fix 
the angular momentum instead of the area in order to compare different solutions, and 
also because at zero temperature one cannot speak of phase transitions. Nevertheless, this 
result does suggest that some sort of decay could take place from one type of solution to 
another. 

5.4 Additional solutions 

In the previous section we focused on the branch of solutions that are smoothly connected 
to an AdS2 × S2 geometry, since these are particularly relevant — and the only ones 
that exist in Einstein gravity. However, when we solve the system of equations (5.32) we 
observe that other solutions for n(x0, Q) and ω(x0, Q) exist. A useful way of visualizing 
the space of solutions is to study the relation A(x0) for fixed values of the charge, which 
we show in Fig. 5.6. This plot contains the curves that we showed in Fig. 5.3, but we see 
that new branches appear. In fact, for fixed values of Q and x0 there can be up to four 
different solutions, which represent black holes with very different properties. 
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Figure 5.6: Black hole area as a function of x0 for various values of Q. We include all the 
branches of solutions. From blue to red we have Q = 1, 1.15, 31/4 , 1.45, 1.6. We work in 
units such that µL4 = 1. 

5.4.1 Branches of solutions 

In the limit of x0 → ∞, we observe that there are only two possible solutions; one 
which recovers the properties of extremal Kerr-Newman black holes — in particular, 

2A → 4π(Q2 + 2x0) — and another one whose area tends to a constant — see Eq. (5.42). 
On the other hand, near x0 = 0 we have in general four different solutions, which can 
be obtained by assuming different expansions of the parameters n and ω, as we show in 
the Appendix D.2. One of them belongs to the AdS2 × S2 branch that we studied in the 
previous section, so we will now analyze the additional solutions. 

Branch A 

One possible solution of the equations (5.32) yields � √ � 
4x 2 3µL2 + 3Q2 

2 0 6 n = + O(x0) (5.53)
18µL4 � � � � p 1 Q2 

2 4A =4π 3µL2 + x − √ + O(x0) (5.54)0 2 4 3µL2 

where we recall that A = 4πx0/ω. It is important to note that the near-horizon geometry 
corresponding to this choice of parameters exists for arbitrarily small values of x0, but not 
for x0 = 0. One remarkable fact about this solution is that in the limit of x0 → 0 the 
area tends to a constant value which is independent of the charge. On the other hand, the 
entropy can be computed using (5.48), and we obtain � � � � 

2π p 1 Q2 
2 4S = 3µL2 − x0 + √ + O(x0) (5.55)

G 6 4 3µL2 
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Figure 5.7: Different near-horizon geometries with Q = (9µ)1/4L and x0 = 0.2µ 1/4L. In each case, we 
x0g(y)show the quantity h(y) ≡ , which allows for a simpler comparison between the several curves. Solid

ω(1−y2) 
red line: AdS branch. Red dashed line: branch A. Red dot-dashed line: branch B. Red dotted line: branch 
C. Blue dashed line: Kerr-Newman case. 

Thus, the entropy also tends to a universal constant value in the limit of vanishing x0, 
which interestingly enough corresponds to A/(2G). Observe that, for fixed values of Q 
and x0, this solution can be entropically favoured with respect to the one belonging to the 
AdS2 × S2 branch. In fact, we get the following condition for small values of x0: p 2 

0SA > SAdS2 × S2 ⇔ Q2 < 2 3µL2 − 
7x 

+ . . . . (5.56)
2 

However, this is not enough in order to argue that a transition from one solution to another 
will take place when that bound is saturated, since the angular momentum could depend 
differently on x0 in both solutions, and hence, we would be comparing black holes with 
different conserved charges. In fact, this solution has x0/n ∼ 1/x0 when x0 → 0, which 
implies that the geometry departs largely from AdS2 ×S2 , and this suggests that it actually 
could have a large angular momentum. 

Finally, let us comment on how the black holes in this branch behave as we increase 
the angular momentum. Looking at Fig. 5.6 we observe three possibilities. If the charge 
is large enough, there is a maximum value of x0 for which we can extend the branch, and 
at this point it merges with branch C. If the charge is smaller, the branch is connected 
to the solutions that have a finite area in the limit x0 → ∞, and if it is small enough 
(Q < Qthr ≈ 1.13µ1/4L), it is connected to the Kerr-Newman branch. In other words, this 
implies that if we take an initial black hole with little charge but large area and angular 
momentum, the black hole will approach one of the solutions in this branch as it losses 
angular momentum, instead of an AdS2 × S2 geometry. 

Branch B 

The second additional solution has the following values of n2 and A 
√ � � 
3µL2 25µL4 42 2 3 n =x0 + x − + O(x (5.57)0 0)Q 6Q4 5 

127 



Chapter 5. Extremal Rotating Black Holes in Einsteinian Cubic Gravity 

" p � � # 
5 µ/3L2 25µL4 52 3A =4π x0 + x − + O(x . (5.58)0 0)Q 2Q4 3 

In this case, the area tends to zero independently of the charge when x0 → 0. Also, unlike 
in the previous case, we have x0/n → 0, which we can interpret as a sign that the geometry 
is indeed slowly rotating. Now, the most interesting fact about this branch of solutions is 
that, even though the area vanishes in the limit of x0 → 0, their entropy remains finite, 
namely 

3πQ2 6Q4 − 25µL4 
2S = + x0 2π √ + O(x0) . (5.59)

5G 25G 3µL2Q 
Thus, the entropy per unit area in these black holes becomes arbitrarily large. 

Branch C 
1/2

The third and last additional solution allows for a series expansion in powers of x0 , and 
the leading terms for n2 , area and entropy read 

3/4L3
√ 
6µL2 √ 3 (2/3)

1/4 µ2 n =x0 − ( x0) , (5.60)
Q Q5/2 

√ 
√ p π 6µL2 

A = x0 2
3/431/42πµ1/4L Q − x0 , (5.61)

Q 
√ p

√ 23/431/4π µ1/4L Q π µ/6L2 
S = x0 + x0 , (5.62)

G GQ 
(5.63) 

Note that, again, x0/n → 0, so that this solution can actually be slowly rotating, while 
the entropy tends to S → A/(2G). 

Once the desired branch is chosen, it is possible to solve the equation (5.25) nu-
merically in order to obtain the profile of g(y), as we explained previously. A comparison 
between these solutions is shown in Fig. 5.7. 

5.4.2 Entropy as a function of area and charge 

The preceding analysis is useful in order to characterize the space of near-horizon geome-
tries of ECG, but it has the disadvantage that we cannot interpret x0 as the spin parameter 
a. Thus, it is more meaningful to study the relation S(A, Q), which we can find exactly 
by using Eqs. (5.51) and (5.52). In Fig. 5.5 we only plotted part of this relation. The 
complete structure of S(A, Q) including all the solutions is quite involved and we show it 
as a 3-dimensional plot in Fig. 5.8. In obtaining this surface we have taken into account 

2 2that the solutions of Eq. (5.52) must be such that n > 0 and x0 > 0. The red line 
corresponds to the AdS2 × S2 geometries, and interestingly these are the only ones for 
which S = A/(4G) — any other solution has S > A/(4G). We also represent the various 
x0 → 0 limits, which correspond the yellow, black and blue curves (for branches A, B and 
C respectively). 

As we can see, for large enough horizon area, the surface in Fig. 5.8 has only one 
branch, which recovers the Einstein gravity behaviour when A → ∞. Now, imagine that 
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Figure 5.8: Black hole entropy as a function of the area and charge. The thick color lines represent the 
different x0 → 0 limits: the red line corresponds to the AdS2 × S2 solutions, while yellow, black and blue 
lines correspond to branches A, B and C, respectively. We work in units such that µL4 = 1. 

we take one of these large black holes and we start decreasing the area leaving the charge 
fixed — this could be interpreted as the black hole radiating away the angular momentum.8 

We find that there are two possible endpoints of this process: if the charge is large enough, 
then at some point we hit an AdS2 × S2 geometry and the black hole has radiated all the 
angular momentum. In order to continue evaporating it must now lose charge. On the 
other hand, if the charge is too small (as we saw earlier, Q < Qthr ≈ 1.13µ1/4L), we 
approach the yellow line, which corresponds to the x0 → 0 limit of branch A, and for√ 
which A = 4π 3µL2 . Interestingly, in this situation the area and the entropy of the black 
hole remain constant even if it loses (or gains) charge. Thus, the final product of black 
hole evaporation is quite different depending on which path we follow in the phase space. 
We also observe that for small A the surface S(A, Q) is multivalued, hence transitions or 
decays between solutions might occur. This illustrates that the phase space of (extremal) 
black hole solutions may become quite complicated in higher-derivative gravity. 

5.5 Discussion 

In this paper we have provided the first non-perturbative examples of near-horizon ge-
ometries of rotating black holes in higher-order gravity. This has been possible thanks 
to the special form of the equations of motion of Einsteinian cubic gravity — the density 
given by (5.2) — which can be reduced to a single second-order differential equation for 
one variable. Even more striking, we have been able to obtain the area and the entropy 
exactly in terms of the parameters of the solution, and in particular, we found the rela-

8This picture is not completely accurate because we are moving in the space of extremal black holes. 
Thus, one should imagine that energy is emitted along with angular momentum, so that we keep the black 
hole extremal, or near-extremal, during the process. 
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tion between black hole area, charge and entropy, S(A, Q) — see Eqs. (5.51) and (5.52). 
It must be noted that obtaining these quantities analytically is not possible in general 
higher-order theories, where the simplification of the equations that we reported does not 
take place. However, we do expect that there is a subset of Generalized Quasi-topological 
theories for which the same simplification takes place. This subset will correspond to the 
same type of theories admitting taub-NUT solutions that was studied in [306], where, in 
particular, a quartic four-dimensional density of this kind was constructed. We expect 
that higher-order versions of these densities exist as well, and it would be interesting to 
study extremal near-horizon geometries in this family of theories, thus generalizing the 
results presented here. In fact, we believe that the higher-order generalizations could solve 
some of the difficulties that we have found in our analysis and that we discuss next. 

5.5.1 Large angular momentum? 

Perhaps the most worrisome problem we have found is that the equation (5.25) seems to 
have no smooth solutions when the angular momentum is large compared to the charge. 
In particular, purely rotating (regular) black holes do not exist even in the regime where 
the corrections are supposed to be small. The reason, as we explained, is the vanishing of 
the coefficient of g00 in Eq. (5.25) at some point, which implies that the solution will not be 
smooth there. This issue could go away for higher-order densities, or for some appropriate 
combination of those, and it would be interesting to explore this possibility. On the other 
hand, this problem could be related to the fact that we are dealing with extremal black 
holes. It is known that there are certain difficulties associated with extremality (e.g., the 
instability of horizons [311]), and these arise explicitly in the case of higher-derivative 
theories — we further comment on this below. Therefore, it might happen that the 
problem of non-existence only affects to extremal black holes, but that (arbitrarily) near-
extremal ones are fine. Despite this drawback, we believe the values found for the entropy 
and area of these black holes are meaningful even in the region of parameter space where 
no solution seems to exist. Indeed, from the point of view of EFT one should assume 
a perturbative expansion of the solution, and in this scheme the issue in the differential 
equation (5.25) disappears. Thus, at least the perturbative corrections to the entropy, � � 

A 24π2µL4(A− 4πQ2)
S = 1 + 

A3 + O(L8) , (5.64)
4G 

should be meaningful in the full parameter space. 

5.5.2 Multiplicity of solutions 

Paradoxically enough, when Eq. (5.25) allows for solutions, it has many. We have seen 
that for fixed values of x0 and Q, we have usually several branches of solutions with 
different values of the area and the entropy. But we also observed that, even when the 
corresponding branch has been chosen, the equation (5.25) can have several solutions. 
This is, we can have different near-horizon geometries with the same values of the charge, 
x0, area and entropy, which only differ in the shape of the horizon. Thus, in Sec. 5.3 
we only constructed numerically the solutions that are smooth deformations of AdS2 × S2 

geometries, but in general there are more solutions which are characterized by the same 
set of integration constants. In particular, the equation (5.36) corresponding to the limit 
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x0 → 0 seems to have an increasing number of solutions as Q grows. This means that 
there are solutions of the form AdS2 ×M2, where M2 is not a sphere, but nonetheless all 
of these solutions have the same area and entropy. A similar situation occurs for finite x0. 
While this is an interesting phenomenon, a thorough classification of these solutions would 
considerable enlarge the present manuscript, and thus these additional solutions could be 
studied elsewhere. The degeneracy of solutions seems to be related to the sign of the 
higher-order coupling µ, and it would have not appeared had we taken µ < 0. The reason 
for taking µ > 0 is that this is required in order for asymptotically flat/AdS black holes 
to exist [296]. However, it is possible that for other higher-order densities the sign that 
allows for black holes is the same that would yield unicity of near-horizon geometries.9 

5.5.3 Global solutions? 

Another relevant question is whether there exist global black hole solutions (containing an 
asymptotic region) of which the solutions we have constructed are the near-horizon limit. 
Although it may appear shocking at first, we do not expect those solutions to exist. The 
reason is that the boundary problem in higher-derivative gravity is not well-posed in the 
presence of a degenerate horizon. This is more easily understood in the case of static, 
charged black holes, which allow for a simple description in ECG. Those solutions were 
briefly discussed in [296], where, similarly to the case here, it was shown that the equations 
of motion reduce to a second-order equation for one variable. Then, one has to impose a 
boundary condition at infinity and another one at the horizon, and this fixes the solution. 
But when the horizon is degenerate, the condition at the horizon turns out to fix two 
integration constants and it is not possible to demand the asymptotic condition. Hence, 
no black hole solutions exist in that case. Nevertheless, arbitrarily near-extremal ones 
exist, and we expect that the same behaviour will be found in the rotating case. Hence, 
the near-horizon geometries we have constructed make sense as a limit that non-extremal 
black holes can approach, but never reach. In particular, the area and entropy (and also 
the shape) of non-extremal black holes will tend to those found here when they approach 
extremality. 

5.5.4 Asymptotic charges 

Finally, one limitation of the near-horizon analysis is that we lose the information about 
the mass and the angular momentum of these black holes. We argued that the variables 
x0 and n would be related, respectively, to the spin a and to the mass M but we lack 
a precise relation. Knowing the values of a and M would be very interesting in order 
to study corrections to the extremality bound and to determine the relation between the 
entropy and the physical charges, S(a, Q). A possible direction to achieve this goal would 
entail finding a generalization of Komar charge for higher-order gravities that would allow 
us to write the asymptotic charges as an integral over the horizon [164]. 

9A similar phenomenon has been observed in the cosmological context, where the appropriate sign for 
black holes in ECG is the opposite to the one required in order to produce inflation. However, for quartic 
densities (and in general, densities containing even powers of the curvature), both signs agree [304]. 
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Quasinormal Modes of NUT-charged Black Branes 

in the AdS/CFT Correspondence 

This chapter is based on: 
Quasinormal modes of NUT-charged black branes in the AdS/CFT correspondence 

P. A. Cano, D. Pereñiguez 
arXiv:2101.10652 

Motivated by the AdS/CFT correspondence [312–314], the study of asymptotically 
anti-de Sitter (AdS) black holes has been a major field of research in the last two decades. 
According to this correspondence, black hole solutions in the bulk of AdS are dual to a 
thermal quantum field theory living in the boundary of the spacetime and whose tem-
perature is given by the Hawking’s temperature of the black hole. In this context, the 
holographic dictionary can be applied to gain a great deal of information about the hy-
drodynamics of strongly-coupled plasmas1 by studying the properties of the black hole 
solutions [315–318]. In particular, perturbations of different fields in the background of a 
black hole geometry can be used to compute transport coefficients and correlators in the 
dual theory, and thus providing us with valuable results that can be difficult to obtain by 
first principles in the quantum theory. In the case of metric perturbations, these couple 
to the stress-energy tensor of the boundary theory, and hence they capture density and 
pressure fluctuations. 

In a black hole, the late-time behaviour of perturbations is ruled by the quasinormal 
modes (QNMs), which are solutions satisfying an outgoing boundary condition at the 
horizon (i.e., absence of waves coming from the horizon) plus — in the context of AdS/CFT 
— Dirichlet boundary conditions at infinity— see the reviews [69,319]. Quasinormal modes 
only exist for a discrete set of complex frequencies, called the QNM frequencies, and whose 
imaginary part determines the damping time. The QNMs of black holes defined in this way 
correspond to the poles of the retarded Green functions of the dual theory and therefore 
they characterize the response of the dual plasma under perturbations [320–327]. 

A large part of the literature on this topic has focused on AdS5 solutions — see 
the previous references — and especially on black holes with a planar horizon, since 
these are dual to a 4-dimensional CFT in flat space. In this paper, nonetheless, we are 
interested in AdS4 geometries. As a matter of fact, the AdS4/CFT3 correspondence is well-
motivated [328] and it can indeed be relevant for certain condensed-matter systems that 
behave effectively as 2+1 dimensional [317,318]. The quasinormal modes of 4-dimensional 
Schwarzschild-AdS black holes were studied in Refs. [329–332], while those of black holes 

1Since these can be studied in an appropriate regime under the hydrodynamic approximation, we 
sometimes refer to these plasmas as “fluids”. 
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with planar, toroidal and cylindrical topologies were first computed in Refs. [333, 334]. 
The results on the latter were later revised and extended in Ref. [335] by implementing 
the boundary conditions required by holography. On the other hand, the quasinormal 
modes of large Kerr-AdS black holes were analyzed in [336]. 

In addition to these cases, there is a family of gravitational solutions that has not 
been yet fully exploited in holography: black holes with NUT charge [337–340]. Taub-
NUT2 solutions have the distinct property of being only locally asymptotically AdS, which 
translates into the fact that the boundary is no longer (locally) conformally flat. Thus, 
NUT charge breaks conformal invariance of the dual theory, and this may allow us to 
probe non-trivial aspects of the CFT. For instance, Euclidean AdS-Taub-NUT solutions 
describe CFTs placed on squashed spheres [339, 340], and studying how the free energy 
depends on the NUT charge has led to interesting results both in supersymmetric [341,342] 
and non-supersymmetric [301, 343–345] setups. 

Lorentzian Taub-NUT solutions, on the other hand, have been less studied in the 
context of holography due to their seemingly pathological properties. Indeed, these solu-
tions contain Misner strings and closed time-like curves [346, 347], and they give rise to 
an apparent failure of the first law of thermodynamics [348]. However, there is a renewed 
interest in “rehabilitating” these spacetimes. On the one hand, Ref. [349] has shown that 
freely falling observers do not experience any of these pathologies, since there are no closed 
time-like geodesics and Misner strings are invisible to those observers — see also [350]. 
On the other hand, the thermodynamic description of Taub-NUT solutions has been fi-
nally understood on the basis that Misner strings are acceptable and that, accordingly, 
the NUT charge should be regarded as an independent thermodynamic variable [351–353] 
— see also [354]. 

Lorentzian AdS-Taub-NUT solutions give indeed rise to interesting boundary the-
ories. In Refs. [355, 356] it was noted that, unlike the Kerr-AdS solution, NUT-charged 
solutions describe fluids with vorticity, and hence explore a qualitatively different aspect 
of the dual theory. More recently, Ref. [357] initiated the study of scalar perturbations of 
spherical Taub-NUTs in connection to holography, finding that the result is dramatically 
dependent on whether the Misner string is regarded as physical or not. In this work, we 
will consider instead the case of planar Taub-NUT black holes [358] — we recall that, just 
like in the case of AdS black holes, NUT-charged solutions can have either spherical, pla-
nar or hyperbolic transverse sections. We consider this case to be particularly interesting 
for two main reasons. First, the planar NUT solutions are free of Misner strings, so that 
one gets rid of all the difficulties and ambiguities introduced by these objects. Second, 
these solutions are a generalization of the planar black holes, and hence the boundary 
metric can be considered as a continuous deformation of flat space. More precisely, the 
boundary of these geometries is similar to a Gödel universe [358], where the NUT charge 
controls the rotation. In this sense, it is interesting to see how the properties of the dual 
strongly-coupled plasma change as we increase the NUT charge. 

In this paper, we explore this question by computing the quasinormal mode spec-
trum of planar Taub-NUT black holes. We shall perform an analysis of (massless) scalar, 
electromagnetic and gravitational perturbations, providing — to the best of our knowledge 
— the first complete calculation of quasinormal modes of black holes with NUT charge. 

The paper is organized as follows 

2We use the term “Taub-NUT” to refer indistinctly to both NUT-type and bolt-type solutions. 
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• In Section 6.1 we review the planar Taub-NUT geometries, establishing their basic 
properties, their thermodynamics description and introducing the Newman-Penrose 
formalism that we use in the next section. 

• In Section 6.2 we perform perturbation theory on these geometries. The case of a 
scalar field is considered first and we note an interesting analogy between the angu-
lar separation of the QNMs and Landau quantization. We then use the Newman-
Penrose formalism to derive separable equations for the master electromagnetic and 
gravitational variables. 

• In Section 6.3 we study the boundary conditions for QNMs. Imposing Dirichlet 
boundary conditions on the electromagnetic and gravitational perturbations, we de-
rive the form of the boundary conditions on the master Newmann-Penrose variables. 
We find that, besides the QNM frequency, the QNMs depend on another parameter 
related to the polarization, and which has to be determined by solving simultaneously 
the equations for both NP variables. In the gravitational case we determine ana-
lytically this polarization parameter by using the Teukolsy-Starobinsky identities, 
and hence we reduce the problem to solving only one equation with fixed bound-
ary conditions. On the other hand, we find that the electromagnetic NP variables 
satisfy degenerate equations, and therefore the polarization parameter cannot be 
determined. 

• We compute the QNM frequencies of scalar and gravitational perturbations in Sec-
tion 6.4. Despite the breaking of parity, the spectra of both types of perturbations 
is symmetric under the change of sign of the NUT charge. We obtain an analytic 
approximation for a special family of gravitational QNMs, that we call pseudo-
hydrodynamic modes, whose frequency vanishes in the zero NUT charge limit. In 
addition, we provide strong evidence that no unstable mode exists. 

• We present our conclusions in Section 6.5. 

6.1 Planar Taub-NUT black holes and their holographic 
dual 

We consider Einstein gravity with a negative cosmological constant, Z � � 
1 p 6 

S = d4 x |g| R + (6.1)
16πG L2 

In this paper, we are interested in the following solution of Einstein’s theory, corresponding 
to a Taub-NUT black hole with planar topology [340], � �2 2 22n dr2 r + n � � 

ds2 = −V (r) dt + xdy + + dx2 + dy2 (6.2)
L2 V (r) L2 

where n is the NUT charge, the function V (r) is given by � � �� 
2 2 2(r − r+) 3n4 + 6n rr+ + rr+ r + rr+ + r+V (r) = , (6.3)

L2r+ (n2 + r2) 
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and the coordinates (x, y) span R2 . For n = 0 this solution reduces to the AdS black 
brane, but nevertheless it has some remarkable properties that we review next. First 
of all, this solution conserves all the symmetries of the black brane, corresponding to 
time translations and the symmetries of R2 , with the difference that the latter now act 
non-trivially in the time variable. The corresponding four Killing vectors read 

ξ(t) = ∂t , 
2n 

ξ(1) = − y∂t + ∂x ,
L2 

(6.4) 
ξ(2) = ∂y , 

n 
ξ(3) = 

L2 (x 2 − y 2)∂t + y∂x − x∂y . 

Note that these symmetries allow one to consider quotients of this solution by discrete 
groups. For instance one may take y to be periodic, in which case the black hole would 
have cylindrical topology. We will restrict to the case of (x, y) spanning the plane. 

The event horizon of the black hole is located at r = r+ > 0, which is a Killing 
horizon for ξ(t). The corresponding surface gravity reads 

1 3(n2 + r+2 )
κ = V 0(r+) = . (6.5)

2 2L2r+ 

One can see that the function V (r) is strictly positive for r+ < r < ∞ and hence there 
are no other horizons for ∂t. There are, however, horizons for the other Killing vectors, 
which indicate the presence of closed timelike curves (CTCs). For instance, the norm of 
ξ(2) reads 

2 2 � �2 r + n 2nx 
ξ2 = − V (r) , (6.6)(2) L2 L2 

and hence it becomes timelike if x is large. A quite representative CTC is given by 
µ µx = R cos φ, y = R sin φ, t = −nxy/L2 , with φ ∈ [0, 2π), whose tangent vector u = ẋ 

has a norm 
n2R4 (r2 + n2)R2 

2 u = −V (r) + , (6.7)
L4 L2 

so that it is everywhere timelike if R is large enough. The symmetries of this spacetime 
imply that there are CTCs of this type around any point (in the region r > r+), but, 
however, there are no closed timelike geodesics [349, 359], so that the solution is possibly 
less pathological than one would expect. More importantly, as the example above shows, 
CTCs only appear at large distances, which means that, around any point there is an 
open set in which no CTCs exist. In particular, there are no CTCs contained in regions 
with a radius R < L2/n in the (x, y) plane. Within these regions one can define a Cauchy 
surface and make sense of dynamics [360, 361]. On the other hand, unlike the spherical 
Taub-NUT solutions, these NUT black branes do not possess Misner singularities. 

At infinity, the metric function V (r) behaves as V (r) = r2/L2 + O(1), and hence 
the boundary metric at r → ∞ is conformally equivalent to � �2 

2dŝ = − dt +
2n
xdy + dx2 + dy2 . (6.8)

L2 

This metric is not conformally flat, and therefore the solution is only asymptotically locally 
AdS. In the boundary theory, this means that conformal invariance is broken. However, 
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the boundary still has many symmetries — given by (6.4) — and one can see that it is a 
homogeneous space corresponding to a Lorentzian continuation of Nil space — the group 
manifold of Heisenberg’s group. Indeed, note that the translational Killing vectors satisfy 
the Heisenberg’s algebra � � � � � � 2n 

ξ(t), ξ(1) = ξ(t), ξ(2) = 0 , ξ(1), ξ(2) = ξ(t) . (6.9)
L2 

On a more physical perspective, the metric (6.8) can be interpreted as a rotating universe, 
very similar to the non-trivial (2 + 1)-dimensional section of the famous Gödel solution 
[362], the paradigmatic example of a universe with closed timelike curves.3 Hence, when 
one applies the holographic dictionary to these solutions, one is probing the dynamics of 
a quantum theory placed in this exotic spacetime. Although the existence of a globally 
defined timelike Killing vector allows one to define a Hamiltonian, performing quantum 
field theory in this background is challenging due to its unusual causal structure [359,364– 
366]. 

In order to answer if these metrics are appropriate to perform QFT, one can also 
study the “acceptability” criterion of Refs. [367–369], obtained after Wick rotation of the 
metric. Following the analysis in section 4.5 of [368], it is easy to see that the quasi-
Euclidean metric obtained by the replacement t = iτ in (6.2) is allowable only in the 
regions with (x − x0)2 + (y − y0)2 < L2/n around any point (x0, y0), which coincide with 
the causally regular regions.4 Extending a QFT outside these regions thus must involve 
non-standard methods. In this sense, holography can be used to gain some insight about 
the behavior of a quantum theory in such spacetime. Besides, the dual CFT would be in 
a thermal state whose properties are determined by the thermodynamic quantities of the 
black hole, that we review next. 

6.1.1 Thermodynamics 

The temperature of the NUT-charged black branes is given by Hawking’s result T = 
κ/(2π), so that 

3(n2 + r2 )+T = . (6.10)
4πL2r+ 

One can see that, for a given n, the temperature reaches its minimum value for r+ = |n|, 
in whose case we have T = T∗, where 

3|n|
T∗ = . (6.11)

2πL2 

On the other hand, the temperature diverges both for r+ → 0 and r+ → ∞. Hence, 
when T > T∗, there are two different black hole solutions with the same T and n. This 
allows us to distinguish three different families of solutions, corresponding to n < −r+, 
−r+ < n < r+ or n > r+. We can also identify the mass of the solution by analyzing the 

3More precisely, the metric (6.8) is the equatorial section of the Som-Raychaudhuri solution [363], as 
originally noted in [358]. Both metrics have qualitatively similar properties. 

4As observed by Witten [368], in the case of rotating black holes, considering an imaginary angular 
momentum gives rise to Euclidean metrics but it is also problematic, ultimately because the horizon is 
generated by the vector ∂t + Ω∂φ, where Ω is the angular velocity. However, in our case the generator of 
the horizon is only ∂t, so there seems to be no reason not to consider also a imaginary NUT charge n = in̂, 
in which case one obtains a Euclidean and perfectly allowable metric — see (6.15) below. 
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behaviour near infinity. In fact, one can just apply the usual the ADM result which tells 
us that the total energy E can be identified by looking at the 1/r term in the asymptotic 
expansion of V . In particular, the coefficient of that term should be equal to −8πGL2E/V2,R 
where V2 is the volume of the transverse space, V2 = dxdy. Note that in this case V2 is 
infinite, and hence it is more appropriate to talk about energy density ρ = E/V2, rather 
than total energy. This quantity, in fact, can be interpreted as the energy density in the 
boundary CFT. The expansion of V (r) reads � �

2 2 4 2 2 4 r 5n r+ + 6n r+ − 3n 1 
V (r) = + − + O (6.12)

L2 L2 2L2rr+ r 

and therefore, we get 

4 2 2 4r+ + 6n r+ − 3n 
ρ = . (6.13)

8πGL4r+ 

On the other hand, the entropy of the black hole is given by S = A/(4G), but since this 
area of the horizon is divergent, it is again convenient to work in terms if the entropy 
density, s = S/V2, which reads 

2 2r + n+ s = (6.14)
4GL2 

Now, an apparent puzzle in the case of these solutions is that the first law of thermody-
namics does not seem to hold, i.e., we get dρ 6= T ds when varying the previous expressions 
with respect to r+. However, the reason is that the NUT charge should also be interpreted 
as a thermodynamical variable which will modify the first law. For a long time this was 
a source of confusion in the case of spherical Taub-NUT black holes, since regularity of 
the Euclidean geometry imposes a restriction between NUT charge and temperature [348]. 
Only recently it was realized that one can achieve a full-cohomegeneity first law for spher-
ical NUTs by allowing the NUT charge to vary independently. In the case of planar NUT 
black holes, however, there is no restriction between n and T , and it is natural to treat 
the NUT charge as an additional thermodynamic variable. To the best of our knowledge, 
the existence of a first law in the case of planar Taub-NUT solutions was first reported 
in [306]. 

In order to complete the thermodynamic characterization of these planar NUT black 
holes, we must compute the free energy from the Euclidean on-shell action. The Euclidean 
solution is obtained, not only by Wick-rotating the time coordinate, t = iτ , but also the 
NUT charge, n̂ = in. In that case the metric reads � �2 22n̂ dr2 r2 − n̂ � � 

ds2 = V (r) dτ + xdy + + dx2 + dy2 . (6.15)E L2 V (r) L2 

2 2It is important to note that, in Euclidean signature, only the solutions with r ≥ n̂ are+ 
regular, which means that the Lorentzian solutions with n2 > r2 do not have an Euclidean+ 

2description. This suggests that for a given T > T∗ only the solution with r ≥ n2 should+ 
be taken into account in the path integral, and hence that it is the dominant saddle. Let 
us also mention that, in the literature, the Euclidean solutions with r2 = n̂2 are called+ 
Taub-NUT, while the rest are Taub-bolt. However, we shall make no distinctions since 
the former can be considered as a limit of the latter. 

138 



Chapter 6. Quasinormal Modes of NUT-charged Black Branes in the AdS/CFT 
Correspondence 

The free energy can be computed from the following well-posed and regularized 
Euclidean action Z � � Z � � 

1 p 6 1 √ 2 L 
IE = − d4 x |g| R + − d3 x h K − − R , (6.16)

16πG L2 8πG L 2 

where K is the extrinsic curvature of the boundary and R is the Ricci scalar of the 
boundary’s intrinsic. The free energy F = TIE reads 

V2(r
4 + 3n̂4)+F = − . (6.17)

16πGL4r+ 

Let us then define the free-energy density ε = F/V2 and express this result in terms of the 
Lorentzian NUT charge n, 

(r4 + 3n4)+ε = − . (6.18)
16πGL4r+ 

Now, it turns out that, instead of n, the thermodynamic relations are most naturally 
written in terms of the variable θ = 1 . Then, using the chain rule one can compute the n 
derivatives of the free energy at constant θ and T , which read 

� � 2 2∂ε r+ + n 
s = − = , (6.19)

∂T θ 4GL2 � � 2∂ε 3n3(r − n2)+ψ = − = . (6.20)
∂θ 8πGL4r+T 

We check that s indeed coincides with the Bekenstein-Hawking entropy density. On the 
other hand, ψ is a new thermodynamic potential conjugate to θ. Making use of these 
results, one observes that the energy ρ computed according to the ADM prescription, 
coincides with the double Legendre transform of the free energy with respect to T and θ. 

ρ = ε + Ts + θψ . (6.21) 

This is is not the standard definition of internal energy, which suggests that, in the pres-
ence of NUT charge, the potentials ε and ρ probably have a different thermodynamic 
interpretation. In any case, this result implies that ρ satisfies the following first law, 

dρ = T ds + θdψ . (6.22) 

Finally, we can study the thermodynamic stability of these solutions. One can first 
can compute the specific heat at constant θ, � � 2 2 2∂s r (n + r )+ + = T = , (6.23)Cθ 2∂T 2GL2(r − n2)θ + 

and one can see that Cθ > 0 as long as r2 > n2 , implying thus stability when n is held+ 
fixed. More generally, one can study the concavity of the free energy, for which one may 
compute the second variation of ε, which reads � � � � 

3 2 2 4 4 2 2 42πr3 2n n + r 3n 3r − 10n r + 3n+ + + +δ2ε = − � �δT 2− � �δT δθ+ � � δθ2 . (6.24)
2 2 2 2 2 23G r − n 2GL2 r − n 8πGL4r+ r − n+ + + 
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The solution will be thermally stable if this is a negative-definite quadratic from, but we 
2can see that this never happens because the term with δθ2 is positive for r > n2 , while+ 

the one of δT 2 is only negative in that region. Therefore, these planar Taub-NUT black 
holes are only thermodynamically stable under changes of the temperature but not under 
changes of n. 

6.1.2 Newman–Penrose formalism 

The description of perturbations on a black hole spacetime is a task of extraordinary com-
plexity. The linearized equations governing first order field components on local coordi-
nates are considerably involved already in the simplest backgrounds such as Schwarzschild’s 
black hole, and almost intractable in more realistic cases like Kerr’s spacetime. In addi-
tion, it is far from obvious how the large amount of gauge symmetry should be fixed. 
Teukolsky’s seminal work [105] constituted a major breakthrough in the clarification of 
these issues. Considering an algebraically special background space, of Petrov type D (e.g. 
Schwarzschild and Kerr spacetimes), he derived decoupled equations for perturbations of 
several kinds and, furthermore, these admit solutions in separable form. One of the ele-
ments underlying such a remarkable success is the Newman–Penrose (NP) formalism [50]. 
In particular, it provides a very natural formulation of Petrov’s classification, as well as 
the Goldberg–Sachs theorem, and this translates into the vanishing of several NP variables 
of the background. It is in this situation that the equations decouple and, in addition, 
become gauge invariant. 

The study of perturbations on the background (6.2) can be conveniently performed 
in the NP formalism. A Newman–Penrose frame on a pseudo–Riemannian space5 is a 
complex tetrad ea, 

e1 = m, e2 = m, e3 = l, e4 = k, (6.25) 

composed of two real, null vectors k and l, and one complex, null vector m together with 
its conjugate m, so that 

k · k = l · l = m · m = 0, (6.26) 

and these are further subject to the normalization conditions 

k · l = −m · m = −1, k · m = l · m = 0. (6.27) 

When acting as operators on functions ϕ, it is customary to give particular names to the 
vectors of the NP basis, 

Dϕ := kµ∂µϕ, Δϕ := lµ∂µϕ, δϕ := mµ∂µϕ, δ ∗ ϕ := mµ∂µϕ. (6.28) 

A convenient choice for the space (6.2) is 

1 1 
k = kµ∂µ = (∂t + V ∂r) , l = lµ∂µ = (∂t − V ∂r) , (6.29)

V 2� �−i arctan (r/n)e 2nx 
m = mµ∂µ = iL p ∂x + i∂y − i ∂t . (6.30)

L22(n2 + r2) 

The vectors k and l are geodesic and shear-free so that the following spin coefficients 
vanish 

κ = σ = ν = λ = 0 . (6.31) 
5We will be following the conventions in [51]. 
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By the Goldberg–Sachs theorem it follows that the space must be of Petrov type D, so 
four out of the five Weyl scalars vanish 

Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0. (6.32) 

In addition, the frame has been chosen to be parallelly propagated along k, i.e. 

rkk = rkl = rkm = 0, (6.33) 

a property that implies the vanishing of additional spin coefficients. 
As shown by Teukolsky [105], the vanishing of these quantities makes perturbation 

theory tractable on such a background — we will make use of those results in next section. 
For that, we need the spin connection, whose non-vanishing components read 

� � 
−1 V 1 1 2ni 

ρ = −Γ142 = , µ = Γ231 = − , γ = (Γ433 − Γ123) = V 0 + V .
2r + in 2(r + in) 2 4 n2 + r 

(6.34) 
On the other hand, the Ricci tensor has the same components as the metric R12 = −R34 = 
−6/L2 , and the only non-vanishing Weyl scalar, Ψ2, reads � �31 − 3�i 1 + i�σν lρΨ2 = −Cµνρσkµm m = −C4132 = − , (6.35)

2L2 (r/r+) + i� 

where � = n/r+. This completes the enumeration of non-vanishing NP variables of the 
space (6.15), in the frame (6.29). 

6.2 Perturbation theory 

In this section we study scalar, electromagnetic and gravitational perturbations around the 
planar NUT black holes introduced in the previous section. By using the Newman-Penrose 
formalism, we will show that in all cases the perturbations can be analyzed through a few 
master variables that satisfy decoupled equations. Once the problem is reduced to a 
decoupled equation for a scalar variable Ψ, one can try to separate variables. Now, an 
important difference with respect to the NUT-neutral case is that the translational Killing 
vectors ξ(1), ξ(2) do not commute, [ξ(1), ξ(2)] 6= 0, and as usual these do not commute with 
the rotational vector ξ(3). Hence, one cannot fully separate the equations a priori, and at 
best one can choose the variable Ψ to be an eigenfunction for one of the sets of commuting 
Killing vectors � � � 

ξ(t), ξ(1) , ξ(t), ξ(2) , ξ(t), ξ(3) . (6.36) 

In the coordinates in which (6.2) is expressed, the vector ξ(2) = ∂y is a coordinate vector � 
and hence it is appropriate to choose the set ξ(t), ξ(2)� . Due to the symmetries of the 
metric, this is completely equivalent to choosing the set ξ(t), ξ(1) .To see this, notice that 

2n 0 0the transformation t0 = t + 
L2 xy, x = −y, y = x leaves the metric invariant while setting� 

ξ(1) = ∂y 
0 . On the other hand, the analysis of quasinormal modes using the set ξ(t), ξ(3) 

is more obscure, but one expects again that the results would be equivalent. From now on 
we assume that our perturbations are eigenfunctions of ξ(t) and ξ(2), and hence we have 
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� 
ξ(t)Ψ = −iωΨ ⇒ Ψ = e −i(ωt−ky)h(r, x) . (6.37)
ξ(2)Ψ = ikΨ 

In addition, the dependence on the x and r coordinates can be further separated as we 
show below. 

6.2.1 Scalar perturbations 

Let us consider first the case of a massless scalar field φ in the background of (6.2) satisfying 
the wave equation, 

µr rµφ = 0 . (6.38) 

As we just discussed above, we separate the t and y coordinates according to 

ψ(r, x)−i(ωt−ky)φ = e √ , (6.39)
2 + n2r 

√ 
where the factor of 1/ r2 + n2 is conventional. Then, we find that ψ satisfies the following 
equation: 

� � � � �� 
∂ ∂ψ V n2V −V V + ψ −ω2 + V 0 r +

2 + n2 2 + n2)∂r ∂r r (r" #� �2V L2 ∂2ψ 2nxω 
+ − + k + ψ = 0 . (6.40)
(n2 + r2) ∂x2 L2 

We then note that this equation admits for separable solutions 

ψ(r, x) = Y (r)H(x) , (6.41) 

where Y (r) and H(x) satisfy respectively the following equations 

� � � � �� 
d dY V n2V −V V + Y −ω2 + 

2 2L2E + V 0 r + =0 , (6.42)
dr dr r2 + n (r2 + n2) 

� �21 d2H 1 2nxω − + k + H =EH , (6.43)
2 dx2 2 L2 

where E is a constant. In the case of vanishing NUT charge, this constant can take any 
value, as it is related to the wavenumber in the x direction, which can be chosen freely. 
This situation changes dramatically in the presence of NUT charge. Indeed, we observe 
a quite remarkable fact: the equation (6.43) is identical to that of a quantum harmonic 
oscillator, where the point of equilibrium is located at x0 = −kL2/(2nω), and where the 
corresponding mass and frequency are m = 1, ω2 = (2nω/L2)2 . There is an even moreos 
accurate analogy with Landau quantization that we explore below. Now we search for 
regular solutions such that H(x) → 0 at x → ±∞, and this leads to the familiar results for 
the eigenfunctions and eigenvalues of the harmonic oscillator. There is a catch, though, 
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since we have to take into account that ω is complex and that n can have either sign. 
Thus, we must distinguish between the cases Re(nω) > 0 and Re(nω) < 0. Introducing 

s = sign [Re(nω)] , (6.44) 

we have that the physically relevant solution of (6.43) reads 

� �2 �r � �� 
nω kL2 

−s x+ snω kL2 
L2 2nωHq(x) = e Hq x + , q = 0, 1, . . . , (6.45)

L2 2nω 
where Hq(z) are the Hermite’s polynomials. The eigenvalues Eq read in turn 

snω Eq = (1 + 2q) . (6.46)
L2 

Thus, unlike the NUT-neutral case, we obtain a quantization condition on the angular 
part of the perturbations, and hence the spectrum of quasinormal modes will be discrete. 
Also note that the eigenvalues Eq are independent from the wavenumber in the y direction, 
k, and hence the quasinormal modes will be degenerate. 

Now we can bring this result to the radial equation (6.48), and it also proves useful 
to perform the following redefinitions 

r+ n L2ω ˆ L2V 
z = , � = , ω̂ = , V = 2 . (6.47) 

r r+ r+ r+ 

Then, the radial equation reads 

" !#� � 
2 ˆ 2 ˆd 2 dY z V �2z V2V̂ z V̂ z + Y ω̂2 − 2s�ω̂(1 + 2q) − ∂zV̂ z + =0 (6.48)

dz dz 1 + z2�2 (1 + �2) 

Notice that the only free parameters in this equation are �, the dimensionless frequency ω̂ 
and the index q. 

* 

Relation to Landau quantization Interestingly, the perturbations in the Taub-NUT back-
grounds organize in an analogous way to the Landau levels of a charged particle moving 
in a uniform magnetic field. In order to establish this analogy, let us first note that we 
can write the metric (6.2) in a gauge-invariant form as 

2 2 � �dr2 r + n 
ds2 = −V (r) (dt + A)2 + + dx2 + dy2 , (6.49)

V (r) L2 

2nwhere A is a 1-form satisfying dA = 
L2 dx ∧ dy. Thus, coordinate transformations of the 

form t → t + f(x, y) can be reabsorbed as gauge transformations A → A − df . Then, one 
can in fact interpret this A as a uniform magnetic field with magnitude B = 2n/L2 . Let 
us then consider a particle of charge e moving in the (x, y) plane (in flat space) in the 
background of this field. The Hamiltonian is given by 

H =
1 
π2 +

1 
π2 , (6.50)x y2 2 
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where, in the gauge A = Bxdy, the momenta read 

πx = −i∂x , πy = −i∂y − exB . (6.51) 

Then, the Schördinger equation Hψ = Eψ yields � � 
1 1 
∂2− + (−i∂y − exB)2 ψ = Eψ , x2 2 

(6.52) 

and by using −i∂yψ = kψ we get the same equation (6.43) we got for the angular part 
of the perturbations in the Taub-NUT geometry, provided one identifies the charge of 
the particle with the frequency of the perturbation as e = −ω. Thus, the transverse 
(x, y) part of the quasinormal modes of the Taub-NUT background are eigenfunctions of 
this Hamiltonian and have the same quantization, which is given by the Landau levels 
q = 0, 1, . . .. As we show next, electromagnetic and gravitational perturbations organize 
in a similiar fashion. Clearly, this analogy can be traced back to the fact that NUT charge 
is the gravitational equivalent of magnetic charge. 

6.2.2 Electromagnetic and Gravitational perturbations 

Let us now address the study of perturbations electromagnetic and gravitational perturba-
tions. Thus, we consider a vector field Aµ satisfying Maxwell equations in the background 
of (6.2) 

F µνrµ = 0 , Fµν = 2∂[µAν] , (6.53) 

and a metric perturbation g̃µν = gµν + hµν satisfying the linearized Einstein’s equations 

GL 3 
= 0 . (6.54)µν [hαβ ] − hµν

L2 

While the symmetries of the (6.2) may still allow one to perform a complete decomposition 
of Aµ and hµν — see [370–372] for the case of SU(2) symmetry and [373] for electromagnetic 
perturbations in the Kerr-NUT-(A)dS spacetime — we find that the Newman-Penrose 
formalism offers a possibly clearer way to compute perturbations. 

In the NP frame, the field strength of the Maxwell field is described by three inde-
pendent (complex) components that are customarily denoted as, 

1 1 
φ0 = Fµν k

µm ν = F41, φ1 = Fµν (k
µlν + mµm ν ) = (F43 +F21), φ2 = Fµν m

µlν = F23. 
2 2 

(6.55) 
Since the background considered here is neutral, the φi correspond to linear electromag-
netic perturbations. In addition, since the metric (6.2) is of Petrov type D and our NP 
frame (6.29) has k and l aligned with the repeated principal null directions, we can ap-
ply directly the results from Teukolsky [105]. These imply that φ0 and φ2 satisfy two 
decoupled equations that read 

[(D − 2ρ − ρ ∗ ) (Δ + µ − 2γ) − δδ ∗ ] φ0 =0 , 
(6.56) 

[(Δ + γ − γ ∗ + 2µ + µ ∗ ) (D − ρ) − δ ∗ δ] φ2 =0 
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On the other hand, gravitational perturbations are described by small changes in 
(1)

the NP frame, ea → ea + ea + ..., which, in turn, induce changes in the NP variables 
(1)

introduced above, e.g. Ψa → Ψa + Ψa + ... for the Weyl scalars Ψa. Since Ψ0, Ψ1, Ψ3 
and Ψ4 all have a vanishing background value, it follows that they are already linearized. 
In particular the scalars Ψ0 and Ψ4, which are defined as 

ν kρ σΨ0 =Cµνρσk
µm m , (6.57) 

ν lρ σΨ4 =Cµνρσl
µm m , (6.58) 

satisfy two decoupled equations, 

[(D − 4ρ − ρ ∗ )(Δ − 4γ + µ) − δδ ∗ − 3Ψ2] Ψ0 =0 , 
(6.59) 

[(Δ + 3γ − γ ∗ + 4µ + µ ∗ ) (D − ρ) − δ ∗ δ − 3Ψ2] Ψ4 =0 

We now search for separable solutions of the variables (φ0, φ2) and (Ψ0, Ψ4). For 
any of these — call it ψ — we can separate the dependence on t and y as in (6.37), so that 
we write ψ = e−i(ωt−ky)H(x)R(r). On the other hand, the dependence on the coordinate 
x in (6.56) and (6.59) only appears in the operator δδ∗ , which reads " #� �2L2 2nx 2n 

δδ ∗ = ∂2 + ∂y − ∂t + i ∂t . (6.60)x2(n2 + r2) L2 L2 

Thus, demanding that δδ∗ψ = λ(r)ψ leads to the same equation for H as in the scalar 
case, given by (6.43). Likewise, by imposing regularity of H at infinity we obtain the 
Hermite functions (6.45) and therefore we get � � � �L2 nω L2 nω 

δδ ∗ ψ = − Eq − ψ , δ ∗ δψ = − Eq + ψ , (6.61)
2 + r2 L2 2 + r2 L2n n 

where the eigenvalues Eq are those in (6.46). Finally, it is possible to write (6.56) and 
(6.59) in a symmetric form [374] by introducing the radial functions Y±1 and Y±2 as, 

−2i arctan (r/n)e 1−iωt+ikyHq 
−iωt+ikyHqφ0 = √ e (x)Y+1(r), φ2 = √ e (x)Y−1(r) , 

V n2 + r2 n2 + r2 

(6.62) 
and 

−4i arctan (r/n)e 1−iωt+ikyHq 
−iωt+ikyHqΨ0 = √ e (x)Y+2(r), Ψ4 = √ e (x)Y−2(r) . 

V 2 n2 + r2 n2 + r2 

(6.63) 
Then Eqs. (6.56) and (6.59) yield the following master equations for the radial variables � � 

2L2Eq
Λ2Y±S (r) + SP (r)Λ±Y±S (r) − + QS (r) V (r)Y±S (r) = 0 , (6.64) 

r2 + n2 

where S = 1 for electromagnetic perturbations and S = 2 for gravitational ones. Here we 
have introduced the differential operators 
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d d2 d d 
Λ± = ± iω, Λ2 = + ω2 , where = V , (6.65)

dr∗ dr2 dr∗ dr∗ 

and P (r) and QS(r) are functions given by 

2(r − 2in)V 
P = −V 0 + , (6.66) 

n2 + r2 

and ⎧ 
3n2V 

2 (S = 1)⎪(n2 + r2)⎨ 
QS = (6.67)� � 

2 V 0012n2 + 8inr − r V (4in − r)V 0 ⎪ − − (S = 2)⎩ 2(n2 + r2)2 n2 + r 2 

These equations can be written in a dimensionless way by introducing z, � and ω̂ as in 
(6.47), which implies that the dimensionless QNM frequencies ω̂ will only depend on � 
and the level q. In order to obtain these frequencies, the radial equations (6.64) must 
be supplemented with suitable boundary conditions, which we determine in the following 
section. 

6.3 Boundary conditions 

Once we have determined the master equations governing the perturbations of scalar, 
electromagnetic and gravitational fields, we are interested in studying the corresponding 
quasinormal modes, which are determined by a specific choice of boundary conditions. At 
the horizon of the black holes, these modes satisfy the condition of behaving as outgoing 
waves, while the conditions at the boundary of AdS can be chosen in different ways. For 
instance, one might impose the master variables to vanish at infinity [333, 334]. However, 
we are interested in making contact with the AdS/CFT correspondence, and in that case 
the boundary conditions are uniquely determined [109, 375, 376]. The bulk perturbations 
must be such that the non-normalisable modes do not fluctuate at infinity. Only in that 
case the quasinormal frequencies correspond to the poles of thermal correlators at the 
boundary. One expects that such boundary condition, together with regularity at the 
horizon, makes the ODE’s over-determined thus allowing a discrete set of frequencies only 
(the quasinormal modes). This is obviously the case for spin-0 fields, but it is less clear 
for higher spins since the boundary conditions are imposed on the actual fields and not 
on the master variables. Rather surprisingly, we find that in the electromagnetic case 
the boundary conditions are degenerate and do not fix the polarisability (the relative 
amplitude between independent modes of the master variables) in terms of the frequency. 
This suggests that the spectrum of thermal poles depends continuously on such parameter. 
On the other hand, the boundary conditions are unproblematic in the gravitational case 
and quasinormal frequencies can be obtained nicely. For this reason, below we discuss 
the scalar and gravitational perturbations in detail and relegate to Appendix E.1 the 
discussion of the electromagnetic case. 
In order to study the boundary conditions it is useful to introduce first the coordinate 

r+ 
z = , (6.68) 

r 

146 



Chapter 6. Quasinormal Modes of NUT-charged Black Branes in the AdS/CFT 
Correspondence 

so that the metric can be written as 

" #� �21 r+
2 f(z) 2n dz2L2 r+

2 + z2n2 � � 
ds2 = − dt + xdy + + dx2 + dy2 (6.69)

2 L2 L2 L2z f(z) 

L2 
f(z) = z 2V (r+/z) . (6.70)2r+ 

In this way, infinity corresponds to z = 0, while the horizon is placed at z = 1. On the 
other hand, the tortoise coordinate r∗ is defined by Z 

dzL2 
r∗ = − , (6.71) 

r+f(z) 

and we note that near the horizon z = 1 it reads 

1 
r∗ ≈ log(1 − z) , (6.72)

4πT 

where T is the Hawking temperature (6.10). 

6.3.1 Scalar field 

In the near-horizon region z = 1, the solution to the radial scalar equation (6.48) can be 
expanded in a Frobenius series � � 

Y (z) = (1 − z)α c0 ++c1(1 − z) + c2(1 − z)2 + . . . . (6.73) 

The indicial equation has the following two solutions for α, 

iω̂ 
α± = ± , (6.74)

3(1 + �2) 

and taking into account (6.72) and that ω̂ = L2ω/r+, we get that the solution behaves 
4πT α±r∗ ±iωr∗ as Y ∼ e = e . Since the solution must behave as an outgoing wave at the 

horizon, we must choose the root α−. 
On the other hand, near the AdS boundary z = 0 we find that there are two 

independent modes: 

2Y (z) = az + bz−1 (1 + O(z)) when z → 0 . (6.75) 

We keep the normalizable mode, which is the one that couples to a scalar field in the dual 
theory, and hence we have to impose that Y (0) = 0. The conditions at infinity and at the 
horizon can only be satisfied simultaneously by a discrete set of complex frequencies ω: 
the quasinormal mode frequencies. 
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6.3.2 Gravitational field 

Let us finally turn to the case of the boundary conditions for gravitational perturbations. 
In the near-horizon region we find that the outgoing-wave condition leads to the following 
form of the radial functions Y±2, 

Y±2 ∼ (1 − z)α±2 when z → 1, (6.76) 

where 
iω̂ iω̂ 

α+2 = − , α−2 = 2 − . (6.77)
3(1 + �2) 3(1 + �2) 

On the other hand, the discussion on boundary conditions at infinity proceeds anal-
ogously to the electromagnetic case. First, by analyzing the solutions of the Newman-
Penrose variables Y±2, one can see that near the boundary they behave as 

Y±2(z) = a±2 + b±2z when z → 0 . (6.78) 

The integration constants a±2 and b±2 will be then ultimately related to the boundary 
conditions imposed on the metric perturbation. Let us consider a metric perturbation 
gµν → gµν + hµν in the geometry of these NUT black branes. Due to gauge freedom, we 
can always choose a gauge in which hµz = 0, so that the non-vanishing components are 
those transverse to the z direction, hab. Then, near z = 0, the metric perturbation hab 
has two modes, � � 

(1) −2 (2)
hab = zhab + z h + O(z) when z → 0 . (6.79)ab 

The holographic dictionary tells us that the renormalizable mode is the one coupled to 
the dual stress-energy tensor, T ab , and therefore we set h(2) = 0. Now we can use the factab 
that ∂t and ∂y are Killing vectors in order to separate variables, so that we have 

hab = ze −i(ωt−ky)γab(x) + O(z 3) when z → 0 . (6.80) 

However, just like in the case of electromagnetic perturbations, we can always set k = 0 
by performing the isometric transformation (E.14). For the sake of completeness let us 
point out that the transformed metric perturbation reads 

ˆ −i(ωt̂−ˆ ˆ 2nωσ ky)ˆhab = ze γab(x̂) , k = k + (6.81)
L2 

where 

γ̂t̂ˆ = γtt , γ̂ x̂ = γtx , γ̂x̂ˆ = γxx (6.82)t tˆ x 

� �22nσ 2nσ 4nσ 2nσ 
γ̂ˆ γ̂ˆ − ˆ − (6.83)ty = γty − γtt , xy = γxy γtx , γyy = γyy γty + γtt . 

L2 L2 L2 L2 

so that, by choosing σ = −kL2/(2nω) we get k̂ = 0. Thus, let us set k = 0 from now on. 
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Next, we have to determine the equations satisfied by the “polarization matrix” γab. 
By expanding the linearized Einstein equations around z = 0, we find that the components 
of this matrix satisfy four equations, corresponding to to Gµz + 3/L2gµz = 0. These yield 

2nω 
L2 xγtx + iγtx 

0 − ω(γxx + γyy) = 0 , 

� 
2 2 � 4n x 4nx 

1 − γtt + γty − γxx − γyy = 0 ,
L4 L2 

� � � �
2 2 2 2 24n x 4n x 4n x 
γtt − 1 − γtt 

0 − iω 1 − γtx
L4 L4 L4 

2n 4nx 2inωx − γty − γty 
0 − yy = 0 ,γxy + γ0 

L2 L2 L2 

� 
2 2 � 4n x 2nxω 

ω 1 − γty − iγxy0 + γyy = 0 ,
L4 L2 

where a prime denotes a derivative with respect to x. Let us now leave these equations 
for a moment to consider the NP variables Ψ0 and Ψ4. These can be computed from the 
metric perturbation hµν according to their definition in (6.57) and (6.58). In doing this, 
one has to be careful to take into account not only the variation of the Weyl tensor, but 
also the variation in the frame, i.e, 

ν kρ σ ν kρΨ0 = δCµνρσkµm m + Cµνρσδ(kµm m σ) . (6.84) 

ν lρ σHowever, since the only non-vanishing Weyl scalar in the background is Ψ2 = −Cµνρσkµm m , 
which is obtained from the contraction with the four different frame vectors, it is clear 
that Cµνρσδ(kµmν kρmσ) = 0, because in this expression the Weyl tensor is always con-
tracted twice either with k or with m, and therefore no combination involving Ψ2 appears. 
A similar argument holds for Ψ4, and hence it is enough to keep only the variation of 
Weyl curvature when computing these scalars in the perturbed metric. Using (6.80) and 
expanding near z = 0 we find that 

� �−iωt Ψ̂ 
0 = e A+2 + B+2z + O(z 2) , (6.85)� �

ˆ −iωt 2)Ψ4 = e A−2 + B−2z + O(z , (6.86) 

where Ψ̂ 
0 and Ψ̂ 

4 are the rescaled variables p p
ˆ +4i arctan (r/n)Ψ0 , ˆΨ0 = V 2 n2 + r2e Ψ4 = n2 + r2Ψ4 , (6.87) 

and the coefficients A±2, B±2 read 

� � 
3 · 2±1 n2x2 inx nx 1 i 

A±2 = − γtt ± γtx − γty − (γxx − γyy)   γxy (6.88)
L2 L4 L2 L2 4 2 
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3 · 2±1 in 2n2x2 nx 2n 
B±2 =  ± 1 − γtt +   ω (γtx ± iγty)

L2r+ 2 L4 2 L2 # 
1 � � 1 � � �� 

+ n   L2ω (±iγxx − 2γxy   iγyy) + ±2inxγ0 − L2 γ0 + ±iγ0 . (6.89)tt tx ty4 4 

Now, when searching for quasinormal modes, we demand that the variables Ψ0,4 be 
separable, and this gives us additional equations for the metric perturbation. If these are 
separable, then we have seen that they have the form 

� �−iωtHq+2Ψ̂ 
0 = e (x) a+2 + b+2z + O(z 2) , (6.90)� �

ˆ −iωtHq−2 
2)Ψ4 = e (x) a−2 + b−2z + O(z , (6.91) 

where we are using (6.78), and the levels q±2 are allowed to be different. Thus, consistency 
with separability demands the following constraints 

A±2 = a±2Hq±2 , B±2 = b±2Hq±2 . (6.92) 

In total, (6.92) and (6.84) form a system of eight equations for the six variables γab, and 
therefore it is an overdetermined system; in order for a solution to exist, the parameters 
a±2, b±2 and the levels q±2 cannot be arbitrary. By analyzing those equations, one can 
see that a solution exists only if the levels q±2 are related according to 

q+2 = q−2 + 4s , (6.93) 

so that q−2 takes the values q−2 = 0, 1, 2, . . . for s = 1 and q−2 = 4, 5, 6, . . . for s = −1. In 
addition, the ratios 

b±2
λ±2 = , (6.94) 

a±2 

must be related according to 

Mq + Pqλ+2
λ−2 = , (6.95)

Qq + Sqλ+2 

where �� � � 
Mq = − i 8q 2 + 40q + 41 ω̂2�2 − 3(2q + 5)ω̂3� + 7(2q + 5)ω̂�3 + ω̂4 + 2�4 , (6.96) 

� � 
Pq = 2q ˆ ω2� + ˆ , 2 + 2q − 5 ω�2 − 2(2q + 3)ˆ ω3 − 2�3 (6.97) 

� � 
Qq = 2q ˆ ω2� + ˆ , 2 + 18q + 35 ω�2 − 2(2q + 7)ˆ ω3 + 2�3 (6.98) 

� � 
Sq =i −(2q + 5)ω̂� + ω̂2 − 2�2 , (6.99) 

and where ( 
q−2 if s = 1 , 

q = (6.100)
−1 − q−2 if s = −1 
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There is also a relation between the normalizations of Y+2 and Y−2, which reads 

� �a−2 22�2ω̂ = 2q−2 + 18q−2 + 35 ˆ ω2� + ˆω�2 − 2(2q−2 + 7)ˆ ω3 + 2�3 
a+2 (6.101)� � 

− iλ+2 (2q−2 + 5)ω̂� − ω̂2 + 2�2 

for s = 1 and 

� � 
2q − 14q−2 + 19 ω�2 + 2(2q−2 − 5)ˆ ω3 + 2�32 ˆ ω2� + ˆa−2 −22�2ω̂ = 

a+2 16(q−2 − 3)(q−2 − 2)(q−2 − 1)q−2� � (6.102)
iλ+2 (2q−2 − 3)ω̂� + ω̂2 − 2�2 

+ 
16(q−2 − 3)(q−2 − 2)(q−2 − 1)q−2 

for s = −1, but this is irrelevant for the computation of quasinormal modes. Finally, one 
can obtain an explicit solution for the γab in terms of Hermite functions Hp, which we 
show in Appendix E.2. 

These results fix the boundary conditions up to the choice of the complex constant 
λ+2 (and up to trivial rescalings of Y±2). In the case of vanishing NUT charge, there are 
two admissible values of λ+2 that give rise to quasinormal modes, and these correspond to 
choosing either parity odd or parity even polarizations. However, in the case at hands the 
background breaks parity, and hence one cannot determine a priori the value of λ+2. Then, 
in order to find the quasinormal modes, one has to solve simultaneously the equations 
(6.64) for Y+2 and Y−2 with the boundary conditions discussed above. Unlike in the 
electromagnetic case, these equations are not degenerate, and the problem will only have 
solutions for a discrete set of values of ω (the quasinormal frequencies) and λ+2 (which 
determine the polarization). 

Fortunately, it is possible to find an analytic result for the polarization parameter 
λ+2 by using the so-called Teukolsky-Starobinsky identities (see e.g. [377] and [374] for 
a detailed analysis of those in Kerr’s space, and [109] for Kerr-(A)dS in the context of 
holography). These relate solutions of the Y+2 variable with those of Y−2, and vice-versa. 
In order to find these identities, it is useful to introduce two new radial functions defined 
by 

2 2)3/2(r + n (r + in)4 
−4i arctan(r/n)Y+2 ,R(+2) = e R(−2) = Y−2 , (6.103)

Δ (r2 + n2)1/2Δ 

2where Δ = (r + n2)V (r). In terms of these, the radial equations for each level (q+2 or 
q−2 in each case) read 

� � 
2 2 � � 
r + n q+2D−1ΔD† + 6 
L2 + iωr − 4ωn (s(q+2 + 1/2) − 2) R = 0 (6.104) 1 (+2) 

� � 
2 2 � � 

D† r + n 
ΔD1 + 6 − iωr − 4ωn (s(q−2 + 1/2) + 2) Rq−2 = 0 , (6.105)−1 (−2)L2 
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where we have introduced the operators 

2 2 2r + n Δ0 r2 + n Δ0 
Dm = ∂r − iω + m , Dm 

† = ∂r + iω + m , (6.106)
Δ Δ Δ Δ 

which satisfy the properties 

DmΔ = ΔDm+1, D† Δ = ΔD† (6.107)m m+1 

q+2 q−2We see that the variables R and R satisfy conjugate equations when the(+2) (−2) 
levels q+2 and q−2 are related as in (6.93), and in that case it is possible to show the 
following relations (the TS identities): 

ω,q+2 ω,q+2−4sD−
† 
1ΔD0 

†D†ΔD1 
†R = C(−2)R , (6.108)0 (+2) (−2) 

ω,q−2 ω,q−2+4sD−1ΔD0D0ΔD1R = C(+2)R(+2) , (6.109)(−2) 

where C(±2) are certain complex constants that can always be chosen as complex-conjugates 
of each other by an appropriate choice of normalization of the radial functions. These rela-

q+2 D† ω,q+tions mean that given a solution R of the (+2) equation, then D† ΔD† ΔD†R is(+2) −1 0 0 1 (+2) 
a solution of the (−2)-equation with same frequency but Landau level q−2 = q+2 − 4s, and 
similarly for the second identity. We remark that these relations map the solutions of the 
radial equations into each other, but this does not necessarily mean that these relations 
are actually realized for generic perturbations — proving that is much harder. However, 
in the case of quasinormal modes, it is not difficult to see that the TS identities map the 
solutions with the correct boundary conditions at the horizon (6.76) into each other. This 
means that, at least when searching for quasinormal modes, the TS identities do hold. 
These identities allow us to obtain the value of λ+2 and to reduce the problem of finding 
QNMs to solving one equation for one variable. 

To show this, consider the asymptotic behavior of Y+2 with generic Robin boundary 
conditions, 

Y+2 = a+2(1 + λ+2z + O(z 2)) . (6.110) 

Using the relations (6.103) and (6.108) one finds that the variable Y−2 then satisfies6 

Y−2 = a−2(1 + λ−2z + O(z 2)) , (6.111) 

for certain a−2, and where λ−2 reads 

M̂q̂  + P̂  
q̂λ+2

λ−2 = , (6.112)
ˆ + ˆQq̂  Sq̂λ+2 

where 

� � �
M̂q̂  = − 4i 8q̂ 2 − 24q̂ + 9 ω̂2�2 + 7(2q̂ − 3)ω̂�3 + (9 − 6q̂)ω̂3� + ω̂4 

6In performing this map one has to be careful to include the O(z 2) terms (not shown above) in Y+2. 
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+ 2� 9i�4 + 25�3 − 18i�2 − 3i , (6.113) 

� �
ˆ 2ˆ2 − 14ˆ ˆ q − 5)ˆ Pq̂  =4 q q + 19 ω�2 − 8(2ˆ ω2� + 4ω̂3 − 9i�4 − 32�3 + 18i�2 + 3i , (6.114) 

� � 
Q̂ 
q̂  =4 2q̂ 2 + 2q̂ − 5 ˆ q)ω̂2� + 4ω̂3 + 9i�4 + 32�3 − 18i�2 − 3i , ω�2 + 8(1 − 2ˆ (6.115) 

� �
Ŝq̂  =4i (3 − 2q̂)ω̂� + ω̂2 − 2�2 , (6.116) 

and where in this case we are defining ( 
q+2 if s = 1 , 

q̂  = (6.117)
−1 − q+2 if s = −1 

Comparing with (6.95) we have two relations between λ+2 and λ−2, so we can determine 
both parameters. We get two different solutions, which read 

� 
(±) i 
λ = q ω�2 + 2ˆω�2 − 4ˆω2� + ˆ ω�2 + 8�3 + 2ˆ 2ˆ2 ̂  qˆ q ̂  ω3 − 5ˆ ω2�+2 (3 − 2q̂)ω̂� + ω̂2 − 2�2 �p

  2�2 (q̂ − 3)(q̂ − 2)(q̂ − 1)q̂ω̂2 + 9�2 , (6.118) 

(±) (±)
λ = −λ − 8i� . (6.119)−2 +2 

Each of these solutions corresponds to one of the two possible polarization modes of 
gravitational waves. 

As a check of our computations we may consider the limit of vanishing NUT charge. 
~In order to recover the perturbations for the planar black hole with momentum k one 

should take the limit n → 0 and q±2 → ∞ in a way in which 4snωq±2/L
2 → ~k2 . By doing 

so, we get the following limiting values of λ±2, 

� � 
ˆi k2 − 2ω̂2 

(−) (−)
λ = −λ = − , (6.120)+2 −2 2ω̂ 

� � 
ˆ2iω̂ k2 − ω̂2 

(+) (+)
λ = −λ = , (6.121)+2 −2 ˆ ω2k2 − 2ˆ 

where k̂ = L2~k/r+ is the dimensionless momentum. It is not difficult to check that these 
coefficients precisely correspond the appropriate boundary conditions for the variables Y±2 
for odd (−) and even (+) parity perturbations of the black brane, respectively — see [335]. 

Let us also mention that, instead of establishing a boundary condition for the radial 
Teukolsky variables by computing them from the metric perturbation, it is possible to go 
the other way around by using the so-called Hertz potentials. These are related to the 
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Teukoslky variables and allow one to reconstruct the metric perturbation from them. In 
this way, one can determine what boundary conditions for the radial variables give rise 
to Dirichlet boundary conditions for the metric perturbation. We study this alternative 
method in Appendix E.3, finding perfect agreement with our results above. 

In sum, we have found that, in order to find the gravitational QNMs, we have to solve 
the radial equation (6.64) for Y+2 with the boundary conditions given by (6.76), (6.110) 
and (6.118) (or equivalently, the equation for Y−2 with the conditions (6.76), (6.111) and 
(6.119)).7 This problem only has solutions for a discrete set of complex frequencies, which 
are the quasinormal-mode frequencies. 

6.4 Quasinormal modes 

Having reduced the study of perturbations to a one-dimensional problem given by the 
radial equations (6.48) and (6.64) and having determined the boundary conditions that 
the corresponding variables must satisfy, we are now ready to compute the quasinormal 
modes. Before showing the explicit results, we can first determine some general properties 
of the quasinormal mode frequencies ω. First, note that the dimensionless frequencies ω̂ 
will only depend on � and on the level q (plus on the overtone number, which we omit). 
Therefore, the actual frequencies scale linearly with the size of the black brane for fixed �, 

ω̂q(�)
ω = r+. (6.122)

L2 

In other words, since � = n/r+, we conclude that the QNM frequencies are homogeneous 
functions of degree 1 of r+ and n. From the point of view of the dual CFT, however, the 
quantities r+ and n do not have a direct interpretation, and instead the physically relevant 
quantities in the boundary theory are the ratio n/L2 — see (6.8) — and the temperature 
T given by (6.10). The QNM frequencies are then homogeneous functions of T and n/L2 , 
and they can be conveniently expressed in terms of the dimensionless ratio 

3n 
ξ = , (6.123)

2πT L2 

which satisfies −1 ≤ ξ ≤ 1. Then, the QNM frequencies read 

ξ 

ξ2ω̂q (�(ξ))
ω = 2π � p �T, 

3 1 − 1 − ξ2 
(6.124) 

where � and ξ are related by8 

�(ξ) = 
1 � 

1 − 
p � 

1 − ξ2 . (6.125) 

Thus, we shall study ω/T as a function of ξ. The frequencies feature in addition a sym-
metry under the exchange of sign of n (or ξ, equivalently). Namely, we have 

ωq(−n) = −ωq ∗ (n), (6.126) 
7The normalization constants a±2 in (6.110) and (6.111) are irrelevant for the definition of the QNMs.� �p

1 1 − ξ28Notice that given ξ, there are actually two compatible values of �, given by �±(ξ) = 
ξ 1 ± . 

However, only the (−) branch contributes to the Euclidean saddle point and thus we will focus on this 
case. 
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meaning that given a QNM frequency ωq(n) of the solution with NUT charge n, then 
−ω∗(n) is a frequency of the solution with charge −n. This result can be obtained by q 
noticing that the complex-conjugate variables Y ∗ satisfy the same equations and bound-±S 
ary conditions as Y±S with ω → −ω∗ and n → −n. Thus, there is a correspondence 
between the QNMs with Re(ω) > 0 and NUT charge n and those with Re(ω) < 0 and 
NUT charge −n, and vice-versa. Hence, it is sufficient to focus on studying the QNMs 
with Re(ω) > 0 for both positive and negative n. In the case of scalar QNMs, one 
can also see that the frequencies are actually symmetric under the change of sign of n, 
ωscalar(n) = ωscalar(−n), because the radial equation is invariant under the change of sign 
of n. For the gravitational perturbations, however, one can see that the replacement 
n → −n is not a symmetry of the master equations (6.64), nor of the boundary conditions 
(6.118). Thus, in principle one should not expect the spectrum of quasinormal modes to 
be identical for positive and negative n. 

In order to compute the QNM frequencies, we use the following method. Taking into 
account the boundary conditions we have determined, we first expand the corresponding 
variables YS near the horizon using a Frobenius series and asymptotically using a Taylor 
expansion. This gives us two approximate solutions Y +(z) and Y ∞(z) valid in the regionsS S 
z ∼ 1 and z ∼ 0, respectively. One must then try to glue both solutions, but this only 
will be possible if ω̂ is a QNM frequency. One may use directly the asymptotic expan-
sions Y +(z) and Y ∞(z) to find the QNM frequencies by imposing the glueing conditionS S 
Y ∞∂zY + − ∂zY ∞Y + = 0, for some intermediate zjoint. This yields an algebraic equa-S S S S zjoint 
tion for ω, whose solutions should converge to the QNM frequencies when the number 
of terms in the asymptotic expansions tend to infinity, However, we have found that the 
convergence is not very good as we increase the NUT charge, and in order to improve the 
accuracy of our results we use a numerical integration.9 Thus, we use the near-horizon 
expansion Y +(z) to initialize the numerical method at some zini close to z = 1, and we S 
numerically integrate the solution up to some zend close to z = 0. Then, we compute the 
Wronskian 

Y num Y num WS = Y ∞∂z − ∂zY ∞ , (6.127)S S S S 
zend 

and we search for solutions of WS = 0. In the case of the scalar field, S = 0, we have 
a single equation, W0 = 0, that determines the QNM frequencies. In the gravitational 
case, S = ±2, we can use any of the two equations W2 = 0 or W−2 = 0. As discussed in 
the previous section, the two variables Y±2 are isospectral when provided with their own 
set of boundary conditions, (6.118) and (6.119), respectively, so it is enough to work with 
only one of them; for instance, Y+2. In the electromagnetic case, as discussed in Appendix 
E.1, both variables Y±1 are isospectral for any choice of the free polarization parameter 
λ+1, which seems to indicate that the QNMs depend continuously on this parameter. We 
will leave this case for future developments, and we will focus here on the scalar and 
gravitational QNMs. 

In order to understand the structure of these quasinormal modes, it is important to 
see how they relate to those of the black brane. One can see that, in the limit of vanishing 

9For the numerical integration we use the ImplicitRungeKutta method implemented in Mathematica 
and we set Precisiongoal→ 10. We estimate that the largest source of error in the computation of the 
QNMs comes from the initial conditions obtained by the series expansions, and thus the error in the 
numerical integration is negligible. By changing the order of these expansions and the values of zini and 
zend we estimate that the relative error in the results that we present below is typically of the order of 
10−3 . 
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Figure 6.1: Real and imaginary parts of the scalar QMN frequencies ωq,m/T as a function of ξ = 3n 
2πT L2 . 

In order of increasing opacity the curves correspond to the levels q = 0, 1, ..., 8. The fundamental mode 
(m = 0) is shown in blue and the first overtone (m = 1) in red. 

NUT charge, we should recover the quasinormal modes of vanishing momentum (k̂ = 0) of 
the black brane. Also, note that the spectrum becomes independent of the level q in that 
limit, and hence an infinite number of modes ωq of different q collapse to the same mode. 
On the other hand, it is not clear that one can recover the QNMs of black branes with 
arbitrary momentum in the limit of n → 0. Note that this momentum can be identified 
as 

k̂2 = lim 2Eq = lim 2snω(1 + 2q)/L2 , (6.128) 
n→0 n→0 

thus, in order to get a non-vanishing value one must take simultaneously n → 0 and 
q → ∞ in a way that qn remains finite in that limit. However, the resulting value of k̂2 

would be in general complex unless one chooses q to be complex as well, but in that case 
the connection with the QNMs of Taub-NUT black holes is broken. Hence, one should 
not expect to recover all the QNMs of the planar black holes in a continuous way. In any 
case, as a test for our method, we have checked that in this limit we reproduce the correct 
values for the axial and polar gravitational QNM frequencies, as shown in tables 3 and 2 
of Refs [333] and [335], respectively. Let us now present our results. 

6.4.1 Scalar 

We start with the simple case of a massless scalar field. For every value of ξ and the level 
q, there is an infinite family of QNMs ωq,m, where, for decreasing order of the imaginary 
part we label these modes by m = 0, 1, . . .. The one with the largest imaginary part is the 
fundamental mode (m = 0) and the rest are overtones. 

In figure 6.1 we show the fundamental mode and the first overtone for the scalar 
QNM frequencies for the levels q = 0, 1, . . . 8. As discussed above, we see that in the limit 
ξ → 0 all the modes with different q collapse to the same corresponding mode of the black 
brane. As a check, we get that 

ωq,0(0) ≈ (7.75 − 11.2i)T ≈ (1.85 − 2.66i)r+/L2 , (6.129) 

2which agrees with the fundamental mode of the black brane when r >> ~k2 [333]. As+ 
we can see in figure 6.1, the real part of ω grows almost linearly with ξ (or n), while 

156 



Chapter 6. Quasinormal Modes of NUT-charged Black Branes in the AdS/CFT 
Correspondence 

the imaginary part has a non-monotonic dependence. Also, note that these frequencies 
are symmetric for ξ → −ξ. For ξ ∼ ±1 we see that Im(ωq,m) ∼ 0 for large q, but our 
numeric results suggest that it never becomes positive, and therefore, scalar perturbations 
are stable for the whole range of ξ. We recall that the results in Fig. 6.1 refer to the 
branch of black holes with positive specific heat, r2 > n2 . We have briefly looked to case+ 
of r2 < n2 , and for those black holes our results indicate that all the quasinormal modes + 
have very small imaginary parts Im(ωq,m) ∼ 0, but that still do not cross 0. In fact, it 

nis even possible to prove analytically that Im[ω] < 0 in the scalar sector for . 24. r+ 
Introducing the new scalar variable 

iωr∗ Y (r)Ψ := e (6.130) 

and performing the usual trick of multiplying by the complex conjugate and integrating 
(6.42) from r+ to ∞ [329, 374] one gets the equation Z ∞ � � |ω|2|Ψ|2(r+)

dr V |Ψ0|2 + V|Ψ|2 = − (6.131)
Im[ω]r+ 

where 
rV 0 n2V 

V = + . (6.132)
2 + r2 2 + r2)2n (n 

It is easy to check that each term in the left hand side of (6.131) is positive definite 
in r+ < r < ∞ for � . 24. In particular, this proves that Im[ω] < 0 for all scalar 
perturbations in the physical backgrounds, which lie at � < 1. 

6.4.2 Gravitational 

Let us now turn to the most interesting case of gravitational modes. We recall that 
(±)

these come in two different classes, ωq , corresponding to the two different polarization 
modes given in (6.118). In addition, in analogy with the case of the black brane, we may 
distinguish two families of modes according to the their behaviour in the limit n → 0. 

Pseudo-hydrodynamic mode 

We find that for every level q there is a special mode such that ωq → 0 in the limit n → 0. 
We recall that, in the case of the black brane, both axial and polar perturbations contain a 
hydrodynamic mode, i.e, one whose frequency vanishes when ~k → 0 [335]. In the presence 
of NUT charge, one cannot talk about hydrodynamic modes because the spectrum of 
quasinormal modes is discrete, and thus we refer to the modes ωq that vanish for n → 0 
as “pseudo-hydrodynamic”. These must be in fact related to the hydrodynamic modes of 
the black brane. 

We find that these pseudo-hydrodynamic modes only exist for the (+) polarization 
— we comment on the absence of these modes for (−) polarization below — and we show 
their corresponding quasinormal frequencies in Fig. 6.2 for the levels q = 0, . . . 8 (where 
q = q+2 − 4 if Re(nω) > 0 and q = q+2 if Re(nω) < 0). As we can see, the real part 
behaves linearly with ξ near ξ = 0, while the imaginary part is quadratic in that region. 
For larger values of ξ the real part of ωq transitions to a different linear dependence, while 
the imaginary part has a non-monotonic behaviour. Indeed, after reaching a minimum 
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Figure 6.2: Pseudo-hydrodynamic QNM frequencies of gravitational perturbations as a function of 
ξ = 3n Top row: in order of increasing opacity we show the levels q = 0, 1, ..., 8, where q = q+2 − 4

2πT L2 . 
if Re(nω) > 0 and q = q+2 if Re(nω) < 0. Bottom row: behaviour near ξ = 0 and comparison with the 
analytic result (6.139). In order to facilitate the visualization in that case we only show the modes with 
q = 0, 2, 4, 6, 8. 

value, the imaginary part grows and becomes close to 0 for ξ = ±1. We observe that 
for larger q, the imaginary part becomes even smaller near ξ = ±1, but interestingly it 
does not become positive, which indicates that there are no unstable modes — we study 
the stability of these solutions below. Another property of these QNM frequencies that is 
worth remarking is that they are symmetric under the exchange ξ → −ξ. This indicates 
that the exchange of sign of the NUT charge must be indeed a hidden symmetry of the 
equations (6.64) with the boundary conditions (6.118) and (6.119). 

Let us now focus on the region ξ << 1. We can actually obtain analytic approxi-
mations for the pseudo-hydrodynamic QNMs in this limit. Recalling first the boundary 
conditions (6.76), we can expand the function Y+2 near z = 1 as 

∞ 
iω̂− X 

Y+2(z) = (1 − z) 3(1+�2) ci(1 − z)i . (6.133) 
i=0 

Using the master equation (6.64) one can then find explicitly the values of all the coeffi-
cients ci in terms of the first one up to a given order i = imax. We can then implement 
a method similar the one of Horowitz and Hubeny [329] and glue this expansion with the 
one in (6.111) at z = 0, which yields the equation 

λ
(−)
Y+2(0) − Y 0 (6.134)+2 +2(0) = 0 , 
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(−)
where we recall that λ+2 is given by (6.118). In general, this method can be used to 
obtain an approximate solution to the QNM frequencies, but in the limit |ξ| << 1 we can 
obtain an analytic result. Taking into account the input from the numerical result, we 
will have 

ω̂q = �aq − ibq�2 + O(�3) , (6.135) 

for some coefficients aq and bq (near ξ = 0 the relation between this variable and � is 
simply ξ ≈ 2�). Without loss of generality, let us consider � > 0 and Re(ω) > 0. Then, 
in the limit � → 0, one can see that the expansion (6.133) collapses to a polynomial, and 

3we have lim� Y+2 
0 (0) = lim� Y+2(0). On the other hand, for generic values of aq, the2 

(+)
coefficient λ is O(�) in that limit, and hence the equation (6.134) is not satisfied. The+2 

(+)
only way in which λ+2 does not vanish at � = 0 is when the denominator in (6.118) is of 
order �3 , and it is easy to see that this happens when 

2 a − (5 + 2q)aq − 2 = 0 , (6.136)q 

where we recall that for Re(nω) > 0 we are defining q = q+2 − 4, which takes the values 
q = 0, 1, 2, . . .. The positive root of this equation yields the following value for aq, � p �1 

aq = 2q + 5 + 4q2 + 20q + 33 . (6.137)
2 

With this choice, one can solve the equation (6.134) order by order in the � expansion. 
For, say, imax = 3, one finds ! 

4 (q + 2)(q + 3)(2q + 5) 
bq = q 2 + 5q + 4 + p . (6.138)

3 4q2 + 20q + 33 

Then it is easy to check that this result does not change for larger values of imax, and thus 
this value of bq is exact. This leads to the following expression for the physical frequency 
ω � � 22πT ibq naq 3bqn 

ωq = aqξ − ξ2 = − i , (6.139)
3 2 L2 4πT L4 

which is valid when q|ξ| << 1. As we show in the second row of Fig. 6.2, these expressions 
match the numeric results with great accuracy. Finally, it is interesting to analyze what 
happens in the limit n → 0 and q → ∞ such that qn remains finite. In that case we have 

L2 

ω ≈ 
2nq 
L2 

2(nq)2 
− i 

πT L4 . (6.140) 

On the other hand, we recall that in this limit we can identify a momentum for the 
perturbations k̂ according to (6.128), which yields 

k̂2 = 
4nqω 

. (6.141) 

Moreover, this is a real momentum when |n|q << 1. Combining this expression with 
(6.140) we obtain the following effective dispersion relation for small k̂ 

ˆ k̂2k 
ω ≈ √ − i . (6.142)

2 8πT 
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This is precisely the dispersion relation for the hydrodynamic mode of polar perturbations 
in the absence of NUT charge [335]. Hence, the pseudo-hydrodynamic modes of the NUT-
charged black holes are analogous to that mode of the black brane. One may wonder why 
we do not obtain other modes similar to the hydrodynamic mode of axial perturbations 
(which correspond to the (−) family in (6.118)). The reason is that such mode is purely 
damped, and according to the identification (6.128) we would need to choose q to be 
imaginary in order to recover a solution of the black brane with real momentum. Thus, 
that mode is simply not present in the Taub-NUT planar black holes. 

When ξ becomes larger, we cannot obtain an analytic result for the frequencies, but 
we can obtain a reasonable good approximation for the real part. In fact, we observe that 
the real part of the dimensionless frequencies ω̂q is a linear function of �, and a fit to the 
numerical data shows that the slope is proportional to q. Namely, we get 

Re(ω̂q) ≈ 4.04(q + 3)� , (6.143) 

plus a constant term that is much smaller. Interestingly, this seems to work not only for 
� ≤ 1, but for arbitrarily large �. Now, when we take into account (6.124), we deduce that 
the dimensionful frequencies ωq are also a linear function of ξ 

2πT ξ 4.04n 
Re(ωq) ≈ 4.04(q + 3) ≈ (q + 3) . (6.144)

3 L2 

Ordinary quasinormal modes 

The rest of the gravitational quasinormal modes have frequencies that tend to a constant, 
non-vanishing value in the limit n → 0. These are labeled by the polarization type ± 
defined in (6.118), the Landau level q and the overtone number m = 0, 1, 2, ..., and we 
denote them ω± . As already remarked before, the values of these frequencies for n → 0q,m 
will correspond to the black brane’s QNM frequencies at vanishing momentum. It is 
known that the polar and axial QNMs of the black brane become degenerate when the 
momentum tends to zero [335], which means that, in our case, both classes of modes ω+ 

q,m 
and ω− also become degenerate. For the same m, the frequencies of all the modes in theq,m 
two families collapse to the same value, 

0lim ω+ (n) = lim ω− 
0 (n) ≡ ωm(0) ∀ q, q (6.145)q,m q ,mn→0 n→0 

In Fig. 6.3 we show the lowest (m = 0) QNMs for a few levels q, where the first thing 
we notice is that the spectrum is again symmetric for ξ > 0 and ξ < 0. The structure 
of the QNM frequencies as a function of ξ is somewhat similar to the one of the pseudo-
hydrodynamic modes, with the real part scaling almost linearly with q for most of the 
range of ξ. In particular, we have the following fits to the real parts of the dimensionless 
frequencies 

ω+ + ω− −Re(ˆ ) ≈ (16.6 + 4.37q)� + c , Re(ˆ ) ≈ (14.9 + 4.27q)� + c , (6.146)q q q q 

where the constant terms are small. When we use (6.124), this produces an almost linear 
relation between ωq and ξ, although the non-vanishing constant terms introduce non-
linearities near ξ = ±1. On the other hand, the imaginary part becomes very small as 
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Figure 6.3: Ordinary gravitational quasinormal modes: we show the lowest overtones m = 0 of both 
3nfamilies ωq, 

− 
0 (left) and ωq, 

+
0 (right) as a function of ξ = 

2πT L2 . In order of increasing opacity the curves 
correspond to the levels q = 0, 1, . . . , 8. 

ξ → ±1, but as before, we do not observe any mode becoming unstable. In addition, for 
every value of ξ and q, the imaginary parts of these modes are larger (in absolute value) 
than those of the pseudo-hydrodynamic modes, and hence there is no level crossing. In 
the opposite limit, at ξ = 0, all the modes collapse to ω q, 

± 
0(0) ≈ (1.849 − 2.664i)r+/L2 , 

which agrees with the first ordinary mode of the black brane in the limit of vanishing 
momentum [333–335]. 

Stability 

So far, all the modes we have found are stable, meaning that their associated frequencies 
lie in the lower half of the complex plane. In order to show that the Taub-NUT solution 
is (linearly) stable one must prove that this property holds for every quasinormal modes. 
Here we provide evidence that this is indeed the case, but for future analyses it would be 
important to provide a solid proof of this fact. 

As we have seen, the quasinormal modes with the lowest imaginary part are the 
pseudo-hydrodynamic ones, and the imaginary part becomes smaller as we increase q. 
Therefore, we should analyze the behaviour of these modes when q → ∞. In Fig. 6.4 we 
have plotted the trajectories in the complex plane of these modes for many values of q 
and a some selected values of � = n/r+. Thanks to the logarithmic scale in the vertical 
axis, we can see clearly that the imaginary part tends to zero exponentially with q and 
that it also decreases when � grows. Indeed, a fit to the numerical data reveals that the 
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Figure 6.4: Trajectories in the complex plane of the QNM frequencies ωq of lowest imaginary part 
(corresponding to the pseudo-hydrodynamic modes) for a few values of �. For large q the imaginary part 
tends to zero exponentially, but it never becomes positive. 
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Figure 6.5: Pseudo-hydrodynamic quasinormal modes extended for n/r+ > 1 for the levels q = 0, ..., 4. 
There is nothing special at the point n = r+ and the modes keep on being stable beyond it. However, 
their imaginary parts become exponentially small as we increase n. 

imaginary part of the QNM frequencies ωq for large q is well approximated by 

−(2.2�−1.05)qIm(ωq(�)) ≈ −TA(�)e , (6.147) 

which is valid as long as � is not far from 1. For smaller values of �, the imaginary part is 
larger (in absolute value) and therefore, the negativity of Im(ωq(�)) for � = 1 implies the 
stability of all the modes with � ≤ 1. However, the asymptotic behaviour for q → ∞ is 
difficult to access for small �, since it requires going to larger and larger q, in which case our 
numeric method becomes less accurate. In any case, our data suggests that the imaginary 
part of ωq ultimately decays exponentially with q for any value of �. Thus, the conclusion 
is that the lowest-lying modes for every q are stable for every |�| ≤ 1, and by extension 
all the modes are. This signals that, despite the apparent pathological properties of the 
NUT-charged spacetimes, they actually give rise to stable and well-defined dynamics. 

Finally, although we have focused on the case |�| ≤ 1 because it is the relevant one 
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for holography, one may wonder what happens if we take even larger values of the NUT 
charge |�| ≥ 1. In fact, since those solutions do not posses an Euclidean continuation, 
one may think that they could be unstable. In Fig. 6.5, we show the lowest gravitational 
QNM for a few values of q as a function of � = n/r+, extended beyond � = 1. We observe 
nothing special going on at that point, and in fact, the modes keep on being stable as we 
increase �. Nevertheless, Fig. 6.5 shows that Taub-NUT solutions with increasingly large 
NUT charge have more quasinormal modes with extremely small imaginary parts, and it 
would be interesting to study if this could eventually give rise to a non-trivial instability 
when nonlinearities are taken into account. 

6.5 Conclusions 

We have performed a thorough analysis of the quasinormal modes of the planar Taub-
NUT spacetimes given by (6.2). As we discussed, these describe the linear response to 
perturbations of a strongly-coupled plasma placed in the geometry (6.8), corresponding 
to a Gödel-type universe with closed time-like curves. 

Our analysis revealed that QNMs in this background organize analogously to the 
Landau levels of a charged particle in a uniform magnetic field. Thus, unlike in the case of 
planar black holes, the spectrum of QNM frequencies is discrete and labeled by a unique 
quantum number q (the Landau level). On the other hand, the QNMs are infinitely 
degenerate in the momentum k along the isometric direction, which we chose to be y. 
Another novel aspect introduced by the NUT charge is that all the reflection symmetries 
of the spacetime are broken, which implies that one cannot decompose the perturbations 
of fields with spin into modes of definite parity. This leads to the appearance of an 
additional “polarization parameter” λ+2 characterizing the gravitational QNMs. This 
parameter has to be determined together with the corresponding QNM frequency ω by 
solving simultaneously the equations for the two NP variables Ψ0 and Ψ4. By using the 
Teukolsky-Starobinsky identities, we have been able to determine this parameter, which 

(±)
has two admissible values λ+2 – see Eq. (6.118). In the limit of vanishing NUT charge, 
these values give rise to modes with odd and even parity in the background of the black 
brane. Then, the boundary conditions for each of the NP variables are fully determined 
and it is enough to solve the radial equation for one of them to find the QNMs. Finally, 
despite parity violation, we found that the spectrum of gravitational QNM frequencies is 
symmetric under the change of sign of the NUT charge. In addition, there is a conjugation 
symmetry that relates the positive-frequency modes of the solution with charge n to the 
negative-frequency ones of the solution with charge −n, and vice-versa — see Eq. (6.126). 

In the case of electromagnetic perturbations we have shown that a similar method 
does not work, since the boundary conditions for the NP variables φ0 and φ2 are degen-
erate. Thus the corresponding polarization parameter λ+1 cannot be determined in this 
way or by parity arguments. This may lead to the conclusion that the spectrum of QNMs 
depends continuously on this parameter, but this issue certainly deserves further research. 
Perhaps analyzing the perturbations in terms of the vector field rather than in terms of 
the Newman-Penrose variables could shed light on this problem. 

Our numerical results on the scalar and gravitational QNM frequencies show that 
all of them lie in the lower half of the complex plane, and hence no instabilities are 
found despite the exotic causal structure of these spacetimes. Thus, this constitutes yet 
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another step into the rehabilitation of Lorentzian spacetimes with NUT charge, in line 
with Refs. [349–353]. If we now apply the AdS/CFT correspondence, this result tells 
us not only that one should be able to perform quantum field theory in the background 
of the causality-violating metric (6.8), but that it should be possible to obtain sensible 
answers. Hence, it would now be interesting to perform a direct QFT computation in 
(6.8) to try to reproduce the results obtained from holography. In particular, we managed 
to obtain an analytic expression for the pseudo-hydrodynamic modes in the limit of small 
NUT charge — see Eq. (6.139). As we have shown, that result generalizes the standard 
dispersion relation for the sound mode in flat space to the case of the background (6.8) 
when n/L2 << T . It would be extremely interesting to attempt a derivation of that 
relation by studying the perturbations of a fluid in such background. 

Let us close our paper by commenting on other directions that should be consid-
ered. As we already mentioned, one should try to understand better the properties of 
electromagnetic QNMs. On the other hand, we have focused mainly on the scalar and 
gravitational modes with lowest imaginary part, but it would be interesting to complete 
the classification of QNMs by analyzing the overtone structure and the highly damped 
modes. In addition, even though we have provided compelling numerical evidence that no 
unstable QNMs exist, it would be important to offer a mathematical proof of this fact. 
Finally, it would also be worth extending these results to the case of Taub-NUT solutions 
of different topologies — the spherical case is particularly interesting due to the interplay 
with the Misner string [357] — or to higher dimensions. Hopefully these will offer further 
insight on the role of NUT charge in the AdS/CFT correspondence. 
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Love Numbers and Magnetic Susceptibility of 

Charged Black Holes 

This chapter is based on: 
Love numbers and magnetic susceptibility of charged black holes 

D. Pereñiguez, V. Cardoso 
Phys.Rev.D 105 (2022) 4, 044026 (arXiv:2112.08400) 

The advent of gravitational-wave (GW) astronomy [378,379] and of very long base-
line interferometry [1,380] allows access to the hitherto invisible Universe [15,97,381–383]. 
In this vast landscape, compact objects such as black holes (BHs) hold a tremendous 
discovery potential, allowing for unprecedented tests of General Relativity (GR) in the 
strong-field regime [15, 97, 381, 382, 384, 385]: are BHs described by classical General Rel-
ativity [386] in vacuum, and up to which extent are matter effects important and mea-
surable [387–389]? Do BHs exist and how can we quantify the presence of horizons in the 
spacetime [381, 390]? 

The answer to the above questions requires an understanding of the dynamics of BH 
spacetimes in general setups, a notoriously difficult task. A key component in how BHs 
respond dynamically lies in their deformability properties, encoded in so-called tidal Love 
numbers (TLNs) [391, 392]. These leave a detectable imprint in the GW signal emitted 
by compact binaries in the late stages of their orbital evolution. An intriguing result in 
classical, vacuum GR concerns the vanishing of the TLNs of BHs [79–82, 393, 394]. The 
precise cancellation of the TLNs of BHs within Einstein’s theory may pose a problem of 
“naturalness” [395–397], which can be argued to be as puzzling as the strong CP and 
the hierarchy problem in particle physics, or as the cosmological constant problem. The 
resolution of this issue in BH physics could lead to – testable, since they would be encoded 
in GW data –smoking-gun effects of new physics. 

The above properties only hold in vacuum, while astrophysical BHs are surrounded 
by matter, even if dilute. Indeed, it was shown that such environmental effects can conspire 
to produce small but nonvanishing TLNs [89]. Other, light matter fields could arise in 
extensions of the Standard Model, or in higher dimensional theories [398–400]. While 
their abundance could be negligible, it is unclear if their very existence contributes to 
nontrivial TLNs, but extra degrees of freedom, particularly scalar fields, can contribute 
with nonvanishing TLNs in some specific theories [401]. 

Here, we address the following main question: what is the effect of charge and elec-
tromagnetic fields on the static polarisability of BHs? In particular, can charge excite new 
modes of static polarisation? Furthermore, we consider this in an arbitrary number of 
spacetime dimensions D ≥ 4. This is a well-motivated setup for different reasons. First, 
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the physics of higher-dimensional, charged BHs is a matter of interest per se. In partic-
ular, these play a central role in the microscopic derivations of the Bekenstein–Hawking 
entropy [128,215] as well as in the computation of its stringy corrections [209,218]. Upon 
dimensional reduction, such BHs can also be relevant in astrophysics. While KK excita-
tions do not seem reachable in astrophysical processes [86], in brane-world type reductions 
the extra-dimensions induce a definite signature in the BH frequency spectrum [402]. It is 
important to revisit these scenarios with focus on the static response. However, first one 
needs to understand the higher-dimensional degrees of freedom in more natural settings 
(e.g. n-dimensional spherical symmetry). Finally, from a more technical viewpoint, space-
time dimensionality D can be seen as a regularisation parameter to obtain four-dimensional 
TLNs by taking D → 4, hence also understanding how special such parameter is in the 
space of possible values [85, 87]. 

7.1 Charged black holes in D Dimensions 

We are interested in the static response of D-dimensional, asymptotically flat BHs which 
are charged under matter gauge fields. One of the simplest theories containing BHs ful-
filling such requirements is Einstein–Maxwell theory in arbitrary spacetime dimension D. 
The field content is the metric gAB and a U(1) gauge field AA, both subject to the action Z Z 

1 √ 1 √ 
S[g, A] = dD x g R − dD x g F2 , (7.1)

2κ2 4 

where F = dA is the field-strength and κ2 the D-dimensional gravitational coupling. The 
equations of motion take the familiar form 

GAB = κ2TAB , d ? F = 0 
1 

TAB = FAC FBC − 
4
gABF2 . (7.2) 

There is a large set of black objects solving these equations that are of interest in several 
contexts [59]. Here we are concerned with linear fluctuations on such spaces, which is a 
problem of significant complexity and hard to approach in various cases. An analysis of the 
perturbations based on harmonic decomposition is possible as long as the BH solutions 
enjoy enough structure [102, 403], and this is the only situation in which a complete 
description of the perturbations in arbitrary D is known. Here we shall restrict to the BH 
solutions of (7.1) in which such analysis holds. 

Static, spherically-symmetric BHs of (7.1) carrying electric charge are described by 
the Reissner–Nordström–Tangherlini solutions [35,36,404]. The metric and field strength 
read 

dr2 
ds2 = −fdt2 + + r 2dΩ2 , F = E0dt ∧ dr , (7.3)nf 

where f = f(r), E0 = E0(r) and we find it convenient to define the dimension parameter 

n = D − 2 , (7.4) 

and 
22M Q2 q κ2q

f = 1 − + , E0 = , Q2 = , (7.5) 
rn−1 2n−2 rnr n(n − 1) 
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with M and Q the BH mass and charge (up to factors) respectively. The metric (7.3) has 
Killing horizons relative to k = ∂t at p 

r n−1 = M ± M2 − Q2 . (7.6)± 

Consequently, the solution exhibits a regular event horizon at r = r+ as long as the 
extremality bound |Q| ≤ M is preserved. In that case, the Hawking temperature of the 
BH is 

n − 1 � � 
n−1 n−1TH = r+ − r− . (7.7)

4πr+ 
n 

When the extremality bound is saturated, the event and Cauchy horizons merge and 
TH = 0. On the other hand, as one approaches the neutral limit Q = 0 the Cauchy 
horizon r− coalesces with the curvature singularity at r = 0 and the solution reduces to 
Schwarzschild–Tangherlini [404]. We will see that this plays a crucial role for the master 
equations governing static perturbations. Whenever any of these two limits takes place, 
i.e. Q = 0 or TH = 0, the equations become hypergeometric and Love numbers and 
magnetic susceptibilities are exactly solvable. For intermediate values of the BH charge 
the equations pick an extra pole (the Cauchy horizon) and are, therefore, less amenable. 
Nevertheless, we still manage to get exact results in most cases. In the following we derive 
the master equations governing static perturbations of (7.3) for both the tensor and vector 
sectors. 

7.2 Perturbation theory 

A large class of BH spacetimes can be written as a warped product of an n-dimensional 
euclidean Einstein manifold (Kn, γij ) and an m-dimensional Lorentzian manifold (N m, gab) 
(i, j = 1, .., n and a, b = 1, ..., m). The spacetime is (n + m)-dimensional with manifold 

astructure M = N m × Kn and, in adapted coordinates xA = (y , zi), the metric takes the 
form 

ds2 = gab(y)dyadyb + r 2(y)γij (z)dzidzj , (7.8) 

where r(y) is the warping factor defined as a function on N m . A metric with structure 
(7.8) is only compatible with energy-momentum tensors of the form 

Tai = 0, T ij = Pδij , (7.9) 

where P is a function on N m . Although such a spacetime is notably general, the fact that 
Kn is Einstein still allows an analysis of fluctuations based on harmonic decomposition. 
This is due to Kodama and Ishibashi (KI) who established a completely covariant and 
gauge-invariant approach to perturbation theory on these spaces [102, 403]. 

In the KI formalism, taking advantage of the structure of Eq. (7.8) one decomposes 
a general perturbation in tensor, vector and scalar sectors. After projection on the cor-
responding harmonics, Einstein’s equations decouple in three sets of partial differential 
equations (PDEs) on N m , one for each sector. This holds for a general energy-momentum 
tensor, and the equations may be simplified by assuming its covariant conservation. Once 
a specific field content has been chosen, Einstein’s equations are supplemented with the 
matter equations of motion. In the case of Einstein–Maxwell theory, the vector potential 
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can already be decomposed in scalar (δAa, a) and vector A(1) 
components1 

i � � 
(1) (1)

δA = δAadya + A + D̂ia dzi , with D̂ iA = 0 , (7.10)i i 

from which it follows that the matter tensor sector is empty in this theory. The final 
form of the equations is given in terms of a gauge-invariant basis of variables that can 
be constructed for each sector. The BHs of Einstein–Maxwell theory considered in this 
work, described by Eq. (7.3), fall in the class of Eq. (7.8) with m = 2 and Kn = Sn . 
In the remaining of this work we adopt the KI formalism [102, 403] and focus on tensor 
and vector fluctuations on the background space (7.3). This is convenient because, on 
the one hand, it suffices to understand the behaviour of test fields as well as interacting 
gravitational and electromagnetic perturbations. In addition, the equations turn out to 
be simple enough so as to admit analytical results in several instances. A more thorough 
analysis including the scalar sector will be considered elsewhere. 

7.2.1 Master equations and their static limit: tensor sector 

A general tensor perturbation is generated by just two gauge-invariant variables (HT , τT ) 
[102, 403], 

hij = 2r 2HT Tij , δTij = r 2 (τT + 2PHT ) Tij , (7.11) 

where Tij are the tensor harmonics on Sn satisfying � � 
D̂ kD̂k + kt 2 Tij = 0, Tii = 0 = D̂ j Tji , (7.12) 

with spectrum 
k2 = L(L + n − 1) − 2 , L = 2, ... (7.13)t 

Furthermore, the Maxwell field-strength δF does not contribute to the tensor part of the 
energy-momentum tensor, 

τT = 0 , (7.14) 

and the Einstein–Maxwell equations reduce to a single PDE on N 2 for HT , 

n k2 + 2 t�HT + Dr · DHT − HT = 0 . (7.15)
2r r 

As noted by KI [102, 403], Eq. (7.15) turns out to be the same as that satisfied by a test, 
massless scalar field on our background if k2 is appropriately identified with the angulart 
momentum number. Therefore, the tensor sector can also be used to infer properties of 
test fields on (7.3). 

After a field redefinition HT = r−n/2φ to get rid of the term ∼ Dr · DHT the master 
equation becomes 

(� + V ) φ = 0 , (7.16) 

with 
2n(3n − 2) Q2 4k2 + 8 + n2 − 2n n MtV = − − . (7.17)

2n 2 rn+14 r 4r 2 
1Equivalently, one may regard δF = dδA as the basic variable and decompose it with respect to Kn . 

This seems the most natural approach for matter fields of higher ranks. 
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We are interested in the static solutions of this equation, that is, solutions satisfying 
£kφ = 0 where k is the static time-like Killing vector of (7.3). Either in Schwarzschild or 
Eddington–Finkelstein coordinates, this translates into the requirement that φ is a function 
of r only, φ = φ(r). When specialised for a static perturbation, Eq. (7.16) becomes an 
ODE of Fuchsian type with four regular singular points: infinity, the event horizon, the 
Cauchy horizon and the singularity. Therefore, it can be cast in Heun’s form [405, 406]. 
To see this, we first introduce the dimensionless variable � r+ 

�n−1 
z = . (7.18) 

r 
Then, after a field redefinition 

2l(n−1)+n−2 
HT (z) = r(z)−n/2 2(n−1)z Ψ(z) , (7.19) 

the master equation becomes of Heun’s type, � � 
γ δ η αβ (z − h)

Ψ00 + + + Ψ0 + Ψ = 0 , (7.20) 
z z − 1 z − zc z(z − 1) (z − zc) 

where primes stand for derivatives with respect to z and with coefficients � � 
zc = cot2 �

, γ = 2(l + 1), δ = 1, η = 1 ,
2 � �

�(l + 1)2 
α = 2 + l, β = 1 + l, h = 2 . (7.21)

l + 2 

This equation depends on two dimensionless parameters, � and l, defined as 

L Q
l = , sin � = , (7.22) 

n − 1 M 

where L is the harmonic number defined by (7.13). The extremality bound dictates |Q| ≤ 
M , and without loss of generality we can restrict to � ∈ [0, π/2] with neturality and 
extremality lying at 0 and π/2, respectively. Equation (7.20) has regular poles at z = 
0, 1, zc, ∞, corresponding respectively to infinity, the event and Cauchy horizons and the 
singularity. 

It is interesting to specialize the general equation (7.20) to neutral and extremal 
cases. The regular singularity at the Cauchy horizon zc collides with that on the event 
horizon as TH → 0, while in the neutral limit Q → 0 it merges with the spacetime 
curvature singularity (see Figure 7.1). Quite interestingly, in none of these limits the 
merging produces an irregular singularity. Instead, one has three regular singularities at 
infinity z = 0, the horizon z = 1 and the curvature singularity z = ∞. Consequently, 
the equation becomes of hypergeometric type and in such cases one can use the theory 
of hypergeometric functions to obtain analytically the response parameters, as discussed 
in [85,87] for the neutral limit. We will find the same pole structure in the vector sector. 

Explicitly, in the neutral case equation (7.20) can be immediately evaluated at � = 0 
giving the hypergeometric equation 

z(1 − z)Ψ00 + [c − (a + b + 1)z] Ψ0 − abΨ = 0 , (7.23) 

with coefficients 
a = b = l + 1, c = 2(l + 1) . (7.24) 
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Figure 7.1: Singularity structure of the master equations. The regular singular point at the Cauchy 
horizon z = zc coalesces with those at the event horizon z = 1 and spacetime singularity z = ∞ in the 
extremal and neutral limits, respectively. 

This coincides with the equation obtained in Ref. [87] for the tensor degree of freedom. In 
the extremal case � = π/2, after a field redefinition 

Ψ(z) = (1 − z)lψ(z) , (7.25) 

one obtains again an hypergeometric equation (7.23) for ψ(z), now with parameters 

a = c = 2(l + 1) , b = 2l + 1 . (7.26) 

In sum, we have found that a static tensor perturbation is governed by Heun’s equation 
(7.20) with coefficients given in (7.21). In the neutral and extremal limits, it reduces to an 
hypergeometric equation (7.23) with coefficients given in (7.24) and (7.26), respectively. In 
the following section we will discuss solutions to these equations and obtain the associated 
response parameters. 

7.2.2 Master equations and their static limit: vector sector 

The vector sector of a general perturbation is composed of [102, 403] 

= h(1) (1)
hai a Vi , hij = −2kvhT Vij , (7.27) 

= T (1)δTai a Vi , δTij = −2kvTT 
(1)Vij , (7.28) 

where the vector harmonics Vi satisfy � � 1 
D̂ j D̂j + k2 Vi = 0 , D̂ iVi = 0 , Vij := − D̂ 

(iVj) ,v kv 

k2 = L(L + n − 1) − 1 , L = 1, 2, ... (7.29)v 

Excluding the special harmonic case L = 1, a basis of gauge-invariant variables in N 2 is !! 
(1) 

F (1) h(1) T=
1 − r 2Da 

h
, (7.30)a a 2r r � �1 

τ (1) T (1) − Ph(1)= , (7.31)a a a r � �2kv (1) (1)
= −T + Ph . (7.32)τT 2 T Tr 

There are two Einstein equations for this sector plus one coming from conservation of TAB , 
δ(rM TMA) = 0. The latter can be combined with one of the Einstein equations to give 
an integrability condition, which allows one to trade Fa by a function Ω satisfying � � 

κ2 
n−1F c − 2 n+1τ cDaΩ = �ac r r , (7.33) 

mV 
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mV = k2 − (n − 1) = (L − 1)(L + n) . (7.34)v 

Notice that mV = 0 only for the special harmonic L = 1 that we consider separately. 
In addition, the vector sector of Maxwell’s field is generated by a single gauge-invariant 
function A on N 2 , 

q
δA = AVidzi , τa = − 

rn+1 �abD
bA, τT = 0 . (7.35) 

In terms of the gauge-invariant functions (Ω, A) on N 2 , the Einstein and Maxwell equations 
are reduced to a pair of coupled PDEs � � 

DaΩ mV 2κ2 
n�abDa 

nDa r − Ω = − r (rτb) , (7.36) 
rn 2r mV 

1 � � k2 + n − 1 qmVvn−2DaADa r − A = Ω . (7.37) 
rn−2 2 2nr r 

Introducing the field redefinitions � � 
−n/2 2κ2q n−2 

φ± = a±r Ω − A + b±r 2 A , (7.38) 
mV 

we find that equations (7.36) and (7.37) decouple if � � 
QmV Q

(a+, b+) = σ(+), σ(+) , (7.39)
Δ + M (n2 − 1) q� � 

(a−, b−) = σ(−), − 
2κ2q

σ(−) , (7.40)
Δ + M (n2 − 1) 

where σ(±) are any two (non-zero) constants and the positive constant Δ satisfies � �2 
Δ2 = M2 n 2 − 1 + 2n(n − 1)mV Q

2 . (7.41) 

With this, φ± satisfy master equations of the form 

(� + V±) φ± = 0 , (7.42) 

with 

k2 + 1 + n2/4 − n/2 n(5n − 2)Q2/4v = − −V± 2 2nr r 
−(n2 + 2)M/2 ± Δ − . (7.43) 

rn+1 

A comment here is in order. This derivation of Eq. (7.42) reproduces that in 
Ref. [102, 403] with the difference that the decoupling parameters (7.39) and (7.40) are 
defined only up to their global factors. This is due to the fact that the general solution 
must depend on two independent amplitudes. In the neutral background these are clearly 
associated to the gravitational and electromagnetic fluctuations. However, when the BH 
is charged, such fluctuations couple and the independent amplitudes refer to the modes 
φ± that contain fixed proportions of gravitational and electromagnetic contributions. This 
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fact will be important for the definition of vector Love numbers and magnetic suscepti-
bilities. Lastly, notice that on the neutral background φ− and φ+ reduce to the standard 
gravitational and electromagnetic master variables respectively, so it may still be sensible 
to regard them as the gravitational and electromagnetic degrees of freedom even in the 
charged case. 

We are interested in static solutions of (7.42). In terms of the new variables Ψ±, 

2l(n−1)+n−2 
2(n−1)φ± = z Ψ± , (7.44) 

we obtain once again Heun’s differential equation (7.20), but now with parameters given 
by � � � 1 1 

zc = cot2 , α = l + 3 + , β = l − ,
2 n − 1 n − 1 

γ = 2(l + 1) , δ = η = 1 , � � � 
2 � 1 + 2l(n − 1)2(l + 2) + n2 − 4n ± Δ̃ 

2 
h± = . (7.45)

2 (2 + l2(n − 1)2 + 3l(n − 1)2 − 3n) 

The dimensionless variable z and parameters l and � are given by (7.18) and (7.22), 
respectively, while Δ̃ := Δ/M . 

This equation has the same pole structure as the master equation of the tensor sector, 
with regular singularities at infinity z = 0, event horizon z = 1, Cauchy horizon z = zc 
and curvature singularity z = ∞. Just as in the tensor case, the Cauchy horizon zc merges 
with the singular points at the event horizon and the curvature singularity in the extremal 
and neutral limits, respectively, leading in both cases to an hypergeometric equation (see 
Figure 7.1). The equations for the neutral case are obtained just by evaluating (7.20) at 
� = 0, and have hypergeometric form 

z(1 − z)Ψ00
± + [c − (a± + b± + 1)z] Ψ0

± − a±b±Ψ± = 0 , (7.46) 

with parameters c = 2(l + 1) and 

1 
a+ = a− + 1 = l − + 1 , (7.47) 

n − 1 
1 

b+ = b− − 1 = l + + 1 . (7.48) 
n − 1 

Again, we find agreement with previous results for the neutral case [87]. The extremal 
limit is a bit more involved. After a field redefinition � � 

1 Σ± 
2 n−1Ψ± = (1 − z) −1 

ψ± , (7.49) 

where r � � 
Σ± = (n − 1)(5n + 3) + 4 mV ± Δ̃ , (7.50) 

and introducing the symbol 

Σρ + σ(3n − 1)
S(ρ,σ) = with ρ, σ = ± , (7.51)

2(n − 1) 
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the equations for ψ± take hypergeometric form with c = 2(l + 1) and 

a± = 1 + l + S(±,+), b± = 1 + l + S(±,−) . (7.52) 

Lastly, we consider the special harmonic mode. This corresponds to the case that 
Vi is a Killing vector field in Kn , i.e. Vij = 0. For Kn = Sn this happens only if 
mV = (L − 1)(L + n) = 0, i.e. L = 1 [102, 403]. The projection of the perturbation into 
this harmonic, unlike the general one (7.27) and (7.28), is composed of just 

= h(1) = T (1)hai Vi , δTai Vi . (7.53)a a 

The gauge-invariant variables in this case are ! ! 
(1) (1)hb ha

Fab = rDa − rDb , (7.54)
2 2r r � �1 −q

T (1) − Ph(1)τa = a a = 
rn+1 �abD

bA , (7.55) 
r 

and Fab can be solved exactly as [102, 403] 

2κ2 2κ2 
F = q A − τ0 , (7.56) 

rn+1 rn+1 

where F = (1/2)�abFab and τ0 is an arbitrary integration constant. It follows that the 
gravitational special mode is non-dynamical. In particular, τ0 generates a small rotation 

n−2 
so restricting to a static background requires setting τ0 = 0. In terms of φ+ = r 2 A, 
Maxwell’s equation reduces precisely to the “+” equation in (7.42) with L = 1. 

In sum, we have found that static vector perturbations are governed by equations 
of Heun’s type (7.20) with parameters (7.45). In the neutral and extremal limits these 
become hypergeometric, with parameters (7.47)-(7.48) and (7.52), respectively. The spe-
cial harmonic is recovered by just setting L = 1 in the electromagnetic mode (+) and 
disregarding the gravitational one (−). In the following section we discuss static solutions 
to these equations and obtain the associated response parameters. 

7.3 Static response 

The original works that established the vanishing of BH Love numbers in four dimensions, 
both in neutral [80] and charged [401] cases, followed an approach based on a full GR 
computation. Recently, the authors in Ref. [87] considered also this point of view to 
compute the static response of fields with integer spin, 0, 1 and 2, fluctuating on a neutral 
Schwarzschild–Tangherlini background. Along the lines of [85], they also showed that 
response parameters obtained in that way can be regarded as coefficients in a worldline 
effective action associated to the BH, thus clarifying some concerns about ambiguities 
in the definition of Love numbers [407, 408]. All these motivates us to adopt a full GR 
approach to study the static response of charged BHs in arbitrary D. 

7.3.1 Tensor Love numbers 

The parameters governing the static response of a system to a tidal field can be obtained by 
inspection of the solutions at infinity. Consider first a tensor perturbation on (7.3), which 
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is described by (7.20). From the standard theory Fuchsian equations, in a neighbourhood 
of z = 0 the general solution has the form [405]� � 

Ψ(z) = AΨresp(z) + B z −2l−1Ψtidal(z) + RΨresp(z) ln z . (7.57) 

Here, A and B are arbitrary constants multiplying two linearly independent solutions. 
The first one, Ψresp(z), is analytic at z = 0 and without loss of generality we choose to 
normalise it as Ψresp(z) = 1+O(z). The second solution contains, in general, a logarithmic 
term where R is some constant and Ψtidal(z) is another analytic function at z = 0 that we 
chose to normalise as Ψtidal(z) = 1+ O(z). Of course, the indices of our equation at z = 0 
are 0 and −(2l + 1), and the latter quantity serves as a discriminant between qualitatively 
different cases: 
• 2l + 1 ∈/ N: In this case the Frobenius solutions associated to each index at z = 0 are 
linearly independent and one has R = 0. After imposing regularity at the horizon z = 1 
the relative normalisation between A and B gets fixed, � � 

Ψ(z) = B kΨresp(z) + z −2l−1Ψtidal(z) . (7.58) 

−2l−1The growing mode at infinity ∼ z has the interpretation of an external tidal field 
while Ψresp(z), which is regular at z = 0, is the response of the system. The parameter k 
is the (dimensionless) tidal Love number, which is precisely the quantity controlling the 
fall-off induced by the tidal field. Since it is completely determined by the requirement 
of regularity at the horizon and does not depend on the amplitude of the tidal field, the 
Love number k is an intrinsic property of the BH. 
• 2l + 1 ∈ N: In general, the second solution exhibits a logarithmic term, so the constant 
R may not vanish. Again, regularity at the horizon z = 1 fixes the relative normalisation 
between A and B, � � 

Ψ(z) = B kΨresp(z) + z −2l−1Ψtidal(z) + RΨresp(z) ln z . (7.59) 

However, unlike the case where 2l + 1 ∈/ N, now the quantity k is ambiguous due to 
power mixing. From the regular solution (7.59), there is no natural way of telling apart 
which contribution to the power series comes from the response and which from the tidal 
field. In particular, kΨresp(z) can be completely absorbed order by order in the term 
z−2l−1Ψtidal(z). Similar observations where noted in [87]. The invariant piece of informa-
tion here is R. Furthermore, as shown in [85] and discussed in [87] the logarithmic term 
corresponds to a classical RG running of the induced response which is characterised by 
R, so we shall take R ln z as the response “parameter” in this case. Nevertheless, there is 
a remarkable exception within the case 2l +1 ∈ N. It may be that (7.20) admits a second 
solution where R = 0 and Ψtidal(z) is a polynomial of degree ≤ 2l +1. This purely growing 
mode is a tidal field and, furthermore, being just a terminating series in z it is precisely 
the solution that is regular on the horizon z = 1. It follows that the Love number is zero 
in this case2 . As shown below, this is exactly what happens in D = 4. 

Notice that this definition of Love numbers is in complete analogy with those in 
the literature in several contexts [80, 84, 85, 87, 401] and, in particular, it reduces exactly 
to that of [87] for the neutral BH. In the following we compute the tensor Love numbers 
for neutral and extremal limits separately, and then consider the case of finite charge and 
temperature. 

2There is some discussion on whether this argument can be applied to the rotating case [82, 394]. 
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Neutral and extremal limits 

For vanishing BH charge Q = 0 static tensor perturbations are governed by the hyperge-
ometric equation (7.23) with parameters (7.24). Writing the general solution in terms of 
hypergeometric functions and using the connection formulas between Kummer’s solutions, 
the authors in [87] computed the response parameters defined as in the previous section. 
We list them here for completeness, ⎧ 

2l+1 Γ(l+1)4 
1tan (πl) l ∈/ N, N⎪ 2π 2⎨ Γ(2l+2)2 

(neut) (−1)2lΓ(l+1)2 
ktensor = ln z l ∈ 12 N (7.60)

(2l)!(2l+1)!Γ(−l)2⎪⎩ 
0 l ∈ N 

and notice that the only relevant case in D = 4 is l ∈ N. In the extremal case the static 
tensor perturbation ψ in (7.25) is likewise subject to an hypergeometric equation, but now 
with parameters (7.26). Such equation turns out to admit a remarkably simple general 
solution for all l, 

A B 
ψ(z) = + 

2l+1 , (7.61)
(1 − z)2l+1 z 

with A and B arbitrary constants. Clearly, imposing regularity at the horizon z = 1 fixes 
−2l−1A = 0, thus leaving just a pure tidal field ψ(z) ∼ z . This leads to the interesting result 

that tensor Love numbers vanish at extremality in any number of spacetime dimensions, 

(ext)
k = 0 . (7.62)tensor 

Finite charge and temperature 

For intermediate charges 0 < Q < M , the Cauchy horizon introduces an additional pole in 
the master equation, which becomes of Heun’s type (7.20). Unfortunately, the latter is not 
as symmetric as the hypergeometric equation, so no analogue of Kummer’s solutions exist 
and connection formulas are not available in general [405, 406, 409]. Thus, it is not clear 
how to write suitably the analytic prolongation of a solution, say, from a neighbourhood 
of z = 0 to a neighbourhood of z = 13 . This makes it difficult to obtain the response 
parameters proceeding as in the neutral and extremal limits. Rather remarkably, though, 
for tensor perturbations it is possible to obtain analytical results for all l. Consider first 
the degenerate case l ∈ 1 N. After choosing the normalisation of Ψtidal(z) as Ψtidal(z) = 2 
1 + O(z), equation (7.20) applied to the second solution of (7.57) fixes R completely and 
it is possible to obtain its exact value after solving just a few orders. Furthermore, the 
result can be written in closed form � �2l+1 � �2l+1 � � 

(neut) cos � (neut) 4πr+ 1 
= R = R l ∈ N ,(7.63)Rtensor tensor tensor TH 

cos2 (�/2) n − 1 2 

(neut)
where r+ and TH are the radius and temperature of the BH, and R is the coefficient intensor 
front of the logarithm in the neutral case (7.60). Notice that (7.63) vanish at extremality, 
TH = 0, as expected from the result in (7.62). For l ∈ N we find that the second solution 

3See [410, 411] for recent progress in tackling this issue for Heun’s confluent equation, which is the 
relevant ODE for oscillating perturbations in Kerr’s black hole. 
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Figure 7.2: Tensor TLNs for some values of l = L/(n − 1) in the generic case 2l + 1 ∈/ N. For n = 6, 10, 
we represent L = 2, 3, 4. Gray dots are the numerical values, solid black dots at the edges are the analytic 
predictions at neutrality Q = 0 and extremality Q = M , and the solid black lines correspond to the 
analytic formula (7.65). We observe that (7.65) is indeed in perfect agreement with both analytic and 
numeric results. 

is just z−2l−1Ψtidal(z), with no logarithmic term, where Ψtidal(z) is a polynomial of degree 
l, so 

ktensor = 0 (l ∈ N) . (7.64) 

This is the only relevant case for D = 4, where l takes values just in N. Tensor pertur-
bations do not exist in four dimensions, but due to the close relation between the tensor 
sector and (massless) scalar fields, the result (7.64) shows that 4D, electrically charged 

1BHs do not polarise under tidal fields of scalar type. Finally, for l ∈/ N, N with no connec-2 
tion formulas available it is most likely that the only way of obtaining the Love numbers 
at finite Q and TH is numerically. However, in views of the results (7.63) and (7.64) it is 
very tempting to try with � �2l+1 � � 

(neut) 4πr+ 1 
ktensor = ktensor TH l ∈/ N, N . (7.65) 

n − 1 2 

(neut)
where k is the neutral Love number shown in (7.60). We compared this expressiontensor 
with the numerical results obtained for ktensor and have found exact agreement. In Figure 
7.2 we illustrate this for various values of l. This confirms the validity of (7.65), although 
a rigorous proof is still desirable. 

We conclude that the tensor Love numbers of a charged BH of radius r+ at temper-
ature TH are � �2l+1 

(neut) 4πr+
ktensor = ktensor TH 

n − 1⎧ � �2l+1 
2l+1 Γ(l+1)4 4πr+ 1tan (πl) TH l ∈/ N, N⎪ 2π n−1 2⎨ Γ(2l+2)2 � �2l+1 = (−1)2lΓ(l+1)2 4πr+ (7.66)ln z l ∈ 1 N 
(2l)!(2l+1)!Γ(−l)2 n−1 TH 2⎪⎩
0 l ∈ N 
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It is clear that these vanish at extremality, TH = 0, thus recovering (7.62), and reduce to 
those obtained in [87] for Q = 0 (see (7.60)). At this point it is natural to wonder how 
general the vanishing of Love numbers at extremality is. In the following section we show 
that vector Love numbers and magnetic susceptibilities do not vanish at TH = 0. Instead, 
BHs become significantly more polarised as one approaches the extremality bound. 

7.3.2 Vector Love numbers and magnetic susceptibility 

Response parameters k± can be defined for the master variables of the vector sector Ψ± 
just as we did for the tensor master variable. Recall that such k± may be just numbers or 
could contain a logarithm in the degenerate cases. The notions of vector Love number and 
magnetic susceptibility, though, are defined relative to the original fields, that is, the metric 
perturbation and Maxwell’s vector potential [401]. More precisely, vector Love numbers 
(magnetic susceptibility) measure the response of the BH when there is no electromagnetic 
(gravitational) tidal field at infinity. Physically, this can be thought of as the BH being 
perturbed by the presence of a massive yet neutral (light yet highly charged) companion. 

The decoupled degrees of freedom (7.38) are defined up to their respective indepen-
dent amplitudes, σ(±). These modulate the intensity with which each mode contributes to 
the total perturbation. Vanishing tidal fields at infinity are achieved for particular choices 
of such amplitudes. To see this, it is more convenient to trade the absolute amplitudes 
σ(±) by a relative amplitude Θ and a global amplitude A defined as � �2 

Δ̃ + n2 − 1σ(−) 1 
Θ := , A := � �2 (7.67)

σ(+) ˜ σ(−)2mV (n − 1)n sin2(�) + Δ+ n2 − 1 

In terms of these, the original fields4 take the form " 
2l(n−1)+n−2�ab 2(n−1)hai =A 

rn−2 D
b rn/2 z(r) (7.68) 

� � � �# 
2(n − 1)n sin � −2l−1× kvector(Θ) + 1 + Θ z + ... Vi
Δ̃ + n2 − 1 p 

n(n − 1) − n−2 2l(n−1)+n−2 
2 2(n−1)δAi =AΘ r z(r) (7.69)

κ� � � � 
mV sin � 1 −2l−1× kmagnetic(Θ) + 1 − z + ... Vi

Δ̃ + n2 − 1 Θ 

where 

2(n − 1)n sin � 
kvector(Θ) = k− + Θk+ , (7.70)

˜ 2 − 1Δ + n 
mV sin � k−

kmagnetic(Θ) = k+ − , (7.71)
Δ̃ + n2 − 1 Θ 

4The condition on the gravitational perturbation is actually imposed on the gauge invariant variable 
Fa in (7.30). For clarity here we give it in terms of the metric variable hai, but this is implicitly evaluated 

(1)
in the gauge hT = 0, where metric perturbation and gauge invariant variable coincide. 
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and we are keeping only the relevant terms of the master variables Ψ±, that is, the tidal 
mode and the response fall-off. The quantities kvector(Θ) and kmagnetic(Θ) are a measure 
of the response of the BH to a gravito-magnetic tidal field characterised by Θ, the relative 
intensity between the gravitational and magnetic contributions. The vector Love numbers 
and the magnetic susceptibility are precisely these quantities evaluated at the Θ’s in which 
there is no magnetic or no gravitational tidal fields respectively, that is, when no term 
∼ z−2l−1 is present in the expansion of (7.69) or (7.68) [401], 

mV (n − 1)n 
kvector = k− + 2 sin2 �� �2 k+ , (7.72) 

Δ̃ + n2 − 1 

mV (n − 1)n 
kmagnetic = k+ + 2 sin2 �� �2 k− . (7.73) 

Δ̃ + n2 − 1 

With this, vector Love numbers kvector and magnetic susceptibility kmagnetic are related 
simply by + ↔ −, and k± can be obtained from the master equations of Ψ± proceeding 
as we did for the tensor variable. 

Neutral and extremal limits 

It is convenient to deal first with neutral and extremal limits since the equations undergo 
a significant simplification. The response parameters for Q = 0 were found in [87] by 
solving (7.46) with parameters (7.47)-(7.48)5 . Let us consider a maximally charged BH 
Q = M . Static perturbations are described by the master variable ψ± (see (7.49)) subject 
to an hypergeometric equation with coefficients (7.52). The response parameters k± in 
degenerate and non-degenerate cases are obtained as follows 
First case: 2l + 1 ∈/ N: The general solution can be written as [405, 406,409] 

ψ±(z) =AF [a±, b±; c|z] + Bz1−cF [a± − c + 1, b± − c + 1; 2 − c|z] , (7.75) 

where A and B are arbitrary constants, a±, b± and c are given in (7.52) and F [a, b; c|z] de-
notes the hypergeometric function. Since the latter are normalised according to F [a, b; c|0] = 
1, the response parameter k± enters the solution as (see Section 7.3.1) 

ψ±(z) = Bk±F [a±, b±; c|z] + Bz1−cF [a± − c + 1, b± − c + 1; 2 − c|z] . (7.76) 

Using the connection formula [406, 409] 

sin [π (c − a − b)] F [a, b; a + b − c + 1|1 − z]
F [a, b; c|z] = (7.77)

πΓ (c) Γ (c − a) Γ (c − b) Γ (a + b − c + 1) 

− (1 − z)c−a−b 
F [c − a, c − b; c − a − b + 1|1 − z] 

,
Γ (a) Γ (b) Γ (c − a − b + 1) 

5We obtain exact agreement with the results of [87] with the exception of the magnetic susceptibility 
in the case that l is a generic number. This may well be a typo and we take the opportunity to provide 
the corrected result: � �2 � �2 h � �i h � �i 

1 1 1 1ˆ ˆ ˆΓ L + 1 + Γ 1 + L̂ − sin π L + sin π L −
D−3 D−3 D−3 D−3 

kV = (2L̂ + 1) � �2 � � ,(7.74) 
2π ̂Γ 2L̂+ 2 π sin L 

where L̂ and kV stand for our l and kmagnetic, respectively, in their notation. 
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one can write explicitly the analytic continuation of each hypergeometric function in (7.76) 
to a neighbourhood of z = 1. In our case, 

ψ±(z) πΓ(c) (1 − z)c−a±−b± F [c − a±, c − b±; c − a± − b± + 1|1 − z] 
= − k± (7.78)

B sin [π (c − a± − b±)] Γ(a±)Γ(b±)Γ(c − a± − b± + 1) 
πΓ(2 − c)(1 − z)c−a±−b± z1−cF [1 − a±, 1 − b±; c − a± − b± + 1|1 − z]− 
sin [π (c − a± − b±)] Γ(a± − c + 1)Γ(b± − c + 1)Γ(c − a± − b± + 1) 

+ (Terms Regular at z = 1) , 

and using the further index displacement 

z 1−cF [1 − a±, 1 − b±; c − a± − b± + 1|1 − z] = F [c − a±, c − b±; c − a± − b± + 1|1 − z] ,(7.79) 

equation (7.78) reads � � 
ψ±(z) k±Γ(c) Γ(2 − c) 

= − + (7.80)
B Γ(a±)Γ(b±) Γ(a± − c + 1)Γ(b± − c + 1) 

(1 − z)c−a±−b± F [c − a±, c − b±; c − a± − b± + 1|1 − z]× π 
sin [π (c − a± − b±)] Γ(c − a± − b± + 1) 

+ (Terms Regular at z = 1) . (7.81) 

The coefficients (7.52) of the extremal master equation satisfy 

Σ± 
c − a± − b± = − , (7.82) 

n − 1 

so the first term in (7.81) is singular at the horizon z = 1 unless k± are chosen to make 
the prefactor vanish, that is, in terms of l and the symbol S(±,±) (see (7.51)), � � � � � � � � 

S(±,+) + l S(±,−) + l Γ(−2l) Γ S(±,+) + l Γ S(±,−) + l 
k± = − � � � � . (7.83)

2l(2l + 1) Γ(2l) Γ ΓS(±,+) − l S(±,−) − l 

Second case: 2l + 1 ∈ N: Here we shall additionally distinguish between D 6= 4 and 
D = 4. In the former case the general solution takes the form 

ψ±(z) = AF [a±, b±; c|z] + BF [a±, b±; a± + b± − c + 1|1 − z] , (7.84) 

and only the second solution is regular at z = 1, which implies A = 0. Again using 
appropriate connection formulas in the degenerate cases it is easy to show that [405, 406, 
409] � � 

−2l−1F [a±, b±; a± + b± − c + 1|1 − z] ∼ z + ... + R±F [a±, b±; c|z] ln z ,(7.85) 

where the ellipsis denotes subleading terms in z and, in terms of l and S(±,±), R± reads � � � � � � � � 
S(±,+) + l S(±,−) + l Γ S(±,+) + l Γ S(±,−) + l 

R± = (−1)2l � � � � . (7.86)
(2l + 1)!(2l)! Γ S(±,+) − l Γ S(±,−) − l 

If D = 4, however, the coefficients in (7.52) become highly degenerate, 

a+ = a− + 2 = c + 3, b+ = b− + 2 = c − 4, c = 2(l + 1) . (7.87) 
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In particular, all of them are integers and the general solution is ( 
F [4, −1; −2l|z] (+)

ψ±(z) = AF [a±, b±; c|z] + Bz−2l−1 . (7.88)
F [2, −3; −2l|z] (−) 

Regularity at the horizon z = 1 sets A = 0 and the functions in the braces are just 
polynomials in z (we recall that L = 1 has no gravitational mode (−)). This is a purely 
tidal field and, thus, we conclude that in D = 4 

k± = 0 . (7.89) 

To summarise, we have found that the response parameters k± of the extremal BHs are 
given by ⎧ 

(S(±,+)+l)(S(±,−)+l) Γ(−2l) Γ(S(±,+)+l) Γ(S(±,−)+l)− 2l + 1 ∈/ Z⎪ 2l(2l+1) Γ(2l) Γ(S(±,−)−l)⎨ Γ(S(±,+)−l) 
k± = (−1)2l 

(S(±,+)+l)(S(±,−)+l) Γ(S(±,+)+l) Γ(S(±,−)+l) (7.90)ln z 2l + 1 ∈ Z, D 6= 4(2l+1)!2l! Γ(S(±,+)−l) Γ(S(±,−)−l)⎪⎩ 
0 D = 4 

where the symbol S(±,±) is defined in (7.51). The vector Love numbers and the magnetic 
susceptibility are obtained by plugging such k±’s into (7.72) and (7.73), respectively. 

It is worth making a remark here before considering the BH with finite Q and TH . 
We have found that vector Love numbers and magnetic susceptibilities do not vanish at 
extremality unless D = 4. This is in contrast with the tensor sector, where Love numbers 
are ∼ T 2l+1 and thus vanish at zero temperature. Quite the opposite, for vector pertur-H 
bations the charge triggers polarisations in modes that are otherwise not excited in the 
neutral case. Indeed, Ref. [87] found that some special modes in the vector sectors (both 
of gravitational and electromagnetic types) do not exhibit a static response to external 
fields when the BH is not charged. These have l ∈ 1 N in D = 5 or L = N(D − 3) ± 1 in2 
D > 5 with N ∈ N (notice these always include the special mode L = 1). Such special 
modes seem to be a property of magnetic-like perturbations since they have no analogue 
in the corresponding scalar sectors. However, when the BH is maximally charged we have 
found that such harmonics do not fall within any special class and, therefore, exhibit some 
polarisation (of both gravitational and magnetic types) according to (7.90). Therefore, 
a non-trivial static response in these harmonics is a signature of non-vanishing charge. 
In the following section we show that, indeed, charging up the BH has the effect (in the 
vector sector) of increasing the intensity of the response and even turning on new modes 
of polarisation. 

Finite charge and temperature 

For intermediate values of the BH charge the equation governing static perturbations in 
the vector sector (7.20) has an extra pole due to the Cauchy horizon. Thus, the treatment 
in terms of hypergeometric functions considered in the neutral and extremal cases does 
not apply. While in the degenerate case 2l + 1 ∈ N it is still possible to obtain exact 
analytic results, for general l with 2l + 1 ∈/ N we proceed numerically. 
First case: 2l + 1 ∈ N: Again we shall distinguish the cases D =6 4 and D = 4. Con-
sider first D 6= 4 and let Lα,β,γ,δ,η,h,zc [·] be Heun’s operator, so that Heun’s equation 
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Figure 7.3: kvector (top) and kmagnetic (bottom), in the degenerate case 2l + 1 ∈ N (omitting the factor 
ln z). We show L = 4, 8, 12 in D = 11. Solid black lines are the analytic results obtained as explained in the 
main text. These interpolate exactly between the analytic predictions at Q = 0 and Q = M , represented 
with solid black dots. 

for a function f(z) reads Lα,β,γ,δ,η,h,zc [f(z)] = 0. Much like in the tensor case, after 
choosing the normalisation of Ψtidal(±)(z) as Ψtidal(±)(z) = 1 + O(z), imposing Heun’s 
equation (7.20) on the second solution of (7.57) fixes R± completely. In particular, us-
ing that Lα,β,γ,δ,η,h,zc [Ψresp(±)(z)] = 0 and expanding Lα,β,γ,δ,η,h,zc [z

−2l−1Ψtidal(±)(z)] = P−2l−2 (±)
z zi it follows that R± is formally given by i=0 ai 

(±)
a2lR± = − . (7.91)
2l + 1 

(±) (±)
The coefficient a depends on the coefficients at all previous orders ai<2l, and it is not2l 
clear whether it is possible to give the general result for any l, n, and � (as it was in the 
tensor sector). However, given a particular value of l one can just solve all previous orders 
ai<2l and get, through (7.91), the exact result of R± in terms of n, �. For example, for 
l = 1 we find " � � 

R± = −2n 4 + 3n 3 − 7n 2 + 11n − 13 ± −2n 2 + 3n + 11 Δ̃ 

# � �� 2 6 �� �� n sec 22 ± ˜+ 2n 2 − 3n + 1 n Δ − 7 cos(2�) , (7.92)
96(n − 1)6 

and it is easy to check that this interpolates between the neutral result in [87] and the 
extremal one in (7.90) (as � goes from 0 to π/2, respectively). Love numbers and magnetic 
susceptibilities are finally obtained by plugging these results into (7.72) and (7.73). In 
Figure 7.3 we show kvector and kmagnetic in D = 11 for several harmonics l. Next we 
consider D = 4. Once again we find a second solution with R± = 0 and Ψtidal(±)(z) a 
polynomial of degree < 2l + 1. This is the solution that is regular at the horizon z = 1 
and consists solely of a tidal field, so once more kvector = 0 and kmagnetic = 0 in four 
dimensions, now for any value of the BH temperature TH . 
Second case: 2l + 1 ∈/ N: In this case, there seems to be no clear way of guessing the 
results for k± out of those for R± in (7.91) as we did for the tensor sector. Thus, we 
proceed numerically by implementing a standard shooting method (similar to that used 
in [412]) which matches the regular solution at the horizon z = 1 with one at infinity of the 
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Figure 7.4: kvector (top) and kmagnetic (bottom), in the general case 2l + 1 ∈/ N. We show L = 2, 3, 4, 6 
in D = 10. Solid black lines are the results obtained numerically and solid black dots are the analytical 
results at Q = 0 and Q = M . The harmonic L = 6, represented with a dashed line, is an example of the 
special modes that do not polarise at Q = 0, but exhibit a non-trivial response as Q grows. 

form (7.58), thus obtaining the values of k±. Then kvector and kmagnetic follow from (7.72) 
and (7.73). In Figure 7.4 we show kvector and kmagnetic in D = 10 for several harmonics l. 

These results confirm the analytical predictions at Q = 0 and TH = 0. We can 
conclude that charged BHs exhibit a stronger response to gravitational and electromagnetic 
tidal fields, relative to their neutral counterparts. Even more, a non-vanishing charge turns 
on new modes of gravitational and magnetic polarisation that are otherwise not responsive 
for Q = 0. A non-trivial static response in such harmonics is, therefore, a definite signature 
of charge. We can also confirm that in four dimensions, for all TH , both tidal Love numbers 
and magnetic susceptibilities vanish. This property is strongly related to the fact that, in 
D = 4, the equations become degenerate enough so as to admit purely-growing polynomial 
solutions. 

7.4 Discussion 

We have studied the effect of charge on the static polarizability of BHs in D ≥ 4 space-
time dimensions. While the four-dimensional setup remains intriguingly special, with all 
response parameters vanishing, TLNs and magnetic susceptibilities exhibit a rich structure 
in D > 4. In particular, charging up the BH turns on new vector-type modes of polarisa-
tion, while tensor Love numbers (encoding also the response to scalar tidal fields) decrease 
and eventually vanish at extremality. More precisely, our results can be summarised as 
follows. 
(i) The relevant differential equations are of Fuchsian type with 4 poles (Heun) at infinity, 
the event and Cauchy horizons and the curvature singularity. In the neutral (Q = 0) and 
extremal (TH = 0) limits, the equations become hypergeometric and TLNs are exactly 
solvable. 
(ii) For the tensor sector of gravitational perturbations we showed that all TLNs (equiv-
alently, the response to scalar tidal fields) vanish at extremality, TH = 0, and confirmed 
the results in the literature for Q = 0 [87]. Even for arbitrary (subextremal) values of the 
BH charge we are able to obtain the exact result analytically, finding that tensor TLNs 
follow a power law in the BH temperature, ktensor ∼ T 2l+1 .H 
(iii) For the so-called vector sector, we find analytical expressions for the Love numbers 
and magnetic susceptibilities at extremality, TH = 0. We also recover results in the liter-
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ature at zero charge [87], correcting the reported result for the magnetic susceptibilities. 
For intermediate Q’s we find some results analytically and some numerically, in all cases 
confirming our analytic predictions at TH = 0 and those in the literature for the neutral 
case, Q = 0. In contrast to the tensor sector, we found that charged BHs exhibit a stronger 
response to gravitational and electromagnetic tidal fields (of vector type), relative to their 
neutral counterparts. In addition, we showed that the BH charge excites new modes of 
gravitational and magnetic polarisation that are otherwise not responsive for Q = 0. A 
non-trivial static response in such harmonics is, therefore, a definite signature of charge. 
(iv) Our results show that in four dimensions and for all values of the charge, all response 
parameters vanish. This property is strongly related to the fact that, in D = 4, the 
equations become degenerate enough so as to admit purely-growing polynomial solutions. 

Our results raise interesting questions in various directions. First, it is desirable 
to understand and explore further the special properties of tensor modes (scalar fields) 
at extremality, possibly including black hole rotation in a suitable spin configuration. 
In parallel, it would also be interesting to consider BHs carrying a more general charge 
configuration and study whether these excite new modes of polarisation, similarly to what 
we found in the vector sector. These and more aspects about tidal deformability of charged 
BHs will be addressed in future work. 
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A 
Conclusions 

A.1 English Version 

In Chapters 2 and 3, we studied the laws of black hole mechanics in the context of the low 
energy effective actions of the heterotic superstring. Momentum maps allowed us to deal 
systematically with the Nicolai–Townsend transformations when constructing conserved 
charges. They were also crucial for deriving the zeroth laws of matter fields and identifying 
the potentials conjugate to the gauge charges. Using the latter we were able to derive a 
first law of black hole mechanics in which all matter terms have the form of a potential 
times the variation of a charge. We obtained that, at first order in α0 , the black hole 
entropy is given by a gauge- and Lorentz- invariant expression in which all terms can be 
computed explicitly. Such a formula was still lacking in the literature and is one of the 
main results of this thesis. We argued that, in general, it does not coincide with Wald’s 
entropy formula which, for this theory, is not gauge invariant. 

Chapter 4 was devoted to study the role of magnetic charges in the laws of black hole 
mechanics. These charges are not associated to a gauge symmetry, so it is not clear how to 
include them in Wald’s formalism. We considered axion-dilaton gravity, whose equations 
are invariant under the archetype of electric-magnetic (or S-) duality group SL(2, R). 
Introducing the magnetic momentum maps, we constructed a generalised Komar charge 
that is duality invariant. This was used to derive a duality invariant Smarr formula for 
the asymptotically flat, static and spherically symmetric black holes of the theory. The 
most general solution describing such class of black holes is known, and the formula was 
verified explicitly. We also discussed how magnetic charges can be included in the first 
law. 

In Chapter 5 we constructed a non-perturbative solution describing the near horizon 
geometry of an extremal, charged and rotating black hole of Einsteinian Cubic Gravity. 
Several families of solutions were found, one of them being smoothly connected to the 
near horizon geometry of the Kerr–Newman black hole. For all of them, the Wald entropy 
could be computed exactly. This is the first example in which the entropy of a rotating 
black hole can be evaluated exactly in a higher-order gravity. 

In Chapter 6 we derived the master equations governing spin-0, spin-1 and spin-
2 fluctuations of a NUT-charged black brane in AdS. We computed, for the first time, 
the gravitational quasinormal mode spectrum of a NUT-charged spacetime. No unstable 
gravitational mode was found, and mode-stability was proven for scalar fluctuations. Our 
boundary conditions were chosen following AdS/CFT in order to interpret the quasinormal 
frequencies as poles in the thermal correlators of the boundary theory. We found a family 
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of pseudo-hydrodynamic modes in the spectrum and obtained their dispersion relation. It 
would be interesting to recover this holographic prediction by studying the hydrodynamic 
regime of a neutral fluid in the boundary geometry. 

The last chapter was devoted to study the tidal deformability of charged black holes. 
It is well known that tidal Love numbers of four-dimensional, asymptotically flat vacuum 
black holes vanish. In Chapter 7, we showed that this is still true if the black hole is 
charged, and that scalar and electromagnetic response coefficients are also vanishing. For 
higher-dimensional black holes, however, such response coefficients are nonvanishing and 
typically increase as the black hole is charged. The scalar response is an exception, since 
it goes to zero as extremality is approached in any number of dimensions. 

A.2 Spanish Version 

En los Caṕıtulos 2 y 3, estudiamos las leyes de la mecánica de agujeros negros en el con-
texto de las acciones efectivas de la supercuerda heterótica. Los momentum maps nos 
permitieron tratar sistemáticamente las transformaciones de Nicolai–Townsend al con-
struir cargas conservadas. También fueron cruciales para derivar las leyes zero de los 
campos de materia e identificar los potenciales conjugados a las cargas gauge. Utilizando 
estos ´ anica de agujeros negros en queultimos, pudimos derivar una primera ley de la mec´ 
todos los términos de materia tienen la forma de un potencial multiplicando la variación 
de una carga. Obtuvimos que, a primer orden en α0 , la entroṕıa de los agujeros negros 
viene dada por una expresión invariante de gauge y Lorentz en la que todos los términos 
pueden calcularse expĺıcitamente. Dicha fórmula aún no exist́ıa en la literatura y es uno 
de los principales resultados de esta tesis. Argumentamos que, en general, no coincide con 
la fórmula de entroṕıa de Iyer–Wald que, para esta teoŕıa, no es invariante gauge. 

El Caṕıtulo 4 se dedicó a estudiar el papel de las cargas magnéticas en las leyes 
de la mecánica de los agujeros negros. Estas cargas no están asociadas a una simetŕıa 
gauge, por lo que no está claro cómo incluirlas en el formalismo de Wald. Consideramos 
la gravedad axión-dilatón, cuyas ecuaciones son invariantes bajo el arquetipo de grupo de 
S-dualidad, SL(2, R). Introduciendo los momentum maps magnéticos, construimos una 
carga de Komar generalizada que es invariante bajo S-dualidad. Esto se utilizó para derivar 
una fórmula de Smarr, también invariante, para los agujeros negros asintóticamente planos, 
estáticos y esféricamente simétricos de la teoŕıa. La solución más general que describe esta 
clase de agujeros negros es conocida, y la fórmula pudo verificarse expĺıcitamente. También 
discutimos cómo se pueden incluir las cargas magnéticas en la primera ley. 

En el Caṕıtulo 5 construimos una solución no perturbativa que describe la geometŕıa 
cercana al horizonte de un agujero negro extremo, cargado y en rotación en la teoŕıa 
cúbica Einsteinian Cubic Gravity. Se encontraron varias familias de soluciones, una de 
ellas conectada de forma suave a la geometŕıa cercana al horizonte del agujero negro de 
Kerr–Newman. Para todas ellas, la entroṕıa de Wald pudo calcularse exactamente. Este 
es el primer ejemplo en que la entroṕıa de un agujero negro en rotación puede evaluarse 
de forma exacta en una gravedad de orden superior. 

En el Caṕıtulo 6 derivamos las ecuaciones maestras que gobiernan las fluctuaciones 
de esṕın-0, esṕın-1 y esṕın-2 de una brana negra con carga NUT en AdS. Calculamos, 
por primera vez, el espectro de modos gravitacionales cuasinormales de un espaciotiempo 
con carga NUT. No hallamos ningún modo gravitacional inestable y, para fluctuaciones 
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escalares, pudimos demostrar la estabilidad del espaciotiempo. Nuestras condiciones de 
contorno se eligieron de acuerdo con la correspondencia AdS/CFT con tal de interpretar 
las frecuencias cuasinormales como polos en los correladores térmicos de la teoŕıa de la 
frontera. Encontramos una familia de modos pseudohidrodinámicos en el espectro y ob-
tuvimos su relación de dispersión. Seŕıa interesante recuperar esta predicción holográfica 
estudiando el régimen hidrodinámico de un fluido neutro en la geometŕıa de la frontera. 

El ´ ´ o a estudiar la deformabilidad de marea de agujeros ne-ultimo capıtulo se dedic´ 
gros cargados. Es bien sabido que, en cuatro dimensiones, los números de Love de agujeros 
negros asintóticamente planos en el vaćıo son zero. En el Caṕıtulo 7, demostramos que 
esto sigue siendo cierto si el agujero negro está cargado, y que además los coeficientes de 
respuesta escalares y electromagnéticos también son nulos. Sin embargo, para agujeros 
negros en mayores dimensiones, estos coeficientes de respuesta no son zero y suelen au-
mentar a medida que el agujero negro es cargado. La respuesta de marea escalar es una 
excepción, ya que se desvanece a medida que la carga se aproxima a su valor extremo en 
cualquier número de dimensiones. 
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B 
Some Proofs 

B.1 The Binormal to BH 

Let U be the tangent to a congruence of affinely-parametrised null geodesics containing a 
geodesically complete Killing horizon H of a Killing vector field k. Let S be a spacelike 

S
section of H and let N be the unique vector on S satisfying N ∈ X(S)⊥ , N2 = 0 and 
N · U = S −1. Then, 

S
dk = 2κU ∧ N + P (N · dk) ∧ U (B.1) 

S
where = means evaluated at S, κ is the surface gravity of H and P is the projector on S 
relative to N . In components, P µν = δµν + UµNν + NµUν . The proof follows by noticing 

H H
that k ∧ dk = 0 and k = hU for some function h, so 

U ∧ dk = H 
0 (B.2) 

where h =6 0. However, (B.2) still holds if H has a regular bifurcation surface BH ⊂ H, 
BH 

where h = 0. Indeed, regularity of BH and geodesic completeness of H implies continuity 
of the l.h.s. of (B.2) at BH. Equation (B.1) follows straightforwardly contracting (B.2) 
with N and using k · rk = H 

κk. If S = BH, then 

P (N · dk)ν = −2P µν N
α rµkα 

= −2P µν (rµ (N
αkα) − kαrµN

α) (B.3) 
BH 
= 0 

BH BH 
where in the last step we used that each term vanishes at BH because Nαkα = 0 = k. 
Thus, from (B.1) it follows that 

BH BH rk = κU ∧ N = κn (B.4) 

where we used that U ∧ N is precisely the binormal n to BH. 

B.2 Geometric Proof of the Zeroth Law 

The zeroth law is a purely geometric result following from the definition of Killing horizon, 
and thus its proof does not require specifying a theory. Simply assume that a spacetime 
(g, M) exhibits a Killing horizon H relative to a Killing vector k, so 

kµ H rµkν = κkν (B.5) 
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Since kµ is tangent to H we can act at both sides of the above equation with £k. The 
r.h.s. just yields (£kκ)kν by virtue of £kg = 0 and £kk = [k, k] = 0. Rewriting the l.h.s. 
as k · rk = (−1/2)d(k2) and using Cartan’s formula £k = dιk + ιkd one has 

1 � � 1 � � 
£k (k · rk) = − (dιk + ιkd) d(k2) = − d ιkd(k

2) = d (kµkν rµkν ) = 0 (B.6)
2 2 

where in the last step we used Killing’s equation in the form r(µkν) = 0. It follows that 

H
£kκ = 0 (B.7) 

1and, consequently, κ is constant along the generators of H. To prove that κ does not 
change from generator to generator let us assume that H is bifurcate, with bifurcation 

BH 
surface BH. There one has k = 0 by definition, and furthermore (see Section B.1), 

BH rµkν = κnµν (B.8) 

BH 
where nµν = −nνµ is the binormal to BH with nµν nµν = −2. Now take T µ tangent to 
BH and hit both sides of the equation above with T γ rγ . The l.h.s. vanishes at BH, 

T γ = 0 (B.9)rγ rµkν = T γ Rνµγσk
σ BH 

where in the second step we used Ricci’s identity specialised to a Killing field. Thus, one 
is left with 

BH 
0 = nµν T γ rγ κ + κT γ rγ nµν (B.10) 

µνand contracting this equation with n one has 

BH BH 1 µν BH 
0 = −2T γ rγ κ + nµν κT γ rγ nµν = −2T γ rγ κ + κT γ rγ (n nµν ) = −2T γ rγ κ (B.11)

2 

Since T µ is any vector tangent to BH, it follows that κ is constant on BH. Thus, κ is 
constant along each generator and its value does not depend on the choice of generator 
because it is constant on BH. Then, assuming that H is geodesically complete, it follows 
that κ is constant everywhere in H thus establishing the zeroth law of black hole mechanics. 
The assumptions considered here about H are enough for the purpose of this thesis, but 
one can prove more general results [144]. The interesting point is that, throughout the 
proof, no use of the equations of motion has been made. In particular, this result remains 
true when gravity is coupled to matter. In Chapters 2, 3 and 4 we will see that the zeroth 
laws associated to matter are also independent of the equations of motion. 

B.3 Proof of the First Law in Pure Gravity Theories 

Here we reproduce in some detail the derivations in [139] and [140].2 Consider a pure 
gravity theory in d spacetime dimensions with Lagrangian 

L = L(gµν , Rµνρσ)� (B.12) 
1In particular, along the ones that are affinely-parametrised, with tangent U , since 0 = £kκ = k(κ) = 

hU(κ) where h is a function that is non-vanishing where k 6= 0. 
2However, we make use of the Noether identities in order to write off-shell identities that were only 

given on-shell in the original references. 
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The general, off-shell, first variation of the identity (1.58) in the main text reads explicitly 

dδQξ = δΘ(δξg) + ιξδL + δSξ 

= δΘ(δξg) + ιξdΘ(δg) + ιξEµν δgµν + δSξ 
(B.13) 

= δΘ(δξg) + £ξΘ(δg) − d (ιξΘ(δg)) + ιξEµν δgµν + δSξ 

= δΘ(δξg) − δξΘ(δg) − d (ιξΘ(δg)) + ιξEµν δgµν + δSξ 

where we used (1.50) in the first step, Cartan’s formula £ξ = ιξd + dιξ in the second, and 
δξδg = −£ξδg in the third, following our sign convention (1.51).3 The first two terms in 
the last line of (B.13) combine into the presymplectic potential introduced in the main 
text, 

ω(δg, δξg) ≡ δΘ(δξg) − δξΘ(δg) (B.14) 

If gµν is a solution then Eµν = 0, and if δgµν satisfies the linearised equations of motion 
then δSξ = 0 because Sξ is proportional to the equations of motion and their derivatives. 
Explicit expressions for the relevant quantities are4 � � 

1 αEµν = − Rµν − gµν L + 2r r β Pµανβ � = −Eµν � (B.15)
2 

h � � i 
2P µαβγ rγ P γαβµ Θ(δg) = rγ δgαβ − 2 δgαβ �µ = θµ�µ (B.16) 

Eµν �νSξ = 2ξµ (B.17) 

h i 
P µναβ rαξβ + 2ξαrβ P µναβ µνQξ = �µν = (1/2)Ω �µν = ?Ωξ (B.18)ξ 

Finally, using these expressions and the properties of k at H, proven in Sections B.1 and 
B.2, one can evaluate each side of (1.75) as explained in [140] and obtain the first law 
presented in the main text. 

3Strictly speaking we have also assumed that Θ(δg) is generally covariant, but this is always possible 
in these theories [140] and will also be the case in all theories considered in Chapters 2 to 4. 

4The notation �µν...Xµν... means contraction with the first indices of the volume form. 
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C 
A Truncation of HST on T5 to a N = 1, d = 5 

Supergravity 

A very useful, almost algorithmic, procedure has been developed in Refs. [416–420] to 
construct supersymmetric solutions (black holes and black rings, in particular) of N = 
1, d = 5 supergravity coupled to vector supermultiplets.1 We can use this procedure in 
the context of the Heterotic Superstring Effective action compactified on a T5 if we find 
a consistent truncation that produces a model N = 1, d = 5 supergravity. A very simple 
truncation with this property has been used, for instance, in Ref. [220]. It can be described 
more conveniently as a trivial dimensional reduction on a T4 (with all the fields that arise 
in the reduction set to their vacuum values) followed by a non-trivial compactification 
on a circle. The only fields that survive are the KR 2-form (which can be dualized into 
a vector field), the KK and winding vectors and the dilaton and KK scalars. This field 
content fits into N = 1, d = 5 supergravity (metric and graviphoton vector field) coupled 
to two vector multiplets (one vector and one real scalar field each). 

In order to profit from the solution-generating techniques developed for N = 1, d = 5 
supergravity theories, we need to rewrite this truncated version of the Heterotic Super-
string effective action in the appropriate form: first, we rewrite the action in the Einstein 
frame and then we will dualize the KR field into a vector. After that, we will identify the 
scalar manifold etc. 

The action of the truncated theory is 

(5) 2 Z h 
−2φ a ∧ eS[e a, B, φ, k, A, B] = 

gs 
e ?(e b) ∧ Rab − 4dφ ∧ ?dφ 

(5)
16πGN (C.1) �

1 1+ k−2dk ∧ ?dk − 1 k2F ∧ ?F − 1 k−2G ∧ ?G + H ∧ ?H ,2 2 2 2 

where H is simply 

H = dB − 1 A ∧ G − 1 B ∧ F . (C.2)2 2 

a aThe string-frame Vielbein e is related to the (modified) Einstein-frame Vielbein ẽ 
by 

1These are supergravities invariant under 8 independent supersymmetry transformations, which are 
combined in a minimal 5-dimensional spinor. Often, they are referred to as N = 2, d = 5 supergravities. 
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a 2(φ−φ∞)/3˜a φ∞e = e e , gs = e , (C.3) 

and the action in the (modified) Einstein frame takes the form (removing the tildes for 
simplicity) 

Z h 
a ∧ e 4 1S[e a, B, φ, k, A, B] = 

1 
?(e b) ∧ Rab + dφ ∧ ?dφ + k−2dk ∧ ?dk 

(5) 3 2 
16πGN 

i 
−1 k2 −4φ/3F ∧ ?F − 1 k−2 −4φ/3G ∧ ?G + 1 −8φ/3H ∧ ?He e e .2 2 2 

(C.4) 
The next step is the dualization of the KR 2-form. As usual, we consider the above 

action as a functional of the 3-form field strength H and add a Lagrange-multiplier term 
to enforce its Bianchi identity dH = −1 FI ∧ F I 

2 

Z h 
4 1S[e a, H, φ, k, A, B] = 

1 
?(e a ∧ e dφ ∧ ?dφ + k−2dk ∧ ?dk 

(5) 
b) ∧ Rab + 3 2 

16πGN 

(C.5)
− 1 k2 −4φ/3F ∧ ?F − 1 k−2 −4φ/3G ∧ ?G + 1 −8φ/3H ∧ ?He e e2 2 2 

−C ∧ (dH + F ∧ G)] , 

where C is the 1-form dual to the 2-form B. Varying this action with respect to H, we 
get 

δS 
= e −8φ/3 ? H − dC = 0 , (C.6)

δH 

which is solved by 

H = e 8φ/3 ? K , K ≡ dC . (C.7) 

Substituting this solution into the action Eq. (C.5) we find the dual action 

Z h 
4 1S[e a, φ, k, A, B, C] = 

1 
?(e a ∧ e b) ∧ Rab + dφ ∧ ?dφ + k−2dk ∧ ?dk 

(5) 3 2 
16πGN 

(C.8)
− 1 k2 −4φ/3F ∧ ?F − 1 k−2 −4φ/3G ∧ ?G − 1 8φ/3K ∧ ?Ke e e2 2 2 

−F ∧ G ∧ C] . 

The final step consists in finding the relation between the fields of this action and 
those of a N = 1, d = 5 theory with two vector supermultiplets written in the standard 
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form2 

Z h1 a ∧ e 1S[e a, φx, AI ] = 
(5) ?(e b) ∧ Rab + gxydφx ∧ ?dφy − 1 aIJ F I ∧ ?F J 

2 2 
16πGN 

(C.9) i 
1+ 

33/2 CIJK F I ∧ F J ∧ AK , 

where the indices I, J, . . . = 0, 1, 2 and the indices x, y, . . . = 1, 2. The metrics gxy(φ), aIJ (φ) 
are defined in terms of the symmetric, constant tensor CIJK which fully characterizes the 
theory and the real special geometry of the scalar manifold as follows: we start by defining 
3 combinations of the 2 scalars hI (φ) that satisfy the constraint 

CIJK h
I (φ)hJ (φ)hK (φ) = 1 . (C.10) 

Next, we define 

hI ≡ CIJK h
J hK , ⇒ hI hI = 1, (C.11) 

and 

√ √ ∂hI √ 
hI ≡ − 3hI ,x ≡ − 3 , hIx ≡ + 3hI,x, ⇒ hI h

I = hI hIx = 0. (C.12)x x∂φx 

Then, aIJ is defined implicitly by the relations 

hI = aIJ h
I , hIx = aIJ h

J
x. (C.13) 

It can be checked that 

aIJ = −2CIJK h
K + 3hI hJ . (C.14) 

The metric of the scalar manifold gxy(φ), which we will use to raise and lower x, y 
indices is (proportional to) the pullback of aIJ 

gxy ≡ aIJ h
I
xh

J
y = −2CIJK h

I hJ hK . (C.15)x y 

If we make the identifications 

√ √ √ 
A0 = − 3C , A1 = − 3A , A2 = − 3B , (C.16) 

we find that 

8φ/3/3 , −4φ/3/3 , = k−2 −4φ/3/3 .C012 = 1/6 , a00 = e a11 = k2 e a22 e (C.17) 
2Here we are using the notation and conventions of Ref. [421] with minor changes explained in Ap-

pendix A of Ref. [422]. See also Ref. [152]. 
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Since, for this CIJK , the only non-vanishing components of aIJ are the diagonal 
ones with aII = 3(hI )2 we find that 

4φ/3/3 , −2φ/3/3 ,h0 = e h1 = ke−2φ/3/3 , h2 = k−1 e (C.18) 

which, in its turn, implies that 

−4φ/3 2φ/3h0 = e , h1 = k−1 e , h2 = ke2φ/3 . (C.19) 

Finally, the non-vanishing components of the scalar metric are 

gφφ = 8/3 , gkk = k−2 . (C.20) 

The equations of motion of a general N = 1, d = 5 theory are (up to a global factor 
of (16πG(5)

)−1 that we omit for simplicity) N 

Ea = ıa ? (e c ∧ e d) ∧ Rcd − 1 gxy (ıadφ
x ? dφy + dφx ∧ ıa ? dφy)2 

� �
1+ 2 aIJ ıaF I ∧ ?F J − F I ∧ ıa ? F J , (C.21a) 

� 
1 ∂yEx = −gxy d ? dφy + Γzw 

ydφz ∧ ?dφw + 2 aIJ F I ∧ ?F J , (C.21b) 

� � 
1EI = −d aIJ ? F J + √ CIJK F J ∧ F K . (C.21c)
3 

In this action, φ stands, actually, for φ−φ∞. In other words: the field φ is constrained 
to vanish at infinity. 

For the particular model that we have obtained as a truncation of the compacti-
fied Heterotic Superstring effective action in d = 5 dimensions, these equations take the 
particular form 

Ea = ıa ? (e c ∧ e d) ∧ Rcd − 4 (ıadφ ? dφ + dφ ∧ ıa ? dφ)3 

� � 
− 1 k−2 (ıadk ? dk + dk ∧ ıa ? dk) + 1 e 8φ/3 ıaF 0 ∧ ?F 0 − F 0 ∧ ıa ? F 0 

2 6 

� � � �
1 −4φ/3k2 1 −4φ/3k−2+ e F 1 ∧ ?F 1 − F 1 ∧ ıa ? F 1 + e F 2 ∧ ?F 2 − F 2 ∧ ıa ? F 2 ,6 ıa 6 ıa 

(C.22a) 

n o 
1 1 1Eφ = −8 d ? dφ + e 8φ/3F 0 ∧ ?F 0 − e −4φ/3k2F 1 ∧ ?F 1 − e −4φ/3k−2F 2 ∧ ?F 2 ,3 6 12 12 

(C.22b) 

n o 
Ek = −k−2 d ? dk − k−1dk ∧ ?k + e −4φ/3k3F 1 ∧ ?F 1 − k−1 e −4φ/3F 2 ∧ ?F 2 , (C.22c) 
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� � 
E0 = −1 d e 8φ/3 ? F 0 +

1 
F 1 ∧ F 2 , (C.22d)3 33/2 

� � 
E1 = −1 d e −4φ/3k2 ? F 1 +

1 
F 0 ∧ F 2 , (C.22e)3 33/2 

E2 = −1 d 
� 
e −4φ/3k−2 ? F 2 

� 
+

1 
F 0 ∧ F 1 . (C.22f) 3 33/2 

C.1 Further Truncation to Pure N = 1, d = 5 Supergravity 

We can truncate this theory further, to minimal (pure) supergravity as follows: if the two 
scalars are constant, taking into account that for φ this constant value must be φ = 0, (we 
call k∞ the constant value of k) their equations become the constraints 

k2 k−20 = F 0 ∧ ?F 0 − 12 ∞F 1 ∧ ?F 1 − 12 ∞ F 2 ∧ ?F 2 , (C.23a) 

0 = k3 
∞F 1 ∧ ?F 1 − k∞−1F 2 ∧ ?F 2 , (C.23b) 

whose simplest solution is this relation between vector field strengths 

= k−1F 0 = k∞F 1 
∞ F 2 ≡ F . (C.24) 

Substituting this solution into the Einstein and vector equations we get only these two 
independent equations 

c ∧ e 1Ea = ıa ? (e d) ∧ Rcd + 2 (ıaF ∧ ?F − F ∧ ıa ? F ) (C.25a) 

1 −2
3 E = −3

1 d ? F +
33/2 F ∧ F , (C.25b) 

which follow from the action of minimal d = 5 supergravity [?] 

Z h i1 1S[e a, A] = ?(e a ∧ e b) ∧ Rab − 1 F ∧ ?F + 
6 
√ F ∧ F ∧ A . (C.26)(5) 2 316πGN 

The truncation procedure we have followed to arrive to this action starting from 
the 10-dimensional Heterotic Superstring effective action can be easily reversed to embed 
solutions of pure N = 1, d = 5 supergravity into the 10-dimensional Heterotic Superstring 
effective theory. In particular, we apply this recipe to the charged, non-extremal, black 
ring solution of Ref. [213] in Section 2.5. 
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D 
Explicit Expressions NHEKN-ECG 

D.1 Equations of motion 

When evaluated on N(x) = 1, the gravitational tensor in (5.5) has the following non-
vanishing components: 

Eψψ = f(x)2Exx , (D.1) 
Eψt = −2nrf(x)2Exx , (D.2) 

2Ett = −r 4Err + 4n r 2f(x)2Exx . (D.3) 

In addition, we can relate Err to Exx thanks to the Bianchi identity rµEµν = 0, 

� � � � 
n2 + x2 � �� � �

2 2
� dExx 2 2Err = 

2 f(x) n + x + Exx n + x f 0(x) + 2xf(x) . (D.4)
2xr dx 

Thus, everything is determined by the component Exx, which reads 

� � � � " � � 
2 2 2 2 4 2 4f −n + x + n + x (1 + xf 0) 3f3 n6 + 16n x2 − 45n x 

fExx =Λ+ + L4 µ − 
(n2 + x2)2 (n2 + x2)6 � � �! 

4 2 3 53fx3 3f2 3n x − 62n x + x 3n2xf 03 
+ + f 0 − 

(n2 + x2)4 (n2 + x2)5 2 (n2 + x2)3 � � � �! 
2 2 4 23 n2 − x 3f n4 + 37n x2 − 2x 3fx2 (f 00)

+ + f 02 − 
4 (n2 + x2)3 2 (n2 + x2)4 4 (n2 + x2)2 � � � � � � ! 

2 f2 2 2 − 3x4 2 3 f 03f n2 + 2x 6n4 + 45n x 3f −5n x + x 
f 00+ − + + 

2 (n2 + x2)3 (n2 + x2)4 (n2 + x2)3 � � ! # 
3f2 2 2x −4n + x 3fx 3fx2f 0 

f (3)+ + − .3 2 22 (n2 + x2) 2 (n2 + x2) 4 (n2 + x2) 
(D.5) 

The electromagnetic energy-momentum tensor has the same structure and hence the equa-
tions of motion are reduced to Exx = Txx. 
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D.2 Solution of the Thermodynamic Quantities 

Three of the four branches of solutions of the constraint equations (5.32) belong to the 
following class, 

∞ ∞X X 
α k β k n(x0, Q) = x nk(Q)x0 , ω(x0, Q) = x ωk(Q)x0, (D.6)0 0 
k=0 k=0 

where (α, β) are real parameters and we assume n0(Q) =6 0 and ω0(Q) 6= 0. The choice 
(α, β) = (0, 1) corresponds to the AdS2 × S2 branch, while the choices (α, β) = (2, 1) and 
(α, β) = (1/2, 0) lead to other two solutions. The remaining branch belongs to the class 

∞ ∞X X√ √ 
n(x0, Q) = nk(Q) ( x0)k , ω(x0, Q) = ωk(Q) ( x0)k . (D.7) 

k=0 k=0 

The solution for all coefficients in each of the expansions can be found explicitly. In the 
following we exhibit the first four terms of the solutions for n2 and ω, as well as four terms 
of the corresponding expansions of the area A, Wald entropy S, and relative entropy 
S/SBH, where SBH = A/(4G). 

For the branch corresponding to AdS2 × S2 , determined by the coefficients (α, β) = 
(0, 1), � � � � 

µL4 2µL4 11µL4 − 13Q4 
2 2 4 n =Q2 + x + 1 + x (D.8)0 0Q4 Q10 � � 

3µL4 25µ2L8 − 90µL4Q4 + 56Q8 
6+ x0 Q16 

1 4Q4 − 2µL4 −11µ2L8 + 8µL4Q4 + 4Q8 
3 5ω =x0 − x + x (D.9)0 0Q2 2Q8 Q14 � � 

4 26µ3L12 − 69µ2L8Q4 + 36µL4Q8 + 2Q12 
7− x0 Q20 

� � � � 
4µL4 48πµL4 µL4 − Q4 

4A =4πQ2 + πx2 8 − + x (D.10)0 0Q4 Q10 � � 
12πµL4 27µ2L8 − 70µL4Q4 + 36Q8 

6+ x0 Q16 

� � � � 
πQ2 2π µL4 + Q4 12πµL4 µL4 − 2Q4 

S = + x 2 + x 4 (D.11)0 0G GQ4 GQ10 � � 
6πµL4 3µ2L8 + 16µL4Q4 − 24Q8 

6− x0 GQ16 

� � 
3µL4 3µL4 µL4 − 6Q4 

S/SBH =1 + x 2 + x 4 (D.12)0 0Q6 Q12 � � 
6µL4 −22µ2L8 + 21µL4Q4 + 12Q8 

6+ x .0 Q18 
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For the branch determined by the coefficients (α, β) = (2, 1), 
√ √ 

2 3µL2 + 3Q2 2µL4 − 3µL2Q2 + 9Q4 
2 4 6 n =x + x (D.13)0 0 2L818µL4 108µ√ √ 

328µ2L8 + 612 3µ3/2L6Q2 + 330µL4Q4 + 117 3µL2Q6 + 432Q8 
8+ x √0 3L12Q25184 3µ7/2L14 + 7776µ 

√ √ √ 
1 3Q2 − 6 √ 

µL2 −100 3µL4 + 72 √ 
µL2Q2 − 33 3Q4 

3 5+ x − xω =x0 √ 
3µL2 0 36µ3/2L6 0 2592µ5/2L10 

(D.14)
√ √ √ 

3584 3µ2L8 + 4344µ3/2L6Q2 + 636 3µL4Q4 + 198 √ 
µL2Q6 − 765 3Q8 

7− x � √ �0 7/2L1431104µ 2 3µL2 + 3Q2 

� � p Q2 28µL4 + 27Q4 
2 4A =4π 3µL2 + x0 π 2 − √ − x0 π √ (D.15)

3µL2 72 3µ3/2L6 
√ √ 

2048µ2L8 + 1224 3µ3/2L6Q2 + 588µL4Q4 − 246 3µL2Q6 − 585Q8 
6+ x0 π � √ � 

3L12 + 5/2L10Q22592 2µ 3µ 

√ p � √ √ √ � 
2π 3µL2

2 2πL
2 + π 3/µQ2 π 68 3µL4 + 48 µL2Q2 − 27 3Q4 

4S = − x + x0 0G 6GL2 432Gµ3/2L6 

(D.16)� √ √ √ � 
π 640 3µ2L8 + 2104µ3/2L6Q2 + 284 3µL4Q4 − 42 √ 

µL2Q6 + 195 3Q8 
6− x � √ �0 1728Gµ5/2L10 2 3µL2 + 3Q2 

√ √ 
2 4 4 4 6 280µ

3/2L6 + 180 3µL4Q2 + 54 √ 
µL2Q4 − 3 3Q6 

S/SBH =2 − x √ + x − x � √ �0 0 0 5/2L10Q23 3µL2 9µL4 216 2 3µ3L12 + 3µ 
(D.17) 

For the branch determined by the coefficients (α, β) = (1/2, 0) 
√ � � 
3µL2 25µL4 4 128125µ2L8 − 32700µL4Q4 + 324Q8 

2 2 3 n =x0 + x − + x √0 0Q 6Q4 5 1800 3µL2Q7 

(D.18)� � 
4 53125µ2L8 4745µL4 16Q2 28 

+ x − + +0 81Q10 27Q6 375µL4 3Q2 

p � � 
3/µQ 3 Q2 −216875µ2L8 + 33300µL4Q4 + 1476Q8 

2ω = − x0 − + x0 √ 
5L2 2Q2 5µL4 9000 3µ3/2L6Q5 

(D.19)� � 
64Q4 2 12475µL4 11413− x − + + −0 1875µ2L8 15µL4 54Q8 27Q4 
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p � � 
20 µ/3L2 50µL4 20 3 318125µ2L8 − 60300µL4Q4 + 324Q8 

2A =x0 π + x0 π − + x0 π √ 
Q Q4 3 270 3µL2Q7 

(D.20)� � 
3203125µ2L8 + 72 Q12/µL4 − 743125µL4Q4 + 27675Q8 

4+ x0 8π 
2025Q10 

� � � � 
3πQ2 6Q4 − 25µL4 −18125 µL4/Q4 + 108 Q4/µL4 + 6150 2S = + x0 2π √ + x0 π 
5G 25G 3µL2Q 1125G 

(D.21)� � 
−34203125µ3L12 + 6656250µ2L8Q4 − 283500µL4Q8 + 1944Q12 

3+ x0 π √ 
67500 3Gµ3/2L6Q7 

p
1 3 3/µQ3 27Q4 13 −21125µ2L8 + 4380µL4Q4 + 252Q8 

S/SBH = + − + x0 √ (D.22) 
x0 25L2 125µL4 10 1000 3µ3/2L6Q3 � � 

224Q6 3595µL4 64Q2 822+ x − + +0 3125µ2L8 18Q6 125µL4 3Q2 

Finally, for the class of solutions defined by (D.7) 

√ � �
3/4L36µL2 √ 3 (2/3)

1/4 µ √ 7µL4 32 4 n =x0 − ( x0) − ( x0) + (D.23)
Q Q5/2 3Q4 2� � 

1/4L√ 5 µ 138Q4 − 439µL4 
+ ( x0) 

21/433/424Q4 (Q2)3/4 

√ (2/3)1/4 1 √ 6Q4 − 115µL4 
3ω = x0 √ + x0 − ( x0) (D.24) 

µ1/4L Q 2Q2 21/433/424µ3/4L3Q7/2 

√ 4 21Q
4 − 197µL4 

− ( x0) √ 
12 6µL2Q5 

√ 
√ p π 6µL2 

A = x0 2
3/431/42πµ1/4L Q − x0 (D.25)

Q� � � � 
√ π 6Q4 − 97µL4 √ 8µL4 

3 4+ ( x0) + ( x0) 3π 1 − 
6 23/431/4µ1/4LQ5/2 Q4 

√ p
√ 23/431/4π µ1/4L Q π µ/6L2 

S = x0 + x0 (D.26)
G GQ� � � � � � 

√ π 47µL4 + 6Q4 √ π 136 µL4/Q4 − 15 
+ ( x0)3 + ( x0)4 

12 23/431/4Gµ1/4LQ5/2 18G 

204 



Appendix D. Explicit Expressions NHEKN-ECG 

p
√ 2 (2/3)3/4 µ1/4L 7 2µ/3L2 √ 103µL4 − 10Q4 

S/SBH =2 + x0 + x0 + ( x0)3 . 
Q3/2 Q3 2 23/431/4µ1/4LQ9/2 

(D.27) 

D.3 Solutions for gk(y) 

Expanding g(y) as in (5.35) and choosing the parameter configuration of the AdS2 × S2 

branch, we see that the solutions for all gk(y) that satisfy the boundary conditions are 
polynomial in y. The first terms read as follows 

g0(y) 1 
2 = (D.28)

1 − y Q2 � � � � 
g1(y) −Q8 y2 + 1 + Q4µL4 16y2 + 3 − 9µ2L8 

2 = (D.29)
1 − y Q12 − 9Q8µL4 � �2 � � � � 

Q24 + Q16 2L8 g2(y) y2 + 1 + Q20µL4 −232y4 + 39y2 − 27 µ 6555y4 − 2218y2 − 592 
= 

21 − y Q14 (Q4 − 30µL4) (Q4 − 9µL4)3 

(D.30)� � � � 
3Q12 3L12 4L16µ −21412y4 + 9939y2 + 3798 + 27Q8µ 7768y4 − 4248y2 − 3085 

+ 3Q14 (Q4 − 30µL4) (Q4 − 9µL4)� � 
5L20 6L24−4617Q4µ 20y2 − 77 − 240570µ 

+ 3Q14 (Q4 − 30µL4) (Q4 − 9µL4)� �3 � � 
−Q44 g3(y) y2 + 1 + Q40µL4 1273y6 + 87y4 − 145y2 − 15 

= (D.31)
2 2 51 − y Q20 (Q4 − 63µL4) (Q4 − 30µL4) (Q4 − 9µL4)� � 

2Q36 2L8µ −85596y6 + 26710y4 + 15907y2 + 11113 
+ 

Q20 (Q4 − 63µL4) (Q4 − 30µL4)2 (Q4 − 9µL4)5 � � 
Q32 3L12µ 8837031y6 − 4893135y4 − 730200y2 − 1854008 

+ 
Q20 (Q4 − 63µL4) (Q4 − 30µL4)2 (Q4 − 9µL4)5 � � 

−6Q28 4L16µ 37929171y6 − 27161595y4 + 80490y2 − 10643708 
+ 

Q20 (Q4 − 63µL4) (Q4 − 30µL4)2 (Q4 − 9µL4)5 � � 
18Q24 5L20µ 180123972y6 − 151235249y4 + 10041658y2 − 65511537 

+ 
Q20 (Q4 − 63µL4) (Q4 − 30µL4)2 (Q4 − 9µL4)5 � � 

6L24−81Q20µ 321947241y6 − 302005267y4 + 27567259y2 − 165642213 
+ 2 5Q20 (Q4 − 63µL4) (Q4 − 30µL4) (Q4 − 9µL4)� � 

7L28729Q16µ 152540040y6 − 152997410y4 + 9998425y2 − 132397703 
+ 2 5Q20 (Q4 − 63µL4) (Q4 − 30µL4) (Q4 − 9µL4)� � 

8L32−13122Q12µ 14926950y6 − 14295073y4 − 3145538y2 − 31632593 
+ 2 5Q20 (Q4 − 63µL4) (Q4 − 30µL4) (Q4 − 9µL4)� � � � 

9L36 10L40708588Q8µ 130865y4 − 373185y2 − 1354486 + 127545840Q4µ 875y2 + 8112 
+ 2 5Q20 (Q4 − 63µL4) (Q4 − 30µL4) (Q4 − 9µL4) 

11L44−348200143200µ
+ 2 5Q20 (Q4 − 63µL4) (Q4 − 30µL4) (Q4 − 9µL4) 
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D.4 Adding a cosmological constant Λ 

For the sake of completeness, here we shall comment on the case of a non-vanishing 
cosmological constant, Λ =6 0. The regularity constraints, analogue to (5.32), for a non-
vanishing Λ read 

� �22 2Q2ω2 n + x2 2 00 = − n + x0 + − µL4ω2(2x0ω + 3) (D.32)2x0 

2 2 4+
Λ � −3n 4 + 6n x0 + x 

� 
,03 

� � � � � � � � � �
2 2 2 2 2 20 = n + x ω n + x − x0 + µL4ω2 ω x0 − 5n + 3x0 (D.33)0 0 
Λ � � � �

2 2 2− x0 n + x 6n 2 + 2x .0 03 

We shall focus on the neighbourhood of solutions for which ω = 0. Such solutions 
are non-rotating if x0 = 0 in such a way that limω→0 ω/x0 6= 0, while limω→0 x0/n = 0. 
On the other hand, if limω→0 ω/x0 = 0 and limω→0 x0/n =6 0, the solutions correspond to 
an ultra-spinning limit and exhibit a non-compact horizon — this only happens for Λ < 0. 
Let us first consider the slowly rotating case. Imposing ω = 0, one solution is x0 = 0 and� �p � � �� 
2n = 1 − 4ΛQ2 − 1 − 4ΛQ2 / −2Λ 1 − 4ΛQ2 . Then, in a neighbourhood of this 

solution, ω and n2 read, in powers of x0, 

! 
√ √√ 

Q4(72Λ2µL4−6)−6ΛµL4Q2(7 1−4ΛQ2+6)−3µL4( 1−4ΛQ2+1)−8ΛQ6 
2 1−4ΛQ2− 1−4ΛQ2 2n = +x0 (D.34)

−2Λ(1−4ΛQ2) 6Q4(4ΛQ2−1) � �
4+ O x0 p

1 + 1 − 4ΛQ2 
ω =x0 (D.35)

2Q2 
√ √ √ 

3Λ2 6ΛµL4Q2(7 1−4ΛQ2+8)−3µL4( 1−4ΛQ2+1)+4Q4(−36Λ2µL4+2 1−4ΛQ2+1)−16ΛQ6 
+x √ √

0 
3Q4(2ΛQ2( 1−4ΛQ2−2)− 1−4ΛQ2+1)� �

5+ O x .0 

On the other hand, performing an expansion of g(y) around x0 = 0 as in (5.35), the 
first non-vanishing term reads � �p

−Λ 2ΛQ2 + 1 − 4ΛQ2 − 1g(y) � � 
= �p � p + O x 2 . (D.36)021 − y ΛQ2 1 − 4ΛQ2 − 3 − 1 − 4ΛQ2 + 1 

Thus, we conclude that AdS2 × S2 is not corrected by ECG also when Λ 6= 0. However, it 
admits smooth corrections when the spin is turned on. This is analogous to the AdS2 × S2 
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branch for Λ = 0 discussed above and, in fact, taking the limit Λ → 0, the RHS of (D.36) 
goes to 1/Q2 as expected. The expansions for the area and the entropy are 

8πQ2 
A =p (D.37) 

1 − 4ΛQ2 + 1 
√ √ √ 

2π(6ΛµL4Q2(7 1−4ΛQ2+8)−3µL4( 1−4ΛQ2+1)+4Q4(−36Λ2µL4+2 1−4ΛQ2+1)−16ΛQ6)
+x2 √

0 3Q4 1−4ΛQ2� �
4+ O x0 

2πQ2 
S = p (D.38) 

G( 1 − 4ΛQ2 + 1) 
√ √ 

2π(Q2(18Λ2µL4− 1−4ΛQ2+1)+3ΛµL4( 1−4ΛQ2+1)+4ΛQ4)2−x0 √ 
3GQ2( 1−4ΛQ2−1) 

4+ O(x0) . 

Let us now focus our attention on the ultra-spinning case. When ω = 0 another solution√ √ 
2is x0 = 3/(2 −Λ) and n = −1/4Λ, which of course is only valid for a negative cosmo-

logical constant, Λ < 0. For simplicity, we shall restrict to the neutral case Q = 0. In a√ √ 
neighbourhood of this solution, ω and n read, in powers of x0 − 3/(2 −Λ), 

2 � √ �2 � √ �3 √ √ √ √
1 3 1 3n =− 1 + x0− √ (−3Λ2µL4−1)+ x0− √ ( 3 −Λ+21 3Λ2 −ΛµL4) (D.39)

4Λ 2 2 −Λ 6 2 −Λ�� �√ �4 
+O x0− √ 3 

2 −Λ � √ � � √ � √√ √ �2 �3 
3 3 3ω =Λ x0− √ − 1 3 −ΛΛ x0− √ − 1 7Λ2 x0− √ (3Λ2µL4+1) (D.40)

2 −Λ 2 2 −Λ 6 2 −Λ�� �√ �4 
+O x0− √ 3 . 

2 −Λ 

On the other hand, the area and the entropy are �� �√ 7π(6Λ2µL4−1)� √ � √ �2
2 3π 7π 3 3A =− � √ � + + √ √ x0− √ +O x0− √ (D.41)

3 Λ 2 3 −Λ 2 −Λ 2 −Λ 
(−Λ)3/2 x0− √ 

2 −Λ �� �√ π(6Λ2µL4−7)� √ � √ �2 
π 3 7π 3 3S =− � √ � + + √ √ x0− √ +O x0− √ . (D.42)

3 4GΛ 8 3G −Λ 2 −Λ 2 −Λ
2G(−Λ)3/2 x0− √ 

2 −Λ 

The latter pair of quantities are only well defined on an anular neighbourhood centred √ √ 
at x0 = 3/2 −Λ. However, this does not mean that there is no solution when x0 = √ √ 
3/2 −Λ. Let us recall that, as long as ω/x0 remains finite, so does g0(1), according 

to (5.21). Then, the coordinates can be chosen to parametrize a manifold of topology 
AdS2 × S2 by identifying canonically the coordinate φ, i.e. φ ∼ φ + 2π (see equation 
(5.19)), and the metric becomes regular everywhere. However, if ω/x0 = 0 then g0(1) also 
vanishes and the metric does not describe a regular geometry on AdS2 × S2 . Thus, in 
order to obtain a solution also at the parameter configuration 

√ √ 
2 x0 = 3/2 −Λ, ω = 0, n = −1/4Λ, (D.43) 

let us rewrite (5.19) in terms of a new angular coordinate 
x0

ϕ = φ (D.44)
ω 

and identify it with arbitrary period, ϕ ∼ ϕ + Δϕ. The equations (D.32) and (D.33) 
are unchanged by this coordinate transformation, so (D.43) constitute a solution. Since 

207 



Appendix D. Explicit Expressions NHEKN-ECG 

g0(1) = 0, the topology our coordinates parametrize is that of AdS2 × S1 × R, and the 
metric is regular everywhere. The horizon has become non-compact, with topology S1 ×R, 
and is infinitely large, in the sense that the proper length of coordinate curves tangent 
to ∂y (which extend from y = −1 to y = 1) is infinite. However, the horizon has a finite 
area, A = 2Δϕ, and Wald’s correction to the Bekenstein–Hawking entropy vanishes, as 
can be deduced from (5.47), because now both g(1) and g0(1) are zero. Nevertheless, one 
can check that the profile of the solution is not going to be the same as in Einstein gravity. 
This solution of ECG is analogous to the super-entropic black holes of Ref. [413], in the 
sense that both have non-compact horizons with finite area and can be understood as 
an entropy-divergent limit of a rotating solution. Thus, it would be interesting to study 
whether this solutions do or do not respect the Isoperimetric Inequality in the context of 
extended black hole thermodynamics. However, further investigation in these lines is left 
for future work. 
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E 
More on Boundary Conditions of AdS-Taub-NUT 

Black Branes 

E.1 Electromagnetic boundary conditions 

In the case of the electromagnetic field, the analysis of the boundary conditions in the 
near-horizon are analogous to the scalar case. Again one finds that the NP variables 
φ0, φ2 can be expanded in a Frobenius series near z = 1, and imposing the condition of 
outgoing waves one finds the following solutions for the radial functions Y±1: 

Y±1 ∼ (1 − z)α±1 when z → 1, (E.1) 

where 
iω̂ iω̂ 

α+1 = − , α−1 = 1 − . (E.2)
3(1 + �2) 3(1 + �2) 

The analysis of boundary conditions at infinity, on the other hand, is much involved than 
in the case of a scalar field. By analyzing the solutions of the radial equations (6.64) for 
Y±1, we see that the two independent solutions behave near z = 0 as 

Y±1(z) = a±1 + b±1z when z → 0 , (E.3) 

where a±1 and b±1 are constants. Now, the boundary conditions are not imposed directly 
on the NP variables but on the perturbation of the Maxwell field Aµ, so we must study 
how these relate. Let us for into account that we can always choose a gauge in which the 
z-component the vector vanishes Az = 0. Then, the solutions to Maxwell equations near 

(1) (2)
z = 0 behave as Aa ∼ Aa + zAa , where a denotes the boundary indices a = t, x, y. 

(1)
Therefore, Dirichlet boundary conditions imply that Aa = 0, and we only keep the mode 
that decays at infinity. Separating variables, this means that we can write the vector 
asymptotically as 

−i(ωt−ky)γaAa = ze (x) + O(z 3) , (E.4) 

where γa are certain functions and one can check that the following term in the z-expansion 
is indeed O(z3). Now, the functions γa are not arbitrary, but we find that Maxwell 
equations impose the following constraint, � � �� � � 

2nx 2nxω 2nxω 
ω − k + γt − iγ0 + k + γy = 0 . (E.5)xL2 L2 L2 
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On the other hand, we are searching for solutions such that the NP variables φ0 and φ2 
are separated, and this will impose, too, conditions on the γa. Computing φ0 and φ2 from 
the vector perturbation (E.4) we find that 

� �−i(ωt−ky)φ̂0 = e A+1 + B+1z + O(z 2) , (E.6) 

� �−i(ωt−ky)φ̂2 = e A−1 + B−1z + O(z 2) , (E.7) 

where φ̂0,2 are defined as p p
ˆ 2 2i arctan (r/n)φ0 , ˆφ0 = V n2 + r e φ2 = n2 + r2φ2 , (E.8) 

and the coefficients A±1, B±1 read 

� � 
2±1/2 2inxγt

A±1 = − ± γx + iγy , (E.9)
4L L2 

� � � � 
2±1/2 22n x � � � � 

B±1 = L2γt 
0 +  k − L2γt + i  n + L2ω γx + n   L2ω γy . (E.10)

4Lr+ L4 

Now, on the other hand, if both φ0 and φ2 can be separated, then the result should read 

� � 
φ̂0 = e −i(ωt−ky)Hq+1 (x) a+1 + b+1z + O(z 2) , (E.11) 

� �−i(ωt−ky)Hq−1φ̂2 = e (x) a−1 + b−1z + O(z 2) , (E.12) 

where we have taken into account (E.3) and where Hq±1 (x) are the eigenfunctions in (6.45), 
with two possibly different levels q+1 and q−1 for each of the variables. Thus, we obtain a 
system of four equations for the variables γa and the four constants a±1, b±1, 

A±1 = a±1Hq±1 , B±1 = b±1Hq±1 . (E.13) 

Together with (E.5), we have to solve a system of five equations which is not guaranteed 
to have solutions. In order to simplify the computations, at this point it is interesting to 
note that we can set k = 0 without loss of generality. In fact, the change of variables 

x̂ =x − σ , t̂ = t +
2n
σy (E.14)

L2 

leaves invariant the background metric and therefore is a symmetry of the linearized 
equations. On the other hand it transforms the perturbation Aa as follows 

−i(ωt̂−ˆ 2nωσ ˆ ky)ˆ ˆAa = ze γa(x̂) , where k = k + , (E.15)
L2 

and 
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2nσ 
γ̂ˆ = γt , γ̂x̂ = γx , γ̂y = γy − γt . (E.16)t L2 

Therefore, by choosing σ = −kL2/(2nω) we get k̂ = 0. Equivalently, we can always work 
with the solution with k = 0 and generate another solution with k 6= 0 by applying the 
isometric transformation (E.14). Thus, from now on we set k = 0. 

One can see that from the five equations in (E.5) and (E.13) it is possible to obtain 
explicitly the values of γt, γt 0 , γx, γ0 and γy, but of course, in order for this to be an actualx 
solution, γ0 and γ0 should in fact be the derivatives of γt and γx. As it turns out, thist x 
only happens when the following constraints meet. First, the two levels q+1 and q−1 must 
be related according to 

q+1 = q−1 + 2s , (E.17) 

where we recall that s = sign [Re(nω)]. Thus we have q−1 = 0, 1, 2, ... for s = 1 and 
q−1 = 2, 3, 4, ... for s = −1. On the other hand, the ratios of the constants a±, b±, 

b±1
λ±1 = (E.18) 

a±1 

must be related according to � � 
λ+1 (2q� − ω̂ + �) − i 2(2q + 3)ω̂� − ω̂2 + 3�2 

λ−1 = . (E.19)
−iλ+1 + (2q + 5)� − ω̂ 

where q is ( 
q−1 if s = 1 , 

q = (E.20)
−1 − q−1 if s = −1 

Note that this is all we need in order to characterize the boundary conditions, since the 
overall normalization of Y±1 is not relevant when searching for quasinormal modes. Now, 
consistency of the system of equations requires an additional constraint that involves such 
overall normalization, ( 

a−1 iλ+1 − (2q−1 + 5)� + ω̂ if s = 1 , 
2� = (E.21)(iλ+1+(2q−1−3)�+ω̂)a+1 − if s = −1 .4(q−1−1)q−1 

In that case, the explicit solution for the γa reads 

ia+1L
3 (−iλ+1 − ω̂ + �) � � 

γt = − √ 2(1 + q−1)Hq− + H2+q− , (E.22)
2r+xω̂� 

√ � �2a+1L 
γx = (−iλ+1 + �(2q−1 + 5) − ω̂) Hq− + �H2+q− , (E.23)

� 

√ 
i 2a+1L

h � � 
γy = − 2(q−1 + 1)�2 + λ+1 (iω̂ − 2i(q−1 + 1)�) − (4q−1 + 7)ω̂� + ω̂2 Hq−ω̂� 
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i 
+ �(� − iλ+1)H2+q− , (E.24) 

for s = 1, and there is a similar solution for s = −1. 
Then, in order to find the electromagnetic quasinormal modes, the idea would be 

to simultaneously solve the radial equations (6.64) for Y+1 and Y−1 with the levels q±1 
related according to (E.17) and with the boundary conditions given by (E.1), (E.3) and 
(E.19). Note that, once � and q−1 are specified, the problem only contains two parameters, 
ω̂ and λ+, and the hope is a solution exists only for discrete values of these quantities. 
Unfortunately, this is not the case, since the boundary conditions are degenerate. Indeed, 
they are equivalent to requiring that φ0 and φ2 emerge from the same vector field. In 
order to see this, we first note the following Maxwell equations in the NP formalism 

(D − 2ρ)φ1 = δ ∗ φ0 , (D − ρ)φ2 = δ ∗ φ1 . (E.25) 

Combining these it is possible to derive the following relation between φ0 and φ2, 

δ̂∗ δ̂∗ φ0 = R(D − ρ)R(D − 2ρ)φ2 , (E.26) 

where 

p
i 2(r2 + n2) 2nx−i arctan(r/n) ˆR = e , δ ∗ = Rδ ∗ = ∂x − i∂y + i ∂t . (E.27)

L L2 

Then, by using the decomposition (6.62) one first derives the relation between the levels 
q±1 given in (E.17)1 , and one also obtains a relation between Y+1 and Y−1, 

� �� � � � � �22�2 3Y−1 (2q−1 + 1)� 3z4�4 − 6z + z −3�4 + 6�2 + 1 − 1 + ω̂ z2�2 + 1 
Y+1 = − 

2(q−1 + 1)(q−1 + 2)(z − 1)� (3z3�4 + z2 (6�2 + 1) + z + 1) � � 
i z2�2 + 1 Y 0 

− −1 , (E.28)
2(q−1 + 1)(q−1 + 2)� 

� �� � � � � �22�2 3Y+1 (2q−1 + 5)� 3z4�4 − 6z + z −3�4 + 6�2 + 1 − 1 + ω̂ z2�2 + 1 
Y−1 = − 

2(z − 1)� (3z3�4 + z2 (6�2 + 1) + z + 1) � � 
i z2�2 + 1 Y 0 

+ +1 , (E.29)
2� 

where we have used the master equations (6.64). One can see that these relations map 
the solutions of Y±1 with the boundary conditions (E.1) into each other and they imply 
that the asymptotic behaviour of these functions is always related according to (E.19) 
— independenly of the boundary conditions imposed on the vector Aµ. Therefore, both 
equations are degenerate and the value of λ+1 (or λ−1) cannot be found in this way. In 
the case of vanishing NUT charge, one can decouple the electromagnetic perturbations 
in modes of definite parity, which are achieved only for two specific values of λ+1 (λ−1). 

1Interestingly, the operators δ̂∗ and δ̂  act as the ladder operators of the harmonic oscillator, so they 
raise and lower the Landau level q. 
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However, NUT charge breaks all reflection symmetries of the background, and therefore 
we do not have a similar decomposition of the perturbations. Hence, we seem to be unable 
to determine the polarization parameter λ±1, which would suggest that the spectrum of 
QNMs depends continuously on this parameter. Clearly, more research in this direction 
is needed in order to understand the puzzling properties of electromagnetic perturbations 
in these geometries. 

E.2 Asymptotic form of the metric perturbation 

As we have seen, the metric perturbation satisfying Dirichlet boundary conditions can be 
written near the boundary as 

hab = ze −iωtγab(x) + O(z 3) , (E.30) 

where we are already setting k = 0 without loss of generality. The equations of motion 
allow one to express the component γxx in terms of the rest as � 

2 2 � 4n x 4nx 
γxx = 1 − γtt + γty − γyy. (E.31)

L4 L2 

−snωx2/L2 
Then, it is convenient to introduce a new matrix σab as follows γab = e σab. One 
finds that the equations of motion together with the separability conditions on the NP 
variables imply that σab is given by a finite sum of Hermite polynomials. In the case s = 1 
it reads 

10a+2L
2 � � 

σtt = − Hq+2(x̂) −(2q + 7)ω̂� + ω̂2 + iλ+2ω̂ − 2�(� − iλ+2) , (E.32)
ω� 3r+ ̂

h5ia+2L
2 

σtx = − √ �Hq−2+3 (x̂) (−iλ+2 − ω̂ + �) 
3 2r+ (ω̂�3)

1/2 � � i 
+ 2Hq−2+1 (x̂) ωλ+2 + (q−2 + 1) � (� − iλ+2) − (3q−2 + 10) ˆ ω2 , (E.33)iˆ ω� + ˆ 

h5a+2L
2 

σty = √ 2Hq−2+1 (x̂) 4 (q−2 + 2) �2 (� − iλ+2) + ω̂2 ((−5q−2 − 14) � + iλ+2) 
3 2r+ (ω̂�)

3/2 �� � � �
2+ω̂� 4q−2 + 23q−2 + 29 � − i (3q−2 + 5) λ+2 + ω̂3 � � i 

+ �Hq−2+3 (x̂) ωλ+2 + 4� (� − iλ+2) + (4q−2 + 13) ˆ ω2 , (E.34)−iˆ ω� − ˆ 

h5ia+2L
2 � 

σxy = 2Hq−2 (x̂) −2q−2 (q−2 + 2) �2 (� − iλ+2) + ω̂2 (−2 (3q−2 + 8) � + iλ+2)
ω�26r+ ̂�� � � �

2+ω̂� 8q−2 + 44q−2 + 55 � − i (4q−2 + 7) λ+2 + ω̂3 − �2 (� − iλ+2) Hq−2+4 (x̂) � � i 
− 2�Hq−2+2 (x̂) ωλ+2 + 2 (q−2 + 2) � (� − iλ+2) − (4q−2 + 13) ˆ ω2 , (E.35)iˆ ω� + ˆ 

(E.36) 
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h � �� � � � �5a+2L
2

3 2 2σyy = − 
ω2�2 2Hq−2 (x) −2ω̂�2 4q−2 + 28q−2 + 54q−2 + 29 � − i 4q−2 + 10q−2 + 5 λ+2

6r+ ̂� �
2−8 q−2 + 3q−2 + 2 �3 (� − iλ+2) + ω̂3 (−2 (4q−2 + 9) � + iλ+2)�� � � �

2+ω̂2� 18q−2 + 82q−2 + 83 � − 3i (2q−2 + 3) λ+2 + ω̂4 � � 
+ �2Hq−2+4(x) −4� (� − iλ+2) − 4 (q−2 + 3) ω̂� + ω̂2 � � i 
− 2�Hq−2+2(x) (ω̂ − 2 (2q−2 + 5) �) ωλ+2 − 2� (� − iλ+2) − (2q−2 + 7) ˆ ω2 ,iˆ ω� + ˆ 

(E.37) 

while for s = −1 the solution is 

� � 
17a+2L

2Hq+2+2 (x̂) ωλ+2 + ˆ ω2iˆ ω� (2q+2 + 3) − 2� (� − iλ+2) + ˆ 
σtt = , (E.38)

ω� (q+2 + 1) (q+2 + 2) 6r+ ̂

h17ia+2L
2ω̂ � �

2σtx = √ 2� q+2 + 5q+2 + 6 (iλ+2 + ω̂ − �) 
12 2r+ (q+2 + 1) (q+2 + 2) (q+2 + 3) (−ω̂�)3/2 � � i 

× Hq+2+1 (x̂) + Hq+2+3 (ˆ iˆ ω� (3q+2 + 5) + ω̂2 ,x) ωλ+2 − � (q+2 + 4) (� − iλ+2) + ˆ 
(E.39) 

h17a+2L
2 � 

σty = − √ Hq+2+3 (x̂) −4�2 (q+2 + 3) (� − iλ+2) 
12 2r+ (q+2 + 1) (q+2 + 2) (q+2 + 3) (−ω̂�)3/2 � � � � �

2 ω3+ω̂2 (� (5q+2 + 11) + iλ+2) + ˆ � 4q+2 + 17q+2 + 14 + iλ+2 (3q+2 + 10) + ˆω� � � � � i 
2+ 2� q+2 + 5q+2 + 6 x) iˆ ω� (4q+2 + 7) − 4� (� − iλ+2) + ω̂2 ,Hq+2+1 (ˆ ωλ+2 + ˆ 

(E.40) 

h17ia+2L
2 � � �

2σxy = Hq+2+4 (x̂) −2�2 q+2 + 8q+2 + 15 
48r+ ̂ω�2 (q+2 + 1) (q+2 + 2) (q+2 + 3) (q+2 + 4)� � � � 

× (� − iλ+2) + ω̂2 (2� (3q+2 + 7) + iλ+2) + ˆ � +2 + 36q+2 + 35 + iλ+2 (4q+2 + 13) ω� 8q 2 � � �
4 3 2+ω̂3 − 8�2 q+2 + 10q+2 + 35q+2 + 50q+2 + 24 (� − iλ+2) Hq+2 (x̂) � � � � i 

2 ω2+ 4� q+2 + 7q+2 + 12 x) iˆ ω� (4q+2 + 7) + ˆ ,Hq+2+2 (ˆ ωλ+2 − 2� (q+2 + 3) (� − iλ+2) + ˆ 
(E.41) 

" �17a+2L
2 Hq+2+4 (x̂)

σyy = − 
48r+ω̂2 �2 (q+2 + 1) (q+2 + 2) (q+2 + 3) (q+2 + 4) � � � � ��

3 2 22ω̂�2 � 4q+2 + 32q+2 + 74q+2 + 41 + iλ+2 4q+2 + 30q+2 + 55 � �
2− 8�3 q+2 + 7q+2 + 12 (� − iλ+2) + ω̂3 (� (8q+2 + 22) + iλ+2)�� � � � 

ω2� 2 ω4+ ˆ � 18q+2 + 98q+2 + 123 + 3iλ+2 (2q+2 + 7) + ˆ � � 
4Hq+2+2 (x̂) (2� (2q+2 + 5) + ˆ iˆ ω� (2q+2 + 3) − 2� (� − iλ+2) + ω̂2ω) ωλ+2 + ˆ 

− 
� (q+2 + 1) (q+2 + 2) 
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# � � 
(x̂) 4ω̂� (q+2 + 2) − 4� (� − iλ+2) + ω̂2 , (E.42)− 8Hq+2 

q
2snωwhere in each case x̂ = x .
L2 

E.3 Boundary conditions from Hertz’s reconstruction map 

A priori, it is not clear to which extent the Weyl scalars Ψ0 and Ψ4 encode all the infor-
mation of a metric perturbation. Rather remarkably, though, once solutions for certain 
decoupled equations (in a specific sense) are known, there is an elegant procedure to re-
construct the whole perturbation. The “master variables” satisfying such equations are 
referred to as the Hertz potentials. This was applied to perturbations of vacuum type-D 
spaces in [414] and [415]. The results in those references were proven in a more systematic 
and surprisingly simple form in [106]. In the context of holography, this has proven to be 
very useful, particularly in the derivation of physical boundary conditions for perturba-
tions in AdS space [109] (see also [375, 376]). In this appendix we rederive our boundary 
conditions by explicit application of Hertz’s reconstruction map. 

In our type-D space a complex metric perturbation in a general polarisation state 
can be written as � � �	

¯ ϕIRG hµν = −kµkν δδ̄  − m̄ µm̄ ν (D − ρ̄)(D + 3ρ̄) + k(µm̄ ν) (D − ρ̄+ ρ)δ̄ + δ̄(D + 3ρ̄) ¯ 
+ {−lµlν δδ − mµmν (Δ − 3γ̄ + γ + µ̄)(Δ − 4γ̄ − 3µ̄) 
+ l(µmν) [δ(Δ − 4γ̄ − 3µ̄) + (Δ − 3γ̄ − γ + µ̄ − µ)δ]}ϕ̄ORG (E.43) 

where ϕIRG and ϕORG are the Hertz potentials of perturbations in traceless, ingoing 
(hIRGkµ lµ= 0) and outgoing (hORG = 0) radiation gauge respectively, and satisfy theµν µν 

† †equations O (ϕIRG) = 0 and O (ϕORG) = 0, where O0 and O4 are Teukolsky’s operators 0 4 
and † denotes the operation of taking the adjoint, as defined in [106]. Following the lines� � � �† 

µν ϕ
IRG † 

µν ϕ
ORG of [415], we have taken hIRG = 2 and hORG = 2 . Here, S0 and S4µν S0 µν S4 

µν µνare defined by the identities O0T0(h) = S Eµν (h) and O4T4(h) = S Eµν (h) where Eµν0 4 
is the linearised Einstein equation and T0 and T4 the operators that compute Ψ0 and Ψ4 
out of hµν , respectively (it is now clear, by the property (AB)† = B†A† of composition of 

† †adjoints and the self-adjoint property Eµν = Eµν , that a solution ϕ of O (ϕ) = 0 generates0 
† † a solution hµν = S0µν ϕ of Eµν (h) = 0, and similarly for O† and S4µν ). Solutions for ϕIRG 

4 
−4/3 4/3

and ϕORG can be readily obtained by noticing the properties O†(ϕ) = Ψ O4(Ψ ϕ)0 2 2 
−4/3 4/3

and O†(ϕ) = Ψ O0(Ψ ϕ), and take the form4 2 2 

ϕIRG ω,q−4 −iωt iky ¯ = ΔR(−2) (r)Hq(x)e e (E.44) 
ω,q R (r) 

ϕORG ¯ −4/3 (+2) −iωt iky ¯ = Ψ Hq−4(x)e e (E.45)2 Δ 
ω,q ω,q−4The radial functions R and R are solutions of (6.104) and (6.105), respectively, (+2) (−2) 

and we chose them to be related by the Teukolsky–Starobinsky identities (6.108) and 
(6.109). Also, we recall that these radial functions are related to the Y±2 variables accord-
ing to (6.103). In addition, the angular functions Hq(x) are the solutions given in (6.45). 
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With this, it can be verified by direct application of T0 and T4 on (E.43) that 

ω,q R(+2) −iωt iky Ψ0 = A(+2) Hq(x)e e (E.46)
Δ 
ω,q−4ΔR 

−iωt iky Ψ4 = A(−2) 
(−2) Hq−4(x)e e (E.47)

(r + in)4 

where the constants A(±2) are not important for this discussion. 
In order to determine the boundary conditions, we perform an asymptotic expansion 

ω,q ω,q−4of R and R near infinity, which follows that of the Y±2 functions in (6.78) and is(+2) (−2) 
determined by the constants a±2 and b±2. The boundary conditions are most conveniently 
identified by working in a gauge 

h̃µν = hµν + 2r(µξν) (E.48) 

with h̃ 
rµ = 0. This can be achieved by expanding the gauge parameter as 

∞X 
−iωt+iky 2 −i(fξµ = e r r (i)

(x), f (i)(x)/r2, f (i)(x), f (i)(x)) , (E.49)t r x y 
i=0 

which allows us to cancel as many 1/ri terms in h̃ 
rµ as we want by choosing the functions 

fµ 
(i)
(x) appropriately. Then, the resulting metric perturbation h̃ 

ab typically contains terms 
that diverge as r2 , which should be removed according to the holographic boundary condi-
tions in (6.80). Some of these can be canceled with additional gauge transformations, but 

ω,q ω,q−4ultimately we find a constraint between the asymptotic expansions of R and R(+2) (−2) 
at r → ∞, which establishes a relation between the constants (a+2, b+2) and (a−2, b−2). 
This, in turn, translates into a relation between the ratios of these quantities. λ+2 and λ−2 
as defined in (6.94). On the other hand, the Teukolsky–Starobinsky identities (6.108) and 
(6.109) provide an additional relation involving λ+2 and λ−2 — see (6.112). The solutions 
for (λ+2, λ−2) of this pair of equations are precisely those given in (6.118) and (6.119). 
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